WO2007001096A1 - 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法 - Google Patents

燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法 Download PDF

Info

Publication number
WO2007001096A1
WO2007001096A1 PCT/JP2006/313440 JP2006313440W WO2007001096A1 WO 2007001096 A1 WO2007001096 A1 WO 2007001096A1 JP 2006313440 W JP2006313440 W JP 2006313440W WO 2007001096 A1 WO2007001096 A1 WO 2007001096A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
fuel cell
electrode
hydrogen peroxide
forming compound
Prior art date
Application number
PCT/JP2006/313440
Other languages
English (en)
French (fr)
Inventor
Michiyo Kaneko
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CA002612682A priority Critical patent/CA2612682A1/en
Priority to DE602006021575T priority patent/DE602006021575D1/de
Priority to EP06780816A priority patent/EP1906474B1/en
Priority to CN2006800238051A priority patent/CN101213692B/zh
Priority to US11/994,137 priority patent/US20090226771A1/en
Publication of WO2007001096A1 publication Critical patent/WO2007001096A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, a method for producing an electrode catalyst layer for a fuel cell, and a method for operating a fuel cell.
  • the present invention relates to a fuel cell that suppresses deterioration of an electrolyte in an electrolyte membrane or an electrode catalyst layer and improves durability.
  • the present invention relates to a method for producing an electrode catalyst layer for a fuel cell and a method for operating a fuel cell.
  • Fuel cells can be classified according to their electrolytes. For example, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, and the like are known.
  • the polymer electrolyte fuel cell can be operated at a low temperature of about 80 ° C. and has a large power density.
  • a polymer electrolyte fuel cell usually uses a polymer membrane having proton conductivity as an electrolyte.
  • a pair of electrodes serving as a fuel electrode and an oxygen electrode are provided on both sides of the polymer film serving as an electrolyte, thereby forming an electrode assembly.
  • a single cell in which this electrode assembly is sandwiched between separators serves as a power generation unit. Then, hydrogen or a fuel gas containing hydrogen is supplied to the fuel electrode, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode, and power is generated by an electrochemical reaction at the three-phase interface between the gas, electrolyte, and electrode.
  • the polymer film serving as an electrolyte has proton conductivity in a state containing water.
  • the fuel gas and the oxidant gas are usually humidified by a humidifier and then supplied to each electrode.
  • the hydrogen ion produced by the reaction of formula (1) at the anode is H + (XH).
  • the hydrogen ions that permeate (diffuse) through the polymer electrolyte membrane in the hydrated state of 2 O) and permeate the membrane are subjected to the reaction of formula (2) with a force sword.
  • the electrode reaction in the anode and cathode proceeds at the interface between the catalyst and the solid polymer electrolyte membrane in the electrode catalyst layer, with the electrode catalyst layer in close contact with the solid polymer electrolyte membrane as the reaction site.
  • hydrogen peroxide H 2 0 2
  • the mechanism of generation is not necessarily fully understood, but possible mechanisms are as follows. That is, hydrogen peroxide can be generated at both the hydrogen electrode and the oxygen electrode. For example, at the oxygen electrode, hydrogen peroxide is generated by the following equation due to incomplete reduction of oxygen. it is conceivable that.
  • reaction formula is considered to be the same as the above formula (3) or represented by the following formula. 2 ⁇ ⁇ ⁇ + O 2- ⁇ 2 M + H 2 O 2 ... (4)
