WO2006137303A1 - 半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路 - Google Patents

半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路 Download PDF

Info

Publication number
WO2006137303A1
WO2006137303A1 PCT/JP2006/311913 JP2006311913W WO2006137303A1 WO 2006137303 A1 WO2006137303 A1 WO 2006137303A1 JP 2006311913 W JP2006311913 W JP 2006311913W WO 2006137303 A1 WO2006137303 A1 WO 2006137303A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
semiconductor laser
anode
power
sword
Prior art date
Application number
PCT/JP2006/311913
Other languages
English (en)
French (fr)
Inventor
Kenzo Ishibashi
Hisashi Senga
Takeharu Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007522248A priority Critical patent/JPWO2006137303A1/ja
Priority to US11/917,982 priority patent/US8036254B2/en
Publication of WO2006137303A1 publication Critical patent/WO2006137303A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to a semiconductor laser driving circuit for reducing power consumption in driving a semiconductor laser, and an optical disk apparatus and an integrated circuit including the same, and particularly to a high-density and high-speed optical disk using a blue semiconductor laser.
  • a blue semiconductor laser has a higher forward voltage than a conventional red semiconductor laser. Therefore, if the forward current is the same, the power consumption increases and the amount of heat generated also increases. As a result, when a blue semiconductor laser is mounted on an optical head, the temperature rise due to heat generation is large, so reducing the power of other blocks in the optical head and improving heat dissipation have become important issues.
  • Patent Document 1 discloses an “anode drive type” semiconductor laser drive circuit that controls a semiconductor laser by controlling the amount of current flowing through the anode of the semiconductor laser grounded with a force sword.
  • the forward voltage of the semiconductor laser (hereinafter referred to as “Vop”. Equal to the node voltage. ) Varies from one semiconductor laser to another, and also changes depending on the value of the forward current (If) of the semiconductor laser. If Vop is less than the specified value, the output voltage of the DC-DC converter can be reduced. By reducing the voltage applied to the semiconductor laser drive circuit, unnecessary power consumption is reduced. In other words, when Vop is less than the specified value, the output voltage of the DC-DC converter is switched to a predetermined low voltage, and the recording power and the reproduction power are switched at high speed, while the low-power semiconductor laser drive circuit is switched. Is realized.
  • Patent Document 2 discloses an anode-driven semiconductor laser drive circuit for power saving purposes.
  • the semiconductor laser drive circuit of Patent Document 2 in order to accurately measure the circuit voltage, the output voltage of the DC-DC converter and Vop are measured through the level shift circuit and the peak hold circuit, respectively, and the difference is calculated. The voltage applied to the semiconductor laser drive circuit is measured, and the output voltage of the DC-DC converter is controlled based on the result.
  • Patent Document 3 discloses an anode drive type semiconductor laser drive circuit.
  • the Vop of the blue semiconductor laser is measured through a peak hold circuit, an integration circuit, etc., and a voltage obtained by adding the voltage necessary for the semiconductor laser drive circuit to the voltage is output.
  • DC Controls the output voltage of the DC converter.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-244052
  • Patent Document 2 JP 2002-158395 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-260266
  • the forward voltage of a blue semiconductor laser is, in principle, about 4 to 6 [V], which is higher than that of a red semiconductor laser, and about 7 [V] at the end of its lifetime. If this is to be realized by the anode drive type as in the conventional example described in the background art, it is necessary to further increase the drive voltage by about 2 [V]. As a result, the voltage required for the semiconductor laser drive circuit is required. Is as high as 9 [V]. However, consumer devices such as optical disk drives In mainstream semiconductor process technology for manufacturing semiconductors used in system equipment, the current breakdown voltage is about 6-7 [V]. In the future, considering the progress of semiconductor process technology that can achieve further miniaturization and higher breakdown voltage, it is not realistic to integrate circuits that operate at a voltage of 9 [V] or higher.
  • the reduction of power consumption which is the object of the present invention, is disadvantageous because the power consumption increases when the power supply voltage increases.
  • the conventional anode-driven semiconductor laser drive circuit is not advantageous in terms of speeding up.
  • an output transistor (M S FET or bipolar transistor) of a semiconductor laser drive circuit operation is generally slower than an n-type transistor (n-channel M O S FET or np n- type bipolar transistor), and a p-type transistor (p-channel) Type MOS FET or pnp bipolar transistor).
  • the semiconductor laser drive circuit can be configured with n- type transistors, the drive voltage required for the semiconductor laser drive circuit will be about 2 [V] higher, and the semiconductor laser drive circuit will need to have a higher breakdown voltage. The disadvantage of increased power consumption arises.
  • a conventional anode drive type semiconductor laser drive circuit is required.
  • a “sword drive type” semiconductor laser drive circuit that controls the amount of current in the semiconductor laser cathode by applying a high voltage different from the voltage for operating the semiconductor laser drive circuit to the anode of the blue semiconductor laser. Can be said to be preferred. Since the power sword voltage of the semiconductor laser during operation becomes a value reduced by the anode voltage force Vo p, the driving voltage of the semiconductor laser driving circuit itself can be reduced to 5 [V] or less, which is convenient for integration. . In addition, the power consumption of the control unit of the semiconductor laser driving circuit can be reduced by using the force sword driving type semiconductor laser driving circuit.
  • the three examples of semiconductor laser driving circuits described above are semiconductor lasers that are based on the measurement of the forward voltage Vop of a semiconductor laser. Because the power sword is not grounded, Vop cannot be measured directly. Therefore, it is necessary to calculate the Vop by measuring the anode voltage and the force sword voltage of the semiconductor laser, and the circuit becomes complicated. In addition, in order to directly measure the anode voltage of a blue semiconductor laser that only complicates the circuit, a measurement circuit with a breakdown voltage of at least 7 [V] at the end of the life is required, which is a practical problem.
  • the present invention seeks to solve the above-described problems in reducing power consumption in a power sword drive type semiconductor laser drive circuit with a simple circuit configuration and using a low breakdown voltage circuit.
  • the increase in power consumption of the optical head and Z or the entire optical disk device and the temperature rise due to heat generation can be suppressed, and the life of the semiconductor laser and the operational reliability can be improved.
  • reducing the power consumption of an optical head incorporating a blue semiconductor laser drive circuit can reduce the measures for heat dissipation while maintaining the advantage that high power can be easily obtained in high-speed recording of optical discs. It is possible to reduce the size and price of the equipment.
  • a first aspect of the present invention is a semiconductor laser driving circuit including a voltage source, a driving unit, a measuring unit, and a voltage control unit.
  • the voltage source supplies an anode voltage to the anode of the semiconductor laser.
  • the drive unit is connected to the power sword of the semiconductor laser, and controls the optical output of the semiconductor laser by changing the amount of current drawn from the semiconductor laser.
  • the measurement unit is connected to the power sword of the semiconductor laser and measures the force sword voltage.
  • the voltage control unit is connected to the voltage source and controls the force sword voltage to be higher than the first level.
  • the voltage of the drive unit of the semiconductor laser that is, the power sword voltage of the semiconductor laser can be controlled to a predetermined level that is equal to or higher than the lowest level at which the drive unit can operate. Therefore, heat generation and temperature rise of the entire semiconductor laser driving circuit can be prevented.
  • the “first level” means the movement of the drive unit. Check the voltage level of the minimum voltage that is guaranteed to work.
  • the second invention is the first invention, wherein the voltage source includes a first resistor and a second resistor, and the anode voltage is divided by the first resistor and the second resistor. It has a DC-DC converter or voltage regulator that feedback controls the anode voltage so that the reference voltage at the point is the same as the first reference voltage.
  • the voltage control unit varies the anode voltage by adjusting the amount of current from the voltage dividing point. Note that “adjusting the amount of current” includes the concept of increasing or decreasing the amount of current using a sink current or a source current.
  • variable range and variable step of the anode voltage of the semiconductor laser supplied from the voltage source can be determined by setting the resistance value of the first resistor and the resistance value of the second resistor.
  • a general-purpose variable voltage control IC it is possible to easily realize a semiconductor laser drive circuit.
  • 3rd invention is 2nd invention, Comprising: 3rd resistance provided between the control output terminal of a voltage control part and a voltage dividing point, The power supply which generates a control output terminal and a 2nd reference voltage The amount of unit step for varying the voltage of the output voltage of the voltage source is adjusted by a fourth resistor provided between the two and the fourth resistor.
  • the fourth invention is the invention according to any one of the first to third inventions, wherein the measuring unit is configured to measure the voltage value of the power sword voltage of the semiconductor laser or the voltage value obtained by dividing the power sword voltage and the third reference voltage.
  • a low voltage circuit can be used in the measurement section.
  • the blue semiconductor laser has a high Vop, so it is effective to integrate the measurement part into the IC using a low breakdown voltage process.
  • 5th invention is 4th invention, Comprising:
  • the minimum value of the force sword voltage of the semiconductor laser during pulse modulation can be made inexpensively and easily, and the force can be detected at high speed.
  • a sixth invention is the first invention, and includes a part or all of a voltage source, a drive unit, a measurement unit, and a voltage control unit as an integrated circuit.
  • a seventh aspect of the invention is an optical disc apparatus including a semiconductor laser driving circuit having a voltage source, a driving unit, a measuring unit, and a voltage control unit for information recording / reproducing of an optical disc.
  • the voltage source supplies an anode voltage to the anode of the semiconductor laser.
  • the drive unit is connected to the power sword of the semiconductor laser, sucks current from the semiconductor laser, and changes the amount of current to control the optical output of the semiconductor laser.
  • the measurement unit measures the force sword voltage of the semiconductor laser.
  • the voltage control unit is connected to the voltage source to control the anode voltage so that the force sword voltage becomes equal to or higher than the first level.
  • the “first level” is the same as the “first level” in the first invention.
  • the power consumption of the semiconductor laser drive circuit for recording / reproducing information on the optical disk can be reduced as much as possible, and the heat generation of the optical head and the optical disk apparatus can be suppressed.
  • the temperature rise of the optical head itself can be suppressed, so that high-speed recording that requires high output power can be realized, and the drive device can be downsized. It is possible to reduce the thickness and raise the permissible value of the environmental temperature in which the optical disk device is used.
  • the eighth invention is the seventh invention, wherein the voltage control unit sets the anode voltage to a voltage level lower than the second level when the information reproduction of the optical disk is stopped.
  • the “second level” refers to, for example, the withstand voltage level of the circuit constituting the drive unit. According to this, the voltage at the output terminal of the semiconductor laser drive circuit, that is, the power sword voltage of the semiconductor laser can be kept low, and a semiconductor laser drive circuit with sufficient reliability can be realized by a general-purpose low-voltage semiconductor process technology. Can do.
  • the ninth invention is the seventh or eighth invention, wherein the voltage control unit urges the anode voltage to a voltage level higher than the third level before proceeding from the reproducing operation to the recording operation.
  • the “third level” is, for example, for securing the output power during the reproduction of the semiconductor laser. Check the minimum power sword voltage level required.
  • the output voltage of the semiconductor laser drive circuit in the optical disk apparatus can be made to the minimum level, the power can be reduced efficiently.
  • a tenth aspect of the invention is any one of the seventh to ninth aspects of the invention, in which the measuring unit is configured to obtain a voltage value of the power sword voltage of the semiconductor laser or a voltage value obtained by dividing the force sword voltage and the fourth reference voltage.
  • a comparison unit that compares the voltage value, and a storage unit that stores the comparison result of the bottom value of the force sword voltage obtained by the comparison unit when the semiconductor laser performs pulse emission.
  • the measuring unit selectively measures a force sword voltage corresponding to the peak power of the semiconductor laser during the recording operation. Note that “selectively measure” means, for example, selecting and measuring the minimum value from a plurality of minimum values appearing in a certain period.
  • the force sword voltage corresponding to the peak power of the semiconductor laser appears multiple times as a minimum value.
  • the minimum value of the force sword voltage can be selected from the local minimum values and measured by the measuring unit. Therefore, the minimum value of the output voltage (force sword voltage) of the semiconductor laser drive circuit during peak power emission during recording can be accurately measured.
  • An eleventh invention is an integrated circuit for driving a semiconductor laser including a voltage source, a drive unit, and a measurement unit.
  • the voltage source supplies an anode voltage to the anode of the semiconductor laser.
  • the drive unit is connected to the power sword of the semiconductor laser and controls the optical output of the semiconductor laser by changing the amount of current drawn from the semiconductor laser.
