WO2007004578A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2007004578A1
WO2007004578A1 PCT/JP2006/313131 JP2006313131W WO2007004578A1 WO 2007004578 A1 WO2007004578 A1 WO 2007004578A1 JP 2006313131 W JP2006313131 W JP 2006313131W WO 2007004578 A1 WO2007004578 A1 WO 2007004578A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
unit
impedance control
output
wireless communication
Prior art date
Application number
PCT/JP2006/313131
Other languages
English (en)
French (fr)
Inventor
Takaaki Kishigami
Hiroshi Iwai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/917,792 priority Critical patent/US8000379B2/en
Priority to CN200680024143XA priority patent/CN101213758B/zh
Publication of WO2007004578A1 publication Critical patent/WO2007004578A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception

Definitions

  • the present invention relates to a wireless communication apparatus that appropriately performs antenna impedance matching.
  • An impedance matching circuit is used to achieve impedance matching between the antenna and the radio unit.
  • impedance matching circuit is fixed, impedance mismatching occurs under the influence of an object in proximity to the wireless communication device, and the matching loss causes a problem that the original antenna performance can not be obtained.
  • the antenna characteristic is affected by the human body and an impedance mismatch occurs because the human body is a lossy dielectric.
  • the impedance mismatch status changes in various usage conditions and installation environments such as holding in a call, mail, bag or pocket.
  • the received signal strength indicator (hereinafter referred to as "RSSI") is monitored, and if the value is lower than the previously measured value, a variable reactance element There is one that performs impedance matching by controlling the reactance value of (see, for example, Patent Document 1).
  • RSSI received signal strength indicator
  • a variable reactance element There is one that performs impedance matching by controlling the reactance value of (see, for example, Patent Document 1).
  • the RSSI can be recovered by automatically performing the impedance matching.
  • similar automatic matching of impedance is possible by applying control in which the reflected power obtained from the transmitting antenna through the directional coupler is minimized.
  • Non-Patent Document 1 proposes for control circuits, optimization algorithms, evaluation functions and the like used for this automatic matching.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-135235
  • Non-Patent Document 1 Ms. Ogawa and 3 others, "Automatic impedance matching of human proximity active antenna by steepest descent method", Transactions of the Institute of Electronics, Information and Communication Engineers, The Institute of Electronics, Information and Communication Engineers , September 2004, No. J87-B ⁇ , No. 9, pl287- 1298
  • impedance matching is performed based on the RSSI.
  • the RSSI fluctuates except for the influence of a nearby object, for example, the movement of the wireless terminal device or the periphery
  • RSS I drops due to propagation channel aging
  • the problem of impeding the impedance matching condition and increasing the unmatched loss is the opposite, by performing the impedance matching operation that is not originally required. is there.
  • the received baseband signal is subject to an indefinite amount of complex amplitude fluctuation.
  • the closest symbol to a predetermined symbol candidate point is used as the symbol judgment value. If complex amplitude fluctuation occurs due to impedance change in the matching circuit, a difference occurs with the estimated channel fluctuation, and as the difference becomes larger, there arises a problem that errors in symbol determination increase and reception quality deteriorates.
  • the present invention solves the above-mentioned conventional problems, and realizes stable automatic matching of impedance even when a fading variation occurs in a propagation path for wireless communication, and also automatic impedance matching. It is an object of the present invention to provide a wireless communication apparatus capable of reducing the deterioration of reception quality caused by the change in impedance of time.
  • a wireless communication apparatus is a wireless communication apparatus provided with a receiving system unit, and the receiving system unit is configured to receive a baseband signal received by an antenna.
  • impedance changing means for adjusting the impedance between the antenna and the radio unit
  • pilot signal extraction means for extracting and outputting a known pilot signal from the baseband signal in advance.
  • impedance control appropriateness detection means for detecting impedance control suitability using the output of the line compensation means, and output of the impedance control appropriateness detection means
  • impedance control means for controlling the amount of change in impedance of the variable impedance means.
  • channel fluctuation due to channel fading fluctuation is compensated, and then automatic matching of impedance mismatch due to fluctuation in reception status is performed.
  • propagation channel fading fluctuation and reception status fluctuation And can be distinguished.
  • the convergence time of the automatic matching of the impedance can be shortened, the characteristics at the time of convergence can be improved, and the reception quality can be improved.
  • the wireless communication apparatus further comprises a demodulation unit that performs a demodulation operation using the output of the line compensation unit.
  • the impedance control suitability detection means preferably detects the impedance control appropriateness using the output power of the line compensation means.
  • the impedance control suitability detection means preferably detects the impedance control suitability using the output amplitude of the line compensation means.
  • the channel compensation means perform channel compensation using a pilot signal included in a preamble of a wireless frame or a wireless slot.
  • the impedance control means uses the output of the impedance control suitability detection means after receiving the pilot signal included in the preamble of the wireless frame or the wireless slot. It is preferable to control the variable means.
  • This configuration makes it possible to more accurately estimate the fading fluctuation included in the radio frame or slot even in an environment where the propagation path includes fading fluctuation, and further stabilizes the operation of automatic impedance matching. can do.
  • the impedance control means changes the impedance based on the output of the impedance control appropriateness detection means corresponding to the period in which the impedance is changed. .
  • the operation of the impedance control means can be stopped except when there is an output of the impedance control appropriateness detection means corresponding to the period in which the impedance is changed, and the intermittent operation can be performed.
  • the power consumption of the wireless communication device itself can be reduced.
  • the wireless communication apparatus of the present invention preferably includes a call start button, and the impedance control unit preferably starts control of the impedance variable unit by operating the call start button.
  • the wireless communication apparatus further includes storage means for storing impedance matching information and received signal strength information corresponding to the impedance matching information, and the received signal strength stored in the storage means, and impedance control. It is preferable to store the received signal strength information corresponding to the larger signal strength and the received signal strength information corresponding to the impedance matched information larger for the signal strength again in the storage means in comparison with the later received signal strength.
  • the antenna gain is degraded to a predetermined level or more at the time of automatic impedance matching. Can be prevented, and reception quality characteristic improvement can be stably performed.
  • the channel compensation means performs channel estimation using the pilot signal included in the preamble of the wireless frame or the wireless slot, performs channel compensation of the baseband signal, and The channel fluctuation is tracked using the first channel compensation unit output to the control appropriateness detection unit, and the pilot signal included in the data of the radio frame or radio slot, and the channel compensation of the baseband signal is performed to obtain the demodulation unit.
  • second line compensation means for outputting the
  • the channel compensation means perform channel compensation using a fixed channel fluctuation compensation value during the wireless frame or wireless slot period.
  • This configuration makes it possible to distinguish between fading fluctuation in a radio frame or slot and fluctuation in reception conditions due to impedance change, when the fading fluctuation of the propagation path is sufficiently slow.
  • the impedance control means adjusts the impedance for a predetermined period using the impedance variable means, and returns the impedance to the state before the predetermined period after the predetermined period. Is preferred.
  • the wireless communication apparatus of the present invention converts a signal received by an antenna into a baseband signal and outputs the converted signal, and an impedance that adjusts the impedance between the antenna and the wireless unit.
  • One dance variable means, a baseband signal for each subcarrier is extracted from the baseband signal, a subcarrier signal extraction unit for outputting, and a pilot signal known in advance is extracted from the baseband signal for each subcarrier and output.
  • Pilot signal extraction means Row estimation for channel estimation using pilot signal, Line compensation means for performing channel compensation on baseband signal for each subcarrier, Impedance for detecting impedance control suitability using output of line compensation means
  • Impedance for detecting impedance control suitability using output of line compensation means
  • a plurality of subcarrier processing units each having control appropriateness detection means, impedance control means for controlling an impedance change amount of the impedance variable means based on the output of the impedance control appropriateness detection means, and an output of the line compensation means
  • a demodulation unit for performing a demodulation operation.
  • the wireless communication apparatus of the present invention converts a signal received by an antenna into a baseband signal and outputs the converted signal, and impedance variable means for adjusting the impedance between the antenna and the wireless unit. , Despreading processing is performed on the baseband signal to extract a baseband signal for each finger path, and the despreading means for outputting the baseband signal, and a baseband signal for each finger path. A pilot signal for extracting and outputting a known pilot signal in advance.
  • the same number of finger path processing units as finger paths have extraction means, channel estimation using the pilot signal, and channel compensation means for performing channel compensation on the baseband signal for each finger path, and output of the line compensation means
  • the impedance of the impedance control aptitude is detected using the output of the first synthesis unit that performs addition processing of the first and the first synthesis unit.
  • Impedance control means for controlling the amount of impedance change of the impedance variable means based on the outputs of the step control appropriateness detection means and the impedance control appropriateness detection means, and adding processing of the output of the line compensation means
  • a demodulation unit that performs a demodulation operation using the output of the second synthesis unit.
  • the wireless communication apparatus of the present invention comprises a plurality of receiving system parts of the present invention, and performs demodulation operation using an array combining means for weighting and combining the outputs of the line compensation means and an output of the array combining means. And a demodulation unit.
  • the array combining unit includes an impedance control unit.
  • the array combining means performs array combining using the maximum ratio combining weight when the impedance control means performs control to change the impedance during the wireless frame or the wireless slot period. If no control is performed to change the impedance during the radio frame or radio slot, it is preferable to perform array synthesis using weights according to the array synthesis method for beam and null control.
  • the array combining unit is configured to receive the in signals of the plurality of reception systems.
  • Reception weight generator that generates and outputs a reception weight using the output of the impedance control means, and a reception beam former that combines the outputs of the second channel compensation means of the plurality of reception systems using the reception weight It is preferable to have
  • an operation mode determination unit that determines whether to set a mode for operating impedance control, the impedance control unit switches the operation mode according to the output of the operation mode determination unit.
  • impedance control is stopped based on the reception quality estimation unit that estimates reception quality based on the output of the demodulation unit, and the output of the reception quality estimation unit. It is preferable to include an operation mode determination unit that determines whether to set the mode or the mode for operating the impedance control, and the impedance control unit switches the operation mode according to the output of the operation mode determination unit. Les.
  • an operation mode determination unit that determines whether to set the mode for operating impedance control, and the impedance control unit preferably switches the operation mode according to the output of the operation mode determination unit.
  • the operation mode determination unit stops the impedance control when the amount of received information is smaller than a predetermined value based on the output of the transmission parameter extraction unit. It is preferable to make and.
  • the wireless communication apparatus of the present invention is a mode in which impedance control is stopped based on the output of the retransmission control unit that performs retransmission control based on the output of the demodulation unit and the output of the retransmission control unit? It is preferable that an operation mode determination unit that determines whether to set a mode for operating impedance control, the impedance control unit switches the operation mode according to the output of the operation mode determination unit.
  • the wireless communication apparatus of the present invention automatic matching of impedance can be stably realized even when fading variation occurs in a propagation path for wireless communication, and impedance at the time of automatic matching of impedance can be obtained. It is possible to provide a wireless communication device that reduces the degradation of reception quality caused by a change. In addition, under the use condition of the wireless communication device such as when approaching a human body during a call, degradation of the antenna gain can be suppressed, which contributes to the improvement of reception quality.
  • FIG. 1 is a block diagram showing a configuration of a wireless communication apparatus according to a first embodiment of the present invention.
  • FIG. 2 A schematic diagram showing a configuration of a wireless frame received by the wireless communication device according to the first embodiment of the present invention.
  • FIG. 3 A flow chart showing the control procedure of the impedance control means of the wireless communication device in the first embodiment of the invention 4) Flow chart showing another control procedure of the impedance control means of the wireless communication device in the first embodiment of the present invention
  • Block diagram showing the configuration of the wireless communication device according to the third embodiment of the present invention Block diagram showing the configuration of the wireless communication device according to the fourth embodiment of the present invention Block diagram showing configuration of wireless communication device in fifth embodiment 10] Block diagram showing configuration of wireless communication device in sixth embodiment of the present invention 11) Seventh embodiment of the present invention 12 is a block diagram showing the configuration of the wireless communication device in the embodiment 12] A block diagram showing the configuration of the wireless communication device in the eighth embodiment of the present invention. 13) Configuration of the wireless communication device in the ninth embodiment of the present invention Block diagram showing the symbols
  • FIG. 1 is a block diagram showing a configuration of a wireless communication apparatus according to a first embodiment of the present invention.
  • the present wireless communication apparatus comprises an antenna 1 for receiving a high frequency signal, an impedance variable means 2 for adjusting the impedance to obtain impedance matching between the antenna 1 and the subsequent wireless unit 3, an amplification of the input high frequency signal,
  • the radio unit 3 performs frequency conversion and band limitation, and converts it into a complex baseband signal having in-phase signal (I signal) and quadrature signal (Q signal) power by orthogonal detection, and a previously known pilot signal included in the received signal.
  • I signal in-phase signal
  • Q signal quadrature signal
  • Pilot signal extraction means 4 for extracting, first line compensation means 5 and second line compensation means 6 for performing line compensation of radio channel at predetermined timing based on the extracted pilot signal, and first line compensation means 5
  • Impedance control unit 8 for performing, to the output of the second channel compensation unit 6, and a demodulator 9 for demodulating process.
  • the first line compensation means 5 performs line compensation of a suitable wireless line for detecting impedance suitability
  • the second line compensation means 6 performs line compensation of a suitable wireless line for demodulation operation.
  • the antenna 1 is connected to the subsequent radio unit 3 via the impedance variable means 2.