  • M represents a catalytic metal used for the hydrogen electrode
  • MH represents a state in which hydrogen is adsorbed on the catalytic metal.
  • a noble metal such as platinum (P t) is used as the catalyst metal.
  • Hydrogen peroxide generated on these electrodes leaves the electrodes due to diffusion and moves into the electrolyte.
  • This hydrogen peroxide is a highly oxidative substance that oxidizes many organic substances that make up the electrolyte. The detailed mechanism is not always clear, but in many cases, hydrogen peroxide is radicalized, and the generated hydrogen peroxide radical is considered to be a direct reactant of the oxidation reaction.
  • radicals generated by reactions such as the following formulas are thought to break the other bonds, the ability to extract hydrogen from the organic matter of the electrolyte.
  • the cause of radicalization is not necessarily clear, but contact with heavy metal ions is thought to have a catalytic action. In addition to this, it is considered to be radicalized by heat and light.
  • Japanese Patent Laid-Open No. 2 0 0 1 — 1 1 8 5 9 1 discloses that radicals generated by permeated hydrogen are “decomposed”, “inactivated”, “trap + inactive
  • transition metal oxides such as manganese oxide, ruthenium oxide, cobalt oxide, nickel oxide, chromium oxide, iridium oxide, and lead oxide that catalytically decompose peroxides are dispersed and blended in the solid polymer electrolyte.
  • a peroxide stabilizer such as a tin compound that prevents peroxide radicalization, or by adding a phenolic hydroxyl group that traps and deactivates the generated peroxide radicals.
  • a peroxide stabilizer such as a tin compound that prevents peroxide radicalization
  • a phenolic hydroxyl group that traps and deactivates the generated peroxide radicals.
  • T i (SO 4) 2 is yellow in an acidic solution and reacts with hydrogen peroxide to produce peroxytitanate. with, the peroxide titanate are disclosed to form a ⁇ I O emissions in the presence of S_ ⁇ 4. Disclosure of the invention In the method described in JP-A-2001-1 1 859 1, the method of adding a compound that “decomposes”, “inactivates”, or “traps and inactivates” radicals does not sufficiently inhibit peroxidation. Therefore, further technological development was desired to improve the durability of fuel cells.
  • an object of the present invention is to provide a fuel cell in which the deterioration of the electrolyte in the electrolyte membrane and the electrode catalyst layer is suppressed and the durability is improved. It is another object of the present invention to provide a method for producing a fuel cell electrode catalyst layer and a method for operating a fuel cell.
  • the inventor has found that hydrogen peroxide is captured by mixing a specific compound in advance, and has reached the present invention.
  • the present invention is an invention of a fuel cell, characterized in that a complex-forming compound capable of forming a complex with hydrogen peroxide is dispersedly added into the membrane-electrode assembly. Hydrogen peroxide generated during the operation of the fuel cell is trapped by the complex-forming compound to form a complex. As a result, harmful hydrogen peroxide is removed from the cell.
  • the complex-forming compound may be present anywhere in the membrane-electrode assembly, but it is preferably dispersed and added in the electrode catalyst layer in consideration of its production method as described later.
  • the complex-forming compound used in the present invention is not particularly limited as long as it is a compound capable of forming a complex with hydrogen peroxide.
  • T i (S 0 4 ) 2 is preferably exemplified.