  • the measuring unit is connected to the power sword of the semiconductor laser and measures the power sword voltage of the semiconductor laser.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention, further comprising a voltage control unit that controls the anode voltage of the semiconductor laser so that the force sword voltage is equal to or higher than the first level.
  • the “first level” is the same as the “first level” in the first invention.
  • a thirteenth aspect of the invention is an integrated circuit that drives a semiconductor laser including a drive unit and a measurement unit.
  • the drive unit is connected to the power sword of the semiconductor laser and controls the optical output of the semiconductor laser by changing the amount of current drawn from the semiconductor laser.
  • the measuring unit is connected to the power sword of the semiconductor laser and measures the power sword voltage of the semiconductor laser.
  • a fourteenth aspect of the invention is the thirteenth aspect of the invention, further comprising a voltage control unit that controls the anode voltage of the semiconductor laser so that the force sword voltage is equal to or higher than the first level.
  • the integrated circuit according to claim 13. This is the same as the “first level” in the first invention.
  • the integrated circuits of the thirteenth and fourteenth inventions since no voltage source is included, it is possible to realize an integrated circuit that is not easily affected by power supply noise from the voltage source. In addition, since it does not include a voltage source, an integrated circuit can be realized by a general-purpose low-voltage semiconductor process technology.
  • the power sword drive type semiconductor laser drive circuit of the present invention only the output voltage (power sword voltage of the semiconductor laser) is measured, and the anode voltage of the semiconductor laser is controlled, thereby reducing the power consumption. Accordingly, it is possible to provide an inexpensive semiconductor laser driving circuit with less heat generation and high reliability, and an optical disk device and an integrated circuit including the driving circuit.
  • FIG. 2 A diagram showing a specific example of the semiconductor laser drive unit 3 (LDD) in the embodiment.
  • Fig. 3 A diagram showing a specific example of the output voltage detection unit 7 (Vdet) in the embodiment.
  • FIG. 4 is a diagram showing a specific example of a voltage control unit 8 (DAC) in the embodiment.
  • DAC voltage control unit 8
  • FIG. 5 is a diagram showing a first specific example of a variable voltage source (PWR) in the embodiment.
  • FIG. 6 is a diagram showing a second specific example of the variable voltage source (PWR) in the embodiment.
  • FIG. 9 shows only the main part of the optical disc apparatus 100.
  • the recording operation and reproducing operation of the optical disc apparatus will be briefly described.
  • laser light having an intensity corresponding to the recording / reproducing of the semiconductor laser 1 is emitted, and the laser light is converted into parallel light by the collimator lens 91.
  • the laser light converted into parallel light is reflected by the polarization beam splitter 93, guided in the direction of the objective lens 92, passes through the objective lens 92, and is irradiated onto an area on the optical disc DSC. Recording and playback are performed.
  • some laser light converted into parallel light by the collimator lens 91 passes through the polarization beam splitter 93, is condensed by the condenser lens 94, and is received by the pin photodiode 5, and is recorded or reproduced. The intensity of the laser beam is detected.
  • the semiconductor laser driving circuit will be described. Unless otherwise specified, the description will proceed assuming that the output voltage is equal to the power sword voltage of the semiconductor laser.
  • FIG. 1 is a block diagram of a semiconductor laser driving circuit according to an embodiment of the present invention.
  • 1 is a semiconductor laser
  • 2 is a variable voltage source that supplies a voltage to the anode of the semiconductor laser 1
  • a variable voltage source 2 receives a voltage supply from a power supply voltage Vcc and outputs a node voltage Vld to the VLD terminal.
  • the power sword of the semiconductor laser 1 emits light when current is sucked by the semiconductor laser driving unit 3 from the output terminal VOUT (the amount of current flowing through the power sword of the semiconductor laser 1 is controlled by the semiconductor laser driving unit 3).
  • the light intensity of the semiconductor laser 1 is controlled by the semiconductor laser power control unit 4 by the sink current lop.
  • a current modulated by a high-frequency module (not shown) built in the semiconductor laser driving unit is supplied as a sink current lop, and the reproduction power level of the semiconductor laser 1 is obtained.
  • a pulse-modulated current corresponding to the shape of the recording mark and space is passed as the sink current lop, and the recording power level of the semiconductor laser 1 is obtained.
  • the playback power level and recording power level of the semiconductor laser are feedback controlled by test emission and sampling of the pulse waveform.
  • the light intensity of the semiconductor laser 1 is such that the light emitted by the semiconductor laser 1 is received by the pin photodiode 5, and a current corresponding to the intensity of the light from the semiconductor laser 1 flows to the pin photodiode 5, It is detected by converting the current to voltage in the optical monitor 6 and sending it to the semiconductor laser power controller 4 as light intensity (power) information.
  • the voltage at the output terminal VOUT is detected by the output voltage detector 7 as a force sword voltage Vout.
  • the semiconductor laser power control unit 4 ensures that the voltage value of the power sword voltage Vout received from the output voltage detection unit 7 does not fall below the minimum operating voltage Vmin of the semiconductor laser drive unit 3.
  • the anode voltage VId of the variable voltage source 2 is controlled via the VCON terminal of the voltage control unit 8.
  • the force sword voltage Vout is controlled to be the same as Vmin.
  • Reference numeral 9 denotes a temperature sensor, which is used by the semiconductor laser power control unit 4 to refer to a table of the values of the DC resistance Rs and Z or Vmin of the semiconductor laser 1 which changes depending on the temperature of the optical head.
  • the components of the above blocks are basically mounted on the optical head (corresponding to the portion 96 in FIG. 9) except for the variable voltage source 2 and the semiconductor laser power control unit 4.
  • a general-purpose voltage regulator or DC-DC converter is suitable for the variable voltage source, and it is preferably placed outside the optical head in consideration of mounting space, power consumption and noise.
  • part or all of the functions of the semiconductor laser power control unit 4 are realized by controlling a microcomputer or DSP (digital signal processor) by software.
  • the microcomputer or DSP is a so-called optical disk device. Since it is often integrated as a controller (for example, equivalent to 90 in FIG.
  • an element that realizes the semiconductor laser power control unit 4 (a part or all of its functions, such as a microcomputer, DSP, or The controller that integrates the sensor is usually placed outside the optical head. It is possible to place the voltage control unit 8 outside the optical head. However, if the voltage control unit 8 is integrated with the semiconductor laser driving unit 3 and the output voltage detection unit 7 as an IC or LSI, it is newly added to the semiconductor laser power control unit 4.
  • the power saving of the present invention can be realized without adding a simple circuit. That is, the voltage control unit 8, the semiconductor laser driving unit 3, and the output voltage detection unit 7 may be realized by being individually integrated in a single chip IC or LSI, or may include a part or all of them.
  • FIG. 2 is a specific example of the semiconductor laser driving unit 3.
  • the current source R is used to output reproducing power, bias power, and peak power at the output of the semiconductor laser 1, respectively. Equipped with DDAC, BSDAC and PKDAC.
  • the respective current amounts of the current sources RDDAC, BSDAC, and PKDAC are controlled by control signals input to the four powers of the semiconductor laser power control unit and the terminals RDcont, BScont, and PKcont, respectively.
  • the current sources BSDAC and PKDAC are switched by switches BSSW and PKSW, respectively.
  • Each current source is supplied with current from, for example, a power supply voltage Vcc (5 [V]).
  • Each current is added to the collector terminal of transistor Q31.
  • the added current is supplied as the collector current of the transistor Q32 by the current mirror circuit composed of the transistor Q31 and the transistor Q32, and is drawn from the power sword of the semiconductor laser 1 as the lop through the output terminal VOUT. It becomes current.
  • the current mirror circuit is configured so that the current ratio of transistor Q31 and transistor Q32 is, for example, about 1:50 in order to reduce current consumption.
  • the force sword voltage Vout is determined by subtracting the forward voltage Vop when the forward current is lop from the anode voltage Vld of the semiconductor laser.
  • the force sword voltage Vout also differs between playback and recording.
  • the force sword voltage is low.
  • the product of the series resistance Rs and lop of the semiconductor laser 1 is Vop, and as the environment where the semiconductor laser 1 is placed is lower, Rs increases and the forward voltage Vop also increases, so the force sword voltage Vout decreases.
  • the anode voltage output from the variable voltage source 2 is controlled in consideration of the above characteristics. Note that lop and Vop shown here are the forward current actually flowing rather than the current and voltage at the rated output of the semiconductor laser and the forward voltage determined by that.
  • FIG. 3 is a specific example of the output voltage detection unit 7. Integrated in semiconductor laser driver 3 Assuming that First, the force sword voltage Vout is divided by a resistor 71 and a resistor 72 to derive a voltage Vin. The resistance value is preferably increased to about 1 to:! Ok Q to suppress the current. The resistance division is performed by setting the anode voltage Vld of the variable voltage source 2 to 8 for example.
  • Vop 0 when lop of the semiconductor laser 1 is 0 when V is set to [V].
  • a voltage of 8 [V] is applied to the Vin pin, so the output voltage detector 7 is connected to an IC or the like.
  • the anode voltage Vld 0 before light emission from the semiconductor laser 1, and it is ensured that the anode voltage is sequentially increased from 0 while increasing the amount of current lop flowing through the power sword of the semiconductor laser 1. If possible, IC protection is possible.
  • Vin is compared with a variable reference voltage source 74 having a relatively small number of stages in a comparator 73 as a “comparator”, and for example, an RS as a “memory unit” composed of NAND gates 75 and 76.
  • a variable reference voltage source 74 having a relatively small number of stages in a comparator 73 as a “comparator”, and for example, an RS as a “memory unit” composed of NAND gates 75 and 76.
  • the reason why the number of variable stages is reduced is to make the IC cheaper.
  • the XCLR control signal that controls the on / off state of the flip-flop operation of the RS flip-flop is input to the XRESET pin of the RS flip-flop and set to “L” (low level for operating the logic circuit). For example, the comparison result is output directly to the Vlow pin.
  • Vlow When Vin is lower than Vcomp, Vlow is output as a true "H" (high 'level to operate the logic circuit). This is a detection that assumes the playback of the optical disk device.
  • the minimum operating voltage Vmin of the semiconductor laser drive unit 3 is set to 1.5 [V], for example, and Vcomp is set to 0.75 [V], which is half of that.
  • Detection control at the time of recording in the optical disk apparatus uses the latch function of the RS flip-flop. After the XCLR control signal is set to “H”, for example, test light emission of the semiconductor laser 1 is performed. The test emission can be multi-pulse emission. Once Vin is below the Vcomp voltage level and the XSET pin goes to “L”, Vlow goes to “H”. The voltage level of the force sword voltage Vout at the time of recording is sufficient even without using a circuit that is unsuitable for speeding up such as a bottom hold circuit (compatible with the peak hold circuit of an anode drive type semiconductor laser drive circuit) in real time. Can be detected.
  • One simple detection method is to detect the Vlow by lowering the anode voltage Vld during recording. To clear the stored result, set the XCLR control signal to “L”.
  • FIG. 4 shows a specific example of the voltage control unit 8.
  • the voltage control unit 8 is a current sink (sink) type DA converter mainly composed of a transistor, a resistor, and a switch. Current flows from the reference current source 81 to the transistor 82, resistor 83, and switch 84, and the transistor group 82G, resistor group 83G, and switch group 84G form a current mirror circuit having a weight.
  • the switch group 84G is turned on / off by the control signal group 85G and draws a current of a desired amount. That is, the amount of current flowing through the VC ON terminal can be controlled by performing ON / OFF control of the switch group 84G with the control signal group 85G.
  • variable voltage controller 8 Connect this voltage controller 8 to the variable voltage source 2 via the VCON terminal.
  • the reason why the voltage control unit 8 is a current source type DA converter is to improve noise resistance. Since the voltage control unit 8 and the variable voltage source 2 that is the controlled unit are separated from each other by a flexible printed circuit board or the like in the actual optical disc apparatus, if the voltage control unit 8 is realized with a voltage control type, noise resistance Decreases. Further variable voltage The source 2 is a voltage regulator, which is often realized by a DC-DC converter. If a voltage regulator, DC-DC converter, is used to easily realize the anode voltage control of the semiconductor laser 1, the voltage controller 8 is It is convenient to use the sink-type current DA converter shown in this specific example.
  • FIG. 5 shows a first specific example of the variable voltage source 2.
  • 2a is a variable output voltage regulator.
  • the power supply Vcc (for example, 13 [V]) is input and the anode voltage Vld is output.
  • 2a3 is a bypass capacitor that prevents output oscillation.
  • the anode voltage Vld is divided by the resistor R2 and the resistor R1, and the divided voltage Vc at the dividing point is input to the voltage regulator 2a, and the built-in reference voltage (1 [V]) and the divided voltage Vc are error amplifiers. Comparison is made at 2a2, and feedback control is performed by the variable voltage source voltage controller 2al so that Vc becomes 1 [V], and the anode voltage Vld is output.
  • the current sink type DA converter is connected to the voltage dividing point, and is controlled by the current sink type DA converter so that the current indicated by Icon flows.
  • the anode voltage Vld is controlled by the semiconductor laser power control unit 4.
  • the semiconductor laser power control unit 4 As a calculation example, set the values of resistors R1 and R2 to 1 3 ⁇ 4 ⁇ ] and 4 3 ⁇ 4 ⁇ , respectively, and set the DA converter to a current resolution of 50 A] with a 5-bit configuration.
  • the anode voltage Vld can be varied from 5.00 [V] to 11.82 [V] (220 [mV] steps).
