WO2007007507A1 - 集積パネルと流体デバイスとの接続構造 - Google Patents

集積パネルと流体デバイスとの接続構造 Download PDF

Info

Publication number
WO2007007507A1
WO2007007507A1 PCT/JP2006/312012 JP2006312012W WO2007007507A1 WO 2007007507 A1 WO2007007507 A1 WO 2007007507A1 JP 2006312012 W JP2006312012 W JP 2006312012W WO 2007007507 A1 WO2007007507 A1 WO 2007007507A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
fluid
fluid supply
discharge
gasket
Prior art date
Application number
PCT/JP2006/312012
Other languages
English (en)
French (fr)
Inventor
Masayoshi Katsura
Original Assignee
Nippon Pillar Packing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005202933A external-priority patent/JP4257319B2/ja
Priority claimed from JP2005203939A external-priority patent/JP4257320B2/ja
Application filed by Nippon Pillar Packing Co., Ltd. filed Critical Nippon Pillar Packing Co., Ltd.
Priority to EP06766746A priority Critical patent/EP1909017A1/en
Priority to US11/988,556 priority patent/US20090072536A1/en
Publication of WO2007007507A1 publication Critical patent/WO2007007507A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • F16L19/0231Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member with specially adapted means for positioning the threaded member behind the collar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/04Flanged joints the flanges being connected by members tensioned in the radial plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/18Flanged joints characterised by the sealing means the sealing means being rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe

Definitions

  • the present invention relates to a connection structure between an integrated panel and a fluid device, and more specifically, a high-purity liquid used in manufacturing processes in various technical fields such as semiconductor manufacturing, medical 'pharmaceutical manufacturing, food processing, and chemical industry.
  • a high-purity liquid used in manufacturing processes in various technical fields such as semiconductor manufacturing, medical 'pharmaceutical manufacturing, food processing, and chemical industry.
  • fluid integrated panels which are expected to be in the future, such as piping systems for ultrapure water or cleaning liquid, and fluid devices such as pumps, valves, and accumulators in a sealed state via gaskets Concerning structure.
  • connection structure for example, there is one in which a valve, which is an example of a fluid device, and an integrated panel in which a fluid passage is formed are connected and connected by connecting a pair of supply / discharge passages
  • Connection structures disclosed in Document 1 and Patent Document 2 are known.
  • Patent document 1 discloses a connection structure in which a pair of supply / discharge channels are arranged close to each other, and are connected in a liquid-tight manner with a plurality of bolts via independent ring-shaped gaskets.
  • a pair of supply / exhaust flow paths are arranged close to each other, and a single gasket having a pair of flow path holes corresponding to the pair of supply / exhaust flow paths is provided as a single outer shell. It is connected and connected using a screw nut.
  • connection structures disclosed in Patent Documents 1 and 2 adopts a structure in which a large number of fluid devices are integrated and attached to a fluid block, that is, a so-called integrated piping structure. Compact is useful in that it allows modularity.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-82609
  • Patent Document 2 JP-A-10-169859
  • connection structures disclosed in Patent Documents 1 and 2 effective sealing performance is obtained by tightening the bolts until a predetermined surface pressure is reached between the pair of flange portions sandwiched between the gaskets. Become. While tightening force, bolt tightening force decreases with time Since this is inevitable, it has been necessary to periodically retighten to prevent the tightening force from being lowered, that is, leakage from the connection portion due to torque down. When sealing with a gasket, a very high tightening force is required. Therefore, high strength is required for the fluid supply / drainage part of the integrated panel and fluid device, and workability for connecting and connecting them is also required. But it was disadvantageous.
  • the present invention has been made in view of such a situation, and an object of the present invention is to increase by contriving the connection structure between the integrated panel and the fluid device in the fluid piping system.
  • an object of the present invention is to increase by contriving the connection structure between the integrated panel and the fluid device in the fluid piping system.
  • the fluid device itself is of course reduced in size, but after the fluid device itself has been made compact, the integrated panel and It is expected that there will be a demand for downsizing the connection structure with fluidic devices.
  • the second object of the present invention is to connect the integrated panel and the fluidic device, which can be further downsized to promote integration in the piping system using the integrated panel having the above-described advantages. It is in the point to propose and realize.
  • the invention according to claim 1 is an integrated panel 1 including a first fluid supply / discharge rod portion 1A in which tubular fluid passages 3 and 4 are opened in connection with a connection structure between the integrated panel and a fluid device.
  • the first fluid supply / discharge portion 1A and the second fluid supply / discharge port portion 2A of the fluid device 2 provided with the second fluid supply / discharge portion 2A in which the tubular fluid passages 7, 8 are opened.
  • the fluid passages 3, 4, 7, and 8 are connected in communication with each other by a ring-shaped gasket G interposed between the first fluid supply / discharge port portion 1A and the second fluid supply / discharge portion 2A.
  • annular protrusions 11, 21 are formed on the outer diameter side portions of the fluid passages 3, 4, 7, 8 that open to the end surfaces.
  • the gasket G includes a fluid path W formed to communicate the fluid passages 3, 4, 7, and 8 corresponding to the first and second fluid supply / discharge portions 1A and 2A.
  • the first and second fluids It is possible to have a pair of annular grooves 51, 51 formed on the outer diameter side portion of the fluid path W to be fitted to the annular protrusions 11, 21 formed on the end faces of the supply / discharge portions 1A, 2A, respectively. Material force with flexibility,
  • Part 10 is formed, and annular presser portions 12 and 22 formed on the inner diameter side of the annular protrusions 11 and 21 on the end surfaces of the first and second fluid supply / discharge parts 1A and 2A, and the gasket G Of the inner and outer peripheral wall ends 52, 53 formed so as to project in the axial direction to form the annular groove 51, the inner peripheral side peripheral wall end 52 comes into contact with the inner peripheral side peripheral wall end 52. Expansion / contraction change that suppresses or prevents a reduction in diameter due to the engagement between the annular groove 51 and the annular protrusions 11, 21. Bonding state preventing means Y is formed is formed,
  • the expansion / contraction deformation preventing means Y is provided on the annular protrusion side of the annular retainer portions 12 and 22 such that the valley portions 14 and 24 surrounded by the annular retainer portions 12 and 22 and the annular protrusion 51 are constricted.
  • the tapered peripheral surfaces 12a and 22a are inclined and the tapered peripheral surface 52a formed on the peripheral wall end portion 52 on the inner diameter side is formed by pressure contact.
  • the invention according to claim 2 is the connection structure between the integrated panel and the fluid device according to claim 1, wherein the tapered peripheral surfaces 12a, 22a of the annular pressing portions 12, 22 and the peripheral wall on the inner diameter side.
  • the seal portion S2 is formed by pressure contact with the tapered peripheral surface 52a of the end portion 52.
  • the invention according to claim 3 is configured such that in the connection structure between the integrated panel and the fluid device according to claim 1 or 2, the gasket G has a substantially H-shaped cross section. It is characterized by being.
  • the invention according to claim 4 is the connection structure between the integrated panel and the fluid device according to any one of claims:! To 3, wherein the annular protrusions 11 and 21 are inserted into the annular groove 51.
  • the annular projections 11 and 21 are chamfered at the inner and / or outer peripheral corners of the tip. It is characterized by being formed into a tapered shape in cross section.
  • the invention according to claim 5 is characterized in that the fitting seal portion 10 and the expansion / contraction are connected to the connection structure between the integrated panel and the fluid device according to any one of claims:! To 4.
  • a maintenance means I for maintaining the joined state in which the deformation preventing means Y is formed is provided.
  • the invention according to claim 6 is the connection structure between the integrated panel and the fluid device according to claim 5, wherein the maintaining means I includes the first fluid supply / discharge portion 1A and the second fluid supply / discharge portion. It is constructed so as to exhibit a bow I-shifting function for pulling the second portion 2A and obtaining the joined state.
  • the invention according to claim 7 is the connection structure between the integrated panel and the fluid device,
  • a tubular fluid passage 3 or an annular fluid passage and one or more annular fluid passages 4 are formed concentrically and provided with a first fluid supply / discharge portion 1A that opens.
  • a plurality of fluid passages 3, 4, 7, and 8 correspond to the second fluid supply / discharge port portion 2A of the fluid device 2 including the discharge port portion 2A, and the first fluid Communicating connection in a state where each fluid passage 3, 4, 7, 8 is sealed by a plurality of ring-shaped gaskets Gl, G2 interposed between the supply / discharge part 1A and the second fluid supply / discharge part 2A
  • the first fluid supply / discharge portion 1A and the second fluid supply / discharge portion 2A are provided in the fluid passages 3, 4, 7, 8 that open to the respective end faces.
  • Annular projections 21, 11, 41, 31 are formed on the outer diameter side portion, and the gaskets Gl, G2 are respectively connected to the fluid passages 3, 4 corresponding to the first and second fluid supply / discharge portions 1A, 2A. , 7, 8 of fluid paths Wl, W2 formed so as to communicate with each other, and the annular protrusions 21, 11, 41, 31 formed on the end surfaces of the first and second fluid supply / discharge portions 1A, 2A It is made of a flexible material having a pair of annular grooves 51, 61 formed in the outer diameter side portions of the fluid paths Wl, W2 to be fitted to each other,
  • the projectingly formed peripheral wall ends 52, 53, 62, 63 on the inner and outer diameter sides come into contact with each other, and the peripheral wall ends 52, 53, 62, 63 on the inner and outer diameter sides are in contact with the annular grooves 51, 61 and the annular A joining state is formed in which the expansion / contraction deformation preventing means Y is formed to suppress or prevent the expansion or contraction deformation by fitting with the protrusions 21, 11, 41, 31.
  • the expansion / contraction deformation preventing means Y includes the troughs 24, 25, 25, 24, 25, 24, 25, 25, 14, 15, 44, 45, 34, 35 Force S Side circumferential surface on the annular projection side in the above-mentioned annular upper portion 22, 23, 12, 13, 42, 43, 32, 33 so as to be constricted
  • the intermediate gasket G1 in which the fluid passages Wl and W2 exist on both the inner diameter side and the outer diameter side in the joined state has an outer peripheral portion 55a whose outer diameter is the outer diameter of the intermediate gasket G1.
  • the invention according to claim 8 is a connection structure between the integrated panel according to claim 7 and the fluid device, and the annular presser foot 22, 23, 12, 13, 42, 43 , 32, 33 Theno.
  • the peripheral surface 2 2a, 23a, 12a, 13a, 42a, 43a, 32a, 33a and the inner peripheral surface 52a, 53a, 62a, 63a, and the teno peripheral surface 52a, 53a, 62a, 63a It is characterized in that it is configured to form a film.
  • the invention according to claim 9 is a contact between the integrated panel according to claim 7 or 8 and the fluidic device.
  • the continuation structure is characterized in that the gasket G has a substantially H-shaped cross section.
  • the invention according to claim 10 is the connection structure between the integrated panel and the fluid device according to any one of claims 7 to 9, wherein the annular protrusions 21, 11,
  • the annular protrusions 21, 11, 41, 31 that are easily slipped into 41, 31 are formed in a tapered shape with a chamfered inner peripheral corner and Z or outer peripheral corner of the tip. It is a thing.
  • the invention according to claim 11 is the connection structure between the integrated panel and the fluid device according to any one of claims 7 to 10: the fitting seal portion 10 and the expansion / contraction deformation preventing means Y include It is characterized by being equipped with a maintenance means I for maintaining the joined state formed.
  • the invention according to claim 12 is the connection structure between the integrated panel and the fluid device according to claim 11, wherein the maintaining means I includes the first fluid supply / discharge part 1A and the second fluid supply / discharge part.
  • a bow for attracting the part 2 A to obtain the above-mentioned joined state [characterized by being configured to exhibit a close-up function.
  • the annular protrusions formed on the first and second fluid supply / discharge portions and the annular grooves respectively formed on one end surface and the other end surface of the gasket are in the axial direction. Since the fitting seal part is formed by fitting with each other by relative movement of the two, the sealing function of the fitting seal part by the annular protrusion and the annular groove is maintained even if both of them move slightly in the axial direction. As a result, it is possible to continue to exhibit excellent sealing properties that prevent liquid leakage between the first and second fluid supply and discharge parts.
  • the first and second fluid supply / drainage parts are structured so that they fit and fit in the direction of their ⁇ I movement, maintaining good sealing performance with little additional tightening.
  • connection structure for a piping system of a cleaning device in a semiconductor manufacturing facility, the occupation area of the device can be reduced while ensuring good sealing performance, which is advantageous in cost.
  • a large flow path ensures a high circulating flow rate and high chemical purity If it is possible to improve the yield and contribute to the improvement of the yield, it is possible to achieve a reflex effect.
  • the concave side tends to spread and easily deform, that is, in the present invention, the inner and outer peripheral wall end portions formed on the gasket to form the annular groove are used. It means that it spreads and deforms.
  • the first and second fluid supply / discharge rod portions are formed with an inner diameter side annular pressing portion that suppresses or prevents the expansion deformation of the inner diameter side peripheral wall end where the fluid path of the inner and outer peripheral wall ends exists. Therefore, the expansion deformation of the end of the peripheral wall on the inner diameter side is eliminated or reduced, and the inner peripheral surface of the annular protrusion and the outer peripheral surface of the annular groove can be fitted with a strong pressure contact force.
  • the sealing function can be achieved as expected.
  • the presence of the annular presser part can compensate for the lack of rigidity at the end of the peripheral wall on the inner diameter side, so the thickness of the end of the peripheral wall on the inner diameter side of the gasket should be reduced compared to the case where these parts do not exist. Therefore, there is also an advantage that the overall width of the fluid passage can be reduced by reducing the width dimension of the gasket, that is, the connection structure between the integrated panel and the fluid device can be reduced.
  • the first and second fluid supply / discharge rod portions are arranged on the inner diameter side of the fitting portion between the annular protrusions of the gaskets and the annular grooves on one end surface or the other end surface of each gasket.
  • the taper peripheral surface of the second fluid supply / discharge port and the taper peripheral surface of the gasket are in pressure contact with each other, and the connection structure portion is made compact by contact between the taper peripheral surfaces. It is possible to hesitate.
  • the structure is such that the tapered peripheral surfaces are pressed against each other, the pressure contact force increases as the integrated panel, fluid device, and gasket are pressed strongly, resulting in the above-mentioned compactness and sealing performance due to the fitting between the annular protrusion and the annular groove.
  • the improvement effect can be further strengthened. Ma Accordingly, it is possible to provide a connection structure in which no liquid pool is generated between the tapered peripheral surfaces.
  • the expansion / contraction deformation preventing means prevents the annular groove of the gasket from expanding in the joined state, so that the portion near the opening of the annular groove (tip portion) and the portion near the root of the annular protrusion (base) It is possible to realize and maintain a strong pressure contact state with the end portion, that is, an excellent seal state.
  • This reliable sealing function at the root of the annular projection makes it difficult or difficult for fluid, mixtures and foreign substances to reach the root of the annular groove, and fluid remains in the seal after use. There is also an advantage that a clean situation can be maintained.
  • the annular projections of the first and second fluid supply / discharge rod portions are fitted by fitting with the annular groove on one end surface or the other end surface of each gasket.
  • a seal portion is formed by pressing the annular retainer portion and the peripheral wall end portion on the inner diameter side of the gasket, so that the sealing performance is enhanced by the plurality of seal portions. As a result, a connection structure between the integrated panel and the fluid device having better sealing performance can be obtained.
  • the cross-sectional shape of the gasket is formed in a substantially H shape, for example, the gasket and the portion that is fitted with the gasket are compared with those in the T shape. 1.
  • the design and manufacture of the second fluid supply / discharge part can be facilitated, and the balance (strength balance and assembly balance) when fitted to an integrated panel or fluid device can be improved.
  • the annular protrusion is easy to enter the annular groove by chamfering the inner peripheral corner portion and / or the outer peripheral corner portion of the annular protrusion, the first, Even when the relative position between the second fluid supply / discharge part and the gasket is slightly shifted, the annular protrusion and the annular groove are reliably fitted by pulling them together. As a result, even if the assembling operation for pulling the first and second fluid supply / discharge parts through the gasket is somewhat rough, the annular protrusion and the annular groove are securely fitted and the fitting seal part It is possible to provide a connection structure between a preferred integrated panel and a fluid device that reliably function.
  • the two fluid supply / discharge parts are mutually gasified by the maintaining means. Since the jointed state drawn through the bracket can be maintained, it is possible to maintain a state where the integrated panel and the fluid device can secure a good sealing performance without liquid leakage over a long period of time, and the integrated panel has excellent reliability. And a fluid device can be provided. As a result, it is possible to provide a connection structure between an integrated panel and a fluidic device that can maintain a good sealing performance with little additional tightening and improve the assembly workability. Can be further strengthened.
  • the maintaining means not only maintains the joined state of the first fluid supply / discharge port portion and the second fluid supply / discharge port portion, but also the first fluid supply / discharge port portion and the first fluid supply / discharge port portion.
  • connection structure portion by connecting two or more fluid passages in a concentric manner, the connection structure portion can be externalized compared to a structure in which a plurality of fluid passages are arranged independently. It is a means to try.
  • the annular projections formed on the first and second fluid supply / discharge parts and the annular grooves respectively formed on one end face and the other end face of the gasket are fitted to each other by relative movement in the axial direction. Since the seal part is formed, the sealing function of the fitting seal part by the annular protrusion and the annular groove is maintained even if both of them move slightly in the axial direction, and the first and second fluid supply / discharge part It is possible to continue to exhibit excellent sealing properties that prevent liquid leakage from the gap.
  • first and second fluid supply / drainage parts are configured to fit together in the direction in which they are drawn, and good sealing performance can be maintained with little additional tightening. It is possible to provide a connection structure between an integrated panel and a fluid device that can improve the assembly workability.
  • connection structure for the piping system of a cleaning device in a semiconductor manufacturing facility, the occupation area of the device can be reduced while ensuring good sealing performance, and this is advantageous in cost.
  • By securing a large flow path it is possible to increase the circulation flow rate, increase the purity of the chemical solution, and contribute to the improvement of yield.
  • the concave side tends to spread and deform easily, that is, in the present invention, that is, the peripheral wall end on the inner and outer diameter side formed in the gasket to form the annular groove. This means that the portion is expanded or contracted.
  • the first and second fluid supply / discharge rod portions are formed with annular pressing portions that suppress or prevent the diameter-reducing deformation at the end portion on the inner diameter side and the expansion at the end portion on the outer diameter side.
  • the inner and outer peripheral surfaces of the annular protrusion and the inner and outer peripheral surfaces of the annular groove can be fitted with a strong pressure contact force by eliminating or reducing the expansion or contraction deformation of the peripheral wall end on the inner and outer diameter sides.
  • the excellent sealing function due to the mating can be achieved as expected. Since the presence of the annular presser part can compensate for the lack of rigidity at the end of the peripheral wall, the thickness of the peripheral end of the gasket should be reduced compared to the case where these do not exist. Therefore, there is an advantage that the overall size of the fluid passage can be reduced by reducing the width of the gasket, that is, the connection structure between the integrated panel and the fluid device can be reduced.
  • the first and second fluid supply / discharge rod portions are arranged on the inner diameter side of the fitting portion between the annular protrusions of the gaskets and the annular grooves on one end surface or the other end surface of each gasket.
  • the taper peripheral surface of the second fluid supply / discharge port and the taper peripheral surface of the gasket are in pressure contact with each other, and the connection structure portion is made compact by contact between the taper peripheral surfaces. It is possible to hesitate.
  • the structure is such that the tapered peripheral surfaces are pressed against each other, the pressure contact force increases as the integrated panel, fluid device, and gasket are pressed strongly, resulting in the above-mentioned compactness and sealing performance due to the fitting between the annular protrusion and the annular groove.
  • the improvement effect can be further strengthened.
  • the expansion / contraction deformation preventing means expands the annular groove of the gasket in the joined state. Therefore, it is possible to realize and maintain a strong pressure contact state between the portion near the opening of the annular groove (tip portion) and the portion near the base of the annular protrusion (base end portion), that is, an excellent sealing state. .
  • This reliable sealing function at the root of the annular projection makes it difficult or difficult for fluid, mixtures and foreign substances to reach the root of the annular groove, and fluid remains in the seal after use. There is also an advantage that a clean situation can be maintained.
  • the outer peripheral portion which is not only the inner peripheral portion, is also used as the wall surface of the fluid path.
  • the interval between adjacent fluid passages is only the thickness of the intermediate gasket, which makes it possible to place multiple fluid passages as close to the radial direction as possible, making the connection structure between the integrated panel and the fluid device even more compact.
  • the annular projections of the first and second fluid supply / discharge portions are fitted by fitting with the annular groove on one end surface or the other end surface of each gasket.
  • a seal part is formed by press-contacting the annular pressing part on the inner and outer diameter sides and the peripheral wall end part on the inner and outer diameter side of the gasket.
  • the cross-sectional shape of the gasket is formed in a substantially H shape, for example, the gasket and the portion that is fitted to the gasket are compared with those in the T shape. 1.
  • the design and manufacture of the second fluid supply / discharge part can be facilitated, and the balance (strength balance and assembly balance) when fitted to an integrated panel or fluid device can be improved.
  • the inner peripheral corner portion and / or the outer peripheral corner portion of the annular protrusion are chamfered.
  • the taper shape makes it easier for the annular protrusion to enter the annular groove, both the first and second fluid supply / discharge parts and the gasket can be pulled even when the relative position is slightly shifted.
  • the annular protrusion and the annular groove are reliably fitted.
  • the annular protrusion and the annular groove are securely fitted. It is possible to provide a connection structure between a preferred integrated panel and a fluid device in which the fitting seal portion functions reliably.
  • the maintaining means can maintain the joined state in which the two fluid supply and discharge parts are attracted to each other via the gasket, so that the integrated panel and the fluid device can be connected to each other. It is possible to maintain a state in which a good sealability can be secured without leakage over a long period of time, and it is possible to provide a connection structure between an integrated panel and a fluid device that is excellent in reliability. As a result, it is possible to provide a connection structure between the integrated panel and the fluid device that can maintain a good sealing performance with little additional tightening and improve the assembly workability. It becomes possible to strengthen more.
  • the maintaining means only maintains the joined state of the first fluid supply / discharge portion and the second fluid supply / discharge portion, and the first fluid supply / discharge portion and the second fluid supply / discharge portion.
  • the drawing function for drawing the fluid supply / drainage part to obtain a joined state can also be demonstrated, eliminating the need for a separate drawing means and reducing the overall assembly effort and cost. certain advantages force s become.
  • FIG. 1 is a cross-sectional view showing a connection structure between an integrated panel and a valve (Example 1).
  • FIG. 2 Cross-sectional view of the main parts of the gasket and fluid supply / discharge section used in the connection structure of Fig. 1
  • FIG. 4 is a cross-sectional view showing a connection structure between an integrated panel and a bellows type banolev (Example 2)
  • FIG. 5 is a sectional view showing a connection structure between an integrated panel and a filter (Example 3).
  • FIG. 6 Cross-sectional view of the main part showing the first alternative structure of the maintenance means with a pulling function (Example 4)
  • FIG. 7 is an explanatory diagram showing a connection procedure of the connection structure having the maintaining means of FIG.
  • FIG. 8 is a cross-sectional view of a main part showing a second alternative structure of the maintaining means with a pulling function (Example 5).
  • FIG. 9 is an explanatory diagram showing a connection procedure of the connection structure having the maintaining means of FIG.
  • FIG. 10 is a cross-sectional view of the main part showing a third alternative structure of the maintaining means with a pulling function (Example 6).
  • FIG. 11 Cross-sectional view of the main part showing the fourth alternative structure of the maintaining means with a pulling function (Example 7)
  • FIG. 12 is a cross-sectional view of a main part showing a fifth alternative structure of the maintaining means with a pulling function (Example 8).
  • FIG. 13 (a) and (b) are cross-sectional views of the main part showing different shapes of the annular protrusions.
  • FIG. 14 Cross-sectional view showing concentric multi-channel connection structure of integrated panel and valve (Example 9) Garden 15] Cross-sectional view of main parts of gasket and fluid supply / discharge section used in connection structure of Fig. 14 16] Enlarged cross-sectional view of the main parts showing details of the fitting structure between the gasket and fluid device. 17] Cross-sectional view showing the concentric multi-channel connection structure between the integrated panel and pump via flange piping (Example) Ten)
  • FIG. 18 is a cross-sectional view of the main part showing the sixth alternative structure of the maintaining means with a pulling function (Example 11)
  • FIG. 19 is an explanatory diagram showing a connection procedure of the connection structure having the maintaining means of FIG.
  • FIG. 20 is a cross-sectional view of the main part showing the seventh alternative structure of the maintaining means with a pulling function (Example 12)
  • FIG. 21 is an explanatory diagram showing a connection procedure of the connection structure having the maintaining means of FIG.
  • FIG. 23 (a) and (b) are cross-sectional views of the main part showing different shapes of the annular protrusions.
  • FIGS. 4 and 5 show the connection structure between the integrated panel and the fluid device according to Examples 2 and 3, respectively.
  • Figure 12 shows another structure of the maintenance means
  • Figure 6 is the first separate structure
  • Figures 7 and 8 are the second separate structure
  • Figures 9 and 10 are the third separate structure
  • Figure 11 is the fourth separate structure
  • Figure 12 is the fifth separate structure.
  • FIG. 13 shows another structure of the annular protrusion.
  • 14 and 15 are an overall view and a cross-sectional view of the main part showing the connection structure between the integrated panel and the fluid device according to Example 9, and FIG.
  • FIG. 16 is the first gasket.
  • FIG. 17 is an overall view showing the connection structure between the integrated panel and the fluid device according to Example 10,
  • FIG. 19 is a half-broken sectional view and assembly explanatory view of the retaining means according to the sixth alternative structure,
  • FIGS. 20 and 21 are half-sectional sectional views and explanatory explanatory views of the retaining means according to the seventh different structure, and
  • FIG. It is sectional drawing of the maintenance means by another structure.
  • FIG. 23 shows another structure of the annular protrusion.
  • Figures 1 and 2 show the connection structure between the integrated panel and fluidic device according to Example 1.
  • the connection structure between the accumulation panel and the fluid device is mounted via a ring-shaped gasket G on the upper surface la of the accumulation panel 1 in which a pair of circular fluid passages 3 and 4 are internally formed.
  • This is a single-flow-path type that shares a longitudinal axis P that spans the valve (open / close valve, stop valve, etc.) 2. That is, the pair of connection structures are configured to be the same as each other for supply and discharge.
  • the integrated panel 1 has a vertical vertical opening that opens in the panel upper surface la inside a panel material (or block material) 5 made of fluororesin such as PFA or PTFE.
  • a pair of circular supply-side fluid passages 3 and 4 each having a passage 3a and 4a and a lateral passage 3b and 4b are formed.
  • the portion of the integrated panel 1 where the supply and discharge fluid passages 3 and 4 are open is referred to as a first fluid supply and discharge portion 1A.
  • the cylindrical vertical passages 3a and 3a, Each of 4a is formed in a passage having an axis P.
  • first fluid supply / discharge part 1A has an annular shape centered on the axis P in each of the outer diameter side portions of the fluid passages 3 and 4 opened at the upper end surface thereof, and A lower first seal end t21 and a lower second seal end t22 having inner and outer annular protrusions 21 projecting upward are formed.
  • the valve (an example of a fluid device) 2 has a valve case 6 made of a fluorine resin such as PFA or PTFE and having a circular shape in the vertical direction.
  • the lower end of the valve case 6 has a cylindrical supply-side fluid passage 7 that is vertically disposed in a state of projecting downward from the bottom surface 6a, and a vertical opening in a state of opening apart to the lateral side of the supply-side fluid passage 7. It is formed in the second fluid supply / discharge portion 2A having a circular discharge side fluid passage 8 arranged in the direction. That is, in the second fluid supply / discharge part 2A, each of the circular supply side fluid passages 7 and 8 is formed in a passage having the axis P.
  • a pair of mounting flanges 9 made of fluororesin made of PFA, PTFE or other material with a pair of bolt insertion holes 9a is formed to project downward, and the pipe part 9A and the flange part (outward facing) with fluid passages 7, 8 Flange) 9B and each mounting flange 9 is formed.
  • the supply-side mounting flange 9 is formed at the upper first seal end ti l having an annular protrusion 11 projecting downward, and the discharge-side mounting flange 9 is an upper second seal having an annular protrusion 11 projecting upward. It is formed at the end tl2.
  • the pair of gaskets G are the same as each other, and the structure thereof will be described by taking the supply-side gasket G as an example.
  • the gasket G is a tubular fluid path W1 formed so as to communicate the longitudinal passage 3a and the supply side fluid passage 7 which are fluid passages corresponding to the upper and lower fluid supply / discharge portions 1A, 2A on the supply side.
  • It is made of fluororesin such as PFA or PTFE having a pair of upper and lower annular grooves 51, 51 formed on the outer diameter side portion of the fluid path W1 to be combined.
  • the cross-sectional shape of the gasket G includes a pair of upper and lower annular grooves 51, 51, an inner peripheral wall 54 and an outer peripheral wall 55 for forming the annular grooves 51, 51, and the upper and lower annular grooves 5 1 and 51 are vertically symmetric with the same depth and width, and the inner and outer peripheral walls 54 and 55 are also left and right symmetric, and the axial centers of the first and second fluid supply / discharge parts 1A and 2A It is formed in a substantially H-shaped shape that is line symmetric (may be substantially line symmetric) with respect to both the vertical center Z along the P direction and the horizontal center line X orthogonal to the vertical center line Z.
  • the upper and lower end portions of the inner peripheral wall 54 are formed on tapered inner peripheral surfaces 52a and 52a in which the upper and lower end portions of the fluid path W1, which is the inner peripheral surface 54a, are inclined outwardly in a tapered shape, and The end portions are also formed on tapered outer peripheral surfaces 53a and 53a whose upper and lower end portions of the outer peripheral surface 55a are inclined inward.
  • Inner and outer peripheral wall ends 52 and 53 formed in the axial direction P in order to form the annular groove 51 in the gasket G on the inner and outer diameter sides of the protrusion 11 are formed into the annular groove 51 and the annular protrusions 11 and 21, respectively.
  • the annular presser protrusion (an example of the annular retainer part) 12, 13, 22, and 23 is formed to prevent expansion and deformation due to the fitting.
  • the structure related to the annular pressing protrusion will be described with respect to the gasket G and the upper first seal end ti l.
  • the inner and outer annular presser protrusions 12 and 13 are symmetrical, and the valley protrusions 14 and 15 surrounded by the annular protrusions 11 and 15 are formed in a constricted shape (upper constricted shape).
  • the peripheral surface is formed into a tapered annular protrusion having a tapered outer peripheral surface 12a and a tapered inner peripheral surface 13a. That is, the upper first seal end portion til is a general term for the annular protrusion 11 and the annular presser protrusions 12 and 13 and the valley portions 14 and 15 formed on both the inside and the outside.
  • the upper ends of the inner and outer peripheral walls 54, 55 of the gasket G are formed with a tapered inner peripheral surface 52a and a tapered outer peripheral surface 53a that are in contact with the tapered outer peripheral surface 12a and the tapered inner peripheral surface 13a of the annular presser protrusions 12, 13, respectively. It has a tapered ring-shaped sealing projection (example of peripheral wall end) 52, 53 that can enter 14 and 15, and in the joined state (see Fig.
  • the annular seal protrusions 52 and 53 which are the upper end portions, enter the corresponding valley portions 14 and 15, the tapered outer peripheral surface 12a of the upper first seal end ti l and the tapered inner peripheral surface 52a of the gasket G are in pressure contact, and The taper inner peripheral surface 13a of the upper first seal end ti l and the taper outer peripheral surface 53a of the gasket G are configured to be pressed against each other.
  • an upper seal portion gl l is formed at the upper end portion of the gasket G by the annular groove 51 and the inner and outer annular seal protrusions 52, 53, and similarly, a lower seal portion gl 2 is formed at the lower end portion. It is formed.
  • the upper seal part g11 is fitted with the upper first seal end part 111 to form the fitting seal part 10
  • the lower seal part gl2 is fitted with the lower second seal end part t21 to be the fitting seal part 10
  • the fitting structure of the fitting seal portion 10 will be described in detail with respect to the upper first seal end portion ti l and the upper seal portion gl l of the gasket G.
  • the portions 14, 15 and the inner and outer annular seal protrusions 52, 53 are symmetrical to each other, and the inner and outer valley portions 14, 15 are entirely included.
  • the upper inner annular retainer protrusion 12 and the upper inner annular seal protrusion 52 are The taper outer peripheral surface 12a and the taper inner peripheral surface 52a are brought into pressure contact with each other at the innermost diameter side portion (see the phantom line in FIG. 3), and the fluid passing through the fluid passage W1 is outside these
  • the advantage of functioning as the secondary seal portion S2 that prevents the taper peripheral surfaces 12a and 52a from entering between the inner taper peripheral surfaces 12a and 52a is obtained.
  • first fluid supply / discharge portion 1A and the second fluid supply / discharge port portion 2A are attracted to each other via the gasket G due to the operation of the maintaining means 1 (described later), etc.
  • the annular protrusion 11 of the inlet / outlet port 1A and the annular groove 51 at one end of the gasket G, and the annular protrusion 21 of the second fluid supply / discharge part 2A and the annular groove 51 at the other end of the gasket G are fitted together.
  • An annular presser protrusion 12, formed on the inner and outer diameter sides of the annular protrusions 11, 21 on the end surfaces of the first and second fluid supply / discharge portions 1A, 2A, and a fitting seal part 10 is formed.
  • the expansion / contraction deformation prevention means Y suppresses or prevents the expansion and deformation due to the engagement between the annular groove 51 and the annular projections 11 and 21. The joined state is formed.
  • the expansion / contraction deformation preventing means Y is substantially composed of tapered outer peripheral surfaces 12a, 22a and tapered inner peripheral surfaces 13a, 23a of the respective annular presser protrusions 12, 13, 22, 23, and corresponding gaskets.
  • the inner (outer) peripheral surfaces 52a, 53a of the taper G come into contact (pressure contact) with the outer and inner peripheral surfaces 12a, 22a, 13a, 23a, so that the annular seal protrusions 52, 53 are formed into annular grooves 51. A component force that tries to deform in the direction toward the side is generated.
  • the inner annular seal protrusion 52 is pressed to the outer diameter side and the outer annular seal protrusion 53 is pressed to the inner diameter side, so that the annular groove 51 is narrowed, that is, the annular protrusions 11 and 21 are tightened in the radial direction. Will occur.
  • the annular seal protrusions 52 and 53 tend to be pressed more strongly toward the root side of the annular protrusions 11 and 21 (toward the distal end side of the annular seal protrusions 52 and 53) because the component force acts stronger toward the distal end side. become.
  • the width dl of the upper annular protrusion 11 and the width d2 of the upper annular groove 51 dl> d2
  • a relationship of hl ⁇ h 2 is set between the protrusion length hi of the upper annular protrusion 11 and the depth h2 of the upper annular groove 51.
  • a primary seal S1 is formed that exhibits excellent sealing performance to prevent fluid leakage, and the tapered outer peripheral surface 12a of the upper inner annular retainer protrusion 12 and the tapered inner peripheral surface 52a of the upper inner annular seal protrusion 52 are always There is an advantage that the above-described secondary seal portion S2 is formed satisfactorily.
  • the fitting seal portion 10 has a radius with respect to the axial center P of each of the annular protrusion 11 (21) and the annular groove 51 for reliably functioning the primary seal portion S1 on the inner diameter side.
  • R 1 and R 2 it is convenient to set so that R 1 ⁇ R 2 holds.
  • the relationship between the height h3 along the axis P direction of the annular presser protrusions 12, 22 (13, 23) and the protruding length hi of the annular protrusion 11 (21) is hi> h3 shown in Fig. 3.
  • the tip of the inner annular presser protrusion 12 and the tips of the annular seal protrusions 52, 53 are cut so as not to have pin angles, that is, the inclined cut surface 12b, and the cut surfaces 52b, 53b. Is formed.
  • the opening angle of the recess that is, the included angle between the inclined cut surface 12b and the taper inner peripheral surface 52a is sufficiently large, and the possibility of liquid accumulation due to surface tension is avoided.
  • the inner peripheral corner portion and outer peripheral corner portion of the tip of the annular protrusion 11 are chamfered chamfered shape portions 11a, the press-fitting movement into the narrow annular groove 51 can be smoothly performed without inconvenience such as galling. ing
  • annular protrusion 11 As shown in Fig. 13 (a), by forming the annular protrusion 11 in a tapered shape with a chamfered shape portion 11a of the inner peripheral corner portion and outer peripheral corner portion of the tip thereof clearly enlarged, The structure in which the annular protrusions 11 and 21 can easily enter the annular groove 51 is also acceptable. If configured in this way, 1, 2nd fluid supply / discharge part 1A, 2A and gasket G Even if the relative position at the time of assembly is slightly deviated from the expected appropriate state, taper surface inside or outside chamfering shape The portion 11a serves as a guide so that the annular protrusions 11 and 21 are surely guided into the annular groove 51.
  • the fitting seal portion 10 is configured by a fitting portion between the root portions of the annular protrusions 11 and 21 and the tip portion of the annular groove 51.
  • the chamfered shape portion 11a is further enlarged so that the inner and outer side peripheral surfaces of the annular projections 11 and 21 are all inclined tapered side peripheral surfaces 11a.
  • An extremely tapered configuration may be used. In this case, the force S of the annular protrusions 11 and 21 easily entering the annular groove 51 is further facilitated, and the wedge effect that the annular protrusions 11 and 21 push the annular groove 51 is produced.
  • the tip portion and the root portions of the annular projections 11 and 21 are brought into contact with each other with a line contact or a very small area, and there is an advantage that a sealing function can be generated more reliably.
  • the outer annular presser protrusion 13 has a lower end inner peripheral portion 9b for forming a lower end portion of the valve case 6 in a state following the tapered inner peripheral surface 13a of the annular presser protrusion 13,
  • the overall shape of the ring-shaped presser protrusion 12 is different.
  • the lower first seal end t21 also has an upper end inner peripheral portion 5b for forming the upper end portion of the panel material 5 in a state following the tapered inner peripheral surface 23a of the annular presser protrusion 23.
  • the overall shape of the inner annular presser protrusion 22 is different.
  • These upper and lower inner peripheral portions 5b and 9b function as guides for fitting the upper and lower seal portions gl l and gl 2 to the upper and lower first seal end portions ti l and t21, and are tapered.
  • the function of preventing expansion and deformation of the outer peripheral wall 55 of the gasket G together with the inner peripheral surfaces 13a and 23a can also be exhibited.
  • the first or second fluid supply / discharge part 1A When pulling out the gasket G from 2A, there is an advantage that it can be easily removed by pulling the flange If with a tool or fingers.
  • the thickness of the attachment / detachment flange ⁇ is set to a value smaller than the gap between the first and second fluid supply / discharge rod portions 1A, 2A in the joined state.
  • the opening angle of the taper peripheral surfaces 12a and 13a of the annular presser protrusions 1 and 13 (the opening angle of the valleys 14 and 15) D is in the range of 50 to 70 degrees.
  • the annular seal protrusion (peripheral wall end) 52, 53 taper circumferential surface 52a, 53a sharp angle E is in the range of 60-80 degrees (60 ° ⁇ D ° ⁇ 80 °).
  • the tapered outer peripheral surface 12a and the tapered inner peripheral surface 52a come into contact with each other in an annular line contact state, and the seal lip effect is exhibited in the secondary seal portion S2.
  • a sealing action also occurs between the taper outer peripheral surface 13a and the taper outer peripheral surface 53a at the outer diameter side end portions thereof.
  • the taper angle E of the taper circumferential surfaces 52a, 53a is a tapered circumferential surface 12a on the annular projection 11 side in the annular pressing projections 12, 13 with respect to the pulling direction.
  • the opening angle D of 13a (tapered outer peripheral surface 12a, tapered inner peripheral surface 13a) is set to a value obtained by adding 10 to 20 degrees, preferably 10 degrees or almost 10 degrees.
  • the sharpness angle E is set to 60 to 80 degrees, preferably 80 degrees or almost 80 degrees.
  • the annular presser protrusions 12 and 13 have a drawing direction (axis) compared to their radial widths. Direction), the strength and rigidity will be relatively improved, and while the expansion of the annular seal protrusions 52 and 53 is restricted, the self (annular retainer protrusions 12 and 13) expand and deform in the radial direction. Do There is an advantage that fear can be more effectively suppressed.