  • T i (so 4 ) 2 is yellow in an acidic solution. This is due to the formation of peroxytitanic acid of the following formula (5).
  • the present invention is an invention of a method for producing a fuel cell electrode catalyst layer, wherein a complex-forming compound capable of forming a complex with hydrogen peroxide is blended and kneaded in an electrode catalyst ink, and the electrode catalyst layer is used. An electrode catalyst layer is formed with ink, and the electrode catalyst layer is dried.
  • the present invention provides a fuel electrode supplied with hydrogen gas or a fuel gas containing hydrogen, an oxygen electrode supplied with oxygen gas or an oxidant gas containing oxygen, the fuel electrode, and the oxygen electrode.
  • An operation method of a fuel cell in which a plurality of cells including a membrane electrode assembly composed of an electrolyte membrane sandwiched between layers are laminated via a separator. It is characterized by dispersing and adding a complex-forming compound capable of forming a complex with hydrogen oxide and injecting an aqueous solution of the complex-forming compound capable of forming a complex with Z or hydrogen peroxide.
  • the present invention provides a fuel electrode supplied with hydrogen gas or a fuel gas containing hydrogen, an oxygen electrode supplied with oxygen gas or an oxidant gas containing oxygen, the fuel electrode, and the oxygen electrode.
  • hydrogen peroxide is generated during the operation of a fuel cell in which a plurality of cells including a membrane electrode assembly composed of an electrolyte membrane sandwiched between them are stacked via a separator.
  • a complex-forming compound capable of forming a complex with hydrogen peroxide in the cell is present as a reagent during operation, and the complex formation property with hydrogen peroxide generated during the operation is present. It is characterized by verifying the location and / or amount of the complex with the compound. For example, the color formation of a complex formation reaction between hydrogen peroxide and T i (so 4 ) 2 can be measured by absorbance analysis.
  • T i (SO 4 ) 2 that is preferably used as a complex-forming compound in the present invention is T i 4 + and S0 4 2 — and force, and T i 4 + is used for a separator. Since S0 4 2 — is a metal and is a basic material of an electrolyte, it is an excellent point of the present invention that neither of them is an impurity for the fuel cell.
  • FIG. 1 is a graph showing the relationship between the H 2 O 2 concentration and its absorbance when Ti (S 0 4 ) 2 is used as the complex-forming compound.
  • Fig. 2 shows a SEM photograph when T i (S 0 4 ) 2 is mixed in the electrolyte.
  • FIG. 1 shows a schematic diagram of the hydrogen oxidation catalyst of the present invention.
  • Figure 1 shows a state in which a hydrophobic group is located in the vicinity of the ⁇ _oxo transition metal complex.
  • a hydrophobic group with 6 to 10 carbon atoms in the vicinity of the ⁇ -oxo transition metal complex, the Ai-oxo transition metal complex, which is easily denatured with water, is protected and a hydrogen oxidation reaction is performed.
  • FIG. 2 shows a SEM photograph when T i (S0 4 ) 2 is mixed in the electrolyte.
  • T i (S 0 4 ) 2 is seen as a needle.
  • FIG. 1 is a graph showing the relationship between the H 2 O 2 concentration and the absorbance when Ti (SO 4 ) 2 is used as a complex-forming compound experimentally determined by the present inventor. The present invention is implemented by using the result of FIG. 1 as a calibration curve. Can.
  • the durability of the fuel cell can be improved, which contributes to the practical use and spread of the fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