  • Vcc is preferably 12 [V], but the maximum value of Vop of the blue semiconductor laser is 6-7 [V]. Therefore, the anode voltage Vld is not required to be at the maximum level. The level is considered practical.
  • the advantage of using the voltage regulator is to reduce power supply noise. Since the anode voltage Vld is directly applied to the semiconductor laser 1, there is an advantage that switching noise such as a DC-DC converter as described later is eliminated.
  • the power consumption of the voltage regulator itself is larger than that of the DC-DC converter, but the voltage regulator is installed at a location different from the optical head, so the effect of heat generation is small. It is an effective part when you want to reduce the influence of power supply noise on the playback signal.
  • FIG. 6 shows a second specific example of the variable voltage source 2.
  • 2b is the power supply voltage Vcc (for example, 5 [V])
  • Vcc for example, 5 [V]
  • This is a control unit for a step-up DC-DC converter that boosts the voltage and generates the anode voltage Vld.
  • the overall operating principle is the same as a general boost DC-DC converter. Briefly, the voltage input to the step-up DC-DC converter is boosted by controlling the current flowing through the inductor L by the switching operation of the transistor Q, and the voltage is increased via the diode i through the tank capacitor C21. To generate an anode voltage Vld.
  • the anode voltage Vld is divided by the resistors R2 and R1 indicated by the same symbols as in the first example, and is input to the error amplifier 2b2 as Vc, so that Vc and the reference voltage Vref are the same.
  • the voltage control unit 2bl performs the switching operation of the transistor Q, and as a result, feedback control is performed so that the anode voltage Vld becomes the target voltage.
  • C22 is a phase compensation capacitor.
  • resistors R1 and R2 are large in order to reduce external power loss.
  • the voltage control unit 8 is integrated in the semiconductor laser drive circuit, the output range cannot be changed by an external variable voltage source.
  • the range and resolution of the anode force Vld are preferably the same. In order to realize this, resistors R3 and R4 were added.
  • variable width and step of the anode voltage Vld can be controlled in the same way even if the resistance values of the resistors Rl and R2 are different using the same voltage control unit 8 as in the first specific example. Since the specific calculation formula can be easily calculated by Ohm's law, only the force result is shown. If resistor R3 and resistor R4 are set to 40 3 ⁇ 4 ⁇ ] and 1.8 3 ⁇ 4 ⁇ respectively, the DA converter current resolution is 50 ⁇ ] and the anode voltage is 5 ⁇ 05 [V] 11.67 [V] (213 [mV] steps). In this example, by providing the resistor R4 as shown in FIG.
  • the resistance R1 depends on the amount of current.
  • the voltage dividing point of resistor R2 has a structure that can substantially source (supply) current.
  • the boost DC-DC converter is more power efficient than the voltage regulator described above, but it has noise performance. Power consumption is essential, such as video cameras that use small-diameter optical disks for recording and playback, and the transfer rate during recording is low. It can be said that it is suitable for good equipment.
  • the boosted voltage when using a step-up DC-DC converter as the variable voltage source 2, unlike the voltage regulator, the boosted voltage generates an excessive voltage in the event of a failure or bug, and a specific part of the circuit is Since there is a risk of destruction, it is preferable to implement protective measures.
  • the internal detailed configuration of the present invention has been described above, but the point of the configuration of the present invention is that in a force sword drive type semiconductor laser drive circuit, the forward voltage Vo P of the semiconductor laser is changed to a complicated circuit such as a differential amplifier.
  • This is a simple means of measuring only one force sword voltage at the output terminal of the force sword drive, which is not directly measured by using the power.
  • the voltage of the output stage of the semiconductor laser drive circuit is set to a value close to the voltage operation limit value. It can be set and power consumption can be reduced without degrading performance.
  • FIG. 7 when there is no voltage control for the anode voltage of the semiconductor laser 1
  • FIG. 8 the anode of the semiconductor laser 1). This will be explained in comparison with the operation timing diagram (when there is voltage control for the voltage).
  • (7a) shows the power level of the semiconductor laser 1 during each operation in the optical disk apparatus on the vertical axis, and the time axis on the horizontal axis.
  • (7b) shows the voltage value of the force sword voltage Vout at the output terminal V OUT at that time.
  • the anode voltage Vld of the semiconductor laser 1 is fixed at 10 [V] and there is no voltage control, and the guaranteed lower limit of the force sword voltage Vout of the semiconductor laser 1 is 2 [V].
  • the reason why Vld is increased to 10 [V] is to secure a sufficient force sword voltage Vout even when there is a variation due to the life of the semiconductor laser 1 or the environment.
  • the force sword voltage Vout 10 [V].
  • the force sword voltage Vout l 0 [V] exceeds the withstand voltage of the output part of the semiconductor laser drive circuit and is too high, so measures to keep it low are necessary.
  • the explanation is fixed at 10 [V].
  • the semiconductor laser driving unit 3 is controlled to cause the semiconductor laser 1 to emit light with the power during reproduction (reproduction power). Specifically, a current equivalent to reproduction power is passed through the current source RDDAC in Fig. 2. The Vop at this time is slightly low, but is 3.5 [V].
  • the voltage Vout is 6.5 [V], which is the voltage drop of Vop. From time t2 to t4, the test flash interval is shown. First, test light emission of bias power is performed at t2, and then test light emission of peak power is performed at t3.
  • the current obtained by adding the current from the current source B SDAC to the current from the current source RDDAC and the current obtained by adding the current from the current source PKDAC are passed as the sink current lop through the current mirror circuit.
  • the emission power of the semiconductor laser 1 is detected by the front light monitoring unit 6 and controlled to flow to the current power source BSDAC and the current source PKDAC corresponding to the target bias power and peak power. At the same time, the current source RDDAC is adjusted so that bottom power can be output.
  • time t4 In an actual optical disk device, the high-frequency module is operated only during playback and not during recording. Therefore, the current source RDDAC needs to be corrected, but the description is omitted.
  • the recording interval from time t4 to t9 which is the space formation interval indicated by SP in FIG. 7 (7a)
  • the laser beam of the semiconductor laser 1 with bias power is irradiated onto the optical disk.
  • the optical disk is irradiated with the laser light of the semiconductor laser 1 that has been subjected to multipulse modulation with the peak power and the bottom power.
  • the force sword voltage Vout drops in inverse proportion to the emission power of the semiconductor laser 1. More precisely, a voltage drop occurs by the product of the series resistance Rs of the semiconductor laser 1 and the forward current lop. 7 and 8 show an example of the aforementioned operation. Then, the playback state is restored at time t9, and the semiconductor laser 1 is turned off at time tlO.
  • the cathode voltage Vout is 2 V or more as described above. This condition is met.
  • the power sword voltage Vout is higher than necessary when the light is turned off or during reproduction, which causes an increase in power consumption of the semiconductor laser drive unit 3. If limited to the output stage, the power consumption is simply the product of lop and Vout.
  • the purpose of the present invention is to minimize the increase in power consumption of the semiconductor laser driving unit 3 while ensuring the force sword voltage Vout required for the operation. The operation will be described next.
  • FIG. 8 shows an operation of controlling the anode voltage Vld by the semiconductor laser power control unit 4 in the present invention as an operation of the same optical disk apparatus as that in FIG.
  • the voltage controller 8 is assumed to use the voltage regulator, which is the first specific example shown in FIG. Time tO
  • the semiconductor laser 1 is turned off until ⁇ tl, the value of Icon is set to 0 and the anode voltage Vld is set to 5 [V].
  • the semiconductor laser 1 is turned on, but the anode voltage Vld is set to 5 [V] as it is at the time of lighting.
  • the force sword voltage Vout becomes 2 [V] or less.
  • the power sword voltage Vout voltage is gradually increased while comparing it with 2 [V] by the output voltage detector 7.
  • the anode voltage Vld is fixed (time ti l). Note that the setting value of the anode voltage Vld at tl is in the point where it is unclear whether playback power servo is possible, that is, whether playback APC (Auto Power Control) can be operated.
  • the “threshold current” is set to flow through the semiconductor laser 1 and the anode voltage VI d is increased so that the force sword voltage Vout exceeds 2 [V]. It is considered that the preferred control procedure is to operate.
  • the target voltage value is switched so that the anode voltage VW is raised to about 9.5 [V] before the test light emission start time t2.
  • the amount of increase in Vop during recording is calculated from the series resistance Rs of the semiconductor laser 1 estimated from the current and temperature, and the anode voltage Vld is set with a certain margin.
  • the anode voltage Vld is lowered at time t31. Here, it is reduced by 0.5 [V].
  • the value to be reduced is set to a value that is calculated if the force sword voltage Vout at peak power output does not cut below 2 [V].
  • the measurement of the force sword voltage Vout at time t3 is performed using the above-described bottom detection method using the RS flip-flop. Changing the power sword voltage Vout in the range of 2 [V] or more does not affect the semiconductor laser drive waveform.
  • bottom detection is not based on the bottom power of the output of the semiconductor laser 1 but a state where the Vop increases and the force sword voltage Vout decreases (referred to as “bottom”). It means to detect by peak power.
  • the minimum force sword voltage Vout for guaranteeing the operation of the semiconductor laser drive unit 3 is 2 [V], but this value will be suddenly disabled when it is turned off.
  • the current linearity gradually deteriorates in proportion to the decrease in the force sword voltage Vout, or the situation where the pulse characteristics deteriorate gradually is generated.
  • the semiconductor laser driver 3 that performs a desired operation to some extent, for example, up to about 1.5 [V].
  • the power S of the semiconductor laser 1 is set to a value different from that during actual recording S, and during the test light emission in the next recording block, the value of the recording power that was used during the previous recording is used.
  • the peak power value at the time of test light emission and the peak power value at the time of recording can be brought close to the same value. Therefore, the peak power value may be set by relatively slow control in which the anode voltage Vld is sequentially changed in units of recording blocks.
  • the recording block is divided into multiple sections, and the bottom value of the force sword voltage Vout is measured and recorded for each section using the bottom detection function. By changing the force sword voltage Vout corresponding to the bottom value detected in the block, the voltage value of the force sword voltage Vout can be controlled relatively quickly.
  • the temperature of the semiconductor laser drive circuit can be estimated from the value detected by the temperature sensor 9, so that it can be used to determine the anode voltage Vld.
  • the series resistance Rs of the semiconductor laser 1 that determines the voltage drop due to Vop is determined by measuring the difference between the force sword voltage Vout corresponding to the bias power and the force sword voltage Vout corresponding to the peak power. The measured resistance value of the series resistance Rs and the recording order This is calculated by calculating the voltage drop amount of the force sword voltage Vout during recording using the current value of the directional current lop.
  • the operation has been described by taking the blue semiconductor laser as an example, but of course, the infrared semiconductor laser for CD, the red semiconductor laser for DVD, and the ultraviolet for future ultra-high density optical discs.
  • Application to semiconductor lasers is also possible.
  • the power sword drive type semiconductor laser drive circuit shown here is connected to the GND of any terminal of the semiconductor laser, but it is not compatible with optical disk devices that achieve higher transfer rates and higher speeds. Therefore, since it is considered that a configuration in which no terminal of the semiconductor laser is grounded will become an essential configuration in the future, the practical effect of the power saving control in the present invention is great. In particular, future ultraviolet semiconductor lasers will have a larger Vop, so the power-saving configuration of the present invention will be more important.
  • the configuration in which the voltage source and the output of the semiconductor laser drive circuit are connected to the anode and the power sword of the semiconductor laser 1, respectively, has been described.
  • the semiconductor Needless to say, the effect of the present invention is achieved even when an inductor, resistor, or the like is inserted in series with the laser, and there is substantially no difference from the present invention.
  • each block may be individually made into one chip by a semiconductor device such as an LSI, or a part or It may be integrated into a single chip so that all are included. Also, a semiconductor laser may be integrated and integrated into one chip.
  • IC system LSI
  • super LS I sometimes called Ultra LSI.
  • the method of circuit integration is not limited to LSI, but can be realized with a dedicated circuit or general-purpose processor.
  • FPGA field programmable gate array
  • the semiconductor laser drive circuit according to the present invention is particularly suitable for reducing the power consumption of the drive unit of a recording / reproducing optical disk apparatus using a blue semiconductor laser and suppressing the temperature rise of the optical head or the entire optical disk apparatus.
  • the optical disk device can be used for any type of optical disk device, whether it is a reproduction-only type or a semiconductor laser with a different wavelength.
  • the power saving control by the semiconductor laser circuit of the present invention is highly practical and can be realized inexpensively and simply by adding a few circuits to the existing semiconductor laser driving circuit. Any device that uses semiconductor lasers, such as communications and optical processing machines, can be applied to various applications without any particular limitation.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 カソード駆動型の半導体レーザ駆動回路の出力電圧を最低限にして、駆動回路部の消費電力を抑え、光ヘッドまたは光ディスク装置の発熱を低減する。本発明の半導体レーザ駆動回路は、従来の構成に加え、半導体レーザ(1)のカソード電圧(Vout)を測定し、前記カソード電圧(Vout)が所定レベルになるようにアノード電圧(Vld)を制御することによって、半導体レーザ駆動回路の出力電圧を所定レベルにし、駆動回路の消費電力を下げ、光ヘッドまたは光ディスク装置の温度上昇を最小限に抑えることができる。

