WO2007007383A1 - 送信装置、受信装置、情報通信方法 - Google Patents

送信装置、受信装置、情報通信方法 Download PDF

Info

Publication number
WO2007007383A1
WO2007007383A1 PCT/JP2005/012677 JP2005012677W WO2007007383A1 WO 2007007383 A1 WO2007007383 A1 WO 2007007383A1 JP 2005012677 W JP2005012677 W JP 2005012677W WO 2007007383 A1 WO2007007383 A1 WO 2007007383A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
communication data
transmission
information
receiving
Prior art date
Application number
PCT/JP2005/012677
Other languages
English (en)
French (fr)
Inventor
Kotaro Shiizaki
Daisuke Jitsukawa
Kenji Suda
Hiroyuki Seki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP12179014.1A priority Critical patent/EP2521338B1/en
Priority to EP05758321.3A priority patent/EP1903747B1/en
Priority to CN2005800510145A priority patent/CN101223759B/zh
Priority to JP2007524479A priority patent/JP4542150B2/ja
Priority to PCT/JP2005/012677 priority patent/WO2007007383A1/ja
Priority to KR20087000917A priority patent/KR100993648B1/ko
Publication of WO2007007383A1 publication Critical patent/WO2007007383A1/ja
Priority to US12/003,823 priority patent/US7869463B2/en
Priority to US12/959,901 priority patent/US8842699B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management