過酸化水素と錯体を形成しうる錯体形成性化合物が膜−電極接合体内に分散添加されていることを特徴とする燃料電池。錯体形成性化合物としてはTi(SO4)2が好ましい。燃料電池運転中に発生する有害な過酸化水素をセルから取り除くことができ、過酸化水素による電解質膜や電極触媒層中の電解質の劣化を抑制し、耐久性を向上させた燃料電池を得る。

Description

燃料電池、 燃料電池用電極触媒層の製造方法、 及び燃料電池の運転方法 技術分野
本発明は、 電解質膜や電極触媒層中の電解質の劣化を抑制し、 耐久性 を向上させた燃料電池に関する。 また、 燃料電池用電極触媒層の製造方 法、 及び燃料電池の運転方法に明関する。 背景技術
水素ガスの電気化学反応により電気を書発生させる燃料電池は、 発電効 率が高く、 排出されるガスがク リーンで環境に対する影響が極めて少な レ、。 そのため、 近年、 発電用、 低公害の自動車用電源等、 種々の用途が 期待されている。 燃料電池は、 その電解質により分類することができ、 例えば、 固体高分子型燃料電池、 リ ン酸型燃料電池、 溶融炭酸塩型燃料 電池、 固体酸化物型燃料電池等が知られている。
固体高分子型燃料電池は、 8 0 °C程度の低温で作動させることができ、 大きな出力密度を有する。 固体高分子型燃料電池は、 通常、 プロ トン導 電性のある高分子膜を電解質とする。 電解質となる高分子膜の両側にそ れぞれ燃料極、 酸素極となる一対の電極が設けられ電極接合体が構成さ れる。この電極接合体をセパレータで挟持した単セルが発電単位となる。 そして、 水素や水素を含む燃料ガスが燃料極に、 酸素や空気等の酸化剤 ガスが酸素極にそれぞれ供給され、 ガスと電解質と電極との三相界面に おける電気化学反応により発電する。 電解質となる高分子膜は、 水を含 有した状態でプロ トン導電性を有する。 高分子膜のプロ トン導電性を維 持するため、 通常、 燃料ガス及び酸化剤ガスは、 それぞれ加湿器にて加 湿された後、 各々の電極へ供給される。
ところで、 高分子電解質型燃料電池においては、 電池反応によって固 体高分子電解質膜と電極の界面に形成された触媒層において過酸化物が' 生成し、 生成した過酸化物が拡散しながら過酸化物ラジカルとなって電 解質を劣化させる。 例えば、 燃料電池では燃料極で燃料の酸化、 酸素極 で酸素の還元が行われるが、 水素を燃料と し、 酸性の電解質を用いる場 合の理想的な反応は、 下記 ( 1 ) 式及ぴ ( 2 ) 式に示したように表され る。
アノード (水素極) : H2→ 2 H + + 2 e— ... ( 1 )
力ソード (酸素極) : 2 H + + 2 e— + ( 1 / 2 ) 02→H20 ... ( 2 ) アノードで式 ( 1 ) の反応により生成した水素イオンは、 H+ (X H2 O) の水和状態で固体高分子電解質膜を透過 (拡散) し、 膜を透過した 水素イオンは、 力ソードで式 ( 2 ) の反応に供される。 このアノード及 ぴカソ一ドにおける電極反応は、 固体高分子電解質膜に密着した電極触 媒層を反応サイ トとし、 当該電極触媒層における触媒と固体高分子電解 質膜との界面で進行する。
しかしながら、 実際の燃料電池ではこれらの主反応の他に副反応が起 こる。 その代表的なものが過酸化水素 (H 202) の生成である。 その生 成のメカニズムについては必ずしも完全に理解されているわけではない が、 考えられるメカニズムは次のようである。 すなわち、 過酸化水素の 生成は水素極、 酸素極どちらの極でも起こ り うるものであり、 例えば、 酸素極では、 酸素の不完全還元反応により次に示した式によつて過酸化 水素が生じると考えられる。
O 2 + 2 H + + 2 e → 2 H 2 O 2… ( 3 )
また、 水素極では、 ガス中に不純物としてあるいは意図的に混ぜるこ とによって入っている酸素、 若しく は酸素極で電解質にとけ込み水素極 に拡散してきた酸素が反応に関与すると考えられ、 その反応式は上記 ( 3 ) 式と同一か、 若しくは次に示した式で表されると考えられる。 2 Μ·Η + O 2 -→ 2 M+ H 2 O 2… (4 )