Description

明 細 書
半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光デイス ク装置及び集積回路
技術分野
[0001] 本発明は、半導体レーザの駆動における消費電力を低減する半導体レーザ駆動 回路およびそれを備えた光ディスク装置、集積回路に関するもので、特に青色の半 導体レーザを使い光ディスクに高密度かつ高速にデータを記録再生するのに好適な 半導体レーザ駆動回路およびそれを備えた光ディスク装置、集積回路である。 背景技術
[0002] 近年、青色の高出力半導体レーザが開発され、この短波長のレーザ光を用いた光 ディスクの高密度記録技術が開発され実用されている。青色半導体レーザは、原理 的に従来の赤色半導体レーザより順方向電圧が大きいため、順方向電流が同じであ れば消費電力が大きくなり、発熱量も大きくなる。その結果、青色半導体レーザを光 ヘッドに搭載すると、発熱による温度上昇が大きいため、光ヘッド内の他のブロックの 電力低減や放熱の改善が重要な課題になってきている。
従来、光ディスク装置に用いられる半導体レーザ駆動回路の低消費電力化に関し ては、音楽再生専用の MD装置などで、半導体レーザと DC— DCコンバータを直接 接続して、半導体レーザの光出力のモニタ結果に基づいてフィードバックをかける方 式が用いられている。この方法は、半導体レーザと DC— DCコンバータの直列電圧 降下が最も少なぐし力も DC— DCコンバータは電圧レギユレータのような電圧降下 ロスが少ないので、省電力面では理想的な方式といえる。し力し、この方式は、再生 力 記録に切り替えるときの応答速度が不十分なため、そのままでは記録型に向か ないという課題がある。
特許文献 1の半導体レーザ駆動回路は、その応答速度を改良した例である。特許 文献 1には、力ソードを接地した半導体レーザのアノードに流れる電流量を制御する ことにより半導体レーザの制御を行う「アノード駆動型」の半導体レーザ駆動回路が 開示されている。半導体レーザの順方向電圧(以下、「Vop」という。なお、ここではァ ノード電圧と等しい。)は、半導体レーザごとにばらつき、また半導体レーザの順方向 電流(If)の値によっても変化するので、 Vopが所定値以下の場合には、 DC— DCコ ンバータの出力電圧を低下させることで半導体レーザ駆動回路に引加される電圧を 低下させ、無駄な電力消費を抑えている。すなわち、 Vopが所定値以下の場合には DC— DCコンバータの出力電圧をあらカ^め定めた低い電圧に切り替え、記録パヮ 一と再生パワーを高速に切り替えしつつ、低電力の半導体レーザ駆動回路を実現し ている。
また、特許文献 2には、省電力目的のアノード駆動型の半導体レーザ駆動回路が 開示されている。特許文献 2の半導体レーザ駆動回路では、回路電圧を正確に測定 するため、 DC— DCコンバータの出力電圧および、レベルシフト回路とピークホール ド回路とを通して Vopをそれぞれ測定して、その差を演算して半導体レーザ駆動回 路にかかる電圧を測定し、その結果に基づいて DC— DCコンバータの出力電圧を 制御している。
また、特許文献 3には、アノード駆動型の半導体レーザ駆動回路が開示されている 。特許文献 3の半導体レーザ駆動回路では、青色半導体レーザの Vopをピークホー ルド回路、積分回路などを通して測定して、その電圧に半導体レーザ駆動回路に必 要な電圧を加算した電圧が出力されるように、 DC— DCコンバータの出力電圧を制 御している。
特許文献 1 :特開 2000— 244052号公報
特許文献 2 :特開 2002— 158395号公報
特許文献 3 :特開 2002— 260266号公報
発明の開示
(発明が解決しょうとする課題)
青色半導体レーザの順方向電圧は、原理的に赤色半導体レーザより高ぐ実用的 には 4〜6 [V]程度必要であり、寿命末期には 7 [V]程度が必要とされる。これを背景 技術で説明した従来例のようなアノード駆動型で実現しょうとすると、駆動電圧をさら に 2 [V]程度高くする必要があり、結果的に、半導体レーザ駆動回路に求められる電 圧は 9 [V]程度と非常に高くなる。しかし、光ディスク装置のような民生用機器の駆動 系装置に使用される半導体を製造するための主流半導体プロセス技術では、現状の 耐圧が約 6〜7 [V]である。今後、さらなる微細化および高耐圧化を実現する半導体 プロセス技術の進歩が期待できなレ、ことを考慮すると、電圧 9 [V]以上で動作する回 路の集積化は現実的でない。
また、本発明の目的である消費電力の低減に対しても、電源電圧が上がると消費 電力が上がるので不利になる。
さらに、従来例のアノード駆動型の半導体レーザ駆動回路は、高速化の面でも有 利とは言えない。半導体レーザ駆動回路の出力トランジスタ(M〇S FETまたはバイ ポーラトランジスタ)として、一般に n型トランジスタ(nチャネル型 M〇S FET又は np n型バイポーラトランジスタ)より動作が遅レ、p型トランジスタ(pチャネル型 MOS FET 又は pnp型バイポーラトランジスタ)を使用せざるを得ないためである。仮に工夫して n型トランジスタで半導体レーザ駆動回路を構成できたとしても、半導体レーザ駆動 回路に必要な駆動電圧は 2 [V]程度高くなり、さらに半導体レーザ駆動回路の高耐 圧化が必要となり、消費電力も増すという欠点が生ずる。
以上のことから、青色半導体レーザを高速に駆動し、かつ半導体レーザ駆動回路( 特に制御部)を低耐圧の安価な半導体プロセスで集積するためには、従来のァノー ド駆動型の半導体レーザ駆動回路ではなぐ青色半導体レーザのアノードに半導体 レーザ駆動回路を動作させる電圧とは異なる高電圧を加え、半導体レーザのカソー ドでの電流量を制御する「力ソード駆動型」の半導体レーザ駆動回路を用いるのが好 ましいと言える。動作時の半導体レーザの力ソードの電圧は、アノードの電圧力 Vo p分だけ低下した値になるので、半導体レーザ駆動回路そのものの駆動電圧を 5 [V] 以下にできるので集積化に好都合である。また、力ソード駆動型の半導体レーザ駆 動回路にすることで、半導体レーザ駆動回路の制御部の消費電力も減らすことがで きる。
し力、しながら、前述したアノード駆動型の半導体レーザ駆動回路を、そのままカソー ド駆動型の半導体レーザ駆動回路に適用しょうとすると、レ、くつか課題が発生する。 前述した 3例の半導体レーザ駆動回路は、半導体レーザの順方向電圧 Vopの測定 を基本としている力 力ソード駆動型の半導体レーザ駆動回路では、半導体レーザ の力ソードが接地されていないため、 Vopを直接測定することはできなレ、。よって、半 導体レーザのアノード電圧と力ソード電圧をそれぞれ測定して Vopを演算する必要 があり、回路が複雑となる。また、回路が複雑になるだけでなぐ青色半導体レーザの アノード電圧を直接測定するには、少なくとも寿命末期の 7 [V]以上の耐圧の測定回 路が必要となるので実用上問題となる。外部で降圧して測定できたとしても、 ICにし たときには、 ICに専用のピン (端子)が 1本増えてしまう。よって、アノード駆動型の半 導体レーザ駆動回路を力ソード駆動型の半導体レーザ駆動回路に適用するには、 根本的な改良、改善が不可欠と考えられる。
本発明は、力ソード駆動型半導体レーザ駆動回路における消費電力の低減を図る 際の以上のような課題を、簡易な回路構成で、低耐圧の回路を使いながら解決を図 ろうとするものである。これによつて、光ヘッドおよび Zまたは光ディスク装置全体の消 費電力の増大と発熱による温度上昇を抑えて、半導体レーザの寿命や動作信頼性 などを向上できる。また、青色の半導体レーザ駆動回路が組み込まれた光ヘッドの 消費電力を抑えることは、光ディスクの高倍速記録などで高パワーを出しやすいとい う利点を保持しつつ、放熱等の対策を軽減できるので装置の小型化や廉価化を実現 できる。
(課題を解決するための手段)
前記従来の課題を解決するために、第 1の本発明は、電圧源と、駆動部と、測定部 と、電圧制御部とを備える半導体レーザ駆動回路である。電圧源は、半導体レーザ のアノードにアノード電圧を供給する。駆動部は、半導体レーザの力ソードに接続さ れ半導体レーザから電流の吸い込み量を変化させて半導体レーザの光出力を制御 する。測定部は、半導体レーザの力ソードに接続され力ソード電圧を測定する。電圧 制御部は、電圧源に接続され、力ソード電圧を第 1のレベル以上になるように制御す る。
この半導体レーザ駆動回路によれば、半導体レーザの駆動部の電圧、すなわち半 導体レーザの力ソード電圧を、駆動部が動作できる最低レベル以上の所定レベルに 制御できるので、駆動部による消費電力を抑えることができ、半導体レーザ駆動回路 全体の発熱および温度上昇を防止できる。なお、「第 1のレベル」とは、駆動部の動 作が保証される最小電圧の電圧レベルをレ、う。
第 2の発明は、第 1の発明であって、電圧源は、第 1の抵抗と第 2の抵抗とを含み、 アノード電圧を第 1の抵抗と第 2の抵抗とで抵抗分割した分圧点の参照電圧と、第 1 の基準電圧とが同じになるようにアノード電圧をフィードバック制御する DC— DCコン バータまたは電圧レギユレータを有する。電圧制御部は、分圧点からの電流量を調 整することによってアノード電圧を可変する。なお、「電流量を調整する」には、シンク 電流又はソース電流により電流量を増減させるという概念が含まれる。
これによれば、電圧源から供給される半導体レーザのアノード電圧の可変範囲、可 変ステップを第 1の抵抗の抵抗値と第 2の抵抗の抵抗値との設定により決定すること ができるので、汎用の可変型電圧制御 ICを利用し、簡単に半導体レーザ駆動回路 を実現すること力 Sできる。
第 3の発明は、第 2の発明であって、電圧制御部の制御出力端子と分圧点との間に 設けた第 3の抵抗と、制御出力端子と第 2の基準電圧を発生させる電源との間に設け たに第 4の抵抗とによって、電圧源の出力電圧の電圧を可変するための単位ステツ プの量が調整される。
これによれば、第 3の抵抗と第 4の抵抗とを設けることで、第 1の抵抗と第 2の抵抗と の分圧点に実質的に電流を供給することができ、たとえ汎用の可変型電圧制御 IC等 の推奨分割抵抗値が異なってレ、ても、 Dレンジおよび分解能が同じ電圧制御部を使 つて、同じ電圧制御レンジおよび分解能が実現できる。これは、電圧制御部を集積回 路化しても、同じ IC等で異なる構成の電圧源を制御できるので実用性は高レ、。 第 4の発明は、第 1から第 3のいずれかの発明であって、測定部は、半導体レーザ の力ソード電圧の電圧値または力ソード電圧を分圧した電圧値と、第 3の基準電圧の 電圧値とを比較する比較部を有する。
これによれば、抵抗を個別部品として配置すれば、測定部に低耐圧の回路が使え る。特に青色半導体レーザの Vopが高いため、低耐圧プロセスで測定部を ICに集積 するには有効である。
第 5の発明は、第 4の発明であって、測定部は、比較部により取得された、半導体レ 一ザのパルス発光時における力ソード電圧のボトム値の比較結果を、記憶する記憶 部をさらに有する。
これによれば、パルス変調しているときの半導体レーザの力ソード電圧の最小値を 安価かつ容易にし力も高速に検出することができる。
第 6の発明は、第 1の発明であって、電圧源、駆動部、測定部、及び電圧制御部の 、一部または全部を集積回路として備える。
これによれば、本発明における低電力化の利点を安価に大量に供給することが可 肯 になる。
第 7の発明は、電圧源と、駆動部と、測定部と、電圧制御部とを有する半導体レー ザ駆動回路を光ディスクの情報記録再生用に備える光ディスク装置である。電圧源 は、半導体レーザのアノードにアノード電圧を供給する。駆動部は、半導体レーザの 力ソードに接続され半導体レーザから電流を吸い込み、電流量を変化させて半導体 レーザの光出力を制御する。測定部は、半導体レーザの力ソード電圧を測定する。 電圧制御部は、力ソード電圧を第 1のレベル以上になるように電圧源に接続されァノ ード電圧を制御する。なお、「第 1のレベル」とは、第 1の発明での「第 1のレベル」と同 様である。
この光ディスク装置によれば、光ディスクに情報を記録'再生するための半導体レー ザ駆動回路の消費電力をできるだけ少なくすることができ、光ヘッドや光ディスク装 置の発熱を抑えることができる。
また、半導体レーザの温度上限が決まっている場合には、光ヘッド自体の温度上 昇が抑えられるので、高い出力パワーが必要とされる高倍速記録の実現化や、ドライ ブ装置の小型化'薄型化、さらには光ディスク装置を使う環境温度の許容値を上げる ことなどができ、その利点は大きい。
第 8の発明は、第 7の発明であって、電圧制御部は、光ディスクの情報再生を停止 しているときは、アノード電圧を第 2のレベルよりも小さい電圧レベルに設定する。な お、「第 2のレベル」とは、例えば、駆動部を構成する回路の耐圧レベルをいう。 これによれば、半導体レーザ駆動回路の出力端子の電圧すなわち半導体レーザ の力ソード電圧を低く抑えることができ、汎用の低耐圧の半導体プロセス技術で信頼 性の十分な半導体レーザ駆動回路を実現することができる。 第 9の発明は、第 7又は第 8の発明であって、電圧制御部は、再生動作から記録動 作に移行する前に、あら力じめアノード電圧を第 3のレベルより高い電圧レベルに上 げ、記録動作が終了し再生動作に移行した後、アノード電圧を第 3のレベルに下げる なお、「第 3のレベル」とは、例えば、半導体レーザの再生時の出力パワーを確保す るために必要な最小の力ソード電圧の電圧レベルをレ、う。
これによれば、光ディスク装置における半導体レーザ駆動回路の出力電圧を、とも に最小限のレベルにできるので、低電力化が効率よく行える。
第 10の発明は、第 7から第 9のいずれかの発明であって、測定部は、半導体レーザ の力ソード電圧の電圧値または力ソード電圧を分圧した電圧値と第 4の基準電圧の 電圧値とを比較する比較部と、比較部により取得された、半導体レーザのパルス発光 時における力ソード電圧のボトム値の比較結果を、記憶する記憶部とを備える。測定 部は、記録動作中に半導体レーザのピークパワーに対応する力ソード電圧を選択的 に測定する。なお、「選択的に測定する」とは、例えば、一定期間に出現する複数の 極小値の中から最小値を選択して測定することをレ、う。
この発明では、記録動作中に、半導体レーザがマルチパルス変調されたレーザ光 を発光する場合、半導体レーザのピークパワーに対応する力ソード電圧が極小値とし て複数回出現するので、その力ソード電圧の極小値の中から力ソード電圧の最小値 を選択し、測定部で測定することができる。したがって、記録中のピークパワー発光 時における半導体レーザ駆動回路の出力電圧 (力ソード電圧)の最低値を正確に測 定できる。
第 11の発明は、電圧源と、駆動部と、測定部とを備える半導体レーザを駆動する集 積回路である。電圧源は、半導体レーザのアノードにアノード電圧を供給する。駆動 部は、半導体レーザの力ソードに接続され半導体レーザから電流の吸い込み量を変 化させて半導体レーザの光出力を制御する。測定部は、半導体レーザの力ソードに 接続され、半導体レーザの力ソード電圧を測定する。
第 12の発明は、第 11の発明であって、力ソード電圧が第 1のレベル以上になるよう に半導体レーザのアノード電圧を制御する電圧制御部をさらに備える。なお、「第 1の レベル」とは、第 1の発明での「第 1のレベル」と同様である。 この集積回路であれば、外部付カ卩回路を用いることなく消費電力を抑える半導体レ 一ザ駆動回路を構成することが出来る。
第 13の発明は、駆動部と、測定部とを備える半導体レーザを駆動する集積回路で ある。駆動部は、半導体レーザの力ソードに接続され半導体レーザから電流の吸い 込み量を変化させて半導体レーザの光出力を制御する。測定部は、半導体レーザの 力ソードに接続され、半導体レーザの力ソード電圧を測定する。
第 14の発明は、第 13の発明であって、力ソード電圧が第 1のレベル以上になるよう に半導体レーザのアノード電圧を制御する電圧制御部をさらに備える。請求項 13に 記載の集積回路。第 1の発明での「第 1のレベル」と同様である。
第 13及び第 14の発明の集積回路によれば、電圧源を含まないので、電圧源から の電源ノイズ等の影響を受けにくい集積回路を実現することができる。また、電圧源 を含まないため、汎用の低耐圧の半導体プロセス技術で集積回路を実現できる。
(発明の効果)
本発明の力ソード駆動型の半導体レーザ駆動回路によれば、出力電圧(半導体レ 一ザの力ソード電圧)だけを測定し、半導体レーザのアノード電圧を制御する構成と することにより、消費電力とそれによる発熱が少なぐ信頼性に富む安価な半導体レ 一ザ駆動回路並びにそれを備えた光ディスク装置及び集積回路が提供できる。 図面の簡単な説明
園 1]本発明の実施の形態における半導体レーザ駆動回路のブロック図
園 2]実施の形態における半導体レーザ駆動部 3 (LDD)の具体例を示す図 園 3]実施の形態における出力電圧検出部 7 (Vdet)の具体例を示す図
[図 4]実施の形態における電圧制御部 8 (DAC)の具体例を示す図
[図 5]実施の形態における可変電圧源 (PWR)の第 1の具体例を示す図
[図 6]実施の形態における可変電圧源 (PWR)の第 2の具体例を示す図
園 7]記録再生時の力ソード電圧 Voutの動作タイミング図(電圧制御なし) 園 8]記録再生時の力ソード電圧 Voutの動作タイミング図(電圧制御有り)
[図 9]光ディスク装置のブロック図
符号の説明 1 半導体レーザ (LD)
2 可変電圧源(PWR)
3 半導体レーザ駆動部(LDD)
4 半導体レーザパワー制御部(LPC)
5 pinフォトダイオード
6 前光モニタ部(FMdet)
7 出力電圧検出部 (Vdet)
8 電圧制御部(DAC)
9 温度センサ (Temp)
Vld アノード電圧
Vout 力ソード電圧(出力電圧)
RDDAC 再生電流源
BSDAC バイアス電流源
PKDAC ピーク電流源
Q31 , Q32 トランジスタ
71 , 72 力ソード電圧 Vout分割抵抗
73 コンノ レータ
74 基準電圧源
75, 76 NANDゲート
81 電流源
82, 82G トランジスタ
83, 83G 抵抗
84, 84G スィッチ
100 光ディスク装置
2a 電圧レギユレータ
Rl, R2 アノード電圧 Vld分割抵抗 2b 昇圧型 DC— DCコンバータ R3, R4 Vld制御抵抗 発明を実施するための最良の形態
以下本発明の実施の形態について、図面を参照しながら説明する。以下で説明す る半導体レーザ駆動回路は、例えば、図 9に示すように記録再生型あるいは再生専 用型の光ディスク装置 100に内蔵されているものである。なお、図 9は、光ディスク装 置 100の主要な部分のみを図示している。図 9を用いて、光ディスク装置の記録動作 及び再生動作について簡単に説明する。情報の記録再生時には、半導体レーザ 1 力 記録又は再生に応じた強度のレーザ光が出射され、そのレーザ光は、コリメータ レンズ 91で平行光に変換される。平行光に変換されたレーザ光の大部分は、偏光ビ 一ムスプリッタ 93で反射し、対物レンズ 92の方向へ導かれ、対物レンズ 92を通過し、 光ディスク DSC上の領域に照射され、情報の記録、再生が行われる。一方、コリメ一 タレンズ 91で平行光に変換された若干のレーザ光は、偏光ビームスプリッタ 93を透 過し、集光レンズ 94で集光され、 pinフォトダイオード 5で受光され、記録時又は再生 時のレーザ光の強度の検出が行われる。
以下、半導体レーザ駆動回路について説明する。なお、特に断りのない限り、出力 電圧は半導体レーザの力ソード電圧と等しいものとして説明を進める。
図 1は、本発明の実施の形態における半導体レーザ駆動回路のブロック図である。 図 1において、 1は半導体レーザ、 2は半導体レーザ 1のアノードに電圧を供給する 可変電圧源で、可変電圧源 2は電源電圧 Vccから電圧供給を受け、 VLD端子にァ ノード電圧 Vldを出力する。半導体レーザ 1の力ソードは出力端子 VOUTから半導体 レーザ駆動部 3によって電流が吸い込まれる(半導体レーザ駆動部 3により半導体レ 一ザ 1の力ソードに流れる電流量を制御する)ことによって発光する。半導体レーザ 1 の光強度はシンク電流 lopによって半導体レーザパワー制御部 4によって制御される 。光ディスク装置での具体例では、再生時には半導体レーザ駆動部に内蔵された高 周波モジュール(不図示)で変調された電流がシンク電流 lopとして流され、半導体レ 一ザ 1の再生パワーレベルが得られる。記録時には記録マーク、スペースの形状に 対応してパルス変調された電流がシンク電流 lopとして流され、半導体レーザ 1の記 録パワーレベルが得られる。半導体レーザの再生パワーレベル及び記録パワーレべ ノレは、テスト発光や、パルス波形のサンプリングによってフィードバック制御される。 半導体レーザ 1の光強度は、半導体レーザ 1で発光された光が pinフォトダイオード 5で受光され、半導体レーザ 1からの光の強度に応じた電流が pinフォトダイオード 5 に流れるので、その電流が前光モニタ部 6で電流電圧変換され半導体レーザパワー 制御部 4に光強度 (パワー)情報として送られることで検出される。出力端子 VOUT の電圧は、出力電圧検出部 7で力ソード電圧 Voutとして検出される。半導体レーザ パワー制御部 4は、通常の光強度の制御に加えて、出力電圧検出部 7から受け取る 力ソード電圧 Voutの電圧値が、半導体レーザ駆動部 3の最低動作電圧 Vminを下 回らないように、電圧制御部 8の VCON端子を介して可変電圧源 2のアノード電圧 VI dを制御するものである。通常は、半導体レーザ駆動部 3の消費電力を抑えるために 、力ソード電圧 Voutが Vminと同じになるように制御する。 9は温度センサであり、光 ヘッドの温度によって変化する半導体レーザ 1の直流抵抗 Rsおよび Zまたは Vmin の値を、半導体レーザパワー制御部 4がテーブル参照するために使う。
以上のブロックの構成要素は、可変電圧源 2および半導体レーザパワー制御部 4 以外は、基本的に光ヘッド(図 9の 96の部分に相当)に搭載されている。可変電圧源 には汎用の電圧レギユレータまたは DC— DCコンバータなどが好適で、実装スぺー ス、電力消費やノイズなどを考慮すると光ヘッド外に置くのが好ましい。また、半導体 レーザパワー制御部 4の機能は、その一部又は全部がソフトウェアによりマイコンある いは DSP (デジタル信号プロセッサ)を制御することで実現され、そのマイコンあるい は DSPは、いわゆる光ディスク装置のコントローラ(例えば、図 9の 90に相当)として 集積されることが多いので、半導体レーザパワー制御部 4を実現する要素(その機能 の一部又は全部を実現する、例えば、マイコン、 DSP、又はそれを集積したコント口 ーラ)は、通常、光ヘッド外に置かれる。なお、電圧制御部 8を、前記光ヘッド外に置 くことも可能であるが、半導体レーザ駆動部 3と出力電圧検出部 7と共に ICや LSIとし 集積すれば、半導体レーザパワー制御部 4に新規な回路を追加することなく本発明 の省電力化を実現できる。すなわち、電圧制御部 8、半導体レーザ駆動部 3、出力電 圧検出部 7は、個別に 1チップの IC又は LSIに集積されることで実現されてもよいし、 それらの一部または全部を含むように 1チップの IC又は LSIに集積されることで実現 されてもよレ、。 VCON端子以外は各ブロックとの通信は基本的にシリアル転送等で 実現できるので、 VCON端子の追加と制御ソフトウェアの変更のみで本発明の効果 を享受すること力 Sできる。
以上ブロック図で構成を示した力 光ディスク装置としての動作説明は、図 7および 図 8で説明するが、その前に各要素の具体例を説明する。
図 2は、半導体レーザ駆動部 3の具体例である。この具体例では、例えば相変化書 き換え型の基本的な光ディスクの記録再生用途を想定し、半導体レーザ 1の出力に おいて、再生パワー、バイアスパワー、ピークパワーを出すため、それぞれ電流源 R DDAC、 BSDAC、 PKDACを備える。電流源 RDDAC、 BSDAC、 PKDACのそ れぞれの電流量は、半導体レーザパワー制御部 4力、ら端子 RDcont、 BScont、 PK contにそれぞれ入力される制御信号により制御される。光ディスクへの記録時には、 電流源 BSDACおよび PKDACは、それぞれスィッチ BSSWおよび PKSWによって 切り替えられる。各電流源はたとえば電源電圧 Vcc (5 [V] )から電流供給される。そ れぞれの電流はトランジスタ Q31のコレクタ端子に加算される。加算された電流は、ト ランジスタ Q31とトランジスタ Q32とから構成されるカレントミラー回路により、トランジ スタ Q32のコレクタ電流として、供給され、 lopとして出力端子 VOUTを介して半導体 レーザ 1の力ソードから引き込まれる電流となる。カレントミラー回路は、消費電流低 減のためトランジスタ Q31とトランジスタ Q32の電流比をたとえば 1: 50程度になるよう に構成される。力ソード電圧 Voutは、半導体レーザのアノード電圧 Vldから順方向電 流が lopのときの順方向電圧 Vopを差し引いたもので決まる。光ディスク装置の再生 時と記録時では lopの値が異なるので、力ソード電圧 Voutも再生時と記録時とで異 なる。記録時、特に PKSWと BSSWがオン状態であるときに力ソード電圧は低くなる 。半導体レーザ 1の直列抵抗 Rsと lopの積が Vopであり、半導体レーザ 1の置かれた 環境が低温であるほど Rsが大きくなり、順方向電圧 Vopも大きくなるので力ソード電 圧 Voutは小さくなる。可変電圧源 2から出力されるアノード電圧は、以上の特性を考 慮して制御する。なお、ここで示す lopおよび Vopは、半導体レーザの定格出力時の 電流、電圧ではなぐ実際に流す順方向電流とそれによつて決まる順方向電圧であ る。
図 3は、出力電圧検出部 7の具体例である。半導体レーザ駆動部 3に集積すること を前提として、簡単な構成となっている。まず、力ソード電圧 Voutを抵抗 71と抵抗 72 とで分圧して、電圧 Vinを導く。抵抗値は電流を抑えるため、 1〜: !Ok Q程度と高めに するのが好ましい。抵抗分割するのは、可変電圧源 2のアノード電圧 Vldをたとえば 8
[V]としたときに、半導体レーザ 1の lopが 0とすると Vop = 0となり、結果的に Vin端 子に電圧が 8 [V]印加されてしまうので、出力電圧検出部 7を IC等に集積した場合に
IC等が破壊されるのを防ぐためである。抵抗 71、 72を入れることで制御ソフトウェア のバグや、 ハードウェアの故障が発生した場合であっても IC等の破壊を簡単に防止 すること力 Sできる。抵抗 71と抵抗 72を同じ抵抗値をもつものにしておけば、分圧効果 で電圧 Vinはアノード電圧 Vldの半分である 4 [V]になる。さらに、抵抗値によって半 導体レーザ 1に順方向電流 lopがある程度流れるので、半導体レーザ 1に順方向電 圧が発生し、力ソード電圧 Voutは前述の 4[V]より十分低く抑えられる。この電圧低 減効果を優先する場合には、抵抗による消費電力を多少犠牲にして、抵抗値を低め に設定する必要がある。実際は、半導体レーザ 1の発光前にアノード電圧 Vld = 0と しておき、半導体レーザ 1の力ソードに流れる電流 lopの電流量を増加させながらァノ ード電圧を 0から順次上げることが確実にできれば、 ICの保護は可能である。
Vinは、例えば、比較的少ない段数の可変型の基準電圧源 74と「比較部」としての コンパレータ 73において比較され、例えば、 NANDゲート 75と 76で構成される、「記 憶部」としての RSフリップフロップの XSET端子に入力される。可変段数を落とすの は、 ICを安価にするためである。 RSフリップフロップのフリップフロップ動作のオン'ォ フを制御する XCLR制御信号は同 RSフリップフロップの XRESET端子に入力され、 それを" L" (論理回路を動作させるためのロー'レベル)にしておけば、比較結果は直 接 Vlow端子に出力される。 Vinが Vcompより低いとき、 Vlowは真の" H" (論理回路 を動作させるためのハイ'レベル)として出力される。これは、光ディスク装置の再生時 を想定した検出である。ここで半導体レーザ駆動部 3の最低動作電圧 Vminをたとえ ば 1. 5 [V]とし、 Vcompをその半分の 0. 75 [V]にする。まず半導体レーザ 1の発光 時は、高めのアノード電圧 Vldを設定し、半導体レーザ 1に、光ディスク装置の再生 動作時に相当する電流を流せば、 Vlowは" L"になる。アノード電圧 Vldを順次下げ て Vlowが" H' 'になったら半導体レーザ駆動部 3の動作限界であると判断できる。半 導体レーザ 1のアノード電圧の設定を、半導体レーザ駆動部 3の動作限界の若干手 前の設定にすれば、力ソード電圧 Voutを、省電力に関して、最適化できる。
光ディスク装置の記録時の検出制御は、前記 RSフリップフロップのラッチ機能を使 う。 XCLR制御信号を" H"にした上で、たとえば、半導体レーザ 1のテスト発光を行う 。テスト発光はマルチパルスによる発光でもよレ、。一度でも Vinが Vcompの電圧レべ ルを下回り、 XSET端子が" L"になれば Vlowが" H"になる。ボトムホールド回路(ァ ノード駆動型半導体レーザ駆動回路のピークホールド回路に対応。)など高速化に 不向きな回路を使いリアルタイムに計測しなくても、記録時の力ソード電圧 Voutの電 圧レベルを十分に検出できる。記録中にアノード電圧 Vldを下げて Vlowを検出する のが簡便な検出の方法のひとつである。なお、保持した結果をクリャするには XCLR 制御信号をー且" L"にすればょレ、。
なお、半導体レーザ駆動回路を集積する場合に、 VOUT端子に集積回路の耐圧 以上の電圧力 Sかからないための対策を十分に実現できる場合には、特別に Vin端子 を設けなくても、 IC等の内部で直接力ソード電圧 Voutを測定して IC等のピン数 (端 子数)を 1本と外部の抵抗 2本を削減することも可能である。特に超小型光ヘッドなど の実現を目指す場合には、このような部品点数の削減等の取り組みが必要になると 予測される。
図 4は電圧制御部 8の具体例である。電圧制御部 8は、主に、トランジスタ、抵抗、ス イッチで構成される電流吸い込み(シンク)型の DA変換器である。基準電流源 81か らトランジスタ 82、抵抗 83およびスィッチ 84に電流を流し、トランジスタ群 82G、抵抗 群 83Gおよびスィッチ群 84Gで重み付けを持ったカレントミラー回路を構成する。ス イッチ群 84Gは制御信号群 85Gでオン'オフ制御され所望の電流量の電流を引き込 める。つまり、スィッチ群 84Gは制御信号群 85Gでオン'オフ制御することにより、 VC ON端子に流れる電流量を制御することができる。この電圧制御部 8を VCON端子を 介して可変電圧源 2につなぐ。電圧制御部 8を電流源型の DA変換器にするのは、ノ ィズ耐性を向上させるためである。電圧制御部 8と被制御部である可変電圧源 2が実 際の光ディスク装置内ではフレキシブルプリント基板などで隔離して配置されるので、 電圧制御型で電圧制御部 8を実現させると、ノイズ耐性が低下する。さらに可変電圧 源 2は、電圧レギユレータゃ DC— DCコンバータで実現されることが多ぐ電圧レギュ レータゃ DC— DCコンバータにより、半導体レーザ 1のアノード電圧制御を簡単に実 現しようとすると、電圧制御部 8として、本具体例で示すシンク型の電流 DA変換器を 用いるのが好都合である。
以下電圧レギユレータと DC— DCコンバータを用いて半導体レーザ 1のアノード電 圧を制御するための具体例をそれぞれ図 5、図 6を用いて説明する。
図 5は、可変電圧源 2の第 1の具体例を示す。 2aは出力可変型の電圧レギユレータ である。電源 Vcc (例えば、 13 [V] )を入力してアノード電圧 Vldを出力する。 2a3は 出力の発振を防止するバイパスコンデンサである。アノード電圧 Vldは抵抗 R2と抵抗 R1とで分割し、分圧点の分圧電圧 Vcが電圧レギユレータ 2aに入力され、内蔵の基 準電圧 (1 [V] )と分圧電圧 Vcとが誤差アンプ 2a2で比較され、 Vcが 1 [V]になるよう に可変電圧源電圧制御部 2alでフィードバック制御されてアノード電圧 Vldが出力さ れる。さらに分圧点には、前記電流シンク型の DA変換器が接続され、 Iconで示す電 流が流れるように電流シンク型の DA変換器により制御される。これによつて、アノード 電圧 Vldが半導体レーザパワー制御部 4によって制御される。計算例として、抵抗 R1 、抵抗 R2の値をそれぞれ 1 ¾ Ω ]、 4¾ Ω ]に設定し、 DA変換器は 5bit構成で電流 分解能を 50 A]に設定する。 DA変換器を十進表記 0〜31で制御すると、ァノー ド電圧 Vldは 5· 00 [V]〜11. 82 [V] (220 [mV]ステップ)に可変できる。実用的に は Vccは 12 [V]が好ましレ、が、青色半導体レーザの Vopの最大値は 6〜7 [V]とされ ているので、アノード電圧 Vldは最大レベルの必要がなぐ例示したレベルが実用的 と考えられる。
電圧レギユレータを使う利点は、電源ノイズの低減にある。アノード電圧 Vldは直接 半導体レーザ 1に印加されるので、後述のような DC— DCコンバータのようなスィッチ ングノイズがなぐ有利である。電圧レギユレータ自体の電力消費は DC— DCコンパ ータより大きいが、電圧レギユレータは、光ヘッドとは別の場所に設置するので発熱 の影響は少なぐ光ディスク装置で高倍速再生をした場合等に、電源ノイズが再生信 号に与える影響を低減したいときには効果的な部品である。
図 6は、可変電圧源 2の第 2の具体例を示す。 2bは電源電圧 Vcc (例えば、 5 [V] ) を昇圧してアノード電圧 Vldを発生させる昇圧型 DC— DCコンバータの制御部であ る。全体の動作原理は一般的な昇圧型 DC— DCコンバータと同じである。簡単に説 明すると、昇圧型 DC— DCコンバータに入力された電圧は、トランジスタ Qのスィッチ ング動作によりインダクタ Lに流れる電流が制御されることで、昇圧され、ダイオード iを介して、タンクコンデンサ C21に蓄電されて、アノード電圧 Vldを発生させる。ァノ ード電圧 Vldは第 1の具体例と同じ記号で示す抵抗 R2と抵抗 R1で分割されて Vcと して誤差アンプ 2b2に入力され、 Vcと基準電圧 Vrefが同じになるよう可変電圧源電 圧制御部 2blがトランジスタ Qをスイッチング動作させ、結果的にアノード電圧 Vldが 目標電圧になるようフィードバック制御が行われる。なお、 C22は位相補償コンデン サである。
一般に DC— DCコンバータは低電力用途に作られるので、外部での電力ロスを低 減するため、抵抗 R1と抵抗 R2の推奨値は大きい。この例では、 1 = 10 [1^ 0 ]と1¾2 = 90 ¾ Ω ]が推奨値であるとしている。一方、電圧制御部 8は、半導体レーザ駆動回 路に集積するとすれば、外部の可変電圧源によって出力レンジを変更することはでき なレ、。し力 アノード電圧 Vldの範囲と分解能は同じにすることが好ましい。それを実 現するために抵抗 R3と抵抗 R4を追加した。これによつて、第 1の具体例と同じ電圧 制御部 8を使い抵抗 Rl、 R2の抵抗値が異なっても、アノード電圧 Vldの可変幅、ス テツプが同じように制御できるようにしている。具体的な計算式は、オームの法則で簡 単に計算できるので省略する力 結果のみを示す。抵抗 R3と抵抗 R4をそれぞれ 40 ¾ Ω ]と 1. 8 ¾ Ω ]に設定すれば、 DA変換器の電流分解能 50 Α]で 0〜31ステ ップで、アノード電圧は 5· 05 [V]〜11. 67 [V] (213 [mV]ステップ)にできる。この 例では、図 6に示すように抵抗 R4を設けることによって、電圧制御部 8がシンク型の D A変換器で、電流 Iconがー方向にのみ流れるタイプのものでも、電流量によって抵 抗 R1と抵抗 R2の分圧点には電流を実質的にソース (供給)できる構造になっている なお、昇圧型の DC— DCコンバータは、前述した電圧レギユレータに比べて、電力 効率が高い反面、ノイズ性能を劣化させる傾向があり、小径の光ディスクを記録再生 用として用いるビデオカメラなど省電力が必須で、かつ記録時の転送レートが低くて も良い機器に向くといえる。また、昇圧型の DC— DCコンバータを可変電圧源 2とし て用いる場合、電圧レギユレ一タとは異なり、昇圧された電圧が、故障時やバグ発生 時に過大電圧を発生させ、回路の特定部分を破壊する恐れがあるので、保護手段を 実装するのが好ましい。
以上、本発明における内部の詳細構成を説明したが、本発明の構成のポイントは、 力ソード駆動型の半導体レーザ駆動回路において、半導体レーザの順方向電圧 Vo Pを差動増幅器等の複雑な回路を用いて直接測定するのではなぐ力ソード駆動の 出力端子の 1点の力ソード電圧のみを測定するという簡便な手段で、半導体レーザ 駆動回路の出力段の電圧を電圧動作限界値に近い値に設定でき、性能を落とすこ となく消費電力の低減化を実現できることである。
以下、光ディスク装置に本発明の半導体レーザ駆動回路を実装したときの具体的 な制御動作を、図 7 (半導体レーザ 1のアノード電圧についての電圧制御がないとき) および図 8 (半導体レーザ 1のアノード電圧についての電圧制御があるとき)の動作タ イミング図を用い、対比して説明する。
図 7において、(7a)は、縦軸に光ディスク装置での各動作時の半導体レーザ 1のパ ワーレベルを示し、横軸に時間軸を示したものである。 (7b)はそのときの出力端子 V OUTの力ソード電圧 Voutの電圧値を示す。ここでは、半導体レーザ 1のアノード電 圧 Vldは 10 [V]固定で電圧制御がないものとし、半導体レーザ 1の力ソード電圧 Vou tの保証動作電圧の下限は 2 [V]として説明する。 Vldを 10 [V]と高くしているのは、 半導体レーザ 1の寿命や環境によるバラつきがあった場合でも十分な力ソード電圧 V outを確保するためである。
まず、時刻 toから tlは半導体レーザ 1の消灯時であり、半導体レーザ 1の順方向電 圧が 0 [V]なので力ソード電圧 Voutは 10 [V]となる。実用上、力ソード電圧 Vout= l 0 [V]は、半導体レーザ駆動回路の出力部の耐圧を超え、高すぎる電圧であるので 、それを低く抑える対策は必要であるが、ここでは説明の便宜上 10 [V]固定で説明 する。時刻 tlでは、まず半導体レーザ駆動部 3を制御して再生時のパワー(再生パヮ 一)で半導体レーザ 1を発光させる。具体的に図 2における電流源 RDDACに再生 パワー相当の電流を流す。このときの Vopは若干低いが 3. 5 [V]としている。カソー ド電圧 Voutは、 Vop分の電圧が降下した値である 6. 5 [V]になる。時刻 t2から t4ま ではテスト発光区間を示す。まず t2でバイアスパワーのテスト発光を行レ、、次いで t3 でピークパワーのテスト発光を行う。それぞれ電流源 RDDACによる電流に電流源 B SDACによる電流を加算した電流、さらには電流源 PKDACによる電流を加算した 電流を、カンレントミラー回路を介して、シンク電流 lopとして流す。半導体レーザ 1の 発光パワーが前光モニタ部 6で検出され、 目標のバイアスパワーおよびピークパワー に相当する電流力 電流源 BSDACおよび電流源 PKDACに流れるよう制御される 。同時にボトムパワーを出力できるように電流源 RDDACが調整される。以上の演算 と設定が時刻 t4までに実施される。実際の光ディスク装置では、再生時にのみ高周 波モジュールを動作させ、記録時には動作させないので、電流源 RDDACには補正 が必要だが説明は省略する。図 7 (7a)の SPで示すスペース形成区間である、時刻 t 4から t9までの記録区間ではバイアスパワーによる半導体レーザ 1のレーザ光を光デ イスクに照射する。また、図 7 (7a)の MKで示すマーク形成区間ではピークパワーと ボトムパワーによりマルチパルス変調された半導体レーザ 1のレーザ光を光ディスク に照射する。記録区間中は半導体レーザ 1の発光パワーに反比例して力ソード電圧 Voutが降下する。より正確には半導体レーザ 1の直列抵抗 Rsと順方向電流 lopの積 の分だけ電圧降下が発生する。図 7、 8では、前述の動作の一例を示している。そし て、時刻 t9で再生状態に戻し、時刻 tlOで半導体レーザ 1を消灯している。
以上の動作状態で、半導体レーザ 1のパワーが正常に制御されるためには、カソー ド電圧 Voutが前述の 2 [V]以上であればよぐ図 7では最低で 3 [V]と十分にこの条 件を満たしている。逆に消灯時や再生時は、必要以上に力ソード電圧 Voutが高くな つており、これが半導体レーザ駆動部 3の消費電力増大の原因になる。出力段に限 定すれば、消費電力は単純に lopと Voutの積である。動作に必要な力ソード電圧 Vo utを確保しつつ、半導体レーザ駆動部 3の消費電力増大を最小限に食い止めようと いうのが本発明にねらいであるが、次にその動作を説明する。
図 8は、本発明における半導体レーザパワー制御部 4によるアノード電圧 Vldの制 御動作を、図 7と同一の光ディスク装置の動作として示したものである。電圧制御部 8 は図 5で示した第 1の具体例である電圧レギユレータを使っているものとする。時刻 tO 〜tlまでの半導体レーザ 1の消灯時には、 Iconの値を 0として、アノード電圧 Vldを 5 [V]にする。時刻 tlで半導体レーザ 1を点灯するが、点灯時にはアノード電圧 Vldは そのまま 5 [V]としておく。その結果力ソード電圧 Voutは 2 [V]以下になる。その後、 力ソード電圧 Vout電圧を出力電圧検出部 7で 2 [V]と比較しながら、順次上昇させる 。 2 [V]を超えたらアノード電圧 Vldを固定する(時刻 ti l)。なお、 tlでのアノード電 圧 Vldの設定値は、再生パワーサーボ可能か否か、つまり、再生 APC (Auto Powe r Control)を動作させることが可能か否か不明な点にあるので、動作を安定化させ るためには、半導体レーザ 1に「閾値電流」を流す設定にしておいて、アノード電圧 VI dを上昇させ、力ソード電圧 Voutが 2 [V]超えるようにしてから、再生 APCを動作させ るのが好ましい制御手順であると考えられる。
記録動作を行う前の時刻 tl 2では、テスト発光開始時刻 t2前にアノード電圧 VWを 9. 5 [V]程度に上げるように目標の電圧値を切り替えている。記録時の Vop増大量 を、電流、温度から推定される半導体レーザ 1の直列抵抗 Rsなどから計算し、ある程 度のマージンを持ってアノード電圧 Vldが設定される。時刻 t3でのピークパワーのテ スト発光では、テスト発光時の力ソード電圧 Voutの実際の電圧値が 2 [V]よりある程 度高い場合には、時刻 t31でアノード電圧 Vldを下げる。ここでは 0. 5 [V]下げてい る。下げる値はピークパワー出力時の力ソード電圧 Voutが 2 [V]を切らないと計算さ れる値に設定する。時刻 t3での力ソード電圧 Voutの測定は、前述した RSフリップフ ロップによるボトム検出方法を用いて実施される。力ソード電圧 Voutを 2 [V]以上で の範囲で変化させても、半導体レーザ駆動波形に影響することはない。ここでいぅボ トム検出とは、半導体レーザ 1の出力のボトムパワーによるものではなぐ Vopが大きく なり力ソード電圧 Voutが低下している状態(「ボトム」と呼ぶ)を半導体レーザ 1の出力 のピークパワーによって検出することを意味する。
記録区間中のアノード電圧 Vldは t31で設定した 9 [V]に固定しておく。記録が終 了後、再生時になったら時刻 t91からアノード電圧 Vldを順次降下させる。力ソード電 圧 Voutが 2 [V]強になったら t92でアノード電圧 Vldの降下を止める。この場合、出 力電圧検出部 7に内蔵の基準電圧 Vcompは電圧制御ステップ 0. 2 [V]を前提に 2 . 2 [V]に設定しておけば、 Vlow = "H"になった段階でアノード電圧 Vldを順次降下 させる動作を停止させればよぐ Vldを降下させる動作を 1ステップ戻す必要はない。 消灯する時刻 tlO前には、あら力じめアノード電圧 Vldを 5 [V]に戻す。このようにして 、消灯時の力ソード電圧 Voutの上昇を防ぐ。再生期間中には定期的に電圧検出を して、力ソード電圧 Voutが上下した場合には、 Voutが常に 2 [V]以上で最小の電圧 値となるように制御する。また、 tlOlで、可変電圧源 2からの出力電圧を 0 [V]として いるので、 tlOl以降では、半導体レーザ 1の力ソード電圧 Vout及びアノード電圧 VI dともに 0 [V]となっている。
なお、半導体レーザ駆動部 3の動作保証をするための最小の力ソード電圧 Voutの 電圧値は 2 [V]としてレ、るが、この値はそれを切った瞬間に突然動作不能になるとレヽ う性質のものではなぐ力ソード電圧 Voutの低下に比例し少しずつ電流の直線性が 悪くなる、またはパルス特性が少しずつ悪くなるなどの状況が発生する程度のもので ある。実用上は、たとえば 1. 5 [V]程度までは、ある程度所望の動作をする半導体レ 一ザ駆動部 3を用いることが好ましい。また、テスト発光時に、半導体レーザ 1の発光 パワーが実際の記録時と異なる値に設定されている力 S、次の記録ブロックでのテスト 発光時に、前回の記録時に採用した記録パワーの値を採用するように設定値をフィ ードバックするようにすれば、テスト発光時のピークパワーの値と記録時のピークパヮ 一の値とを同じ値に近づけることができる。したがって、記録ブロック単位で順次ァノ ード電圧 Vldを変化させる比較的ゆっくりとした制御により、ピークパワーの値の設定 を行うようにしてもよい。さらに、記録中には必ずピークパワーを発光する区間が存在 するので、記録ブロックを複数の区間に区切って区間ごとに、ボトム検出機能を使つ て力ソード電圧 Voutのボトム値を測定し、記録ブロック内で検出したボトム値に対応 する力ソード電圧 Voutに変化させることで、比較的高速に力ソード電圧 Voutの電圧 値を制御することもできる。また、力ソード電圧 Voutの下限値が温度依存性を持つ場 合は、温度センサ 9で検出した値により半導体レーザ駆動回路部の温度が推定でき るので、それを使ってアノード電圧 Vldを決めればよレ、。また、テスト発光時において 、バイアスパワーに相当する力ソード電圧 Voutと、ピークパワーに相当する力ソード 電圧 Voutとの差を測定することで、 Vopによる電圧降下を決める半導体レーザ 1の 直列抵抗 Rsを測定することができ、この測定した直列抵抗 Rsの抵抗値と記録時の順 方向電流 lopの電流値とを使って記録時の力ソード電圧 Voutの電圧降下量を計算 することちでさる。
以上、本発明の実施例では、青色半導体レーザを例にして動作を説明してきたが 、もちろん CD用の赤外半導体レーザ、 DVD用の赤色半導体レーザ、さらには将来 の超高密度光ディスク用の紫外半導体レーザにも、適用は可能である。ここで示した 力ソード駆動型の半導体レーザ駆動回路は、半導体レーザのどの端子も GNDに接 地されてレ、なレ、が、より高転送レート'高速性を実現する光ディスク装置にぉレ、ては、 半導体レーザのどの端子も接地しない構成が今後必須な構成になると考えられるの で、本発明における省電力制御の実用的な効果は大きい。特に将来の紫外半導体 レーザは、 Vopがさらに大きくなるので、本発明における省電力構成はより重要にな ると考えられる。構成上もちろん、半導体レーザのアノードを接地し、制御回路を負電 源により動作する構成にして、半導体レーザの力ソードから電流を引き込み、力ソード に流れる電流量を制御する方法も考えられるが、負電源を使うことや、制御回路から のレベルシフトが必要な分、回路は複雑になるので、民生用の安価な半導体レーザ 回路としては、本発明に示した構成の方が好ましいと考えられる。
また、上記では半導体レーザ 1のアノードおよび力ソードに、それぞれ電圧源と半導 体レーザ駆動回路の出力を接続する構成で説明してきたが、半導体レーザの変調 波形の応答改善等の理由で、半導体レーザに直列にインダクタ、抵抗等を挿入した 場合にも、本発明の効果が達成され、実質的に本発明と差がないことは言うまでもな レ、。
また、本発明の具体的な構成は、前述の実施形態に限られるものではなぐ発明の 要旨を逸脱しない範囲で種々の変更および修正が可能である。
(その他)
なお、上記実施の形態で説明した半導体レーザ駆動回路、並びに半導体レーザ 駆動回路を備える光ディスク装置において、各ブロックは、 LSIなどの半導体装置に より個別に 1チップ化されても良いし、一部又は全部を含むように 1チップ化されても 良い。また、半導体レーザをも集積し、 1チップ化されても良い。
なお、ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LS I、ウルトラ LSIと呼称されることもある。
また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセサで 実現してもよレ、。 LSI製造後に、プログラムすることが可能な FPGA (Field Programm able Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギュラブノレ ·プロセッサーを利用しても良レ、。
さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用レ、て機能ブロックの集積化を行って もよレ、。バイオ技術の適応等が可能性としてあり得る。
産業上の利用可能性
本発明にかかる半導体レーザ駆動回路は、特に青色半導体レーザを使った記録 再生型の光ディスク装置の駆動部の消費電力を低減し、光ヘッドあるいは光ディスク 装置全体の温度上昇を抑えるのに好適である。カロえて、光ディスク装置であれば、再 生専用型であろうと波長の異なる半導体レーザを使っていようと、どの種類の光ディ スク装置にも使用することができる。また、本発明の半導体レーザ回路による省電力 制御は、既存の半導体レーザ駆動回路に、わずかな回路を追加するだけで安価に、 かつ簡単に実現できる実用性の高レ、ものであるので、光通信や光加工機など半導体 レーザを使う装置であれば、特に限定無くさまざまな用途に応用できる。

Claims

請求の範囲
[1] 半導体レーザのアノードにアノード電圧を供給する電圧源と、
前記半導体レーザの力ソードに接続され前記半導体レーザから電流の吸い込み量 を変化させて前記半導体レーザの光出力を制御する駆動部と、
前記半導体レーザの力ソードに接続され力ソード電圧を測定する測定部と、 前記電圧源に接続され、前記力ソード電圧を第 1のレベル以上になるように制御す る電圧制御部と、
を備える半導体レーザ駆動回路。
[2] 前記電圧源は、第 1の抵抗と第 2の抵抗とを含み、前記アノード電圧を前記第 1の 抵抗と前記第 2の抵抗とで抵抗分割した分圧点の参照電圧と、第 1の基準電圧とが 同じになるように前記アノード電圧をフィードバック制御する DC— DCコンバータまた は電圧レギユレータを有し、
前記電圧制御部は、前記分圧点からの電流量を調整することによって前記アノード 電圧を可変する、
請求項 1に記載の半導体レーザ駆動回路。
[3] 前記電圧制御部の制御出力端子と前記分圧点との間に設けた第 3の抵抗と、前記 制御出力端子と第 2の基準電圧を発生させる電源との間に設けたに第 4の抵抗とに よって、前記電圧源の出力電圧の電圧を可変するための単位ステップの量が調整さ れる、
請求項 2に記載の半導体レーザ駆動回路。
[4] 前記測定部は、前記半導体レーザの前記力ソード電圧の電圧値または前記カソー ド電圧を分圧した電圧値と、第 3の基準電圧の電圧値とを比較する比較部を有する、 請求項 1からの 3のいずれかに記載の半導体レーザ駆動回路。
[5] 前記測定部は、前記比較部により取得された、前記半導体レーザのパルス発光時 における前記力ソード電圧のボトム値の比較結果を、記憶する記憶部をさらに有する 請求項 4に記載の半導体レーザ駆動回路。
[6] 前記電圧源、前記駆動部、前記測定部、及び電圧制御部の、一部または全部を集 積回路として備える、
請求項 1に記載の半導体レーザ駆動回路。
[7] 半導体レーザのアノードにアノード電圧を供給する電圧源と、
前記半導体レーザの力ソードに接続され前記半導体レーザから電流を吸い込み、 電流量を変化させて前記半導体レーザの光出力を制御する駆動部と、
前記半導体レーザの力ソード電圧を測定する測定部と、
前記力ソード電圧を第 1のレベル以上になるように前記電圧源に接続され前記ァノ ード電圧を制御する電圧制御部と、
を有する半導体レーザ駆動回路を光ディスクの情報記録再生用に備える光ディスク 装置。
[8] 前記電圧制御部は、光ディスクの情報再生を停止しているときは、前記アノード電 圧を第 2のレベルよりも小さい電圧レベルに設定する、
請求項 7に記載の光ディスク装置。
[9] 前記電圧制御部は、再生動作から記録動作に移行する前に、あらかじめ前記ァノ ード電圧を第 3のレベルより高い電圧レベルに上げ、記録動作が終了し再生動作に 移行した後、前記アノード電圧を前記第 3のレベルに下げる、
請求項 7または 8に記載の光ディスク装置。
[10] 前記測定部は、前記半導体レーザの前記力ソード電圧の電圧値または前記カソー ド電圧を分圧した電圧値と第 4の基準電圧の電圧値とを比較する比較部と、前記比 較部により取得された、前記半導体レーザのパルス発光時における前記力ソード電 圧のボトム値の比較結果を、記憶する記憶部とを備え、
前記測定部は、前記記録動作中に前記半導体レーザのピークパワーに対応する 力ソード電圧を選択的に測定する、
請求項 7から 9のいずれかに記載の光ディスク装置。
[11] 半導体レーザを駆動する集積回路であって、
前記半導体レーザのアノードにアノード電圧を供給する電圧源と、
前記半導体レーザの力ソードに接続され前記半導体レーザから電流の吸い込み量 を変化させて前記半導体レーザの光出力を制御する駆動部と、 前記半導体レーザの力ソードに接続され、前記半導体レーザの力ソード電圧を測 定する測定部と、
を備える集積回路。
[12] 前記力ソード電圧が第 1のレベル以上になるように前記半導体レーザのアノード電 圧を制御する電圧制御部をさらに備える請求項 11に記載の集積回路。
[13] 半導体レーザを駆動する集積回路であって、
前記半導体レーザの力ソードに接続され前記半導体レーザから電流の吸い込み量 を変化させて前記半導体レーザの光出力を制御する駆動部と、
前記半導体レーザの力ソードに接続され、前記半導体レーザの力ソード電圧を測 定する測定部と、
を備える集積回路。
[14] 前記力ソード電圧が第 1のレベル以上になるように前記半導体レーザのアノード電 圧を制御する電圧制御部をさらに備える請求項 13に記載の集積回路。
PCT/JP2006/311913 2005-06-20 2006-06-14 半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路 WO2006137303A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007522248A JPWO2006137303A1 (ja) 2005-06-20 2006-06-14 半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路
US11/917,982 US8036254B2 (en) 2005-06-20 2006-06-14 Semiconductor laser driving circuit, and optical disc device and integrated circuit provided with semiconductor laser driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005178766 2005-06-20
JP2005-178766 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006137303A1 true WO2006137303A1 (ja) 2006-12-28

Family

ID=37570333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311913 WO2006137303A1 (ja) 2005-06-20 2006-06-14 半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路

Country Status (3)

Country Link
US (1) US8036254B2 (ja)
JP (1) JPWO2006137303A1 (ja)
WO (1) WO2006137303A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277611A (ja) * 2007-05-01 2008-11-13 Asahi Kasei Electronics Co Ltd レーザ駆動装置及び駆動方法
JP2011054765A (ja) * 2009-09-02 2011-03-17 Ricoh Co Ltd レーザダイオード駆動装置
CN102201646A (zh) * 2010-03-25 2011-09-28 索尼公司 光振荡装置和记录装置
CN102890943A (zh) * 2011-07-19 2013-01-23 索尼公司 光学振荡装置和记录设备
CN102890944A (zh) * 2011-07-19 2013-01-23 索尼公司 光学振荡装置和记录设备
US10763642B2 (en) 2018-04-27 2020-09-01 Nichia Corporation Driver circuit and processing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064920A (ja) * 2010-08-20 2012-03-29 Sony Corp 記録装置及び光発振装置
JP2013025836A (ja) * 2011-07-19 2013-02-04 Sony Corp 光発振装置及び記録装置
US10056106B1 (en) * 2017-05-09 2018-08-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods and devices for power control of a light source of a memory system
DE102018212687A1 (de) * 2018-07-30 2020-01-30 Koninklijke Philips N.V. Verfahren und Vorrichtung zum Überwachen der optischen Ausgangsleistung einer Laserdiode mit einer zugeordneten Fotodiode und Partikelsensorvorrichtung
US10955444B2 (en) * 2019-04-09 2021-03-23 Texas Instruments Incorporated Peak detector
US11579290B2 (en) 2019-06-05 2023-02-14 Stmicroelectronics (Research & Development) Limited LIDAR system utilizing multiple networked LIDAR integrated circuits
US11728621B2 (en) * 2019-06-05 2023-08-15 Stmicroelectronics (Research & Development) Limited Voltage controlled steered VCSEL driver
US11411653B2 (en) * 2020-12-16 2022-08-09 Macom Technology Solutions Holdings, Inc. Optical transmitter input resistance measurement and encoder/driver modulation current configuration techniques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307850A (ja) * 1998-04-22 1999-11-05 Ricoh Opt Ind Co Ltd 半導体レーザ駆動装置
JP2002076504A (ja) * 2000-09-04 2002-03-15 Fuji Xerox Co Ltd 面発光レーザ駆動装置
JP2003152224A (ja) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd 高効率led駆動システム
JP2003332677A (ja) * 2002-05-13 2003-11-21 Sony Corp 半導体レーザ駆動回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575192A (ja) 1991-09-11 1993-03-26 Ricoh Co Ltd 半導体レ−ザ駆動回路
JPH1082806A (ja) 1996-09-06 1998-03-31 Yaskawa Electric Corp 電圧低下検出方法及び電圧低下検出回路
JP2000244052A (ja) 1999-02-18 2000-09-08 Sharp Corp 半導体レーザ駆動装置
JP2002158395A (ja) 2000-11-17 2002-05-31 Sony Corp 半導体レーザのレーザパワー制御方法及び制御装置並びに光磁気記録媒体の記録再生方法及び記録再生装置並びに光記録媒体の記録再生方法及び記録再生装置
JP3724377B2 (ja) 2001-03-01 2005-12-07 ソニー株式会社 レーザ駆動方法及び装置、並びに記録再生装置及び方法
US6917639B2 (en) * 2001-08-09 2005-07-12 Ricoh Company, Ltd. Laser driver circuit
AU2003273112A1 (en) 2003-06-17 2005-01-04 Hwang, Seung-Young Skin care apparatus having ion-transmission function under the skin and display device thereof
JP4478539B2 (ja) 2004-09-14 2010-06-09 パイオニア株式会社 レーザダイオードの駆動装置
US7697400B2 (en) * 2005-02-21 2010-04-13 Panasonic Corporation Optical pickup and optical disc device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307850A (ja) * 1998-04-22 1999-11-05 Ricoh Opt Ind Co Ltd 半導体レーザ駆動装置
JP2002076504A (ja) * 2000-09-04 2002-03-15 Fuji Xerox Co Ltd 面発光レーザ駆動装置
JP2003152224A (ja) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd 高効率led駆動システム
JP2003332677A (ja) * 2002-05-13 2003-11-21 Sony Corp 半導体レーザ駆動回路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277611A (ja) * 2007-05-01 2008-11-13 Asahi Kasei Electronics Co Ltd レーザ駆動装置及び駆動方法
JP2011054765A (ja) * 2009-09-02 2011-03-17 Ricoh Co Ltd レーザダイオード駆動装置
US8755419B2 (en) 2009-09-02 2014-06-17 Ricoh Company, Ltd. Laser diode drive circuit
CN102201646A (zh) * 2010-03-25 2011-09-28 索尼公司 光振荡装置和记录装置
EP2372710A1 (en) * 2010-03-25 2011-10-05 Sony Corporation Light oscillation device and recording device
US8842708B2 (en) 2010-03-25 2014-09-23 Sony Corporation Light oscillation device and recording device
CN102890943A (zh) * 2011-07-19 2013-01-23 索尼公司 光学振荡装置和记录设备
CN102890944A (zh) * 2011-07-19 2013-01-23 索尼公司 光学振荡装置和记录设备
US10763642B2 (en) 2018-04-27 2020-09-01 Nichia Corporation Driver circuit and processing device

Also Published As

Publication number Publication date
US20100142336A1 (en) 2010-06-10
US8036254B2 (en) 2011-10-11
JPWO2006137303A1 (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2006137303A1 (ja) 半導体レーザ駆動回路、並びに半導体レーザ駆動回路を備える光ディスク装置及び集積回路
US8325772B2 (en) Optical disk apparatus and information recording method
US5276671A (en) Control apparatus of laser diode
CN100524982C (zh) 激光器驱动器、光盘装置和激光器驱动方法
KR20050006088A (ko) 승/강압 dc-dc 변환기 및 이를 이용한 휴대용 장치
JP4432459B2 (ja) 半導体レーザダイオードの駆動方法及び発光装置
US6842469B2 (en) Laser driving method and device, and recording/reproducing device and method
JP4398331B2 (ja) レーザ駆動装置、光ディスク装置、レーザ駆動方法およびレーザ駆動用集積回路
KR19980079877A (ko) 반도체장치와 이를 포함하는 광픽업 광학계 유니트 및 이를 포함하는 광픽업장치
JP4732243B2 (ja) レーザ駆動回路、光ピックアップおよび記録再生装置
US10220636B2 (en) Drive apparatus that drives light emitting device
JP2006048885A5 (ja)
US20030099178A1 (en) Optical disc drive and laser beam drive power supply voltage control method
JP4109815B2 (ja) レーザダイオード駆動装置およびレーザダイオード駆動方法
US8514679B2 (en) Optical information record/playback device
JP2005268338A (ja) レーザー駆動回路
KR20070027936A (ko) 레이저 다이오드 구동회로 및 그 제어방법과 레이저다이오드 구동용 반도체 집적회로
JP5223896B2 (ja) 光ディスク装置、および、情報記録方法
JP4969858B2 (ja) レーザダイオード駆動回路、発光装置およびそれを搭載したディスク装置
JP4980784B2 (ja) レーザ駆動装置及び駆動方法
JPH02206187A (ja) 半導体レーザ駆動回路
JPH0751802Y2 (ja) Ldバイアスアラーム回路
JP2004342657A (ja) 半導体集積回路およびそれを用いた半導体レーザ駆動装置
JP2005332546A (ja) 発光素子の駆動回路
JP2007273006A (ja) レーザー駆動回路、レーザー駆動方法及びディスク記録再生装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11917982

Country of ref document: US

Ref document number: 2007522248

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766682

Country of ref document: EP

Kind code of ref document: A1