  • the taper peripheral surfaces 52a and 53a can reduce the component force that radially presses the annular presser protrusions 1 and 13, and also from this point Expansion deformation in the radial direction of the presser protrusions 12 and 13 can be suppressed.
  • the maintaining means I is configured such that the first fluid supply / discharge port portion 1A of the integrated panel 1 and the second fluid supply / discharge port portion 2A of the valve 2 are pulled through a gasket G.
  • the upper first seal end ti l of the first fluid supply / discharge part 1A, the upper seal part gl l of the gasket G, and the second fluid supply / discharge part 2A The lower first seal end portion t21 and the lower seal portion gl2 of the gasket G are fitted together to maintain the joined state in which each fitting seal portion 10 is formed.
  • annular protrusion 11 of the second fluid supply / discharge male part 2A and the annular groove 51 on the upper side of the gasket G, and the annular protrusion 21 of the first fluid supply / discharge male port part 1A and the lower side of the gasket G The annular grooves 51 are respectively fitted with each other.
  • the specific structure of the maintaining means I corresponds to the pair of bolts 66 passed through the bolt insertion holes 9a of the flange portion 9B of the second fluid supply / exhaust port portion 2A and the pair of bolt insertion holes 9a, 9a.
  • the nut part 67, 67 formed on the first fluid supply / discharge part 1A (on the panel material 5), and the valve 2 can be tightened by screwing the bolt 6 6 onto the nut part 67.
  • It is configured as a maintenance means I with an attraction function that can attract an image to the integrated panel 1 and maintain the attraction state.
  • the pressure contact force of each mating seal 10 decreases due to changes over time, creep, etc., it can be dealt with by tightening bolts 66 to maintain good sealing performance. Is possible.
  • FIG. 4 shows a connection structure between the integrated panel and the fluidic device according to the second embodiment.
  • This is a structure in which the filter 2 which is an example of the fluid device and the integrated panel 1 are connected and connected, and the connection structure itself is the same as that according to the first embodiment shown in FIGS. Accordingly, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the filter 2 is composed of a force with a main body case 2K, a lower case 2B, and a filter body 2C.
  • the lower case 2B includes a fluid passage 7 on the supply side, a fluid passage 8 on the discharge side, and these fluid passages 7, 8 Have A pair of mounting flanges 9 and 9 are formed so as to project sideways in the state. These mounting flanges 9 and 9 and the integrated panel 1 are connected and connected via the gasket G.
  • connection structure between the integrated panel and the fluid device according to the third embodiment is a connection structure between the integrated panel 1 and a regulator 2 as an example of the fluid device.
  • the reguilleur 2 has a casing 2C composed of an upper case, an intermediate case, and a lower case, and a bellows (not shown) in which an outer peripheral portion is sandwiched between the upper case and the intermediate case, an intermediate case, A valve body (not shown) whose outer peripheral portion is sandwiched between the lower case and a return panel (not shown) accommodated in the lower case are configured.
  • the casing 2C is equipped with a pair of mounting flanges 9 and 9 that are formed to project laterally, and the regulator 2 is attached to the upper surface la of the integrated panel 1 using these mounting flanges 9 and 9. Are connected and connected via gasket G.
  • the connection structure between the mounting flange 9 and the upper surface la of the integrated panel 1 through the gasket G is the same as that of the first embodiment shown in FIGS. 1 to 3, and the detailed description thereof is omitted.
  • Figures 6 and 7 show the connection structure between the integrated panel and fluidic device according to Example 4. This is different from the first embodiment only in the maintenance means I, and the maintenance means I of the first separate structure will be described. 6 and 7, portions corresponding to those in the first embodiment shown in FIGS. As shown in FIGS. 6 and 7, the maintaining means I according to the first separate structure is provided on the outer peripheral portion of the first fluid supply / discharge port portion 1A having a circular shape in a plan view formed on the upper surface of the integrated panel 1. An annular thread is formed on a cylindrical nut 81 formed with a male screw In and having a female screw 81 ⁇ that can be screwed into the male screw In, and an outward flange 9 formed at the lower end of the valve case 6 of the valve 2.
  • the opening 83a of the inward flange 83 formed on the valve 2 side (upper side) of the cylindrical nut 81 is It is set to the minimum inner diameter that allows the outward flange 9 to pass.
  • the outer diameter of the split ring 82 is set to be slightly smaller than the inner diameter of the female thread 81 ⁇ so that it can enter the cylindrical nut 81, and the inner diameter is the circular second fluid supply / discharge rod of the valve 2. It is set to the minimum dimension that allows it to be externally fitted to the outer diameter of part 2.
  • the axial length force S of the narrow part of the second fluid supply / discharge part 2A excluding the outward flange 9 and the axial length of the cylindrical nut 81 are provided.
  • the thickness of the split ring 82 must be greater than the sum. Specifically, as shown in FIG. 7 (b), the length d3 between the cylindrical nut 81 in contact with the root portion 6t of the valve case 6 and the outward flange 9 is a split ring. The thickness is greater than 82, d4 (d3> d4).
  • the split ring 82 is slidable in the axial direction, and the width dimension of the split ring 82
  • An inner peripheral surface portion 81m having a length in the axial direction along the shaft center is covered with a flat inner peripheral surface concentric with the shaft center. That is, an inner diameter portion 81a between the female thread 81 ⁇ of the cylindrical nut 81 and the inward flange 83 is formed on a flat inner peripheral surface concentric with the supply-side fluid passage 7, and an inner diameter of the inner peripheral surface portion 81m is formed.
  • the operation procedure for connecting and connecting the fluid supply and discharge parts 1A and 2A using the maintenance means I of the first separate structure is as follows. First, as shown in FIG. 7 (a), the tubular flange 81 is fitted over the outer periphery of the second fluid supply / discharge part 2A of the valve 2 by passing through the outward flange 9, and the innermost back side ( Move until it touches the root 6t. Next, as shown in FIG. 7 (b), the split ring 82 is fitted between the outward flange 9 and the tip of the cylindrical nut 81 and fitted to the second fluid supply / discharge rod portion 2A.
  • the gasket G is inserted into one of the fluid supply / discharge parts 1A,
  • the annular projections 11, 21, 31, 41 and the annular grooves 51, 61 may be attached to the end face of 2A through temporary fitting.
  • the first fluid supply / discharge part 1A is applied to the second fluid supply / discharge part 2A via the gasket G, and in this state, the cylindrical nut 81 is slid and tightened [Fig. 7 ( By referring to c), the connection state shown in FIG. 6 is obtained.
  • the integrated panel 1 and the valve 2 that are stacked one above the other are drawn in a laid-down state for convenience of drawing.
  • Figures 8 and 9 show the connection structure between the integrated panel and fluidic device according to Example 5. This is different from the first embodiment only in the maintenance means I, and the maintenance means I of the second separate structure will be described. 8 and 9, parts corresponding to those in the first embodiment shown in FIGS.
  • the second separate structure maintaining means I includes first and second truncated frustoconical ends formed by expanding the first and second fluid supply / discharge portions 1A and 2A so that the diameter increases toward the end surface.
  • a split presser ring 85 composed of a pair of half-arc members 84, 84 and a half-arc member 84, 84 having a pair of half-arc members 84, 84 having an inner peripheral surface having a substantially square cross section by the second taper inner surface 84b in contact with It has a bolt 86 for pulling each other and a nut 87 formed on one half arc member 84.
  • the first truncated frustoconical end 1D and the second truncated frustoconical end 2D in the joined state are straddled across a pair of half-arc members 84, By tightening the bolt 86 and nut 87 passed through the insertion hole of the other half arc member 84 through 84h, one end of the half arc member 84, 84 pivotally supported at the fulcrum Q is pulled.
  • the fluid supply / drainage parts 1A and 2A are attracted to each other by the force caused by the contact between the tapered surfaces.
  • the split mold retaining ring 85 is preferably made of a fluororesin material, but may be made of other materials such as an aluminum alloy.
  • FIG. 9 (a) The operation procedure for connecting and connecting the fluid supply and discharge parts 1A and 2A using the maintenance means I of the second separate structure is as follows. First, as shown in FIG. 9 (a), a preliminary coupling operation is performed in which the first and second fluid supply / discharge parts 1A and 2A are lightly connected and connected via the gasket G. Next, in Fig. 9 (b) As shown, the pre-connected first and second truncated frustoconical end portions ID, 2D are covered with a split retainer ring 85 and tightened with a bolt 86. By tightening the bolts 86, the gasket G is deeply fitted into the fluid supply / discharge parts 1A and 2A, and the connection state of the integrated panel 1 and the valve 2 is obtained as shown in FIG. 9 (c).
  • FIG. 10 shows a connection structure between the integrated panel and the fluidic device according to the sixth embodiment. This is different from the first embodiment only in the maintenance means I, and the maintenance means I of the third separate structure will be described.
  • FIG. 10 portions corresponding to those in the first embodiment shown in FIGS.
  • the third different structure maintaining means I includes a protruding first fluid supply / discharge port portion 1A having a circular shape in a plan view formed on the upper surface of the integrated panel 1 with a male screw In on the outer peripheral portion, (2) Flange 9 formed at the lower end of the valve case 6 with a male screw 9n on the outer periphery at the fluid supply / discharge port 2A, and a female screw that can be screwed onto these male screws In and 9n
  • the first and second ring nuts 91 and 92 having 91 ⁇ and 92 ⁇ , and the engagement ring 93 having a substantially U-shaped cross section that can be fitted into the outer peripheral grooves 91m and 92m of the ring nuts 91 and 92, respectively. Has been.
  • Both the ring nuts 91 and 92 and the engagement ring 93 are made of a fluororesin such as PFA or PTFE, and have a certain degree of flexibility. Therefore, the procedure for connecting and connecting the two fluid supply / discharge parts 1A and 2A using the maintenance means I of the third different structure was integrated by engaging the engagement rings 93 with the ring nuts 91 and 92 in advance. First and second ring nuts 91 and 92 are formed, and the integrated first and second ring nuts 91 and 92 are brought into an assembled state by being pulled together through gasket G. The first and second fluid supply / discharge parts 1A and 2A are screwed to form a connection structure between the integrated panel and the fluid device. Of course, in this case, it is a condition that the male screws ln and 9n are the same as each other, and after the screwing, the ring nuts 9 1 and 92 can be turned to tighten more tightly or to be tightened later. .
  • both fluid supply / discharge parts 1A and 2A are drawn through the gasket G, and the gasket G is pressed against the seal.
  • the drawing process to connect in the state is performed.
  • This drawing step is performed using a dedicated drawing means different from the maintenance means I.
  • the engaging ring 93 is forcibly expanded and deformed in the outer circumferential grooves 91m and 92m of the first and second ring nuts 91 and 92 that are screwed in a state adjacent to each of the male threads In and 9n. In this way, a connection structure between the integrated panel and the fluidic device is formed. That is, the engagement ring 93 is engaged with the ring nuts 91 and 92 by forcible fitting.
  • the maintenance means I having this configuration literally has only the function of maintaining the seal connection state via the gasket G of the first and second fluid supply / discharge parts 1A, 2A.
  • both of the ring nuts 91 and 92 can be rotated independently. Therefore, when the seal pressure contact force is reduced, it is possible to perform a retightening operation by forcibly turning one or both of the ring nuts 91 and 92.
  • FIG. 11 shows a connection structure between the integrated panel and the fluidic device according to the seventh embodiment. This is different from Example 1 only in the maintenance means I, and the maintenance means I of the fourth separate structure will be described.
  • the fourth separate structure maintaining means I includes a protruding first fluid supply having a circular shape in a plan view formed on the upper surface of the integrated panel 1 with a male screw In on the outer periphery.
  • a cylindrical nut 101 having a female screw 101 ⁇ that can be screwed onto the screw.
  • the cylindrical nut 101 is formed with a round inner peripheral portion 101a having a diameter larger than that of the male screws In, 9n between the female screw 101 ⁇ on the distal end side and the inward flange 102 on the proximal end side,
  • the inward flange 102 is formed to have an inner diameter that interferes with the flange portion 9 in the axis P direction.
  • the female screw 101 ⁇ of the cylindrical nut 101 is screwed into the male screw 9n of the flange portion 9 of the fluid device 2 and tightened. It is set in a state where it can be freely rotated, and in that state, the integrated panel 1 Tighten female screw 101 ⁇ to male screw In. Then, since the cylindrical nut 101 rotates idly relative to the male screw 9n of the flange portion 9, only the integrated panel 1 is screwed by tightening, and as a result, the integrated panel 1 and the fluid device 2 are drawn, The gasket G keeps the drawing state in which the fluid passages 3 and 7 are connected in a sealed state, and is configured as the maintenance means I with the I-feed function.
  • FIG. 12 shows a connection structure between the integrated panel and the fluid device according to the eighth embodiment. This is different from Example 1 only in the maintenance means I, and the maintenance means I of the fifth separate structure will be described.
  • the maintenance means I of the fifth separate structure is a compromise configuration of the maintenance means I of the first separate structure shown in FIG. 6 and the maintenance means I of the fourth separate structure shown in FIG. As shown in FIG.
  • the cylindrical nut 111 has a round inner peripheral portion 111a having a diameter larger than that of the male screws In and 9n between the female screw 11 In on the distal end side and the inward flange 113 on the proximal end side.
  • the inward flange 113 is formed to have an inner diameter portion 113a that does not interfere with the flange portion 9 in the axis P direction.
  • the split ring 112 is like a circular ring divided into three or more pieces (eg, consisting of three fan-shaped members of less than 120 degrees), and it passes over the inward flange 113 and the female screw 11 In. It is possible to enter the inner peripheral portion 11 la from the outside and to form a ring shape at the inner peripheral portion 111 a.
  • the split ring 112 can be configured by a single C-shaped body having flexibility so that it can be inserted into the inner peripheral portion 11 la by pinching to some extent in the radial direction like a snap ring. is there.
  • connection structure between the integrated panel and the fluid device according to Example 9 is shown in Figs.
  • the connection structure between the integrated panel and the fluid device includes an integrated panel 1 in which a plurality of tubular fluid passages 3 and 4 are internally formed, and a total of two ring-shaped gaskets Gl and G on the upper surface la. It is a concentric double-channel type that shares a longitudinal axis P that spans the valve (open / close valve, stop valve, etc.) 2 mounted through 2.
  • the integrated panel 1 has a vertical vertical opening that opens in the panel upper surface la inside a panel material (or block material) 5 made of fluororesin such as PFA or PTFE.
  • a tubular supply-side fluid passage 3 composed of a passage 3a and a transverse passage 3b, an annular vertical ring passage 4a formed on the outer diameter side of the longitudinal passage 3a and opened to the panel upper surface 1a, and a bottom portion thereof.
  • the discharge side fluid passage 4 is formed by the lateral passage 4b that communicates with the side passage 4b.
  • a portion where the supply and discharge fluid passages 3 and 4 in the integrated panel 1 are opened in a double pipe shape is referred to as a first fluid supply and discharge portion 1A.
  • first fluid supply and discharge portion 1A a tubular shape is used.
  • the longitudinal passage 3a and the annular longitudinal ring passage 4a are formed as concentric passages having the same axis P.
  • the first fluid supply / discharge part 1A has an annular shape centered on the axis P and protrudes upward in each of the outer diameter side portions of the fluid passages 3 and 4 that open to the upper end surface thereof.
  • a lower first seal end t21 and a lower second seal end t22 having inner and outer annular protrusions 21 and 41 are formed.
  • the valve (an example of a fluid device) 2 has a valve case 6 made of a fluororesin such as PFA or PTFE and having a circular shape in the vertical direction.
  • the lower end portion of the case 6 is formed in a tubular supply side fluid passage 7 vertically disposed in the center in a state of opening to the bottom surface 6a, and is formed on the outer diameter side of the supply side fluid passage 7 so as to open to the bottom surface 6a. It is formed in the second fluid supply / discharge part 2 A having an annular discharge side fluid passage 8 arranged vertically in a slender state.
  • the tubular supply side fluid passage 7 and the annular discharge side fluid passage 8 are formed as concentric passages having the same axis P.
  • a mounting flange 9 made of a fluororesin such as PFA or PTFE or other material having a pair of bolt insertion holes 9a is integrated with the outer periphery of the lower end of the valve case 6 by fusing.
  • the valve case 6 and the mounting flange 9 An integral type integrally formed by molding may be used.
  • the second fluid supply / exhaust port 2A has an annular shape centering on the axis P and protrudes upward from each of the outer diameter side portions of the fluid passages 7 and 8 that open to the lower end surface thereof.
  • An upper first seal end portion til and an upper second seal end portion tl 2 having inner and outer annular protrusions 11 and 31 are formed.
  • the inner and outer gaskets Gl and G2 are formed to have the same cross-sectional shape only with different diameters.
  • the structure will be described by taking the inner first gasket G1 as an example.
  • the outer second gasket G2 which will not be described, will be given the corresponding reference numerals in the parts corresponding to the first gasket G1 (eg, 54a ⁇ 64a).
  • the first gasket G1 is a tubular fluid path formed so as to connect the longitudinal passage 3a and the supply side fluid passage 7 which are fluid passages corresponding to the first and second fluid supply / discharge portions 1A and 2A.
  • the cross-sectional shape of the first gasket G1 has a pair of upper and lower annular grooves 51, 51, an inner peripheral wall 54 and an outer peripheral wall 55 for forming the annular grooves 51, 51, and an upper and lower ring.
  • the grooves 51, 51 are vertically symmetric with the same depth and width, and the inner and outer peripheral walls 54, 55 are also symmetric with respect to the first and second fluid supply / discharge parts 1 A, 2 A. It is formed in a substantially H-shaped shape that is line-symmetric (almost linearly symmetric) with respect to both the vertical center Z along the axis P direction and the horizontal center line X orthogonal to the vertical center line Z.
  • the upper and lower ends of the inner peripheral wall 54 are formed on tapered inner peripheral surfaces 52a and 52a in which the upper and lower ends of the fluid path W1, which is the inner peripheral surface 54a, are inclined outwardly in a bulging shape, and the upper and lower ends of the outer peripheral wall 55
  • the upper and lower end portions of the outer peripheral surface 55a are also formed on tapered outer peripheral surfaces 53a, 53a that incline inward.
  • the structure related to the annular pressing protrusion will be described with respect to the first gasket G1 and the upper first seal end ti l.
  • the inner and outer annular presser protrusions 12 and 13 are symmetrical, and the valley protrusions 14 and 15 surrounded by these annular protrusions 11 and 15 are constricted (upper constricted) so that The side peripheral surface is formed into a tapered annular protrusion having a tapered outer peripheral surface 12a and a tapered inner peripheral surface 13a. That is, the upper first seal end ti l is a general term for the annular protrusion 11 and the annular presser protrusions 12 and 13 and the troughs 14 and 15 formed on both the inner and outer sides.
  • the upper ends of the inner and outer peripheral walls 54, 55 of the first gasket G1 are tapered inner peripheral surfaces 52a and tapered outer peripheries that respectively contact the taper outer peripheral surface 12a and the taper inner peripheral surface 13a of the annular presser protrusions 12, 13. It has a tapered ring-shaped sealing protrusion (an example of a peripheral wall end) 52, 53 that has a surface 53a and can enter 14 and 15, and in the joined state (see FIG.
  • the upper seal portion gl l is formed at the upper end portion of the first gasket G1 by the annular groove 51 and the inner and outer annular seal protrusions 52, 53, and the lower seal is similarly formed at the lower end portion.
  • Part gl 2 is formed.
  • the upper seal part g11 is fitted to the upper first seal end part 111 to form a fitting seal part 100
  • the lower seal part gl2 is fitted to the lower second seal end part t21 to be a fitting seal part. 10 is formed.
  • the upper gasket part g21 and the lower seal part g22 are also formed on the second gasket, and are fitted to the upper second seal end part 112 and the lower second seal end part 122, respectively.
  • the fitting structure of the fitting seal portion 10 will be described in detail with respect to the upper first seal end ti l and the upper seal portion gl l of the first gasket G1, as shown in FIGS.
  • the inner and outer troughs 14 and 15 and the inner and outer annular seal projections 52 and 53 are symmetrical with each other, and the inner and outer troughs 14 and 15 are included in the whole.
  • the angle between the inner and outer annular seal projections 52 and 53 and the entire angle of 3 ° is 3 °. ⁇ .
  • first fluid supply / discharge portion 1A and the second fluid supply / discharge port portion 2A are attracted to each other via the gasket G by operating the maintenance means 1 (described later), etc.
  • the end annular grooves 51 and 61 are fitted to each other to form a fitting seal portion 10, and the annular protrusions 21, 41, 11, 31 on the end surfaces of the first and second fluid supply / discharge portions 1A, 2A are formed.
  • the inner and outer ring-shaped projections 52, 53, 62, and 63 are formed in a projecting manner on the inner side and outer ring-shaped projections 52, 53, 62, and 63.
  • Four The expansion / contraction deformation prevention means Y that suppresses or prevents the deformation (inner annular seal protrusions 52, 62) and expansion deformation (outer annular seal protrusions 53, 63) by fitting with 1, 11, 31
  • the joining state to be formed is configured.
  • the expansion / contraction deformation preventing means Y is substantially a tenor for each of the annular presser protrusions 22, 23, 42, 43, 12, 13, 32, 33. It is composed of outer peripheral surfaces 22a, 42a, 12a, 32a, and teno inner peripheral surfaces 23a, 43a, 13a, 33a. In the taper (outer) peripheral surfaces 52a, 53a, 62a, 63a of the corresponding gaskets Gl, G2 Force S, these teno moths.
  • the annular seal protrusions 52, 53, 62, 63 are located on the annular grooves 51, 61 side.
  • a component force is generated to deform in the direction of approach. That is, the annular seal protrusions 52 and 62 on the inner diameter side are pressed toward the outer diameter side, and the outer annular seal protrusions 53 and 63 are pressed toward the inner diameter side, so that the annular grooves 51 and 61 are narrowed, that is, the annular protrusions 21, The action of tightening 41, 11 and 31 in the radial direction occurs.
  • each of the annular seal protrusions 52, 53, 6 2, 63 has a stronger component force toward the tip side thereof, so that the annular protrusions 21, 41, 11, 31
  • the base side of the ring (the tip side of the annular seal protrusions 52, 53, 62, 63) tends to be pressed harder.
  • a relationship of hi h2 is set between the protruding length hi of the upper annular protrusion 11 and the depth h2 of the upper annular groove 51.
  • the upper annular protrusion 11 and the upper annular groove 51 are, in detail, the inner circumferential surface of the upper annular protrusion 11 and the corresponding circumferential surfaces on the inner and outer sides of the corresponding upper annular groove 51 are strongly pressed.
  • a primary seal S1 is formed that exhibits excellent sealing performance to prevent fluid leakage, and the tapered outer peripheral surface 12a of the upper inner annular retainer protrusion 12 and the tapered inner peripheral surface 52a of the upper inner annular seal protrusion 52 are always
  • the above-described secondary seal portion S2 is formed satisfactorily. Such a relationship may also hold between the lower annular protrusion 21 and the lower annular groove 51, or between the annular groove 61 of the second gasket G2 and the upper and lower annular protrusions 31, 41.
  • the fitting seal portion 10 is formed with beveled annular projections 11 and 31 (21, 41) that make the primary seal portion S1 on the inner diameter side and the outer diameter side function reliably.
  • the inner and outer radii of the annular groove 51 (61) with respect to each axis P are Rl, R3, R2, and R4, it is advantageous to set R1 ⁇ R2 and R3> R4.
  • the opening angle of the recess that is, the included angle between the inclined cut surface 12b and the tapered inner peripheral surface 52a, avoids the possibility of liquid accumulation due to a sufficiently large surface tension.
  • the inner and outer angles of the tip end of the annular protrusion 11 are formed into a chamfered shape 11a, the press-fitting movement into the narrow annular groove 51 can be smoothly performed without any inconvenience such as force and twisting.
  • FIG. 23 (a) by forming the annular protrusion 11 into a tapered cross section with the chamfered shape portion 11a of the inner peripheral corner portion and outer peripheral corner portion of the tip thereof clearly enlarged, A configuration in which the annular protrusion 11 is made easy to enter the annular groove 51 may be adopted. With this configuration, even if the relative position at the time of assembly of the first and second fluid supply / discharge parts 1A and 2A and the first gasket G1 is slightly deviated from the expected appropriate state, the taper is reduced.
  • the planar inner or outer chamfered shape portion 1 la serves as a guide so that the annular protrusion 11 is reliably guided into the annular groove 51.
  • the fitting seal portion 10 (the secondary seal portion S1) is formed by a fitting portion between the root portion of the annular protrusion 11 and the tip portion of the annular groove 51.
  • Such a structure can be similarly configured in the other annular protrusions 31, 21 and 41 and the second gasket G2.
  • the chamfered portion 11a is further enlarged so that the inner and outer side peripheral surfaces of the annular protrusion 11 are all tapered tapered peripheral surface 11a.
  • a configuration in which the shape is formed may be used. In this case, it becomes easier for the annular protrusion 11 to enter the annular groove 51, and a wedge effect that the annular protrusion 11 pushes the annular groove 51 occurs, so that the tip of the annular groove 51 and the annular protrusion 11 are formed. As a result, it is possible to generate a sealing function more reliably.
  • Such a structure can be similarly configured in the other annular protrusions 31, 21, 41 and the second gasket G2.
  • the opening angle of the taper peripheral surface 12a, 13a on the annular protrusion side at the annular presser protrusions 12, 13 (the opening angle of the valleys 14, 15) D is in the range of 50 to 70 degrees Value (50 ° ⁇ D ° ⁇ 70 °)
  • the sharp angle E of the tapered peripheral surfaces 52a and 53a of the groove protrusions 52 and 53 is set to a value in the range of 60 to 80 degrees (60 ° ⁇ D ° ⁇ 80 °).
  • the taper angle E of the taper circumferential surfaces 52a, 53a is the tapered circumferential surface 12a on the annular projection 11 in the annular pressing projections 12, 13 with respect to the pulling direction.
  • 13a (taper outer peripheral surface 12a, taper inner peripheral surface 13a) is set to a value obtained by adding 10 to 20 degrees, preferably 10 degrees or almost 10 degrees to the opening angle D.
  • the sharpness angle E is set to 60 to 80 degrees, preferably 80 degrees or almost 80 degrees.
  • the annular presser protrusions 12 and 13 have a drawing direction (axis) compared to their radial width. Direction), the strength and rigidity will be relatively improved, and while the expansion of the annular seal protrusions 52 and 53 is restricted, the self (annular retainer protrusions 12 and 13) expand and deform in the radial direction. There is an advantage that the fear can be more effectively suppressed.
  • the tapered peripheral surfaces 52a and 53a can reduce the component force to radially expand the annular presser protrusions 12 and 13, and also from this point Expansion deformation in the radial direction of the presser protrusions 12 and 13 can be suppressed.
  • the structure of the fitting seal portion 10 described above is the lower side of the first gasket G1 and the second gasket. G2 is configured in the same way, and the corresponding parts are given the corresponding reference numerals.
  • the second gasket G2 has a different diameter, the cross-sectional shape is exactly the same as that of the first gasket G1.
  • the upper second seal end t12 and the lower second seal end t22 of the first and second fluid supply / discharge parts 1A and 2A have no fluid passages on the outer peripheral side thereof, so The shape of the seal end ti l is slightly different from that of the lower second seal end t21.
  • the upper second seal end portion tl2 there is a lower end inner peripheral portion 6b for forming the lower end portion of the valve case 6 in a state following the tapered inner peripheral surface 33a of the annular presser protrusion 33. It is a point.
  • This lower end inner peripheral portion 6b functions as a guide when the upper seal portion g21 of the second gasket G2 is fitted to the upper second seal end portion tl2, and the second gasket G2 together with the taper inner peripheral surface 33a.
  • the function of preventing the outer peripheral wall 65 from spreading and deforming can also be exhibited.
  • the panel material 5 is continuously present on the outer peripheral side of the outer annular pressing projection 43, and the lower seal part g22 and the lower second seal end part At the time of fitting with t22, the effect of preventing the expansion deformation of the outer annular seal projection 63 of the lower seal portion g22 of the second gasket G2 from being blocked by the tapered inner peripheral surface 43a is enhanced.
  • the first gasket G1 which is an intermediate gasket having fluid passages 7 and 8 on both the inner diameter side and the outer diameter side in the joined state, is an outer periphery thereof.
  • the outer peripheral surface 55a which is a part, connects the annular fluid passage 4a of the first fluid supply / discharge rod portion 1A and the annular fluid passage 8 of the second fluid supply / discharge rod portion 2A that exist on the outer diameter side of the first gasket G1. It is formed in a state to be a wall surface for forming an annular fluid path W2 that passes therethrough.
  • the first or second fluid supply / discharge There is an advantage that the flange If can be easily removed by pulling the flange If with a tool or fingers when the second gasket G2 is pulled out.
  • the thickness of the attachment / detachment flange If is set to a value smaller than the gap between the first and second fluid supply / discharge rod portions 1A, 2A in the joined state.
  • the maintaining means I includes a first fluid supply / exhaust port 1A of the collecting panel 1 and a second fluid supply / discharge port 2A of the valve 2 that are connected to each other by the first and second gaskets Gl.
  • the parts g12 and g22 are fitted together to maintain the joined state in which each fitting seal part 10 is formed.
  • annular protrusions 11 and 31 of the second fluid supply / discharge part 2A and the annular grooves 51 and 61 above the first and second gaskets Gl and G2 and the annular protrusion of the first fluid supply / discharge part 1A 21 and 41 and the lower annular grooves 51 and 61 of the first and second gaskets Gl and G2 are fitted together.
  • the specific structure of the maintaining means I includes a pair of bolts 66 inserted into the bolt insertion holes 9a of the mounting flange 9 of the second fluid supply / exhaust port 2A, and a pair of bolt insertion holes 9a, 9a.
  • it is composed of nut parts 67, 67 formed on the first fluid supply / discharge part 1A (on panel material 5), and by tightening the bolt 6 6 by screwing it onto the nut part 67, The valve 2 can be drawn to the integrated panel 1 and maintained in its drawn state. Also, if the pressure contact force of each mating seal 10 decreases due to aging, creep, etc., it can be dealt with by tightening the bolt 66 to maintain good sealing performance. Is possible.
  • connection structure between the integrated panel and the fluid device according to Example 10 is a flange pipe with the integrated panel 1 and a pump 2 (such as a bellows pump for a cleaning device circulation line) as an example of the fluid device. 71 to communicate with each other. Since the configuration of the connecting portion itself via the inner and outer gaskets Gl and G2 is the same as that of the ninth embodiment, only the main reference numerals are given and the detailed description thereof is omitted.
  • the collecting panel 1 has basically the same structure except that the collecting direction force of the fluid passage 4 on the discharge side is opposite to that of the collecting panel 1 according to the ninth embodiment.
  • the connection structure between the integrated panel and the fluid device according to Example 9 is configured on the upper surface of the integrated panel
  • the connection structure according to Example 10 is configured on the side surface of the integrated panel 1. It is made.
  • the fluid passages 7 and 8 for supply and discharge of the pump 2 have a structure that opens to the side surface.
  • the pair of fluid passages 3 and 4 have a double-pipe structure. Of independent type.
  • the flange pipe 71 is composed of a flange portion 72 having the mounting flange 9 described above, and a substantially bifurcated pipe portion 73 following the flange portion 72.
  • the pipe portion 73 has a tubular supply-side fluid passage 74. It has a supply side pipe 73A having a discharge side and a discharge side fluid passage 73B having a tubular discharge side fluid passage 75.
  • the supply-side fluid passage 74 is opened as a tubular shape centering on the axis P and faces the vertical passage 3 a of the accumulation panel 1 and faces the vertical ring passage 4 a of the accumulation panel 1.
  • An annular passage portion 75a that is opened in this manner is formed in a state of being continuous with the discharge-side fluid passage 75.
  • the fluid passages 74 and 75 are connected and connected in communication with the in-side port 76 and the out-side port 77 of the pump 2 by means such as fusion.
  • the first fluid supply / discharge of the double piping structure in the integrated panel 1 is achieved.
  • the second fluid supply / discharge part 2A composed of a pair of in and out ports 76, 77 arranged in parallel with the part 1A, i.e., the integrated panel 1 and the pump 2 are different from each other in the opening structure of the fluid passage. In spite of this, they can be connected in close proximity to each other without difficulty.
  • Figures 18 and 19 show the connection structure between the integrated panel and fluidic device according to Example 3. This is different from the ninth embodiment only in the maintenance means I, and the maintenance means I of the sixth separate structure will be described.
  • FIGS. 18 and 19 portions corresponding to those of the ninth embodiment shown in FIGS. 14 to 16 are denoted by corresponding reference numerals.
  • the maintaining means I according to the sixth separate structure is an outer peripheral portion of the first fluid supply / discharge portion 1A having a protruding shape formed on the upper surface of the integrated panel 1 and having a circular shape in plan view.
  • An annular thread is formed between a cylindrical nut 81 having a female thread 81 ⁇ that is self-engaged with the male thread In and an outward flange 9 formed at the lower end of the valve case 6 of the valve 2.
  • This is composed of a split ring 82 that divides into two or more than three that interfere in the axial direction ⁇ direction of the fluid passage 7.
  • First fluid supply / discharge part 1A male screw In and female thread 8 In are screwed into both nuts by tightening the cylindrical nut 81.
  • It is configured as maintenance means I with a drawing function that can draw the mouth parts 1A and 2A in the direction approaching each other via two gaskets Gl and G2, and can maintain the drawing state.
  • the opening 83a of the inward flange 83 formed on the valve 2 side (upper side) of the cylindrical nut 81 is set to a minimum inner diameter dimension sufficient to allow passage of the outward flange 9.
  • the outer diameter of the split ring 82 is set to be slightly smaller than the inner diameter of the female thread 81 ⁇ so that it can enter the cylindrical nut 81, and the inner diameter is the circular second fluid supply / discharge rod of the valve 2. It is set to the minimum dimension that allows it to be externally fitted to the outer diameter of part 2.
  • the axial length force S of the narrow part of the second fluid supply / discharge part 2A excluding the outward flange 9 and the axial length of the cylindrical nut 81 are provided.
  • the thickness of the split ring 82 must be greater than the sum.
  • the length d3 between the cylindrical nut 81 and the outward flange 9 in contact with the root 6t of the nozzle case 6 is a split mold. The condition is that the thickness of the ring 82 is greater than the thickness d4 (d3> d4).
  • the split ring 82 is slidable in the axial direction, and the width dimension of the split ring 82
  • An inner peripheral surface portion 81m having a length in the axial direction along the shaft center is covered with a flat inner peripheral surface concentric with the shaft center. That is, an inner diameter portion 81a between the female thread 81 ⁇ of the cylindrical nut 81 and the inward flange 83 is formed on a flat inner peripheral surface concentric with the supply-side fluid passage 7, and an inner diameter of the inner peripheral surface portion 81m is formed.
  • the operation procedure for connecting and connecting the fluid supply and discharge parts 1A and 2A using the maintenance means I of the sixth separate structure is as follows. First, as shown in Fig. 19 (a), the outward flange 9 is passed over. The cylindrical nut 81 is fitted on the outer periphery of the second fluid supply / discharge part 2A of the valve 2 and moved to the innermost back side (until it contacts the root part 6t). Next, as shown in FIG. 19 (b), the split ring 82 is fitted between the outward flange 9 and the tip of the cylindrical nut 81 and fitted to the second fluid supply / discharge rod portion 2A.
  • the first and second gaskets Gl and G2 are temporarily fitted to the end faces of either one of the fluid supply and discharge parts 1A and 2A with the annular protrusions 11, 21, 31, 41 and the annular grooves 51, 61. You may make it wear through.
  • the first fluid supply / discharge part 1A is applied to the second fluid supply / discharge part 2A via both gaskets Gl and G2, and the cylinder nut 81 is moved in the sliding state in this state, and then tightened. [See FIG. 19 (c)], the connection state shown in FIG. 18 is obtained.
  • the integrated panel 1 and the valve 2 stacked one above the other are drawn in a laid state for convenience of drawing.
  • Figures 20 and 21 show the connection structure between the integrated panel and the fluidic device according to Example 12. This is different from the ninth embodiment only in the maintaining means I, and the seventh different structure maintaining means I will be described. 20 and 21, portions corresponding to those of the ninth embodiment shown in FIGS. 14 to 16 are denoted by corresponding reference numerals.
  • the seventh separate structure maintaining means I includes first and second frustoconical end portions 1D formed by expanding the first and second fluid supply / discharge rod portions 1A, 2A so that the diameter increases toward the end surface side.
  • the other half arc member 84 By tightening the bolt 86 and nut 87 passed through the through hole for 84 h, the half arc members 84 and 84 pivoted at the fulcrum Q at one end are hinged, and the tapered surfaces
  • the fluid supply / discharge parts 1A and 2A are attracted to each other by the force of contact.
  • the split mold retainer ring 85 is preferably formed of a fluororesin material, but it is not less than that of aluminum alloy or the like. It may be made of an external material.
  • the operation procedure for connecting and connecting the fluid supply and discharge parts 1A and 2A using the maintenance means I of the second separate structure is as follows. First, as shown in FIG. 21 (a), first, a preliminary coupling operation is performed in which the first and second fluid supply / discharge portions 1A and 2A are lightly connected and connected via the first and second gaskets G21 and G2. Next, as shown in FIG. 21 (b), the first and second frustoconical end portions 1D and 2D that have been preliminarily connected are covered with a split retainer ring 85 and tightened with bolts 86.
  • both gaskets Gl and G2 are deeply fitted into the fluid supply / discharge parts 1A and 2A, and the connection and connection state of the integrated panel 1 and the valve 2 is obtained as shown in FIG. 21 (c). It is
  • FIG. 22 A connection structure between the integrated panel and the fluidic device according to Example 13 is shown in FIG. This is different from Example 9 only in the maintenance means I, and the maintenance means I of the eighth separate structure will be described.
  • FIG. 22 portions corresponding to those of the ninth embodiment shown in FIGS. 14 to 16 are denoted by corresponding reference numerals.
  • the maintaining means I of the eighth separate structure includes a protruding first fluid supply / exhaust port portion 1A having a circular shape in a plan view formed on the upper surface of the integrated panel 1 with a male screw In on the outer periphery.
  • the second fluid supply / exhaust port 2A has a male thread 9n on the outer periphery and a flange portion 9 formed at the lower end of the valve case 6 and can be screwed to these male screws In and 9n.
  • First and second ring nuts 91 and 92 having female threads 9 In and 92 ⁇ , and an engagement ring 93 having a substantially U-shaped cross section that can be fitted into the outer circumferential grooves 91m and 92m of the ring nuts 91 and 92. It is made up of forces.
  • the material of both the ring nuts 91, 92 and the engagement ring 93 is made of a fluorine resin such as PFA or PTFE, and has a certain degree of flexibility. Therefore, the procedure for connecting and connecting the two fluid supply / discharge rod parts 1A, 2A using the maintenance means I of the third separate structure was integrated by engaging the engagement rings 93 with the ring nuts 91, 92 in advance. First and second ring nuts 91 and 92 are formed, and the integrated first and second ring nuts 91 and 92 are drawn together through gaskets Gl and G2 to be assembled. The first and second fluid supply / discharge parts 1A and 2A are screwed to form a connection structure between the integrated panel and the fluid device. Of course, in this case, it is a condition that each male screw In, 9n is the same screw as each other. You can turn each ring nut 91, 92 to tighten it more tightly or tighten it later.
  • the maintenance means I with this configuration literally has only the function of maintaining the seal connection state of the first and second fluid supply / discharge parts 1A and 2A via the gaskets Gl and G2.
  • both the ring nuts 91 and 92 can be independently rotated, and changes with time, creep, etc.
  • the seal pressure contact force is reduced by this, it is possible to perform the tightening operation by forcibly turning the force of either or both of the ring nuts 91 and 92.
  • the second gasket G2 on the outer diameter side is not shown, but the upper and lower ends of the outer peripheral wall 63 are shorter than the inner peripheral wall 53 and Alternatively, a structure that is simply cut horizontally may be used. In the double piping connection structure, the outer peripheral wall 63 of the second gasket G2 on the outermost diameter side does not have a sealing function.
  • the gaskets Gl and G2 in Examples 9 to 13 are symmetrical in shape up and down and left and right. For example, the shapes shown in the drawings may be different even if the inner and outer peripheral walls have different lengths and thicknesses, or those that are vertically asymmetric. It is not limited to the shape.
  • the “fluid device” in the present invention means a valve, pump, accumulator, fluid storage container, heat exchanger, regulator, pressure gauge, flow meter, heater, flange piping, etc. It is defined as a general term for things.
  • a turnbuckle type eg, in the structure shown in FIGS.
  • annular retainer protrusions 13, 23, 33, 43 shall be read as the annular retainer wall portions 13, 23, 33, 43, and the annular retainer protrusions 12, 1, 3, 22, 23, 32, 42
  • the presser wall parts 33 and 43 are collectively defined as “annular presser part”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Abstract

 増し締めを殆ど行わなくても良好なシール性が維持できるとともに、その組付け作業性も改善される集積パネルと流体デバイスとの接続構造を提供する。そのため、集積パネル1とバルブ2とを環状ガスケットGを用いて単一の円管状流体通路3,7シール状態で連通接続するに、第1及び第2流体給排口部1A,2Aに環状突起11,21を形成し、ガスケットGには、環状突起11,21のそれぞれに嵌合すべく流体経路Wの外径側部分に形成された一対の環状溝51,51を有するフッ素樹脂製のものに構成し、集積パネル1とバルブ2とを引寄せて、第1及び第2流体給排口部1A,2Aの環状突起11,21とガスケットGの環状溝51とがそれぞれ嵌め合わされて嵌合シール部が形成される接合状態を維持する維持手段Iを装備する。

Description

明 細 書
集積パネルと流体デバイスとの接続構造
技術分野
[0001] 本発明は、集積パネルと流体デバイスとの接続構造に係り、詳しくは、半導体製造 や医療'医薬品製造、食品加工、化学工業等の各種技術分野の製造工程で取り扱 われる高純度液や超純水、或いは洗浄液の配管系等において今後需要が見込まれ る流体用の集積パネルと、ポンプ、バルブ、アキュムレータ等の流体デバイスとをガス ケットを介してシール状態で連通接続させるための接続構造に関するものである。 背景技術
[0002] 上記接続構造として、例えば、流体デバイスの一例であるバルブと、流体通路が内 部形成された集積パネルとを一対の給排流路どうしを連通させて接続連結するもの があり、特許文献 1や特許文献 2において開示された接続構造が知られている。特許 文献 1で開示される接続構造は、一対の給排流路を近接させて配列し、夫々に独立 したリング状のガスケットを介して複数のボルトで液密に接続連結させるものであり、 特許文献 2で開示される接続構造は、一対の給排流路を近接させて配列し、それら 一対の給排流路に対応する一対の流路孔を有した単一のガスケットを単一の外ねじ ナットを用いて接続連結させるものである。
[0003] 特許文献 1や 2に開示されている接続構造は、いずれも多数の流体機器を流体ブ ロックに集積させて取付ける構造、いわゆる集積配管構造を採るものであり、これは 配管系全体のコンパクトィ匕ゃモジュールィ匕が可能となる点で有用なものである。 特許文献 1:特開 2001— 82609号公報
特許文献 2 :特開平 10— 169859号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献 1や 2に開示された接続構造においては、ガスケットが挟み込まれた 一対のフランジ部どうしを所定の面圧に達するまでボルトを締付けることにより、有効 なシール性能を出すようになる。し力、しながら、ボルトの締付け力が時間と共に低下 することは避けられないので、締付け力低下、即ちトルクダウンによる接続部からの漏 れを防止するには定期的に増し締めを行う必要があった。ガスケットを用いてシール する場合は非常に高い締付け力が必要になるので、集積パネルや流体デバイスの 流体給排ロ部には高い強度が必要になるとともに、その接続連結するための作業性 の点でも不利なものであった。
[0005] 本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、流 体の配管系統における集積パネルと流体デバイスとの接続構造に工夫を凝らすこと により、増し締めを殆ど行わなくても良好なシール性が維持できるとともに、その組付 け作業性も改善される集積パネルと流体デバイスとの接続構造を提供することにある
[0006] また、コンパクトィ匕ゃモジュール化をさらに促進させるには、流体デバイス単品の小 型化は勿論であるが、その流体デバイス自体のコンパクト化が実現されたその次には 、集積パネルと流体デバイスとの接続構造をコンパクト化することに対する要求が生 じると予測される。
[0007] そこで、本発明の第二の目的は、上述した利点を有する集積パネルを用いた配管 系における集積化を促進すベぐさらにコンパクト化が可能となる集積パネルと流体 デバイスとの接続構造を提案し、実現させる点にある。
課題を解決するための手段
[0008] 請求項 1に係る発明は、集積パネルと流体デバイスとの接続構造にぉレ、て、管状の 流体通路 3, 4が開口する第 1流体給排ロ部 1Aを備えた集積パネル 1の前記第 1流 体給排ロ部 1Aと、管状の流体通路 7, 8が開口する第 2流体給排ロ部 2Aを備えた 流体デバイス 2の前記第 2流体給排口部 2Aとを、これら第 1流体給排口部 1Aと第 2 流体給排ロ部 2Aとの間に介在されるリング状のガスケット Gによって前記流体通路 3 , 4, 7, 8をシールする状態で連通接続するにあたり、
前記第 1流体給排ロ部 1A及び前記第 2流体給排ロ部 2Aには、各端面に開口す る前記各流体通路 3, 4, 7, 8の外径側部分に環状突起 11 , 21が形成され、 前記ガスケット Gは、前記第 1 ,第 2流体給排ロ部 1A, 2Aの相対応する前記流体 通路 3, 4, 7, 8どうしを連通すべく形成された流体経路 Wと、前記第 1及び第 2流体 給排ロ部 1A, 2Aの端面に形成された前記環状突起 11, 21のそれぞれに嵌合すべ く前記流体経路 Wの外径側部分に形成された一対の環状溝 51, 51とを有する可撓 性を備えた材料力 構成されており、
前記第 1流体給排口部 1Aと第 2流体給排口部 2Aとが互いに前記ガスケット Gを介 して引寄せられることにより、前記第 1流体給排ロ部 1Aの前記環状突起 11と前記ガ スケット Gの一端の環状溝 51とが、及び前記第 2流体給排ロ部 2Aの前記環状突起 2 1と前記ガスケット Gの他端の前記環状溝 51とがそれぞれ嵌め合わされて嵌合シー ル部 10が形成され、かつ、前記第 1及び第 2流体給排ロ部 1A, 2Aの端面における 前記環状突起 11 , 21の内径側に形成される環状押え部分 12, 22と、前記ガスケット Gにおける前記環状溝 51を形成するために軸心方向に突出形成された内外の周壁 端部 52, 53のうちの内径側の周壁端部 52とが当接して、前記内径側の周壁端部 52 が前記環状溝 51と前記環状突起 11, 21との嵌合によって縮径変形するのを抑制又 は阻止する拡縮変形防止手段 Yが形成される接合状態が構成され、
前記拡縮変形防止手段 Yは、前記環状押え部分 12, 22と前記環状突起 51とで囲 まれた谷部 14, 24が奥窄まり状となるように前記環状押え部分 12, 22における環状 突起側の側周面が傾斜したテーパ周面 12a, 22aと、前記内径側の周壁端部 52に 形成されたテーパ周面 52aとの圧接によって構成されていることを特徴とするもので ある。
[0009] 請求項 2に係る発明は、請求項 1に記載の集積パネルと流体デバイスとの接続構 造において、前記環状押え部分 12, 22のテーパ周面 12a, 22aと前記内径側の周 壁端部 52のテーパ周面 52aとの圧接によってシール部 S2を形成るように構成されて いることを特徴とするものである。
[0010] 請求項 3に係る発明は、請求項 1又は 2に記載の集積パネルと流体デバイスとの接 続構造において、前記ガスケット Gの断面形状が略 H型形状を呈するものに構成さ れていることを特徴とするものである。
[0011] 請求項 4に係る発明は、請求項:!〜 3の何れか一項に記載の集積パネルと流体デ バイスとの接続構造において、前記環状溝 51に前記環状突起 11 , 21を入れ易くす ベぐ前記環状突起 11, 21がその先端の内周角部及び/又は外周角部が面取りさ れた断面先細り形状に形成されていることを特徴とするものである。
[0012] 請求項 5に係る発明は、請求項:!〜 4の何れか一項に記載の集積パネルと流体デ バイスとの接続構造にぉレ、て、前記嵌合シール部 10及び前記拡縮変形防止手段 Y が形成される前記接合状態を維持する維持手段 Iが装備されていることを特徴とする ものである。
[0013] 請求項 6に係る発明は、請求項 5に記載の集積パネルと流体デバイスとの接続構 造において、前記維持手段 Iは、前記第 1流体給排ロ部 1Aと第 2流体給排ロ部 2Aと を引寄せて前記接合状態を得るための弓 I寄せ機能を発揮するものに構成されてレ、る ことを特徴とするものである。
[0014] 請求項 7に係る発明は、集積パネルと流体デバイスとの接続構造において、
集積パネルと流体デバイスとの接続構造において、管状の流体通路 3又は環状の 流体通路と一以上の環状の流体通路 4とが同心状に形成されて開口する第 1流体給 排ロ部 1Aを備えた集積パネル 1の前記第 1流体給排ロ部 1Aと、管状の流体通路 7 又は環状の流体通路と一以上の環状の流体通路 8とが同心状に形成されて開口す る第 2流体給排口部 2Aを備えた流体デバイス 2の前記第 2流体給排口部 2Aとを、そ れぞれの複数の流体通路 3, 4, 7, 8が相対応され、かつ、前記第 1流体給排ロ部 1 Aと前記第 2流体給排ロ部 2Aの間に介在される複数のリング状のガスケット Gl , G2 によって各流体通路 3, 4, 7, 8がシールされる状態で連通接続するにあたり、 前記第 1流体給排ロ部 1A及び前記第 2流体給排ロ部 2Aには、各端面に開口す る前記各流体通路 3, 4, 7, 8の外径側部分に環状突起 21 , 11, 41 , 31が形成され 前記各ガスケット Gl, G2は、前記第 1,第 2流体給排ロ部 1A, 2Aの相対応する前 記流体通路 3, 4, 7, 8どうしを連通すべく形成された流体経路 Wl, W2と、前記第 1 及び第 2流体給排ロ部 1A, 2Aの端面に形成された前記環状突起 21, 11 , 41, 31 のそれぞれに嵌合すべく前記流体経路 Wl , W2の外径側部分に形成された一対の 環状溝 51 , 61とを有する可撓性を備えた材料から構成されており、
前記第 1流体給排口部 1Aと第 2流体給排口部 2Aとが互いに前記複数のガスケット Gl , G2を介して引寄せられることにより、前記第 1流体給排ロ部 1Aの前記環状突 起 21 , 41と前記各ガスケット Gl , G2の一端の環状溝 51 , 61と力 及び前記第 2流 体給排ロ部 2Aの前記環状突起 11 , 31と前記各ガスケット Gl , G2の他端の前記環 状溝 51 , 61とがそれぞれ嵌め合わされて嵌合シール部 10が形成され、かつ、前記 第 1及び第 2流体給排ロ部 1A, 2Aの端面における前記環状突起 21 , 11 , 41, 31 の内外径側に形成される環状押え部分 22, 23, 12, 13, 42, 43, 32, 33と、前記 ガスケット Gl, G2における前記環状溝 51, 61を形成するために軸心方向に突出形 成された内外径側の周壁端部 52, 53, 62, 63とが当接して、前記内外径側の周壁 端部 52, 53, 62, 63が前記環状溝 51, 61と前記環状突起 21 , 11 , 41, 31との嵌 合によって拡径又は縮径変形するのを抑制又は阻止する拡縮変形防止手段 Yが形 成される接合状態が構成され、
前記拡縮変形防止手段 Yは、前記環状押え部分 22, 23, 12, 13, 42, 43, 32, 3 3と前記環状突起 21 , 11, 41 , 31とで囲まれた谷咅 24, 25, 14, 15, 44, 45, 34 , 35力 S奥窄まり状となるように前記環状甲え咅分 22, 23, 12, 13, 42, 43, 32, 33 における環状突起側の側周面が傾斜したテーパ周面 22a, 23a, 12a, 13a, 42a, 4 3a, 32a, 33aと、前記内外径側の周壁端部 52, 53, 62, 63に形成されたテーパ周 面 52a, 53a, 62a, 63aとの圧接によって構成されるとともに、
前記複数のガスケット Gl , G2のうち、前記接合状態において内径側及び外径側の 双方に前記流体通路 Wl , W2が存在する中間ガスケット G1は、これの外周部 55aが 前記中間ガスケット G1の外径側に存する前記第 1流体給排ロ部 1Aの前記環状の 流体通路 8及び前記第 2流体給排口部 2Aの前記環状の流体通路 4を連通する環状 の流体経路 W2を形成するための壁面となる状態に形成されていることを特徴とする ものである。
[0015] 請求項 8に係る発明は、請求項 7に記載の集積パネルと流体デバイスとの接続構 造 ίこおレ、て、前記環状押えき分 22, 23, 12, 13, 42, 43, 32, 33のテーノヽ。周面 2 2a, 23a, 12a, 13a, 42a, 43a, 32a, 33aと前記内外径側の周壁端部 52, 53, 62 , 63のテーノ 周面 52a, 53a, 62a, 63aとの圧接によってシーノレき を形成するよ うに構成されてレ、ることを特徴とするものである。
[0016] 請求項 9に係る発明は、請求項 7又は 8に記載の集積パネルと流体デバイスとの接 続構造において、前記ガスケット Gの断面形状が略 H型形状を呈するものに構成さ れていることを特徴とするものである。
[0017] 請求項 10に係る発明は、請求項 7〜9の何れか一項に記載の集積パネルと流体デ バイスとの接続構造において、前記環状溝 51, 61に前記環状突起 21, 11, 41 , 31 を入れ易くすべぐ前記環状突起 21, 11 , 41 , 31がその先端の内周角部及び Z又 は外周角部が面取りされた断面先細り形状に形成されていることを特徴とするもので ある。
[0018] 請求項 11に係る発明は、請求項 7〜: 10の何れか一項に記載の集積パネルと流体 デバイスとの接続構造において、前記嵌合シール部 10及び前記拡縮変形防止手段 Yが形成される前記接合状態を維持する維持手段 Iが装備されていることを特徴とす るものである。
[0019] 請求項 12に係る発明は、請求項 11に記載の集積パネルと流体デバイスとの接続 構造において、前記維持手段 Iは、前記第 1流体給排ロ部 1Aと第 2流体給排ロ部 2 Aとを引寄せて前記接合状態を得るための弓 [寄せ機能を発揮するものに構成されて いることを特徴とするものである。
発明の効果
[0020] 請求項 1の発明によれば、第 1、 2流体給排ロ部にそれぞれに形成された環状突起 と、ガスケットの一端面及び他端面にそれぞれ形成された環状溝とが、軸線方向の 相対移動によって互いに嵌り合って嵌合シール部を形成するので、これら両者が多 少軸線方向にずれ動くことがあっても環状突起と環状溝とによる嵌合シール部のシ ール機能が維持され、第 1, 2流体給給排ロ部間からの液漏れを阻止する優れたシ 一ル性を発揮し続けることが可能になる。つまり、第 1、 2流体給排ロ部どうしを、その § I寄せられる方向にぉレ、て嵌合しあう構造とするものであり、増し締めを殆ど行わなく ても良好なシール性が維持できるとともに、その組付け作業性も改善される集積パネ ノレと流体デバイスとの接続構造を提供することができる。
[0021] 例えば、半導体製造設備における洗浄装置の配管系統にこのような接続構造を用 いれば、良好なシール性を確保し得ながら装置の占有面積を減少できてコスト上有 利であるとともに、大流路が確保されることによって循環流量を多くし、薬液の高純度 化を高めて歩留まり向上に寄与できるとレ、う効果を奏することが可能である。
[0022] ところで、凹に凸を挿入しての嵌合構造においては、例えこれら両者が互いに同じ 材質のものであっても、凸側の部材は殆ど変化 (圧縮変形)せず、凹側の部材が拡が り変形する傾向のあることが一般に知られている。そこで、本請求項 1においては、流 体デバイスに凸である環状突起を、かつ、ガスケットに凹である環状溝を形成する構 成としてあるので、クリープや経時変化によって変形するのは、集積パネルや流体デ バイスに比べて小さな部品であるガスケット側であって集積パネルや流体デバイス側 は殆ど変形しなレ、から、ガスケットを交換することで長期に亘つて良好なシール性能 を維持し得る利点が廉価に実現される効果もある。
[0023] 前述したように、凹凸嵌合においては凹側が広がり変形し易い傾向があるから、そ れは即ち本発明においては環状溝を形成するためにガスケットに形成される内外の 周壁端部が拡がり変形することを意味している。そこで、それら内外の周壁端部のう ちの流体経路が存在する内径側の周壁端部の拡がり変形を抑制又は阻止する内径 側の環状押え部分を第 1及び第 2流体給排ロ部に形成してあるから、内径側の周壁 端部の拡がり変形が解消又は軽減されて環状突起の内周面と環状溝の外周面とが 強い圧接力でもって嵌合でき、これら両者の嵌合による優れたシール機能を所期ど おりに発揮させることができる。し力も、環状押え部分が存在することによって内径側 の周壁端部の剛性不足を補うことができるので、これらが存在しない場合に比べてガ スケットの内径側の周壁端部の厚みを薄くすることが可能であるから、ガスケットの幅 寸法を小さくして流体通路の全体径のコンパクト化、つまりは集積パネルと流体デバ イスとの接続構造としてのコンパクト化が図れる利点もある。
[0024] そして、接合状態においては、第 1及び第 2流体給排ロ部の環状突起と、各ガスケ ットの一端面又は他端面の環状溝との嵌合部分の内径側に、第 1及び第 2流体給排 口部のテーパ周面とガスケットのテーパ周面とが圧接される構成が存在しており、そ れらテ一パ周面どうしの当接により、接続構造部分をコンパクトィ匕することが可能であ る。カロえて、テーパ周面どうしを圧接させる構造であるから、集積パネルや流体デバ イスとガスケットとを強く押し付けるに従って圧接力が増し、上記コンパクト化及び環 状突起と環状溝との嵌合によるシール性能向上効果をより強化できる利点がある。ま た、それによつてテーパ周面どうしの間における液溜りの生じない接続構造とすること が可能である。
[0025] また、拡縮変形防止手段により、接合状態においてはガスケットの環状溝が拡がら ないようになるので、環状溝の開口部付近の部位 (先端部)と環状突起の根元付近の 部位 (基端部)との強い圧接状態、即ち優れたシール状態を実現及び保持すること ができる。この環状突起の根元部位での確実なシール機能により、流体やそれに含 まれる混合物、異物が環状溝の根元部分に及び難く又は及ばないようになり、使用 後においてシール部に流体等が残留することが無ぐクリーンな状況を維持できる利 点も得られる。
[0026] 請求項 2の発明によれば、接合状態においては、第 1及び第 2流体給排ロ部の環 状突起と、各ガスケットの一端面又は他端面の環状溝との嵌合による嵌合シール部 が形成されるに加えて、環状押え部分とガスケットにおける内径側の周壁端部との圧 接によるシール部が形成されるので、これら複数のシール部によってシール性が強 ィ匕されるようになり、より優れたシール性能を持つ集積パネルと流体デバイスとの接続 構造とすることができる。
[0027] 請求項 3の発明によれば、ガスケットの断面形状が略 H型のものに形成されるので 、例えば横倒し T型形状のものに比べてガスケットやこれと嵌合される部分である第 1 、第 2流体給排ロ部の設計、製作が容易化されるとともに、集積パネルや流体デバィ スに嵌合される場合のバランス(強度バランス、組付けバランス)に優れたものにでき る。
[0028] 請求項 4の発明によれば、環状突起の内周角部及び/又は外周角部を面取りした 先細り形状として、環状突起が環状溝に入り易くなるようにしてあるから、第 1 ,第 2流 体給排ロ部とガスケットとの相対位置が多少ずれている状態でも、これら両者が引寄 せられることによる環状突起と環状溝との嵌合が確実に行われるようになる。その結 果、ガスケットを介して第 1,第 2流体給排ロ部を引寄せる組付け操作が多少粗いも のであっても、環状突起と環状溝とが確実に嵌合されて嵌合シール部が確実に機能 する好ましい集積パネルと流体デバイスとの接続構造を提供することができる。
[0029] 請求項 5の発明によれば、維持手段によって、両流体給排ロ部どうしが互いにガス ケットを介して引寄せられた接合状態を維持できるので、集積パネルと流体デバイス とが液漏れなく良好なシール性を確保し得る状態を長期に亘つて維持可能となり、信 頼性に優れる集積パネルと流体デバイスとの接続構造を提供することができる。その 結果、増し締めを殆ど行わなくても良好なシール性が維持できるとともに、その組付 け作業性も改善される集積パネルと流体デバイスとの接続構造を提供することができ る、という作用効果をより強化することが可能になる。
[0030] 請求項 6の発明によれば、維持手段は第 1流体給排口部と第 2流体給排口部との 接合状態を維持するだけでなく、第 1流体給排口部と第 2流体給排口部とを引寄せ て接合状態を得るための引寄せ機能も発揮できるので、他に引寄せ手段を用意する 必要が無くなり、全体としての組付け手間の省略化やコストダウンが可能となる利点 力 Sある。
[0031] 請求項 7の発明によれば、二以上の流体通路を同心状に多重配管することにより、 複数の流体通路を独立して配列する構造に比べて接続構造部分のコンパ外化を図 ろうとする手段である。第 1、 2流体給排ロ部にそれぞれに形成された環状突起と、ガ スケットの一端面及び他端面にそれぞれ形成された環状溝とが、軸線方向の相対移 動によって互いに嵌り合って嵌合シール部を形成するので、これら両者が多少軸線 方向にずれ動くことがあっても環状突起と環状溝とによる嵌合シール部のシール機 能が維持され、第 1, 2流体給給排ロ部間からの液漏れを阻止する優れたシール性 を発揮し続けることが可能になる。つまり、第 1、 2流体給排ロ部どうしを、その引寄せ られる方向において嵌合しあう構造とするものであり、増し締めを殆ど行わなくても良 好なシール性が維持できるとともに、その組付け作業性も改善される集積パネルと流 体デバイスとの接続構造を提供することができる。
[0032] 例えば、半導体製造設備における洗浄装置の配管系統にこのような接続構造を用 いれば、良好なシール性を確保し得ながら装置の占有面積を減少できてコスト上有 利であるとともに、大流路が確保されることによって循環流量を多くし、薬液の高純度 化を高めて歩留まり向上に寄与できるとレ、う効果を奏することが可能である。
[0033] ところで、凹に凸を揷入しての嵌合構造においては、例えこれら両者が互いに同じ 材質のものであっても、凸側の部材は殆ど変化 (圧縮変形)せず、凹側の部材が拡が り変形する傾向のあることが一般に知られている。そこで、本請求項 1においては、集 積パネルや流体デバイスに凸である環状突起を、かつ、ガスケットに凹である環状溝 を形成する構成としてあるので、クリープや経時変化によって変形するのは、集積パ ネルや流体デバイスに比べて小さな部品であるガスケット側であって集積パネルや 流体デバイス側は殆ど変形しないから、ガスケットを交換することで長期に亘つて良 好なシール性能を維持し得る利点が廉価に実現される効果もある。
[0034] 前述したように、凹凸嵌合においては凹側が広がり変形し易い傾向があるから、そ れは即ち本発明においては環状溝を形成するためにガスケットに形成される内外径 側の周壁端部が拡径又は縮径変形することを意味している。そこで、内径側の周壁 端部の縮径変形、及び外径側の周壁端部の拡径変形を抑制又は阻止する環状押 え部分を第 1及び第 2流体給排ロ部に形成してあるから、内外径側の周壁端部が拡 径又は縮径変形することを解消又は軽減して環状突起の内外周面と環状溝の内外 周面とが強い圧接力でもって嵌合でき、これら両者の嵌合による優れたシール機能 を所期どおりに発揮させることができる。し力も、環状押え部分が存在することによつ て周壁端部の剛性不足を補うことができるので、これらが存在しなレ、場合に比べてガ スケットの周壁端部の厚みを薄くすることが可能であるから、ガスケットの幅寸法を小 さくして流体通路の全体径のコンパクト化、つまりは集積パネルと流体デバイスとの接 続構造としてのコンパクト化が図れる利点もある。
[0035] そして、接合状態においては、第 1及び第 2流体給排ロ部の環状突起と、各ガスケ ットの一端面又は他端面の環状溝との嵌合部分の内径側に、第 1及び第 2流体給排 口部のテーパ周面とガスケットのテーパ周面とが圧接される構成が存在しており、そ れらテ一パ周面どうしの当接により、接続構造部分をコンパクトィ匕することが可能であ る。カロえて、テーパ周面どうしを圧接させる構造であるから、集積パネルや流体デバ イスとガスケットとを強く押し付けるに従って圧接力が増し、上記コンパクト化及び環 状突起と環状溝との嵌合によるシール性能向上効果をより強化できる利点がある。ま た、それによつてテーパ周面どうしの間における液溜りの生じない接続構造とすること が可能である。
[0036] また、拡縮変形防止手段により、接合状態においてはガスケットの環状溝が拡がら ないようになるので、環状溝の開口部付近の部位 (先端部)と環状突起の根元付近の 部位 (基端部)との強い圧接状態、即ち優れたシール状態を実現及び保持すること ができる。この環状突起の根元部位での確実なシール機能により、流体やそれに含 まれる混合物、異物が環状溝の根元部分に及び難く又は及ばないようになり、使用 後においてシール部に流体等が残留することが無ぐクリーンな状況を維持できる利 点も得られる。
[0037] カロえて、ガスケットの内外に流体通路が形成されることとなる中間ガスケットにおい ては、その内周部だけでなぐ外周部も流体経路の壁面に兼用される構造としたので 、内外で隣り合う流体通路の間隔は中間ガスケットの厚みだけとなって、複数の流体 通路を極力径方向に近づけて配置することが可能になり、集積パネルと流体デバィ スとの接続構造部分の一層のコンパクト化が可能となる利点がある。その結果、複数 の流体通路を同心状に配歹' Jして接続させる集積パネルと流体デバイスとの接続構造 を実現できたことにより、モジュール化やコンパト化に有利な流体デバイスの集積化 を促進するに寄与できるとともに、良好なシール性能を長期に亘つて維持できて信頼 性に優れ、し力もさらにコンパクト化が可能となる集積パネルと流体デバイスとの接続 構造を提供することができる。
[0038] 請求項 8の発明によれば、接合状態においては、第 1及び第 2流体給排ロ部の環 状突起と、各ガスケットの一端面又は他端面の環状溝との嵌合による嵌合シール部 が形成されるに加えて、内外径側の環状押え部分とガスケットにおける内外径側の 周壁端部との圧接によるシール部が形成されるので、これら複数のシール部によって シール性が強化されるようになり、より優れたシール性能を持つ集積パネルと流体デ バイスとの接続構造とすることができる。
[0039] 請求項 9の発明によれば、ガスケットの断面形状が略 H型のものに形成されるので 、例えば横倒し T型形状のものに比べてガスケットやこれと嵌合される部分である第 1 、第 2流体給排ロ部の設計、製作が容易化されるとともに、集積パネルや流体デバィ スに嵌合される場合のバランス(強度バランス、組付けバランス)に優れたものにでき る。
[0040] 請求項 10の発明によれば、環状突起の内周角部及び/又は外周角部を面取りし た先細り形状として、環状突起が環状溝に入り易くなるようにしてあるから、第 1 ,第 2 流体給排ロ部とガスケットとの相対位置が多少ずれている状態でも、これら両者が引 寄せられることによる環状突起と環状溝との嵌合が確実に行われるようになる。その 結果、複数のガスケットを介して第 1 ,第 2流体給排ロ部を引寄せる組付け操作が多 少粗レ、ものであっても、環状突起と環状溝とが確実に嵌合されて嵌合シール部が確 実に機能する好ましい集積パネルと流体デバイスとの接続構造を提供することができ る。
[0041] 請求項 11の発明によれば、維持手段によって、両流体給排ロ部どうしが互いにガ スケットを介して引寄せられた接合状態を維持できるので、集積パネルと流体デバィ スとが液漏れなく良好なシール性を確保し得る状態を長期に亘つて維持可能となり、 信頼性に優れる集積パネルと流体デバイスとの接続構造を提供することができる。そ の結果、増し締めを殆ど行わなくても良好なシール性が維持できるとともに、その組 付け作業性も改善される集積パネルと流体デバイスとの接続構造を提供することが できる、という作用効果をより強化することが可能になる。
[0042] 請求項 12の発明によれば、維持手段は第 1流体給排ロ部と第 2流体給排ロ部との 接合状態を維持するだけでなぐ第 1流体給排ロ部と第 2流体給排ロ部とを引寄せ て接合状態を得るための引寄せ機能も発揮できるので、他に引寄せ手段を用意する 必要が無くなり、全体としての組付け手間の省略化やコストダウンが可能となる利点 力 sある。
図面の簡単な説明
[0043] [図 1]集積パネルとバルブとの接続構造を示す断面図(実施例 1)
[図 2]図 1の接続構造に用いるガスケットと流体給排ロ部の要部の断面図
[図 3]ガスケットと流体デバイスとの嵌合構造の詳細を示す要部の拡大断面図
[図 4]集積パネルとベローズ式バノレブとの接続構造を示す断面図(実施例 2)
[図 5]集積パネルとフィルタとの接続構造を示す断面図(実施例 3)
[図 6]引寄せ機能付き維持手段の第 1別構造を示す要部の断面図(実施例 4)
[図 7]図 6の維持手段を有する接続構造の接続手順を示す説明図
[図 8]引寄せ機能付き維持手段の第 2別構造を示す要部の断面図(実施例 5) [図 9]図 8の維持手段を有する接続構造の接続手順を示す説明図
[図 10]引寄せ機能付き維持手段の第 3別構造を示す要部の断面図(実施例 6)
[図 11]引寄せ機能付き維持手段の第 4別構造を示す要部の断面図(実施例 7)
[図 12]引寄せ機能付き維持手段の第 5別構造を示す要部の断面図(実施例 8)
[図 13] (a)、 (b)は、共に環状突起の別形状を示す要部の断面図
[図 14]集積パネルとバルブとの同心状多重流路接続構造を示す断面図(実施例 9) 園 15]図 14の接続構造に用いるガスケットと流体給排ロ部の要部の断面図 園 16]ガスケットと流体デバイスとの嵌合構造の詳細を示す要部の拡大断面図 園 17]フランジ配管を介した集積パネルとポンプとの同心状多重流路接続構造を示 す断面図(実施例 10)
[図 18]引寄せ機能付き維持手段の第 6別構造を示す要部の断面図(実施例 11)
[図 19]図 17の維持手段を有する接続構造の接続手順を示す説明図
[図 20]引寄せ機能付き維持手段の第 7別構造を示す要部の断面図(実施例 12)
[図 21]図 19の維持手段を有する接続構造の接続手順を示す説明図
園 22]維持手段の構造を示す要部の断面図(実施例 13)
[図 23] (a)、 (b)は、共に環状突起の別形状を示す要部の断面図
符号の説明
集積パネル
第 1流体給排ロ部
雄ネジ部
流体デバイス
第 2流体給排ロ部
集積パネルの流体通路
流体デバイスの流体通路
負通孔
嵌合シール部
21 , 31 , 41 環状突起
12, 13, 22, 23, 32, 33, 42, 43 環状押え部分 12a, 13a, 22a, 23a, 32a, 33a, テーパ周面
14, 15, 24, 25, 34, 35, 44, 45 谷部
51 , 61 環状溝
52, 53, 62, 63 周壁端部
52a, 53a, 62a, テーパ周面
55a 中間ガスケットの外周部
66 ボルト
67 ナット部
81 筒状ナット
81n 雌ネジ部
82 割型リング
83 内向きフランジ
83a 開口部
G, Gl , G2
I 維持手段
P 軸心
S I , S 2 シール部
W, Wl , W2 流体経路
X, z 中心線
Y 拡縮変形防止手段
発明を実施するための最良の形態
以下に、本発明による集積パネルと流体デバイスとの接続構造の実施の形態を、 図面を参照しながら説明する。図 1〜図 3は実施例 1による集積パネルと流体デバィ スとの接続構造を示し、図 4, 5はそれぞれ実施例 2, 3による集積パネルと流体デバ イスとの接続構造を示し、図 6〜図 12は維持手段の別構造を示し、図 6は第 1別構造 、図 7, 8は第 2別構造、図 9, 10は第 3別構造、図 1 1は第 4別構造、図 12は第 5別構 造である。また、図 13は環状突起の別構造である。図 14, 15は実施例 9による集積 パネルと流体デバイスとの接続構造を示す全体図と要部断面図、図 16は第 1ガスケ ットと第 1流体給排ロ部との詳細な嵌合構造を示す要部の断面図、図 17は実施例 1 0による集積パネルと流体デバイスとの接続構造を示す全体図、図 18, 19は第 6別 構造による維持手段の半欠截断面図と組付説明図、図 20, 21は第 7別構造による 維持手段の半欠截断面図と組付説明図、図 22は第 8別構造による維持手段の断面 図である。また、図 23は環状突起の別構造である。
[0046] 〔実施例 1〕
実施例 1による集積パネルと流体デバイスとの接続構造を図 1,図 2に示す。この集 積パネルと流体デバイスとの接続構造は、一対の円管状の流体通路 3, 4が内部形 成された集積パネル 1と、これの上面 laにリング状のガスケット Gを介して搭載される バルブ(開閉バルブ、ストップバルブ等) 2とに跨って構成された縦向きの軸心 Pを共 有する単流路型のものである。つまり、給排用として一対の接続構造が互いに同一 のものとして構成されてレヽる。
[0047] 集積パネル 1は、図 1,図 2に示すように、 PFAや PTFE等のフッ素樹脂製のパネ ル材(又はブロック材) 5の内部に、パネル上面 laに開口する上下向きの縦通路 3a, 4aと横向きの横通路 3b, 4bとから成る一対の円管状の供給側流体通路 3, 4が形成 されたものである。この集積パネル 1における給排流体通路 3, 4が開口する部分を 第 1流体給排ロ部 1Aと称するものとし、この第 1流体給排ロ部 1Aにおいては、円管 状の縦通路 3a, 4aのそれぞれが軸心 Pを有する通路に形成されている。また、第 1 流体給排ロ部 1Aには、その上端面に開口する各流体通路 3, 4の外径側部分のそ れぞれには、軸心 Pを中心とする環状で、かつ、上方に突出した内外の環状突起 21 を有する下第 1シール端部 t21及び下第 2シール端部 t22が形成されている。
[0048] バルブ(流体デバイスの一例) 2は、図 1 ,図 2に示すように、 PFAや PTFE等のフッ 素樹脂製で上下方向視形状が円形のバルブケース 6を有しており、そのバルブケー ス 6の下端部は、底面 6aから下方突出する状態で縦向きに配された円管状の供給側 流体通路 7と、この供給側流体通路 7の横側方に離れて開口する状態で縦向きに配 された円管状の排出側流体通路 8とを有した第 2流体給排ロ部 2Aに形成されている 。つまり、この第 2流体給排ロ部 2Aにおいては、円管状の供給側流体通路 7, 8のそ れぞれが軸心 Pを有する通路に形成されている。つまり、バルブケース 6下端には、 一対のボルト挿通孔 9aを有する PFAや PTFE又はその他の材料によるフッ素樹脂 製の取付フランジ 9の一対が下方突出形成されており、流体通路 7, 8を有する管部 9 Aとフランジ部(外向きフランジ) 9Bとで各取付フランジ 9が形成されている。供給側 の取付フランジ 9が、下方突出する環状突起 11を有する上第 1シール端部 ti lに形 成され、排出側の取付フランジ 9が、上方突出する環状突起 11を有する上第 2シー ル端部 tl 2に形成されている。
[0049] 一対のガスケット Gは互いに同一のものであり、その構造を供給側のガスケット Gを 例に挙げて説明する。さて、ガスケット Gは、供給側の上下の流体給排ロ部 1A, 2A の相対応する流体通路である縦通路 3a及び供給側流体通路 7どうしを連通すべく形 成された管状の流体経路 W1と、第 1及び第 2流体給排ロ部 1A, 2Aの端面に形成 された上第 1シール端部 ti lの環状突起 11と上第 2シール端部 tl 2の環状突起 21 のそれぞれに嵌合すべく流体経路 W1の外径側部分に形成された上下一対の環状 溝 51 , 51とを有する PFAや PTFE等のフッ素樹脂製のものに構成されている。
[0050] つまり、ガスケット Gの断面形状は、上下一対の環状溝 51, 51と、これら環状溝 51 , 51を形成するための内周壁 54及び外周壁 55とを有するとともに、上下の環状溝 5 1 , 51は深さ及び幅が同一となる上下対称であり、かつ、内及び外周壁 54, 55も左 右対称であって、第 1及び第 2流体給排ロ部 1A, 2Aの軸心 P方向に沿う縦中心 Z、 及び、その縦中心線 Zに直交する横中心線 Xの双方に関して線対称(ほぼ線対称で も良い)となる略 H状の形状に形成されている。内周壁 54の上下端部は、内周面 54 aである流体経路 W1の上下端部が先拡がり状に外向き傾斜するテーパ内周面 52a , 52aに形成されるとともに、外周壁 55の上下端部も、その外周面 55aの上下端部が 内向き傾斜するテーパ外周面 53a, 53aに形成されている。
[0051] 集積パネル 1の第 1流体給排ロ部 1Aの下第 1シール端部 t21の環状突起 21及び バルブ 2の第 2流体給排口部 2Aの上第 1シール端部 tl 1における環状突起 11の内 及び外径側に、ガスケット Gにおける環状溝 51を形成するために軸心 P方向に突出 形成された内外の周壁端部 52, 53が、環状溝 51と環状突起 11 , 21との嵌合によつ て拡がり変形するのを阻止する環状押え突起 (環状押え部分の一例) 12, 13, 22, 23が形成されている。 [0052] 上記環状押え突起に関する構造を、ガスケット Gと上第 1シール端部 ti lとについて 説明する。内外の環状押え突起 12, 13は対称のものであり、これらと環状突起 11と で囲まれた谷部 14, 15が奥窄まり状(上窄まり状)となるように環状突起側の側周面 が傾斜したテーパ外周面 12a及びテーパ内周面 13aを有する先窄まり状の環状突 起に形成されている。つまり、上第 1シール端部 ti lは、環状突起 11とその内外の両 側に形成される環状押え突起 12, 13及び谷部 14, 15の総称である。
[0053] ガスケット Gの内外の周壁 54, 55の上端部は、環状押え突起 12, 13のテーパ外周 面 12aとテーパ内周面 13aのそれぞれに当接するテーパ内周面 52aとテーパ外周面 53aを有して 14, 15に入り込み自在な先窄まり状の環状シール突起(周壁端部の一 例) 52, 53を有し、接合状態(図 1参照)においては、内外の周壁 54, 55の上端部 である環状シール突起 52, 53が対応する谷部 14, 15に入り込み、上第 1シール端 部 ti lのテーパ外周面 12aとガスケット Gのテーパ内周面 52aとが圧接され、かつ、 上第 1シール端部 ti lのテーパ内周面 13aとガスケット Gのテーパ外周面 53aとが圧 接されるように構成されてレ、る。
[0054] しかして、ガスケット Gの上端部には、環状溝 51とその内外の環状シール突起 52, 53とで上シール部 gl lが形成され、同様に下端部には下シール部 gl 2が形成され てレ、る。上シール部 g 11は上第 1シール端部 111と嵌合して嵌合シール部 10を形成 し、下シール部 gl 2は下第 2シール端部 t21と嵌合して嵌合シール部 10を形成する
[0055] 嵌合シール部 10の嵌合構造を、上第 1シール端部 ti lとガスケット Gの上シール部 gl lについて詳細に説明すると、図 2,図 3に示すように、内外の谷部 14, 15どうし、 及び内外の環状シール突起 52, 53どうしは互いに対称であって、内外の谷部 14, 1 5全体の挟角ひ。 と内外の環状シール突起 52, 53全体の向い角 j3 ° との間には、 ひ。 く β。 という関係が設定されており、好ましくはひ。 + (20〜40° ) = β。 とい う関係に設定すると良い。この構成により、上第 1シール端部 ti lの上環状突起 11と 環状溝 51とが嵌り合った接合状態 (後述)では、上内環状押え突起 12と上内環状シ ール突起 52とは、それらのテーパ外周面 12aとテーパ内周面 52aとが最内径側部分 で圧接される状態となり(図 3の仮想線を参照)、流体通路 W1を通る流体がこれら外 内のテーパ周面 12a, 52aどうしの間に入り込むことをも阻止する二次シール部 S2と して機能する利点が得られる。
[0056] つまり、維持手段 1 (後述)が作動する等によって第 1流体給排ロ部 1Aと第 2流体給 排口部 2Aとが互いにガスケット Gを介して引寄せられることにより、第 1流体給排口部 1Aの環状突起 11とガスケット Gの一端の環状溝 51とが、及び第 2流体給排ロ部 2A の環状突起 21とガスケット Gの他端の環状溝 51とがそれぞれ嵌め合わされて嵌合シ ール部 10が形成され、かつ、第 1及び第 2流体給排ロ部 1A, 2Aの端面における環 状突起 11 , 21の内及び外径側に形成される環状押え突起 12, 13, 22, 23と、ガス ケット Gにおける環状溝 51を形成するために軸心方向に突出形成された内外の環状 シール突起 52, 53とが当接して、内外の環状シール突起 52, 53が環状溝 51と環状 突起 11 , 21との嵌合によって拡がり変形するのを抑制又は阻止する拡縮変形防止 手段 Yが形成される接合状態が構成されてレ、る。
[0057] 拡縮変形防止手段 Yは、実質的には、各環状押え突起 12, 13, 22, 23のテーパ 外周面 12a, 22a、テーパ内周面 13a, 23aで構成されており、対応するガスケット G のテーパ内(外)周面 52a, 53aが、これらテーパ外及び内周面 12a, 22a, 13a, 23 aに当接 (圧接)することによって、各環状シール突起 52, 53が環状溝 51側に寄る方 向に変形しょうとする分力が生じるのである。つまり、内環状シール突起 52は外径側 に押付けられ、外環状シール突起 53は内径側に押付けられるので、環状溝 51が狭 まるように、即ち、環状突起 11 , 21を径方向に締付ける作用が生じるのである。この 場合、各環状シール突起 52, 53は、それらの先端側ほど分力が強く作用するので、 環状突起 11 , 21の根元側ほど (環状シール突起 52, 53の先端側ほど)強く押付け られる傾向になる。
[0058] 従って、もしも流体が二次シール部 S2を越えて一次シール部 S1に及ぶことが生じ ても、その流体は嵌合シール部 10の入り口部分でシールされることとなり、嵌合シー ル部 10の奥深ぐ即ち嵌合溝 51の内奥部には入り込まないようになり、嵌合溝 51の 内奥に流体や混合物、異物等が残り、以後に通過する流体の純度や性状に悪影響 を及ぼす不都合が生じ難い利点がある。
[0059] そして、上環状突起 11の幅 dlと上環状溝 51の幅 d2との間には、 dl > d2とレヽぅ関 係が設定されており、好ましくは dl X (0. 6〜0· 8) =d2という関係に設定すると良 レ、。そして、上環状突起 11の突出長さ hiと上環状溝 51の深さ h2との間には hl <h 2という関係が設定されている。これらの構成により、上環状突起 11と上環状溝 51と が、詳しくは、上環状突起 11の内外の両側周面と相対応する上環状溝 51の内外の 側周面とが強く圧接され、流体の漏れを阻止する優れたシール性能を発揮する一次 シール部 S1が形成されるとともに、上内環状押え突起 12のテーパ外周面 12aと上内 環状シール突起 52のテーパ内周面 52aとが必ず当接することになり、前述した二次 シール部 S2が良好に形成される利点がある。
[0060] 嵌合シール部 10については、図 3に示すように、内径側の一次シール部 S1を確実 に機能させるベぐ環状突起 11 (21)及び環状溝 51夫々の軸心 Pに対する半径を R 1 , R2としたときに、 R1 <R2が成り立つように設定すれば好都合である。また、環状 押え突起 12, 22 (13, 23)の軸心 P方向に沿う高さ h3と環状突起 11 (21)の突出長 さ hiとの関ィ系は、図 3に示す hi >h3とレ、う関ィ系以外に、 hi =h3とレ、ぅ関ィ系の場合や 、 hi <h3という関係の場合でも良い。
[0061] また、内側の環状押え突起 12の先端、及び環状シール突起 52, 53の先端はピン 角とならないようにカットされた形状、即ち、傾斜カット面 12b、並びにカット面 52b, 5 3bに形成されている。これらの構成により、上内環状押え突起 12の先端が流体通路 W1側に若干広がり変形したとしても、もともとカットされた形状であることから、流体通 路 W1途中に大きく開いた断面三角形状の凹みができるだけとなり、その凹みに存在 する流体が容易に流れ出すようになって実質的に液溜りが生じなレ、ようになる。加え て、その凹みの開き角度、即ち、傾斜カット面 12bとテーパ内周面 52aとの挟角は十 分に大きく、表面張力による液溜りのおそれも回避される。また、環状突起 11先端の 内周角部及び外周角部は面取り加工された面取り形状部 11aとしてあるので、幅の 狭い環状溝 51への圧入移動をかじり等の不都合なく円滑に行えるものとなっている
[0062] 尚、図 13 (a)に示すように、環状突起 11を、その先端の内周角部及び外周角部の 面取り形状部 11aを明確に大きくした断面先細り形状に形成することにより、環状突 起 11 , 21が環状溝 51に入り易くされた構成としても良レ、。このように構成すれば、第 1 ,第 2流体給排ロ部 1A, 2Aとガスケット Gとの組付け時における相対位置が所期 する適性状態から多少ずれていることがつても、テーパ面状の内又は外の面取り形 状部 11 aがガイドとなつて環状突起 11, 21が確実に環状溝 51内へ導かれるようにな るのである。この場合の嵌合シール部 10は、環状突起 11, 21の根元部と環状溝 51 の先端部との嵌合部によって形成される構成となる。
[0063] また、図 13 (b)に示すように、面取り形状部 11aをさらに大きくして、環状突起 11, 2 1の内外の側周面が全て傾斜したテーパ側周面 11aとなるよう、極端に先細り形状化 させた構成としても良い。この場合には、環状突起 11 , 21の環状溝 51への入り易さ 力 Sさらに容易になるとともに、環状突起 11, 21が環状溝 51を押し広げる楔効果が生 じて、環状溝 51の先端部と環状突起 11 , 21の根元部とが線接触又は極小さい面積 でもって周状に圧接されることとなり、より確実にシール機能を発生させることが可能 となる利点がある。
[0064] 外側の環状押え突起 13は、環状押え突起 13のテーパ内周面 13aに続く状態で、 バルブケース 6の下端部を形成するための下端内周部 9bが存在しており、内側の環 状押え突起 12とは全体としての形状は異なる。そして、下第 1シール端部 t21に関し ても、環状押え突起 23のテーパ内周面 23aに続く状態で、パネル材 5の上端部を形 成するための上端内周部 5bが存在しており、やはり、内側の環状押え突起 22とは全 体としての形状が異なる。これら上及び下端内周部 5b, 9bは、ガスケット Gの上及び 下シール部 gl l , gl 2を上及び下第 1シール端部 ti l , t21に嵌め合わす際のガイド として機能するとともに、テーパ内周面 13a, 23aと共にガスケット Gの外周壁 55の拡 力 Sり変形を阻止する機能も発揮可能である。
[0065] なお、図 6に仮想線で示すように、ガスケット Gの外周壁 55に横突出するリング状の 脱着フランジ Ifを一体形成しておけば、第 1又は第 2流体給排ロ部 1A, 2Aからガス ケット Gを抜出す際に、工具や手指でフランジ Ifを引張る等して外し易くすることがで きるという利点がある。この場合、脱着フランジ Πの厚みは、接合状態における第 1及 び第 2流体給排ロ部 1A, 2Aどうしの間隙よりも小さい値とする。
[0066] 嵌合シール部 10についてさらに詳述する。図 2,図 3に示すように、環状押え突起 1 2, 13のテーパ周面 12a, 13aの開き角(谷部 14, 15の開き角) Dは 50〜70度の範 囲の値(50° ≤D° ≤70° )に設定されるとともに、環状シール突起(周壁端部) 52 , 53のテーパ周面 52a, 53aの尖り角 Eは 60〜80度の範囲の値(60° ≤D° ≤80 ° )に設定されている。そして、開き角 Dと尖り角 Eとには、開き角 Dに 10〜20度を加 えたものが尖り角 Eとなる [D° + (10〜20° ) =E° ]ように設定されている。より好ま しい値としては、開き角 Dが 69〜71度(D° = 70± 1° )、尖り角 Eが 79〜81度(E 。 = 80 ± 1。 )、及び尖り角 Eは開き角 D + 9〜: 11度(E° _D° = 10± 1° )に設 定すると良い。
[0067] また、環状押え突起 12の傾斜カット面 12bのカット角 Dsは 49〜51度(Ds° = 50 。 ± 1° )に設定されており、周壁端部 52, 53の先端カット面 52b, 53bの迎え角 Es は 124〜: 126度(Es° = 125° ± 1° )に設定されている。このような角度設定により 、テーパ外周面 12aとテーパ内周面 52aとは環状の線接触状態で当接されるように なり、シールリップ効果が二次シール部 S2において発揮されるようになる。また、テー パ内周面 13aとテーパ外周面 53aとの間にも、それらの外径側端部においてシール 作用が生じる。尚、図示は省略するが、下端内周部 9bが存在しない場合 (集積パネ ルゃ流体デバイスにおけるガスケット Gとの嵌合部の断面形状が左右対称である場 合)は、外側の環状押え突起 13にも傾斜カット面 12bと同様な傾斜カット面が形成さ れ、前記シールリップ効果が生じる。
[0068] つまり、前記第 1流体給排ロ部 1Aと前記第 2流体給排ロ部 2Aとが互いに引寄せら れる方向である引寄せ方向に対する前記環状シール突起(周壁端部) 52, 53のテ 一パ周面 52a, 53a (テーパ内周面 52a、テーパ外周面 53a)の尖り角 Eが、前記引 寄せ方向に対する前記環状押え突起 12, 13における環状突起 11側のテーパ周面 12a, 13a (テーパ外周面 12a、テーパ内周面 13a)の開き角 Dに 10〜20度、好まし くは 10度又はほぼ 10度加えた値に設定されている。そして、前記尖り角 Eが 60〜80 度、好ましくは 80度又はほぼ 80度に設定されてレ、る。
[0069] このように尖り角 E及び開き角 Dを 90度に近い鈍角的な値に設定する構成とすれ ば、環状押え突起 12, 13は、その径方向幅に比べて引寄せ方向(軸方向)の突出 量が小さくなつて相対的に強度、剛性が向上することとなり、環状シール突起 52, 53 の拡がりを規制しながらも、自身 (環状押え突起 12, 13)が径方向へ拡がり変形する おそれをより効果的に抑制することができる利点がある。そして、環状シール突起 52 , 53の谷部 14, 15への刺さり込みによってテーパ周面 52a, 53aが環状押え突起 1 2, 13を径方向に押し広げる分力を小さくでき、この点からも環状押え突起 12, 13の 径方向への拡がり変形を抑制することができる。
[0070] 次に、維持手段 Iについて説明する。維持手段 Iは、図 2,図 3に示すように、集積パ ネル 1の第 1流体給排口部 1Aとバルブ 2の第 2流体給排口部 2Aとが互いにガスケッ ト Gを介して引寄せるとともに、その引寄せ作用によって、第 1流体給排ロ部 1Aの上 第 1シール端部 ti lと、ガスケット Gの上シール部 gl lとが、及び第 2流体給排ロ部 2 Aの下第 1シール端部 t21と、ガスケット Gの下シール部 gl 2とがそれぞれ嵌め合わさ れて各嵌合シール部 10が形成される接合状態を維持するものに構成されている。即 ち、第 2流体給排雄ロ部 2Aの環状突起 11とガスケット Gの上側の環状溝 51とが、及 び第 1流体給排雄口部 1 Aの環状突起 21とガスケット Gの下側の環状溝 51とがそれ ぞれ嵌め合わされる。
[0071] 維持手段 Iの具体構造は、第 2流体給排口部 2Aのフランジ部 9Bのボルト挿通孔 9a に揷通される一対のボルト 66と、一対のボルト挿通孔 9a, 9aに対応して第 1流体給 排ロ部 1Aに (パネル材 5に)形成されたナット部 67, 67とで構成されており、ボルト 6 6をナット部 67に螺着させての締め付け操作により、バルブ 2を集積パネル 1に引寄 せ、かつ、その引寄せ状態を維持することができる引寄せ機能付の維持手段 Iに構 成されている。また、経時変化やクリープ等が生じて各嵌合シール部 10の圧接力が 低下した場合には、ボルト 66を増し締めすることで対処することができ、良好なシー ル性能を維持することが可能である。
[0072] 〔実施例 2〕
実施例 2による集積パネルと流体デバイスとの接続構造を図 4に示す。これは、流 体デバイスの一例であるフィルタ 2と集積パネル 1とを接続連結させる構造であり、接 続構造自体は図 1〜3に示す実施例 1によるものと同じである。従って、同じ箇所には 同じ符号を付すものとし、その説明は割愛する。
[0073] フィルタ 2は、本体ケース 2Kと下部ケース 2Bと濾過体 2Cと力、ら成り、下部ケース 2B には供給側の流体通路 7と排出側の流体通路 8、及びこれら流体通路 7, 8を有する 状態で横に張り出し形成される一対の取付フランジ 9, 9が形成されている。これら取 付フランジ 9, 9と集積パネル 1とがガスケット Gを介して接続連結される。
[0074] 〔実施例 3〕
実施例 3による集積パネルと流体デバイスとの接続構造は、図 5に示すように、集積 パネル 1と流体デバイスの一例であるレギユレータ 2との接続構造である。レギユレ一 タ 2は、上部ケース、中間ケース、及び下部ケースから成るケーシング 2Cを有し、上 部ケースと中間ケースとの間で外周部が挟持されるべローズ(図示省略)、中間ケー スと下部ケースとの間で外周部が挟持される弁体(図示省略)、下部ケースに収容さ れる戻しパネ(図示省略)等から構成されてレ、る。
[0075] ケーシング 2Cには横側方に張り出し形成される一対の取付フランジ 9, 9がー体的 に装備されており、これら取付フランジ 9, 9を用いてレギユレータ 2が集積パネル 1の 上面 laにガスケット Gを介して接続連結される。このガスケット Gを介しての取付フラ ンジ 9と集積パネル 1の上面 laとの接続構造は、図 1〜図 3に示す実施例 1によるも のと同じであり、その詳細説明は割愛する。
[0076] 〔実施例 4〕
実施例 4による集積パネルと流体デバイスとの接続構造を図 6, 7に示す。これは実 施例 1によるものと維持手段 Iが異なるのみであり、その第 1別構造の維持手段 Iにつ いて説明する。なお、図 6, 7においては、図:!〜 3に示す実施例 1のものと対応する 箇所には対応する符号を付してある。第 1別構造による維持手段 Iは、図 6及び図 7に 示すように、集積パネル 1の上面に形成された平面視で円形を呈する突起状の第 1 流体給排口部 1Aの外周部に雄ネジ Inを形成し、その雄ネジ Inに螺合自在な雌ネ ジ 81ηを備えた筒状ナット 81と、バルブ 2のバルブケース 6の下端部に形成された外 向きフランジ 9に、環状の流体通路 7の軸心 Ρ方向で干渉する二つ割り、または三つ 割り以上の割型リング 82とから構成されている。第 1流体給排ロ部 1Aの雄ネジ Inに 雌ネジ 81ηを螺着させての筒状ナット 81の締付け操作により、両流体給排ロ部 1A, 2Αを互いにガスケット Gを介して接近する方向に引寄せ可能に、かつ、引寄せ状態 を維持可能な引寄せ機能付きの維持手段 Iに構成されている。
[0077] 筒状ナット 81のバルブ 2側(上側)に形成される内向きフランジ 83の開口部 83aは、 外向きフランジ 9の通過を許容するに足りる最小限の内径寸法に設定されている。割 型リング 82の外径は、筒状ナット 81に入り込み自在となるよう雌ネジ 81ηの内径よりも 僅かに小さい寸法に設定され、かつ、内径は、バルブ 2の円形の第 2流体給排ロ部 2 Αの外径部に外嵌自在となる最小限の寸法に設定されている。この場合、割型リング 82を装備するには、第 2流体給排ロ部 2Aにおける外向きフランジ 9を除いた径の細 い部分の軸方向長さ力 S、筒状ナット 81の軸方向長さと割型リング 82の厚さとの和を 上回る値とすることが必要である。具体的には、図 7 (b)に示すように、バルブケース 6 の付根部 6tに当接させた状態の筒状ナット 81と外向きフランジ 9との間の長さ d3が、 割型リング 82の厚さ d4よりも大きいこと(d3 > d4)が条件となる。
[0078] また、筒状ナット 81における雌ネジ 81ηの内奥端部と内向きフランジ 83との間に、 割型リング 82に軸方向に摺動自在で、かつ、割型リング 82の幅寸法をカバーする軸 心 Ρ方向長さを有する内周面部 81mが軸心 Ρと同心にフラットな内周面に形成されて いる。すなわち、筒状ナット 81の雌ネジ 81ηと内向きフランジ 83との間における内径 部 81aが供給側流体通路 7と同心にフラットな内周面に形成され、かつ、その内周面 部 81mの内径が断面矩形に形成された割型リング 82の外径よりも極僅かに大きくし た嵌め合い公差状態に寸法設定される一方、第 2流体給排ロ部 2Aの外径部が供給 側流体通路 7と同心にフラットな外周面に形成され、かつ,その外径部の外径と、割 型リング 82の内径とがほぼ同一径に形成される。これにより、筒状ナット 81を螺進さ せた際に割型リング 82が傾いて抉るような状態になったり、外向きフランジ 9に筒状 ナット 81の螺進による軸心 P方向の押圧力がうまく伝わらなかったりする、という不都 合が生じることが防止され、有効に外向きフランジ 9を押して、第 1、第 2流体給排ロ 部 1 A, 2Aを互いに接近する方向に良好に引寄せること力 Sできるようにされてレ、る。
[0079] 第 1別構造の維持手段 Iを用いて両流体給排ロ部 1A, 2Aどうしを接続連結する操 作手順は次のようである。先ず、図 7 (a)に示すように、外向きフランジ 9をやり過ごし て筒状ナット 81をバルブ 2の第 2流体給排ロ部 2Aの外周に嵌装し、その最内奥側ま で (付根部 6tに当接するまで)移動させる。次いで、図 7 (b)に示すように、割型リング 82を、外向きフランジ 9と筒状ナット 81の先端との間を通して第 2流体給排ロ部 2Aに 外嵌装備させる。このとき又はその前にガスケット Gをいずれかの流体給排ロ部 1A, 2Aの端面に環状突起 11 , 21, 31, 41と環状溝 51 , 61との仮嵌合を介して装着さ せておいてもよい。次いで、ガスケット Gを介して第 1流体給排ロ部 1Aを第 2流体給 排ロ部 2Aにあて力 Sい、その状態で筒状ナット 81をスライド移動させてから締付け操 作 [図 7 (c)参照]することにより、図 6に示す接続状態が得られる。なお、図 7におい ては、上下に積層される集積パネル 1とバルブ 2とを、図面記載都合により横倒し状 態で描いてある。
[0080] 〔実施例 5〕
実施例 5による集積パネルと流体デバイスとの接続構造を図 8, 9に示す。これは実 施例 1によるものと維持手段 Iが異なるのみであり、その第 2別構造の維持手段 Iにつ いて説明する。なお、図 8, 9においては、図:!〜 3に示す実施例 1のものと対応する 箇所には対応する符号を付してある。第 2別構造の維持手段 Iは、第 1及び第 2流体 給排ロ部 1A, 2Aをその端面側ほど径が大きくなるように拡径して成る第 1及び第 2 裁頭円錐台状端部 1D, 2Dと、第 1裁頭円錐台状端部 1Dのテーパ外周面 Idに当接 する第 1テーパ内周面 84a、及び、第 2裁頭円錐台状端部 2Dのテーパ外周面 2dに 当接する第 2テーパ内周面 84bとによって断面が略く字状を呈する内周面を有する 一対の半割円弧部材 84, 84で成る割型押えリング 85と、半割円弧部材 84, 84どう しを引寄せるボルト 86及び一方の半割円弧部材 84に形成されたナット 87とを有して 構成されている。
[0081] 接合状態における第 1裁頭円錐台状端部 1Dと第 2裁頭円錐台状端部 2Dとに跨ら せて一対の半割円弧部材 84を被せた状態にぉレ、て、他方の半割円弧部材 84の挿 通孔に 84hに通されたボルト 86及びナット 87の締め付けにより、一端が蝶番状に支 点 Qで枢支されている半割円弧部材 84, 84どうしが引寄せられることによるテーパ面 どうしの当接による力によって、各流体給排ロ部 1A, 2Aどうしが互いに引寄せられ る。割型押えリング 85は、フッ素樹脂材から形成されのが好ましいが、アルミ合金等 のそれ以外の材料から成るものでも良い。
[0082] 第 2別構造の維持手段 Iを用いて両流体給排ロ部 1A, 2Aどうしを接続連結する操 作手順は次のようである。まず、図 9 (a)に示すように、第 1 ,第 2流体給排ロ部 1A, 2 Aをガスケット Gを介して軽く接続連結させる予備連結操作を行う。次に、図 9 (b)に 示すように、その予備連結された第 1及び第 2裁頭円錐台状端部 ID, 2Dに割型押 えリング 85を被せてボルト 86による締め付け操作を行う。このボルト 86の締め付けに より、ガスケット Gが各流体給排ロ部 1A, 2Aに深く嵌り込み、図 9 (c)に示すように、 集積パネル 1とバルブ 2との接続連結状態が得られる。
[0083] 〔実施例 6〕
実施例 6による集積パネルと流体デバイスとの接続構造を図 10に示す。これは実 施例 1によるものと維持手段 Iが異なるのみであり、その第 3別構造の維持手段 Iにつ いて説明する。なお、図 10においては、図:!〜 3に示す実施例 1のものと対応する箇 所には対応する符号を付してある。第 3別構造の維持手段 Iは、集積パネル 1の上面 に、外周部に雄ネジ Inを有する状態で形成された平面視で円形を呈する突起状の 第 1流体給排口部 1Aと、第 2流体給排口部 2Aにおレ、て外周部に雄ネジ 9nを有する 状態でバルブケース 6の下端部に形成されたフランジ部 9と、これら両雄ネジ In, 9n に螺着自在な雌ネジ 91η, 92ηを有する第 1及び第 2リングナット 91 , 92と、これらリ ングナット 91 , 92の外周溝 91m、 92mに嵌着可能な断面形状が略コ字状の係合リ ング 93とから構成されている。
[0084] 両リングナット 91, 92及び係合リング 93は、例えば PFAや PTFE等のフッ素樹脂 製であり、ある程度の可撓性を有している。そこで第 3別構造の維持手段 Iを用いて両 流体給排ロ部 1A, 2Aどうしを接続連結する手順は、予め各リングナット 91, 92に係 合リング 93を係着して一体化された第 1及び第 2リングナット 91 , 92を形成しておき、 その一体化された第 1, 2リングナット 91, 92を、ガスケット Gを介して互いに引寄せら れて組付状態とされている第 1及び第 2流体給排ロ部 1A, 2Aに螺装し、集積パネ ノレと流体デバイスとの接続構造を形成する、という具合になる。勿論、この場合は各 雄ネジ ln, 9nが互いに同一のネジであることが条件であり、螺装後に各リングナット 9 1 , 92を回してより強く締付けたり、或いは後に増し締めすることが行える。
[0085] また、次のような組付け手順も可能である。即ち、それぞれのリングナット 91, 92を 対応する雄ネジ ln, 9nに螺装した状態で、両流体給排ロ部 1A, 2Aをガスケット Gを 介して引寄せ、ガスケット Gが圧接されてのシール状態で接続する引寄せ工程を行う 。この引寄せ工程は、維持手段 Iとは別の専用の引寄せ手段を用いて行う。それから 、各雄ネジ In, 9nのそれぞれに互いに隣接する状態で螺装されている第 1及び第 2 リングナット 91, 92の外周溝 91m, 92mに、係合リング 93を強制的に拡径変形する ことで入れ込むことにより、集積パネルと流体デバイスとの接続構造が形成される。つ まり、係合リング 93は無理嵌めによって両リングナット 91 , 92に係着される。
[0086] この構成による維持手段 Iは文字通り、第 1及び第 2流体給排ロ部 1A, 2Aのガスケ ット Gを介してのシール接続状態を維持する機能だけを有するものである。しかしな がら、各リングナット 91, 92と係合リング 93とは相対回動可能であるから、これらリン グナット 91 , 92は共に単独での回動移動が可能であり、経時変化やクリープ等によ つてシール圧接力が低下した場合には、いずれか若しくは双方のリングナット 91 , 92 を強制的に回動操作して、増し締め操作を行うことは可能である。
[0087] 〔実施例 7〕
実施例 7による集積パネルと流体デバイスとの接続構造を図 11に示す。これは実 施例 1によるものと維持手段 Iが異なるのみであり、その第 4別構造の維持手段 Iにつ いて説明する。第 4別構造の維持手段 Iは、図 11に示すように、集積パネル 1の上面 に、外周部に雄ネジ Inを有する状態で形成された平面視で円形を呈する突起状の 第 1流体給排口部 1Aと、第 2流体給排口部 2Aにおレ、て外周部に雄ネジ 9nを有する 状態でバルブケース 6の下端部に形成されたフランジ部 9と、これら両雄ネジ In, 9n に螺着自在な雌ネジ 101ηを有する筒状ナット 101とから構成されている。
[0088] 筒状ナット 101は、先端側の雌ネジ 101ηと基端側の内向きフランジ 102との間に、 雄ネジ In, 9nよりも大径の抉り内周部 101aが形成されており、内向きフランジ 102 は、軸心 P方向においてフランジ部 9に干渉する内径寸法に形成されている。図 11 に示す組付け状態では、流体デバイス 2の雄ネジ 9nは抉り内周部 101aに収容され ており、集積パネル 1の雄ネジ Inと雌ネジ 101ηとのみが螺合した状態であり、これに よって、第 1及び第 2流体給排ロ部 1A, 2Aどうしが互いに引寄せられた状態を維持 している。
[0089] 組付けるには、まず、筒状ナット 101の雌ネジ 101ηを流体デバイス 2のフランジ部 9 の雄ネジ 9nに螺合させて締め込み、雄ネジ 9nをやり過ごして抉り内周部 101aに回 転自在に収容する状態にしておき、その状態でガスケット Gを介して集積パネル 1の 雄ネジ Inに雌ネジ 101ηを螺合させて締付ける。すると、筒状ナット 101はフランジ部 9の雄ネジ 9nとは相対的に空回りするので、集積パネル 1のみが締め付けによって 螺進し、その結果、集積パネル 1と流体デバイス 2とが引寄せられ、ガスケット Gによつ て流体通路 3, 7がシール状態で連通接続される引寄せ状態が維持されるのであり、 § I寄せ機能付の維持手段 Iに構成されてレ、る。
[0090] 〔実施例 8〕
実施例 8による集積パネルと流体デバイスとの接続構造を図 12に示す。これは実 施例 1によるものと維持手段 Iが異なるのみであり、その第 5別構造の維持手段 Iにつ いて説明する。第 5別構造の維持手段 Iは、図 6に示す第 1別構造の維持手段 Iと、図 11に示す第 4別構造の維持手段 Iとの折衷案的な構成のものであって、図 12に示す ように、集積パネル 1の上面に、外周部に雄ネジ Inを有する状態で形成された平面 視で円形を呈する突起状の第 1流体給排ロ部 1Aと、第 2流体給排ロ部 2Aにおいて 外周部に雄ネジ 9nを有する状態でバルブケース 6の下端部に形成されたフランジ部 9と、これら両雄ネジ In, 9nに螺着自在な雌ネジ 11 Inを有する筒状ナット 111と、割 型リング 112とから構成されてレ、る。
[0091] 筒状ナット 111は、先端側の雌ネジ 11 Inと基端側の内向きフランジ 113との間に、 雄ネジ In, 9nよりも大径の抉り内周部 111aが形成されており、内向きフランジ 113 は、軸心 P方向においてフランジ部 9に干渉しない程度の内径部 113aを有するもの に形成されている。割型リング 112は、円形のリングが三個以上に分断されたような( 例: 120度弱の扇型部材の 3個から成る)ものであり、内向きフランジ 113や雌ネジ 11 Inをやり過ごして外部から抉り内周部 11 laに入れ込むこと、並びに抉り内周部 111 aにおいてリング状の形に組むことが自在である。また、割型リング 112を、スナップリ ングのように径方向にある程度橈むことで抉り内周部 11 laに入れ込める可撓性を有 した単一の C字状体から構成することも可能である。
[0092] この第 5別構造による維持手段 Iを用いた組付けは次のようである。即ち、上述した 要領によって予め割型リング 112を抉り内周部 11 laに入れ込んだ状態としておき、 それ以後の工程は、前述した第 4別構造の維持手段 Iの場合と同じである。従って、 これ以上の組付け手順の説明は割愛する。 [0093] 〔実施例 9〕
実施例 9による集積パネルと流体デバイスとの接続構造を図 14,図 15に示す。この 集積パネルと流体デバイスとの接続構造は、複数の管状の流体通路 3, 4が内部形 成された集積パネル 1と、これの上面 laに内外の計 2個のリング状のガスケット Gl , G 2を介して搭載されるバルブ(開閉バルブ、ストップバルブ等) 2とに跨って構成された 縦向きの軸心 Pを共有する同心状二重流路型のものである。
[0094] 集積パネル 1は、図 14,図 15に示すように、 PFAや PTFE等のフッ素樹脂製のパ ネル材(又はブロック材) 5の内部に、パネル上面 laに開口する上下向きの縦通路 3a と横向きの横通路 3bとから成る管状の供給側流体通路 3と、縦通路 3aの外径側に形 成されてパネル上面 1 aに開口する環状の縦リング通路 4aとこれの底部に連通される 横向きの横通路 4bとで成る排出側流体通路 4とが形成されたものである。この集積パ ネル 1における給排流体通路 3, 4が二重配管状に開口する部分を第 1流体給排ロ 部 1Aと称するものとし、この第 1流体給排ロ部 1Aにおいては、管状の縦通路 3aと環 状の縦リング通路 4aとが互いに同一の軸心 Pを有する同心状の通路に形成されてい る。また、第 1流体給排ロ部 1Aには、その上端面に開口する各流体通路 3, 4の外径 側部分のそれぞれには、軸心 Pを中心とする環状で、かつ、上方に突出した内外の 環状突起 21 , 41を有する下第 1シール端部 t21及び下第 2シール端部 t22が形成さ れている。
[0095] バルブ(流体デバイスの一例) 2は、図 14,図 15に示すように、 PFAや PTFE等の フッ素樹脂製で上下方向視形状が円形のバルブケース 6を有しており、そのバルブ ケース 6の下端部は、底面 6aに開口する状態でその中心に縦向きに配された管状の 供給側流体通路 7と、この供給側流体通路 7の外径側に形成されて底面 6aに開口す る状態で縦向きに配された環状の排出側流体通路 8とを有した第 2流体給排ロ部 2 Aに形成されている。つまり、この第 2流体給排ロ部 2Aにおいては、管状の供給側 流体通路 7と環状の排出側流体通路 8が互いに同一の軸心 Pを有する同心状の通 路に形成されている。そして、バルブケース 6下端の外周部には、一対のボルト揷通 孔 9aを有する PFAや PTFE等のフッ素樹脂又はその他の材料による取付フランジ 9 が融着によって一体化されている。尚、バルブケース 6と取付フランジ 9とは、切削加 ェゃ成形加工によって一体形成された一体型のものでも良い。また、第 2流体給排 口部 2Aには、その下端面に開口する各流体通路 7, 8の外径側部分のそれぞれに は、軸心 Pを中心とする環状で、かつ、上方に突出した内外の環状突起 11, 31を有 する上第 1シール端部 ti l及び上第 2シール端部 tl 2が形成されている。
[0096] 内外のガスケット Gl , G2は径が異なるのみで断面形状は同一のものに形成されて いる。その構造を内側の第 1ガスケット G1を例に挙げて説明する。尚、説明を省略す る外側の第 2ガスケット G2には、第 1ガスケット G1に対応する箇所には対応した符号 を付す (例: 54a→64a)ものとする。さて、第 1ガスケット G1は、第 1,第 2流体給排ロ 部 1A, 2Aの相対応する流体通路である縦通路 3a及び供給側流体通路 7どうしを連 通すべく形成された管状の流体経路 W1と、第 1及び第 2流体給排ロ部 1A, 2Aの端 面に形成された上第 1シール端部 ti lの環状突起 11と上第 2シール端部 tl2の環状 突起 31のそれぞれに嵌合すべく流体経路 W1の外径側部分に形成された上下一対 の環状溝 51 , 51とを有する PFAや PTFE等のフッ素樹脂製のものに構成されてレ、る
[0097] つまり、第 1ガスケット G1の断面形状は、上下一対の環状溝 51, 51と、これら環状 溝 51 , 51を形成するための内周壁 54及び外周壁 55とを有するとともに、上下の環 状溝 51 , 51は深さ及び幅が同一となる上下対称であり、かつ、内及び外周壁 54, 5 5も左右対称であって、第 1及び第 2流体給排ロ部 1A, 2Aの軸心 P方向に沿う縦中 心 Z、及び、その縦中心線 Zに直交する横中心線 Xの双方に関して線対称(ほぼ線 対称でも良い)となる略 H状の形状に形成されている。内周壁 54の上下端部は、内 周面 54aである流体経路 W1の上下端部が先拡がり状に外向き傾斜するテーパ内周 面 52a, 52aに形成されるとともに、外周壁 55の上下端部も、その外周面 55aの上下 端部が内向き傾斜するテーパ外周面 53a, 53aに形成されている。
[0098] 集積パネル 1の第 1流体給排ロ部 1Aの下第 1及び下第 2シール端部 t21, t22の 環状突起 21 , 41及びバルブ 2の第 2流体給排ロ部 2Aの上第 1及び上第 2シール端 部 tl l、tl2における環状突起 11 , 31の内及び外径側に、各ガスケット Gl , G2にお ける環状溝 51, 61を形成するために軸心 P方向に突出形成された内外の周壁端部 52a, 53a, 62a, 63aが、相対応する環状溝 51, 61と相対応する環状突起 11, 21 , 31 , 41との嵌合によって拡がり変形するのを阻止する環状押え突起 (環状押え部分 の一 ί列) 12, 13, 22, 23, 32, 33, 42, 43力 S形成されてレヽる。
[0099] 上記環状押え突起に関する構造を、第 1ガスケット G1と上第 1シール端部 ti lとに ついて説明する。内外の環状押え突起 12, 13は対称のものであり、これらと環状突 起 11とで囲まれた谷部 14, 15が奥窄まり状(上窄まり状)となるように環状突起側の 側周面が傾斜したテーパ外周面 12a及びテーパ内周面 13aを有する先窄まり状の 環状突起に形成されている。つまり、上第 1シール端部 ti lは、環状時突起 11とその 内外の両側に形成される環状押え突起 12, 13及び谷部 14, 15の総称である。
[0100] 第 1ガスケット G1の内外の周壁 54, 55の上端部は、環状押え突起 12, 13のテー パ外周面 12aとテーパ内周面 13aのそれぞれに当接するテーパ内周面 52aとテーパ 外周面 53aを有して 14, 15に入り込み自在な先窄まり状の環状シール突起(周壁端 部の一例) 52, 53を有し、接合状態(図 14参照)においては、内外の周壁 54, 55の 上端部である環状シール突起 52, 53が対応する谷部 14, 15に入り込み、上第 1シ 一ル端部 ti lのテーパ外周面 12aと第 1ガスケット G1のテーパ内周面 52aとが圧接さ れ、かつ、上第 1シール端部 ti lのテーパ内周面 13aと第 1ガスケット G1のテーパ外 周面 53aとが圧接されるように構成されている。
[0101] つまり、第 1ガスケット G1の上端部には、環状溝 51とその内外の環状シール突起 5 2, 53とで上シール部 gl lが形成されており、同様に下端部には下シール部 gl 2が 形成されてレ、る。上シール部 g 11は上第 1シール端部 111と嵌合して嵌合シール部 1 0を形成し、下シール部 gl 2は下第 2シール端部 t21と嵌合して嵌合シール部 10を 形成する。同様に、第 2ガスケットにも上シール部 g21と下シール部 g22とが形成され ており、それぞれ上第 2シール端部 112と下第 2シール端部 122と嵌合して嵌合シー ル部 10を形成する。
[0102] 嵌合シール部 10の嵌合構造を、上第 1シール端部 ti lと第 1ガスケット G1の上シ ール部 gl lについて詳細に説明すると、図 15,図 16に示すように、内外の谷部 14, 15どうし、及び内外の環状シール突起 52, 53どうしは互いに対称であって、内外の 谷部 14, 15全体の挟角ひ。 と内外の環状シール突起 52, 53全体の向い角/ 3 ° と の間には、 ひ。 く β。 という関係が設定されており、好ましくはひ。 + (20〜40° ) = β。 という関係に設定すると良い。この構成により、上第 1シール端部 ti lの上環 状突起 11と環状溝 51とが嵌り合った接合状態 (後述)では、上内環状押え突起 12と 上内環状シール突起 52とは、それらのテーパ外周面 12aとテーパ内周面 52aとが最 内径側部分で圧接される状態となり(図 16の仮想線を参照)、流体通路 W1を通る流 体がこれら外内のテーパ周面 12a, 52aどうしの間に入り込むことをも阻止する二次 シール部 S2として機能する利点が得られる。
[0103] つまり、維持手段 1 (後述)が作動する等によって第 1流体給排ロ部 1Aと第 2流体給 排口部 2Aとが互いにガスケット Gを介して引寄せられることにより、第 1流体給排口部 1Aの環状突起 21, 41と各ガスケット Gl, G2の一端の環状溝 51 , 61と力 及び第 2 流体給排ロ部 2Aの環状突起 11, 31と各ガスケット Gl, G2の他端の環状溝 51 , 61 とがそれぞれ嵌め合わされて嵌合シール部 10が形成され、かつ、第 1及び第 2流体 給排ロ部 1A, 2Aの端面における環状突起 21 , 41 , 11 , 31の内及び外径側に形 成される環状押え突起 22, 23, 42, 43, 12, 13, 32, 33と、各ガスケット Gl , G2に おける環状溝 51 , 61を形成するために軸心方向に突出形成された内外の環状シー ノレ突起 52, 53, 62, 63と力 S当接して、内外の環状シーノレ突起 52, 53, 62, 63力 S環 状溝 51 , 61と環状突起 21, 41 , 11 , 31との嵌合によって縮径変形(内環状シール 突起 52, 62)、及び拡径変形 (外環状シール突起 53, 63)するのを抑制又は阻止す る拡縮変形防止手段 Yが形成される接合状態が構成されている。
[0104] 拡縮変形防止手段 Yは、実質的には、各環状押え突起 22, 23, 42, 43, 12, 13 , 32, 33のテーノヽ。外周面 22a, 42a, 12a, 32a、テーノ 内周面 23a, 43a, 13a, 33 aで構成されており、対応する各ガスケット Gl , G2のテーパ内(外)周面 52a, 53a, 62a, 63a力 S、これらテーノヽ。外及び内周面 22a, 42a, 12a, 32a, 23a, 43a, 13a, 3 3aに当接 (圧接)することによって、各環状シール突起 52, 53, 62, 63が環状溝 51 , 61側に寄る方向に変形しょうとする分力が生じるのである。つまり、内径側の環状 シール突起 52, 62は外径側に押付けられ、外環状シール突起 53, 63は内径側に 押付けられるので、環状溝 51, 61が狭まるように、即ち、環状突起 21 , 41, 11, 31 を径方向に締付ける作用が生じるのである。この場合、各環状シール突起 52, 53, 6 2, 63は、それらの先端側ほど分力が強く作用するので、環状突起 21 , 41, 11, 31 の根元側ほど(環状シール突起 52, 53, 62, 63の先端側ほど)強く押付けられる傾 向になる。
[0105] 従って、もしも流体が二次シール部 S2を越えて一次シール部 S1に及ぶことが生じ ても、その流体は嵌合シール部 10の入り口部分でシールされることとなり、嵌合シー ル部 10の奥深ぐ即ち嵌合溝 51 , 61の内奥部には入り込まないようになり、嵌合溝 5 1 , 61の内奥に流体や混合物、異物等が残り、以後に通過する流体の純度や性状 に悪影響を及ぼす不都合が生じ難い利点がある。
[0106] そして、上環状突起 11の幅 dlと上環状溝 51の幅 d2との間には、 dl > d2とレヽぅ関 係が設定されており、好ましくは dl X (0. 75〜0. 85) =d2という関係に設定すると 良レ、。そして、上環状突起 11の突出長さ hiと上環状溝 51の深さ h2との間には hiく h2という関係が設定されている。これらの構成により、上環状突起 11と上環状溝 51と が、詳しくは、上環状突起 11の内外の両側周面と相対応する上環状溝 51の内外の 側周面とが強く圧接され、流体の漏れを阻止する優れたシール性能を発揮する一次 シール部 S1が形成されるとともに、上内環状押え突起 12のテーパ外周面 12aと上内 環状シール突起 52のテーパ内周面 52aとが必ず当接することになり、前述した二次 シール部 S2が良好に形成される利点がある。尚、このような関係は、下環状突起 21 と下環状溝 51との間や、第 2ガスケット G2の環状溝 61と上下の環状突起 31, 41との 間においても成り立つと良い。
[0107] 嵌合シール部 10については、図 16に示すように、内径側及び外径側の各一次シ ール部 S1を確実に機能させるベぐ環状突起 11 , 31 (21, 41)と環状溝 51 (61)夫 々の軸心 Pに対する内外径の半径を Rl , R3, R2, R4としたときに、 R1 <R2力つ R 3 >R4が成り立つように設定すれば好都合である。また、環状押え突起 12, 22 (13 , 23, 32, 42, 3, 43)の車由心 P方向に沿う高さ h3と環状突起 11 (21,31 , 41)の突 出長さ hiとの関ィ系は、図 16に示す hi >h3とレヽぅ関ィ系以外に、 hl =h3とレヽぅ関ィ系の 場合や、 hi <h3という関係の場合でも良い。
[0108] また、環状押え突起 12, 13の先端、及び環状シール突起 52, 53の先端はピン角 とならないようにカットされた形状、即ち、傾斜カット面 12b, 13b、並びにカット面 52b , 53bに形成されている。これらの構成により、上内環状押え突起 12の先端が流体 通路 Wl側に若干広がり変形したとしても、もともとカットされた形状であることから、流 体通路 W1途中に大きく開いた断面三角形状の凹みができるだけとなり、その凹みに 存在する流体が容易に流れ出すようになって実質的に液溜りが生じなレ、ようになる。 カロえて、その凹みの開き角度、即ち、傾斜カット面 12bとテーパ内周面 52aとの挟角 は十分に大きぐ表面張力による液溜りのおそれも回避される。また、環状突起 11先 端の内角及び外角は面取り加工された形状 11aとしてあるので、幅の狭い環状溝 51 への圧入移動を力、じり等の不都合なく円滑に行えるものとなっている。
[0109] 尚、図 23 (a)に示すように、環状突起 11を、その先端の内周角部及び外周角部の 面取り形状部 11aを明確に大きくした断面先細り形状に形成することにより、環状突 起 11が環状溝 51に入り易くされた構成としても良い。このように構成すれば、第 1 , 第 2流体給排ロ部 1A, 2Aと第 1ガスケット G1との組付け時における相対位置が所 期する適性状態から多少ずれていることがつても、テーパ面状の内又は外の面取り 形状部 1 laがガイドとなって環状突起 11が確実に環状溝 51内へ導かれるようになる のである。この場合の嵌合シール部 10 (—次シール部 S1)は、環状突起 11の根元 部と環状溝 51の先端部との嵌合部によって形成される構成となる。このような構造は 、他の環状突起 31, 21 , 41、並びに第 2ガスケット G2においても同様に構成可能で ある。
[0110] また、図 23 (b)に示すように、面取り形状部 11aをさらに大きくして、環状突起 11の 内外の側周面が全て傾斜したテーパ側周面 11aとなるよう、極端に先細り形状化させ た構成としても良い。この場合には、環状突起 11の環状溝 51への入り易さがさらに 容易になるとともに、環状突起 11が環状溝 51を押し広げる楔効果が生じて、環状溝 51の先端部と環状突起 11の根元部とが線接触又は極小さい面積でもって周状に圧 接されることとなり、より確実にシール機能を発生させることが可能となる利点がある。 このような構造は、他の環状突起 31, 21, 41、並びに第 2ガスケット G2においても同 様に構成可能である。
[0111] 嵌合シール部 10についてさらに詳述する。図 15,図 16に示すように、環状押え突 起 12, 13における環状突起側のテーパ周面 12a, 13aの開き角(谷部 14, 15の開 き角) Dは 50〜70度の範囲の値(50° ≤D° ≤70° )に設定されており、環状シー ノレ突起 52, 53のテーパ周面 52a, 53aの尖り角 Eは 60〜80度の範囲の値(60° ≤ D° ≤80° )に設定されている。そして、開き角 Dと尖り角 Eとには、開き角 Dに 10〜 20度をカ卩えたものが尖り角 Eとなる [D° + ( 10〜20° ) = E。 ]ように設定されてい る。より好ましい値としては、開き角 Dが 69〜71度(D° = 70 ± 1° )、尖り角 Eが 79 〜81度(E° = 80 ± 1° )、及び尖り角 Eは開き角 D + 9〜: 1 1度(E° _ D° = 10 ± 1° )に設定すると良い。
[0112] また、環状押え突起 12, 13の傾斜カット面 12b, 13bのカット角 Dsは 49〜51度(D s° = 50° ± 1° )に設定されており、周壁端部 52, 53の先端カット面 52b, 53bの 迎え角 Esは 124〜126度(Es° = 125° ± 1° )に設定されている。このような角度 設定により、テーパ外周面 12aとテーパ内周面 52a及びテーパ内周面 13aとテーパ 外周面 53aの夫々は環状の線接触状態で当接されるようになり、シールリップ効果が 二次シール部 S2におレ、て発揮されるようになる。
[0113] つまり、前記第 1流体給排ロ部 1Aと前記第 2流体給排ロ部 2Aとが互いに引寄せら れる方向である引寄せ方向に対する前記環状シール突起(周壁端部) 52, 53のテ 一パ周面 52a, 53a (テーパ内周面 52a、テーパ外周面 53a)の尖り角 Eが、前記引 寄せ方向に対する前記環状押え突起 12, 13における環状突起 1 1側のテーパ周面 12a, 13a (テーパ外周面 12a、テーパ内周面 13a)の開き角 Dに 10〜20度、好まし くは 10度又はほぼ 10度加えた値に設定されている。そして、前記尖り角 Eが 60〜80 度、好ましくは 80度又はほぼ 80度に設定されてレ、る。
[0114] このように尖り角 E及び開き角 Dを 90度に近い鈍角的な値に設定する構成とすれ ば、環状押え突起 12, 13は、その径方向幅に比べて引寄せ方向(軸方向)の突出 量が小さくなつて相対的に強度、剛性が向上することとなり、環状シール突起 52, 53 の拡がりを規制しながらも、自身 (環状押え突起 12, 13)が径方向へ拡がり変形する おそれをより効果的に抑制することができる利点がある。そして、環状シール突起 52 , 53の谷部 14, 15への刺さり込みによってテーパ周面 52a, 53aが環状押え突起 1 2, 13を径方向に押し広げる分力を小さくでき、この点からも環状押え突起 12, 13の 径方向への拡がり変形を抑制することができる。
[0115] 以上述べた嵌合シール部 10の構造は、第 1ガスケット G1の下側、及び第 2ガスケッ ト G2においても同様に構成されており、対応する箇所には対応する符号を付すもの とする。第 2ガスケット G2は、径は異なるが断面形状に関しては第 1ガスケット G1のも のと全く同じである。但し、第 1及び第 2流体給排ロ部 1A, 2Aの上第 2シール端部 t 12と下第 2シール端部 t22については、その外周側に流体通路が存在しないので、 それぞれ上第 1シール端部 ti lと下第 2シール端部 t21とやや形状が異なる。
[0116] 即ち、上第 2シール端部 tl2に関しては、環状押え突起 33のテーパ内周面 33aに 続く状態で、バルブケース 6の下端部を形成するための下端内周部 6bが存在してい る点である。この下端内周部 6bは、第 2ガスケット G2の上シール部 g21を上第 2シー ル端部 tl 2に嵌め合わす際のガイドとして機能するとともに、テーパ内周面 33aと共 に第 2ガスケット G2の外周壁 65の拡がり変形を阻止する機能も発揮可能である。そ して、下第 2シール端部 t22に関しては、外側の環状押え突起 43の外周側にパネル 材 5が連続して存在している点であり、下シール部 g22と下第 2シール端部 t22との 嵌め合せ時に、第 2ガスケット G2の下シール部 g22の外環状シール突起 63の拡がり 変形がテーパ内周面 43aによって阻止される作用効果が強化されるようになる。
[0117] 一方、第 1及び第 2ガスケット Gl , G2のうち、接合状態において内径側及び外径 側の双方に流体通路 7, 8が存在する中間ガスケットである第 1ガスケット G1は、これ の外周部である外周面 55aが、第 1ガスケット G1の外径側に存する第 1流体給排ロ 部 1Aの環状の流体通路 4aと第 2流体給排ロ部 2Aの環状の流体通路 8とを連通す る環状の流体経路 W2を形成するための壁面となる状態に形成されている。このよう に第 1ガスケット G1の内外周面 54a, 55aの双方が流体通路 Wl, W2を形成する壁 面を兼ねる構成とすれば、「第 1ガスケット G1の厚み」 =「環状流体通路 3a, 7と管状 流体通路 4a, 8との間隔」となり、第 1及び第 2流体給排ロ部 1A, 2Aの接続部をより コンパクトィ匕することが可能になる。
[0118] なお、図 14に仮想線で示すように、第 2ガスケット G2の外周壁 65に横突出するリン グ状の脱着フランジ Ifを一体形成しておけば、第 1又は第 2流体給排ロ部 1A, 2A 力、ら第 2ガスケット G2を抜出す際に、工具や手指でフランジ Ifを引張る等して外し易 くすることができるという利点がある。この場合、脱着フランジ Ifの厚みは、接合状態 における第 1及び第 2流体給排ロ部 1A, 2Aどうしの間隙よりも小さい値とする。 [0119] 次に、維持手段 Iについて説明する。維持手段 Iは、図 15,図 16に示すように、集 積パネル 1の第 1流体給排口部 1Aとバルブ 2の第 2流体給排口部 2Aとが互いに第 1 及び第 2ガスケット Gl, G2を介して引寄せるとともに、その引寄せ作用によって、第 1 流体給排ロ部 1Aの上第 1シール端部 ti l及び上第 2シール端部 tl 2と、第 1及び第 2ガスケット Gl, G2の上シール部 gl l , g21とが、及び第 2流体給排ロ部 2Aの下第 1及び下第 2シール端部 t21 , t22と、第 1及び第 2ガスケット Gl, G2の下シール部 g 12, g22とがそれぞれ嵌め合わされて各嵌合シール部 10が形成される接合状態を 維持するものに構成されている。即ち、第 2流体給排ロ部 2Aの環状突起 11, 31と第 1及び第 2ガスケット Gl, G2の上側の環状溝 51, 61とが、及び第 1流体給排ロ部 1 Aの環状突起 21, 41と第 1及び第 2ガスケット Gl, G2の下側の環状溝 51 , 61とがそ れぞれ嵌め合わされる。
[0120] 維持手段 Iの具体構造は、第 2流体給排口部 2Aの取付フランジ 9のボルト揷通孔 9 aに挿通される一対のボルト 66と、一対のボルト揷通孔 9a, 9aに対応して第 1流体給 排ロ部 1Aに (パネル材 5に)形成されたナット部 67, 67とで構成されており、ボルト 6 6をナット部 67に螺着させての締め付け操作により、バルブ 2を集積パネル 1に引寄 せ、かつ、その引寄せ状態を維持することができる。また、経時変化やクリープ等が 生じて各嵌合シール部 10の圧接力が低下した場合には、ボルト 66を増し締めするこ とで対処することができ、良好なシール性能を維持することが可能である。
[0121] 〔実施例 10〕
実施例 10による集積パネルと流体デバイスとの接続構造は、図 17に示すように、 集積パネル 1と、流体デバイスの一例であるポンプ (洗浄装置循環ライン用のベロー ズポンプ等) 2とをフランジ配管 71を介して連通接続させるものである。内外のガスケ ット Gl , G2を介した接続部自体の構成は実施例 9によるもの同一であるので、主な 符号だけを付すとともに、その詳細な説明は割愛する。
[0122] さて、集積パネル 1については、排出側の流体通路 4の取出し方向力 実施例 9に よる集積パネル 1の場合と逆になつている以外は基本的に同じ構造である。ただし、 実施例 9による集積パネルと流体デバイスとの接続構造は集積パネルの上面に構成 されているに対して、この実施例 10による接続構造は、集積パネル 1の横側面に構 成されている。ポンプ 2の給排用の流体通路 7, 8は横側面に開口する構造であり、 集積パネル 1では一対の流体通路 3, 4が二重管構造であるに対して、縦に並んで配 備される独立タイプのものである。
[0123] フランジ配管 71は、前述の取付フランジ 9を有するフランジ部 72と、これに続く略二 股状の管路部 73とから成り、管路部 73は、管状の供給側流体通路 74を持つ供給側 配管 73Aと、管状の排出側流体通路 75を持つ排出側の流体通路 73Bとから構成さ れている。フランジ部 72においては、供給側流体通路 74が軸心 Pを中心とする管状 のものとして集積パネル 1の縦通路 3aに正対して開口されるとともに、集積パネル 1 の縦リング通路 4aに正対して開口される環状通路部分 75aが排出側流体通路 75に 連続する状態で形成されている。各流体通路 74, 75は融着等の手段によってボン プ 2のイン側ポート 76、及びアウト側ポート 77に連通状態で接続連結されている。
[0124] このように、二重配管構造のフランジ部 72と独立した 2本の配管部 73とを有するフ ランジ配管 71を用いることにより、集積パネル 1における二重配管構造の第 1流体給 排ロ部 1Aと並列配置された一対のイン及びアウト側ポート 76, 77で成る第 2流体給 排ロ部 2Aとを、即ち、集積パネル 1とポンプ 2とを、流体通路の開口構造が互いに異 なるものどうしでありながらも、互いに近接させて無理なくコンパクトに連通接続させる ことができている。
[0125] 〔実施例 11〕
実施例 3による集積パネルと流体デバイスとの接続構造を図 18, 19に示す。これは 実施例 9によるものと維持手段 Iが異なるのみであり、その第 6別構造の維持手段 Iに ついて説明する。なお、図 18, 19においては、図 14〜: 16に示す実施例 9のものと対 応する箇所には対応する符号を付してある。第 6別構造による維持手段 Iは、図 18及 び図 19に示すように、集積パネル 1の上面に形成された平面視で円形を呈する突起 状の第 1流体給排ロ部 1Aの外周部に雄ネジ Inを形成し、その雄ネジ Inに螺合自 在な雌ネジ 81ηを備えた筒状ナット 81と、バルブ 2のバルブケース 6の下端部に形成 された外向きフランジ 9に、環状の流体通路 7の軸心 Ρ方向で干渉する二つ割り、ま たは三つ割り以上の割型リング 82とから構成されている。第 1流体給排ロ部 1Aの雄 ネジ Inに雌ネジ 8 Inを螺着させての筒状ナット 81の締付け操作により、両流体給排 口部 1A, 2Aを互いに 2個のガスケット Gl, G2を介して接近する方向に引寄せ可能 に、かつ、引寄せ状態を維持可能な引寄せ機能付きの維持手段 Iに構成されている
[0126] 筒状ナット 81のバルブ 2側(上側)に形成される内向きフランジ 83の開口部 83aは、 外向きフランジ 9の通過を許容するに足りる最小限の内径寸法に設定されている。割 型リング 82の外径は、筒状ナット 81に入り込み自在となるよう雌ネジ 81ηの内径よりも 僅かに小さい寸法に設定され、かつ、内径は、バルブ 2の円形の第 2流体給排ロ部 2 Αの外径部に外嵌自在となる最小限の寸法に設定されている。この場合、割型リング 82を装備するには、第 2流体給排ロ部 2Aにおける外向きフランジ 9を除いた径の細 い部分の軸方向長さ力 S、筒状ナット 81の軸方向長さと割型リング 82の厚さとの和を 上回る値とすることが必要である。具体的には、図 19 (b)に示すように、ノ · レブケース 6の付根部 6tに当接させた状態の筒状ナット 81と外向きフランジ 9との間の長さ d3が 、割型リング 82の厚さ d4よりも大きいこと(d3 > d4)が条件となる。
[0127] また、筒状ナット 81における雌ネジ 81ηの内奥端部と内向きフランジ 83との間に、 割型リング 82に軸方向に摺動自在で、かつ、割型リング 82の幅寸法をカバーする軸 心 Ρ方向長さを有する内周面部 81mが軸心 Ρと同心にフラットな内周面に形成されて いる。すなわち、筒状ナット 81の雌ネジ 81ηと内向きフランジ 83との間における内径 部 81aが供給側流体通路 7と同心にフラットな内周面に形成され、かつ、その内周面 部 81mの内径が断面矩形に形成された割型リング 82の外径よりも極僅かに大きくし た嵌め合い公差状態に寸法設定される一方、第 2流体給排ロ部 2Aの外径部が供給 側流体通路 7と同心にフラットな外周面に形成され、かつ,その外径部の外径と、割 型リング 82の内径とがほぼ同一径に形成される。これにより、筒状ナット 81を螺進さ せた際に割型リング 82が傾いて抉るような状態になったり、外向きフランジ 9に筒状 ナット 81の螺進による軸心 P方向の押圧力力 まく伝わらなかったりする、という不都 合が生じることが防止され、有効に外向きフランジ 9を押して、第 1、第 2流体給排ロ 部 1 A, 2Aを互いに接近する方向に良好に引寄せること力 Sできるようにされてレ、る。
[0128] 第 6別構造の維持手段 Iを用いて両流体給排ロ部 1A, 2Aどうしを接続連結する操 作手順は次のようである。先ず、図 19 (a)に示すように、外向きフランジ 9をやり過ごし て筒状ナット 81をバルブ 2の第 2流体給排ロ部 2Aの外周に嵌装し、その最内奥側ま で (付根部 6tに当接するまで)移動させる。次いで、図 19 (b)に示すように、割型リン グ 82を、外向きフランジ 9と筒状ナット 81の先端との間を通して第 2流体給排ロ部 2A に外嵌装備させる。このとき又はその前に第 1及び第 2ガスケット Gl, G2をいずれか の流体給排ロ部 1A, 2Aの端面に環状突起 11 , 21 , 31, 41と環状溝 51 , 61との仮 嵌合を介して装着させておいてもよい。次いで、両ガスケット Gl, G2を介して第 1流 体給排ロ部 1Aを第 2流体給排ロ部 2Aにあて力 Sい、その状態で筒状ナット 81をスラ イド移動させてから締付け操作 [図 19 (c)参照]することにより、図 18に示す接続状 態が得られる。なお、図 19においては、上下に積層される集積パネル 1とバルブ 2と を、図面記載都合により横倒し状態で描いてある。
[0129] 〔実施例 12〕
実施例 12による集積パネルと流体デバイスとの接続構造を図 20, 21に示す。これ は実施例 9によるものと維持手段 Iが異なるのみであり、その第 7別構造の維持手段 I について説明する。なお、図 20, 21においては、図 14〜: 16に示す実施例 9のものと 対応する箇所には対応する符号を付してある。第 7別構造の維持手段 Iは、第 1及び 第 2流体給排ロ部 1A, 2Aをその端面側ほど径が大きくなるように拡径して成る第 1 及び第 2円錐台状端部 1D, 2Dと、第 1円錐台状端部 1Dのテーパ外周面 Idに当接 する第 1テーパ内周面 84a、及び、第 2円錐台状端部 2Dのテーパ外周面 2dに当接 する第 2テーパ内周面 84bとによって断面が略く字状を呈する内周面を有する一対 の半割円弧部材 84, 84で成る割型押えリング 85と、半割円弧部材 84, 84どうしを引 寄せるボルト 86及び一方の半割円弧部材 84に形成されたナット 87とを有して構成さ れている。
[0130] 接合状態における第 1円錐台状端部 1Dと第 2円錐台状端部 2Dとに跨らせて一対 の半割円弧部材 84を被せた状態において、他方の半割円弧部材 84の揷通孔に 84 hに通されたボルト 86及びナット 87の締め付けにより、一端が蝶番状に支点 Qで枢 支されている半割円弧部材 84, 84どうしが引寄せられることによるテーパ面どうしの 当接による力によって、各流体給排ロ部 1A, 2Aどうしが互いに引寄せられる。割型 押えリング 85は、フッ素樹脂材から形成されのが好ましいが、アルミ合金等のそれ以 外の材料から成るものでも良い。
[0131] 第 2別構造の維持手段 Iを用いて両流体給排ロ部 1A, 2Aどうしを接続連結する操 作手順は次のようである。先ず、図 21 (a)に示すように、先ず第 1 ,第 2流体給排ロ部 1A, 2Aを第 1及び第 2ガスケット G21 , G2を介して軽く接続連結させる予備連結操 作を行う。次に、図 21 (b)に示すように、その予備連結された第 1及び第 2円錐台状 端部 1D, 2Dに割型押えリング 85を被せてボルト 86による締め付け操作を行う。この ボノレト 86の締め付けにより、両ガスケット Gl, G2が各流体給排ロ部 1A, 2Aに深く 嵌り込み、図 21 (c)に示すように、集積パネル 1とバルブ 2との接続連結状態が得ら れる。
[0132] 〔実施例 13〕
実施例 13による集積パネルと流体デバイスとの接続構造を図 22に示す。これは実 施例 9によるものと維持手段 Iが異なるのみであり、その第 8別構造の維持手段 Iにつ いて説明する。なお、図 22においては、図 14〜: 16に示す実施例 9のものと対応する 箇所には対応する符号を付してある。第 8別構造の維持手段 Iは、集積パネル 1の上 面に、外周部に雄ネジ Inを有する状態で形成された平面視で円形を呈する突起状 の第 1流体給排口部 1Aと、第 2流体給排口部 2Aにおレ、て外周部に雄ネジ 9nを有 する状態でバルブケース 6の下端部に形成されたフランジ部 9と、これら両雄ネジ In , 9nに螺着自在な雌ネジ 9 In, 92ηを有する第 1及び第 2リングナット 91 , 92と、これ らリングナット 91, 92の外周溝 91m、 92mに嵌着可能な断面形状が略コ字状の係合 リング 93と力ら構成されてレ、る。
[0133] 両リングナット 91, 92及び係合リング 93の材質は、例えば PFAや PTFE等のフッ 素樹脂製であり、ある程度の可撓性を有している。そこで第 3別構造の維持手段 Iを 用いて両流体給排ロ部 1A, 2Aどうしを接続連結する手順は、予め各リングナット 91 , 92に係合リング 93を係着して一体化された第 1及び第 2リングナット 91 , 92を形成 しておき、その一体化された第 1, 2リングナット 91 , 92を、ガスケット Gl , G2を介して 互いに引寄せられて組付状態とされている第 1及び第 2流体給排ロ部 1A, 2Aに螺 装し、集積パネルと流体デバイスとの接続構造を形成する、という具合になる。勿論、 この場合は各雄ネジ In, 9nが互いに同一のネジであることが条件であり、螺装後に 各リングナット 91, 92を回してより強く締付けたり、或いは後に増し締めすることが行 える。
[0134] また、次のような組付け手順も可能である。即ち、それぞれのリングナット 91, 92を 対応する雄ネジ ln, 9nに螺装した状態で、両流体給排ロ部 1A, 2Aを第 1及び第 2 ガスケット Gl, G2を介して引寄せ、ガスケット Gl , G2が圧接されてのシール状態で 接続する引寄せ工程を行う。この引寄せ工程は、維持手段 Iとは別の専用の引寄せ 手段を用いて行う。それから、各雄ネジ In, 9nのそれぞれに互いに隣接する状態で 螺装されている第 1及び第 2リングナット 91, 92の外周溝 91m, 92mに、係合リング 9 3を強制的に拡径変形することで入れ込むことにより、集積パネルと流体デバイスとの 接続構造が形成される。つまり、係合リング 93は無理嵌めによって両リングナット 91 , 92に係着される。
[0135] この構成による維持手段 Iは文字通り、第 1及び第 2流体給排ロ部 1A, 2Aのガスケ ット Gl , G2を介してのシール接続状態を維持する機能だけを有するものである。し 力 ながら、各リングナット 91, 92と係合リング 93とは相対回動可能であるから、これ らリングナット 91, 92は共に単独での回動移動が可能であり、経時変化やクリープ等 によってシール圧接力が低下した場合には、いずれ力若しくは双方のリングナット 91 , 92を強制的に回動操作して、増し締め操作を行うことは可能である。
[0136] 〔その他の実施例〕
図 14〜: 16に示す集積パネルと流体デバイスとの接続構造においては、外径側の 第 2ガスケット G2は、図示は省略するが、外周壁 63の上下端が内周壁 53よりも短ぐ かつ、単に水平状に切断された構造のものでも良い。二重配管接続構造では、最外 径側の第 2ガスケット G2の外周壁 63にはシール機能が無くても良レ、。実施例 9〜: 13 におけるガスケット Gl , G2は上下及び左右に対称形状のものであるが、例えば、内 外の周壁の長さや厚みの異なるものや、上下非対称のものなどでも良ぐ図示の形 状に限定されない。また、外側の環状流体通路 8のさらに外側に一又は複数の環状 の流体通路を有する三重以上の集積パネルと流体デバイスとの接続構造も可能であ り、最外側に位置するガスケット以外のガスケットは、その内外周面の双方が流体経 路を兼ねる構成が採れる。 なお、本発明における「流体デバイス」とは、バルブ、ポンプ、アキュムレータ、流体 貯留容器、熱交換器、レギユレータ、圧力計、流量計、ヒーター、フランジ配管等の、 要は集積パネル以外の流体関係のものの総称と定義する。さらに、引寄せ機能付維 持手段としては、ターンバックル式 (例:図 10や図 22に示す構造において、いずれか の雄ネジ In, 9nを逆ネジとして、これら両雄ネジ In, 9nに跨るターンバックルナット を螺装する構造)のものも可能である。また、環状押え突起 13, 23, 33, 43について は、環状押え壁部 13, 23, 33, 43に読み代えるものとし、これら環状押え突起 12, 1 3, 22, 23, 32, 42と環状押え壁部 33, 43とを総称して「環状押え部分」と定義する ものとする。

Claims

請求の範囲
[1] 管状の流体通路が開口する第 1流体給排ロ部を備えた集積パネルの前記第 1流 体給排ロ部と、管状の流体通路が開口する第 2流体給排ロ部を備えた流体デバイス の前記第 2流体給排口部とを、これら第 1流体給排口部と第 2流体給排口部との間に 介在されるリング状のガスケットによって前記流体通路をシールする状態で連通接続 するにあたり、
前記第 1流体給排ロ部及び前記第 2流体給排ロ部には、各端面に開口する前記 各流体通路の外径側部分に環状突起が形成され、
前記ガスケットは、前記第 1 ,第 2流体給排ロ部の相対応する前記流体通路どうし を連通すべく形成された流体経路と、前記第 1及び第 2流体給排ロ部の端面に形成 された前記環状突起のそれぞれに嵌合すべく前記流体経路の外径側部分に形成さ れた一対の環状溝とを有する可撓性を備えた材料から構成されており、
前記第 1流体給排ロ部と第 2流体給排ロ部とが互いに前記ガスケットを介して引寄 せられることにより、前記第 1流体給排ロ部の前記環状突起と前記ガスケットの一端 の環状溝とが、及び前記第 2流体給排口部の前記環状突起と前記ガスケットの他端 の前記環状溝とがそれぞれ嵌め合わされて嵌合シール部が形成され、かつ、前記第 1及び第 2流体給排ロ部の端面における前記環状突起の内径側に形成される環状 押え部分と、前記ガスケットにおける前記環状溝を形成するために軸心方向に突出 形成された内外の周壁端部のうちの内径側の周壁端部とが当接して、前記内径側の 周壁端部が前記環状溝と前記環状突起との嵌合によって縮径変形するのを抑制又 は阻止する拡縮変形防止手段が形成される接合状態が構成され、
前記拡縮変形防止手段は、前記環状押え部分と前記環状突起とで囲まれた谷部 が奥窄まり状となるように前記環状押え部分における環状突起側の側周面が傾斜し たテーパ周面と、前記内径側の周壁端部に形成されたテーパ周面との圧接によって 構成されている集積パネルと流体デバイスとの接続構造。
[2] 前記環状押え部分のテーパ周面と前記内径側の周壁端部のテーパ周面との圧接 によってシール部を形成するように構成されている請求項 1に記載の集積パネルと流 体デバイスとの接続構造。
[3] 前記ガスケットの断面形状が略 H型形状を呈するものに構成されている請求項 1又 は 2に記載の集積パネルと流体デバイスとの接続構造。
[4] 前記環状溝に前記環状突起を入れ易くすべぐ前記環状突起がその先端の内周 角部及び/又は外周角部が面取りされた断面先細り形状に形成されている請求項 1 〜3の何れか一項に記載の集積パネルと流体デバイスとの接続構造。
[5] 前記嵌合シール部及び前記拡縮変形防止手段が形成される前記接合状態を維持 する維持手段が装備されている請求項 1〜4の何れか一項に記載の集積パネルと流 体デバイスとの接続構造。
[6] 前記維持手段は、前記第 1流体給排ロ部と第 2流体給排ロ部とを引寄せて前記接 合状態を得るための引寄せ機能を発揮するものに構成されている請求項 5に記載の 集積パネルと流体デバイスとの接続構造。
[7] 管状の流体通路又は環状の流体通路と一以上の環状の流体通路とが同心状に形 成されて開口する第 1流体給排口部を備えた集積パネルの前記第 1流体給排口部と 、管状の流体通路又は環状の流体通路と一以上の環状の流体通路とが同心状に形 成されて開口する第 2流体給排口部を備えた流体デバイスの前記第 2流体給排口部 とを、それぞれの複数の流体通路が相対応され、かつ、前記第 1流体給排ロ部と前 記第 2流体給排ロ部の間に介在される複数のリング状のガスケットによって各流体通 路がシールされる状態で連通接続するにあたり、
前記第 1流体給排ロ部及び前記第 2流体給排ロ部には、各端面に開口する前記 各流体通路の外径側部分に環状突起が形成され、
前記各ガスケットは、前記第 1 ,第 2流体給排ロ部の相対応する前記流体通路どう しを連通すべく形成された流体経路と、前記第 1及び第 2流体給排ロ部の端面に形 成された前記環状突起のそれぞれに嵌合すべく前記流体経路の外径側部分に形成 された一対の環状溝とを有する可撓性を備えた材料から構成されており、
前記第 1流体給排ロ部と第 2流体給排ロ部とが互いに前記複数のガスケットを介し て引寄せられることにより、前記第 1流体給排ロ部の前記環状突起と前記各ガスケッ トの一端の環状溝とが、及び前記第 2流体給排ロ部の前記環状突起と前記各ガスケ ットの他端の前記環状溝とがそれぞれ嵌め合わされて嵌合シール部が形成され、か つ、前記第 1及び第 2流体給排ロ部の端面における前記環状突起の内外径側に形 成される環状押え部分と、前記各ガスケットにおける前記環状溝を形成するために軸 心方向に突出形成された内外径側の周壁端部とが当接して、前記内外径側の周壁 端部が前記環状溝と前記環状突起との嵌合によって拡径又は縮径変形するのを抑 制又は阻止する拡縮変形防止手段が形成される接合状態が構成され、
前記拡縮変形防止手段は、前記環状押え部分と前記環状突起とで囲まれた谷部 が奥窄まり状となるように前記環状押え部分における環状突起側の側周面が傾斜し たテーパ周面と、前記内外径側の周壁端部に形成されたテーパ周面との圧接によつ て構成されるとともに、
前記複数のガスケットのうち、前記接合状態にぉレ、て内径側及び外径側の双方に 前記流体通路が存在する中間ガスケットは、これの外周面が、前記中間ガスケットの 外径側に存する前記第 1流体給排ロ部の前記環状の流体通路と前記第 2流体給排 口部の前記環状の流体通路とを連通する環状の流体経路を形成するための壁面と なる状態に形成されている集積パネルと流体デバイスとの接続構造。
[8] 前記環状押え部分のテーパ周面と前記内外径側の周壁端部のテーパ周面との圧 接によってシール部を形成するように構成されている請求項 7に記載の集積パネルと 流体デバイスとの接続構造。
[9] 前記ガスケットの断面形状が略 H型形状を呈するものに構成されている請求項 7又 は 8に記載の集積パネルと流体デバイスとの接続構造。
[10] 前記環状溝に前記環状突起を入れ易くすべぐ前記環状突起がその先端の内周 角部及び/又は外周角部が面取りされた断面先細り形状に形成されている請求項 7 〜9の何れか一項に記載の集積パネルと流体デバイスとの接続構造。
[11] 前記嵌合シール部及び前記拡縮変形防止手段が形成される前記接合状態を維持 する維持手段が装備されている請求項 7〜: 10の何れか一項に記載の集積パネルと 流体デバイスとの接続構造。
[12] 前記維持手段は、前記第 1流体給排ロ部と第 2流体給排ロ部とを引寄せて前記接 合状態を得るための引寄せ機能を発揮するものに構成されてレ、る請求項 11に記載 の集積パネルと流体デバイスとの接続構造。
PCT/JP2006/312012 2005-07-12 2006-06-15 集積パネルと流体デバイスとの接続構造 WO2007007507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06766746A EP1909017A1 (en) 2005-07-12 2006-06-15 Connection structure of stack panel to fluid device
US11/988,556 US20090072536A1 (en) 2005-07-12 2006-06-15 Connection Structure of Stack Panel to Fluid Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005202933A JP4257319B2 (ja) 2005-07-12 2005-07-12 集積パネルと流体デバイスとの接続構造
JP2005-202933 2005-07-12
JP2005203939A JP4257320B2 (ja) 2005-07-13 2005-07-13 集積パネルと流体デバイスとの接続構造
JP2005-203939 2005-07-13

Publications (1)

Publication Number Publication Date
WO2007007507A1 true WO2007007507A1 (ja) 2007-01-18

Family

ID=37636905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312012 WO2007007507A1 (ja) 2005-07-12 2006-06-15 集積パネルと流体デバイスとの接続構造

Country Status (5)

Country Link
US (1) US20090072536A1 (ja)
EP (1) EP1909017A1 (ja)
KR (1) KR20080026644A (ja)
TW (1) TW200718887A (ja)
WO (1) WO2007007507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059324A2 (en) * 2007-11-02 2009-05-07 Entegris, Inc. O-ringless seal couplings
JP2013078834A (ja) * 2011-10-05 2013-05-02 Waterworks Technology Development Organization Co Ltd 流体管用穿孔設備及びそれに用いられる合フランジ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003887A1 (en) * 2010-07-09 2012-01-12 Dresser Wayne Ab Connection arrangement and method for assembling the same
BR112014016018B1 (pt) 2012-01-03 2020-10-27 Micro Motion, Inc conjunto sensor para um medidor de fluido, e, método para reter um flange em um conjunto sensor
FI125212B (en) 2012-12-31 2015-07-15 Wärtsilä Finland Oy Sealing elements and arrangements
JP6422843B2 (ja) * 2015-10-27 2018-11-14 日新製鋼株式会社 管状構造物及びその製造方法
KR102566389B1 (ko) * 2017-07-04 2023-08-11 니폰 필라고교 가부시키가이샤 유체 기기의 접속 구조
CN112031923B (zh) * 2020-08-07 2022-06-07 中国北方发动机研究所(天津) 一种二级增压系统连接方式

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068908U (ja) * 1973-10-25 1975-06-19
JPS5173625A (ja) * 1974-11-26 1976-06-25 Hooku Inc Kantsugite
JPS6112786U (ja) * 1984-06-27 1986-01-25 三菱鉛筆株式会社 芯クツシヨン式シヤ−プペンシル
JPS6436791U (ja) * 1987-08-31 1989-03-06
JPH0579126U (ja) * 1992-03-31 1993-10-26 株式会社土屋製作所 弾性パッキンを有するシール装置
JPH06174158A (ja) * 1992-12-14 1994-06-24 Mitsubishi Motors Corp 気体流路の結合部構造
JPH07504481A (ja) * 1992-03-12 1995-05-18 ベクター・インターナショナルリミテッド シールリング及びジョイント
JPH10169859A (ja) 1996-12-03 1998-06-26 Benkan Corp 集積化ガスパネルの制御機器取付用シールガスケット
JP2001082609A (ja) 1999-09-09 2001-03-30 Motoyama Eng Works Ltd シールガスケット
JP2004315051A (ja) * 2003-04-17 2004-11-11 Onda Seisakusho:Kk 合成樹脂製タンクの配管接続構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2605045A (en) * 1951-06-20 1952-07-29 Laval Separator Co De Sealing arrangement for closed centrifugal separators
DE1525925A1 (de) * 1966-09-16 1970-01-22 Vickers Zimmer Ag Flanschverbindung,insbesondere fuer Doppelrohrleitungen
FR2342454A1 (fr) * 1976-02-25 1977-09-23 Schulz Wilhelm Bride pour canalisations chauffees ou refroidies par chemisage de fluide
JPS63243585A (ja) * 1986-11-18 1988-10-11 株式会社 リガルジヨイント 多重パイプ用継手
US4848730A (en) * 1988-06-29 1989-07-18 Mueller Co. Structure for sealing and affixing a cover on a valve body and method of manufacture
US6070912A (en) * 1989-08-01 2000-06-06 Reflange, Inc. Dual seal and connection
US5088774A (en) * 1990-05-07 1992-02-18 Tylan General, Inc. Coupling for interconnection of coaxial tubing
US5628517A (en) * 1993-06-01 1997-05-13 Florida Atlantic University Contracting/expanding self-sealing cryogenic tube seals
US7581764B2 (en) * 2004-11-30 2009-09-01 Ckd Corporation Connection seal structure for fluidic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068908U (ja) * 1973-10-25 1975-06-19
JPS5173625A (ja) * 1974-11-26 1976-06-25 Hooku Inc Kantsugite
JPS6112786U (ja) * 1984-06-27 1986-01-25 三菱鉛筆株式会社 芯クツシヨン式シヤ−プペンシル
JPS6436791U (ja) * 1987-08-31 1989-03-06
JPH07504481A (ja) * 1992-03-12 1995-05-18 ベクター・インターナショナルリミテッド シールリング及びジョイント
JPH0579126U (ja) * 1992-03-31 1993-10-26 株式会社土屋製作所 弾性パッキンを有するシール装置
JPH06174158A (ja) * 1992-12-14 1994-06-24 Mitsubishi Motors Corp 気体流路の結合部構造
JPH10169859A (ja) 1996-12-03 1998-06-26 Benkan Corp 集積化ガスパネルの制御機器取付用シールガスケット
JP2001082609A (ja) 1999-09-09 2001-03-30 Motoyama Eng Works Ltd シールガスケット
JP2004315051A (ja) * 2003-04-17 2004-11-11 Onda Seisakusho:Kk 合成樹脂製タンクの配管接続構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059324A2 (en) * 2007-11-02 2009-05-07 Entegris, Inc. O-ringless seal couplings
WO2009059324A3 (en) * 2007-11-02 2009-12-17 Entegris, Inc. O-ringless seal couplings
JP2011503449A (ja) * 2007-11-02 2011-01-27 インテグリス・インコーポレーテッド Oリングが不要なシール連結部
JP2013078834A (ja) * 2011-10-05 2013-05-02 Waterworks Technology Development Organization Co Ltd 流体管用穿孔設備及びそれに用いられる合フランジ

Also Published As

Publication number Publication date
KR20080026644A (ko) 2008-03-25
TW200718887A (en) 2007-05-16
US20090072536A1 (en) 2009-03-19
EP1909017A1 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
WO2007007507A1 (ja) 集積パネルと流体デバイスとの接続構造
WO2006033299A1 (ja) 集積パネルと流体デバイスとの接続構造
WO2007007508A1 (ja) 集積パネルと流体デバイスとの接続構造
JP4324575B2 (ja) フランジ配管どうしの接続構造
JP4445918B2 (ja) 流体用ガスケット
WO2006118238A1 (ja) 集積パネルと流体デバイスとの接続構造
JP4268913B2 (ja) 流体機器どうしの接続構造
JP4324576B2 (ja) 流体機器どうしの接続構造
JP4257319B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4512526B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4465335B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4210669B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4644477B2 (ja) 流体用ガスケット
JP2006161873A (ja) 集積パネルと流体デバイスとの接続構造
JP4210668B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4221348B2 (ja) フランジ配管どうしの接続構造及びフランジ配管と流体機器との接続構造
JP4465254B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4048193B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4210643B2 (ja) 流体用ガスケット
JP4512528B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4378329B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4257320B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4654013B2 (ja) 集積パネルと流体デバイスとの接続構造
JP4210670B2 (ja) 流体用ガスケット
JP4411304B2 (ja) 集積パネルと流体デバイスとの接続構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025672.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002915

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006766746

Country of ref document: EP