ここで、 Mは、 水素極に用いられている触媒金属を示し、 M-Hはその 触媒金属に水素が吸着した状態を示す。 通常触媒金属には白金 (P t ) 等の貴金属が用いられる。 これらの電極上で発生した過酸化水素は、電極から拡散等のため離れ、 電解質中に移動する。 この過酸化水素は酸化力の強い物質で、 電解質を 構成する多くの有機物を酸化する。 その詳しいメカニズムは必ずしも明 らかになつていないが、 多くの場合、 過酸化水素がラジカル化し、 生成 した過酸化水素ラジカルが酸化反応の直接の反応物質になっていると考 えられる。 すなわち、 次式のような反応で発生したラジカルが、 電解質 の有機物から水素を引き抜く力、 他の結合を切断すると考えられる。 ラ ジカル化する原因は、 必ずしも明らかでないが、 重金属イオンとの接触 が触媒作用を有していると考えられている。 このほか、 熱、 光等でもラ ジカル化すると考えられる。
H 2 O 2→ 2 · O H
又は
H 2 O 2→ · H + · O O H
この問題に対しての従来技術として、 特開 2 0 0 1 — 1 1 8 5 9 1号 公報では、透過水素により発生したラジカルを「分解」、 「不活性化」、 「ト ラップ +不活性化」 する化合物を、 電解質内部に添加することにより、 ラジカルによる燃料電池の劣化を防いでいる。 具体的には、 固体高分子 電解質中に、 過酸化物を接触分解する酸化マンガン、 酸化ルテニウム、 酸化コバルト、 酸化ニッケル、 酸化クロム、 酸化イ リジウム、 酸化鉛な どの遷移金属酸化物を分散配合するか、 過酸化物のラジカル化を阻止す るスズ化合物のような過酸化物安定剤を分散配合するか、 あるいは発生 'した過酸化物ラジカルを トラップして不活性化するフヱノール性水酸化 基を有する化合物を配合している。
一方、 高木誡司著 「定性分析化学」 中巻、 3 6 9頁には、 T i ( S O 4 ) 2は酸性溶液で黄色を呈し、 過酸化水素と反応して過酸化チタン酸を 生成するとともに、 この過酸化チタン酸は S〇 4 の存在下に錯陰ィォ ンを形成することが開示されている。 発明の開示 特開 200 1— 1 1 859 1号公報に記載の、ラジカルを「分解」、 「不 活性化」、 「トラップ +不活性化」 する化合物を添加する方法では、 過酸 化物の抑制が不十分であり、 燃料電池の耐久性の向上にはさらなる技術 開発が望まれていた。
そこで、本発明は、電解質膜や電極触媒層中の電解質の劣化を抑制し、 耐久性を向上させた燃料電池を提供することを目的とする。 また、 燃料 電池用電極触媒層の製造方法、 及び燃料電池の運転方法を提供すること を目的とする。
本発明者は、 特定の化合物を予め混在させておく ことにより、 過酸化 水素が捕捉されることを見出し、 本発明に到達した。
即ち、 第 1に、 本発明は、 燃料電池の発明であり、 過酸化水素と錯体 を形成しうる錯体形成性化合物が膜一電極接合体内に分散添加されてい ることを特徴とする。 燃料電池の運転中に発生した過酸化水素は錯体形 成性化合物に捕捉されて錯体を形成する。 この結果、 有害な過酸化水素 がセル内から除去される。
本発明において、 錯体形成性化合物は膜一電極接合体内のどこに存在 しても良いが、 後述するように、 その製造方法を考慮して、 電極触媒層 内に分散添加されていることが好ましい。
本発明で用いられる錯体形成性化合物は、 過酸化水素と錯体を形成し うる化合物であれば特に限定されない。 具体的には、 T i ( S 04) 2が 好ましく例示される。 T i (s o4) 2は酸性溶液で黄色を呈する。 これ は、 下記 (5) 式の過酸化チタン酸の生成による。
T i 4 + + 3 H 20 + H 202 → H 4 T i O 5 + 4 H+ ... ( 5 )
この過酸化チタン酸は S O 4 2—の存在下に下記 ( 6 ) 式の錯陰イオン を形成していると考えられる。この反応の逆反応はほとんど無視できる。
Figure imgf000007_0001
第 2に、 本発明は、 燃料電池用電極触媒層の製造方法の発明であり、 電極触媒用ィンクに過酸化水素と錯体を形成しうる錯体形成性化合物を 配合 ·混練し、 該電極触媒用インクで電極触媒層を形成し、 該電極触媒 層を乾燥することを特徴とする。