Definitions

  • the present invention relates to a transmission device, a reception device, and an information communication method, and more particularly to a technique that is effective when applied to a retransmission control technique or the like in a transmission device and a reception device constituting a wireless communication system.
  • FIG. 1 is a conceptual diagram showing the operation of ARQ, which is a conventional retransmission control method.
  • error detection code such as CRC (Cyclic Redundancy Check code) added to the transmission packet is used to detect an error for each packet, and if there is no error in the received packet, an ACK signal is returned to the transmission side.
  • CRC Cyclic Redundancy Check code
  • NAC K Not-ACKnowledge
  • HARQ Hybrid— ARQ
  • HARQ using packet combining which is mentioned in Non-Patent Document 1 among HARQ, will be described as an example.
  • HARQ refers to HARQ using packet synthesis.
  • Figure 2 is a conceptual diagram showing the principle of this HARQ scheme.
  • error correction is performed, and error detection is performed for each frame using a CRC added to the end of the transmission frame. If an error is detected, a NACK signal is returned to the transmission side, and a retransmission of the entire frame is requested. At this time, the receiving side puts the received signal of the frame in which the error is detected into the buffer.
  • the received result of the retransmitted frame and the received signal of the first transmitted frame are combined. This makes it possible to further improve the reception characteristics by using the soft decision information of the first frame. It becomes possible to improve.
  • RTT Random Trip Time
  • This RTT is the time until the packet arrives from the sender to the receiver, the time for confirming the success or failure of the packet received at the receiver, and the time until the ACKZNACK indicating the confirmation result arrives at the sender.
  • a predetermined default value is used. If the ACK signal arrives from the receiving side within the predetermined RTT after transmitting the data, the transmitting side transmits new data after the elapse of a predetermined RTT from the first data transmission. Resend after RTT. If ACK or NACK does not reach the sender within RTT, the sender resends to the receiver.
  • TCP Transmission Control Protocol
  • TCP determines that packet loss has occurred if the receiving side does not return an ACK within the preset time-out time, but the delay time is longer in the wireless environment than in the wired environment. The probability that it is determined that a packet loss has occurred is exceeded. As a result, TCP regards packet loss as a result of congestion and severely restricts the amount of data flowing into the network. Therefore, when applied to a wireless environment, system throughput is unlikely to decrease. This is an important issue for high-capacity high-speed transmission in (Problem 2). In order to improve throughput degradation, the potential for improving the TCP protocol and reducing the delay time in the wireless environment is discussed here.
  • a possible cause of a processing delay in the wireless environment is a delay in the retransmission process.
  • transmission of new data depends on the RTT value.
  • zRetransmission takes time, and repeated retransmissions increase the retransmission delay, causing system throughput to drop.
  • Patent Document 1 discloses that by varying the number of times a call signal is retransmitted from a base station to a mobile station for each of a plurality of radio areas having different channel qualities such as forcing interference, Although a technique for ensuring a sufficient call connection rate while maintaining appropriate traffic on the general call channel is disclosed, recognition of the above technical problem in retransmission control of communication data itself has not been seen.
  • Non-Patent Literature 1 D. and hase, 'Code and ombining-A Maximum-Likelihood Decoding Apprach for Combining an Arbitrary Number of noisy Packets, "IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.COM— 33, N0.5, MAY 1985 .
  • Patent Document 1 Japanese Patent Laid-Open No. 10-13331
  • An object of the present invention is to provide a communication technique capable of reducing a retransmission delay time in communication data retransmission control.
  • Another object of the present invention is that the communication rate penalty due to transmission delay is relatively strict V, and there is no decrease in communication rate in a wireless communication network connected to a wired communication network.
  • a first aspect of the present invention is a transmission means for transmitting communication data to a receiving device
  • a retransmission control means for performing retransmission of the communication data to the receiving device without waiting for the arrival of the negative acknowledgment signal from the receiving device or elapse of a predetermined acknowledgment waiting time
  • a retransmission waiting time control means for controlling a time interval from transmission of the communication data to the retransmission
  • a transmission device including the above is provided.
  • a second aspect of the present invention is the transmission apparatus according to the first aspect, Furthermore, a radio resource allocation control means is provided,
  • a transmission device that executes the retransmission of the communication data when the radio resource is available.
  • a third aspect of the present invention is the transmission apparatus according to the first aspect
  • the retransmission control means provides a transmission apparatus that controls whether or not the retransmission is performed or a plurality of consecutive retransmissions based on the attribute of the communication data.
  • a fourth aspect of the present invention is the transmitting apparatus according to the first aspect
  • prediction means for predicting the occurrence of retransmission of the communication data according to the communication status with the receiving apparatus, and controlling the execution of the retransmission in the retransmission control means based on the prediction result!
  • a fifth aspect of the present invention is the transmitting apparatus according to the first aspect
  • the occurrence of retransmission of the communication data is predicted based on the frequency of occurrence of retransmission processing of the communication data in the past, and whether or not the retransmission is performed by the retransmission control unit is controlled based on the prediction result.
  • a transmission device including a predicting unit.
  • a sixth aspect of the present invention is the transmitting apparatus according to the first aspect
  • a transmission device including a predicting unit.
  • a seventh aspect of the present invention is the transmitting apparatus according to the first aspect
  • the retransmission waiting time control means is characterized in that the length of the time interval is based on at least one of the attribute of the communication data, the state of the information transmission path with the receiving device, and the frequency of retransmission of the communication data in the past.
  • An eighth aspect of the present invention is based on reception means for receiving communication data coming from a transmission apparatus and success or failure of reception of the communication data, and confirms the transmission apparatus with respect to the communication data.
  • Storage means for storing the transmission result of the acknowledgment signal
  • the storage means When receiving the communication data retransmitted from the transmitter, the storage means stores the communication data.
  • control information generating means for responding the confirmation response signal to the transmission device without performing the decoding process of the communication data;
  • a receiving device is provided.
  • a ninth aspect of the present invention is the receiving apparatus according to the eighth aspect,
  • a retransmission buffer for holding the communication data in which an error is detected
  • the decoding process of the communication data is executed based on the communication data held in the retransmission buffer and the retransmitted communication data.
  • Resending combining means
  • a receiving device is provided.
  • a tenth aspect of the present invention includes a first step of transmitting communication data toward a receiving side, arrival of a negative acknowledgment signal of the communication data coming from the receiving side, or a predetermined confirmation response waiting time A second step of retransmitting the communication data to the receiving side without waiting for elapse of
  • An information communication method is provided to execute on the sending side.
  • An eleventh aspect of the present invention is the information communication method described in the tenth aspect
  • an information communication method for transmitting the communication data when there is a radio resource between the transmission side and the reception side.
  • a twelfth aspect of the present invention is the information communication method according to the tenth aspect
  • the possibility of occurrence of a retransmission request from the reception side of the communication data transmitted in the first step is predicted, the possibility is high, and the transmission side and the reception side Provided is an information communication method for transmitting the communication data when there is a vacant radio resource.
  • a thirteenth aspect of the present invention is the information communication method according to the tenth aspect
  • the second step based on the occurrence frequency of the retransmission processing of the communication data in the past! /, The possibility of occurrence of a retransmission request for the reception side force of the communication data transmitted in the first step is predicted. And providing an information communication method for transmitting the communication data when the possibility is high and there is a vacant radio resource between the transmission side and the reception side.
  • the second step is based on the quality of the information transmission path between the transmission side and the reception side.
  • the possibility of the retransmission request from the receiving side of the communication data transmitted in the first step is predicted, and the radio resource between the transmitting side and the receiving side is highly likely and An information communication method for transmitting the communication data when there is a vacancy is provided.
  • a fifteenth aspect of the present invention is the information communication method according to the tenth aspect
  • an information communication method for determining whether to transmit the communication data again based on the immediacy of the communication data is provided.
  • a sixteenth aspect of the present invention is the information communication method according to the tenth aspect
  • an information communication method for transmitting the communication data a plurality of times based on the immediacy of the communication data is provided.
  • a seventeenth aspect of the present invention is the information communication method according to the tenth aspect
  • the communication data is transmitted again in the second step from the transmission of the communication data in the first step.
  • An information communication method that changes the retransmission time interval until transmission is provided.
  • An eighteenth aspect of the present invention is the information communication method according to the tenth aspect
  • the communication data is again transmitted in the second step from the transmission of the communication data in the first step based on the occurrence frequency of the retransmission processing of the communication data in the past!
  • a nineteenth aspect of the present invention is the information communication method according to the tenth aspect
  • the retransmission time interval from the transmission of the communication data in the first step to the retransmission of the communication data in the second step is changed according to the immediacy of the communication data.
  • a twentieth aspect of the present invention is the information communication method according to the tenth aspect
  • FIG. 1 is a conceptual diagram showing the operation of ARQ, which is a conventional retransmission control method.
  • FIG. 2 is a conceptual diagram showing the principle of a conventional HARQ scheme.
  • FIG. 3 is a conceptual diagram illustrating the principle common to the information communication method of each embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating the principle common to the information communication method of each embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating the principle common to the information communication method of each embodiment of the present invention.
  • FIG. 6 is a conceptual diagram for explaining the principle common to the information communication method of each embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of the operation on the transmission side common to the information communication method of each embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of the operation on the receiving side common to the information communication method of each embodiment of the present invention.
  • FIG. 9 is a conceptual diagram showing an example of a packet configuration in information communication according to an embodiment of the present invention.
  • FIG. 10 is a conceptual diagram showing an example of a configuration of a communication system to which a communication method according to an embodiment of the present invention is applied.
  • FIG. 11 is a block diagram showing an example of a configuration of a transmission apparatus that performs the information communication method according to the embodiment of the present invention.
  • FIG. 12 shows a configuration of a receiving apparatus that implements the information communication method according to an embodiment of the present invention. It is a block diagram which shows an example.
  • FIG. 13 is a block diagram showing an example of a configuration of a transmission apparatus that implements an information communication method according to another embodiment of the present invention.
  • FIG. 14 is a block diagram showing a modification of the transmission apparatus illustrated in FIG.
  • FIG. 15 is a flowchart showing the operation of a modified example of the transmission apparatus exemplified in FIG.
  • FIG. 16 is a block diagram showing a configuration of another modified example of the transmitting apparatus in another embodiment of the present invention.
  • FIG. 17 is a flowchart showing the operation of a modified example of the transmission apparatus exemplified in FIG.
  • FIG. 18 is a block diagram showing a configuration example of a transmission apparatus according to still another embodiment of the present invention.
  • FIG. 19 is a flowchart showing the operation of a modified example of the transmission apparatus exemplified in FIG.
  • FIG. 20 is a block diagram showing a configuration of a modified example of the transmitting apparatus of still another embodiment of the present invention.
  • FIG. 21 is a flowchart showing the operation of a modified example of the transmission apparatus exemplified in FIG.
  • FIG. 22 is a block diagram showing a modified example of the transmitting apparatus in still another embodiment of the present invention.
  • FIG. 23 is a flowchart showing the operation of a modified example of the transmission apparatus exemplified in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the time interval ⁇ is variable based on propagation path information, the frequency of retransmission of the past few packets, immediacy, which is one of the QoS (Quality of Service) indices of transmitted packets, and so on.
  • QoS Quality of Service
  • the packet that was forcibly retransmitted uses time diversity more effectively and increases the possibility that it will be decoded correctly on the receiving side.
  • a CRC Cyclic Redundancy Check Code
  • ACKZNACK is returned from the receiving side to the transmitting side, and if the CRC on the transmitting side becomes an error, it is treated as a NACK.
  • the transmitting side Since the transmitting side performs forced retransmission after the time interval T has elapsed since the transmission of the new packet 10, the receiving side receives the forced retransmission packet 10R T after the arrival of the new packet 10.
  • the receiving side decodes the forced retransmission packet 10R and returns ACK (acknowledgment response signal) if reception is successful and NACK (negative acknowledgment signal) if reception fails according to the result. Even if a NACK of a new packet 10 arrives, the transmitting side does not retransmit immediately, but waits for an ACK or NACK of a forced retransmission packet 10R.
  • Figure 3 shows the situation when the forced retransmission packet 10R is correctly decoded.
  • Fig. 4 shows the situation when the forced retransmission packet 10R is decoded in error. In this case, retransmission is performed when the NACK of the forced retransmission packet 10R arrives. The same process is repeated thereafter.
  • the forcible retransmission packet 10R arrives at the receiving side after a lapse of T from the arrival of the new packet 10. Since the new packet 10 is correctly decoded on the receiving side, an ACK is returned to the transmitting side when the forced retransmission packet 10R arrives until the forced retransmission packet 10R is decoded.
  • FIG. 5 shows a case where the ACK of the new packet 10 is correctly transmitted to the transmission side.
  • a new packet 10 is transmitted when the first ACK arrives, and nothing happens even if the ACK of the forced retransmission packet 10R arrives.
  • FIG. 6 shows a case where an ACK of a new packet 10 is erroneously transmitted to the transmitting side.
  • a new packet 10 is transmitted after the ACK of the forced retransmission packet 10R arrives. Even in this case, it is possible to reduce the processing delay more than RTT-T.
  • Packet 10 illustrated in FIG. 9 includes transmission frame control information 11 as a header portion, transmission data 12 that is net data to be transmitted, transmission frame control information 11 and It includes a CRC unit 13 including error correction information of the transmission data 12.
  • the transmission frame control information 11 includes control information 11a having information such as the destination and transmission source address of the packet 10 (forced retransmission packet 10R), line quality, and the above-mentioned SN (Sequential Number).
  • the corresponding retransmission sequence number l ib is included.
  • the retransmission sequence number l ib and the transmission data 12 are equal to each other.
  • the resource when using for a system that manages radio resources during power transmission after forcibly retransmitting after waiting for the time interval T, the resource is available without waiting for the time interval T. For example, it is possible to perform forced retransmission.
  • the resending possibility is predicted based on the resending frequency of the past several packets, propagation path information, etc.
  • forced resending is also taken into consideration of immediacy, which is one of the data quality of service (QoS) indices. It is also possible to judge whether to do it. For data that requires immediacy, change the setting of the criteria for determining the possibility of retransmission and increase the possibility of forced retransmission. In this way, although there is a possibility of performing some unnecessary retransmission, the probability of forced retransmission is increased, and the effect of increasing and reducing the delay in retransmission processing is possible.
  • immediacy is one of the data quality of service (QoS) indices. It is also possible to judge whether to do it.
  • QoS data quality of service
  • the number of retransmissions per unit time increases compared to the conventional method, and therefore the maximum number of retransmissions is reached earlier in a system in which the maximum number of retransmissions is set. Can avoid delays.
  • FIG. 10 is a conceptual diagram illustrating an example of a configuration of a communication system to which the communication method of the present embodiment is applied.
  • FIG. 11 illustrates an example of a configuration of a transmission apparatus that performs the information communication method of the present embodiment.
  • FIG. 12 is a block diagram showing an example of the configuration of a receiving apparatus that implements the information communication method of the present embodiment.
  • the transmitting apparatus 100 and the receiving apparatus 200 of the present embodiment configure a wireless communication system 90 using HARQ as a retransmission control method to perform wireless communication with each other, and It is connected to a wired communication network 20 that performs communication.
  • the wired communication network 20 and the wireless communication system 90 are connected seamlessly by using a communication protocol such as TCP / IP.
  • transmitting apparatus 100 includes transmission buffer 101, retransmission buffer 102, radio resource management section 103, retransmission control section 104, waiting function section 105, and multiplexing section. 106, a transmission unit 107, a transmission antenna 108 (Tx), a reception antenna 109 (Rx), a reception unit 110, and a control signal decoding unit 111.
  • the transmission buffer 101 is a buffer that temporarily holds the transmission data 12.
  • the retransmission buffer 102 is a buffer that holds transmitted transmission data 12 in preparation for forced retransmission.
  • Radio resource management section 103 performs processing for assigning radio resources (one of frequency, code, time slot, or a combination thereof) used when transmitting transmission data 12 of transmission buffer 101 or retransmission buffer 102 .
  • the multiplexing unit 106 transmits and receives transmission frames as illustrated in FIG. Is added to the frame control information 11 and the CRC unit 13 to construct the packet 10 and the forced retransmission packet 10R.
  • Transmitting section 107 performs processing for converting data of packet 10 or forced retransmission packet 10R into an electromagnetic wave and radiating it from transmitting antenna 108.
  • the receiving unit 110 performs processing of converting the electromagnetic wave received by the receiving antenna 109 into digital data, extracting the control information 50, and inputting the control information 50 to the control signal decoding unit 111.
  • Control signal decoding section 111 decodes retransmission control signal 40 from control information 50 input from receiving section 110 and inputs it to retransmission control section 104 described later.
  • the retransmission control signal 40 includes an ACK signal 41 or a NACK signal 42.
  • the ACK signal 41 is an acknowledgment signal that is replied from the receiving side when the receiving side (receiving device 200 described later) has successfully received the packet 10.
  • the NACK signal 42 is a negative response signal that is responded to by the receiving side when the receiving side (the receiving device 200 described later) fails to receive the packet 10.
  • the retransmission control unit 104 outputs a new data transmission request signal 31 that gives an opportunity to output the transmission data 12 stored in the retransmission buffer 102 as a packet 10 to the retransmission buffer 102.
  • the transmission notification signal 32 is input from the transmission buffer 101 to the retransmission control unit 104 when the transmission data 12 is transmitted.
  • Retransmission control section 104 inputs transmission frame control information 34 to multiplexing section 106.
  • the transmission frame control information 34 includes transmission frame control information 11 used in constructing the packet 10 and the forced retransmission packet 1 OR exemplified in FIG. 9 described above.
  • Retransmission control section 104 outputs retransmission request signal 33 to radio resource management section 103 to perform retransmission processing.
  • a waiting function unit 105 is provided between retransmission control section 104 and radio resource management section 103.
  • This waiting function unit 105 performs an operation of delaying the retransmission request signal 33 input from the retransmission control unit 104 by the time interval T described above and inputting it to the radio resource management unit 103.
  • the retransmission control unit 104 waits for the arrival of the retransmission control signal 40 from the receiving side by the above-mentioned RTT from the transmission notification signal 32, and the RTT has elapsed. Or if a NACK signal 42 arrives during that time, the retransmission request signal 33 Is input to the radio resource management unit 103 and the retransmission process of the packet 10 is executed.