  • the impedance variable means 2 controls the impedance when connected to the antenna 1 by the control of the impedance control means 8.
  • the configuration of the impedance variable means 2 is disclosed, for example, in Non-Patent Document 1 mentioned above. Further, as another example, the impedance variable means 2 may be realized by switching of some matching circuits. In the present embodiment, even if such a known technique is applied, the contents of the invention are not impaired at all. Since it does not, detailed explanation is omitted here as what uses publicly known art.
  • the radio frequency signal received by the antenna 1 is subjected to amplification, frequency conversion, and band limitation in the radio unit 3 by an amplifier, a frequency converter, and a band limiting filter, which are not illustrated. After that, they are quadrature-detected and converted to complex baseband signals consisting of I and Q signals.
  • Pilot signal extraction means 4 extracts a pilot signal from this complex baseband signal, and outputs the pilot signal to first line compensation means 5 and second line compensation means 6.
  • FIG. 2 is a schematic view showing a configuration of a radio frame of a signal to be received.
  • the radio frame includes, in addition to the control or user-specific data 21, a signal sequence known in advance (hereinafter referred to as “pi-port signal”).
  • the pilot signal includes an initial channel estimation pilot signal 22 included at the beginning (preamble) of a radio frame, and a tracking pilot signal 23 intermittently included in control data or user-specific data. is there.
  • the same configuration is applied to the smallest radio slot.
  • pilot signals are inserted by time division, but code division may be used and pilot signals may be multiplexed.
  • pilot signals can be multiplexed intermittently or continuously by code division multiplexing.
  • a pilot signal for tracking may be intermittently used using some or all of the subcarriers. May be inserted, or a pilot signal for tracking may be continuously inserted into some of the subcarriers.
  • First channel compensating means 5 uses a pilot signal for initial channel estimation included in each radio frame to estimate channel estimation value h (n) represented by a complex number including amplitude fluctuation and phase fluctuation.
  • the signal after line compensation by the first line compensation means 5 is represented as z (k) n.
  • the impedance control appropriateness detecting means 7 detects an impedance appropriateness representing whether the impedance automatic matching operation by the impedance control means 8 is appropriate.
  • the impedance control suitability is determined using the output signal z (k) of the first channel compensation unit 5 as the first channel compensation unit 5 compensating for fading fluctuation in the propagation path. Detect aptitude.
  • z (k) the output signal of the first channel compensation unit 5 as the first channel compensation unit 5 compensating for fading fluctuation in the propagation path.
  • the impedance control means 8 changes the impedance value in the impedance variable means 2 based on the impedance control suitability, and performs impedance matching between the antenna and the wireless unit 3.
  • FIG. 3 is a flow chart showing a control procedure in the impedance control means 8. The operation will be described below using FIG.
  • the impedance control means 8 sets the impedance value in the impedance variable means 2 to an initial value (step S20).
  • an initial value for example, it is desirable to set an impedance value that provides an optimal gain when in close proximity to a human body, such as a call state. That is, when arranged at predetermined intervals with respect to an assumed obstacle such as a human body, a bag, a desk, etc., the impedance value is set in advance so that the mismatch loss is minimized.
  • the force is not limited to this. In this case, when it is clear that the human body is approaching, it has the effect of increasing the convergence speed for automatic impedance matching. Alternatively, in free space conditions where the human body etc. are not in close proximity, it is possible to obtain an optimum matching with the antenna used. It may be set to a dance value.
  • step S21 the operation status of the wireless communication apparatus is monitored.
  • the operating conditions it is desirable to use conditions unique to the terminal device, which clearly indicate that the human body is in close proximity, such as during an Internet connection such as i-mode during a call period. Therefore, for example, one or more combination conditions are used from detection of human touch, detection of decrease in received signal strength, detection of call state, and the like. If one or more of the human contact, the decrease in received signal strength, and the call condition are met, the control mode is switched to the impedance control mode (step S22). If not detected, the operation status is continuously monitored in step S21.
  • the impedance control means 8 operates in synchronization with the radio frame. That is, for each radio frame, the radio frequency signal stage received by the antenna waits until the timing at which the pilot signal for initial channel estimation is received (step S2).
  • the impedance control means 8 After the pilot signal for initial channel estimation is received, the impedance control means 8 starts adjusting the impedance in the impedance variable means 2 (step S2).
  • An output value of the impedance control suitability detection means is detected at a timing after a predetermined time (time until the high frequency signal is observed as a complex baseband signal) after impedance adjustment in the impedance variable means 2. S25). Then, an evaluation function in a predetermined control algorithm for impedance automatic matching is calculated, and the next impedance change value is calculated (step S26). It is determined whether the calculated evaluation function value satisfies a predetermined convergence condition (step S27). If the convergence condition is not satisfied, the operating condition is confirmed again (step S28), and the condition of the impedance control mode is If the condition is continuously satisfied, the process proceeds to step S23, and the same processing is repeated. On the other hand, if the condition of the impedance control mode is not satisfied, the process exits from the impedance control mode and returns to step S20.
  • step S27 if the convergence condition is satisfied, it is considered that impedance matching is completed in the impedance control mode, and the operating condition is confirmed while holding the impedance value (step S29) (step S30). If the condition of the impedance control mode continues to be met, the impedance value is maintained and the impedance If the control mode condition is not satisfied, the impedance control mode is exited and step S 20 is resumed.
  • control algorithm of the impedance automatic matching can be applied, for example, a method based on the steepest descent method as disclosed in Non-Patent Document 1 mentioned above, whereby the antenna 1 and the antenna 1 can be applied. Impedance mismatch loss can be reduced.
  • step S25 after impedance adjustment in impedance variable means 2, an output value by the impedance control aptitude detection means is detected at a timing after a predetermined time has elapsed.
  • the output value of the detection means can be detected multiple times at different timings, and the average value can be used as the detected value. In this case, detection can be performed while reducing the effects of noise contained in the received signal and the effects of fading fluctuation of the remaining propagation path, and the convergence operation of the automatic impedance matching can be stabilized.
  • one impedance adjustment operation is performed for each radio frame or radio slot. That is, by performing impedance adjustment control at timing close in time after channel compensation by the initial channel estimation pilot, the influence of fading fluctuation can be eliminated and fluctuation due to impedance control can be detected more accurately.
  • a plurality of impedance adjustment operations may be performed at predetermined time intervals in the radio frame or the radio slot.
  • FIG. 4 is a flowchart showing another control procedure in the impedance control means 8.
  • step S27 it is determined whether the evaluation function value calculated in step S27 satisfies a predetermined convergence condition, and if the convergence condition is not satisfied, the operation status is confirmed again (step S31). ), When the condition of the impedance control mode is continuously satisfied, the process returns to step S24 instead of returning to step S23, and continues to perform impedance control. As a result, a plurality of impedance adjustment operations can be performed at predetermined time intervals in a radio frame or a radio slot, and the time required for convergence can be shortened.
  • the gain may be degraded depending on the impedance value to be changed, and therefore, after the impedance is changed for a predetermined time, in order to minimize the influence thereof.
  • the processing may be performed to restore the impedance value before the change.
  • the time for changing the impedance is set to a time interval at which stable detection can be performed in impedance control suitability detection.
  • the received signal strength is stored in storage means, and compared with the received signal strength at the time of application of impedance control from the next time on, the received signal strength information on the magnitude of received signal strength and its impedance matching information are stored.
  • the impedance value after convergence may be held and used as an initial value in the next impedance control mode.
  • impedance mismatch conditions are similar conditions, it is possible to reduce the time required for convergence of impedance automatic matching.
  • the impedance matching state is deteriorated when the human body approaches, it is desirable to operate the impedance control mode in conjunction with a button of a wireless communication device such as a call button or an Internet connection button.
  • a button of a wireless communication device such as a call button or an Internet connection button.
  • the application interval of the impedance control mode may be set to about once every several seconds.
  • press the end button Force It is desirable to continue the impedance control mode by regarding the human body as being in proximity for a predetermined period.
  • the predetermined period of time may be, for example, 10 seconds, 30 seconds or 1 minute.
  • the force S is not limited to this.
  • Impedance control aptitude is detected at the timing linked to the operation of the
  • the power value may be calculated. As a result, it is not necessary to operate the impedance control suitability detection means 7 all the time, intermittent operation is possible, and power consumption is reduced.
  • the second channel compensation means 6 updates the channel estimation value one by one in the radio frame or radio slot using pilot signals for initial channel estimation and tracking. Make compensation.
  • the tracking of the channel estimation value can be applied by linear interpolation, Nyquist's inner-row method, Gaussian inner-row method, Lagrange's inner-row method, or the like. In the present embodiment, even if such a known technique is applied, the contents of the invention will not be lost at all, and therefore, the detailed description will be omitted as using the known technique.
  • the signal U (k) at discrete time k in the nth radio frame subjected to channel compensation by the second channel compensation means 6 is represented by Expression 2.
  • Channel compensation is performed using channel estimation value h (n, k) at scattered time k. Note that the pilot
  • the channel estimation value may be calculated using data subjected to decision feedback, and may be used for tracking the channel estimation value.
  • Demodulation section 9 performs demodulation operation using second channel compensation means 6 using a signal in which channel variation caused by fading variation and impedance matching with antenna 1 has been compensated. That is, the symbol data is represented by a bit data by a symbol determiner not shown. And convert the interleaved data into the original bit sequence, perform puncturing processing, perform depuncturing processing, decode the channel-encoded data with an error correction decoder, and reproduce the transmission signal. Do the processing.
  • the first line compensation means 5 or the second line compensation means 6 performs line compensation only to the local station.
  • the second line compensation means 6 may not necessarily be required, and the demodulator 9 may use the output of the first line compensation means 5.
  • the amount of impedance control is limited so that the characteristic deterioration due to the adjustment of the impedance by the impedance variable means 2 becomes sufficiently small. Although this will increase the time to reach the optimal matching state, it will reduce the impact on reception quality.
  • FIG. 5 is a block diagram showing a configuration of a wireless communication apparatus according to a second embodiment of the present invention.
  • the wireless communication apparatus according to the present embodiment includes an antenna 1, an impedance variable unit 2, a wireless unit 3, a pilot signal extraction unit 4, a first line compensation unit 5, and an impedance control appropriateness detection unit 7. , Impedance control means 8 and a demodulator 9.
  • the radio frame or the radio slot includes the pilot signal 23 for tracking, but in the present embodiment, it is used for tracking. If no pilot signal is included, or if it is not used, it becomes an embodiment of the case.
  • the impedance control means 8 operates in the same procedure as FIG. 3 shown in the first embodiment. The difference is that in the impedance adjustment in step S24, the impedance is changed for a predetermined time and then returned to the impedance value before the change. In this case, the time for changing the impedance is set to a time at which stable detection can be performed in impedance control suitability detection. As a result, in the radio frame or the radio slot, the impedance adjustment operation is intermittently limited in number.
  • FIG. 6 is a schematic view showing control operation timing in the impedance control means 8.
  • the impedance in the impedance variable means 2 is changed by d (t) within a predetermined period Ts.
  • the impedance control suitability detected by the impedance control suitability detection means is + Detected within Tl + Td + Tq (where Tq ⁇ Ts). The above operation is repeated similarly for the subsequent frames.
  • Demodulation section 9 performs a demodulation operation using the output of first channel compensation means 5.
  • impedance adjustment control can be intermittently performed with the number of times limited in the radio frame or the radio slot. As a result, 1) even if line variations occur due to impedance changes, the ratio occupied by the radio frame or radio slot is a sufficiently short period, and 2) block variations occur where the line variations occur. Because the power interleaving is applied, the part that has received the channel fluctuation is decentralized after deinterleaving, and the received signal to which the error correction code has been applied is an error correction code by the decoding process of the error correction decoder. Is effective, and when the influence of reception quality deterioration is reduced, the recording effect is obtained.
  • impedance control means 8 performs one impedance control in the radio frame or radio slot, but the error correction capability is sufficiently high. If it does not, you may increase the number of times further. That is, the impedance adjustment control and the impedance control appropriateness detection operation are similarly repeated at predetermined time intervals in the frame. This makes it possible to reduce the convergence time required for automatic impedance matching, which is effective in improving reception quality.
  • FIG. 7 is a block diagram showing a configuration of a wireless communication apparatus using OFDM transmission in the present embodiment.
  • the wireless communication apparatus includes an antenna 1, an impedance variable unit 2, a wireless unit 3, a subcarrier signal extraction unit 70, a pilot signal extraction unit 41 1 to S, and a first channel compensation unit 5.
  • the subcarrier signal extraction unit 70 performs a fast Fourier transform (FFT) process using a time window from which a guard interval period added at the time of transmission is removed, to thereby obtain a complex baseband signal for each subcarrier 71- 1 to S are extracted and output to subcarrier processing units 72-1 to S (S is a natural number) provided for each subcarrier. In the present embodiment, the number of subcarriers is S.
  • FFT fast Fourier transform
  • Pilot signal extracting means 4 1 to S provided for respective subcarrier signals 71-:!-S, first line compensating means 5-1 to S, second line compensating means 6 1 to S and impedance control appropriateness detecting means 7:: to S perform the same operation as that of the first embodiment.
  • the demodulation unit 73 performs a demodulation operation using the output of the second channel compensation means 6_1 to S.
  • the impedance control means 74 receives the impedance control suitability which is the output of the S impedance control appropriateness detection means 7 as an input.
  • the impedance control means 74 performs the control operation described in the first embodiment in the same manner, but the detection method in step S25 of FIG. 3 is different. That is, the m th Assuming that the impedance control at discrete time k in the impedance control appropriateness detection means 7 ⁇ m is Q (k, m) (l ⁇ m ⁇ S), the impedance control means 74 indicates as (Equation 3) The average value Qm (k) of them is used as the impedance control aptitude. The impedance control means 74 performs the same operation as that of the first embodiment or the second embodiment, using the impedance control suitability Qm (k).
  • the control operation by impedance automatic matching becomes possible also at the time of subcarrier transmission.
  • impedance control suitability detection means 7-:!-S are provided for a plurality of subcarriers, and the average of their outputs is taken as the suitability for impedance control.
  • detection of suitability can be performed stably.
  • stable operation of the automatic impedance matching operation can contribute to improvement of reception quality.
  • pilot signal extraction means 41-1 S first channel compensation means 5-1-S, second channel compensation means 6- 1 to S, impedance control appropriateness detecting means 7_1 to S are provided to detect impedance control appropriateness for each subcarrier.
  • impedance control appropriateness detecting means 7_1 to S are provided to detect impedance control appropriateness for each subcarrier.
  • FIG. 8 shows the configuration of a wireless communication apparatus using CDMA transmission in the present embodiment. It is a block diagram showing the The wireless communication apparatus of the present embodiment includes an antenna 1, impedance variable means 2, a wireless unit 3, a despreading means 80, pilot signal extraction means 41 to L, and a first line compensation means 5-. 1 to L, second line compensation means 6-: a plurality of finger path processing units 82 _ 1 to L having L, a first combining unit 83, impedance control appropriateness detecting means 84, impedance
  • the control unit 8 includes a second combining unit 85 and a demodulation unit 86.
  • the despreading means 80 despreads the signal spread with a predetermined spreading code at the time of transmission using the same spreading code.
  • the arrival path timings of L (where L is a natural number) arriving multipaths are estimated by path search means (not shown), and the despreading process is performed at each path arrival timing.
  • the complex baseband signal 81-1 L for each finger path is extracted and output to the finger path processing unit 82-1 L.
  • the pilot signal extraction means 4-l L, the first line compensation means 5-1 L and the second line compensation means 6- :! L provided for each finger pass signal 81 L are the first The same operation as the embodiment of FIG.
  • the first combining unit 83 performs an addition process on the output of the first line compensating unit 5-1 L provided for each of the L path fingers.
  • the second combining unit 85 adds up the outputs of the second line compensating means 6-:! L provided for each of the L path fingers.
  • the demodulation unit 86 performs a demodulation operation using the output of the second combining unit 85.
  • the impedance control suitability detection unit 84 performs the same operation as that of the first embodiment except that the impedance control suitability detection is performed on the output of the first combining unit 83. Also, the impedance control means 8 performs the same operation as that of the first embodiment.
  • control operation by automatic impedance matching becomes possible even in CDMA transmission.
  • a plurality of first line compensation means 5_1 L are provided respectively for the plurality of finger paths obtained by the despreading process, and the first line compensation means 5_1 L of all the finger paths are provided.
  • FIG. 9 is a block diagram showing the configuration of a wireless communication apparatus using multiple antennas in the present embodiment.
  • the wireless communication apparatus includes an antenna 1, an impedance variable unit 2, a wireless unit 3, a pilot signal extraction unit 4, a first line compensation unit 5, a second line compensation unit 6, and an impedance control appropriateness detection.
  • Means 7, a plurality of receiving system units having impedance control means 92, a reception weight generation unit 93, a reception beam forming unit 94, and a demodulation unit 9 are provided.
  • FIG. 9 shows the case where the number of reception systems Nr is 2, the present invention is not limited to this, and the case of more than this can be applied similarly.
  • the j-th reception system unit 91-j includes an antenna 1-j, an impedance variable unit 2-j, a radio unit 3-j, a pilot signal extraction unit 4 j, and a first line compensation unit 5-.
  • second circuit compensation means 6-j impedance control suitability detection means 7-j
  • impedance control means 92-j each operation other than impedance control means 92-j Is the same as that of the first embodiment, and the description thereof is omitted.
  • j is a natural number less than or equal to Nr.
  • the impedance control means 92-j outputs the force in the convergence process of the impedance control mode and whether it is in the other operation mode to the subsequent reception weight generation unit 93. That is, at step S27 in the flowchart of the impedance control means 8 in FIG. 3 or FIG. 4, the control flag F (j) in the convergence process is set to "1" only when it can not be determined that the evaluation function has converged. Otherwise, the control flag F (j) is set to "0".
  • Reception weight generation unit 93 generates a reception weight for combining the outputs of the second channel compensation means 6-:!-Nr of the number of reception systems, and outputs the reception weight to reception beam forming unit 94.
  • the impedance control means 92— :! ⁇ Generate reception weights with different reception weight generation algorithms based on the control flag F (j) from Nr. That is, of the control flag F (j) If there is at least one “1” which indicates that it is in the convergence process, maximum ratio combined beam is generated.
  • the minimum squared error criterion (hereinafter, MMSE and Generate reception weights according to The signal combined by the reception beam forming unit 94 is output to the demodulation unit 9.
  • the demodulator 9 performs the demodulation operation as in the first embodiment.
  • the reception weight generation unit 93 and the reception beam formation unit 94 may be combined to form an array combining means.
  • the control operation by impedance automatic matching becomes possible even at the time of reception using a multi antenna.
  • the reception beam forming unit 94 adopts the maximum ratio combining beam as the reception weight generation algorithm.
  • the reception beam forming unit 94 performs beam null formation by MMSE when it is not in the convergence process of impedance automatic matching in all reception systems.
  • the wireless communication terminal avoids operating the MM SE algorithm, which has a large deterioration in the anti-recession performance, although the complex amplitude fluctuation due to the impedance change occurs in the convergence process of the impedance automatic matching.
  • This variation can be received with the maximum ratio combining weight with less deterioration in performance.
  • the reception quality is improved more effectively than using the maximum ratio combining weight due to the effect of the reception weight that optimizes the Signal to Interference Ratio (SIR). Can.
  • SIR Signal to Interference Ratio
  • the wireless communication apparatus may have a plurality of antennas and a plurality of wireless units connected thereto.
  • the radio unit converts the received signal into a complex baseband signal and outputs it, but depending on the modulation method, a baseband signal other than the complex baseband signal It may be converted to and output.
  • the present invention contributes to the improvement of the reception quality, and the application to the receiving unit in the broadcast receiver is similarly possible, and the effect described in the present embodiment can be similarly obtained. it can.
  • the present invention is not limited to this, and by making impedance matching variable similarly at transmission as well, it can be used as an obstacle such as a human body, a bag, a desk, etc. Of course, it can be expected to improve antenna gain degradation due to impedance mismatch when wireless communication terminals are in close proximity. In this case, it is possible to apply the impedance value in the impedance variable means optimized at the time of reception at the time of transmission.
  • FIG. 10 is a block diagram showing the configuration of a wireless communication apparatus according to the sixth embodiment.
  • this wireless communication device stops the impedance control by the impedance control means 8 based on the received power detection means 100 for detecting the received power level and its output.
  • An operation mode determination unit 101 for determining whether to set the mode setting mode or the mode setting mode is newly added. The detailed operation different from that of the first embodiment will be mainly described below with reference to FIG.
  • Reception power detection means 100 detects the reception power level based on the output signal from radio section 3.
  • the received power detection means 100 determines that the received power level is high when the control section controls the amplification gain of the AGC to be smaller than a predetermined level from the radio section 3. Also, in the case of 2), the received power detection means 100 detects an SNR (signal-to-noise power ratio) which is a ratio of the noise power component contained in the complex baseband signal and the signal power component, If it is higher, it is determined that the received power level is high.
  • SNR signal-to-noise power ratio
  • Operation mode determination unit 101 determines the impedance based on the output of received power detection means 100.
  • the operation mode of the control means 8 is determined, and the result is output to the impedance control means 8. That is, when the received power detection means 100 determines that the received power level is higher than a predetermined level, the operation mode determination unit 101 controls the impedance control means 8 not to shift to the impedance control mode. On the other hand, when the received power detection unit 100 determines that the received power level is lower than the predetermined level, the operation mode determination unit 101 controls the impedance control unit 8 to shift to the impedance control mode.
  • the impedance control operation of the impedance control means 8 is the same as that of any of the first to fifth embodiments described above, and hence the description thereof is omitted below.
  • the impedance control when the reception power level exceeds the predetermined value, the impedance control is not performed. As a result, excessive impedance control will not be performed if the reception condition is preferably satisfied to meet the predetermined level. As a result, by stopping the operation for impedance control, power consumption of the wireless communication apparatus can be reduced.
  • FIG. 11 is a block diagram showing the configuration of a wireless communication apparatus according to the seventh embodiment.
  • the reception quality estimation unit 103 that estimates the reception quality based on the output of the demodulator 9, and the impedance control based on the output.
  • a configuration is adopted in which a force for setting the mode to stop the impedance control by means 8 and an operation mode determination unit 101a for determining whether to set the operation mode are newly added. The detailed operation different from that of the first embodiment will be mainly described below with reference to FIG.
  • Reception quality estimation section 103 estimates reception quality based on the output signal from demodulation section 9.
  • reception quality estimation method 1) CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) result included in transmission packet data, 2) decoding result of parity bit included in transmission packet data, of the decoding result by the error correction decoder 3) Use the bit error rate, and compare the packet error rate with the specified value.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the reception quality is Estimated to be good.
  • the operation mode determination unit 101a determines the operation mode of the impedance control unit 8 based on the output of the reception quality estimation unit 103, and outputs the result to the impedance control unit 8. That is, when the reception quality estimation unit 103 determines that the reception quality is better than the predetermined level, the operation mode determination unit 101 performs control so that the impedance control unit 8 does not shift to the impedance control mode. On the other hand, when the reception quality estimation unit 103 determines that the reception quality is lower than the predetermined level, the impedance control means 8 performs control to shift to the impedance control mode.
  • the impedance control operation of the impedance control means 8 is the same as that of any of the first to fifth embodiments described above, and hence the description thereof is omitted below.
  • the impedance control when the reception quality level exceeds the predetermined value, the impedance control is not performed. As a result, excessive impedance control will not be performed if the reception quality is preferable to satisfy a predetermined level. As a result, by stopping the operation for impedance control, power consumption of the wireless communication apparatus can be reduced.
  • FIG. 12 is a block diagram showing the configuration of a wireless communication apparatus according to the eighth embodiment.
  • this wireless communication apparatus extracts a transmission parameter based on the output of the demodulator 9 power, and the impedance control based on the output.
  • An operation mode determination unit 101b is newly added to determine whether to set the mode to stop the impedance control by the means 8 or to set the mode to operate. The detailed operation different from that of the first embodiment will be mainly described below with reference to FIG.
  • the transmission parameter extraction unit 104 extracts transmission parameters based on the output signal from the demodulation unit 9.
  • the transmission parameter extraction extracts transmission parameters from the result of decoding by the error correction decoder of the demodulator 9 with respect to the part including information on the transmission parameters included in the transmission packet data.
  • information on transmission parameters any of 1) the number of multilevel modulations and the coding rate of error correction codes, 2) packet size, and 3) amount of received information are used.
  • the amount of received information refers to the amount of information such as e-mail, image data, content, etc. received from a specific communication partner in one communication.
  • Operation mode determination unit 101 b determines the operation mode of impedance control unit 8 based on the output of transmission parameter extraction unit 104, and outputs the result to impedance control unit 8. That is, the operation mode determination unit 101b uses one of 1) the number of multilevel modulations and the coding rate, 2) the packet size, and 3) the amount of received information extracted by the transmission parameter extraction unit 104 as follows. Determine the operating mode.
  • impedance control operation in impedance control means 8 is similar to that in any of the first to fifth embodiments described above. I will abbreviate.
  • impedance control when the modulation multi-level number exceeds a predetermined value or the coding rate is larger than a predetermined value, impedance control is not performed. As a result, impedance control is not performed when the reception condition satisfies the predetermined level. As a result, it is possible to reduce the power consumption of the wireless communication apparatus by stopping the operation for excessive impedance control.
  • the transmission packet size is smaller than a predetermined value, that is, when it is determined that the effect of improving the characteristics can not be obtained because the impedance control operation does not sufficiently converge, impedance control should be performed. There is no As a result, by stopping the operation for excessive impedance control, it is possible to reduce the power consumption of the wireless communication device.
  • the impedance control is performed. There is no longer. As a result, by stopping the operation for excessive impedance control, it is possible to reduce the power consumption of the wireless communication device.
  • FIG. 13 is a block diagram showing the configuration of a wireless communication apparatus according to the ninth embodiment.
  • the present wireless communication apparatus has a retransmission control section 105 that performs retransmission control based on the output of the demodulator section 9 and an impedance control means based on the output.
  • a force for setting the mode to stop the impedance control by 8 and an operation mode determination unit 101c for determining whether to set the operation mode are newly added.
  • the detailed operation different from that of the first embodiment will be mainly described below with reference to FIG.
  • Retransmission control section 105 performs retransmission control based on the output signal from demodulation section 9. That is, the retransmission control unit 105 determines, using the CRC result or the like, whether the decoding result of the transmission packet data by the error correction decoding process in the demodulation unit 9 has been successfully received. Then, when an error occurs in the packet data, the retransmission control unit 105 controls the retransmission request.
  • the operation mode determination unit 101 c determines the operation mode of the impedance control unit 8 based on the output of the retransmission control unit 105, and outputs the result to the impedance control unit 8. The That is, when the retransmission control unit 105 does not control the retransmission request, the operation mode determination unit 101c determines that the received signal level is in a good environment, and sets the impedance control mode in the impedance control unit 8 to Do not shift, do control. On the other hand, when the retransmission control unit 105 controls the retransmission request, the operation mode determination unit 101c determines that the received signal level is not in a good environment, and shifts to the impedance control mode in the impedance control means 8. Take control.
  • the operation mode of the impedance control means 8 is determined and controlled based on the output of the retransmission control unit 105. As a result, when control of the retransmission request is not performed, impedance control is not performed. As a result, it is possible to reduce the power consumption of the wireless communication device by stopping the operation for excessive impedance control.
  • the wireless communication apparatus has impedance variable means capable of stably performing automatic matching of antenna impedance even in a fading environment without degradation of reception quality, and is useful in the wireless communication field. It can also be applied to applications such as broadcast receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Description

明 細 書
無線通信装置
技術分野
[0001] 本発明は、アンテナのインピーダンス整合を適切に行う無線通信装置に関するもの である。
背景技術
[0002] アンテナと無線部との間のインピーダンス整合をとるために、インピーダンス整合回 路が用いられている。し力 ながら、インピーダンス整合回路が固定的なものである 場合、無線通信装置に近接する物体の影響を受けてインピーダンス不整合が生じ、 整合損失により本来のアンテナの性能が得られなくなる課題が生じる。
[0003] 例えば、無線通信装置が使用者の人体に近接して使用される状況下では、人体が 損失性の誘電体であることから、アンテナ特性は人体の影響を受け、インピーダンス 不整合が生じる。また、通話、メール、かばんやポケットでの保持などの様々な使用 状況及び設置環境においてインピーダンス不整合状況が変化する。
[0004] このような課題を解決するために、受信信号強度(Received Signal Strength Indicator,以下、 RSSIとする)を監視し、その値が以前に測定した値よりも下がって いる場合、可変リアクタンス素子のリアクタンス値を制御することにより、インピーダン スの整合を行うものがある(例えば、特許文献 1参照)。これにより、近接物体の影響 により、アンテナとのインピーダンス不整合が生じて、 RSSIが低下した場合でも、イン ピーダンスの整合を自動的に行うことで、 RSSIを回復することができる。また、送信 機の場合には、例えば送信アンテナから方向性結合器を通して得られる反射電力が 最小となる制御を適用することで、同様なインピーダンスの自動整合が可能である。
[0005] また、この自動整合に用いる制御回路や、最適化アルゴリズム、評価関数などにつ レ、ての提案がなされている(例えば、非特許文献 1参照)。
特許文献 1 :特開昭 61— 135235号公報
非特許文献 1 :小川晃ー、他 3名、「最急降下法による人体近接アクティブアンテナの インピーダンス自動整合」、電子情報通信学会論文誌、社団法人電子情報通信学会 、 2004年 9月、第 J87— B卷、第 9号、 pl287— 1298
発明の開示
発明が解決しょうとする課題
[0006] し力 ながら、上記従来の無線通信装置においては、 RSSIを基にインピーダンス 整合を行っているが、 RSSIが近接物体の影響以外で変動する場合、例えば無線端 末装置の移動、あるいは周辺事物の移動により、無線通信を行う伝搬路にフェージ ングが生じている使用環境においては、伝搬路のフエージング変動と、近接物体の 影響による変動との区別ができなレ、。そのため伝搬路のフエージング変動により RSS Iが低下した場合に、本来は必要でないインピーダンス整合の動作を行うことで、逆に インピーダンスの整合状態を劣化させ、不整合損を増加させてしまうといった課題が ある。
[0007] また、アンテナと無線部との間の整合回路のインピーダンスを変化させると、受信さ れるベースバンド信号は、不定量の複素振幅変動を受ける。復調時に同期検波を用 いる受信機では、伝搬路の回線変動を予め推定して複素振幅変動を補償した後に、 所定のシンボル候補点に最も近レ、ものをシンボル判定値とするが、上記の整合回路 のインピーダンス変化による複素振幅変動が生じると、推定された回線変動と差異が 生じ、その差異が大きくなるほど、シンボル判定時の誤りを増加させ、受信品質が劣 化するという課題が生じる。
[0008] 本発明は、前記従来の課題を解決するもので、無線通信を行う伝搬路にフェージ ング変動が生じている場合でも、インピーダンスの自動整合を安定的に実現し、また 、インピーダンス自動整合時のインピーダンス変化に起因する受信品質の劣化を低 減させる無線通信装置を提供することを目的とする。
課題を解決するための手段
[0009] 前記従来の課題を解決するために、本発明の無線通信装置は、受信系統部を備 えた無線通信装置であって、前記受信系統部が、アンテナにより受信した信号を、ベ ースバンド信号に変換し、出力する無線部と、アンテナと無線部との間のインピーダ ンスを調整するインピーダンス可変手段と、ベースバンド信号から予め既知のパイ口 ット信号を抽出し、出力するパイロット信号抽出手段と、パイロット信号を用いてチヤネ ル推定を行い、ベースバンド信号の回線補償を行う回線補償手段と、回線補償手段 の出力を用いてインピーダンス制御適性度を検出するインピーダンス制御適正度検 出手段と、インピーダンス制御適正度検出手段の出力を基に、インピーダンス可変手 段のインピーダンス変化量を制御するインピーダンス制御手段と、を有することを特 徴とする。
[0010] この構成により、伝搬路のフェージング変動による回線変動を補償し、その後、受 信状況の変動によるインピーダンス不整合の自動整合を行うので、伝搬路のフエ一 ジング変動と、受信状況の変動とを区別することができる。そして、伝搬路がフェージ ング変動を含む環境下においても、インピーダンスの自動整合の収束時間を短縮し 、収束時の特性を改善することができ、受信品質の向上を図ることができる。
[0011] また、本発明の無線通信装置では、前記回線補償手段の出力を用いて復調動作 を行う復調部を備えることが好ましい。
[0012] この構成により、受信品質を向上させた上で復調できる。
[0013] また、本発明の無線通信装置では、インピーダンス制御適性度検出手段は、回線 補償手段の出力電力を用いて、インピーダンス制御適正度を検出することが好まし レ、。
[0014] この構成により、インピーダンス調整による変動を受信信号電力の変化として検出 し、これを基にしたインピーダンス自動整合のアルゴリズムを動作させることができる。
[0015] また、本発明の無線通信装置では、インピーダンス制御適性度検出手段は、回線 補償手段の出力振幅を用いて、インピーダンス制御適正度を検出することが好まし レ、。
[0016] この構成により、インピーダンス調整による変動を受信信号強度の変化として検出 し、これを基にしたインピーダンス自動整合のアルゴリズムを動作させることができる。
[0017] また、本発明の無線通信装置では、回線補償手段は、無線フレームまたは無線ス ロットのプリアンブルに含まれるパイロット信号を用いて回線補償を行うことが好ましい
[0018] この構成により、精度よくフェージング変動を推定することができ、無線フレームまた は無線スロットでのインピーダンスの自動整合をより安定して行うことができる。 [0019] また、本発明の無線通信装置では、インピーダンス制御手段は、無線フレームまた は無線スロットのプリアンブルに含まれるパイロット信号を受信した後に、インピーダン ス制御適性度検出手段の出力を用いて、インピーダンス可変手段を制御することが 好ましい。
[0020] この構成により、伝搬路にフェージング変動を含む環境下においても、無線フレー ムまたは無線スロットに含まれるフェージング変動をより精度よく推定することができ、 インピーダンスの自動整合の動作をより安定化することができる。
[0021] また、本発明の無線通信装置では、インピーダンス制御手段は、インピーダンスを 変化させた期間に対応するインピーダンス制御適正度検出手段の出力を基に、イン ピーダンスを変化させることが好ましレ、。
[0022] この構成により、インピーダンスを変化させた期間に対応するインピーダンス制御適 正度検出手段の出力がある時以外は、インピーダンス制御手段の動作を停止するこ とができ、その間欠動作が可能となるため、無線通信装置そのものの消費電力を低 減すること力できる。
[0023] また、本発明の無線通信装置は、通話開始ボタンを備え、インピーダンス制御手段 は、通話開始ボタンの操作によりインピーダンス可変手段の制御を開始することが好 ましい。
[0024] この構成により、携帯電話などの通話開始ボタンが押される場合には明らかに人体 近接条件となることを用いて、インピーダンス自動整合の制御を行うことができ、それ 以外の場合にはインピーダンス制御手段の動作を停止することができ、その間欠動 作が可能となるため、無線通信装置そのものの消費電力を低減することができる。
[0025] また、本発明の無線通信装置は、インピーダンス整合情報と、インピーダンス整合 情報に対応する受信信号強度情報とを記憶する記憶手段を備え、記憶手段に記憶 された受信信号強度と、インピーダンス制御後の受信信号強度とを比較し、信号強 度が大きい方のインピーダンス整合情報と、信号強度が大きい方のインピーダンス整 合情報に対応する受信信号強度情報とを改めて記憶手段に記憶することが好ましい
[0026] この構成により、インピーダンス自動整合時に、アンテナ利得が所定以上に劣化す ることを防止することができ、受信品質の特性改善を安定的に行うことができる。
[0027] また、本発明の無線通信装置では、回線補償手段は、無線フレームまたは無線ス ロットのプリアンブルに含まれるパイロット信号を用いてチャネル推定を行い、ベース バンド信号の回線補償をして、インピーダンス制御適正度検出手段に出力する第 1 の回線補償手段と、無線フレームまたは無線スロットのデータに含まれるパイロット信 号を用いて回線変動をトラッキングし、ベースバンド信号の回線補償をして、復調部 に出力する第 2の回線補償手段とを有することが好ましい。
[0028] この構成により、伝搬路のフェージング変動による回線変動を補償し、その後、受 信状況の変動によるインピーダンス不整合の自動整合を行い、さらに、インピーダン ス自動整合による回線変動を補償するので、インピーダンスの自動整合の収束時間 を短縮し、収束時の特性を改善するとともに、インピーダンス自動整合の収束過程に おける受信特性の劣化を抑制することができる。
[0029] また、本発明の無線通信装置では、回線補償手段は、無線フレームまたは無線ス ロット期間中は固定の回線変動補償値を用いて回線補償を行うことが好ましい。
[0030] この構成により、伝搬路のフエージング変動が十分に緩やかな場合に、無線フレー ムまたは無線スロット内のフェージング変動と、インピーダンス変化による受信状況の 変動とを区別することができる。
[0031] また、本発明の無線通信装置では、インピーダンス制御手段は、インピーダンス可 変手段を用いて、所定期間だけインピーダンスを調整し、所定期間後は、インピーダ ンスを所定期間前の状態に戻すことが好ましい。
[0032] この構成により、無線フレームまたは無線スロットに、トラッキング用のパイロット信号 が含まれていない場合や、あるいはそれを利用しない場合、または、インピーダンス を調整したことにより新たな回線変動が生じる場合であっても、インピーダンスの変化 を所定期間の後に基の状態に戻すことで、受信特性の劣化を低減することができる。 特に、誤り訂正符号ィ匕及びインターリーブされて送信されるデータについては、イン ピーダンス調整期間が十分に短ければ、受信品質への影響をなくすことができる。
[0033] 本発明の無線通信装置は、アンテナにより受信した信号を、ベースバンド信号に変 換し、出力する無線部と、アンテナと無線部との間のインピーダンスを調整するインピ 一ダンス可変手段と、ベースバンド信号からサブキャリア毎のベースバンド信号を抽 出し、出力するサブキャリア信号抽出部と、サブキャリア毎のベースバンド信号から予 め既知のパイロット信号を抽出し、出力するパイロット信号抽出手段、パイロット信号 を用いてチャネル推定を行レ、、サブキャリア毎のベースバンド信号に回線補償を行う 回線補償手段、回線補償手段の出力を用いてインピーダンス制御適性度を検出す るインピーダンス制御適正度検出手段をそれぞれ有する複数のサブキャリア処理部 と、インピーダンス制御適正度検出手段の出力を基に、インピーダンス可変手段のィ ンピーダンス変化量を制御するインピーダンス制御手段と、回線補償手段の出力を 用いて復調動作を行う復調部とを備えたことを特徴とする。
[0034] この構成により、マルチキャリア伝送においても、伝搬路のフェージング変動と、イン ピーダンス変化による受信状況の変動とを区別することができる。そして、伝搬路がフ ヱ一ジング変動を含む環境下においても、インピーダンス変化による受信状況の変 動の誤検出がなくなり、インピーダンスの自動整合の収束時間を短縮し、収束時の特 性を改善することができ、受信品質の向上を図ることができる。
[0035] 本発明の無線通信装置は、アンテナにより受信した信号を、ベースバンド信号に変 換し、出力する無線部と、アンテナと無線部との間のインピーダンスを調整するインピ 一ダンス可変手段と、ベースバンド信号に逆拡散処理を行い、フィンガパス毎のベー スバンド信号を抽出し、出力する逆拡散手段と、フィンガパス毎のベースバンド信号 力 予め既知のパイロット信号を抽出し、出力するパイロット信号抽出手段、パイロット 信号を用いてチャネル推定を行レ、、フィンガパス毎のベースバンド信号に回線補償 を行う回線補償手段をそれぞれ有する、フィンガパスと同数のフィンガパス処理部と、 回線補償手段の出力の加算処理を行う第 1の合成部と、第 1の合成部の出力を用い てインピーダンス制御適性度を検出するインピーダンス制御適正度検出手段と、イン ピーダンス制御適正度検出手段の出力を基に、インピーダンス可変手段のインピー ダンス変化量を制御するインピーダンス制御手段と、回線補償手段の出力の加算処 理を行う第 2の合成部と、第 2の合成部の出力を用いて復調動作を行う復調部とを備 えたことを特徴とする。
[0036] この構成により、 CDMA伝送においても、伝搬路のフヱ一ジング変動と、インピー ダンス変化による受信状況の変動とを区別することができる。そして、伝搬路がフエ一 ジング変動を含む環境下においても、インピーダンス変化による受信状況の変動の 誤検出がなくなり、インピーダンスの自動整合の収束時間を短縮し、収束時の特性を 改善することができ、受信品質の向上を図ることができる。
[0037] 本発明の無線通信装置は、本発明の受信系統部を複数備え、回線補償手段の出 力を重み付けて合成するアレー合成手段と、アレー合成手段の出力を用いて復調動 作を行う復調部とを備えたことを特徴とする。
[0038] この構成により、複数のアンテナを有していても、伝搬路のフェージング変動と、ィ ンピーダンス変化による受信状況の変動とを区別することができる。そして、伝搬路が フェージング変動を含む環境下においても、インピーダンス変化による受信状況の変 動の誤検出がなくなり、インピーダンスの自動整合の収束時間を短縮し、収束時の特 性を改善することができ、受信品質の向上を図ることができる。
[0039] また、本発明の無線通信装置では、アレー合成手段は、インピーダンス制御手段が
、無線フレームまたは無線スロット期間中にインピーダンスを変化させる制御の有無 により、アレー合成の方法を変化させることが好ましレ、。
[0040] この構成により、インピーダンスの整合状態によって、複数のアンテナによる受信信 号の合成方法を変化させることができ、インピーダンス自動整合の収束過程における 受信品質の劣化を低減することができる。
[0041] また、本発明の無線通信装置では、アレー合成手段は、インピーダンス制御手段が 、無線フレームまたは無線スロット期間中にインピーダンスを変化させる制御を行う場 合は最大比合成重みを用いてアレー合成を行い、無線フレームまたは無線スロット 期間中にインピーダンスを変化させる制御を行わない場合は、ビーム及びヌルの制 御を行うアレー合成手法による重みを用いてアレー合成を行うことが好ましい。
[0042] この構成により、インピーダンスの整合状態によって、複数のアンテナによる受信信 号の合成方法を選択することができ、特に、インピーダンス自動整合の収束過程に おいて、ビーム及びヌルの制御を行わないことで、インピーダンス制御により新たな回 線変動が生じる場合における受信品質の劣化を低減することができる。
[0043] また、本発明の無線通信装置では、アレー合成手段は、複数の受信系統部のイン ピーダンス制御手段の出力を用いて、受信ウェイトを生成し、出力する受信ウェイト 生成部と、複数の受信系統部の第 2の回線補償手段の出力を、受信ウェイトを用い て合成する受信ビーム形成部とを有することが好ましい。
[0044] この構成により、受信ウェイト生成部を無線通信装置ごとに切り替えて、最適な受信 ウェイトを選択することができる。
[0045] また、本発明の無線通信装置では、受信電力を検出する受信電力検出手段と、前 記受信電力検出手段の出力を基に、インピーダンス制御を停止するモードにするか
、インピーダンス制御を動作させるモードにするかを判定する動作モード判定部と、 を備え、前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて動 作モードを切り替えることが好ましい。
[0046] この構成により、受信電力レベルが所定値を超える場合、インピーダンス制御を行う ことがなくなるため、インピーダンス制御のための動作に力かる消費電力の低減を行 うことが可能となる。
[0047] また、本発明の無線通信装置では、前記復調部の出力を基に受信品質を推定す る受信品質推定部と、前記受信品質推定部の出力を基に、インピーダンス制御を停 止するモードにするか、インピーダンス制御を動作させるモードにするかを判定する 動作モード判定部と、を備え、前記インピーダンス制御手段は、前記動作モード判定 部の出力に応じて動作モードを切り替えることが好ましレ、。
[0048] この構成により、受信品質が所定レベルを満たすような好適な場合には、過剰なィ ンピーダンス制御を行うことがなくなるため、インピーダンス制御のための動作にかか る消費電力の低減を行うことが可能となる。
[0049] また、本発明の無線通信装置は、前記復調部の出力を基に伝送パラメータを抽出 する伝送パラメータ抽出部と、前記伝送パラメータ抽出部の出力を基に、インピーダ ンス制御を停止するモードにする力、、インピーダンス制御を動作させるモードにする かを判定する動作モード判定部と、を備え、前記インピーダンス制御手段は、前記動 作モード判定部の出力に応じて動作モードを切り替えることが好ましい。
[0050] この構成により、伝送パラメータからインピーダンス制御を停止させた方がよいと判 断される場合にはインピーダンス制御を行うことがなくなるため、 [0051] また、本発明の無線通信装置は、前記動作モード判定部は、前記伝送パラメータ 抽出部の出力を基に、受信情報量が所定値よりも小さい場合は、インピーダンス制 御を停止するモードとすることが好ましレ、。
[0052] この構成により、インピーダンス制御動作を行うことによる特性改善効果に比べて消 費電流が増加する悪影響の方が強くなると判断される場合、インピーダンス制御を行 うことがなくなるため、インピーダンス制御に力 る消費電力の低減を行うことが可能 となる。
[0053] また、本発明の無線通信装置は、前記復調部の出力を基に再送制御を行う再送制 御部と、前記再送制御部の出力を基に、インピーダンス制御を停止するモードにする か、インピーダンス制御を動作させるモードにするかを判定する動作モード判定部と 、を備え、前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて 動作モードを切り替えることが好ましい。
[0054] この構成により、再送要求の制御を行わない場合、インピーダンス制御を行うことが なくなるため、インピーダンス制御のための動作に力かる消費電力の低減を行うこと が可能となる。
発明の効果
[0055] 本発明の無線通信装置によれば、無線通信を行う伝搬路にフェージング変動が生 じている場合でも、インピーダンスの自動整合を安定的に実現し、また、インピーダン ス自動整合時のインピーダンス変化に起因する受信品質の劣化を低減させる無線通 信装置を提供することができる。また、通話時の人体近接時といった無線通信装置の 使用状況下で、アンテナの利得の劣化を抑え、受信品質の改善に寄与することがで きる。
図面の簡単な説明
[0056] [図 1]本発明の第 1の実施の形態における無線通信装置の構成を示すブロック図
[図 2]本発明の第 1の実施の形態における無線通信装置の受信する無線フレームの 構成を示す模式図
[図 3]発明の第 1の実施の形態における無線通信装置のインピーダンス制御手段の 制御手順を示すフロー図 園 4]本発明の第 1の実施の形態における無線通信装置のインピーダンス制御手段 の別の制御手順を示すフロー図
園 5]本発明の第 2の実施の形態における無線通信装置の構成を示すブロック図 園 6]本発明の第 2の実施の形態における無線通信装置のインピーダンス制御手段 の制御タイミング示す模式図
園 7]本発明の第 3の実施の形態における無線通信装置の構成を示すブロック図 園 8]本発明の第 4の実施の形態における無線通信装置の構成を示すブロック図 園 9]本発明の第 5の実施の形態における無線通信装置の構成を示すブロック図 園 10]本発明の第 6の実施の形態における無線通信装置の構成を示すブロック図 園 11]本発明の第 7の実施の形態における無線通信装置の構成を示すブロック図 園 12]本発明の第 8の実施の形態における無線通信装置の構成を示すブロック図 園 13]本発明の第 9の実施の形態における無線通信装置の構成を示すブロック図 符号の説明
1 アンテナ
2 インピーダンス可変手段
3 無線部
4 ノ ィロット信号抽出手段
5 第 1の回線補償手段
6 第 2の回線補償手段
7 インピーダンス制御適性度検出手段
8 インピーダンス制御手段
9 復調部
70 サブキャリア信号抽出部
72 サブキャリア処理部
80 逆拡散手段
82 フィンガパス処理部
83 第 1の合成部
85 第 2の合成部 91 受信系統部
93 受信ウェイト部
94 受信ビーム形成部
発明を実施するための最良の形態
[0058] 以下、本発明の実施の形態について、図面を参照しながら説明する。
[0059] (第 1の実施の形態)
図 1は、本発明の第 1の実施の形態における無線通信装置の構成を示すブロック 図である。本無線通信装置は、高周波信号を受信するアンテナ 1、アンテナ 1と後続 する無線部 3とのインピーダンス整合をとるために、インピーダンスを調整するインピ 一ダンス可変手段 2、入力される高周波信号の増幅、周波数変換及び帯域制限を施 し、直交検波により同相信号 (I信号)及び直交信号 (Q信号)力 なる複素ベースバ ンド信号に変換する無線部 3、受信信号に含まれる予め既知のパイロット信号を抽出 するパイロット信号抽出手段 4、抽出されたパイロット信号を基に所定のタイミングで 無線回線の回線補償を行う第 1の回線補償手段 5及び第 2の回線補償手段 6、第 1 の回線補償手段 5の出力力 インピーダンス制御適正度を検出するインピーダンス 制御適正度検出手段 7、検出されたインピーダンス制御適正度に基に、アンテナ 1と の整合を行うインピーダンス制御手段 8、第 2の回線補償手段 6の出力に対し、復調 処理を行う復調部 9を有している。なお、第 1の回線補償手段 5はインピーダンス制御 適性度の検出に、好適な無線回線の回線補償を行い、第 2の回線補償手段 6は復 調動作のために好適な無線回線の回線補償を行う。
[0060] 以下、図 1を用いて、その詳細動作を説明する。また、原理動作の説明を目的とす るために、伝搬路モデルとしてフラットフェージングを仮定する。
[0061] アンテナ 1は、インピーダンス可変手段 2を介し、後続する無線部 3に接続される。ィ ンピーダンス可変手段 2は、インピーダンス制御手段 8の制御により、アンテナ 1と接 続する際のインピーダンスを制御する。インピーダンス可変手段 2の構成については 、例えば前出の非特許文献 1に開示されている。また、別の例として、いくつかの整 合回路の切り替えにより、インピーダンス可変手段 2を実現してもよい。本実施の形態 では、このような公知の技術を適用しても、発明の内容がなんら損なわれるものでは ないので、ここでは公知技術を使用するものとして詳細な説明を省く。
[0062] アンテナ 1で受信した高周波信号は、無線部 3において、図示されていない増幅器 、周波数変換器、帯域制限フィルタにより、それぞれ増幅、周波数変換及び帯域制 限を施される。その後に直交検波され、 I信号及び Q信号からなる複素ベースバンド 信号に変換される。
[0063] パイロット信号抽出手段 4は、この複素ベースバンド信号からパイロット信号を抽出 し、第 1の回線補償手段 5及び第 2の回線補償手段 6に出力する。
[0064] 図 2は、受信する信号の無線フレームの構成を示した模式図である。無線フレーム には、制御またはユーザ個別データ 21の他に、予め既知の信号系列(以下、パイ口 ット信号という)が含まれる。また、パイロット信号には、無線フレームの先頭 (プリアン ブル)に含まれる初期の回線推定用のパイロット信号 22と、制御データまたはユーザ 個別データ中に間欠的に含まれるトラッキング用のパイロット信号 23とがある。
[0065] なお、無線フレームがさらに複数の無線スロットで構成される場合は、その最小単 位の無線スロットでも同様の構成である。
[0066] また、図 2においては、時分割でパイロット信号が挿入されているが、符号分割を用 レ、てパイロット信号を多重させてもよい。この場合、パイロット信号を符号分割多重に より間欠的あるいは連続的に多重することができる。また、直交波周波数多割多重( Orthrogonal Frequency Division Multiplexing、 ·£Λ 、 OFDMとする)など によるマルチキャリア伝送においては、一部または全部のサブキャリアを用いて、間 欠的にトラッキング用のパイロット信号を挿入しても良いし、一部のサブキャリアに連 続的にトラッキング用のパイロット信号を挿入しても良い。
[0067] 第 1の回線補償手段 5は、各無線フレームに含まれる初期の回線推定用のパイロッ ト信号を用いて、振幅変動及び位相変動を含む複素数で表される回線推定値 h (n)
1 を算出する(ただし、 nは無線フレーム番号を表す自然数)。そして、当該第 n番目の 無線フレーム内に含まれる離散時刻 kにおける制御データまたはユーザ個別データ y (k)に対し、算出された回線推定値 h (n)を無線フレーム内で一定とし、(数 1)のよ n 1
うに回線補償を行う。ここで、第 1の回線補償手段 5による回線補償後の信号を z (k) n として表す。これにより、無線フレーム内で伝搬路の変動が比較的緩や力な場合、第 1の回線補償手段 5による回線補償後の信号は、伝搬路のフエージングによる変動 が補償されたものとなり、送信時の信号振幅レベルを再現することができる。
[0068] [数 1]
z (k、) =
Figure imgf000015_0001
[0069] インピーダンス制御適正度検出手段 7は、インピーダンス制御手段 8によるインピー ダンス自動整合動作が適正であるかを表すインピーダンス適正度を検出する。インピ 一ダンス制御適性度は、第 1の回線補償手段 5により、伝搬路におけるフェージング 変動が補償されたものとして、第 1の回線補償手段 5の出力信号 z (k)を用いて、イン ピーダンス制御適性度を検出する。ここで、インピーダンス制御適性度としては、 z (k
)の振幅または電力値を用いる。
[0070] インピーダンス制御手段 8は、インピーダンス制御適性度に基づきインピーダンス可 変手段 2におけるインピーダンス値を変化させ、アンテナと無線部 3との間のインピー ダンス整合を行う。
[0071] 図 3はインピーダンス制御手段 8における制御手順を示すフロー図である。以下、 図 3を用いてその動作説明を行う。
[0072] まず、インピーダンス制御手段 8は、インピーダンス可変手段 2におけるインピーダ ンス値を初期値に設定する(ステップ S20)。初期値としては、例えば通話状態などの 人体近接時において最適な利得が得られるインピーダンス値に設定しておくことが望 ましレ、。すなわち、人体、かばん、机などの想定される障害物に対して所定の間隔で 配置された場合に、最も不整合損失が少なくなるように、予め調整されたインピーダ ンス値に設定しておく。また、所定の間隔の一例として、接触状態である Ommや、非 接触状態である 5mm、 10mm, 50mmなどが考えられる力 これに限定されるもので はない。この場合、人体が近づいていることが明らかな場合に、そのインピーダンス 自動整合のための収束速度を高める効果がある。あるいは、人体などが近接してい ない自由空間の条件で、使用するアンテナとの最適な整合状態が得られるインピー ダンス値に設定しても良い。
[0073] 次に、無線通信装置の動作状況を監視する(ステップ S21)。動作状況としては、通 話期間中、 iモードなどのインターネット接続中といった、人体が近接していることが明 らかな、端末装置に固有な条件を用いることが望ましい。そのため、例えば、人体接 触の検出、受信信号強度の低下検出、通話状態の検出などから一つあるいは複数 の組合せ条件を用いる。人体接触、受信信号強度の低下、通話状態のいずれか一 つまたは複数の組合せ条件が合致した場合、インピーダンス制御モードに移行する( ステップ S22)。検出されない場合は、引き続きステップ S21で動作状況を監視する。
[0074] 次に、インピーダンス制御モードの動作を説明する。なお、以下では、フレーム同期 が予め確立した後の動作を示す。インピーダンス制御手段 8は、無線フレームに同期 した動作を行う。すなわち、無線フレーム毎に、アンテナで受信される高周波信号段 で、初期の回線推定用のパイロット信号が受信されるタイミングまで待つ(ステップ S2
3)。初期の回線推定用のパイロット信号が受信された後に、インピーダンス制御手段 8はインピーダンス可変手段 2におけるインピーダンスの調整を開始する(ステップ S2
4)。インピーダンス可変手段 2におけるインピーダンス調整後、所定時間(当該高周 波信号が複素ベースバンド信号として観測されるまでの時間)の経過後のタイミング におけるインピーダンス制御適性度検出手段の出力値を検出する (ステップ S25)。 そして、インピーダンス自動整合のための所定の制御アルゴリズムにおける評価関数 を計算し、次回のインピーダンス変化値を算出する (ステップ S26)。算出された評価 関数値が所定の収束条件を満たしているかを判定し (ステップ S27)、収束条件を満 たさない場合は、動作状況を再度確認し (ステップ S28)、インピーダンス制御モード の条件が引き続き満たされる場合はステップ S23に移り、以下同様に繰り返し処理を 行う。一方、インピーダンス制御モードの条件を満たさなくなった場合は、インピーダ ンス制御モードから抜け、ステップ S20に復帰する。
[0075] ステップ S27において、収束条件を満たす場合は、インピーダンス制御モードにお いてインピーダンス整合が完了したものとみなし、そのインピーダンス値を保持しつつ (ステップ S29)、動作状況を確認し (ステップ S30)、インピーダンス制御モードの条 件が引き続き満たされる場合はそのインピーダンス値の保持を続け、インピーダンス 制御モードの条件を満たさなくなった場合は、インピーダンス制御モードから抜けス テツプ S 20に復帰する。
[0076] ここで、インピーダンス自動整合の制御アルゴリズムは、例えば、前出の非特許文 献 1に開示されているような最急降下法に基づく手法などの適用が可能であり、これ によりアンテナ 1とのインピーダンス不整合損を低減することが可能である。
[0077] なお、上述のステップ S25において、インピーダンス可変手段 2におけるインピーダ ンス調整後、所定時間の経過後のタイミングにおけるインピーダンス制御適性度検出 手段による出力値を検出するが、この際、インピーダンス制御適性度検出手段の出 力値を異なるタイミングで複数回の検出し、その平均値を検出値としても良レ、。この 場合、受信信号に含まれる雑音の影響及び残留する伝搬路のフェージング変動の 影響を低減した検出を行うことができ、インピーダンス自動整合の収束動作の安定化 を図ることができる。
[0078] また、上述したインピーダンス制御モードでは、無線フレームあるいは無線スロット 単位で、 1回のインピーダンス調整動作を行っている。つまり、初期の回線推定用パ ィロットによる回線補償後の時間的に近接したタイミングで、インピーダンス調整制御 を行うことで、フェージング変動の影響を排除でき、より正確にインピーダンス制御に 起因する変動を検出できる。一方、無線フレームあるいは無線スロットに、所定時間 間隔毎に複数回のインピーダンス調整動作を行っても良い。
[0079] 図 4は、インピーダンス制御手段 8における別の制御手順を示すフロー図である。
図 3と異なる部分は、ステップ S27で算出された評価関数値が所定の収束条件を満 たしているかを判定し、収束条件を満たさない場合は、動作状況を再度確認し (ステ ップ S31)、インピーダンス制御モードの条件が引き続き満たされる場合に、ステップ S23に戻るのではなぐステップ S24に戻り、引き続きインピーダンス制御を行う点で ある。これにより無線フレームあるいは無線スロットに、所定時間間隔毎に複数回のィ ンピーダンス調整動作が可能となり、収束までに要する時間を短縮することができる 効果を有する。ただし、伝搬路のフェージング変動状況が激しい場合は、無線フレー ムまたは無線スロット内の時間経過が経つほど、フェージング変動が重畳される確率 が高くなり、インピーダンス制御に起因する変動を検出する精度が劣化する可能性が ある。そのため、ドップラー周波数など伝搬路の変動状況を検出し、無線フレームあ るいは無線スロット単位で行うインピーダンス調整動作の回数を変更する構成でも良 レ、。この場合、変動が緩やかであるほど、インピーダンス調整動作の回数を増やす方 法の適用が可能であり、伝搬状況に応じて、インピーダンス制御に起因する変動の 検出の高精度化と、インピーダンス自動整合の制御アルゴリズム収束時間の短縮化 との両立が図れる。
[0080] なお、ステップ S24のインピーダンス調整において、変更するインピーダンス値によ つては、利得が劣化する可能性があるため、その影響を最小限にするため、インピー ダンスを所定の時間変化させた後、変化させる前のインピーダンス値に戻す処理を 行っても良い。この場合、インピーダンスを変化させる時間は、インピーダンス制御適 性度検出において安定的な検出ができる時間間隔に設定する。
[0081] また、変更したインピーダンス値により評価関数の算出を行レ、、整合状況が改善さ れたと判断された場合には、次回のインピーダンス制御においては、そのインピーダ ンス値を固定的に用いる制御を加えても良レ、。これにより、収束の途中であっても、 改善されたインピーダンス整合状況となり、受信品質の向上に寄与することができる。
[0082] なお、受信信号強度を記憶手段に保持し、次回以降のインピーダンス制御適用時 の受信信号強度と比較し、受信信号強度の大きレゝ方の受信信号強度情報とそのイン ピーダンス整合情報とを改めて記憶手段に保持することにより、インピーダンス制御 適用時におけるアンテナ利得劣化を防止することが可能となる。この場合、受信信号 強度は 1回の信号もしくは数回の平均値を用いることが可能である。
[0083] また、収束後のインピーダンス値を保持し、次回のインピーダンス制御モードにおけ る初期値としてもよい。これにより、インピーダンス不整合状況が類似状況であった場 合、インピーダンス自動整合の収束までに要する時間を短縮することができる。
[0084] なお、人体近接時にインピーダンス整合状態が劣化することから、通話ボタンなど 無線通信装置のボタンやインターネット接続ボタンと連動してインピーダンス制御モ ードを動作させることが望ましい。この場合、人体の動きは通信速度に比べて低速で あることから、インピーダンス制御モードの適用間隔を数秒に 1回程度にすることで、 回路における消費電流を少なくすることが可能となる。この場合、終了ボタンを押して 力 所定期間の間は人体が近接しているとみなして、インピーダンス制御モードを継 続することが望ましい。所定の期間として例えば、 10秒、 30秒や 1分といった時間が 考えられる力 S、これに限定されるものではない。
[0085] なお、第 1の回線補償手段 5による回線補償後の信号 z (k)を用いて、インピーダン n
ス制御手段 8の動作と連動したタイミングで、インピーダンス制御適性度を検出(z (k
n
)の振幅または電力値算出)しても良い。これによりインピーダンス制御適性度検出手 段 7を常時動作させる必要がなくなり、間欠動作が可能となり、消費電力の低減に効 果を有する。
[0086] 一方、図 1において、第 2の回線補償手段 6は、初期回線推定用及びトラッキング用 のパイロット信号を用いて、無線フレームあるいは無線スロット内で、回線推定値を逐 次更新させて回線補償を行う。回線推定値のトラッキングは、線形補間、ナイキストの 内揷方式、ガウスの内揷方式、 Lagrangeの内揷方式などの適用が可能である。本 実施の形態では、このような公知の技術を適用しても、発明の内容がなんら損なわれ るものではないので、ここでは公知技術を使用するものとして詳細な説明を省く。
[0087] 第 2の回線補償手段 6により回線補償された第 n番目の無線フレームにおける離散 時刻 kの信号 U (k)は、(数 2)に示される。離散時刻 kにおける制御データまたはュ n
一ザ個別データ y (k)に対し、回線推定値のトラッキング演算の結果、算出された離
n
散時刻 kにおける回線推定値 h (n、 k)を用いて回線補償を行う。なお、パイロット信
2
号を含まないデータに対しは、判定帰還されたデータを用いて回線推定値を算出し 、回線推定値のトラッキングに用いても良い。
[0088] [数 2]
Figure imgf000019_0001
U,人 k) :
h2 k)
[0089] 復調部 9は、第 2の回線補償手段 6により、フエージング変動及びアンテナ 1とのィ ンピーダンス整合に起因する回線変動が補償された信号を用いて復調動作を行う。 すなわち、図示されていないシンボル判定器により、シンボルデータをビットでデータ に変換し、インターリーブされたデータを元のビット列に変換し、パンクチヤ処理され た場合はデパンクチヤ処理を施し、チャネル符号化されたデータに対し、誤り訂正復 号器により復号処理を行い送信信号の再生処理を行う。
[0090] 以上の動作により、無線フレーム内(あるいは無線スロット内)での回線変動のトラッ キングが可能となり、インピーダンス可変手段 2において、インピーダンスを調整した 場合の回線変動が含まれる場合も、第 2の回線補償手段 6によるトラッキング動作に より受信品質への影響を低減することが可能となる。
[0091] また、本実施の形態において、複数の無線通信装置と多元接続している場合、第 1 の回線補償手段 5または第 2の回線補償手段 6が回線補償を行うのは、 自局宛ての 無線フレームあるいは無線スロットでなぐ他の受信装置宛ての無線フレームあるい は無線スロットを用いても力、まわなレ、。これにより、 自局宛てだけでなぐ他の受信装 置宛ての無線フレームあるいは無線スロットを用いることができ、最適な整合状態に 到達時間を短縮化できる効果が得られる。
[0092] また、本実施の形態において、第 2の回線補償手段 6は必ずしも必須ではなぐ第 1 の回線補償手段 5の出力を、復調部 9で用いるようにしてもよい。その場合には、イン ピーダンス可変手段 2によるインピーダンスを調整による特性劣化が十分小さくなるよ うに、インピーダンス制御量を制限する。これにより最適な整合状態への到達時間は 長くなるが、受信品質への影響を抑えることができる。
[0093] (第 2の実施の形態)
図 5は、本発明の第 2の実施の形態における無線通信装置の構成を示すブロック 図である。本実施の形態の無線通信装置は、アンテナ 1と、インピーダンス可変手段 2と、無線部 3と、パイロット信号抽出手段 4と、第 1の回線補償手段 5と、インピーダン ス制御適正度検出手段 7と、インピーダンス制御手段 8と、復調部 9とを有している。 第 1の実施の形態では図 2に示すように無線フレームまたは無線スロットに、トラツキ ング用のパイロット信号 23が含まれていることを前提にしたが、本実施の形態におい ては、トラッキング用のパイロット信号が含まれていない場合、あるいはそれを利用し なレ、場合の実施の形態となる。
[0094] インピーダンス制御手段 8は、第 1の実施の形態で示した図 3と同様な手順で動作 する力 異なるのはステップ S 24のインピーダンス調整において、インピーダンスを所 定の時間変化させた後、変化させる前のインピーダンス値に戻す処理を行う。この場 合、インピーダンスを変化させる時間は、インピーダンス制御適性度検出において安 定的な検出ができる時間に設定する。これにより、無線フレームまたは無線スロットに おいて、間欠的に回数制限されたインピーダンス調整動作となる。
[0095] 図 6は、インピーダンス制御手段 8における制御動作タイミングを示す模式図である 。無線フレームの先頭の到来タイミングを基準(時刻 t = 0)とした場合、プリアンブル におけるパイロット信号 22の期間 Tpの経過後の時刻 t=Tp+Tl (ただし、 T1 >0) に、インピーダンス制御手段 8は、所定のインピーダンス自動整合アルゴリズムに従 レ、インピーダンス可変手段 2におけるインピーダンスを d (t)だけ、所定期間 Ts内に渡 り変化させる。これにより、インピーダンス可変手段 2におけるインピーダンス Dは、初 期のインピーダンス値を dOとした場合、 D = dO + d (t)となる。所定期間 Tsが経過後 の時刻 t=Tp+Tl +Ts以降は、インピーダンスィ直に戻す。次に、インピーダンス制 御手段 8に入力されている、インピーダンス制御適性度検出手段において検出され たインピーダンス制御適性度を、
Figure imgf000021_0001
+ Tl +Td+T q内で検出する(ただし、 Tq≤Ts)。以上の動作を以降のフレームに対し同様に繰り 返す。
[0096] 復調部 9は、第 1の回線補償手段 5の出力を用いて、復調動作を行う。
[0097] 以上の動作により、無線フレームまたは無線スロットにおいてインピーダンス調整制 御を間欠的に回数制限して行うことできる。これにより、 1)インピーダンスの変化によ り回線変動が生じても、無線フレームまたは無線スロットにおいて、それが占める割合 は、十分短い期間であること、また、 2)回線変動が生じる箇所がブロック的に集中し て生じる力 インターリーブを施しているため、逆インターリーブ後には回線変動を受 けた箇所は分散され、誤り訂正符号が施されている受信信号は、誤り訂正復号器の 復号処理により誤り訂正符号が有効に働き、受信品質劣化の影響が低減されるとレヽ う効果が得られる。
なお、本実施の形態において、インピーダンス制御手段 8は、無線フレームまたは 無線スロットにおいて、 1回のインピーダンス制御を行うが、誤り訂正能力が十分に高 い場合、さらにその回数を増やしても良い。すなわち、フレーム内で所定の時間間隔 毎にインピーダンス調整制御及びインピーダンス制御適正度検出動作を同様に繰り 返す。これにより、インピーダンス自動整合に要する収束時間を短縮することが可能 となり、受信品質の改善に効果的である。
[0098] (第 3の実施の形態)
第 1の実施の形態においては、シングノレキャリア伝送におけるインピーダンス制御 の動作を説明したが、本実施の形態においては、 OFDMのようなマルチキャリア伝 送への適用時の動作について説明する。
[0099] 図 7は、本実施の形態において、 OFDM伝送を用いる無線通信装置の構成を示 すブロック図である。本実施の形態の無線通信装置は、アンテナ 1と、インピーダンス 可変手段 2と、無線部 3と、サブキャリア信号抽出部 70と、パイロット信号抽出手段 4 一 1〜S、第 1の回線補償手段 5— 1〜S、第 2の回線補償手段 6— 1〜S、インピーダ ンス制御適正度検出手段 7—:!〜 Sを有する複数のサブキャリア処理部 72—:!〜 Sと 、インピーダンス制御手段 74と、復調部 73とを有している。
[0100] 無線部 3の出力が得られるまでは、第 1の実施の形態と同様であり、その動作説明 を省略する。サブキャリア信号抽出部 70は、送信時に付加されたガードインターバル 期間を取り除いた時間窓を用いて高速フーリエ変換(Fast Fourier Transform, FFT)処理を行うことで、サブキャリア毎の複素ベースバンド信号 71— 1〜Sを抽出し 、サブキャリア毎に設けられたサブキャリア処理部 72— 1〜S (Sは自然数)に出力す る。なお、本実施の形態では、サブキャリア数を S個とする。
[0101] それぞれのサブキャリア信号 71—:!〜 Sに対し、それぞれ設けられたパイロット信号 抽出手段 4一 1〜S、第 1の回線補償手段 5— 1〜S、第 2の回線補償手段 6— 1〜S、 及びインピーダンス制御適正度検出手段 7— :!〜 Sは、第 1の実施の形態と同様な動 作を行う。復調部 73は、第 2の回線補償手段 6 _ 1〜Sの出力を用いて、復調動作を 行う。インピーダンス制御手段 74は、 S個のインピーダンス制御適正度検出手段 7の 出力であるインピーダンス制御適性度を入力とする。
[0102] インピーダンス制御手段 74は、第 1の実施の形態において説明した制御動作を同 様に行うが、図 3のステップ S25における検出方法が異なる。すなわち、第 m番目ィ ンピーダンス制御適正度検出手段 7— mにおける離散時刻 kのインピーダンス制御 適性度を Q (k、 m)とすると(l≤m≤S)、インピーダンス制御手段 74は、(数 3)で示 すように、それらの平均値である Qm (k)を改めてインピーダンス制御適性度として用 いる。インピーダンス制御手段 74は、インピーダンス制御適性度 Qm (k)を用いて、 第 1の実施の形態あるいは第 2の実施の形態の動作と同様の動作を行う。
[0103] [数 3] , ( ) 二
Figure imgf000023_0001
m)
[0104] 以上、本実施の形態により、第 1の実施の形態の効果に加え、サブキャリア伝送時 においても、インピーダンス自動整合による制御動作が可能となる。この場合、複数 のサブキャリアに対し、インピーダンス制御適性度検出手段 7— :!〜 Sを設け、それら の出力を平均したものをインピーダンス制御のための適性度とする。これにより、周波 数選択性フェージング環境においても、適性度の検出が安定して行うことができる。 更に、インピーダンス自動整合動作も安定して動作することで、受信品質の改善に寄 与すること力 Sできる。
[0105] なお、図 7において、サブキャリア毎の複素ベースバンド信号に対し、パイロット信号 抽出手段 4一 1〜S、第 1の回線補償手段 5— 1〜S、第 2の回線補償手段 6— 1〜S、 インピーダンス制御適正度検出手段 7_ 1〜Sを設け、サブキャリア毎にインピーダン ス制御適正度を検出したが、 P 接するサブキャリア間は比較的相関が高いため、必 ずしも全てのサブキャリアに対し、これらを設ける必要はなく。部分的に間引かれたサ ブキャリアを用いることも可能である。これにより、同様な効果を得られるが、同時にハ 一ドウエア規模の削減も可能となる。
[0106] (第 4の実施の形態)
第 1の実施の形態においては、シングノレキャリア伝送におけるインピーダンス制御 の動作を説明したが、本実施の形態においては、 CDMAへの適用動作について説 明する。図 8は、本実施の形態において、 CDMA伝送を用いる無線通信装置の構 成を示すブロック図である。本実施の形態の無線通信装置は、アンテナ 1と、インピ 一ダンス可変手段 2と、無線部 3と、逆拡散手段 80と、パイロット信号抽出手段 4 1 〜L、第 1の回線補償手段 5— 1〜L、第 2の回線補償手段 6— :!〜 Lを有する複数の フィンガパス処理部 82 _ 1〜Lと、第 1の合成部 83と、インピーダンス制御適正度検 出手段 84と、インピーダンス制御手段 8と、第 2の合成部 85と、復調部 86とを有して いる。
[0107] 無線部 3の出力が得られるまでは、第 1の実施の形態と同様である。逆拡散手段 80 は、送信時に所定の拡散符号で拡散された信号に対し、同じ拡散符号を用いて逆 拡散処理を行う。
[0108] ここで、図示されていないパスサーチ手段により、到来する L個(Lは自然数)のマル チパスの到来パスタイミングが推定されているものとし、それぞれのパス到来タイミン グで逆拡散処理を行うことで、フィンガパス毎の複素ベースバンド信号 81— 1 Lを 抽出し、フィンガパス処理部 82— 1 Lに出力する。それぞれのフィンガパス信号 81 Lに対し、それぞれ設けられたパイロット信号抽出手段 4—l L、第 1の回線 補償手段 5— 1 L、及び第 2の回線補償手段 6—:! Lは、第 1の実施の形態と同様 な動作を行う。第 1の合成部 83は、 L個のパスフィンガ毎に設けられた第 1の回線補 償手段 5— 1 Lの出力を加算処理する。第 2の合成部 85もまた同様に、 L個のパス フィンガ毎に設けられた第 2の回線補償手段 6—:! Lの出力を加算処理する。復調 部 86は、第 2の合成部 85の出力を用いて、復調動作を行う。
[0109] 一方、インピーダンス制御適性度検出手段 84は、第 1の合成部 83の出力に対し、 インピーダンス制御適性度検出を行うことを除き、第 1の実施の形態と同様な動作を 行う。また、インピーダンス制御手段 8も第 1の実施の形態と同様な動作を行う。
[0110] 以上、本実施の形態により、 CDMA伝送時においても、インピーダンス自動整合に よる制御動作が可能となる。この場合、逆拡散処理よつて得られる複数のフィンガパ スに対し、それぞれ複数の第 1の回線補償手段 5 _ 1 Lを設け、全てのフィンガパス に対する、第 1の回線補償手段 5 _ 1 Lの出力を加算したものに対し、インピーダン ス制御適性度検出手段 84によるインピーダンス制御のための適性度とすることで、 周波数選択性フェージング環境においても、適性度の検出を安定して行うことができ る。それによりインピーダンス自動整合動作も安定して動作することで、受信品質の 改善に寄与することができる。
[0111] (第 5の実施の形態)
第 1の実施の形態においては、シングノレアンテナで受信する場合のインピーダンス 制御の動作を説明したが、本実施の形態においては、マルチアンテナを有する場合 の適用動作について説明する。
[0112] 図 9は、本実施の形態において、マルチアンテナを用いる無線通信装置の構成を 示すブロック図である。本実施の形態の無線通信装置は、アンテナ 1、インピーダン ス可変手段 2、無線部 3、パイロット信号抽出手段 4、第 1の回線補償手段 5、第 2の 回線補償手段 6、インピーダンス制御適正度検出手段 7、インピーダンス制御手段 9 2を有する複数の受信系統部と、受信ウェイト生成部 93と、受信ビーム形成部 94と、 復調部 9とを有している。なお、図 9においては、受信系統数 Nrが 2である場合を示 すがこれに限定されず、これ以上の場合も同様に適用することが可能である。
[0113] 第 j番目の受信系統部 91 -jは、アンテナ 1— j、インピ—ダンス可変手段 2— j、無線 部 3— j、パイロット信号抽出手段 4 j、第 1の回線補償手段 5— j、第 2の回線補償手 段 6— j、インピ—ダンス制御適性度検出手段 7— j、インピ—ダンス制御手段 92— jを 有し、インピ—ダンス制御手段 92— j以外のそれぞれの動作は第 1の実施の形態と 同様であり、その説明を省略する。ここで jは Nr以下の自然数である。
[0114] インピーダンス制御手段 92— jは、インピーダンス制御モードの収束過程にある力、 それ以外の動作モードにあるかを後続する受信ウェイト生成部 93に出力する。すな わち、図 3あるいは図 4におけるインピーダンス制御手段 8のフローチャートにおける ステップ S27において、評価関数が収束していると判断できない場合のみ収束過程 にある制御フラグ F (j)を「1」にセットし、それ以外の場合は制御フラグ F (j)を「0」にセ ットする。
[0115] 受信ウェイト生成部 93は、受信系統数 Nr個の第 2の回線補償手段 6— :!〜 Nrの出 力を合成するための受信ウェイトを生成し、受信ビーム形成部 94に出力する。ここで 、インピーダンス制御手段 92—:!〜 Nrからの制御フラグ F (j)を基に異なる受信ゥェ イト生成アルゴリズムにより受信ウェイトを生成する。すなわち、制御フラグ F (j)のうち 、ひとつでも収束過程にあることを示す「1」が含まれる場合、最大比合成ビームゥェ イトを生成する。一方、制御フラグ F (j)がすべて「0」である場合、すなわち、どの受信 系統でもインピーダンス制御の収束過程になレ、場合は、最小自乗誤差規範 (Minim urn Mean Squared Error、以下、 MMSEとする)により受信ウェイトを生成する 。受信ビーム形成部 94により合成された信号は復調部 9に出力する。復調部 9は第 1 の実施の形態と同様に復調動作を行う。なお、受信ウェイト生成部 93と受信ビーム 形成部 94とを合わせて、アレー合成手段とレ、うこともある。
[0116] 以上のように本実施の形態により、第 1の実施の形態の効果に加え、マルチアンテ ナを用いた受信時においてもインピーダンス自動整合による制御動作が可能となる。 この場合、受信ビーム形成部 94は、受信系統のうち一つでも、インピーダンス自動整 合の収束過程にある場合、受信ウェイトの生成アルゴリズムとして、最大比合成ビー ムを採用する。一方、受信ビーム形成部 94は、すべての受信系統において、インピ 一ダンス自動整合の収束過程にない場合、 MMSEによりビームヌル形成を行う。
[0117] これにより、無線通信端末は、インピーダンス自動整合の収束過程には、インピー ダンス変化による複素振幅変動が生じるが、この変動に対レ性能劣化の大きな MM SEアルゴリズムを動作させることを避け、この変動に対レ性能劣化の少ない最大比 合成ウェイトで受信させることができる。また、無線通信端末は、収束過程にない場 合に、 SIR (Signal to Interference Ratio)を最適にする受信ウェイトの効果に より、最大比合成ウェイトを用いるよりも、受信品質を効果的に高めることができる。以 上のようにインピーダンス自動整合動作状況に応じて、受信ビーム生成アルゴリズム を変更することで、受信品質を安定に改善することができる。
[0118] 以上、本発明の 5つの実施の形態について、図面を参照しながら説明してきたが、 本発明は、これらの実施の形態に限定されるものではなぐ例えば、第 2乃至第 4の いずれかの実施の形態においても、無線通信装置が複数のアンテナ及びそれらに 接続される複数の無線部を有するものであってもよい。
[0119] また、本発明の 5つの実施の形態において、無線部は受信した信号を複素ベース バンド信号に変換し、出力しているが、変調方式によっては、複素ベースバンド信号 以外のベースバンド信号に変換し、出力するものであってもかまわない。 [0120] また、本発明は、受信品質の向上に寄与するものであり、放送受信機における受信 部への適用も同様に可能であり、本実施の形態で説明した効果が同様に得ることが できる。
[0121] また、本発明の実施の形態では受信時について説明したが、これに限定されるもの ではなぐ送信時にも同様にインピーダンス整合を可変にすることで人体、かばん、 机などの障害物に無線通信端末が近接した場合の、インピーダンス不整合によるァ ンテナ利得劣化を改善することが期待できることはもちろんのことである。この場合、 受信時に最適化したインピーダンス可変手段におけるインピーダンス値を送信時に 適用することが可能である。
[0122] 以下、第 6〜第 9の実施の形態として、状況に応じてインピーダンス制御を停止させ る機能を有する無線通信装置について説明する。
[0123] (第 6の実施の形態)
図 10は、第 6の実施の形態における無線通信装置の構成を示すブロック図である 。本無線通信装置は、第 1の実施の形態の無線通信装置の構成に加えて、受信電 カレベルを検出する受信電力検出手段 100と、その出力に基づき、インピーダンス 制御手段 8によるインピーダンス制御を停止するモードにする力、動作させるモード にするかを判定する動作モード判定部 101とを新たに追加した構成をとる。以下、図 10を用いて、主に第 1の実施の形態と異なる詳細動作について説明する。
[0124] 受信電力検出手段 100は、無線部 3からの出力信号を基に受信電力レベルを検出 する。
[0125] 無線部 3からの出力信号としては、 1)無線部 3におレ、て自動利得制御 (AGC)する 場合の制御信号、または、 2)複素ベースバンド信号を用いる。受信電力検出手段 1 00は、 1)の場合、無線部 3から、 AGCの増幅利得を所定レベルよりも小さく制御する 制御信号が出力された場合に受信電力レベルが高いと判定する。また、受信電力検 出手段 100は、 2)の場合、複素ベースバンド信号に含まれる雑音電力成分と、信号 電力成分の比からなる SNR (信号対雑音電力比)を検出し、それが所定値よりも高い 場合に、受信電力レベルが高いと判定する。
[0126] 動作モード判定部 101は、受信電力検出手段 100の出力に基づきインピーダンス 制御手段 8の動作モードを判定し、その結果をインピーダンス制御手段 8に出力する 。すなわち、受信電力検出手段 100において、受信電力レベルが所定レべノレよりも 高いと判定された場合、動作モード判定部 101は、インピーダンス制御手段 8がイン ピーダンス制御モードに移行しないよう制御を行う。一方、受信電力検出手段 100に おいて、受信電力レベルが所定レベルよりも低いと判定された場合、動作モード判定 部 101は、インピーダンス制御手段 8がインピーダンス制御モードに移行するよう制 御を行う。インピーダンス制御手段 8におけるインピーダンス制御動作については、 上述した第 1から第 5の実施の形態のいずれ力、と同様な動作を行うため、以下ではそ の説明を省略する。
[0127] 以上、本実施の形態によって、受信電力レベルが所定値を超える場合、インピーダ ンス制御を行うことがなくなる。これにより、受信状況が所定レベルを満たすような好 適な場合には、過剰なインピーダンス制御を行うことがなくなる。その結果、インピー ダンス制御のための動作を停止することで、無線通信装置の消費電力の低減を行う ことが可能となる。
[0128] (第 7の実施の形態)
図 11は、第 7の実施の形態における無線通信装置の構成を示すブロック図である 。本無線通信装置は、第 1の実施の形態の無線通信装置の構成に加えて、復調部 9 力 の出力を基に受信品質を推定する受信品質推定部 103と、その出力に基づき、 インピーダンス制御手段 8によるインピーダンス制御を停止するモードにする力、動作 させるモードにするかを判定する動作モード判定部 101aとを新たに追加した構成を とる。以下、図 11を用いて、主に第 1の実施の形態と異なる詳細動作について説明 する。
[0129] 受信品質推定部 103は、復調部 9からの出力信号を基に受信品質を推定する。受 信品質推定方法として、誤り訂正復号器による復号結果の、 1)送信パケットデータに 含まれる CRC (巡回冗長検查、 Cyclic Redundancy Check)結果、 2)送信パケ ットデータに含まれるパリティビットの復号結果、 3)ビット誤り率、パケット誤り率の所 定値との比較、などを用いる。 1)、 2)の場合、復号結果に誤りがない場合は、受信品 質が良好であると推定する。 3)の場合、所定値よりも誤り率が低い場合、受信品質が 良好であると推定する。
[0130] 動作モード判定部 101aは、受信品質推定部 103の出力に基づきインピーダンス 制御手段 8の動作モードを判定し、その結果をインピーダンス制御手段 8に出力する 。すなわち、受信品質推定部 103において、受信品質が所定レベルよりも良好と判 定された場合、動作モード判定部 101は、インピーダンス制御手段 8がインピーダン ス制御モードに移行しないよう制御を行う。一方、受信品質推定部 103において、受 信品質が所定レベルよりも低いと判定された場合、インピーダンス制御手段 8がイン ピーダンス制御モードに移行するよう制御を行う。インピーダンス制御手段 8における インピーダンス制御動作については、上述した第 1から第 5の実施の形態のいずれか と同様な動作を行うため、以下ではその説明を省略する。
[0131] 以上、本実施の形態によって、受信品質レベルが所定値を超える場合、インピーダ ンス制御を行うことがなくなる。これにより、受信品質が所定レベルを満たすような好 適な場合には、過剰なインピーダンス制御を行うことがなくなる。その結果、インピー ダンス制御のための動作を停止することで、無線通信装置の消費電力の低減を行う ことが可能となる。
[0132] (第 8の実施の形態)
図 12は、第 8の実施の形態における無線通信装置の構成を示すブロック図である 。本無線通信装置は、第 1の実施の形態の無線通信装置の構成に加えて、復調部 9 力 の出力を基に伝送パラメータを抽出する伝送パラメータ抽出部 104と、その出力 に基づき、インピーダンス制御手段 8によるインピーダンス制御を停止するモードにす るカ 動作させるモードにするかを判定する動作モード判定部 101bとを新たに追加 した構成をとる。以下、図 12を用いて、主に第 1の実施の形態と異なる詳細動作につ いて説明する。
[0133] 伝送パラメータ抽出部 104は、復調部 9からの出力信号を基に伝送パラメータを抽 出する。伝送パラメータ抽出は、送信パケットデータに含まれる伝送パラメータに関す る情報が含まれる部分に対する、復調部 9の誤り訂正復号器による復号結果から、伝 送パラメータを抽出する。また、伝送パラメータの情報として、 1)多値変調数及び誤り 訂正符号の符号化率、 2)パケットサイズ、 3)受信情報量のいずれ力を用いる。 [0134] なお、受信情報量とは、特定の通信相手から一度の通信で受信するメール、画像 データ、コンテンツ等の情報量のことである。
[0135] 動作モード判定部 101bは、伝送パラメータ抽出部 104の出力に基づきインピーダ ンス制御手段 8の動作モードを判定し、その結果をインピーダンス制御手段 8に出力 する。すなわち、動作モード判定部 101bは、伝送パラメータ抽出部 104において抽 出された 1)多値変調数及び符号化率、 2)パケットサイズ、 3)受信情報量のいずれ かを用いて、以下のように動作モードを判定する。
[0136] 1)多値変調数及び符号化率を用いる場合、 64QAMや 16QAM等の変調多値数 が所定より大きい、あるいは符号化率が所定より大きい場合は、受信信号レベルが良 好な環境下であると判断し、インピーダンス制御手段 8におけるインピーダンス制御 モードに移行しない制御を行う。一方、 BPSKや QPSK等の変調多値数が所定より も小さい場合、あるいは、符号化率が所定値より小さい場合、受信品信号レベルが良 好でない環境下であると判断し、インピーダンス制御手段 8におけるインピーダンス 制御モードに移行する制御を行う。
2)パケットサイズ情報を用いる場合、送信パケットサイズが所定値より小さい場合は 、インピーダンス制御動作が十分収束せずに特性改善に十分な効果が得られないと 判断し、インピーダンス制御手段 8におけるインピーダンス制御モードに移行しない 制御を行う。一方、パケットサイズが所定値より大きい場合は、インピーダンス制御動 作が十分収束し特性改善効果を高めることができると判断し、インピーダンス制御手 段 8におけるインピーダンス制御モードに移行する制御を行う。
3)受信情報量を用いる場合、受信情報量が所定値より小さい場合は、インピーダ ンス制御動作を行うことによる特性改善効果に比べて消費電流が増加する悪影響の 方が強くなると判断し、インピーダンス制御手段 8におけるインピーダンス制御モード に移行しない制御を行う。一方、受信情報量が所定値より大きい場合は、インピーダ ンス制御動作が十分収束し特性改善効果を高めることができると判断し、インピーダ ンス制御手段 8におけるインピーダンス制御モードに移行する制御を行う。
[0137] インピーダンス制御手段 8におけるインピーダンス制御動作については、上述した 第 1の実施の形態から 5のいずれ力 ^同様な動作を行うため、以下ではその説明を省 略する。
[0138] 以上、本実施の形態によって、変調多値数が所定値を超える場合あるいは符号化 率が所定より大きい場合、インピーダンス制御を行うことがなくなる。これにより、受信 状況が所定レベルを満たすような好適な場合には、インピーダンス制御を行うことが なくなる。その結果、過剰なインピーダンス制御のための動作を停止することで、無線 通信装置の消費電力の低減を行うことが可能となる。
[0139] また、送信パケットサイズが所定値より小さレ、場合、すなわち、インピーダンス制御 動作が十分収束せずに特性改善に十分な効果が得られないと判断される場合、イン ピーダンス制御を行うことがなくなる。その結果、過剰なインピーダンス制御のための 動作を停止することで、無線通信装置の消費電力の低減を行うことが可能となる。
[0140] また、受信情報量が所定値より小さい場合、すなわち、インピーダンス制御動作を 行うことによる特性改善効果に比べて消費電流が増加する悪影響の方が強くなると 判断される場合、インピーダンス制御を行うことがなくなる。その結果、過剰なインピ 一ダンス制御のための動作を停止することで、無線通信装置の消費電力の低減を行 うことが可能となる。
[0141] (第 9の実施の形態)
図 13は、第 9の実施の形態における無線通信装置の構成を示すブロック図である 。本無線通信装置は、第 1の実施の形態の無線通信装置の構成に加えて、復調部 9 力 の出力を基に再送制御を行う再送制御部 105と、その出力に基づき、インピーダ ンス制御手段 8によるインピーダンス制御を停止するモードにする力、動作させるモ ードにするかを判定する動作モード判定部 101cとを新たに追加した構成をとる。以 下、図 13を用いて、主に第 1の実施の形態と異なる詳細動作について説明する。
[0142] 再送制御部 105は、復調部 9からの出力信号を基に再送制御を行う。すなわち、再 送制御部 105は、復調部 9における誤り訂正復号処理による送信パケットデータの復 号結果が、誤りなく受信できたものかどうかを、 CRC結果等を用いて判定する。そし て再送制御部 105は、パケットデータに誤りが生じた場合、再送要求の制御を行う。
[0143] 動作モード判定部 101cは、再送制御部 105の出力に基づきインピーダンス制御 手段 8の動作モードを判定し、その結果をインピーダンス制御手段 8に出力する。す なわち、動作モード判定部 101cは、再送制御部 105において、再送要求の制御を 行わない場合は、受信信号レベルが良好な環境下であると判断し、インピーダンス制 御手段 8におけるインピーダンス制御モードに移行しなレ、制御を行う。一方、再送制 御部 105が再送要求の制御を行う場合、動作モード判定部 101cは、受信信号レべ ルが良好な環境下でないと判断し、インピーダンス制御手段 8におけるインピーダン ス制御モードに移行する制御を行う。
[0144] 以上、本実施の形態によって、再送制御部 105の出力に基づきインピーダンス制 御手段 8の動作モードを判定制御する。これにより、再送要求の制御を行わない場合 、インピーダンス制御を行うことがなくなる。その結果、過剰なインピーダンス制御のた めの動作を停止することで、無線通信装置の消費電力の低減を行うことが可能となる
[0145] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 7月 1日出願の日本特許出願(特願 2005— 193385)、 2006年 6月 2 7日出願の日本特許出願(特願 2006-176710)に基づくものであり、その内容はここに 参照として取り込まれる。
産業上の利用可能性
[0146] 本発明にかかる無線通信装置は、アンテナのインピーダンスの自動整合を受信品 質の劣化なぐフェージング環境においても安定的に行えるインピーダンス可変手段 を有し、無線通信分野に有用である。また、放送受信装置などの用途にも適用できる

Claims

請求の範囲
[1] 受信系統部を備えた無線通信装置であって、
前記受信系統部は、
アンテナにより受信した信号を、ベースバンド信号に変換し、出力する無線部と、 前記アンテナと前記無線部との間のインピーダンスを調整するインピーダンス可変 手段と、
前記ベースバンド信号から予め既知のパイロット信号を抽出し、出力するパイロット 信号抽出手段と、
前記パイロット信号を用いてチャネル推定を行レ、、前記ベースバンド信号の回線補 償を行う回線補償手段と、
前記回線補償手段の出力を用いてインピーダンス制御適性度を検出するインピー ダンス制御適正度検出手段と、
前記インピーダンス制御適正度検出手段の出力を基に、前記インピーダンス可変 手段のインピーダンス変化量を制御するインピーダンス制御手段と、
を有する無線通信装置。
[2] 前記回線補償手段の出力を用いて復調動作を行う復調部を備えた請求項 1記載 の無線通信装置。
[3] 前記インピーダンス制御適性度検出手段は、前記回線補償手段の出力電力を用 いて、前記インピーダンス制御適正度を検出する請求項 2記載の無線通信装置。
[4] 前記インピーダンス制御適性度検出手段は、前記回線補償手段の出力振幅を用 いて、前記インピーダンス制御適正度を検出する請求項 2記載の無線通信装置。
[5] 前記回線補償手段は、無線フレームまたは無線スロットのプリアンブルに含まれる 前記パイロット信号を用いて回線補償を行う請求項 2乃至請求項 4のいずれかに記 載の無線通信装置。
[6] 前記インピーダンス制御手段は、無線フレームまたは無線スロットのプリアンブルに 含まれる前記パイロット信号を受信した後に、前記インピーダンス制御適性度検出手 段の出力を用いて、前記インピーダンス可変手段を制御する請求項 5記載の無線通 信装置。 [7] 前記インピーダンス制御手段は、インピーダンスを変化させた期間に対応する前記 インピーダンス制御適正度検出手段の出力を基に、インピーダンスを変化させる請 求項 2乃至請求項 6のいずれかに記載の無線通信装置。
[8] 通話開始ボタンを備え、
前記インピーダンス制御手段は、前記通話開始ボタンの操作により前記インピーダ ンス可変手段の制御を開始する請求項 2乃至請求項 7のいずれかに記載の無線通 信装置。
[9] インピーダンス整合情報と、前記インピーダンス整合情報に対応する受信信号強度 情報とを記憶する記憶手段を備え、
前記記憶手段に記憶された受信信号強度と、インピーダンス制御後の受信信号強 度とを比較し、信号強度が大きい方のインピーダンス整合情報と、前記信号強度が 大きい方のインピーダンス整合情報に対応する受信信号強度情報とを改めて前記記 憶手段に記憶する請求項 2乃至請求項 8のいずれかに記載の無線通信装置。
[10] 前記回線補償手段は、無線フレームまたは無線スロットのプリアンブルに含まれる 前記パイロット信号を用いてチャネル推定を行い、前記ベースバンド信号の回線補 償をして、前記インピーダンス制御適正度検出手段に出力する第 1の回線補償手段 と、
前記無線フレームまたは前記無線スロットのデータに含まれる前記パイロット信号を 用いて回線変動をトラッキングし、前記ベースバンド信号の回線補償をして、前記復 調部に出力する第 2の回線補償手段と
を有する請求項 2乃至請求項 9のいずれかに記載の無線通信装置。
[11] 前記第 1の回線補償手段は、前記無線フレームまたは前記無線スロット期間中は、 固定の回線変動補償値を用いて回線補償を行う請求項 10記載の無線通信装置。
[12] 前記インピーダンス制御手段は、前記インピーダンス可変手段を用いて、所定期間 だけ前記インピーダンスを調整し、前記所定期間後は、前記インピーダンスを前記所 定期間前の状態に戻す請求項 2乃至請求項 9のいずれかに記載の無線通信装置。
[13] アンテナにより受信した信号を、ベースバンド信号に変換し、出力する無線部と、 前記アンテナと前記無線部との間のインピーダンスを調整するインピーダンス可変 手段と、
前記ベースバンド信号からサブキャリア毎のベースバンド信号を抽出し、出力する サブキャリア信号抽出部と、
前記サブキャリア毎のベースバンド信号から予め既知のパイロット信号を抽出し、出 力するパイロット信号抽出手段、
前記パイロット信号を用いてチャネル推定を行レ、、前記サブキャリア毎のベースバ ンド信号に回線補償を行う回線補償手段、
前記回線補償手段の出力を用いてインピーダンス制御適性度を検出するインピー ダンス制御適正度検出手段
をそれぞれ有する複数のサブキャリア処理部と、
前記インピーダンス制御適正度検出手段の出力を基に、前記インピーダンス可変 手段のインピーダンス変化量を制御するインピーダンス制御手段と、
前記回線補償手段の出力を用いて復調動作を行う復調部と、
を備えた無線通信装置。
アンテナにより受信した信号を、ベースバンド信号に変換し、出力する無線部と、 前記アンテナと前記無線部との間のインピーダンスを調整するインピーダンス可変 手段と、
前記ベースバンド信号に逆拡散処理を行い、フィンガパス毎のベースバンド信号を 抽出し、出力する逆拡散手段と、
前記フィンガパス毎のベースバンド信号から予め既知のパイロット信号を抽出し、出 力するパイロット信号抽出手段、前記パイロット信号を用いてチャネル推定を行い、 前記フィンガパス毎のベースバンド信号に回線補償を行う回線補償手段をそれぞれ 有する、フィンガパスと同数のフィンガパス処理部と、
前記回線補償手段の出力の加算処理を行う第 1の合成部と、
前記第 1の合成部の出力を用いてインピーダンス制御適性度を検出するインピー ダンス制御適正度検出手段と、
前記インピーダンス制御適正度検出手段の出力を基に、前記インピーダンス可変 手段のインピーダンス変化量を制御するインピーダンス制御手段と、 前記回線補償手段の出力の加算処理を行う第 2の合成部と、
前記第 2の合成部の出力を用いて復調動作を行う復調部と
を備えた無線通信装置。
[15] 請求項 1記載の受信系統部を複数備え、
前記回線補償手段の出力を重み付けて合成するアレー合成手段と、
前記アレー合成手段の出力を用いて復調動作を行う復調部と、
をさらに備えた無線通信装置。
[16] 前記アレー合成手段は、前記インピーダンス制御手段が、無線フレームまたは無線 スロット期間中にインピーダンスを変化させる制御の有無により、アレー合成の方法を 変化させる請求項 15記載の無線通信装置。
[17] 前記アレー合成手段は、前記インピーダンス制御手段が、
無線フレームまたは無線スロット期間中にインピーダンスを変化させる制御を行う場 合は、最大比合成重みを用いてアレー合成を行い、
無線フレーム中にインピーダンスを変化させる制御を行わない場合は、ビーム及び ヌルの制御を行うアレー合成手法による重みを用いてアレー合成を行う請求項 15記 載の無線通信装置。
[18] 前記アレー合成手段は、
前記インピーダンス制御手段の出力を用いて、受信ウェイトを生成し、出力する受 信ウェイト生成部と、
前記回線補償手段の出力を、前記受信ウェイトを用いて合成する受信ビーム形成 部と、
を有する請求項 15乃至請求項 17のいずれかに記載の無線通信装置。
[19] 受信電力を検出する受信電力検出手段と、
前記受信電力検出手段の出力を基に、インピーダンス制御を停止するモードにす る力 \インピーダンス制御を動作させるモードにするかを判定する動作モード判定部 と、
を備え、
前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて動作モー ドを切り替える請求項 2記載の無線通信装置。
[20] 前記復調部の出力を基に受信品質を推定する受信品質推定部と、
前記受信品質推定部の出力を基に、インピーダンス制御を停止するモードにする か、インピーダンス制御を動作させるモードにするかを判定する動作モード判定部と を備え、
前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて動作モー ドを切り替える請求項 2記載の無線通信装置。
[21] 前記復調部の出力を基に伝送パラメータを抽出する伝送パラメータ抽出部と、 前記伝送パラメータ抽出部の出力を基に、インピーダンス制御を停止するモードに するか、インピーダンス制御を動作させるモードにするかを判定する動作モード判定 部と、
を備え、
前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて動作モー ドを切り替える請求項 2記載の無線通信装置。
[22] 前記動作モード判定部は、前記伝送パラメータ抽出部の出力を基に、受信情報量 が所定値よりも小さい場合は、インピーダンス制御を停止するモードとする請求項 21 記載の無線通信装置。
[23] 前記復調部の出力を基に再送制御を行う再送制御部と、
前記再送制御部の出力を基に、インピーダンス制御を停止するモードにするカ ィ ンピーダンス制御を動作させるモードにするかを判定する動作モード判定部と、 を備え、
前記インピーダンス制御手段は、前記動作モード判定部の出力に応じて動作モー ドを切り替える請求項 2記載の無線通信装置。
PCT/JP2006/313131 2005-07-01 2006-06-30 無線通信装置 WO2007004578A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/917,792 US8000379B2 (en) 2005-07-01 2006-06-30 Radio communication apparatus
CN200680024143XA CN101213758B (zh) 2005-07-01 2006-06-30 无线通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-193385 2005-07-01
JP2005193385 2005-07-01
JP2006-176710 2006-06-27
JP2006176710A JP4922677B2 (ja) 2005-07-01 2006-06-27 無線通信装置

Publications (1)

Publication Number Publication Date
WO2007004578A1 true WO2007004578A1 (ja) 2007-01-11

Family

ID=37604443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313131 WO2007004578A1 (ja) 2005-07-01 2006-06-30 無線通信装置

Country Status (4)

Country Link
US (1) US8000379B2 (ja)
JP (1) JP4922677B2 (ja)
CN (1) CN101213758B (ja)
WO (1) WO2007004578A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045698A (ja) * 2008-08-18 2010-02-25 Lenovo Singapore Pte Ltd タブレット式コンピュータおよび無線通信システムの制御方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853250B2 (en) 2003-04-03 2010-12-14 Network Security Technologies, Inc. Wireless intrusion detection system and method
US8929281B2 (en) 2006-09-15 2015-01-06 Qualcomm Incorporated Methods and apparatus related to peer to peer device
US8369800B2 (en) * 2006-09-15 2013-02-05 Qualcomm Incorporated Methods and apparatus related to power control and/or interference management in a mixed wireless communications system
US8081940B2 (en) * 2006-09-29 2011-12-20 Broadcom Corporation Method and system for dynamically tuning and calibrating an antenna using an on-chip digitally controlled array of capacitors
KR100994474B1 (ko) * 2008-01-30 2010-11-16 (주)블루버드 소프트 성능 열화를 방지를 위한 임피던스 매칭을 수행할 수 있는rfid 리더
JP2009212712A (ja) * 2008-03-03 2009-09-17 Panasonic Corp インピーダンス調整装置、インピーダンス調整方法及び無線通信装置
JP5362303B2 (ja) * 2008-09-26 2013-12-11 株式会社エヌ・ティ・ティ・ドコモ 受信装置及び受信方法
JP5310295B2 (ja) * 2009-06-23 2013-10-09 富士通株式会社 無線通信装置及びインピーダンス制御方法
US7996035B2 (en) * 2009-08-17 2011-08-09 Sony Corporation Matching circuit for adaptive impedance matching in radio
JP5526795B2 (ja) 2010-01-15 2014-06-18 ソニー株式会社 ワイヤレス給電システム
CN101848041B (zh) * 2010-04-15 2012-10-03 华为技术有限公司 一种ofdm端口的诊断方法、设备和系统
TWI437828B (zh) * 2011-02-11 2014-05-11 Realtek Semiconductor Corp 傳輸介面的阻抗與增益補償裝置與方法
GB2501901A (en) * 2012-05-09 2013-11-13 Renesas Mobile Corp Simultaneous use of multiple receivers with different operation parameters or logic
GB2502787B (en) * 2012-06-06 2015-06-17 Samsung Electronics Co Ltd Adaptive antenna impedance matching
WO2014001609A1 (en) * 2012-06-29 2014-01-03 Nokia Corporation Apparatus, method and a computer program for tuning an impedance
US9048536B2 (en) * 2012-07-09 2015-06-02 Htc Corporation Mobile communication device and impedance matching method thereof
FR2993730B1 (fr) * 2012-07-23 2014-08-22 St Microelectronics Rousset Procede de controle de l'adaptation d'une antenne connectee a un composant nfc et composant nfc correspondant
TWI493890B (zh) 2012-07-24 2015-07-21 Novatek Microelectronics Corp 接收端電路
CN103580706B (zh) * 2012-08-01 2016-10-05 联咏科技股份有限公司 接收端电路
CN103973322A (zh) * 2013-01-30 2014-08-06 深圳富泰宏精密工业有限公司 无线通信装置
WO2014194928A1 (en) * 2013-06-03 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Distortion suppression for wireless transmission
JP6121829B2 (ja) * 2013-07-26 2017-04-26 株式会社東芝 アンテナ装置、無線通信装置および制御装置
TWI536658B (zh) * 2013-10-03 2016-06-01 緯創資通股份有限公司 行動通訊裝置及其輻射功率調整方法
KR102166351B1 (ko) 2014-01-29 2020-10-15 삼성전자주식회사 통신 제공 장치 및 방법
FR3018637B1 (fr) * 2014-03-13 2018-08-17 Samsung Electronics Co., Ltd. Communication radio utilisant des antennes multiples et des variables de localisation
MY192162A (en) 2015-11-23 2022-08-03 Anlotek Ltd Variable filter
US10587328B2 (en) * 2015-12-22 2020-03-10 Sony Corporation Operating a wireless communication system
EP3316186B1 (en) * 2016-10-31 2021-04-28 Nokia Technologies Oy Controlling display of data to a person via a display apparatus
EP3635865A1 (en) 2017-05-24 2020-04-15 Anlotek Limited Apparatus and method for controlling a resonator
CN109274630B (zh) * 2018-11-29 2020-04-07 西安电子科技大学 抗频率选择性衰落的多载波信号矢量分集合并方法
US11277110B2 (en) 2019-09-03 2022-03-15 Anlotek Limited Fast frequency switching in a resonant high-Q analog filter
EP4070171A1 (en) 2019-12-05 2022-10-12 Anlotek Limited Use of stable tunable active feedback analog filters in frequency synthesis
EP3926828A1 (en) 2020-06-15 2021-12-22 Anlotek Limited Tunable bandpass filter with high stability and orthogonal tuning
CN114826313B (zh) * 2021-01-11 2024-01-09 炬芯科技股份有限公司 一种射频电路、射频电路的触控检测方法及穿戴设备
US11955942B2 (en) 2021-02-27 2024-04-09 Anlotek Limited Active multi-pole filter
CN117061271A (zh) * 2023-09-06 2023-11-14 蚌埠依爱消防电子有限责任公司 一种消防产品的总线通信自动调节方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690186A (ja) * 1992-09-08 1994-03-29 Clarion Co Ltd アンテナインピーダンス整合の自動制御装置
JPH11136157A (ja) * 1997-10-28 1999-05-21 Nec Corp 移動無線端末装置
WO2004049580A2 (en) * 2002-01-25 2004-06-10 Qualcomm Incorporated An amps receiver system using a zero-if architecture
JP2004363854A (ja) * 2003-06-04 2004-12-24 Mitsubishi Electric Corp 受信システム
JP2005086568A (ja) * 2003-09-09 2005-03-31 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2005354149A (ja) * 2004-06-08 2005-12-22 Japan Radio Co Ltd 中継放送装置
JP2006094150A (ja) * 2004-09-24 2006-04-06 Sanyo Electric Co Ltd アンテナ制御装置、アンテナ制御方法およびデジタル受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135235A (ja) 1984-12-05 1986-06-23 Fujitsu Ltd アンテナシステム
JP2001077719A (ja) * 1999-09-07 2001-03-23 Nec Saitama Ltd アンテナ・インピーダンス変化の補償可能な携帯電話機
CN1126336C (zh) * 1999-11-12 2003-10-29 深圳市中兴通讯股份有限公司 一种基于插入导频符号的相干信道估计方法
US6961368B2 (en) * 2001-01-26 2005-11-01 Ericsson Inc. Adaptive antenna optimization network
JP2003087218A (ja) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、マルチキャリア受信装置およびマルチキャリア無線通信方法
JP2005509372A (ja) * 2001-11-06 2005-04-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 位相アンラッピングを用いたdat支援型周波数オフセット検出
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6993297B2 (en) * 2002-07-12 2006-01-31 Sony Ericsson Mobile Communications Ab Apparatus and methods for tuning antenna impedance using transmitter and receiver parameters
JP2004304521A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd アンテナ回路及び無線送受信装置
KR101042643B1 (ko) 2003-06-20 2011-06-20 삼성전자주식회사 주파수 영역에 숨겨진 파일럿 신호를 이용하여신호처리하는 tds-ofdm 수신 시스템 및 그의 신호처리 방법
JP4198552B2 (ja) * 2003-07-25 2008-12-17 株式会社エヌ・ティ・ティ・ドコモ 無線受信機、無線送信機及びインピーダンス制御方法
US7577411B2 (en) * 2005-02-17 2009-08-18 Kyocera Corporation Mobile station access and idle state antenna tuning systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690186A (ja) * 1992-09-08 1994-03-29 Clarion Co Ltd アンテナインピーダンス整合の自動制御装置
JPH11136157A (ja) * 1997-10-28 1999-05-21 Nec Corp 移動無線端末装置
WO2004049580A2 (en) * 2002-01-25 2004-06-10 Qualcomm Incorporated An amps receiver system using a zero-if architecture
JP2004363854A (ja) * 2003-06-04 2004-12-24 Mitsubishi Electric Corp 受信システム
JP2005086568A (ja) * 2003-09-09 2005-03-31 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2005354149A (ja) * 2004-06-08 2005-12-22 Japan Radio Co Ltd 中継放送装置
JP2006094150A (ja) * 2004-09-24 2006-04-06 Sanyo Electric Co Ltd アンテナ制御装置、アンテナ制御方法およびデジタル受信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045698A (ja) * 2008-08-18 2010-02-25 Lenovo Singapore Pte Ltd タブレット式コンピュータおよび無線通信システムの制御方法

Also Published As

Publication number Publication date
JP4922677B2 (ja) 2012-04-25
CN101213758A (zh) 2008-07-02
US20090147834A1 (en) 2009-06-11
US8000379B2 (en) 2011-08-16
CN101213758B (zh) 2012-04-18
JP2007043676A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
WO2007004578A1 (ja) 無線通信装置
US7349483B2 (en) Communications device with doppler frequency estimation functions
US8145179B2 (en) Data detection and demodulation for wireless communication systems
JP3836019B2 (ja) 受信装置、送信装置及び送信方法
RU2107395C1 (ru) Устройство для объединения принятых сигналов с указателями фаз и радиотелефон
US7280840B2 (en) Receiving apparatus, transmitting apparatus, and reception method
JP5307070B2 (ja) 無線通信システムのためのデータ検出および復調
JP4624417B2 (ja) 無線装置
US20040052228A1 (en) Method and system of frequency and time synchronization of a transceiver to signals received by the transceiver
US20120314809A1 (en) Transmission method, transmission apparatus, reception method, and reception apparatus
KR100630039B1 (ko) 적응 안테나 어레이 방식을 사용하는 이동 통신 시스템에서 데이터 수신 장치 및 방법
JP2005252745A (ja) 適応変調方法並びにデータレート制御方法
JP4280233B2 (ja) 無線通信システム、無線通信装置、及びこの無線通信装置のガードインターバル長の変更方法
US7965784B2 (en) Control method and radio apparatus utilizing the same
EP1494368A2 (en) Receiver with adaptive antenna array
EP1520366A1 (en) A method and system of biasing a timing phase estimate of data segments of a received signal
US8325859B2 (en) Communication device and control method
EP1505743A1 (en) Apparatus and method for receiving signals in a mobile communicaton system using adaptive antenna array technology
JP2005286362A (ja) デジタル受信機
JP4738050B2 (ja) 送信装置および送信方法
JP2001345778A (ja) ダイバーシティを用いたofdm受信信号同期装置
JP2004235674A (ja) 送信ウェイト制御装置、送信ウェイト制御方法及び無線基地局
KR20090045906A (ko) Mimo 무선통신 시스템에서 stc 모드 결정 방법 및 장치, 결정된 stc 모드의 응답 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024143.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11917792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767719

Country of ref document: EP

Kind code of ref document: A1