第 3に、 本発明は、 水素ガス又は水素を含む燃料ガスが供給される燃 料極と、 酸素ガス又は酸素を含む酸化剤ガスが供給される酸素極と、 該 燃料極と該酸素極との間に挟装された電解質膜とからなる膜電極接合体 を含むセルがセパレータを介して複数個積層されて構成された燃料電池 の運転方法の発明であり、 運転中に該セル内に過酸化水素と錯体を形成 しうる錯体形成性化合物を分散添加すること及び Z又は過酸化水素と錯 体を形成しうる錯体形成性化合物の水溶液を注入することを特徴とする。 第 4に、 本発明は、 水素ガス又は水素を含む燃料ガスが供給される燃 料極と、 酸素ガス又は酸素を含む酸化剤ガスが供給される酸素極と、 該 燃料極と該酸素極との間に挟装された電解質膜とからなる膜電極接合体 を含むセルがセパレータを介して複数個積層されて構成された燃料電池 の運転中に発生する過酸化水素発生個所、 発生量、 又は発生メカニズム を分析する方法の発明であり、 運転中に該セル内に過酸化水素と錯体を 形成しうる錯体形成性化合物を試薬として存在させ、 運転中に発生した 過酸化水素と該錯体形成性化合物との錯体の存在個所及び/又は存在量 を検証することを特徴とする。 例えば、 過酸化水素と T i ( s o 4 ) 2と の錯体形成反応の呈色を吸光度分析により測定することができる。
本発明によれば、 燃料電池運転中に発生する有害な過酸化水素をセル から取り除く ことができ、 過酸化水素による電解質膜や電極触媒層中の 電解質の劣化を抑制し、 耐久性を向上させた燃料電池を得ることができ る。 また、 本発明において錯体形成性化合物として好適に用いられる T i ( S O 4) 2は、 T i 4 +と S〇4 2 —と力、らなり、 T i 4 +はセパレータに 使用されている金属であって、 S〇4 2 —は電解質の基本材料であるから、 両者とも燃料電池にとつて不純物とはならないことも本発明の優れた点 である。 図面の簡単な説明
図 1は、 錯体形成性化合物として T i ( S 04) 2を用いた場合の、 H 202濃度とその吸光度の関係を示すグラフである。 図 2は、 電解質中に T i ( S 04) 2を混在させた時の S EM写真を示す。 発明を実施するための最良の形態
図 1に、 本発明の水素酸化触媒の模式図を示す。 図 1は、 μ _ォキソ 遷移金属錯体の近傍に疎水性基が配置されている状態を示している。 こ こで、 μ —ォキソ遷移金属錯体の近傍に炭素数 6〜 1 0である疎水性基 を配置させることによって、 水で変性されやすい Ai—ォキソ遷移金属錯 体を保護するとともに、 水素酸化反応時に活性中心から酸、 水分を効率 良く除去することが可能となり、 水素酸化活性を更に向上させることが 出来る。
図 2は、 電解質中に T i ( S〇4) 2を混在させた時の S EM写真を示 す。 図 2中、 針状に見えるのが T i ( S 04) 2である。
以下、 本発明を実施例により説明する。
乾燥後の燃料電池触媒層を水中に入れたところ、 黄色の呈色反応を確 認した。 過酸化水素を添加し、 更に錯体形成性化合物と して T i ( S O 4 ) 2を添加した。 これにより、 上記 ( 5 ) 式、 及び ( 6 ) 式の反応によ り、反応系中の過酸化水素が捕捉され、錯体が形成されたことが分かる。 図 1は、本発明者が実験的に求めた、錯体形成性化合物と して T i ( S O 4) 2を用いた場合の、 H 2 O 2濃度とその吸光度の関係を示すグラフ である。 図 1の結果を検量線と して用いることにより、 本発明を実施す ることができる。
これらの結果より、 過酸化水素と錯体を形成しうる錯体形成性化合物 を用いることが、 燃料電池の運転中に発生する有害な過酸化水素をセル から取り除く ことに有効であり、 過酸化水素による電解質膜や電極触媒 層中の電解質の劣化を抑制し、 燃料電池の耐久性を向上させることが分 かる。
産業上の利用可能性
本発明によれば、 燃料電池の耐久性を向上させることができ、 燃料電 池の実用化と普及に貢献する。