  • retransmission control section 104 receives retransmission control signal 40 (ACK signal 41, NACK signal 42) from the receiving side after detection of transmission notification signal 32.
  • ACK signal 41, NACK signal 42 ACK signal 41, NACK signal 42
  • the retransmission request signal 33 is input to the radio resource management unit 103 via the wait function unit 105. Send the forced retransmission packet 10R to the receiving side.
  • the reception of the ACK signal 41 and the NACK signal 42 from the reception side corresponding to the packet 10 is performed.
  • the forced retransmission packet 10R is forcibly transmitted after the delay of the above-mentioned time interval T controlled by the related waiting function unit 105.
  • the receiving apparatus 200 of the present embodiment includes a receiving antenna 2
  • receiving unit 202 receiving unit 202, retransmission combining unit 203, retransmission buffer 204, ACK buffer 205, decoding processing unit 206, error detecting unit 207, control information generating unit 208, transmitting unit 209, transmitting antenna
  • the receiving antenna 201 converts the electromagnetic wave received from the transmitting apparatus 100 into digital data and inputs the digital data to the retransmission combining unit 203 and the control information generating unit 208.
  • Retransmission combining section 203 retransmits data coming from receiving section 202 as necessary
  • the process stored in 204 and the process of superimposing the data held in the retransmission buffer 204 on the data coming from the receiving unit 202 are performed.
  • Decoding processing section 206 performs a decoding process on data input from retransmission combining section 203.
  • the error detection unit 207 is a packet 10 decoded by the decoding processing unit 206 or a forced retransmission packet 1
  • error detection and correction processing using the information in the CRC part 13 is performed. If there is no error, the ACK signal 41 is detected. If an uncorrectable error is detected, the NACK signal 42 is detected. Is output as the retransmission control signal 40 to the ACK buffer 205 and the control information generation unit 208.
  • the ACK buffer 205 holds the ACK signal 41 output from the error detection unit 207, and performs NAC
  • the above-described retransmission combining unit 203 refers to this ACK buffer 205, and this ACK buffer 205 If the ACK signal 41 is not stored, the previous reception process is considered to have failed, and the process of superimposing the data in the retransmission buffer 204 on the data arriving from the reception unit 202 is executed. If ACK signal 41 is stored in ACK buffer 205, the previous reception process is regarded as successful, and the process of superimposing data in retransmission buffer 204 on data arriving from reception unit 202 is suppressed.
  • Control information generation section 208 receives retransmission control signal 40 (ACK signal 41 or NACK signal 42) input from error detection section 207, SIR information 51 obtained from reception section 202, and various information relating to the communication state. Is transmitted to the transmission unit 209 as control information 50, and a process of responding to the transmission apparatus 100 that is the transmission source of the packet 10 or the forced retransmission packet 10R is performed.
  • retransmission control signal 40 ACK signal 41 or NACK signal 42
  • SIR information 51 obtained from reception section 202
  • various information relating to the communication state Is transmitted to the transmission unit 209 as control information 50, and a process of responding to the transmission apparatus 100 that is the transmission source of the packet 10 or the forced retransmission packet 10R is performed.
  • the SIR information 51 includes a value of SIR (Signal to Interference Ratio) measured in the wireless communication path between the transmitting device 100 and the receiving device 200, which is actually measured by the receiving unit 202.
  • SIR Signal to Interference Ratio
  • the transmission unit 209 performs processing for converting the control information 50 into electromagnetic waves and transmitting it from the transmission antenna 210.
  • the transmitting device 100 and the receiving device 200 are separately illustrated for the sake of convenience of explanation.
  • the transmitting device 100 and the receiving device 200 are connected to each of a plurality of information communication devices that perform information communication.
  • a pair of receiving devices 200 may be provided to perform bidirectional communication of the packet 10.
  • each information communication device can be configured to share components such as a transmission unit, a reception unit, and an antenna that are common to the transmission device 100 and the reception device 200. That is, both the transmitting device 100 and the receiving device 200 can constitute a part of the information communication device.
  • the transmission data 12 is stored in the transmission buffer 101, and the transmission data 12 in the transmission buffer 101 is configured into a packet 10 triggered by the new data transmission request signal 31 from the retransmission control unit 104. Transmission is performed via the multiplexing unit 106, the transmission unit 107, and the transmission antenna 10 8.
  • the transmission buffer 101 transmits the transmission data 12 to the retransmission buffer 102 upon completion of the transmission. And the transmission notification signal 32 is input to the retransmission control unit 104.
  • the retransmission control unit 104 does not wait for the RTT to elapse, and immediately receives the retransmission request signal 33 regardless of the input of the retransmission control signal 40 from the control signal decoding unit 111.
  • the radio resource management unit 103 stores the transmission power of the first packet 10 in the retransmission buffer 102 after the time interval T ( ⁇ RTT), which is controlled by the waiting function unit 105, if the radio resource is free.
  • the forced retransmission packet 10R constructed using the same transmission data 12 is transmitted via the multiplexing unit 106, the transmission unit 107, and the transmission antenna 108.
  • the transmission data 12 of the forced retransmission packet 10R, the retransmission sequence number l lb, the address information of the control information 11a, and the like are the same as the values of the original packet 10.
  • the transmission data 12 arriving from the transmitting device 100 via the propagation path reaches the receiving antenna 201 (Rx), receives the receiving unit 202, the retransmission combining unit 203, the decoding processing unit 206, and the error detection
  • the error detection unit 207 performs decoding processing and error determination processing of the received signal through the unit 207 and no error is detected
  • the transmission source is transmitted via the control information generation unit 208, the transmission unit 209, and the transmission antenna 210 (Tx).
  • the ACK signal 41 is returned to the transmitting device 100 and stored in the ACK buffer 205.
  • an error is detected by the error detection unit 207, an error is returned at the same time when the NACK signal 42 is returned to the transmission device 100 of the transmission source via the control information generation unit 208, the transmission unit 209, and the transmission antenna 210.
  • the received signal of the generated packet is stored in the retransmission buffer 204 to prepare for a subsequent retransmission synthesis process.
  • the receiving device 200 when the ACK signal 41 is detected in the first transmitted data (packet 10), this is stored in the ACK buffer 205 and the forced retransmitted forced Even if retransmitted packet 10R arrives, ACK signal 41 is returned to transmitting apparatus 100 without being demodulated.
  • the receiving device 200 sends back the control information 50 including the ACK signal 41 or the NACK signal 42 and the SIR information 51 to the transmitting device 100, and at the same time stores the received signal of the frame (packet) in which the error has occurred in the retransmission buffer 204 for retransmission. Prepare for synthesis.
  • ACK signal 41 or NAC K signal 42 decoded by control signal decoding section 111 is input to retransmission control section 104.
  • the retransmission control unit 104 receives an ACK signal as an input signal. If No. 41, new data transmission request signal 31 is output, and if NACK signal 42, retransmission request signal 33 is sent to retransmission buffer 102 via radio resource management section 103. If there is a free radio resource, a retransmission signal is transmitted from retransmission buffer 102.
  • this retransmission signal is received on the receiving device 200 side, it is combined with the signal stored in the retransmission buffer 204 in the previous reception, decoded by the decoding processing unit 206, and then erroneously detected by the error detection unit 207. Error correction is performed after correction. Thereafter, the same processing is repeated until no error is detected on the receiving side or the number of retransmissions reaches the maximum number of retransmissions.
  • step 303 While the control information 50 including the ACK signal 41 or the NACK signal 42 is not responded from the receiving device 200 side (step 303), the predetermined maximum number of retransmissions is not exceeded (step 303). 310), step 301, and step 302 are repeated, and if there is a response within RTT, it is determined whether there is an error in the response information 50 (step 304).
  • Step 306 determines whether an error is detected in the control information 50. If an error is detected in the control information 50, whether or not there is a forced retransmission corresponding to the control information 50 (step 306), whether or not the control information 50 has reached within T (study) (Step 307), whether there is an error in the control information 50 corresponding to the forced retransmission packet 10R (Step 308), and whether the control information 50 is the ACK signal 41 or the NACK signal 42 is determined (Step 309).
  • step 306 determines whether the control information 50 is the ACK signal 41 in step 309 or not reach within T in step 307 or the control information 50 corresponding to the forced retransmission packet 10R is obtained in step 308. If there is an error, or if the control information 50 is the NACK signal 42 in step 309, the process returns to step 301. [0078] Further, if there is a forced retransmission in step 306, and if control information 50 has arrived within T in step 307, and control corresponding to the forced retransmission packet 10R in step 308 If there is an error in the information 50, and if the control information 50 is the ACK signal 41 in step 309, the transmission processing of the packet 10 is terminated.
  • step 304 it is further determined whether the returned control information 50 is the ACK signal 41 or the NACK signal 42 (step 305).
  • the process branches to the above-described step 306, and the determination processing of the above-described step 306 to step 309 is performed.
  • step 305 If it is determined in step 305 that the signal is an ACK signal 41, the transmission process for the packet 10 is terminated.
  • the processing of the receiving apparatus 200 is as shown in the flowchart of FIG. That is, first, it is determined whether the control information 50 included in the transmission frame control information 11 of the received packet 10 is correctly received (step 311). If the control information 50 is invalid, the NACK signal 42 is transmitted to the transmitting device 100. Ends in response to the other side.
  • the retransmission sequence number l ib is further referred to to determine whether or not the new packet 10 is present (step 312). If the packet is 10, the decoding processing unit 206 and the error detection unit 207 execute decoding processing and error detection processing (step 313), determine whether there is an error (step 314), and if there is no error, Then, the ACK signal 41 is responded to the transmitting device 100 side, and the ACK signal 41 is stored in the ACK buffer 205 (step 315), and the process is terminated.
  • step 314 If an error is detected in step 314 described above, packet 10 is stored in retransmission buffer 204 (step 318), NACK signal 42 is returned to transmitting apparatus 100 (step 319), and the process ends. .
  • step 312 If it is determined in step 312 that the packet is not a new packet 10, that is, a forced retransmission packet 10 R, the reception of the preceding packet 10 with reference to the ACK buffer 205 has failed (ie, the NACK signal 42 (Step 316), and if it is unsuccessful, execute processing of retransmission data (forced retransmission packet 10 R) using the data in retransmission buffer 204 (Step 317). Step 314 and subsequent steps are executed. [0084] If the reception is successful in step 316! /, (Not the NACK signal 42), the ACK signal 41 is responded to the transmitting apparatus 100 (step 315) and the process ends.
  • time interval T ( ⁇ RTT) If the first packet 10 becomes an error by transmitting the forced retransmission packet 10R having the same contents as the packet 10 at a timing delayed by a certain amount (Fig. 3), both the packet 10 and the forced retransmission packet 10R are considered errors. ( Figure 4), the first bucket 10 is successfully received by the receiver 200.
  • the presence or absence of an error in packet 10 is stored in ACK buffer 205, and if the first packet 10 is successfully received, the combined processing of subsequent forced retransmission packet 10R is suppressed. As a result, the power consumption in receiving the packet 10 does not increase (Figs. 5 and 6).
  • the wired communication network 20 that performs TCP / IP communication, if it is considered that a packet loss has occurred due to a retransmission delay of the packet 10 in the wireless communication system 90 connected to the wired communication network 20, the packet loss Is determined to be caused by congestion in the wireless communication system 90, and a control operation is performed to significantly limit the amount of data inflow from the wireless communication system 90 to the wired communication network 20. Therefore, wireless communication via the wired communication network 20 is performed. A throughput drop between systems 90 occurs.
  • the forced retransmission bucket 10R is forcibly retransmitted within T ( ⁇ RTT) following the packet 10, so that the wired communication network 20 The probability of being considered as a packet loss is reduced, and the communication between the wireless communication systems 90 via the wired communication network 20 is reduced. Luput will not drop.
  • FIG. 13 is a block diagram showing an example of the configuration of the transmission apparatus according to Embodiment 2 of the present invention.
  • a prediction unit 121 is added to the transmission apparatus 100, and the configuration of the reception apparatus 200 is the same as that of the first embodiment.
  • the transmission notification signal 32 from the transmission buffer 101 is input to the prediction unit 121, and the retransmission request signal 33 a is input from the prediction unit 121 to the retransmission control unit 104.
  • control information 50 is input from the control signal decoding unit 111 to the prediction unit 121.
  • the control information 50 includes various information sent from the receiving device 200 and indicating the communication state. Based on the control information 50, the prediction unit 121 predicts whether or not forced retransmission of the forced retransmission packet 10R is necessary, and controls the retransmission control unit 104 with the retransmission request signal 33a.
  • Transmitting apparatus 100 transmits packet 10 including transmission data 12 and simultaneously transmits transmission notification signal 32 to prediction unit 121.
  • the prediction unit 121 predicts the possibility that the packet 10 is requested to be retransmitted based on the control information 50 input from the control signal decoding unit 111.
  • the retransmission request signal 33a is sent to the retransmission control unit 104.
  • a retransmission request signal is sent to retransmission buffer 102 via waiting function section 105 and radio resource management section 103, and forced retransmission is executed.
  • FIG. 14 is a block diagram showing a modified example of the configuration of FIG. 13 described above.
  • the possibility of retransmission is predicted based on the frequency of occurrence of retransmission of past packets. That is, an ACKZNACK buffer 122 is provided between the prediction unit 121 and the control signal decoding unit 111.
  • This ACKZNACK buffer 122 stores the frequency of each of the ACK signal 41 and the NACK signal 42 decoded by the control signal decoding unit 111.
  • the prediction unit 121 refers to the ACKZNACK buffer 122 and acquires past retransmission occurrence frequency information. If the reproduction occurrence frequency is high, the prediction unit 121 sends a retransmission request signal 33a to the retransmission control unit 104. In addition, by transmitting the QoS information 32a of the transmission data 12 to the prediction unit 121 together with the transmission notification signal 32, if immediacy is required, the threshold (threshold TMthreshold, which is a criterion for retransmission possibility) may be lowered and retransmission may be performed It is also possible to increase. At this time, the processing of the prediction unit 121 Figure 15 shows the situation in a flowchart.
  • step 324 it is determined whether or not the packet (transmission data 12) is real-time data (step 324), and if it is real-time data, Then, the threshold Th, which is a criterion for execution of forced retransmission, is lowered by pi (step 326).
  • p> Th it is determined whether or not p> Th (step 325). If p> Th is satisfied, a retransmission request signal 33a is sent to the retransmission control unit 104 to execute forced retransmission (step 327).
  • step 321 the urgency level information regarding the transmission data 12 is read from the QoS information 32a. If the urgency level is high, the processing from step 322 to step 325 is omitted, Immediately, the process may branch to step 327 to execute the forced retransmission process.
  • FIG. 16 is a block diagram showing a configuration of still another modified example of transmitting apparatus 100 in the second embodiment.
  • the prediction unit 121 predicts retransmission possibility based on the SIR information 51 sent from the control signal decoding unit 111.
  • This SIR information 51 comes from the receiving apparatus 200 side along with the control information 50 together with the ACK signal 41 or the NACK signal 42.
  • FIG. 17 is a flowchart showing the processing performed by the prediction unit 121 at this time.
  • the prediction unit 121 acquires the value (SIR) of the SIR information 51 from the control signal decoding unit 111 (step 332).
  • the threshold Th which is a criterion for executing the forced retransmission, is increased by sl (step 335).
  • step 3334 it is determined whether or not SIR is Th (step 334). If SIR and Th are satisfied, a retransmission request signal 33a is sent to the retransmission control unit 104 to execute forced retransmission (step 336).
  • step 331 the urgency level information regarding the transmission data 12 is read from the QoS information 32a. If the urgency level is high, the processing from step 332 to step 334 is omitted. Immediately, the process may branch to step 336 to execute the forced retransmission process.
  • whether or not to perform forced retransmission is determined based on the SIR information 51 included in the control information 50 responded from the receiving apparatus 200 side.
  • the SIR is small and the state of the radio line is good, useless forced retransmission can be suppressed, the transmission power can be reduced, and appropriate forced retransmission according to the real time property of the transmission data 12 can be performed.
  • FIG. 18 is a block diagram showing a configuration example of a transmission apparatus according to Embodiment 3 of the present invention.
  • the main difference from the first embodiment is the processing of the waiting function unit 105, and the configuration of the receiving apparatus 200 is the same as that of the first embodiment.
  • SIR information 51 is input from control signal decoding section 111 to waiting function section 105. Then, in the waiting function unit 105, the time interval T until the forced retransmission is made variable according to the SIR of the past packet.
  • Waiting function section 105 adjusts time interval T until forced retransmission based on SIR information 51 sent from control signal decoding section 111.
  • T is shortened, and the retransmission delay is further reduced.
  • FIG. 19 is a flowchart showing the processing of the waiting function unit 105.
  • the channel condition is judged by evaluating the magnitude of the SIR using the threshold Th (threshold).
  • transmission notification signal 32 is input from retransmission buffer 101 to retransmission control section 104. Then, the retransmission control unit 104 inputs the retransmission request signal 33 to the waiting function unit 105 (Step 34 Do)
  • the waiting function unit 105 acquires the SIR information 51 reflecting the previous propagation path state from the control signal decoding unit 111 (step 342).
  • step 343 it is determined whether or not SIR is Th (step 343) . If SIR and Th are established, the time interval T is increased by a fixed amount ⁇ and forced retransmission is executed (step 345). If not, the time interval T is reduced by a fixed amount and forced retransmission is executed (step 344).
  • the forced retransmission packet 10R is transmitted at an optimal timing according to the propagation path condition indicated by the SIR information 51. Forced retransmission can be performed.
  • FIG. 20 is a block diagram showing a configuration of a modified example of transmitting apparatus 100 in the third embodiment.
  • an ACKZN ACK buffer 122 is provided between the waiting function unit 105 and the transmission frame control information 11.
  • this ACKZNACK buffer 122 the frequency of each of the ACK signal 41 and the NACK signal 42 decoded by the control signal decoding unit 111 is stored.
  • the waiting function unit 105 acquires from the ACKZNACK buffer 122 information on the frequency of occurrence of the past NACK signal 42, that is, information on the frequency of occurrence of retransmission. If the frequency of retransmissions in the past is low, the time interval T until forced retransmission is shortened to further reduce the retransmission delay. Conversely, if the frequency of retransmissions is high, the time interval T is set longer to aim for a diversity effect. This situation is shown in the flowchart in Figure 21. Here, an example is shown in which the threshold Th (threshold) is used to determine the frequency of retransmission occurrence.
  • retransmission control section 104 inputs retransmission request signal 33 to wait function section 105 (step 35 Do).
  • the forced retransmission packet can be transmitted at the optimum timing according to the propagation path status indicated by the retransmission occurrence frequency.
  • FIG. 22 is a block diagram showing still another modified example of transmitting apparatus 100 according to the third embodiment.
  • the waiting function unit 105 receives the QoS information 32a related to the transmission data 12 from the retransmission buffer 102.
  • the waiting function unit 105 acquires the QoS information 32a of the transmission data 12 when the forced retransmission packet 10R is forcibly transmitted. If the transmission data 12 requires immediacy, the time interval T until forced retransmission is shortened to further reduce the retransmission delay. This is shown in the flowchart in Figure 23. Here, an example is shown in which it is determined whether the transmission data 12 is real-time data power based on the QoS information 32a.
  • retransmission control section 104 inputs retransmission request signal 33 to wait function section 105 (step 36).
  • the waiting function unit 105 determines whether or not the transmission data 12 in the transmission buffer 101 is real-time data based on the QoS information 32a input from the transmission buffer 101 (step 362). If the transmission data 12 is real-time data, the time interval T is reduced by a certain amount (step 364), and forced retransmission is executed, and if it is not real-time data, the time interval T is reduced by a certain amount ⁇ and forced. Retransmission is executed (step 363).
  • T variable By making T variable according to the propagation path status, the frequency of occurrence of retransmission, etc., it is possible to achieve both the acquisition of time diversity effects and the reduction of processing delay.

Abstract

 送信側でパケットを送信した後、受信側からのACK/NACKの応答を待つ所定の確認応答待ち時間RTTの経過を待たずに、かつ当該パケットに対応した受信側からのACK/NACKの応答に関係なく、パケットの送信後、時間間隔T(<RTT)をおいて、パケットと同じ強制再送パケットを強制的に受信側に再送する。これにより、パケットにエラーが発生した場合の再送遅延時間が、従来のARQにおける2×RTTからRTT+Tに、RTT-Tだけ短縮される。

Description

明 細 書
送信装置、受信装置、情報通信方法
技術分野
[0001] 本発明は、送信装置、受信装置、情報通信方法に関し、特に、無線通信システム を構成する送信装置および受信装置における再送制御技術等に適用して有効な技 術に関する。
背景技術
[0002] 携帯電話等に代表される移動通信の分野では、音声以外の大容量データ、高精 細画像データの授受等のサービスを実現すベぐ高速大容量通信の実現への要求 が高まっている。
[0003] 高速大容量通信を念頭においた現在の無線通信では、無線伝送区間の誤りを補 償する技術がスループットを改善するために必須となっている。そのための重要な誤 り補償技術として、自動再送制御方式 (ARQ : Automatic Repeat reQuest)がある。図 1は、従来の再送制御方式である ARQの作用を示す概念図である。この ARQでは、 送信パケットに付加した CRC (Cyclic Redundancy Check code)等の誤り検出符号を 用いて、パケット毎に誤り検出を行い、受信したパケットに誤りがなければ送信側に A CK信号を返し、次のパケットの送信を要求するが、誤りがあると判明した場合、 NAC K (Not - ACKno wledge)信号を返してそのパケットの再送を要求する方式である。
[0004] この ARQの一種に HARQ (Hybrid— ARQ)がある。ここでは HARQの中でも、非 特許文献 1で言及されている、パケット合成を用いた HARQを例に取り説明する。以 下このパラグラフでは、 HARQとはパケット合成を用いた HARQを指すものとする。 図 2は、この HARQ方式の原理を示す概念図である。 HARQでは誤り訂正を行った 後、送信フレームの最後尾に付加した CRC等を用いてフレーム毎に誤り検出を行う 。誤りが検出されれば、送信側に NACK信号を返し、そのフレーム全体の再送を要 求する。このとき受信側は誤りの検出されたフレームの受信信号をバッファに入れる。 HARQでは再送されたフレームの受信結果と初回に送信されたフレームの受信信 号を合成する。これにより、初回フレームの軟判定情報を利用し、受信特性をさら〖こ 改善することが可能となる。
[0005] HARQをはじめとする従来の再送制御方式では、再送を RTT (Round Trip Ti me)と呼ばれる確認応答待ち時間を用いて制御している。この RTTは、送信側から 受信側にパケットが到着するまでの時間と、受信側で受信したパケットの成否を確認 する時間と、確認結果を示す ACKZNACKが受信側から送信側に到着するまでの 時間の和であり、所定の既定値が用いられる。送信側はデータを送信後、既定の RT T以内に受信側から ACK信号が到達すれば、最初のデータの送信から、予め定め られた RTTの経過後に新規データを送信し、 NACK信号の場合は RTT後に再送 する。 RTT以内に ACKまたは NACKが送信側に届かなければ、送信側は受信側 に再送する。
[0006] 次世代の移動通信では (課題 1)有線ネットワークとのシームレスな接続、(課題 2) 伝送速度 lGbpsにも達する大容量かつ高速な無線伝送、の二点の実現が期待され ている。(課題 1)を実現する上では、広く有線網の伝送プロトコルとして用いられる T CP (Transmission Control Protocol)の無線網への実装が必須である。 TCPは基本 的にはネットワーク内部の輻輳を観測し、輻輳がなければ徐々に伝送レートを上げる 。輻輳が生じた場合はレートを最低まで落とす。この輻輳の発生はパケットロスにより 判別する。
[0007] ここで TCPを無線系に用いる上で次のような問題がある。 TCPは予め設定したタイ ムアウト時間内に受信側力 送信側に ACKが返って来ない場合パケットロスが起こ つたと判断するが、無線環境では有線環境に比べて遅延時間が長いため、 TCPのタ ィムアウト時間を越え、パケットロスが発生したと判定される確率が高くなる。この結果 、 TCPはパケットロスを輻輳によるものとみなし、ネットワークへのデータ流入量を大 幅に制限するため、無線環境に適用した場合ではシステムのスループット低下が生 じゃすい。これは (課題 2)の大容量高速伝送を行う上で重要な課題となる。スループ ット低下を改善するためには TCPのプロトコル改良、および無線環境における遅延 時間の低減が考えられる力 ここでは後者を取り上げる。
[0008] 無線環境の処理遅延の一因として考えられるのが、再送処理時の遅延である。 R TTを用いて再送を制御する従来方式では RTTの値によっては新たなデータの送信 z再送までに時間がかかり、さらに再送を繰り返すと再送遅延が増加し、システムの スループット低下を引き起こす。
[0009] なお、従来技術として特許文献 1には、フ ージングゃ干渉等の回線品質の異なる 複数の無線エリア毎に、基地局から移動局への呼び出し信号の再送回数を異ならせ ることで、一斉呼び出しチャネルのトラヒックを適切に保ちつつ、十分な呼接続率を確 保しょうとする技術が開示されているが、通信データ自体の再送制御における上述の 技術的課題の認識は見られな 、。
非特干文献 1 : D. し hase, 'Code し ombining -- A Maximum-Likelihood Decoding Appr oach for Combining an Arbitrary Number of Noisy Packets," IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.COM— 33, N0.5, MAY 1985.
特許文献 1 :特開平 10— 13331号公報
発明の開示
[0010] 本発明の目的は、通信データの再送制御における再送遅延時間を短縮することが 可能な通信技術を提供することにある。
本発明の他の目的は、伝送遅延に起因する通信レートのペナルティが比較的厳し V、有線通信網に接続される無線通信網にお 、て、通信レートの低下を生じることなく
、通信データの再送制御による無線通信を実現することが可能な通信技術を提供す ることにめる。
[0011] 本発明の第 1の観点は、通信データを受信装置に送信する送信手段と、
前記通信データに対応して前記受信装置から応答される否定応答信号または確 認応答信号を受信する受信手段と、
前記受信装置からの前記否定応答信号の到達または所定の確認応答待ち時間の 経過を待たずに、前記受信装置に対する前記通信データの再送信を実行する再送 制御手段と、
前記通信データの送信から前記再送信までの時間間隔を制御する再送待ち時間 制御手段と、
を含む送信装置を提供する。
[0012] 本発明の第 2の観点は、第 1の観点記載の送信装置において、 さらに、無線リソースの割り当て制御手段を備え、
前記無線リソースに空きがある場合に、前記通信データの前記再送信を実行する 送信装置を提供する。
[0013] 本発明の第 3の観点は、第 1の観点記載の送信装置において、
前記再送制御手段は、前記通信データの属性に基づいて、前記再送信の実行の 有無または、前記再送信の複数回連続した実行を制御する送信装置を提供する。
[0014] 本発明の第 4の観点は、第 1の観点記載の送信装置において、
さらに、前記受信装置との間における通信状況に応じて前記通信データの再送の 発生を予測し、予測結果に基づ!、て前記再送制御手段における前記再送信の実行 の有無を制御する予測手段を含む送信装置を提供する。
[0015] 本発明の第 5の観点は、第 1の観点記載の送信装置において、
さらに、過去の前記通信データの再送処理の発生頻度に基づいて、前記通信デー タの再送の発生を予測し、予測結果に基づ 、て前記再送制御手段における前記再 送信の実行の有無を制御する予測手段を含む送信装置を提供する。
[0016] 本発明の第 6の観点は、第 1の観点記載の送信装置において、
さらに、前記受信装置との間における情報伝送路の状態に基づいて、前記通信デ ータの再送の発生を予測し、予測結果に基づいて前記再送制御手段における前記 再送信の実行の有無を制御する予測手段を含む送信装置を提供する。
[0017] 本発明の第 7の観点は、第 1の観点記載の送信装置において、
前記再送待ち時間制御手段は、前記通信データの属性、前記受信装置との間に おける情報伝送路の状態、過去の前記通信データの再送頻度、の少なくとも一つに 基づいて前記時間間隔の長さを制御する送信装置を提供する。
[0018] 本発明の第 8の観点は、送信装置から到来する通信データを受信する受信手段と 前記通信データの受信の成否に基づ!、て、前記送信装置に当該通信データに関 する確認応答信号または否定応答信号を送信する送信手段と、
前記確認応答信号の送信結果を記憶する記憶手段と、
前記送信装置から再送された前記通信データの受信時に、前記記憶手段に前記 確認応答信号が格納されて ヽる場合には、当該通信データの復号処理は行わずに 前記確認応答信号を前記送信装置に応答する制御情報生成手段と、
を含む受信装置を提供する。
[0019] 本発明の第 9の観点は、第 8の観点記載の受信装置において、
さらに、誤りが検出された前記通信データを保持する再送バッファと、
前記記憶手段に前記確認応答信号が格納されて ヽな ヽ場合には、前記再送バッ ファに保持された前記通信データと、再送された前記通信データとに基づいて当該 通信データの復号処理を実行する再送合成手段と、
を含む受信装置を提供する。
[0020] 本発明の第 10の観点は、受信側に向けて通信データを送信する第 1ステップと、 前記受信側から到来する前記通信データの否定応答信号の到達または所定の確 認応答待ち時間の経過を待たずに、前記受信側に向けて前記通信データを再送信 する第 2ステップと、
を送信側にお ヽて実行する情報通信方法を提供する。
[0021] 本発明の第 11の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記送信側と前記受信側との間における無線リソースに空 きがある場合に、前記通信データを送信する情報通信方法を提供する。
[0022] 本発明の第 12の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記第 1ステップで送信した前記通信データの前記受信側 からの再送要求の発生の可能性を予測し、前記可能性が高ぐかつ前記送信側と前 記受信側との間における無線リソースに空きがある場合に、前記通信データを送信 する情報通信方法を提供する。
[0023] 本発明の第 13の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、過去の前記通信データの再送処理の発生頻度に基づ!/、て 、前記第 1ステップで送信した前記通信データの前記受信側力 の再送要求の発生 の可能性を予測し、前記可能性が高ぐかつ前記送信側と前記受信側との間におけ る無線リソースに空きがある場合に、前記通信データを送信する情報通信方法を提 供する。 [0024] 本発明の第 14の観点は、第 10の観点記載の情報通信方法において、 前記第 2ステップでは、前記送信側と前記受信側との間における情報伝送路の品 質に基づ 、て、前記第 1ステップで送信した前記通信データの前記受信側からの再 送要求の発生の可能性を予測し、前記可能性が高ぐかつ前記送信側と前記受信 側との間における無線リソースに空きがある場合に、前記通信データを送信する情報 通信方法を提供する。
[0025] 本発明の第 15の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記通信データの即時性に基づいて、前記通信データを 再び送信するか否かを決定する情報通信方法を提供する。
[0026] 本発明の第 16の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記通信データの即時性に基づいて、前記通信データを 複数回送信する情報通信方法を提供する。
[0027] 本発明の第 17の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記送信側と前記受信側との間における情報伝送路の品 質に基づいて、前記第 1ステップでの前記通信データの送信から、当該第 2ステップ で前記通信データを再び送信するまでの再送時間間隔を変化させる情報通信方法 を提供する。
[0028] 本発明の第 18の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、過去の前記通信データの再送処理の発生頻度に基づ!/、て 、前記第 1ステップでの前記通信データの送信から、当該第 2ステップで前記通信デ ータを再び送信するまでの再送時間間隔を変化させる情報通信方法を提供する。
[0029] 本発明の第 19の観点は、第 10の観点記載の情報通信方法において、
前記第 2ステップでは、前記通信データの即時性に応じて、前記第 1ステップでの 前記通信データの送信から、当該第 2ステップで前記通信データを再び送信するま での再送時間間隔を変化させる情報通信方法を提供する。
[0030] 本発明の第 20の観点は、第 10の観点記載の情報通信方法において、
前記受信側では、
送信側力 到来する通信データを受信し、前記通信データの受信に成功した場合 は確認応答信号を前記送信側に応答し、前記通信データの受信に失敗した場合は 否定応答信号を前記送信側に応答するとともに応答結果を記憶する第 1ステップと、 前記送信側から再送信された前記通信データを受信したとき、前記第 1ステップで 前記確認応答信号が応答結果として記憶されて 、た場合には当該通信データの復 号処理を抑止するとともに、確認応答信号を前記送信側に応答する第 2ステップと、 を実行する情報通信方法を提供する。
図面の簡単な説明
[図 1]従来の再送制御方式である ARQの作用を示す概念図である。
[図 2]従来の HARQ方式の原理を示す概念図である。
[図 3]本発明の各実施の形態の情報通信方法に共通する原理を説明する概念図で ある。
[図 4]本発明の各実施の形態の情報通信方法に共通する原理を説明する概念図で ある。
[図 5]本発明の各実施の形態の情報通信方法に共通する原理を説明する概念図で ある。
[図 6]本発明の各実施の形態の情報通信方法に共通する原理を説明する概念図で ある。
[図 7]本発明の各実施の形態の情報通信方法に共通する送信側の作用の一例を示 すフローチャートである。
[図 8]本発明の各実施の形態の情報通信方法に共通する受信側の作用の一例を示 すフローチャートである。
[図 9]本発明の一実施の形態である情報通信におけるパケットの構成の一例を示す 概念図である。
[図 10]本発明の一実施の形態である通信方法が適用される通信システムの構成の 一例を示す概念図である。
[図 11]本発明の一実施の形態である情報通信方法を実施する送信装置の構成の一 例を示すブロック図である。
[図 12]本発明の一実施の形態である情報通信方法を実施する受信装置の構成の一 例を示すブロック図である。
[図 13]本発明の他の実施の形態の情報通信方法を実施する送信装置の構成の一 例を示すブロック図である。
[図 14]図 13に例示される送信装置の変形例を示すブロック図である。
[図 15]図 14に例示される送信装置の変形例の作用を示すフローチャートである。
[図 16]本発明の他の実施の形態における送信装置の他の変形例の構成を示すプロ ック図である。
[図 17]図 16に例示される送信装置の変形例の作用を示すフローチャートである。
[図 18]本発明のさらに他の実施の形態の送信装置の構成例を示すブロック図である
[図 19]図 18に例示される送信装置の変形例の作用を示すフローチャートである。
[図 20]本発明のさらに他の実施の形態の送信装置の変形例の構成を示すブロック図 である。
[図 21]図 20に例示される送信装置の変形例の作用を示すフローチャートである。
[図 22]本発明のさらに他の実施の形態における送信装置の変形例を示すブロック図 である。
[図 23]図 22に例示される送信装置の変形例の作用を示すフローチャートである。 発明を実施するための最良の形態
以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
まず、以下の各本実施の形態の通信方法および送信装置、受信装置に共通する 原理を図 3を用いて説明する。従来の ARQ方式では、上述の図 1に示すように、新 規パケットを送信して確認応答待ち時間 (RTT)が経過した後に再送を行っていたの に対し、本発明の実施の形態では時間間隔 T(Tく RTT)だけ待って、最初のバケツ ト 10と通信データ部分が同じ強制再送パケット 10Rを強制的に再送する (これを本明 細書では「強制再送」と呼ぶ)ものである。時間間隔 Τは伝搬路情報、過去数パケット の再送頻度、送信パケットの QoS (Quality of Service)の指標の一つである即時性、 等に基づき、可変とする。これにより強制再送したパケットが時間ダイバーシチをより 効果的に利用し、受信側で正しく復号される可能性を高めている。 [0033] ここからは実際に強制再送を行う場合の再送処理方法について説明する。なお受 信側から送信側に ACKZNACKを返す時点で CRC (Cyclic Redundancy check Co des)を付カ卩しており、送信側で CRCがエラーとなれば NACKとして扱うものとしてい る。
[0034] まず、最初に送ったパケットが受信側で誤って復号される場合を考える。送信側は 新規のパケット 10の送信から時間間隔 Tの経過後に強制再送を行っているため、受 信側には新規のパケット 10の到着から T後に強制再送パケット 10Rが届く。受信側 は強制再送パケット 10Rの復号を行い、その結果に従って、受信成功の場合には A CK (確認応答信号)を、受信失敗の場合には NACK (否定応答信号)を送信側に返 す。送信側は新規のパケット 10の NACKが届いてもすぐには再送を行わず、強制再 送パケット 10Rの ACK、 NACKを待つ。強制再送パケット 10Rが正しく復号された 場合の様子を図 3に示す。上述の図 1の従来方式であれば次の新規データを送信す るまでに最低 2 XRTT力かるところを本方式では RTT+Tの時間で実現する。よって RTT—T以上の処理遅延の削減が可能となる。逆に強制再送パケット 10Rが誤って 復号された場合の様子を図 4に示す。この場合は強制再送パケット 10Rの NACKが 到達した時点で再送を行う。以下は同様の処理を繰り返す。
[0035] 次に最初に送ったパケットが受信側で正しく復号される場合を考える。受信側には 新規のパケット 10の到着から Tの経過後に強制再送パケット 10Rが届く。受信側で は新規のパケット 10が正しく復号されているため、強制再送パケット 10Rの復号を行 うまでもなぐ強制再送パケット 10Rが到着すれば ACKを送信側に返す。
[0036] 送信側に新規のパケット 10の ACKが正しく伝わる場合を図 5に示す。この場合は 最初の ACKが届 、た時点で新規のパケット 10を送信し、強制再送パケット 10Rの A CKが到達しても何も行わな 、。
[0037] また送信側に新規のパケット 10の ACKが誤って伝わる場合を図 6に示す。この場 合は強制再送パケット 10Rの ACKが到達するのを待って新規のパケット 10を送信 する。この場合においても RTT—T以上の処理遅延の削減が可能である。
[0038] 上記の 4通りの場合を送信側、受信側毎にフローチャートにまとめると図 7、図 8のよ うになる。この図 7および図 8では制御情報が誤った場合も含めて説明している。 また、図 8中に示されている、新規のパケット 10と強制再送パケット 10Rの判別法の 具体例を以下に説明する。すなわちパケットに SN (Sequential Number)を付カ卩して送 信する。その際、送信側で新規のパケット 10を送信する場合は SNを更新し、再送の 強制再送パケット 10Rの場合は SNを維持する。この SNを受信側でチェックすること により、新規のパケット 10と強制再送パケット 10Rを見分けることが可能となる。
[0039] 図 9に例示されるパケット 10 (強制再送パケット 10R)は、ヘッダ部としての送信フレ ーム制御情報 11、送信すべき正味のデータである送信データ 12、送信フレーム制 御情報 11および送信データ 12のエラー訂正情報を含む CRC部 13を含んで 、る。
[0040] 送信フレーム制御情報 11は、当該パケット 10 (強制再送パケット 10R)の宛先や送 信元のアドレスや、回線品質等の情報力 なる制御情報 11aと、上述の SN (Sequenti al Number)に相当する再送シーケンス番号 l ibを含んでいる。ノ ケット 10と、当該パ ケット 10に対応する強制再送パケット 10Rでは、再送シーケンス番号 l ibおよび送 信データ 12は互 、に等し 、。
[0041] 以上の説明では時間間隔 Tだけ待った後に強制再送していた力 送信の際に無線 リソースの管理を行っているシステムに用いる場合、時間間隔 Tを待たなくてもリソー スに空きがあれば強制再送をすることも可能である。
[0042] さらにこのシステムにおいて無駄な再送を減らし、送信電力の浪費を防ぐために、 パケットが再送を必要とする可能性を予測した上で強制再送を行うことも考えられる。 再送可能性の予測は、過去数パケットの再送頻度や伝搬路情報などに基づ 、て行う
[0043] この予測を行った上で強制再送を行うシステムにお 、てリアルタイムデータを送信 する場合、データの QoS (Quality of Service)の指標の一つである即時性も加味して 強制再送を行うかどうか判断することも考えられる。即時性を要するデータの場合、 再送可能性の判断基準の設定を変更し、強制再送を行う可能性を高める。こうするこ とで多少の無駄な再送を行う可能性はあるものの強制再送される確率を高め、再送 処理遅延の高 、低減効果が可能となる。
[0044] 同様に QoSを考慮した方法として、 QoSの緊急度が高い場合、予測を行わずに所 定の回数だけ強制再送を行う方法も考えられる。こうすることで送信電力の消費は大 きくなるが、予測に使う時間さえも節約し、さらに処理遅延を低減することが可能であ る。
[0045] 以上の方式はいずれも従来方式と比較して単位時間当たりの再送回数が増加する ため、最大再送回数が設定されているシステムでは、より早く最大再送回数に達する ので、その時点で無用な遅延を避けることができる。また HARQ等の方式と併用する と、再送合成を用いることで受信側においてより早くエラーなしで受信できるようにな る。このため再送タイムアウト時間等が設定されているシステムでは、制限時間内に 正しく復号される可能性が高まる。
[0046] [実施の形態 1]
図 10は、本実施の形態の通信方法が適用される通信システムの構成の一例を示 す概念図、図 11は、本実施の形態の情報通信方法を実施する送信装置の構成の 一例を示すブロック図、図 12は、本実施の形態の情報通信方法を実施する受信装 置の構成の一例を示すブロック図である。
[0047] 図 10に例示されるように、本実施の形態の送信装置 100および受信装置 200は、 再送制御方式に HARQを用いた無線通信システム 90を構成して互いに無線通信を 行うとともに、情報通信を行う有線通信網 20に接続されている。有線通信網 20およ び無線通信システム 90は、たとえば、 TCP/IP等の通信プロトコルを用いることでシ ームレスに接続されている。
[0048] 図 11に例示されるように、本実施の形態の送信装置 100は、送信バッファ 101、再 送バッファ 102、無線リソース管理部 103、再送制御部 104、待ち機能部 105、多重 化部 106、送信部 107、送信アンテナ 108 (Tx)、受信アンテナ 109 (Rx)、受信部 1 10、制御信号復号部 111を含んでいる。
[0049] 送信バッファ 101は送信データ 12を一時的に保持するバッファである。再送バッフ ァ 102は、強制再送に備えて、送信済みの送信データ 12を保持するバッファである。 無線リソース管理部 103は、送信バッファ 101の送信データ 12または再送バッファ 102を送信する場合に使用する無線リソース (周波数、符号、タイムスロットのいずれ か一つ、またはこれらの組み合わせ)を割り当てる処理を行う。
[0050] 多重化部 106は、送信データ 12の前後に上述の図 9に例示されるような送信フレ ーム制御情報 11、 CRC部 13を付加して、パケット 10や強制再送パケット 10Rを構築 する処理を行う。
[0051] 送信部 107は、パケット 10や強制再送パケット 10Rのデータを電磁波に変換して送 信アンテナ 108から放射する処理を行う。
受信部 110は、受信アンテナ 109に受信された電磁波をデジタルデータに変換し、 制御情報 50を抽出して制御信号復号部 111に入力する処理を行う。
[0052] 制御信号復号部 111は、受信部 110から入力された制御情報 50から、再送制御 信号 40を復号して、後述の再送制御部 104に入力する。再送制御信号 40は、 ACK 信号 41または NACK信号 42からなる。 ACK信号 41は受信側(後述の受信装置 20 0)でパケット 10の受信に成功した場合に当該受信側から応答される確認応答信号 である。 NACK信号 42は、受信側(後述の受信装置 200)でパケット 10の受信に失 敗した場合に当該受信側力 応答される否定応答信号である。
[0053] 再送制御部 104は、再送バッファ 102に格納された送信データ 12をパケット 10とし て出力する契機を与える新規データ送信要求信号 31を当該再送バッファ 102に出 力する。また、この送信データ 12の送信を契機として送信バッファ 101から送信通知 信号 32が再送制御部 104に入力される。
[0054] 再送制御部 104は、送信フレーム制御情報 34を多重化部 106に入力する。この送 信フレーム制御情報 34は、上述の図 9に例示されるパケット 10や強制再送パケット 1 ORの構築に際して用いられる送信フレーム制御情報 11を含んでいる。
[0055] 再送制御部 104は、再送要求信号 33を無線リソース管理部 103に出力して再送処 理を行わせる。
本実施の形態の場合、再送制御部 104と無線リソース管理部 103の間には、待ち 機能部 105が設けられている。
[0056] この待ち機能部 105は、再送制御部 104から入力される再送要求信号 33を上述の 時間間隔 Tだけ遅延させて無線リソース管理部 103に入力する動作を行う。
ここで、従来では、上述の図 1に示したように、再送制御部 104は、送信通知信号 3 2から、上述の RTTだけ受信側からの再送制御信号 40の到来を待ち、当該 RTTが 経過するか、または当該の間に NACK信号 42が到来した場合に、再送要求信号 33 を無線リソース管理部 103に入力してパケット 10の再送処理を実行していた。
[0057] これに対して、本実施の形態の送信装置 100では、再送制御部 104は、送信通知 信号 32の検出後、受信側からの再送制御信号 40 (ACK信号 41、 NACK信号 42) の到来の有無に関係なぐ上述の図 3、図 4、図 5、図 6に例示されるように、再送要 求信号 33を待ち機能部 105を経由して無線リソース管理部 103に入力することで、 強制再送パケット 10Rを受信側に送信する。
[0058] すなわち、本実施の形態の場合には、新規なパケット 10の送信後、 RTTの経過前 に、しかも、当該パケット 10に対応した受信側からの ACK信号 41や NACK信号 42 の受信に関係なぐ待ち機能部 105で制御される上述の時間間隔 Tの遅延後に、強 制再送パケット 10Rが強制的に送信される。
[0059] 一方、図 12に例示されるように、本実施の形態の受信装置 200は、受信アンテナ 2
01 (Rx)、受信部 202、再送合成部 203、再送バッファ 204、 ACKバッファ 205、復 号処理部 206、誤り検出部 207、制御情報生成部 208、送信部 209、送信アンテナ
210 (Tx)を含んでいる。
[0060] 受信アンテナ 201は、送信装置 100から受信した電磁波をデジタルデータに変換 して再送合成部 203、制御情報生成部 208に入力する。
再送合成部 203は、受信部 202から到来するデータを、必要に応じて再送バッファ
204に格納する処理、および、受信部 202から到来するデータに、再送バッファ 204 に保持されて ヽるデータを重畳する処理を行う。
[0061] 復号処理部 206は、再送合成部 203から入力されるデータの復号処理を行う。
誤り検出部 207は、復号処理部 206で復号されたパケット 10や強制再送パケット 1
OR等のデータにつ 、て、 CRC部 13の情報を利用したエラー検出や訂正処理を行 い、エラー無しの場合には ACK信号 41を、訂正できないエラーが検出された場合に は NACK信号 42を、再送制御信号 40として ACKバッファ 205および制御情報生成 部 208に出力する処理を行う。
[0062] ACKバッファ 205は、誤り検出部 207から出力される ACK信号 41を保持し、 NAC
K信号 42が到来した場合には、以前の ACK信号 41の保持状態をクリアする。
上述の再送合成部 203は、この ACKバッファ 205を参照し、この ACKバッファ 205 に ACK信号 41が格納されていない場合に、前回の受信処理が失敗したとみなして 、受信部 202から到来したデータに再送バッファ 204のデータを重畳する処理を実 行する。また、 ACKバッファ 205に ACK信号 41が格納されている場合には、前回の 受信処理が成功したとみなして、受信部 202から到来したデータに再送バッファ 204 のデータを重畳する処理を抑止する。
[0063] 制御情報生成部 208は、誤り検出部 207から入力された再送制御信号 40 (ACK 信号 41または NACK信号 42)および受信部 202から得られた SIR情報 51や通信状 態に関する様々な情報を、制御情報 50として送信部 209に渡して、パケット 10や強 制再送パケット 10Rの送信元の送信装置 100に応答する処理を行う。
[0064] なお、 SIR情報 51は、受信部 202で実測された、送信装置 100と当該受信装置 20 0との間の無線通信路における SIR (Signal to Interference Ratio)の値を含んでいる
[0065] 送信部 209は、制御情報 50を電磁波に変換して送信アンテナ 210から送信する処 理を行う。
なお、上述の図 11および図 12では、説明の便宜上、送信装置 100および受信装 置 200を別個に図示しているが、情報通信を行う複数の情報通信装置の各々に、送 信装置 100および受信装置 200の組を備え、パケット 10の双方向通信を行うようにし てもよい。その場合、個々の情報通信装置では、送信装置 100と受信装置 200に共 通する送信部、受信部、アンテナ等の構成要素を共用する構成とすることができる。 すなわち、送信装置 100および受信装置 200は、いずれも情報通信装置の一部を 構成することができる。
[0066] 以下、本実施の形態における送信装置 100および受信装置 200の作用の一例に ついて説明する。
まず、送信装置 100においては、送信データ 12を送信バッファ 101に格納し、再送 制御部 104からの新規データ送信要求信号 31を契機として、送信バッファ 101内の 送信データ 12をパケット 10に構成し、多重化部 106、送信部 107、送信アンテナ 10 8を経由して送信する。
[0067] 送信バッファ 101では、この送信の完了とともに、送信データ 12を再送バッファ 102 に格納するとともに、送信通知信号 32を再送制御部 104に入力する。
これを契機に、再送制御部 104は、 RTTの経過を待たずに、また、制御信号復号 部 111からの再送制御信号 40の入力に関係なぐ直ちに、再送要求信号 33を、待 ち機能部 105を介して無線リソース管理部 103に出力する。無線リソース管理部 103 は、無線リソースに空きがあれば、最初のパケット 10の送信力も待ち機能部 105で制 御される時間間隔 T ( < RTT)を経過した後に、再送バッファ 102に格納されて 、る 同じ送信データ 12を用いて構築された強制再送パケット 10Rを多重化部 106、送信 部 107および送信アンテナ 108を経由して送信する。この時、上述のように、強制再 送パケット 10Rの送信データ 12および再送シーケンス番号 l lb、制御情報 11aのァ ドレス情報等は元のパケット 10の値と同じである。
[0068] 受信装置 200の側では、伝搬路を経て送信装置 100から到来する送信データ 12 は受信アンテナ 201 (Rx)に到達し、受信部 202、再送合成部 203および復号処理 部 206、誤り検出部 207を経て受信信号の復号処理およびエラー判定処理を行い、 誤り検出部 207で誤りが検出されない場合は、制御情報生成部 208、送信部 209お よび送信アンテナ 210 (Tx)を介して送信元の送信装置 100に ACK信号 41を返す とともに、 ACKバッファ 205に記憶する。
[0069] 誤り検出部 207で誤りを検出した場合は、制御情報生成部 208、送信部 209およ び送信アンテナ 210を介して送信元の送信装置 100に NACK信号 42を返すと同時 に、誤りの発生したパケットの受信信号を再送バッファ 204に蓄え、後の再送合成処 理に備える。
[0070] すなわち、この受信装置 200の復調処理では、最初に送ったデータ (パケット 10) に ACK信号 41が検出された場合、これを ACKバッファ 205にて記憶しておき、強制 再送された強制再送パケット 10Rが届いても復調は行わずに ACK信号 41を送信装 置 100に返す。受信装置 200は ACK信号 41または NACK信号 42と SIR情報 51か らなる制御情報 50を送信装置 100に送り返すと同時に、誤りの発生したフレーム (パ ケット)の受信信号を再送バッファ 204に蓄え、再送合成処理に備える。
[0071] 送信装置 100では、制御信号復号部 111で復号された ACK信号 41または NAC K信号 42は再送制御部 104に入力される。再送制御部 104は入力信号が ACK信 号 41であれば新規データ送信要求信号 31を出力し、 NACK信号 42であれば再送 要求信号 33を無線リソース管理部 103を経由して再送バッファ 102に送る。無線リソ ースに空きがあれば、再送バッファ 102から再送信号が送出される。
[0072] この再送信号は受信装置 200の側で受信された後、前回の受信で再送バッファ 20 4に蓄えられた信号と合成され、復号処理部 206で復号した後、誤り検出部 207で誤 り訂正後に誤り検出を行う。以降は受信側で誤りが検出されなくなるか、再送回数が 最大再送回数に達するまで同様の処理を繰り返す。
[0073] また、送信装置 100における強制再送パケット 10Rの予め回数を決めておき、強制 再送パケット 10Rの強制再送時にその回数だけ連続して再送することも可能である。 上述の送信装置 100の処理を、上述の図 7のフローチャートを参照して説明する。
[0074] まず、送信データ 12を含む新規なパケット 10を受信装置 200に送信した後 (ステツ プ 301)、直ちに時間間隔 T(<RTT)をおいて、パケット 10と同じ送信データ 12およ び再送シーケンス番号 l ibを含む強制再送パケット 10Rを受信装置 200に送信する (ステップ 302)。
[0075] そして、 RTT以内に、 ACK信号 41または NACK信号 42等を含む制御情報 50が 受信装置 200の側から応答されない間は (ステップ 303)、既定の最大再送回数を超 過しない間(ステップ 310)、ステップ 301、ステップ 302を反復し、 RTT以内に応答 があった場合は、応答された制御情報 50のエラーの有無を判別する (ステップ 304)
[0076] そして、制御情報 50にエラーが検出された場合には、当該制御情報 50に対応す る強制再送の有無 (ステップ 306)、 T以内に当該制御情報 50が到達した力否か (ス テツプ 307)、強制再送パケット 10Rに対応した制御情報 50のエラーの有無 (ステツ プ 308)、当該制御情報 50が ACK信号 41か NACK信号 42かの判定 (ステップ 309 )を行う。
[0077] そして、ステップ 306で強制再送がない場合、または、ステップ 307で T以内に制御 情報 50の到達がな力つた場合、または、ステップ 308で強制再送パケット 10Rに対 応した制御情報 50にエラーがあった場合、またはステップ 309で制御情報 50が NA CK信号 42の場合には、ステップ 301に戻る。 [0078] また、ステップ 306で強制再送があった場合で、且つ、ステップ 307で T以内に制 御情報 50の到達があった場合で、且つ、ステップ 308で強制再送パケット 10Rに対 応した制御情報 50にエラーがな力つた場合、且つ、ステップ 309で制御情報 50が A CK信号 41の場合には、当該パケット 10の送信処理を終了する。
[0079] 一方、ステップ 304でエラーが検出されない場合には、さらに、応答された制御情 報 50が、 ACK信号 41または NACK信号 42のいずれであるかを判別する(ステップ 305)。そして、 NACK信号 42と判定された場合は、上述のステップ 306に分岐して 、上述のステップ 306〜ステップ 309の判定処理を行う。
[0080] また、ステップ 305で ACK信号 41と判定された場合には、当該パケット 10の送信 処理を終了する。
一方、受信装置 200の処理は、上述の図 8のフローチャートのようになる。すなわち 、まず、受信したパケット 10の送信フレーム制御情報 11に含まれる制御情報 50が正 しく受信された力判別し (ステップ 311)、不正な制御情報 50の場合には NACK信号 42を送信装置 100の側に応答して終了する。
[0081] ステップ 311で、制御情報 50が正しく受信された場合には、さらに、再送シーケン ス番号 l ibを参照して、新規のパケット 10が否かを判別し (ステップ 312)、新規のパ ケット 10である場合には、復号処理部 206および誤り検出部 207で復号処理および エラー検出処理を実行し (ステップ 313)、エラーの有無を判別して (ステップ 314)、 エラー無しの場合には、 ACK信号 41を送信装置 100の側に応答するとともに、 AC Kバッファ 205に ACK信号 41を記憶して(ステップ 315)、終了する。
[0082] 上述のステップ 314でエラーが検出された場合には、再送バッファ 204にパケット 1 0を保存し (ステップ 318)、 NACK信号 42を送信装置 100に応答して (ステップ 319 )、終了する。
[0083] 上述のステップ 312で、新規のパケット 10ではない、すなわち強制再送パケット 10 Rと判定された場合には、 ACKバッファ 205を参照して先行するパケット 10の受信が 失敗 (すなわち NACK信号 42であった)か否かを判別し (ステップ 316)、失敗であつ た場合には、再送バッファ 204のデータを併用した再送データ(強制再送パケット 10 R)の処理を実行して (ステップ 317)、ステップ 314以降を実行する。 [0084] ステップ 316で受信が成功して!/、た(NACK信号 42でなかった)場合には、 ACK 信号 41を送信装置 100に応答して (ステップ 315)終了する。
このように、本実施の形態では、送信装置 100において、 RTTの経過前に、受信装 置 200からの NACK信号 42の受信の有無に関係なぐパケット 10の送信後、時間 間隔 T(<RTT)だけ遅延したタイミングで当該パケット 10と同じ内容の強制再送パ ケット 10Rを送信することで、最初のパケット 10がエラーとなった場合(図 3)、パケット 10および強制再送パケット 10Rのいずれもエラーとなった場合(図 4)、最初のバケツ ト 10の受信装置 200での受信は成功した力 受信装置 200から送信装置 100に応 答された ACK信号 41がエラーとなった場合(図 6)、のいずれの場合においても、 R TT+Tの遅延時間にて再送を開始できるため、図 1の従来技術における 2 XRTTよ りも、再送開始までの遅延時間が RTT— Tだけ短縮され、送信データ 12の再送制御 における再送遅延時間を短縮することができる。
[0085] パケット 10の後に強制再送パケット 10Rを強制的に再送することで、最大再送回数 までの到達時間が短縮され、通信回線の状態不良に起因する送信打ち切りの判定 および対策を早期開始することができる。
[0086] また、受信装置 200の側では、パケット 10のエラーの有無を ACKバッファ 205に記 憶し、最初のパケット 10の受信に成功した場合には後続の強制再送パケット 10Rの 複合処理を抑止するので、パケット 10の受信処理における消費電力が増大すること もない(図 5、図 6)。
[0087] また、 TCP/IP通信を行う有線通信網 20では、有線通信網 20に接続される無線 通信システム 90においてパケット 10の再送遅延によってパケットロスが発生したと見 なされた場合、当該パケットロスを無線通信システム 90における輻輳に起因するもの と判断して無線通信システム 90から有線通信網 20へのデータ流入量を大幅に制限 する制御動作が行われるため、有線通信網 20を介した無線通信システム 90間のス ループットの低下が発生する。
[0088] これに対して、本実施の形態の場合には、パケット 10に引き続いて強制再送バケツ ト 10Rを T ( < RTT)以内に強制的に再送するので、有線通信網 20にお 、てパケット ロスと見なされる確率が減少し、有線通信網 20を介した無線通信システム 90間のス ループットが低下することもな 、。
[0089] [実施の形態 2]
図 13は、本発明の実施の形態 2の送信装置の構成の一例を示すブロック図である
。上述の実施の形態 1との違 ヽは送信装置 100に予測部 121が追加されて 、る点で あり、受信装置 200の構成は実施の形態 1と同じである。
[0090] すなわち、本実施の形態 2の場合、送信バッファ 101からの送信通知信号 32は予 測部 121に入力され、この予測部 121から再送要求信号 33aが再送制御部 104に 入力される。
[0091] また、予測部 121には、制御信号復号部 111から制御情報 50が入力されている。
この制御情報 50は、受信装置 200から送られてきて通信状態を示す各種の情報を 含んでいる。そして、予測部 121は、制御情報 50に基づいて、強制再送パケット 10R の強制再送の要否を予測し、再送要求信号 33aにて再送制御部 104を制御する。
[0092] 送信装置 100では送信データ 12を含むパケット 10を送信すると同時に送信通知 信号 32を予測部 121に送る。予測部 121では、制御信号復号部 111から入力され た制御情報 50に基づいて、そのパケット 10が再送を要求される可能性について予 測する。可能性が高い場合は、再送要求信号 33aを再送制御部 104に送る。その後 は、実施の形態 1と同様に、待ち機能部 105、無線リソース管理部 103を経て再送バ ッファ 102に再送要求信号を送り、強制再送を実行する。
[0093] 図 14は、上述の図 13の構成の変形例を示すブロック図である。この図 14の構成で は過去のパケットの再送発生頻度に基づ 、て再送可能性の予測を行って 、る。 すなわち、予測部 121と制御信号復号部 111の間には、 ACKZNACKバッファ 1 22が設けられている。この ACKZNACKバッファ 122には、制御信号復号部 111 で復号された ACK信号 41および NACK信号 42の各々の頻度が記憶される。
[0094] 予測部 121は ACKZNACKバッファ 122を参照して、過去の再送発生頻度情報を 取得し、再生発生頻度が高ければ、再送要求信号 33aを再送制御部 104に送る。ま た送信データ 12の QoS情報 32aを送信通知信号 32とともに予測部 121に伝えること で、即時性が要求される場合は再送可能性の判断基準となる閾値 TMthreshold)を 下げ、再送を行う可能性を高めることも可能である。このときの予測部 121の処理の 様子をフローチャートに示したのが図 15である。
[0095] すなわち、予測部 121は、送信バッファ 101から送信通知信号 32を受けると (ステツ プ 321)、 ACKZNACKバッファ 122から過去 n個のパケット 10 (フレーム)に関する 再送発生頻度情報を読み出し (ステップ 322)、再送発生確率 p =再送を要したフレ 一ムの数 (NACK信号 42の回数) Znを算出する(ステップ 323)。
[0096] その後、送信通知信号 32とともに送られてきた QoS情報 32aに基づいて、当該パ ケット(送信データ 12)はリアルタイムデータか否かを判別し (ステップ 324)、リアルタ ィムデータである場合には、強制再送の実行の判定基準である閾値 Thを piだけ下 げる(ステップ 326)。
[0097] そして、 p >Thか否かを判定し (ステップ 325)、 p >Thが成立する場合は再送制御 部 104に再送要求信号 33aを送って、強制再送を実行させる (ステップ 327)。
[0098] なお、上述のステップ 321の直後に、送信データ 12に関する緊急度のレベル情報 を QoS情報 32aから読み取り、緊急度が高い場合には、ステップ 322からステップ 32 5の処理を省略して、直ちに、ステップ 327に分岐して強制再送処理を実行してもよ い。
[0099] 図 16は、本実施の形態 2における送信装置 100のさらに他の変形例の構成を示す ブロック図である。この場合、予測部 121では制御信号復号部 111から送られる SIR 情報 51に基づいて再送可能性の予測を行う。この SIR情報 51は、受信装置 200の 側から、 ACK信号 41または NACK信号 42とともに制御情報 50に随伴して到来した ものである。
[0100] この図 16の構成においても送信データ 12の QoS情報 32aに応じて再送確率を変 ィ匕させることができる。このときの予測部 121の処理の様子をフローチャートに示した のが図 17である。
[0101] すなわち、予測部 121は、送信バッファ 101から送信通知信号 32を受けると (ステツ プ 331)、制御信号復号部 111から SIR情報 51の値(SIR)を取得する(ステップ 332
) o
[0102] その後、送信通知信号 32とともに送られてきた QoS情報 32aに基づいて、当該パ ケット(送信データ 12)はリアルタイムデータか否かを判別し (ステップ 333)、リアルタ ィムデータである場合には、強制再送の実行の判定基準である閾値 Thを slだけ上 げる(ステップ 335)。
[0103] そして、 SIRく Thか否かを判定し (ステップ 334)、 SIRく Thが成立する場合は再 送制御部 104に再送要求信号 33aを送って、強制再送を実行させる (ステップ 336)
[0104] なお、上述のステップ 331の直後に、送信データ 12に関する緊急度のレベル情報 を QoS情報 32aから読み取り、緊急度が高い場合には、ステップ 332からステップ 33 4の処理を省略して、直ちに、ステップ 336に分岐して強制再送処理を実行してもよ い。
[0105] このように、本実施の形態 2の場合には、受信装置 200の側から応答された制御情 報 50に含まれる SIR情報 51に基づいて、強制再送の実行の有無を決定するので、 SIRが小さく無線回線の状態が良好な場合は、無駄な強制再送を抑止でき、送信電 力を低減できるとともに、送信データ 12のリアルタイム性に応じた適切な強制再送を 行うことができる。
[0106] [実施の形態 3]
図 18は、本発明の実施の形態 3の送信装置の構成例を示すブロック図である。実 施の形態 1との主な違いは待ち機能部 105の処理であり、受信装置 200の構成は実 施の形態 1と同じである。
[0107] 本実施の形態では、制御信号復号部 111から待ち機能部 105に SIR情報 51が入 力されている。そして、待ち機能部 105において強制再送時までの時間間隔 Tを過 去のパケットの SIRに応じて可変とする。
[0108] 待ち機能部 105は、制御信号復号部 111から送られる SIR情報 51を基に、強制再 送までの時間間隔 Tを調整する。すなわち、 SIR力 S小さく伝搬路状況が良好であると きは Tを短くし、さらに再送遅延の低減を狙う。逆に SIRが大きく伝搬路状況が劣悪な 場合は、 Tを長めにとり、ダイバーシチ効果を狙う。待ち機能部 105の処理の様子を フローチャートに示したのが図 19である。ここでは閾値 Th(threshold)を用いて SIR の大小を評価することで伝搬路状況を判断する例を示す。
[0109] すなわち、送信バッファ 101から送信通知信号 32が再送制御部 104に入力される と、再送制御部 104は、再送要求信号 33を待ち機能部 105に入力する (ステップ 34 D o
[0110] この時、待ち機能部 105は、制御信号復号部 111から、直前の伝搬路状況を反映 した SIR情報 51を取得する(ステップ 342)。
そして、 SIRく Thか否かを判定し (ステップ 343)、 SIRく Thが成立する場合は時 間間隔 Tを一定量 τだけ大きくして強制再送を実行させ (ステップ 345)、 SIRく Th が成立しない場合は時間間隔 Tを一定量てだけ小さくして強制再送を実行させる (ス テツプ 344)。
[0111] このように、 SIR情報 51に応じて、強制再送までの時間間隔 Tを可変とすることによ り、 SIR情報 51が示す伝搬路状況に応じた最適なタイミングで強制再送パケット 10R の強制再送を行うことができる。
[0112] 図 20は、本実施の形態 3における送信装置 100の変形例の構成を示すブロック図 である。この場合、待ち機能部 105と送信フレーム制御情報 11との間には ACKZN ACKバッファ 122が設けられている。この ACKZNACKバッファ 122には、制御信 号復号部 111で復号された ACK信号 41および NACK信号 42の各々の頻度が記 憶される。
[0113] そして、待ち機能部 105は ACKZNACKバッファ 122から過去の NACK信号 42 の発生頻度、すなわち再送発生頻度の情報を取得する。過去の再送発生頻度が低 い場合は、強制再送までの時間間隔 Tを短くし、さらに再送遅延の低減を狙う。逆に 再送発生頻度が高い場合は、時間間隔 Tを長めにとり、ダイバーシチ効果を狙う。そ の様子をフローチャートに示したのが図 21である。ここでは閾値 Th (threshold)を用 Vヽて再送発生頻度を判断する例を示す。
[0114] すなわち、送信バッファ 101から送信通知信号 32が再送制御部 104に入力される と、再送制御部 104は、再送要求信号 33を待ち機能部 105に入力する (ステップ 35 D o
[0115] この時、待ち機能部 105は、 ACKZNACKバッファ 122から、過去の n個のバケツ ト(フレーム)の再送情報を取得し (ステップ 352)、再送発生確率 p =再送を要したフ レームの数(NACK信号 42の回数) Znを算出する(ステップ 353)。 [0116] そして、 p >Thか否かを判定し (ステップ 354)、 p >Thが成立する場合は、時間間 隔 Tを一定量 τだけ大きくして強制再送を実行させ (ステップ 356)、 p >Thが成立し ない場合は時間間隔 Tを一定量 τだけ小さくして強制再送を実行させる (ステップ 35 5)。
[0117] このように、再送発生頻度に応じて、強制再送までの時間間隔 Τを可変とすることに より、再送発生頻度が示す伝搬路状況に応じた最適なタイミングで強制再送パケット
10Rの強制再送を行うことができる。
[0118] 図 22は、本実施の形態 3における送信装置 100のさらに他の変形例を示すブロッ ク図である。この場合、待ち機能部 105には、再送バッファ 102から、送信データ 12 に関する QoS情報 32aが入力されて 、る。
[0119] 待ち機能部 105は、強制再送パケット 10Rの強制送信時に送信データ 12の QoS 情報 32aを取得する。そして、送信データ 12が即時性を要する場合は強制再送まで の時間間隔 Tを短くし、さらに再送遅延の低減を狙う。その様子をフローチャートに示 したのが図 23である。ここでは QoS情報 32aに基づいて送信データ 12がリアルタイ ムデータ力否かを判断する例を示す。
[0120] すなわち、送信バッファ 101から送信通知信号 32が再送制御部 104に入力される と、再送制御部 104は、再送要求信号 33を待ち機能部 105に入力する (ステップ 36
D o
[0121] この時、待ち機能部 105は、送信バッファ 101から入力される QoS情報 32aに基づ いて、当該送信バッファ 101内の送信データ 12がリアルタイムデータか否かを判別し (ステップ 362)、送信データ 12がリアルタイムデータの場合は、時間間隔 Tを一定量 てだけ小さくして (ステップ 364)、強制再送を実行させ、リアルタイムデータでない場 合は時間間隔 Tを一定量 τだけ小さくして強制再送を実行させる (ステップ 363)。
[0122] このように、送信データ 12が必要とするリアルタイム性等の QoSに基づいて、強制 再送までの時間間隔 Tを可変に制御することで、 QoSに最適な再送制御を実現する ことが可能となる。
[0123] 以上説明した各実施の形態によれば、次のような効果が期待される。
(1)送信装置 100においてパケット 10の送信後、 RTTを待たずに強制再送バケツ ト 10Rの強制再送を行う。このため再送回数が早く増加し、 HARQの合成利得 (エラ 一のノケット 10と、強制再送パケット 10Rの信号レベルの合成)と相まってより早く送 信成功 (ACK)となる可能性が高くなる。その結果、再送遅延の低減が可能となる。 特に最大再送遅延時間や最大再送回数が決定されているシステムでは有効である。
[0124] (2)パケット 10の送信後、その再送の可能性について予測を行った上で強制再送 パケット 10Rの強制再送を実行する力否かを決定するため、無駄な再送を減らし、送 信電力の低減が可能となる。
[0125] (3)パケット 10の即時性に応じて、強制再送を行うための基準となる閾値 Thを変更 することができるため、リアルタイムデータ等においては優先的に強制再送することに より、再送時の処理遅延を低減可能である。
[0126] (4)予測を行わずに再送する場合、多少の送信電力を浪費するが、予測を行わず に複数回強制的に再送するため、再送遅延の改善が可能となる。
(5)パケット 10を送信後、強制再送パケット 10Rの強制再送を行うまでの時間間隔
Tを伝搬路の状況、再送発生頻度等に応じて可変とすることにより、時間ダイバーシ チ効果の獲得および処理遅延の低減を両立できる。
産業上の利用可能性
[0127] 本発明によれば、通信データの再送制御における再送遅延時間を短縮することが できる。
また、伝送遅延に起因する通信レートの低下が比較的大きい通信網において、通 信速度レートの低下を生じることなぐ通信データの再送制御による無線通信を実現 することが可能となる。
[0128] なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱し な!、範囲で種々変更可能であることは言うまでもな 、。
たとえば、無線通信に限らず、一般の有線通信における ARQや HARQ等におけ る再送技術に広く適用できる。

Claims

請求の範囲
[1] 通信データを受信装置に送信する送信手段と、
前記通信データに対応して前記受信装置から応答される否定応答信号または確 認応答信号を受信する受信手段と、
前記受信装置からの前記否定応答信号の到達または所定の確認応答待ち時間の 経過を待たずに、前記受信装置に対する前記通信データの再送信を実行する再送 制御手段と、
前記通信データの送信から前記再送信までの時間間隔を制御する再送待ち時間 制御手段と、
を含むことを特徴とする送信装置。
[2] 請求項 1記載の送信装置において、
さらに、無線リソースの割り当て制御手段を備え、
前記無線リソースに空きがある場合に、前記通信データの前記再送信を実行するこ とを特徴とする送信装置。
[3] 請求項 1記載の送信装置において、
前記再送制御手段は、前記通信データの属性に基づいて、前記再送信の実行の 有無または、前記再送信の複数回連続した実行を制御することを特徴とする送信装 置。
[4] 請求項 1記載の送信装置において、
さらに、前記受信装置との間における通信状況に応じて前記通信データの再送の 発生を予測し、予測結果に基づ!、て前記再送制御手段における前記再送信の実行 の有無を制御する予測手段を含むことを特徴とする送信装置。
[5] 請求項 1記載の送信装置において、
さらに、過去の前記通信データの再送処理の発生頻度に基づいて、前記通信デー タの再送の発生を予測し、予測結果に基づ 、て前記再送制御手段における前記再 送信の実行の有無を制御する予測手段を含むことを特徴とする送信装置。
[6] 請求項 1記載の送信装置において、
さらに、前記受信装置との間における情報伝送路の状態に基づいて、前記通信デ ータの再送の発生を予測し、予測結果に基づいて前記再送制御手段における前記 再送信の実行の有無を制御する予測手段を含むことを特徴とする送信装置。
[7] 請求項 1記載の送信装置において、
前記再送待ち時間制御手段は、前記通信データの属性、前記受信装置との間に おける情報伝送路の状態、過去の前記通信データの再送頻度、の少なくとも一つに 基づいて前記時間間隔の長さを制御することを特徴とする送信装置。
[8] 送信装置から到来する通信データを受信する受信手段と、
前記通信データの受信の成否に基づ!、て、前記送信装置に当該通信データに関 する確認応答信号または否定応答信号を送信する送信手段と、
前記確認応答信号の送信結果を記憶する記憶手段と、
前記送信装置から再送された前記通信データの受信時に、前記記憶手段に前記 確認応答信号が格納されて ヽる場合には、当該通信データの復号処理は行わずに 前記確認応答信号を前記送信装置に応答する制御情報生成手段と、
を含むことを特徴とする受信装置。
[9] 請求項 8記載の受信装置において、
さらに、誤りが検出された前記通信データを保持する再送バッファと、 前記記憶手段に前記確認応答信号が格納されて ヽな ヽ場合には、前記再送バッ ファに保持された前記通信データと、再送された前記通信データとに基づいて当該 通信データの復号処理を実行する再送合成手段と、
を含むことを特徴とする受信装置。
[10] 受信側に向けて通信データを送信する第 1ステップと、
前記受信側から到来する前記通信データの否定応答信号の到達または所定の確 認応答待ち時間の経過を待たずに、前記受信側に向けて前記通信データを再送信 する第 2ステップと、
を送信側において実行することを特徴とする情報通信方法。
[11] 請求項 10記載の情報通信方法において、
前記第 2ステップでは、前記送信側と前記受信側との間における無線リソースに空 きがある場合に、前記通信データを送信することを特徴とする情報通信方法。
[12] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記第 1ステップで送信した前記通信データの前記受信側 からの再送要求の発生の可能性を予測し、前記可能性が高ぐかつ前記送信側と前 記受信側との間における無線リソースに空きがある場合に、前記通信データを送信 することを特徴とする情報通信方法。
[13] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、過去の前記通信データの再送処理の発生頻度に基づ!/、て 、前記第 1ステップで送信した前記通信データの前記受信側力 の再送要求の発生 の可能性を予測し、前記可能性が高ぐかつ前記送信側と前記受信側との間におけ る無線リソースに空きがある場合に、前記通信データを送信することを特徴とする情 報通信方法。
[14] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記送信側と前記受信側との間における情報伝送路の品 質に基づ 、て、前記第 1ステップで送信した前記通信データの前記受信側からの再 送要求の発生の可能性を予測し、前記可能性が高ぐかつ前記送信側と前記受信 側との間における無線リソースに空きがある場合に、前記通信データを送信すること を特徴とする情報通信方法。
[15] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記通信データの即時性に基づいて、前記通信データを 再び送信するか否かを決定することを特徴とする情報通信方法。
[16] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記通信データの即時性に基づいて、前記通信データを 複数回送信することを特徴とする情報通信方法。
[17] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記送信側と前記受信側との間における情報伝送路の品 質に基づいて、前記第 1ステップでの前記通信データの送信から、当該第 2ステップ で前記通信データを再び送信するまでの再送時間間隔を変化させることを特徴とす る情報通信方法。
[18] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、過去の前記通信データの再送処理の発生頻度に基づ!/、て 、前記第 1ステップでの前記通信データの送信から、当該第 2ステップで前記通信デ ータを再び送信するまでの再送時間間隔を変化させることを特徴とする情報通信方 法。
[19] 請求項 10記載の情報通信方法にぉ 、て、
前記第 2ステップでは、前記通信データの即時性に応じて、前記第 1ステップでの 前記通信データの送信から、当該第 2ステップで前記通信データを再び送信するま での再送時間間隔を変化させることを特徴とする情報通信方法。
[20] 請求項 10記載の情報通信方法にぉ 、て、
前記受信側では、
送信側力 到来する通信データを受信し、前記通信データの受信に成功した場合 は確認応答信号を前記送信側に応答し、前記通信データの受信に失敗した場合は 否定応答信号を前記送信側に応答するとともに応答結果を記憶する第 1ステップと、 前記送信側から再送信された前記通信データを受信したとき、前記第 1ステップで 前記確認応答信号が応答結果として記憶されて 、た場合には当該通信データの復 号処理を抑止するとともに、確認応答信号を前記送信側に応答する第 2ステップと、 を実行することを特徴とする情報通信方法。
PCT/JP2005/012677 2005-07-08 2005-07-08 送信装置、受信装置、情報通信方法 WO2007007383A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12179014.1A EP2521338B1 (en) 2005-07-08 2005-07-08 Transmitting apparatus, receiving apparatus and information communication method
EP05758321.3A EP1903747B1 (en) 2005-07-08 2005-07-08 Transmitting apparatus, receiving apparatus and information communication method
CN2005800510145A CN101223759B (zh) 2005-07-08 2005-07-08 发送装置、信息通信方法
JP2007524479A JP4542150B2 (ja) 2005-07-08 2005-07-08 送信装置、受信装置、情報通信方法
PCT/JP2005/012677 WO2007007383A1 (ja) 2005-07-08 2005-07-08 送信装置、受信装置、情報通信方法
KR20087000917A KR100993648B1 (ko) 2005-07-08 2005-07-08 송신 장치, 수신 장치, 정보 통신 방법
US12/003,823 US7869463B2 (en) 2005-07-08 2008-01-02 Transmitting apparatus and receiving apparatus for controlling retransmission of communication data and information communication method using the same
US12/959,901 US8842699B2 (en) 2005-07-08 2010-12-03 Wireless communication system and retransmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012677 WO2007007383A1 (ja) 2005-07-08 2005-07-08 送信装置、受信装置、情報通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/003,823 Continuation US7869463B2 (en) 2005-07-08 2008-01-02 Transmitting apparatus and receiving apparatus for controlling retransmission of communication data and information communication method using the same

Publications (1)

Publication Number Publication Date
WO2007007383A1 true WO2007007383A1 (ja) 2007-01-18

Family

ID=37636791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012677 WO2007007383A1 (ja) 2005-07-08 2005-07-08 送信装置、受信装置、情報通信方法

Country Status (6)

Country Link
US (2) US7869463B2 (ja)
EP (2) EP1903747B1 (ja)
JP (1) JP4542150B2 (ja)
KR (1) KR100993648B1 (ja)
CN (1) CN101223759B (ja)
WO (1) WO2007007383A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239593A (ja) * 2008-03-27 2009-10-15 Fujitsu Ltd 移動体通信のランダムアクセス手順における再送処理方法、移動局装置及び基地局装置
JP2009260969A (ja) * 2008-04-15 2009-11-05 Asustek Computer Inc Ttiバンドリング伝送を改善する方法及び通信装置
JP2010191569A (ja) * 2009-02-17 2010-09-02 Nec Computertechno Ltd データ転送システム及びリトライ制御方法
EP2369773A1 (en) 2010-03-17 2011-09-28 Fujitsu Limited Communication system, communication station, communication terminal, and method of communication
WO2011158443A1 (ja) * 2010-06-17 2011-12-22 パナソニック株式会社 通信端末装置及び再送方法
JP2012512611A (ja) * 2008-12-16 2012-05-31 リサーチ イン モーション リミテッド 間欠受信でのハイブリッド自動再送要求ラウンドトリップタイムおよび肯定応答/否定応答の繰り返し
JP2012120215A (ja) * 2012-01-18 2012-06-21 Kyocera Corp 通信方法およびそれを利用した送信装置
JP2012178834A (ja) * 2007-03-21 2012-09-13 Qualcomm Inc データ結合および再復号によるh−arqアクノレッジメントの検出確認
JP2012531166A (ja) * 2009-06-22 2012-12-06 クゥアルコム・インコーポレイテッド 低減されたフィードバック遅延を有するワイヤレス通信
JP2013126009A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> 通信方法、無線アクセスシステム、及びプログラム
WO2014147774A1 (ja) * 2013-03-20 2014-09-25 富士通株式会社 通信方法、通信装置、および、通信プログラム
JP2016504798A (ja) * 2012-11-02 2016-02-12 ソニー株式会社 通信装置及び通信方法
JP2016178670A (ja) * 2007-06-18 2016-10-06 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
JP2017523641A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 進化型ノードb、ユーザ機器、およびハイブリッド自動再送要求(harq)通信の方法
US10171366B2 (en) 2013-09-19 2019-01-01 Nec Corporation Communication device and control method of communication device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10284483B2 (en) 2007-02-07 2019-05-07 Valens Semiconductor Ltd. Indicating delays added to packets due to retransmission
US9722763B2 (en) * 2007-02-07 2017-08-01 Valens Semiconductor Ltd. Highly utilized communication channel with order and retransmissions
US10749642B2 (en) * 2007-02-07 2020-08-18 Valens Semiconductor Ltd. Dynamic retransmissions with fixed and minimum delays
US8406296B2 (en) * 2008-04-07 2013-03-26 Qualcomm Incorporated Video refresh adaptation algorithms responsive to error feedback
US8787384B2 (en) * 2008-05-05 2014-07-22 Qualcomm Incorporated Pre-emptive acknowledgement for data transmission in a communication system
US8725502B2 (en) 2008-06-05 2014-05-13 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8503517B2 (en) 2008-06-05 2013-08-06 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8964788B2 (en) 2008-06-05 2015-02-24 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US9083521B2 (en) 2008-06-05 2015-07-14 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8958441B2 (en) * 2008-06-05 2015-02-17 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8825480B2 (en) 2008-06-05 2014-09-02 Qualcomm Incorporated Apparatus and method of obtaining non-speech data embedded in vocoder packet
CN101730207B (zh) * 2008-11-03 2015-04-15 电信科学技术研究院 增强ue省电性能的方法和ue
KR101527109B1 (ko) * 2009-01-06 2015-06-08 삼성전자주식회사 무선통신시스템에서 채널 할당 장치 및 방법
KR101222905B1 (ko) * 2009-02-24 2013-01-17 알까뗄 루슨트 중계 기반 시스템에서 arq 프로세스를 수행하기 위한 방법, 기지국, 및 중계국
WO2010129367A2 (en) * 2009-04-28 2010-11-11 Zte (Usa) Inc. Dedicated acknowledgement and delivery of management messages in wireless communication systems
US8743864B2 (en) 2009-06-16 2014-06-03 Qualcomm Incorporated System and method for supporting higher-layer protocol messaging in an in-band modem
US8855100B2 (en) 2009-06-16 2014-10-07 Qualcomm Incorporated System and method for supporting higher-layer protocol messaging in an in-band modem
JP5423794B2 (ja) * 2009-07-01 2014-02-19 富士通株式会社 無線通信制御方法および無線通信装置
KR101679691B1 (ko) * 2009-08-14 2016-11-28 삼성전자주식회사 무선통신시스템에서 데이터 재전송을 위한 장치 및 방법
US9930567B1 (en) * 2011-02-03 2018-03-27 Horizon Hobby, LLC Three dimensional spread spectrum remote control system
FR2977101A1 (fr) * 2011-06-24 2012-12-28 France Telecom Retransmission de donnees perdues entre un emetteur et un recepteur
US8868994B2 (en) * 2011-10-25 2014-10-21 International Business Machines Corporation High performance virtual Converged Enhanced Ethernet with persistent state flow control
JP6146409B2 (ja) 2012-05-30 2017-06-14 日本電気株式会社 通信装置および通信方法
EP2859678B1 (en) 2012-06-08 2020-10-07 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for supporting retransmission
US9906450B2 (en) * 2012-07-16 2018-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for handling error indications
US8982755B1 (en) 2012-10-24 2015-03-17 Sprint Spectrum L.P. Methods and systems for selecting a TTI bundle size
US20140146796A1 (en) * 2012-11-27 2014-05-29 Qualcomm Incorporated Buffer size reporting in time division high speed uplink packet access (td-hsupa) systems
US9357546B1 (en) 2013-07-19 2016-05-31 Sprint Spectrum L.P. Methods and systems for controlling TTI bundling
US10263734B2 (en) * 2013-11-12 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Devices and methods for handling blind (re) transmissions in a network
KR20150081603A (ko) * 2014-01-06 2015-07-15 삼성전자주식회사 무선 통신 시스템에서 패딩을 이용한 데이터 전송 방법 및 장치
CN112073161B (zh) 2015-03-25 2023-01-06 瑞典爱立信有限公司 提早harq分组重传的方法和装置
WO2016174884A1 (ja) * 2015-04-27 2016-11-03 ソニー株式会社 情報処理装置、通信システム、情報処理方法およびプログラム
US10165530B2 (en) * 2016-03-22 2018-12-25 Christoph RULAND Verification of time information transmitted by time signals or time telegrams
KR20170135107A (ko) * 2016-05-30 2017-12-08 삼성에스디에스 주식회사 데이터 전송 방법 및 그 기능이 구비된 컴퓨팅 장치
EP3535893A4 (en) * 2016-11-04 2020-06-24 Telefonaktiebolaget LM Ericsson (publ) DATA RETRANSMISSION METHODS AND DEVICES
US11469861B2 (en) 2018-10-26 2022-10-11 Lg Electronics Inc. Method and apparatus for performing retransmission in NR V2X
CN109617659A (zh) * 2019-02-12 2019-04-12 上海奥感电子科技有限公司 一种数据盲重传方法
US11902171B2 (en) * 2021-07-30 2024-02-13 Global Unichip Corporation Communication system between dies and operation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746289A (ja) * 1993-07-27 1995-02-14 Hitachi Ltd 通信制御方式
JPH0879273A (ja) * 1994-09-05 1996-03-22 Toshiba Corp コネクションレスデータ送信方法
JPH09284261A (ja) * 1996-04-12 1997-10-31 Mitsubishi Electric Corp 自動再送制御方法
JPH1013331A (ja) 1996-06-25 1998-01-16 N T T Ido Tsushinmo Kk 移動通信システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587985B1 (en) * 1998-11-30 2003-07-01 Matsushita Electric Industrial Co., Ltd. Data transmission method, data transmission apparatus, data receiving apparatus, and packet data structure
JP3722198B2 (ja) * 1999-11-30 2005-11-30 オムロン株式会社 ノード
JP3708950B2 (ja) * 2000-08-24 2005-10-19 松下電器産業株式会社 送受信方法およびその装置
EP1211837A1 (en) * 2000-12-04 2002-06-05 Telefonaktiebolaget Lm Ericsson Unequal error protection in a packet transmission system
JP2003016027A (ja) 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Cpu間通信方式
DE60104113T2 (de) 2001-08-22 2004-10-28 Matsushita Electric Industrial Co., Ltd., Kadoma Übertragungsverfahren und Übertragungsgerät mit Mehrkanal-ARQ
US7486634B2 (en) * 2001-08-28 2009-02-03 Sony Corporation Adaptive modulation based on signal quality
JP3623192B2 (ja) * 2001-12-14 2005-02-23 三菱電機株式会社 衛星通信システムの連送制御方式
JP3561510B2 (ja) * 2002-03-22 2004-09-02 松下電器産業株式会社 基地局装置及びパケット伝送方法
US7075913B1 (en) * 2002-03-26 2006-07-11 Nortel Networks Limited Hybrid data rate control in CDMA cellular wireless systems
EP1357695B1 (en) * 2002-04-24 2009-07-01 Samsung Electronics Co., Ltd. Apparatus and method for supporting automatic repeat request in a high-speed wireless packet data communication system
JP4214793B2 (ja) * 2003-02-19 2009-01-28 日本電気株式会社 無線通信システム、サーバ、基地局、移動端末及びそれらに用いる再送タイムアウト時間決定方法
JP4283589B2 (ja) * 2003-03-25 2009-06-24 株式会社エヌ・ティ・ティ・ドコモ 通信装置、通信制御方法及びプログラム
EP1610575A4 (en) * 2003-03-31 2010-07-21 Fujitsu Ltd RADIO COMMUNICATION NETWORK AND METHOD FOR FLOW CONTROL
JP4121123B2 (ja) 2003-05-20 2008-07-23 富士通株式会社 移動体通信方法及びシステム
CA2701502C (en) * 2003-06-18 2014-08-05 Nippon Telegraph And Telephone Corporation Wireless packet communication method
JP2005167353A (ja) * 2003-11-28 2005-06-23 Ntt Docomo Inc 送信装置およびプログラム
SE0303590D0 (sv) * 2003-12-29 2003-12-29 Ericsson Telefon Ab L M Method and arrangement for ARQ in packet data transmission
WO2005109729A1 (en) * 2004-05-10 2005-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for providing autonomous retransmissions in a wireless communication system
US7596108B2 (en) * 2005-05-31 2009-09-29 Telcom Ventures, L.L.C. Digital data broadcasting systems, methods and components that selectively rebroadcast data packets based on analysis of propagation characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746289A (ja) * 1993-07-27 1995-02-14 Hitachi Ltd 通信制御方式
JPH0879273A (ja) * 1994-09-05 1996-03-22 Toshiba Corp コネクションレスデータ送信方法
JPH09284261A (ja) * 1996-04-12 1997-10-31 Mitsubishi Electric Corp 自動再送制御方法
JPH1013331A (ja) 1996-06-25 1998-01-16 N T T Ido Tsushinmo Kk 移動通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. CHASE: "Code Combining-A Maximum-Likelihood Decoding Approach for Combining an Arbitrary Number of Noisy Packets", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. COM-33, no. 5, May 1985 (1985-05-01)
See also references of EP1903747A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178834A (ja) * 2007-03-21 2012-09-13 Qualcomm Inc データ結合および再復号によるh−arqアクノレッジメントの検出確認
JP2018157575A (ja) * 2007-06-18 2018-10-04 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
JP7273937B2 (ja) 2007-06-18 2023-05-15 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
US11533130B2 (en) 2007-06-18 2022-12-20 Optis Wireless Technology, Llc Method and arrangement for retransmission using HARQ
JP7004338B2 (ja) 2007-06-18 2022-01-21 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
US10903940B2 (en) 2007-06-18 2021-01-26 Optis Wireless Technology, Llc Method and arrangement for retransmission using HARQ
JP2020092440A (ja) * 2007-06-18 2020-06-11 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
US9698942B2 (en) 2007-06-18 2017-07-04 Optis Wireless Technology, Llc Method and arrangement for retransmission using HARQ
JP2016178670A (ja) * 2007-06-18 2016-10-06 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
JP2022046614A (ja) * 2007-06-18 2022-03-23 オプティス ワイヤレス テクノロジー エルエルシー Ttiバンドリングによるアップリンク送信の強化
JP2009239593A (ja) * 2008-03-27 2009-10-15 Fujitsu Ltd 移動体通信のランダムアクセス手順における再送処理方法、移動局装置及び基地局装置
US8281202B2 (en) 2008-04-15 2012-10-02 Innovative Sonic Limited Method and apparatus for improving transmission time interval bundling
JP2009260969A (ja) * 2008-04-15 2009-11-05 Asustek Computer Inc Ttiバンドリング伝送を改善する方法及び通信装置
JP2012512611A (ja) * 2008-12-16 2012-05-31 リサーチ イン モーション リミテッド 間欠受信でのハイブリッド自動再送要求ラウンドトリップタイムおよび肯定応答/否定応答の繰り返し
US8448036B2 (en) 2008-12-16 2013-05-21 Research In Motion Limited Hybrid automatic repeat request round trip time and acknowledgement/negative acknowledgement repetition in discontinuous reception
JP2010191569A (ja) * 2009-02-17 2010-09-02 Nec Computertechno Ltd データ転送システム及びリトライ制御方法
JP2012531166A (ja) * 2009-06-22 2012-12-06 クゥアルコム・インコーポレイテッド 低減されたフィードバック遅延を有するワイヤレス通信
US8942208B2 (en) 2009-06-22 2015-01-27 Qualcomm Incorporated Wireless communication having reduced feedback delay
EP2369773A1 (en) 2010-03-17 2011-09-28 Fujitsu Limited Communication system, communication station, communication terminal, and method of communication
US8521211B2 (en) 2010-03-17 2013-08-27 Fujitsu Limited Communication system, communication station, communication terminal, and method of communication
WO2011158443A1 (ja) * 2010-06-17 2011-12-22 パナソニック株式会社 通信端末装置及び再送方法
JP2013126009A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> 通信方法、無線アクセスシステム、及びプログラム
JP2012120215A (ja) * 2012-01-18 2012-06-21 Kyocera Corp 通信方法およびそれを利用した送信装置
JP2016504798A (ja) * 2012-11-02 2016-02-12 ソニー株式会社 通信装置及び通信方法
JP5935940B2 (ja) * 2013-03-20 2016-06-15 富士通株式会社 通信方法、通信装置、および、通信プログラム
US9866351B2 (en) 2013-03-20 2018-01-09 Fujitsu Limited Communication method and communication apparatus
WO2014147774A1 (ja) * 2013-03-20 2014-09-25 富士通株式会社 通信方法、通信装置、および、通信プログラム
US10171366B2 (en) 2013-09-19 2019-01-01 Nec Corporation Communication device and control method of communication device
JP2017523641A (ja) * 2014-06-02 2017-08-17 インテル アイピー コーポレイション 進化型ノードb、ユーザ機器、およびハイブリッド自動再送要求(harq)通信の方法

Also Published As

Publication number Publication date
EP1903747A1 (en) 2008-03-26
US8842699B2 (en) 2014-09-23
KR20080025141A (ko) 2008-03-19
CN101223759A (zh) 2008-07-16
JP4542150B2 (ja) 2010-09-08
US7869463B2 (en) 2011-01-11
EP2521338A1 (en) 2012-11-07
US20110078530A1 (en) 2011-03-31
EP1903747A4 (en) 2012-02-01
CN101223759B (zh) 2013-05-22
KR100993648B1 (ko) 2010-11-10
EP1903747B1 (en) 2017-03-08
US20080137689A1 (en) 2008-06-12
JPWO2007007383A1 (ja) 2009-01-29
EP2521338B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP4542150B2 (ja) 送信装置、受信装置、情報通信方法
US9853775B2 (en) Method and arrangement in a telecommunication system for handling status information of data units
CA2498163C (en) System for efficient recovery of node-b buffered data following mac layer reset
US20170041104A1 (en) Method of transmitting data using harq
US6907005B1 (en) Flexible ARQ for packet data transmission
US9025573B2 (en) Introducing a delay in the transmission of a nack for a packet received employing coordinated multi-point transmission
KR101799715B1 (ko) 자원 사용률이 낮은 고신뢰성 송신 방식
TWI387256B (zh) 改善傳輸時間間隔集束傳輸之方法及通訊裝置
CN107210868B (zh) 一种数据重传的系统和方法
CN101119183A (zh) 重传控制方法及传输设备
WO2008025251A1 (fr) Procédé de gestion de retransmission de données dans un réseau sans fil à la dernière retransmission
JP4888571B2 (ja) 受信装置、受信方法、無線通信システム、及び通信方法
EP3031159B1 (en) Retransmission control network node and related method
JP5003611B2 (ja) 無線通信の再送制御方法及び無線通信装置
US11546100B2 (en) Operation of automatic repeat request
JP4998697B2 (ja) 移動通信システム及びその再送制御方法
JP2011055435A (ja) 再送制御装置及び再送制御方法
KR20100060853A (ko) 무선 링크 제어 프로토콜에서의 상태 보고 방법 및 시스템
JP2011071782A (ja) 無線通信装置
CN103227701A (zh) 接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524479

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005758321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005758321

Country of ref document: EP

Ref document number: 200580051014.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000917

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005758321

Country of ref document: EP