Claims

請 求 の 範 囲
過酸化水素と錯体を形成しうる錯体形成性化合物が膜一電極接合体内 に分散添加されていることを特徴とする燃料電池。
2 .
前記錯体形成性化合物が電極触媒層内に分散添加されていることを特 徴とする請求の範囲第 1項に記載の燃料電池。
3 .
前記錯体形成性化合物が T i ( S 0 4 ) 2であることを特徴とする請求 の範囲第 1項に記載の燃料電池。
4 .
電極触媒用ィンクに過酸化水素と錯体を形成しうる錯体形成性化合物 を配合 * 混練し、 該電極触媒用インクで電極触媒層を形成し、 該電極触 媒層を乾燥することを特徴とする燃料電池用電極触媒層の製造方法。
5 .
前記錯体形成性化合物が T i ( s o 4 ) 2であることを特徴とする請求 の範囲第 4項に記載の燃料電池用電極触媒層の製造方法。
6 .
水素ガス又は水素を含む燃料ガスが供給される燃料極と、 酸素ガス又 は酸素を含む酸化剤ガスが供給される酸素極と、 該燃料極と該酸素極と の間に挟装された電解質膜とからなる膜電極接合体を含むセルがセパレ ータを介して複数個積層されて構成された燃料電池の運転方法であって、 運転中に該セル内に過酸化水素と錯体を形成しうる錯体形成性化合物を 分散添加すること及び Z又は過酸化水素と錯体を形成しうる錯体形成性 化合物の水溶液を注入することを特徴とする燃料電池運転方法。
7 .
前記錯体形成性化合物が T i ( S 0 4 ) 2であることを特徴とする請求 の範囲第 6項に記載の燃料電池運転方法。
8 .
水素ガス又は水素を含む燃料ガスが供給される燃料極と、 酸素ガス又 は酸素を含む酸化剤ガスが供給される酸素極と、 該燃料極と該酸素極と の間に挟装された電解質膜とからなる膜電極接合体を含むセルがセパレ ータを介して複数個積層されて構成された燃料電池の運転中に発生する 過酸化水素発生個所、 発生量、 又は発生メカニズムを分析する方法であ つて、 運転中に該セル内に過酸化水素と錯体を形成しうる錯体形成性化 合物を試薬と して存在させ、 運転中に発生した過酸化水素と該錯体形成 性化合物との錯体の存在個所及び Z又は存在量を検証することを特徴と する燃料電池運転分析方法。
9 .
前記錯体形成性化合物が T i ( s o 4 ) 2であることを特徴とする請求 の範囲第 8項に記載の燃科電池運転分析方法。
1 0 .
過酸化水素と T i ( S O 4 ) 2との錯体形成反応の呈色を吸光度分析に より測定することを特徴とする請求の範囲第 8項又は第 9項に記載の燃 料電池運転分析方法。
PCT/JP2006/313440 2005-06-29 2006-06-29 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法 WO2007001096A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002612682A CA2612682A1 (en) 2005-06-29 2006-06-29 Pem fuel cell, method for producing electrode catalyst layer for pem fuel cell, method for suppressing deterioration of pem fuel cell, and method for pem fuel call analysis
DE602006021575T DE602006021575D1 (de) 2005-06-29 2006-06-29 Brennstoffzelle, verfahren zur herstellung einer elektrodenkatalysatorschicht für eine brennstoffzelle und verfahren zum betrieb einer brennstoffzelle
EP06780816A EP1906474B1 (en) 2005-06-29 2006-06-29 Fuel cell, method for producing electrode catalyst layer for fuel cell, and method for operating fuel cell
CN2006800238051A CN101213692B (zh) 2005-06-29 2006-06-29 燃料电池、制备燃料电池的电极催化剂层的方法和操作燃料电池的方法
US11/994,137 US20090226771A1 (en) 2005-06-29 2006-06-29 Fuel cell, method for producing electrode catalyst layer for fuel cell, and method for operating fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005190190A JP2007012375A (ja) 2005-06-29 2005-06-29 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法
JP2005-190190 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007001096A1 true WO2007001096A1 (ja) 2007-01-04

Family

ID=37595321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313440 WO2007001096A1 (ja) 2005-06-29 2006-06-29 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法

Country Status (7)

Country Link
US (1) US20090226771A1 (ja)
EP (1) EP1906474B1 (ja)
JP (1) JP2007012375A (ja)
CN (1) CN101213692B (ja)
CA (1) CA2612682A1 (ja)
DE (1) DE602006021575D1 (ja)
WO (1) WO2007001096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046380A1 (ja) * 2011-09-28 2013-04-04 株式会社エクォス・リサーチ 燃料電池の反応層の観察方法
JP6890467B2 (ja) * 2017-05-22 2021-06-18 旭化成株式会社 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池
CN115207411A (zh) 2021-04-05 2022-10-18 丰田自动车株式会社 控制燃料电池系统的方法
JP2022178093A (ja) 2021-05-19 2022-12-02 トヨタ自動車株式会社 燃料電池システムの制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005056776A (ja) * 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc 固体高分子電解質及び燃料電池電極並びに固体高分子型燃料電池
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005216701A (ja) * 2004-01-30 2005-08-11 Mitsubishi Heavy Ind Ltd 燃料電池用膜電極および燃料電池
JP2006099999A (ja) * 2004-09-28 2006-04-13 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
US5874820A (en) * 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5528118A (en) * 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5623853A (en) * 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
US6268904B1 (en) * 1997-04-23 2001-07-31 Nikon Corporation Optical exposure apparatus and photo-cleaning method
AU1175799A (en) * 1997-11-21 1999-06-15 Nikon Corporation Projection aligner and projection exposure method
US6660424B1 (en) * 1998-08-20 2003-12-09 Matsushita Electric Industrial Co., Ltd. Fuel cell and method of manufacture thereof
CA2256829A1 (en) * 1998-12-18 2000-06-18 Universite Laval Composite electrolyte membranes for fuel cells
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
EP1313337A1 (de) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Verfahren zur Übertragung von Informationen in einem zellularen Funkkommunikationssystem mit Funksektoren
US7196151B2 (en) * 2001-11-22 2007-03-27 Haering Thomas Functionalized main chain polymers
WO2003060011A2 (de) * 2001-11-22 2003-07-24 HÄRING, Rima Modifizierte kovalent vernetzte polymere
CN1260842C (zh) * 2002-07-09 2006-06-21 中国科学院长春应用化学研究所 燃料电池阴极非铂复合催化剂的制备方法
US7112386B2 (en) * 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
CN101382738B (zh) * 2002-11-12 2011-01-12 Asml荷兰有限公司 光刻投射装置
TWI503865B (zh) * 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
EP2261742A3 (en) * 2003-06-11 2011-05-25 ASML Netherlands BV Lithographic apparatus and device manufacturing method.
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005056776A (ja) * 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc 固体高分子電解質及び燃料電池電極並びに固体高分子型燃料電池
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005216701A (ja) * 2004-01-30 2005-08-11 Mitsubishi Heavy Ind Ltd 燃料電池用膜電極および燃料電池
JP2006099999A (ja) * 2004-09-28 2006-04-13 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1906474A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
US8241814B2 (en) 2007-12-14 2012-08-14 W. L. Gore & Associates, Inc. Highly stable fuel cell membranes and methods of making them

Also Published As

Publication number Publication date
CA2612682A1 (en) 2007-01-04
CN101213692A (zh) 2008-07-02
EP1906474A1 (en) 2008-04-02
EP1906474A4 (en) 2009-03-11
JP2007012375A (ja) 2007-01-18
DE602006021575D1 (de) 2011-06-09
EP1906474B1 (en) 2011-04-27
CN101213692B (zh) 2010-06-16
US20090226771A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5233069B2 (ja) 燃料電池システム及び燃料電池車両
JP5151061B2 (ja) 燃料電池
US20050170236A1 (en) Fuel cell membrane electrode and fuel cell
EP2654114B1 (en) Solid polymer electrolyte film
JP5223849B2 (ja) 燃料電池
JP2006294293A (ja) 燃料電池
KR101905213B1 (ko) 형상 제어된 팔라듐 및 팔라듐 합금 나노 입자 촉매
WO2007001096A1 (ja) 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法
JP2005190752A (ja) 燃料電池用膜電極接合体及びそれを用いた固体高分子形燃料電池
JP2008098006A (ja) 燃料電池用膜−電極接合体及び固体高分子型燃料電池
CN1860635A (zh) 用于从燃料容器中去除/氧化分解燃料的系统和方法
Kuo et al. Electrocatalyst materials for fuel cells based on the polyoxometalates—K7 or H7 [(P2W17O61) FeIII (H2O)] and Na12 or H12 [(P2W15O56) 2FeIII4 (H2O) 2]
JP2006244721A (ja) 燃料電池及び燃料電池の製造方法
US20180294500A1 (en) Method for reducing halogen ion contaminant in solid polymer electrolyte fuel cell
JP5044909B2 (ja) 燃料電池
JP4876407B2 (ja) 固体高分子型燃料電池用電解質、固体高分子型燃料電池、固体高分子型燃料電池システム及び燃料電池車両
JP2003282095A (ja) 燃料電池用電解質膜およびその製造方法
US8383292B2 (en) Fuel cell
JP2006185882A (ja) 金属製セパレータを用いた燃料電池の運転方法、および金属製セパレータを用いた燃料電池を有する発電装置
JP5217129B2 (ja) 燃料電池
JP2018198182A (ja) 燃料電池用電極触媒層およびその製造方法
JP2007287412A (ja) 燃料電池
JP2008166157A (ja) 燃料電池およびその製造方法
JP2008171600A (ja) 燃料電池及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023805.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006780816

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2612682

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11994137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE