WO2006135047A1 - セメント製造設備における有機塩素化合物の低減方法、およびセメント製造設備 - Google Patents

セメント製造設備における有機塩素化合物の低減方法、およびセメント製造設備 Download PDF

Info

Publication number
WO2006135047A1
WO2006135047A1 PCT/JP2006/312128 JP2006312128W WO2006135047A1 WO 2006135047 A1 WO2006135047 A1 WO 2006135047A1 JP 2006312128 W JP2006312128 W JP 2006312128W WO 2006135047 A1 WO2006135047 A1 WO 2006135047A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
powder
raw material
preheater
exhaust gas
Prior art date
Application number
PCT/JP2006/312128
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Ichihara
Eiji Koike
Munenori Ohgoshi
Hisanobu Tanaka
Ichiro Ebato
Kimitoshi Mizutani
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005177019A external-priority patent/JP4075909B2/ja
Priority claimed from JP2005205064A external-priority patent/JP5092211B2/ja
Priority claimed from JP2005213442A external-priority patent/JP4075916B2/ja
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to EP06766816.0A priority Critical patent/EP1905747B1/en
Priority to CN2006800209256A priority patent/CN101193831B/zh
Priority to US11/917,683 priority patent/US8075686B2/en
Publication of WO2006135047A1 publication Critical patent/WO2006135047A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases

Definitions

  • the present invention relates to a method for reducing organochlorine compounds in cement production equipment and cement production equipment. More specifically, the power of cement production equipment dioxins and organochlorine compounds such as PCB are heat-treated and discharged. It relates to a technology capable of reducing the amount.
  • This application consists of Japanese Patent Application No. 2005-177019 filed on June 16, 2005, Japanese Patent Application No. 2005-205064 filed on July 14, 2005, and Japanese Patent Application filed on July 22, 2005. 2005—Claim priority on 213442, the contents of which are incorporated herein.
  • PCDDs Poly(chlorodibenzo-p-dioxin 'and are a kind of organic chlorine compounds. Similar to this dioxin, poly (chlorodibenzo-furan) is known.
  • T4CDDs Tetra chlorodibenzo-p-dioxin
  • PCDDs tetrachloride of dioxin
  • Chlorine-containing 2, 3, 7, 8 tetra'black mouth'dibenzo'para'dioxins (2,3,7,8-T4CDDs) are the most toxic.
  • PCB polysalt-biphenyl
  • PCBs have excellent chemical stability, insulating properties, nonflammability, and adhesiveness, and have been used as insulating oils for transformers and capacitors installed in electrical facilities such as power plants, railways, and buildings.
  • cobranner PCBs that have toxicity similar to that of dioxin, legislation was established in 1974, and PCB manufacturing, distribution and new Use has been banned.
  • PCB treatment methods include, for example, an incineration treatment method in which PCB is heat-treated at a high temperature, a dechlorination decomposition method in which PCB is dechlorinated, and PCB is converted into carbon dioxide and water using supercritical water.
  • Supercritical hydrolytic decomposition method that decomposes has been developed.
  • the incineration method is concerned that dioxins are synthesized when the heat treatment gas for PCB is cooled.
  • Patent Document 1 and Patent Document 2 described below are known as conventional techniques for solving these problems.
  • Patent Document 1 exhaust gas from a cement production facility is supplied to a dust collector, dust containing an organic chlorinated compound is collected, and at least a part of the collected dust is collected from the cement production facility.
  • a method of putting it in a high temperature part of ° C or higher is disclosed. Since dioxins are thermally decomposed before and after 800 ° C., this method can effectively decompose dioxins and make them harmless.
  • Examples of the exhaust gas from the cement production facility include exhaust gas from a raw material dryer (raw material process section) that dries the cement raw material, and exhaust gas from a raw material minor (raw material process section) that grinds the cement raw material.
  • Patent Document 1 describes a method for reducing the concentration of dioxin in the dust removal gas.
  • exhaust gas is drawn out from the cement manufacturing facility where the temperature is 30 to 400 ° C (low temperature part), and the extracted exhaust gas is supplied to the dust collector.
  • the exhaust gas derived from the low temperature part is concentrated (low temperature concentration) in the organochlorine compound compared to the exhaust gas from the high temperature part of the cement production facility. According to this method, the organochlorine compound is concentrated. By collecting and removing dust, the concentration of dioxins in the dedusted gas can be reduced.
  • Patent Document 2 discloses a method for decomposing PCB while preventing generation of dioxins.
  • the PCB-containing material brought from the outside to the cement factory is put into the rotary kiln, and this PCB-containing material is heated by the heat (at 1000 ° C or higher) when firing the cement cleansing force. Thermally decomposes.
  • the exhaust gas generated during this thermal decomposition is led out of the rotary kiln and then rapidly cooled at a cooling rate of 20 ° C / second or more.
  • the temperature of the exhaust gas passes through the temperature region where the synthesis amount of dioxins increases in a short time, and this method prevents the generation of dioxins.
  • PCB can be disassembled while preventing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-244308
  • Patent Document 2 JP 2002-147722
  • Patent Document 1 At least a part of the dust collected by passing the exhaust gas through the dust collector is put into a high temperature part of a cement production facility that becomes 800 ° C or higher during normal operation. Thermally decomposes dioxins adsorbed on dust. At that time, as a countermeasure against organochlorine compounds in the dedusted gas (the gas that passed through the dust collector) released from the flue to the atmosphere, a temperature of 30 to 400 ° C (low temperature part) in the cement production facility A method is adopted in which exhaust gas is extracted from the exhaust gas and supplied to a dust collector.
  • the cement raw material powdered by the raw material mill is continuously fed into the upper part of the preheater.
  • most of the chlorinated organic compounds adhering to the cement raw material should be thermally decomposed as the cement raw material descends in the preheater in the initial setting, but this is not the case. It is vaporized (separated) by the heat of the upper part of the preheater (including the heat of the exhaust gas), mixed in the exhaust gas as it is, and returned to the raw material mill.
  • organochlorine compounds circulate in the raw material process for cement production and gradually increase in concentration. As a result, the amount of dioxins discharged from the cement production facility increases.
  • Patent Document 2 a PCB-containing material carried from outside (external) of a cement manufacturing facility is heated to 1000 ° C or higher in a rotary kiln and thermally decomposed.
  • this force With this method, it is not possible to remove PCB generated in the cement production facility.
  • the above-mentioned cement raw material includes dust containing organochlorine compounds.
  • organic chlorinated compounds such as dioxin precursors
  • the cement raw material containing the organic chlorine compound is charged into the preheater and heated, the cement raw material is heated by the organic substance remover.
  • the ability to separate or divide organochlorine compounds such as dioxin precursors from cement raw material before being heated in a cement manufacturing facility or cement raw material before being preheated by a preheater. it can.
  • a cement manufacturing facility in which a heat treatment gas containing an organic chlorine compound generated during preheating or a heat treatment gas containing an organic chlorine compound generated during heating by an organic substance remover becomes 800 ° C or higher during normal operation. To the high temperature part. Thereby, the organochlorine compound in the heat treatment gas can be thermally decomposed.
  • powder such as dust
  • organic chlorine compounds such as PCB
  • high-temperature gas at 100 ° C or higher in the cement manufacturing facility.
  • an organic chlorine compound such as a dioxin precursor can be separated from the powder, or an organic chlorine compound contained in the powder can be decomposed.
  • the heat treatment gas containing the organochlorine compound separated from the powder is brought into contact with the adsorbent powder having the function of adsorbing the organochlorine compound so that the adsorbent powder adsorbs the organochlorine compound.
  • the adsorbed powder with adsorbed organochlorine compounds is used as cement firing fuel.
  • Organochlorine compounds are decomposed when the adsorbed powder burns. As a result, the organochlorine compound in the heat treatment gas can be thermally decomposed.
  • the present invention relates to a cement production facility that can reduce the amount of dioxins discharged from the cement production facility and organic chlorine compounds such as PCB, and can save fuel for burning cement raw materials.
  • the purpose is to provide a method for reducing organochlorine compounds and a cement production facility.
  • the present invention is a method for reducing an organochlorine compound in a cement production facility, wherein the amount of the organochlorine compound contained in the powder is reduced in the cement production facility, wherein the powder is heated, A heating step of separating the organochlorine compound from or decomposing the organochlorine compound, and supplying a heat treatment gas containing the organochlorine compound generated by heating the powder to the high temperature part of the cement production facility And a gas pyrolysis step for pyrolyzing the organochlorine compound contained in the heat treatment gas.
  • the powder is a cement raw material (limestone, clay, silica, iron raw material, etc.) containing the organochlorine compound, and / or the cement production facility. It may be dust collected inside (dust collected in the raw material process during cement production, dust collected in the firing step, etc.). It may also be an intermediate product (cement cleansing power, etc.) obtained in the process of cement production, a by-product (cement dust, etc.) of the finishing process, and waste (oil-contaminated sludge, etc.). However, a portion of the cement raw material may contain a mixture of organic chlorine compounds.
  • the organic chlorine compound is separated (vaporized) from the powder by heating the powder containing the organic chlorine compound, or the powder.
  • the organic chlorine compound contained in is decomposed (heating step).
  • the powder that has undergone the heating process is supplied to a raw material mill and pulverized while being heated.
  • the heat treatment gas containing the organic chlorine compound generated by heating the powder is supplied to the high temperature part of the cement manufacturing facility, and the organic chlorine compound contained in the heat treatment gas is heated by being heated in the high temperature part. Decomposed (gas pyrolysis process).
  • the organic chlorine compound (chlorine component) force in the powder is synthesized before the dioxins are synthesized. Precursors and the like are removed from the powder. Further, by introducing the organic chlorine compound separated from the powder together with the heat treatment gas generated in the preheater into the high temperature part of the cement production facility, the organic chlorine compound contained in the heat treatment gas is thermally decomposed. As a result, the amount of dioxins and organic chlorinated compounds such as PCBs emitted from the cement manufacturing facility can be greatly reduced compared to conventional products.
  • the temperature during normal operation of the cement production facility is preferably 800 ° C or higher, and preferably 850 ° C or higher. More preferred. Within this range, for example, organic chlorine compounds such as dioxins can be completely pyrolyzed. If the temperature of the high temperature part is less than 800 ° C, organic chlorine compounds such as dioxins cannot be completely pyrolyzed.
  • the cement production facility may be a firing device (for example, a rotary kiln), a first preheater, a calcining furnace, A facility having a rotary kiln or the like may be used.
  • a firing device for example, a rotary kiln
  • a first preheater for example, a first preheater
  • a calcining furnace for example, a rotary kiln or the like
  • a facility having a rotary kiln or the like may be used.
  • the lower part of the first pre-heater (850 ° C), calciner (850 ° C), rotary kiln bottom (1000 ° C), rotary kiln kiln Examples include equipment that reaches 800 ° C or higher during normal operation, such as the front (maximum temperature 1450 ° C) and the high-temperature part of a cleaning power cooler (800 ° C or higher).
  • the high temperature portion of the cleaning power cooler is, for example, the upstream portion of the cleaning power cooler to which cement cleaning power is input from the rotary kiln.
  • a heat treatment gas containing an organic chlorine compound is supplied to the lower stage of the first preheater or the calcining furnace.
  • the heat treatment gas is used as air for calcination of the cement raw material, and the organic chlorine compound contained in the heat treatment gas is thermally decomposed by the heat during the calcination.
  • the heat treatment gas When the above heat treatment gas is supplied to the bottom of the rotary kiln, the front of the rotary kiln, or the high temperature portion of the tarinka cooler, the heat treatment gas is used for cement raw material firing.
  • the organic chlorine compound contained in the heat treatment gas is thermally decomposed by the high temperature during firing with cleansing power.
  • the heat treatment gas When the heat treatment gas is supplied to the front of the kiln of the rotary kiln, the heat treatment gas may be supplied together with the fuel to the combustion panner, or may be supplied to the rotary kiln separately from the fuel.
  • the supply position of the heat treatment gas to the rotary kiln is not limited.
  • the calcination temperature of the cement for example, the temperature in the rotary kiln is usually 1100 to: 1450 ° C, which exceeds the thermal decomposition temperature (700 ° C) of the organochlorine compound. Therefore, the organic chlorine compounds contained in the heat treatment gas are thermally decomposed and rendered harmless when the cement cleansing power is fired.
  • Organochlorine compounds are thermally decomposed when heated for several seconds, for example, at a temperature of 900 ° C.
  • the heating step is performed by supplying the powder to the organic substance removing device and heating it before supplying the powder to the first preheater. Also good.
  • a process of drying a cement raw material having a high water content using a raw material dryer and a process of crushing the cement raw material using a raw material mill are performed.
  • the exhaust gas discharged from the upper part of the first preheater (preheater) during preheating is introduced into the raw material dryer and raw material mill, respectively, and the internal temperature thereof is around 300 ° C.
  • Exhaust gas (dust contained in exhaust gas) released into the atmosphere through flue from raw material dryers and raw material mills contains a large amount of organochlorine compounds.
  • the cement raw material pulverized by the raw material mill is continuously charged into the upper portion of the first preheater.
  • most of the chlorinated organic compounds adhering to the cement raw material are mostly in the initial setting as the cement raw material descends inside the first preheater. It should be pyrolyzed, but in practice this is not the case, the heat at the top of the first preheater
  • organochlorine compounds circulate in the raw material process for cement production and gradually increase in concentration.
  • the amount of dioxins released into the atmosphere through the flue from the facility that performs the raw material process, and the amount of dioxins discharged from the cement manufacturing facility will increase.
  • the powder containing the organochlorine compound is supplied to the organic matter remover and heated before being supplied to the first preheater.
  • the precursor of the dioxins is removed from the powder.
  • the circulation of the organic chlorine compound is interrupted in the raw material process of cement production, and the above-described concentration increase of the organic chlorine compound is suppressed.
  • the amount of dioxins emitted from cement production facilities and organochlorine compounds such as PCBs can be greatly reduced compared to conventional products.
  • a raw material dryer for drying a cement raw material having a high water content such as clay or a raw material mill for pulverizing the cement raw material may be employed.
  • the structure of the organic substance removing device is not limited as long as it is a device that heats the cement raw material after powdering.
  • a heating screw type heater that heats the powder of the cement raw material put into an externally heated transfer pipe while being transferred by a screw may be adopted.
  • a heater having a heated fluidized bed and a cyclone may be employed. In this heater, first, the pulverized cement raw material is put into the heated fluidized bed, and the organic chlorine compound is removed from the cement raw material. Next, the heated cement raw material is put into a cyclone to separate the cement raw material from the heat treatment gas containing an organic chlorine compound.
  • the temperature of the powder heated by the organic substance remover is preferably 300 ° C or higher, preferably 200 ° C or higher. It is more preferable. If the heating temperature is less than 200 ° C, It remains and cannot be removed realistically.
  • the heat source of the organic substance remover is not limited.
  • exhaust gas generated when calcining cement cleansing power from cement raw material exhaust gas supplied to the upper power raw material mill of the first preheater (about 350 ° C)
  • exhaust gas from the clean power cooler 300 (° C or higher)
  • exhaust gas discharged from the clean power cooler into the flue about 200-300 ° C
  • a heated gas from a dedicated gas generator may be employed.
  • the heat source of the organic substance remover is exhausted as exhaust gas discharged from the upper power of the first preheater, or rotary kiln force. It may be at least one of an exhaust gas of a cleansing cooler that cools the cement cleansing power and a heating gas from a gas generator attached to the organic substance removing device.
  • a heat source of the organic substance remover for example, exhaust gas generated when firing cement cleansing power from cement raw material (for example, exhaust gas supplied to the raw material mill from the upper part of the preheater (about 350 ° C)) , Exhaust gas from a clean power cooler (over 300 ° C), exhaust gas discharged from a clean power cooler into a flue (about 200-300 ° C), or some of these together You can do it.
  • exhaust gas generated when firing cement cleansing power from cement raw material for example, exhaust gas supplied to the raw material mill from the upper part of the preheater (about 350 ° C)
  • Exhaust gas from a clean power cooler over 300 ° C
  • exhaust gas discharged from a clean power cooler into a flue about 200-300 ° C
  • heating gas for example, air, combustion gas (including C0, CO), etc. may be employed.
  • a heating method of the gas generator for example, it is possible to adopt a pan heating or the like.
  • a heat medium (including a heated gas from a gas generator) from a heat source is supplied to the inside of the organic substance remover and directly heated.
  • a heat medium may be supplied to a jacket provided outside the organic substance remover to indirectly heat it.
  • the jacket includes exhaust gas discharged from an upper portion of the first preheater, exhaust gas of a clean power cooler that cools cement clean power discharged from the rotary kiln, and a gas generator attached to the organic matter remover. At least one of the generated heated gases is supplied.
  • the oxygen concentration of the exhaust gas as the heat medium is high, it is preferable to introduce the exhaust gas into the organic substance remover.
  • the oxygen concentration of the exhaust gas is low, such as exhaust gas supplied from the preheater to the raw material dryer and raw material mill through the exhaust gas duct, it is preferable to supply the exhaust gas to the jacket of the organic substance removing device. . If the exhaust gas after heat exchange in the jacket is returned to the exhaust gas duct, the organochlorine compound contained in the exhaust gas can be heat-treated in the raw material process of cement production.
  • the jacket may be provided on a part of the outer wall of the organic substance removing device, or may be provided on the entire outer wall.
  • the area where the jacket is installed is arbitrary. Further, the shape and size (capacity) of the jacket are not limited.
  • the heating step supplies the powder to the second preheater before supplying the powder to the first preheater. You may preheat.
  • the powder containing the organochlorine compound is supplied to the second preheater before being supplied to the first preheater.
  • the precursor of the dioxins is removed from the powder.
  • the temperature of the powder heated by the second preheater is 100 ° C or higher and 600 ° C or lower. It is more preferable that it is 200 ° C or more and 500 ° C or less.
  • the preheating temperature is less than 100 ° C, organochlorine compounds cannot be sufficiently separated from the powder or decomposed. If the preheating temperature exceeds 600 ° C, extra energy is required for heating.
  • the temperature is in the range of 200 ° C to 500 ° C, the organochlorine compound can be sufficiently separated from the powder depending on the properties of the substance (for example, PCB), and the energy loss is small.
  • the structure of the second preheater is not limited as long as it is an apparatus attached outside the existing cement manufacturing facility.
  • a heating screw type heater, a paddle type heater, a single mouth type heater, or the like may be employed. Or, it may have a structure that can grind the powder while preheating.
  • the heat source of the second preheater is an exhaust gas (first preheating) generated when the cement cleansing power is fired from the cement raw material.
  • Exhaust gas supplied to the raw material mill etc. from the top of the vessel (350 ° C), exhaust gas from the clinker cooler (over 300 ° C), exhaust gas discharged from the clinker cooler to the flue (about 200 to 300 ° C) ) Etc. may be adopted.
  • a dedicated heat generator such as a hot gas generator
  • a dedicated heat generator such as a hot gas generator
  • the heat medium from the heat source (including the heat medium from the heat generator) is supplied directly into the second preheater. Heating may be performed, or for example, a heating medium may be supplied to a jacket provided outside the second preheater to indirectly heat.
  • the jacket includes exhaust gas discharged from the upper part of the first preheater, exhaust gas of a cleaning power cooler that cools the cement cleaning power discharged from the rotary kiln, and gas attached to the second preheater. At least one of the heated gases generated from the generator is supplied.
  • the oxygen concentration of the exhaust gas as the heat medium is high, it is preferable to introduce the exhaust gas into the second preheater.
  • the oxygen concentration of the exhaust gas is low, such as the exhaust gas supplied from the first preheater to the raw material dryer and the raw material mill through the exhaust gas duct, the exhaust gas is supplied to the jacket of the second preheater. Is preferred. If the exhaust gas after heat exchange inside the jacket is returned to the exhaust gas duct, the organic chlorine compound contained in the exhaust gas can be heat-treated in the raw material process of cement production.
  • the jacket may be provided on a part of the outer wall of the second preheater or on the entire outer wall.
  • the area where the jacket is installed is arbitrary. Further, the shape and size (capacity) of the jacket are not limited.
  • a normal cement production process may be performed on the powder preheated by the second preheater.
  • the treatment in the normal cement manufacturing process here is, for example, when the cement manufacturing facility has a preheater and a rotary kiln, the cement raw material crushed by the raw material mill is temporarily stored in a storage silo, Next, the cement raw material in the storage silo is heated (pre-heated) by the preheater until the apatite is decarboxylated, and the heated cement raw material is heated in the rotary kiln to burn the cement cleansing force.
  • This refers to a series of treatments that accompany cement production, such as cooling by putting cement cleansing power into a cleansing cooler.
  • the present invention is a method for reducing an organochlorine compound in a cement production facility, wherein the amount of the organic chlorine compound contained in the powder is reduced in the cement production facility, wherein the powder is contained in the cement production facility.
  • the powder is a cement raw material (limestone, clay, silica, iron raw material, etc.) containing the organochlorine compound, and / or the cement production facility. It may be dust collected inside (dust collected in the raw material process during cement production, dust collected in the firing step, etc.). It should be noted that a part of the cement raw material may contain a mixture containing an organic chlorine compound.
  • the organochlorine compound is removed from the powder by bringing the powder containing the organic chloride compound into contact with a high-temperature gas in the cement production facility. It is separated (vaporized) or the organic chlorine compounds contained in the powder are decomposed (organic matter removal process).
  • the powder By collecting the powder contained in the high temperature gas after contacting the powder, the powder is removed from the high temperature gas (powder removal step).
  • the organochlorine compound in the high-temperature gas is adsorbed on the adsorbent powder (organic substance adsorption step).
  • organic substance adsorption step the amount of dioxins emitted from cement production facilities and organic chlorine compounds such as PCBs can be greatly reduced compared to the conventional method.
  • the organochlorine compounds removed from the powder are, for example, dioxins (including precursors), residual organochlorine compounds represented by PCB, and the like.
  • the temperature of the high-temperature gas is preferably 100 ° C or higher, more preferably 200 ° C or higher.
  • the powder must be heated to 100 ° C or higher.
  • the powder must be heated to 800 ° C or higher.
  • the powder must be heated to 100 ° C or higher.
  • the powder must be heated to 800 ° C or higher. If the hot gas is above 100 ° C, both dioxins and PCB are removed from the powder.
  • the adsorbed powder adsorbing the organic chlorine compound is used as a fuel for firing cement paste, and the adsorbed powder is burned.
  • the organochlorine compound may be decomposed by Adsorbed powder adsorbed organochlorine compounds are used as fuel for, for example, rotary kiln panners.
  • the organic chlorine compound adsorbed on the adsorbed powder is instantaneously decomposed by the heat of the burner frame (1500 ° C or higher).
  • the powder removed in the powder removing step may be put into a raw material mill for pulverizing the cement raw material for firing.
  • the powder becomes a part of the cement raw material, so that the productivity of the cement raw material can be improved.
  • the adsorbent powder may be at least one of coal fine powder, activated carbon fine powder, and oil coke fine powder.
  • the adsorbed powder with adsorbed organochlorine compound as the fuel for burning cement cleansing power, fuel for burning can be saved.
  • the adsorbed powder is not limited as long as it is capable of adsorbing dioxins in exhaust gas and organochlorine compounds such as PCB.
  • a porous powder having high adsorptivity of the organic chlorine compound is preferable.
  • the BET specific surface area of the adsorbed powder is preferably 0.1 lm 2 / g. If the BET specific surface area is less than 0.1 lm 2 / g, realistic adsorption performance cannot be obtained.
  • adsorbent powder with a large BET specific surface area a large amount of organochlorine compounds can be adsorbed even if the amount of adsorbed powder is small, so the burden on the dust collector can be reduced.
  • the hot gas is not limited.
  • exhaust gas generated when firing cement cleansing power from cement raw material exhaust gas supplied to the raw material mill etc. from the upper part of the first preheater (about 350 ° C)
  • exhaust gas from the clean power cooler 300 (° C or higher)
  • exhaust gas discharged from the clean air cooler into the flue about 200 to 300 ° C
  • Means for bringing the adsorbed powder into contact with the hot gas is not limited.
  • an adsorbent powder inlet may be formed in the middle of a high-temperature gas pipe, and an adsorbent powder input device connected to the inlet.
  • a screw feeder or the like can be employed as the adsorbing powder charging device.
  • the structure of the cement production facility is not limited.
  • it may be a firing device (for example, a rotary kiln) or an equipment having a first preheater, a calciner, a rotary kiln, and the like. May be.
  • Means for collecting the powder from the high temperature gas is not limited.
  • a dust collector such as an electric dust collector or a bag filter may be employed.
  • the powder to be brought into contact with the high temperature gas all of the dust collected by the dust collector may be brought into contact with the high temperature gas, or only a part of the dust may be brought into contact with the high temperature gas.
  • the present invention is a cement manufacturing facility for firing cement cleansing power from a cement raw material, wherein the first preheater preheats a powder containing an organochlorine compound; A heater that heats the powder before it is supplied to the preheater, and a heat treatment gas supply passage that supplies the heat treatment gas containing the organochlorine compound generated by heating the powder to the high-temperature part of the cement manufacturing facility. Is provided.
  • the high temperature section includes a lower stage of the first preheater, a calcining path, a kiln bottom of the rotary kiln, a kiln front of the rotary kiln, and a cleaning power cooler. It may be at least one of the high temperature parts.
  • the organic chlorine compound (chlorine content) in the powder is obtained by heating the powder containing the organic chlorine compound before supplying it to the first preheater.
  • the precursors of dioxins are removed from the powder.
  • the organochlorine compound contained in the heat treatment gas is thermally decomposed by supplying the organochlorine compound separated from the powder together with the heat treatment gas generated in the preheater to the high temperature part of the cement production facility.
  • the heat source of the heater is an exhaust gas discharged from an upper portion of the first preheater, the rotary kiln force, or a cleansing cooler that cools the discharged cement cleansing force. It may be at least one of the above-mentioned exhaust gas and the heated gas that also generates the gas generator force attached to the organic substance remover.
  • the cement production facility of the present invention may include a jacket that is provided outside the heater and that heats the powder supplied to the heater. Further, the jacket includes exhaust gas exhausted from an upper portion of the first preheater, exhausted from the rotary kiln. At least one of an exhaust gas of a cleansing cooler that cools the cement cleansing force and a heating gas generated from a gas generator attached to the organic substance removing device may be supplied.
  • the present invention is a cement production facility for firing cement cleansing power from a cement raw material, and a high temperature gas supply path for supplying high temperature gas to a mill for pulverizing fuel for firing the cement cleansing power And a powder supply path for supplying powder containing an organic chlorine compound to the high temperature gas supply path, and the high temperature gas provided in the powder supply path and in contact with the powder.
  • the high-temperature gas from which the powder has been removed is brought into contact with the adsorbed powder.
  • the powder is removed from the high temperature gas by collecting the powder contained in the high temperature gas after contacting the powder.
  • the organochlorine compound in the high-temperature gas is adsorbed on the adsorbent powder.
  • the adsorbed powder may be used as the fuel.
  • the organochlorine compounds adsorbed on the adsorbed powder are instantaneously decomposed by the heat of the burner frame.
  • the cement manufacturing facility of the present invention may include a powder supply path for supplying the powder collected by the collecting means to a raw material mill for grinding the cement raw material.
  • the powder becomes a part of the cement raw material by putting the powder removed from the high temperature gas into the raw material mill for pulverizing the cement raw material.
  • the productivity of the cement raw material can be improved.
  • the organic chlorine compound is heated by the second preheater or the organic substance remover before the powder containing the organic chlorine compound is heated by the first preheater.
  • the precursors of dioxins are separated from the powder or decomposed.
  • powder power separated organic chlorine By introducing the compound into the high temperature part of the cement production facility together with the heat treatment gas generated in the organic substance remover, the organic chlorine compound contained in the heat treatment gas is thermally decomposed. As a result, the amount of dioxins emitted from cement production facilities and organic chlorine compounds such as PCBs can be greatly reduced compared to the conventional method.
  • a powder containing an organic chlorine compound is brought into contact with a high-temperature gas. Then, after removing the powder from the high temperature gas, the high temperature gas containing the organic chlorine compound is brought into contact with the adsorbed powder, and the organic chlorine compound is adsorbed onto the adsorbed powder.
  • the amount of dioxins emitted from cement production facilities and organochlorine compounds such as PCBs can be greatly reduced compared to conventional products.
  • the use of adsorbed powder adsorbing organochlorine compounds as fuel for firing cement cleansing power can save fuel for firing. Organochlorine compounds adsorbed on the adsorbed powder are instantaneously decomposed by the heat generated when the cement cleansing power is fired.
  • FIG. 1 is a schematic configuration diagram of a cement production facility for carrying out a first embodiment of a method for reducing organochlorine compounds of the present invention.
  • FIG. 2 is a schematic configuration diagram of an organic substance removing device provided in the cement manufacturing facility of FIG.
  • FIG. 3 is a schematic configuration diagram of an organic substance remover provided in a cement production facility for carrying out a second embodiment of the organic chlorine compound reducing method of the present invention.
  • FIG. 4 is a schematic configuration diagram of a cement production facility for carrying out a third embodiment of the organic chlorine compound reducing method of the present invention.
  • FIG. 5 is a graph showing the relationship between the temperature in the cement production facility and the reduction rate of organic substances contained in dust.
  • FIG. 6 is a schematic configuration diagram of a cement production facility for carrying out a fourth embodiment of the organic chlorine compound reducing method of the present invention.
  • the cement production facility 1 OA of the present embodiment includes a raw material process section 1 for pulverizing cement raw material and a firing process section 2 for firing the milled cement raw material.
  • the raw material process section 1 includes a raw material storage 11, a raw material dryer 12, a raw material mill 13, a storage silo 14, and an electric dust collector (dust collector) 30.
  • the raw material storage 11 individually stores limestone, clay, silica and iron raw materials as cement raw materials.
  • the raw material dryer 12 is dried by heating a cement raw material having a high water content.
  • the raw material mill 13 grinds the cement raw material supplied from the raw material storage 11.
  • the storage silo 14 stores the cement raw material crushed by the raw material mill 13.
  • the electrostatic precipitator 30 collects dust (powder) containing dioxins and organochlorine compounds such as PCB in the exhaust gas discharged from the raw material dryer 12 and the raw material mill 13.
  • the raw material storage 11 is connected to the raw material mill 13 through the raw material transfer equipment 118 and is connected to the raw material dryer 12 through the raw material supply equipment 131.
  • the raw material dryer 12 is connected to the raw material mill 13 through a dry raw material discharge facility 132.
  • the raw material mill 13 is connected to the storage silo 14 through the pulverized raw material transfer equipment 121.
  • the cement raw material stored in the raw material storage 11 is input to the raw material mill 13 through the raw material transfer equipment 118. However, some cement raw materials with high water content, such as clay, are input to the raw material dryer 12 through the raw material supply equipment 131.
  • the raw material dryer 12 and the raw material mill 13 are connected to an upper portion of a preheater 16 described later through an exhaust gas data 21.
  • the downstream end of the exhaust gas duct 21 is bifurcated, with one downstream end connected to the raw material dryer 12 and the other downstream end connected to the raw material mill 13.
  • the exhaust gas duct 21 is provided with a fan F1 for conveying exhaust gas.
  • Exhaust gas of 300 ° C. or higher discharged from the upper part of the preheater 16 is introduced into the raw material dryer 12 and the raw material mill 13 through the exhaust gas duct 21.
  • the raw material dry
  • the temperature inside the chamber 12 is about 300 ° C, and the temperature inside the raw material mill 13 is over 100 ° C.
  • the cement raw material having a high water content input to the raw material dryer 12 is dried by the heat of the exhaust gas introduced through the exhaust gas duct 21, and then input to the raw material mill 13 through the dry raw material discharge facility 132.
  • a large number of metal balls are stored in the rotating drum of the raw material mill 13.
  • the cement raw material was continuously charged into the rotating drum while rotating the rotating drum, many metal balls shattered the cement raw material intensively, and the grain size was pulverized to approximately 90 ⁇ m or less.
  • Cement raw material powder is obtained.
  • the pulverized cement raw material is input to the storage silo 14 through the pulverized raw material transfer facility 121.
  • the raw material dryer 12 and the raw material mill 13 are connected to the chimney 130 through the flue 129.
  • the upstream end of the flue 129 is bifurcated, with one upstream end connected to the raw material dryer 12 and the other upstream end connected to the raw material mill 13.
  • the electrostatic precipitator 30 is provided in the flue 129 on the downstream side of the branch portion.
  • the flue 129 connected to the raw material mill 13 is provided with a fan F2
  • the flue 129 between the electrostatic precipitator 30 and the chimney 130 is provided with a fan F3.
  • the exhaust gas used for heating the raw material dryer 12 and the raw material mill 13 is discharged into the atmosphere through the flue 129 and the chimney 130.
  • the electrostatic precipitator 30 is connected in the middle of the powdered rice raw material transfer equipment 121 through the dust delivery equipment 123.
  • the dust collected by the electric dust collector 30 is input to the storage silo 14 through the dust delivery facility 123 and the pulverized raw material transport facility 121.
  • the storage silo 14 is connected to the organic substance remover 100 through the heated raw material powder transfer facility 165.
  • the cement raw material stored in the storage silo 14 is supplied to the organic substance removing device 100 through the heated raw material powder transfer facility 165.
  • the firing process section 2 includes a preheater (first preheater) 16, a panner 17, a rotary kiln 18, a clean power cooler 19, a clean power silo 20, an organic substance remover 100, an external A jacket (jacket) 101 and a gas generator 102 are provided.
  • the preheater 16 preheats the cement raw material from which the organic chlorine compound has been removed by the organic substance removing device 100 so that the cement raw material can be easily fired by the rotary kiln 18 in the next process.
  • the lower part of the preheater 16 is connected.
  • the rotary kiln 18 is fired by heating the cement raw material with the burner 17 to obtain a cement cleansing force.
  • the clean power cooler 19 cools the cement clean power discharged from the front of the kiln of the mouth kiln 18.
  • the crimping silo 20 stores the cement crimping force obtained in the rotary kiln 18 at any time.
  • the pre-heater 16 has five upper and lower cyclones 15 whose internal temperature is higher in the lower stage (downstream).
  • the upstream end of the exhaust gas duct 21 is connected to the upper part of the preheater 16.
  • the cement raw material from which the organic chlorine compound has been removed by the organic substance remover 100 is preheated until the limestone in the cement raw material is decarboxylated in the course of passing through the cyclone 15 from the upper stage toward the lower stage (normal operation). When the temperature of the top of the preheater 16 is over 300 ° C).
  • the rotary kiln 18 has a kiln shell lined with a refractory, and can produce cement cleansing power. At the front of the kiln of the rotary kiln 18, the cement cleansing power is burned from the cement raw material by the heat of the panner 17 fueled with heavy oil and finely pulverized coal.
  • the organic substance removing device 100 is heated immediately before the cement raw material is put into the preheater 16, and separates the organic chlorine compound from the cement raw material or decomposes the organic chlorine compound.
  • the outer jacket 101 is provided outside the organic substance remover 100, and indirectly heats the cement raw material charged into the organic substance remover 100 by a heat source supplied from the outside.
  • the gas generator 102 supplies heated gas, which is a heat source, to the outer jacket 101 from the outside of the cement production facility 10A (outside the system).
  • the organic substance removing device 100 is connected to the preheater 16 through the organic substance removing powder conveyance facility 165a.
  • the raw material of the cement from which the organic matter has been removed in the organic matter remover 100 is put into the preheater 16 through the organic matter removal powder transfer equipment 165a and preheated in the process of passing through each cyclone 15 constituting the preheater 16 (during normal operation, cement
  • the raw material is heated to about 900 ° C by the preheater 16).
  • the preheater 16 is connected to a rotary kiln 18, and the rotary quinolene 18 is connected to a crimping force cooler 19.
  • the preheated cement raw material is heated by the panner 17 while rotating inside the kiln shell of the rotary kiln 18. As a result, cement cleansing power is burned.
  • the obtained cement cleansing force is cooled inside the cleansing cooler 19.
  • the organic substance remover 100 includes the outer jacket 101 described above, A casing 103, a spelling tube 104, and a heating screw type heating unit 105 are provided.
  • the casing 103 is formed in a square shape in plan view.
  • the zigzag pipe 104 is formed in a zigzag shape, and is arranged in the vertical direction in the internal space of the casing 103.
  • the spell pipe 104 connects a cement raw material inlet 103 a formed on the upper plate of the casing 103 and a cement raw material outlet 103 b formed on the lower plate of the casing 103.
  • the downstream end of the heated raw material powder conveyance facility 165 is connected to the input port 103a, and the upstream end of the organic substance removal powder conveyance facility 165a is connected to the discharge port 103b.
  • the upstream end of the heated raw material powder transfer facility 165 is connected to the storage silo 14, and the downstream end of the organic matter removal powder transfer facility 165 a is connected to the top of the preheater 16.
  • the heating unit 105 is arranged in three stages in the middle of the spell tube 104, spaced apart in the vertical direction.
  • the heating unit 105 includes a cylindrical transfer pipe 106, a cylindrical jacket 107, a screw 108, and a rotation motor 109.
  • the cylindrical transfer pipe 106 is formed of a horizontally disposed portion in the middle of the spell pipe 104.
  • the cylindrical jacket 107 is provided so as to surround the transfer pipe 106 and heats the cement raw material passing through the transfer pipe 106.
  • the screw 108 is accommodated in the transfer pipe 106 and is driven by a rotary motor 109 to convey the cement raw material.
  • the cylindrical jackets 107 are connected in series through one heat source distribution pipe 150 whose upstream end is bifurcated.
  • One upstream end of the heat source delivery pipe 150 that is, the branch pipe 151 is connected to a first heat source supply port 103c formed in the lower plate of the casing 103.
  • the other upstream end of the heat source delivery pipe 150 that is, the branch pipe 152 is connected to a second heat source supply port 103 d formed in the lower plate of the casing 103.
  • the downstream end of the heat source delivery pipe 150 is connected to a heat source outlet 103e formed on the upper plate of the casing 103.
  • An organic gas separation branch pipe 153 branched from the upstream portion of the transfer pipe 106 of the uppermost heating unit 105 is connected to the downstream end of the heat source distribution pipe 150.
  • the downstream end of the preheating branch pipe 21a is connected to the first heat source supply port 103c.
  • the upstream end of the preheating branch 21 a is connected to the upstream end of the exhaust gas duct 21.
  • the preheating branch pipe 21a is provided with a fan F4.
  • the exhaust gas discharged from the upper stage of the preheater 16 is supplied to the heat source distribution pipe 150 through the preheating branch pipe 21a and the first heat source supply port 103c, It is sequentially supplied to the cylindrical jacket 107 of each heating unit 105.
  • the second heat source supply port 103d is connected to the downstream end of a heat source introduction pipe 154 whose upstream end is bifurcated.
  • One upstream end of the heat source introduction pipe 154 that is, the branch pipe 154 a is connected to the upper part of the front part of the kiln of the rotary kiln 18.
  • the other upstream end of the heat source introduction pipe 154 that is, the branch pipe 154 b is connected to the upper part of the crimping power cooler 19.
  • a fan F5 is provided in the heat source introduction pipe 154 connected to the second heat source supply port 103d.
  • the exhaust gas discharged from the crimping power cooler 19 and the exhaust gas discharged from the front of the kiln of the rotary kiln 18 are supplied to the heat source distribution pipe 150 through the heat source introduction pipe 154 and the second heat source supply port 103d, and each heating section 105 Are sequentially supplied to the cylindrical jacket 107.
  • An upstream end of an exhaust gas outlet pipe (heat treatment gas supply path) 156 is connected to the heat source outlet 103e.
  • the downstream end of the exhaust gas outlet pipe 156 is connected to the lower part of the preheater 16 (during normal operation, the temperature of the lower part of the preheater 16 is about 850 ° C.).
  • the exhaust gas outlet pipe 156 is provided with a valve 155.
  • the exhaust gas outlet pipe 156 upstream of the valve 155 is connected to the upstream portion of the clean air cooler 19 through the first branch pipe (heat treatment gas supply passage) 15 6a (during normal operation, the clean air cooler The temperature upstream of 19 is about 1100 ° C).
  • a valve 157 is provided in the first branch pipe 156a.
  • the exhaust gas outlet pipe 156 upstream of the first branch pipe 156a is connected to the end wall of the rotary kiln 18 at the front of the kiln through the second branch pipe (heat treatment gas supply path) 156b (normally During operation, the temperature at the front of the kiln of the rotary kiln 18 is about 1450 ° C).
  • a valve 158 is provided in the second branch pipe 156b.
  • the exhaust gas outlet pipe 156 upstream of the second branch pipe 156b is provided with a fan F6.
  • a heating gas supply unit (not shown) of the gas generator 102 is connected to a part of the outer wall of the outer jacket 101 through a heating gas supply pipe 159.
  • the other part of the outer wall of the outer jacket 101 is connected to the exhaust gas duct 21 through the external heat exhaust gas pipe 160.
  • the gas generator 102 is made up of the heat of the exhaust gas discharged from the three heat sources described above (the upper stage of the preheater 16, the front of the rotary kiln 18 and the upper part of the clean power cooler 19). Used when it is difficult to remove organochlorine compounds.
  • the heated gas generated by the gas generator 102 passes through the heated gas supply pipe 159 to the external jacket. (The temperature of the internal space of the outer jacket 101 is about 300 ° C. during operation of the gas generator 102). A part of the exhaust gas discharged from the top of the preheater 16 may be supplied to the outer jacket 101.
  • each heating unit 105 and the heating gas supplied to the outer jacket 101 heats the air inside the casing 103, whereby the cement raw material flowing inside the spell tube 104 is heated.
  • the heated gas used for heating the cement raw material is introduced into the exhaust gas duct 21 through the external heat exhaust gas pipe 160.
  • the third valve 155, 157, 158 force S is opened.
  • the cement raw material (limestone, clay, silica, and iron raw material) stored in the raw material storage 11 is input to the raw material mill 13 through the raw material transfer equipment 118.
  • some cement raw materials with high water content such as viscosity are input to the raw material dryer 12 through the raw material supply facility 131, dried by the raw material dryer 12, and then input to the raw material mill 13 through the dry raw material discharge facility 132.
  • the temperature inside the raw material dryer 12 is about 300 ° C or more, and the internal temperature of the raw material mill 13 The temperature is kept above 100 ° C. Therefore, in the raw material dryer 12, the cement raw material with a high water content supplied from the raw material storage 11 is dried. In the raw material mill 13, the cement raw material power including the dry clay supplied from the raw material dryer 12 is heated to about 100 ° C, and the particle size is pulverized to about 90 ⁇ or less by many metal balls. Is done. . The cement raw material pulverized in the raw material mill 13 is input to the storage silo 14 through the pulverized raw material transfer equipment 121.
  • Dioxins and organic chlorine compounds such as PCB, organic matter, and waste containing chlorine, etc. (such as municipal waste and incinerated ash) are mixed with cement raw materials, and the organic materials contained in the cement raw materials that are put into the raw material mill 13 Chlorine compounds are separated from the cement raw material by heating inside the raw material mill 13 kept at about 100 ° C or higher.
  • organochlorine compounds contained in the cement raw material charged into the raw material dryer 12 are decomposed (vaporized) by being heated inside the raw material dryer 12 kept at about 300 ° C or higher.
  • the cement raw material (including dust) stored in the storage silo 14 is input to the input port 103a of the organic matter remover 100 through the heated raw material powder transfer facility 165.
  • the transfer pipe 106 is heated to about 300 ° C. by the exhaust gas from each heat source flowing inside the cylindrical jacket 107, and the screw 108 is rotated synchronously by the rotary motor 109.
  • the cement raw material charged into the organic substance removing device 100 passes through the three heating parts 105 in sequence while being transported through the Zurzak tube 104, and in the process, the organic chlorine compound is removed. It is discharged from the outlet 103b.
  • the cement raw material discharged from the organic matter removing device 100 is put into the upper portion of the preheater 16 through the organic matter removing powder conveyance facility 165a.
  • the heat treatment gas (exhaust gas) containing the organic chlorine compound generated in the organic substance removing device 100, specifically in the spelling pipe 104, passes through the organic gas separation branch pipe 153 to the downstream end of the heat source delivery pipe 150. be introduced.
  • the heat treatment gas generated inside the spell pipe 104 is mixed with the exhaust gas from each heat source used for heating the cement raw material, and introduced into the exhaust gas outlet pipe 156 through the heat source outlet 103 e.
  • the mixed exhaust gas and heat treatment gas are supplied to the lower stage portion of the preheater 16 through the exhaust gas outlet pipe 156, supplied to the upstream portion of the crimping force cooler 19 through the first branch pipe 156a, and through the second branch pipe 156b. Supplied to the kiln front of Rotary Kiln 18. Since each of the above parts is 800 ° C. or higher during normal operation, the organochlorine compounds contained in the exhaust gas and heat treatment gas supplied to the above parts are thermally decomposed.
  • the cement raw material from which the organic chlorine compound has been removed in the organic substance removing device 100 is supplied to the firing process section 2, and the cyclone 15 on the lower stage side from the uppermost cyclone 15 of the preheater 16 is supplied. It will flow down gradually toward the end of the water and will eventually be preheated to about 800 ° C. After that, the cement material is put into the kiln bottom of Kuchitari Kiln 18. In the front part of the kiln of the rotary kiln 18, the cement cleansing power is fired from the cement raw material by the heat of the burner 17. The fired cement cleansing power is stored in the clean force silo 20 after being cooled by the cleansing cooler 19.
  • the cement manufacturing facility 10A of the present embodiment immediately before being put into the cement raw material power preheater 16, it is put into the organic substance removing device 100 and heated to remove the organic chlorine compound.
  • the circulation of the organochlorine compound in the raw material process section is cut off, so that the concentration of the organochlorine compound can be suppressed.
  • the amount of dioxins and organic chlorine compounds such as PCBs emitted from cement production facilities can be greatly reduced compared to conventional products.
  • a second embodiment of the organic chlorine compound reducing method and cement manufacturing facility in the cement manufacturing facility 10B of the present invention will be described with reference to FIG. Note that the components already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the cement production facility 10B of the present embodiment is provided with an organic substance remover 170 instead of the organic substance remover 100 of the first embodiment.
  • the organic substance remover 170 includes a fluidized bed 171 and a cyclone 173.
  • the fluidized bed 171 heats the cement raw material and removes the organic chlorine compound in the cement raw material.
  • the cyclone 173 is connected to the upper part of the fluidized bed 171 through a connecting pipe 172, and takes out the cement raw material from which the organic chlorine compound has been removed from the fluidized bed 171.
  • the fluidized bed 171 includes a heating tower 174 and a transfer facility 175.
  • the heating tower 174 is formed in a vertical cylindrical shape and heats a cement raw material containing an organic chlorine compound.
  • the downstream end of the transfer facility 175 is connected to the lower part of the outer wall of the heating tower 174.
  • a heating raw material powder transfer facility 165 is connected to the upstream end of the transfer facility 175.
  • the cement raw material is introduced from the storage silo 14 into the heating tower 174 at a constant flow rate through the heated raw material powder transfer equipment 165 and the transfer equipment 175.
  • a perforated plate (not shown) is horizontally provided at the bottom of the heating tower 174.
  • the exhaust gas discharged from the three heat sources mentioned above (the upper part of the preheater 16, the upper part of the clean power cooler 19, and the front part of the rotary kiln 18) is always constant inside the heating tower 174 through the holes of the perforated plate. Supplied at a pressure of
  • the heat treatment gas containing the organic chlorine compound supplied to the cyclone 173 is separated from the cement raw material, and passes through the exhaust gas outlet pipe 156, the first branch pipe 156a, and the second branch pipe 156b. , The kiln front part of the rotary kiln 18, and the upstream part of the clean power cooler 19. Since each of the above parts is 800 ° C. or higher during normal operation, the organochlorine compounds contained in the exhaust gas and heat treatment gas supplied to the above parts are thermally decomposed. On the other hand, the cement raw material from which the organic chlorine compound has been removed is fed from the bottom of the cyclone 173 to the upper portion of the preheater 16 through the organic substance removal powder transfer equipment 165a.
  • the organic substance removing device 170 has a simpler structure and is easier to maintain than the organic substance removing device 100. Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof is omitted.
  • the cement production facility 10C of the present embodiment includes a raw material process unit 1 for pulverizing cement raw material, a firing process unit 2 for firing the pulverized cement raw material, and a cement cleansing force obtained by firing. And finishing process section 3 that mixes and crushes gypsum.
  • the raw material processing section 1 includes a raw material storage 11, a raw material dryer 12, a raw material mill 13, and an electric dust collector.
  • the preheater 200 is a heating screw type heater, and preheats a cement raw material containing an organic chlorine compound.
  • the heat generator 201 is driven when the preheater 200 alone is insufficient for the amount of heat for preheating the cement raw material.
  • the raw material storage 11 is connected to the preheater 200 through the raw material supply equipment 202.
  • the raw material supply equipment 202 is provided with a valve 203.
  • the cement raw material stored in the raw material storage 11 is supplied to the preheater 200 through the raw material supply facility 202.
  • the electric dust collector 30 is connected to the raw material supply facility 202 downstream of the valve 203 through the dust delivery facility 204.
  • the dust collected by the electric dust collector 30 is supplied to the preheater 200 through the dust distribution facility 204 and the raw material supply facility 202.
  • the lower part of the preheater 16 is connected to a raw material supply facility 202 on the downstream side of the valve 203 through a heated raw material delivery pipe 205.
  • a portion of the heated cement raw material is extracted from the vicinity of the lower part of the preheater 16 and is then supplied to the heated raw material delivery pipe 205 and the raw material supply equipment. It is supplied to the preheater 200 through 202.
  • the preheater 200 is used to supply the cement raw material supplied from the raw material storage 11 through the raw material supply equipment 202 and the dust supplied from the electrostatic precipitator 30 through the dust distribution equipment 204 and the raw material supply equipment 202 to the screw. Pre-heat in the process of conveying along with the rotation of 200a [0128]
  • a jacket 206 is provided outside the preheater 200.
  • the jacket 206 preheats the cement raw material indirectly from the outside of the preheater 200.
  • the jacket 206 is supplied with exhaust gas generated at various locations in the cement production facility 10C as its heat source.
  • the preheating temperature by the preheater 200 is 250 ° C, and the preheating time is about 20 minutes.
  • exhaust gas of about 300 ° C supplied from the upper part of the preheater 16 to the raw material dryer 12 and the raw material mill 13 through the exhaust gas duct 21 and the clean power cooler 19 are discharged.
  • Exhaust gas of 300 ° C or higher and exhaust gas of about 200 ° C to 300 ° C discharged from the clean power cooler 19 through the flue 236 are used.
  • the exhaust gas duct 21 on the downstream side of the fan F1 is connected to the preheater 200 through the first heat medium pipe 208.
  • the first heat medium pipe 208 is provided with a valve 207. Part of the exhaust gas discharged by the preheater 16 force is supplied to the preheater 200 through the first heat medium pipe 208.
  • the crimping force cooler 19 is connected to the first heat medium pipe 208 through the second heat medium pipe 210.
  • the second heat medium pipe 210 is provided with a valve 209. Part of the exhaust gas discharged from the crimping cooler 19 is supplied to the preheater 200 through the second heat medium pipe 210 and the first heat medium pipe 208.
  • the flue 236 is connected to the second heat medium pipe 210 through the third heat medium pipe 212.
  • the third heat medium pipe 212 is provided with a valve 211. Part of the exhaust gas discharged from the clean power cooler 19 through the flue 236 is supplied to the preheater 200 through the third heat medium pipe 212, the second heat medium pipe 210, and the first heat medium pipe 208. .
  • the first heat medium pipe 208 on the downstream side of the valve 207 is connected to the jacket 206 of the preheater 200 through the branch pipe 214.
  • the branch pipe 214 is provided with a valve 213.
  • the exhaust gas supplied from the preheater 16 to the raw material mill 13 or the like may not be suitable as a heating gas accompanied by combustion with a low oxygen concentration. In such a case, the valve 213 is opened, the exhaust gas from the preheater 16 is supplied to the jacket 206 through the branch pipe 214, and the cement raw material is indirectly heated.
  • the preheater 200 is connected to the exhaust gas duct 21 on the downstream side of the connection portion with the first heat medium pipe 208 through the jacket exhaust pipe 216.
  • Jacket exhaust pipe 216 carries exhaust gas A fan 215 is provided.
  • the exhaust gas discharged from the jacket 206 after being used for heating the cement raw material or the like is returned to the exhaust gas duct 21 through the jacket exhaust pipe 216.
  • some organochlorine compounds contained in the exhaust gas discharged from the preheater 16 are heat-treated in the raw material process (raw material dryer 12 and raw material mill 13) for cement production.
  • the preheater 200 is connected to the raw material mill 13 through the raw material discharge pipe 218.
  • the raw material discharge pipe 218 is provided with a valve 217.
  • the cement raw material and dust preheated by the preheater 200 are input to the raw material mill 13 through the raw material discharge pipe 218.
  • the raw material discharge pipe 218 upstream of the valve 217 is connected to the pulverized raw material transfer equipment 121 through the dust dedicated pipe 220.
  • the dust dedicated pipe 220 is provided with a valve 219.
  • valves 203 and 217 are closed and valve 219 is opened, and only dust is supplied to the preheater 200.
  • organochlorine compounds are separated or decomposed from the dust.
  • the dust from which the organic chlorine compound has been removed is input to the storage silo 14 through the raw material discharge pipe 218, the dust dedicated pipe 220, and the pulverized raw material transfer equipment 121.
  • the heat generating device 201 is driven when the amount of heat for preheating the cement raw material is insufficient with only the three heat sources described above, and compensates for the shortage of heat in the preheater 200. Specifically, a hot gas generator type heating device is employed.
  • the heat generation apparatus 201 is connected to the first heat medium pipe 208 downstream of the valve 207 through the auxiliary heat delivery pipe 222.
  • the auxiliary heat delivery pipe 222 is connected to the jacket 206 of the preheater 200 through the auxiliary heat branch pipe 224.
  • the auxiliary heat branch pipe 224 is provided with a valve 223.
  • heated air of about 400 ° C. generated by the heat generator 201 is supplied to the preheater 200 through the auxiliary heat delivery pipe 222 and the first heat medium pipe 208.
  • the valve 223 is opened and supplied to the jacket 206 through the heating air force S generated by the heat generator 201, the auxiliary heat distribution pipe 222 and the auxiliary heat branch pipe 224. Is done.
  • the preheater 200 is connected to the lower stage of the preheater 16, the kiln bottom of the rotary kiln 18, and the kiln front of the rotary kiln 18 through the gas delivery pipe 23.
  • the gas delivery pipe 23 is provided with a fan 225.
  • the downstream end of the gas delivery pipe 23 branches into three branches.
  • the first branch pipe 23a is connected to the kiln front of the rotary kiln 18 and the second branch pipe 23a.
  • the branch pipe 23b is connected to the kiln bottom of the rotary kiln 18, and the third branch pipe 23c is connected to the cyclone 15 at the lowermost stage (fifth) of the preheater 16.
  • the heat treatment gas (exhaust gas) containing the organochlorine compound generated in the preheater 200 is passed through the gas delivery pipe 23 through the lower stage of the preheater 16, the kiln bottom of the rotary kiln 18, Supplied to the kiln front of the rotary kiln 18.
  • the cement production facility 10C has a calcining furnace, the above heat treatment gas may be supplied to the calcining furnace. Further, the heat treatment gas may be supplied to the upstream portion of the cleansing cooler 19.
  • the first branch pipe 23a is provided with a first valve 226, the second branch pipe 23b is provided with a second valve 227, and the third branch pipe 23c is provided with a third valve 228. Is provided.
  • the firing process section 2 includes a preheater 16, a panner 17, a rotary quinolene 18, a cleansing cooler 19, a cleansing silo 20, and a dust collector 5.
  • the dust collector 5 collects dust containing organochlorine compounds discharged from the clean silo 20.
  • the finishing process section 3 includes a finishing mill 6 and a cement silo 7.
  • the finishing mill 6 grinds the cement cleansing force with a predetermined amount of gypsum and finishes it into cement as the final product.
  • the cement silo 7 stores the obtained cement one after another.
  • cement raw materials (limestone, clay, silica and iron raw materials) stored in the raw material storage 11 are supplied to the preheater 200 through the raw material supply facility 202.
  • some cement materials with high water content such as viscosity are input to the raw material dryer 12 through the raw material supply facility 131, dried by the raw material dryer 12, and then input to the raw material mill 13 through the dry raw material discharge facility 132.
  • the high-temperature exhaust gas exhausted from the top of the preheater 16 is introduced into the raw material dryer 12 through the exhaust gas duct 21, so that the temperature inside the raw material dryer 12 is maintained at about 300 ° C or higher. I'm leaning. Dioxins and organochlorine compounds such as PCB, organic chlorine and organic chlorine compounds contained in the cement raw material input to the raw material dryer 12 when waste containing organic matter and chlorine (such as municipal waste and incinerated ash) is mixed in the cement raw material Is decomposed (vaporized) by being heated inside the raw material dryer 12.
  • Dioxins and organochlorine compounds such as PCB, organic chlorine and organic chlorine compounds contained in the cement raw material input to the raw material dryer 12 when waste containing organic matter and chlorine (such as municipal waste and incinerated ash) is mixed in the cement raw material Is decomposed (vaporized) by being heated inside the raw material dryer 12.
  • the temperature of the exhaust gas at the inlet of the electrostatic precipitator 30 is reduced to about 90 ° C.
  • Most of the decomposed organochlorine compounds are adsorbed by dust in the exhaust gas.
  • the dust adsorbing the organochlorine compound is collected by the electrostatic precipitator 30 in the process of being led to the chimney 130 through the flue 129.
  • the collected dust is introduced into the preheater 200 through the dust distribution facility 204 and the raw material supply facility 202.
  • a part of the cement raw material extracted from near the lowermost part of the preheater 16 is introduced into the preheater 200 through the heated raw material delivery pipe 205 and the raw material supply equipment 202. Since the cement raw material is heated to about 800 ° C in the preheater, it can be used as a heat source for the preheater 200.
  • cement raw material and dust supplied into the preheater 200 are gradually conveyed to about 400 ° C in the process of being conveyed along with the rotation of the screw 200a. Preheated. The preheating time is about 10 minutes.
  • dioxins precursors eg benzene, phenol, black benzene, black mouth phenol, etc.
  • the cement raw material To separate the PCB from the cement raw material, the cement raw material must be heated to 100 ° C or higher, and to decompose the PCB, the cement raw material must be heated to 800 ° C or higher.
  • the cement raw materials In order to separate odorous components (such as acetonitrile) from cement raw materials, the cement raw materials need to be heated to 50 ° C or higher. Accordingly, by preheating the cement raw material before being crushed in the raw material mill 13 to 250 ° C. in the preheater 200, the precursor of the dioxins and the odor component are separated from the cement raw material.
  • the preheater 200 includes exhaust gas discharged from the upper part of the preheater 16 (about 300 ° C), exhaust gas discharged from the tarinka cooler 19 (300 ° C or higher), and the flue from the clean power cooler 19 236 Exhaust gas exhausted through (about 200 ° C to 300 ° C) Power supplied as a heat source. Further, the valve 213 is opened as necessary, and a part of the exhaust gas discharged from the top of the preheater 16 is supplied to the jacket 206. As a result, the cement raw material force supplied to the preheater 200 is heated not only from the inside of the preheater 200 but also from the outside.
  • the heated air generated in the heat generator 201 is supplied to the preheater 200 through the auxiliary heat delivery pipe 222 and the first heat medium pipe 208.
  • the valve 223 is opened, and the heated air generated in the heat generator 201 may be supplied to the partial force jacket 206.
  • the cement raw material from which the organic chlorine compound has been removed in the preheater 200 is input to the raw material mill 13 through the raw material discharge pipe 218.
  • the raw material mill 13 is introduced through the high-temperature exhaust gas power exhaust gas duct 21 discharged from the upper part of the preheater 16, so that the temperature inside the raw material mill 13 is maintained at 100 ° C. or higher. For this reason, in the raw material mill 13, the cement raw material containing the dry clay supplied from the raw material dryer 12 is heated to about 100 ° C, and the particle size is reduced to about 90 ⁇ or less by a large number of metal balls. Is done.
  • the pulverized cement raw material is input to the storage silo 14 through the powdered raw material transfer equipment 121.
  • Dioxins and organic chlorine compounds such as PCBs, organic substances and waste containing chlorine, etc. (such as municipal waste and incinerated ash) are mixed with cement raw materials, and the organic materials contained in the cement raw materials input to the raw material mill 13 Chlorine compounds are separated from the cement raw material by heating inside the raw material mill 13 kept at about 100 ° C or higher.
  • the heat treatment gas containing the organic chlorine compound generated in the preheating step is either a lower part of the preheater 16 through the gas delivery pipe 23, a kiln bottom of the rotary kiln 18, and a kiln front of the rotary kiln 18. Supplied to all.
  • a heat treatment gas containing an organic chlorine compound is supplied to the kiln bottom of the rotary kiln 18, heating by the Parner 17 is carried out within the rotary kiln 18 to 1100 to 1450 ° C, which exceeds the thermal decomposition temperature of dioxin.
  • the cement cleansing power is fired, and at the same time, all of the organic chlorine compounds contained in the heat treatment gas are thermally decomposed and rendered harmless.
  • the heat treatment gas containing the organic chlorine compound is supplied to the front of the kiln of the rotary kiln 18, the heat treatment gas is used as combustion air in the PANA 17. Thereby, the organochlorine compound in the heat treatment gas is completely pyrolyzed.
  • the heat treatment gas When a heat treatment gas containing an organic chlorine compound is supplied to the lowermost cyclone 15 of the preheater 16, the heat treatment gas is used as air for heating until the limestone in the cement raw material is decarboxylated. In the process of heating this cement raw material, the organochlorine compound is completely pyrolyzed.
  • the cement raw material stored in the storage silo 14 is supplied to the firing process section 2 and flows down from the uppermost cyclone 15 of the preheater 16 toward the lower cyclone 15 and finally 800 ° C. Preheated to the extent. Thereafter, the cement raw material is put into the kiln bottom of the rotary kiln 18. At the front of the kiln of the rotary kiln 18, the cement cleansing power is fired from the cement raw material by the heat of the PANA 17. The fired cement cleansing force is stored in the clean force silo 20 after being cooled by the cleansing force cooler 19.
  • Cement power stored in the power silo 20 is supplied to the finishing mill 6 after a predetermined amount of gypsum is added.
  • the cement cleansing force is pulverized by a large number of metal balls to become cement as the final product. Obtained Ment is stored by a cement silo (not shown) and awaiting shipment.
  • the cement raw material is input without being preheated from the raw material storage 11 to the raw material dryer and the raw material mill, and therefore, in the exhaust gas discharged from the raw material dryer and the raw material mill.
  • This dust contains a large amount of organic chlorine compounds such as dioxins, PCBs and odor components. Dust in the exhaust gas is collected by a dust collector and transported to a storage silo to become part of the cement raw material.
  • the cement raw material containing dust stored in the storage silo is supplied to the preheater and heated. A part of the cement raw material containing dust is extracted together with the upper force of the preheater and the exhaust gas, and then passed through the exhaust duct. Returned to dryer and raw material mill.
  • the organic chlorine compound circulates in the raw material process section, and the concentration is gradually increased.
  • the amount of dioxins released into the atmosphere from the facility where the raw material process is carried out through the flue, and consequently the amount of dioxins discharged from the cement production facility will increase.
  • the dedusted gas that has passed through the dust collector also contains organic sludge such as dioxins, PCBs, and odorous components, albeit slightly. Dust gas containing these may be released from the chimney through the flue to the atmosphere.
  • the cement raw material is heated in the preheater 200 before being charged into the raw material mill 13 to remove dioxins, PCBs and odor components. Is done.
  • the circulation of the organochlorine compound in the raw material process section is interrupted, so that the concentration of the organochlorine compound can be suppressed.
  • emissions of organochlorine compounds such as dioxins, PCBs, and odorous components emitted from the 10C cement manufacturing facility can be greatly reduced compared to conventional products.
  • the heating temperature by the preheater 200 may be, for example, 100 ° C or higher.
  • the organic chlorine compounds (including odorous components) contained in the cement raw material and dust are vaporized and separated from the cement raw material and dust.
  • Fig. 5 is a graph showing the relationship between the temperature in the cement production facility and the reduction rate of organic substances contained in dust.
  • raw material A is the refinery soil
  • raw material B is the gasoline station soil
  • raw material C is sludge generated from the chemical plant
  • raw material D is charcoal-containing soil
  • raw material E is waste white clay
  • raw material F is sludge generated from a chemical plant.
  • Organochlorine compounds contained in any raw materials Vaporizes at a temperature of about 50 ° C and separates from cement raw material and dust.
  • the organochlorine compound is PCB
  • the residual PCB rate when dust is not heated is 100.
  • the relationship between the heating temperature and the PCB residual ratio is 25% when the heating temperature is 300 ° C, 5% when the heating temperature is 500 ° C, and 5% when the heating temperature is 800 ° C.
  • the dust from which the organic chlorine compounds have been removed can then be collected by a dust collector (not shown) connected to the downstream part of the transport device and reused as a cement raw material.
  • the cement raw material and dust are preheated by the preheater 200, and the PCB is aerated.
  • the power S can be cut by.
  • the heat treatment gas containing PCB generated during preheating is used as combustion air in the PANA17. As a result, the PCB concentration in the exhaust gas discharged from the cement production facility 10 into the atmosphere can be reduced.
  • the cement production facility 10D of the present embodiment includes a raw material process unit 1 for pulverizing cement raw material and a firing process unit 2 for firing the pulverized cement raw material.
  • the raw material processing unit 1 includes a raw material storage 11, a raw material dryer 12, a raw material mill 13, a storage silo 14, and a first electric dust collector (dust collector) 30.
  • the storage silo 14 is connected to the preheater 16 through the heated raw material powder transporting facility 165.
  • the cement raw material stored in the storage silo 14 is supplied to the preheater 16 through the heated raw material powder transfer facility 165.
  • the first electric dust collector 30 is provided downstream of the flue 129.
  • the first electrostatic precipitator 30 is connected to a raw material mill 13 and an exhaust gas branch pipe (hot gas supply path) 350 described later through a dust delivery facility (powder supply path) 323.
  • the exhaust gas branch pipe 350 is provided with a dust inlet 350a. Part of the dust collected by the first electrostatic precipitator 30 is fed into the exhaust gas branch pipe 350 from the dust inlet 350a through the dust delivery facility 323, and the rest is put into the raw material mill 13 through the dust delivery facility 323. Is done.
  • the firing process section 2 captures dust discharged from the preheater 16, the panner 17, the rotary quinolene 18, the clean power cooler 19, the clean power silo 20, the coal mill 50, and the clean power silo. And a dust collector (not shown) for collecting.
  • the coal mill 50 pulverizes the coal to obtain coal part powder as the burner of the PANA 17.
  • the dust collector collects dust discharged from the clean power silo.
  • the preheater 16 has a multistage cyclone 15 having a higher internal temperature at the lower (downstream) side, and preheats the cement raw material from which the organic chlorine compound has been removed by the organic substance removing device 100.
  • the upstream end of the exhaust gas duct 21 is connected to the upper part of the preheater 16.
  • the exhaust gas duct 21 upstream from the branched downstream end is connected to the coal inlet of the coal mill 50 through the exhaust gas branch pipe 350.
  • a second electric dust collector (collecting means) 31 and a fan F7 are provided in the exhaust gas branch pipe 350 downstream of the dust inlet 350a.
  • the second electric dust collector 31 is connected to the raw material mill 13 through the organic removal dust pipe 351.
  • the fan F7 is provided on the downstream side of the second electric dust collector 31.
  • the fan F7 When the fan F7 is driven, a part of the high-temperature exhaust gas flowing through the exhaust gas duct 21 flows into the exhaust gas branch pipe 350, and the dust containing the organic chlorine compounds collected by the first electrostatic precipitator 30 is collected in the dust inlet. It flows into the exhaust gas branch pipe 350 from 350a.
  • the dust flowing from the first electrostatic precipitator 30 into the exhaust gas branch pipe 350 from the dust inlet 350a through the dust delivery facility 323 comes into contact with the exhaust gas of 300 ° C or higher from which the upper force of the preheater 16 is also discharged. This As a result, the organochlorine compound contained in the dust is separated or decomposed from the dust. Further, the gas containing the organic chlorine compound that has passed through the second electrostatic precipitator 31 flows into the coal mill 50. The dust collected by the second electric dust collector 31 is supplied to the raw material mill 13 through the organic removal dust pipe 351.
  • the rotating drum of the coal mill 50 contains a large number of metal balls. While rotating the rotating drum, when the gas containing the organochlorine compound that passed through the second electrostatic precipitator 31 and coal are continuously fed into the rotating drum, a large number of metal balls finely pulverize the coal, and the organic chlorine Coal fine powder (adsorbed powder) with adsorbed compounds is obtained. Coal fine powder is continuously fed into PANA 17 through pulverized coal delivery pipe 352. The amount of coal fine powder input from the fuel inlet is 500 to 900 g per lm 3 of gas. In addition, activated carbon fine powder or oil coke fine powder may be used instead of fine coal powder.
  • cement raw materials limestone, clay, silica and iron raw materials stored in the raw material storage 11 are put into the raw material mill 13 through the raw material transfer equipment 118.
  • some cement materials with high water content such as viscosity are input to the raw material dryer 12 through the raw material supply facility 131, dried by the raw material dryer 12, and then input to the raw material mill 13 through the dry raw material discharge facility 132. Is done.
  • the raw material dryer 12 and the raw material mill 13 are introduced through the high-temperature exhaust gas power exhaust gas duct 21 discharged from the upper part of the preheater 16, so that the temperature inside the raw material dryer 12 is about 300 ° C. The temperature is kept above 100 ° C.
  • the raw material mill 13 is heated to a cement raw material power of about 75 ° C including the dry clay supplied from the raw material dryer 12, and the average particle size is about 10 xm to 30 zm by a large number of metal balls. To be crushed.
  • the pulverized cement raw material is input to the storage silo 14 through the pulverized raw material transfer equipment 121.
  • the cement raw material stored in the storage silo 14 is supplied to the firing process section 2 and flows down sequentially from the uppermost cyclone 15 of the preheater 16 toward the lower cyclone 15, and finally 800 ° C. Preheated to the extent. Thereafter, the cement raw material is put into the kiln bottom of the rotary kiln 18.
  • Dioxins and organic chlorine compounds such as PCB, organic matter, and waste containing chlorine, etc. (such as municipal waste and incinerated ash) are mixed into the cement raw material, and the organic material contained in the cement raw material input to the raw material mill 13 Chlorine compounds are separated from the cement raw material by heating inside the raw material mill 13 kept at about 100 ° C or higher.
  • organochlorine compounds contained in the cement raw material charged into the raw material dryer 12 are decomposed (vaporized) by being heated inside the raw material dryer 12 kept at about 300 ° C or higher.
  • the temperature of the exhaust gas at the inlet of the electrostatic precipitator 30 is reduced to about 90 ° C. Therefore, most of the organic chlorine compounds separated or decomposed by cement raw material are adsorbed by the dust in the exhaust gas.
  • the dust adsorbing the organic chlorine compound is collected by the first electrostatic precipitator 30 in the process of being led to the chimney 130 through the flue 129. Part of the collected dust is input to the exhaust gas branch pipe 350 from the dust input port 350 a through the dust delivery facility 323, and the rest is input to the raw material mill 13 through the dust delivery facility 323.
  • the dust containing the organic chlorine compound charged into the exhaust gas branch pipe 350 comes into contact with the exhaust gas of 300 ° C or higher discharged from the upper part of the preheater 16. As a result, the organochlorine compounds contained in the dust are separated from the dust or thermally decomposed. As a result, dust and organochlorine compounds are mixed in the exhaust gas flowing through the exhaust gas branch pipe 350 downstream of the dust inlet 350a.
  • the dust not containing the organic chlorine compound is collected by the second electrostatic precipitator 31 in the process of flowing through the exhaust gas branch pipe 350.
  • the dedusted gas containing the organic chlorine compound separated from the dust passes through the second electrostatic precipitator 31.
  • the dust collected by the second electrostatic precipitator 31 is input to the raw material mill 13 through the organic removal dust pipe 351.
  • the dedusted gas that has passed through the second electrostatic precipitator 31 is supplied to the coal mill 50 through the exhaust gas branch pipe 350.
  • fine coal powder adsorbing organochlorine compounds such as dioxins and PCBs
  • Coal fine powder is continuously fed into PANA 17 through pulverized coal delivery pipe 352.
  • the present invention relates to a method for reducing an organic chlorine compound in a cement production facility, wherein the amount of the organic chlorine compound contained in the powder is reduced in the cement production facility, the powder being heated, A heating step of separating the organochlorine compound from or decomposing the organochlorine compound, and supplying a heat treatment gas containing the organochlorine compound generated by heating the powder to the high temperature part of the cement production facility And a gas pyrolysis step of thermally decomposing the organochlorine compound contained in the heat treatment gas.
  • the amount of dioxins discharged from a cement production facility and organochlorine compounds such as PCBs can be greatly reduced as compared with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

 このセメント製造設備における有機塩素化合物の低減方法は、粉体に含まれる有機塩素化合物の量を、セメント製造設備において低減させるセメント製造設備における有機塩素化合物の低減方法であって、前記粉体を加熱し、前記粉体から前記有機塩素化合物を分離するか若しくは前記有機塩素化合物を分解する加熱工程と、前記粉体を加熱することによって発生した前記有機塩素化合物を含む熱処理ガスを、前記セメント製造設備の高温部に供給し、前記熱処理ガス中に含まれる前記有機塩素化合物を熱分解するガス熱分解工程とを備える。

Description

明 細 書
セメント製造設備における有機塩素化合物の低減方法、およびセメント製 造設備
技術分野
[0001] この発明は、セメント製造設備における有機塩素化合物の低減方法、およびセメン ト製造設備に関し、詳しくはセメント製造設備力 排出されるダイォキシン類および P CBなどの有機塩素化合物を熱処理し、その排出量を低減可能な技術に関する。 本願は、 2005年 6月 16日に出願された特願 2005— 177019号、 2005年 7月 14 日に出願された特願 2005— 205064号、および 2005年 7月 22曰に出願された特 願 2005— 213442号について優先権を主張し、その内容をここに援用する。
背景技術
[0002] ダイォキシン(PCDDs)は、ポリ'クロ口'ジベンゾ'パラ'ダイォキシン(Poly chloro dib enzo-p-dioxin)の略称で、有機塩素化合物の一種である。このダイォキシンに類似し たものに、ポリ'クロ口'ジベンゾフラン(PCDFs: Poly chlorodibenzo-furan)が知られて いる。
[0003] 特に、ダイォキシン(PCDDs)の四塩化物であるテトラ'クロ口 'ジベンゾ 'パラ.ダイォ キシン(T4CDDs: Tetra chlorodibenzo- p- dioxin)に属して、 2, 3, 7, 8の位置に塩素 を持った 2, 3, 7, 8 テトラ'クロ口 'ジベンゾ'パラ'ダイォキシン (2,3,7, 8-T4CDDs)は 、もっとも毒性が強い。
[0004] 2, 3, 7, 8 テトラ'クロ口'ジベンゾ'パラ'ダイォキシンは、トリクロ口フエノーノレ、 2, 4, 5—トリクロ口フエノキシ酢酸製造時の副産物として得られ、そしてジベンゾ P— ジォキシンの塩素化により得られる。融点は 306〜307°Cである。
[0005] また、人体に有害とされる別の有機塩素化合物として、例えば PCB (ポリ塩ィ匕ビフエ ニル)が知られている。 PCBは、化学的安定性、絶縁性、不燃性、粘着性に優れて おり、発電所、鉄道、ビルなどの電気設備に搭載されるトランス、コンデンサの絶縁油 として利用されてきた。し力 ながら、ダイォキシンと同様な毒性を有するコブラナー P CBを含んでいるため、 1974年に法律が整備され、 PCBの製造、流通および新規の 使用が禁止されるに至った。
[0006] PCBの処理方法としては、例えば、 PCBを高温で熱処理する焼却処理方法、 PCB を脱塩素化処理する脱塩素化分解法、超臨界水を使用して PCBを二酸化炭素と水 とに分解する超臨界水酸化分解法などが開発されている。このうち、焼却処理方法 では、 PCBの熱処理ガスを冷却する際、ダイォキシン類が合成されてしまうことが懸 念されている。
[0007] そこで、これらを解消する従来技術として、例えば、下記の特許文献 1および特許 文献 2が知られている。
[0008] 特許文献 1には、セメント製造設備からの排ガスを集塵機に供給し、有機塩素化合 物を含むダストを捕集し、捕集されたダストの少なくとも一部を、セメント製造設備の 8 00°C以上の高温部に投入する方法が開示されている。ダイォキシン類は 800°C前 後で熱分解されるので、この方法によれば、ダイォキシン類を効率的に分解して無害 ィ匕すること力できる。セメント製造設備からの排ガスとしては、例えば、セメント原料を 乾燥させる原料ドライヤ(原料工程部)からの排ガス、セメント原料を粉碎する原料ミ ノレ (原料工程部)力 の排ガスなどが挙げられる。
[0009] また、集塵機力 排出され、煙道から大気中に放出される脱塵ガス中にも、気化し た有機塩素化合物が若干量含まれている。この対策として、特許文献 1には、脱塵ガ ス中のダイォキシン濃度を低下させる方法が記載されている。すなわち、セメント製造 設備のうち、温度が 30〜400°Cの個所 (低温部)から排ガスを引き出し、引き出した 排ガスを集塵機に供給する。低温部から導出された排ガスは、セメント製造設備の高 温部からの排ガスに比べて、有機塩素化合物が濃縮 (低温濃縮)されているので、こ の方法によれば、有機塩素化合物が濃縮されたダストを集めて除去することにより、 脱塵ガス中のダイォキシン類の濃度を低下させることができる。
[0010] 特許文献 2には、ダイォキシン類の発生を防ぎながら、 PCBを分解する方法が開示 されている。すなわち、外部からセメント工場に運び込まれた PCB含有物を、ロータリ キルンに投入し、この PCB含有物を、セメントクリン力を焼成するときの熱(1000°C以 上)で加熱することによって PCBを熱分解する。そして、この熱分解時に発生した排 ガスを、ロータリキルンの外から導出した後、 20°C/秒以上の冷却速度で急冷する。 排ガスを 20°C/秒以上で冷却することにより、排ガスの温度は、ダイォキシン類の合 成量が増加する温度領域を短時間で通過するので、この方法によれば、ダイォキシ ン類の発生を防ぎながら、 PCBを分解することができる。
特許文献 1 :特開 2004— 244308号公報
特許文献 2 :特開 2002— 147722号公報
発明の開示
発明が解決しょうとする課題
[0011] このように、特許文献 1においては、排ガスを集塵機に通すことによって捕集したダ ストの少なくとも一部を、通常運転時に 800°C以上となるセメント製造設備の高温部 に投入し、ダストに吸着されたダイォキシン類を熱分解する。その際、煙道から大気 中に放出される脱塵ガス (集塵機を通過したガス)中の有機塩素化合物の対策として 、セメント製造設備のうち、温度が 30〜400°Cの地点(低温部)から排ガスを引き出し 、これを集塵機に供給するという方法が採用される。
[0012] し力、しながら、この方法では、セメント製造設備から排出されるダイォキシン類を十 分に低減させることができなレ、。すなわち、有機塩素化合物を含むセメント原料は、 いずれもプレヒータの上部から排出される排ガスを熱源とし、内部温度が 300°C前後 となる原料ドライャおよび原料ミルにそれぞれ投入されるので、ダイォキシン類が気 化する。そのため、原料ミルなどからの排ガス(特にダスト)には、有機塩素化合物が 含まれてしまう。
[0013] 一方、プレヒータの上部には、原料ミルによって粉碎されたセメント原料が連続的に 投入される。このとき、セメント原料に付着している有機塩素化合物は、当初の設定 ではプレヒータ内をセメント原料が下降するのに伴ってその大半が熱分解されるはず であるが、実際はそのようにはいかず、プレヒータの上部の熱 (排ガスの熱を含む)に よって気化(分離)し、そのまま排ガスに混入されて原料ミルなどに戻される。これによ り、有機塩素化合物がセメント製造の原料工程内で循環し、徐々に高濃度化する。 その結果、セメント製造設備から排出されるダイォキシン類の量が増大してしまう。
[0014] また、特許文献 2においては、セメント製造設備の系外 (外部)から搬入された PCB 含有物を、ロータリキルン内で 1000°C以上に加熱して熱分解する。し力 ながら、こ の方法では、セメント製造設備内で発生した PCBを除去することができない。
[0015] そこで、発明者は、鋭意研究の結果、ダイォキシン類および PCBなどが発生する原 因は、セメント原料に含まれる有機塩素化合物 (塩素分)であることに着目し、以下の 知見を得た。
まず、第 1に、有機塩素化合物を含むセメント原料を原料ミルに投入する前に、同 セメント原料を 300°C前後に予加熱する。上記セメント原料には、有機塩素化合物を 含むダストも含まれる。これにより、例えばダイォキシン類の前駆体などの有機塩素化 合物を、セメント製造設備内で加熱処理される前のセメント原料力 分離、もしくは分 角军すること力 Sできる。
[0016] 第 2に、有機塩素化合物を含むセメント原料をプレヒータに投入して加熱する前に、 上記セメント原料を有機物除去器によって加熱する。これにより、例えばダイォキシン 類の前駆体などの有機塩素化合物を、セメント製造設備内で加熱される前のセメント 原料、またはプレヒータによって予加熱される前のセメント原料から分離、もしくは分 角军すること力できる。
[0017] さらに、予加熱時に発生した有機塩素化合物を含む熱処理ガス、または有機物除 去器による加熱時に発生した有機塩素化合物を含む熱処理ガスを、通常運転時に 8 00°C以上となるセメント製造設備の高温部に供給する。これにより、熱処理ガス中の 有機塩素化合物を熱分解することができる。
[0018] 第 3に、セメント製造設備内に存在し、かつダイォキシン類および PCBなどの有機 塩素化合物を含む粉体 (ダストなど)を、セメント製造設備内で 100°C以上の高温ガ スに接触させることにより、この粉体から、例えばダイォキシン類の前駆体などの有機 塩素化合物を分離したり、粉体に含まれる有機塩素化合物を分解したりすることがで きる。さらに、上記粉体から分離した有機塩素化合物を含む熱処理ガスを、有機塩素 化合物の吸着機能を有する吸着粉に接触させることにより、吸着粉に有機塩素化合 物に吸着させる。そして、有機塩素化合物を吸着させた吸着粉を、セメント焼成用の 燃料に使用する。有機塩素化合物は、吸着粉が燃焼する際に分解される。これによ り、熱処理ガス中の有機塩素化合物を熱分解することができる。
発明者は、上記の知見に基づいてこの発明を完成させた。 [0019] この発明は、セメント製造設備から排出されるダイォキシン類および PCBなどの有 機塩素化合物の排出量を低減させるとともに、セメント原料の焼成用の燃料を節約す ることができるセメント製造設備における有機塩素化合物の低減方法、およびセメント 製造設備を提供することを目的としている。
課題を解決するための手段
[0020] 本発明は、粉体に含まれる有機塩素化合物の量を、セメント製造設備において低 減させるセメント製造設備における有機塩素化合物の低減方法であって、前記粉体 を加熱し、前記粉体から前記有機塩素化合物を分離するか若しくは前記有機塩素 化合物を分解する加熱工程と、前記粉体を加熱することによって発生した前記有機 塩素化合物を含む熱処理ガスを、前記セメント製造設備の高温部に供給し、前記熱 処理ガス中に含まれる前記有機塩素化合物を熱分解するガス熱分解工程とを備える
[0021] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記粉 体は、前記有機塩素化合物を含むセメント原料 (石灰石、粘土、珪石、鉄原料など)、 および/または前記セメント製造設備内で捕集されたダスト(セメント製造中の原料ェ 程で捕集されたダスト、焼成工程で捕集されたダストなど)であってもよい。また、セメ ント製造の過程で得られた中間製品(セメントクリン力など)、仕上げ工程の副産物(セ メントダストなど)、廃棄物(油汚染汚泥など)であってもよい。ただし、セメント原料の 一部に、有機塩素化合物を含まなレ、ものが混在されてもよい。
[0022] 本発明のセメント製造設備における有機塩素化合物の低減方法によれば、有機塩 素化合物を含む粉体を加熱することにより、粉体から有機塩素化合物が分離 (気化) されたり、粉体に含まれる有機塩素化合物が分解されたりする(加熱工程)。加熱ェ 程を経た粉体は、原料ミルに供給され、加熱されながら粉砕される。粉体を加熱する ことによって発生した有機塩素化合物を含む熱処理ガスは、セメント製造設備の高温 部に供給され、同高温部において加熱されることにより、熱処理ガス中に含まれる有 機塩素化合物が熱分解される(ガス熱分解工程)。
[0023] 上記のように、有機塩素化合物を含む粉体を加熱することにより、粉体中の有機塩 素化合物 (塩素分)力 ダイォキシン類が合成される前に、例えばダイォキシン類の 前駆体などが、粉体中から除去される。さらに、粉体から分離された有機塩素化合物 を、予加熱器内で発生した熱処理ガスとともにセメント製造設備の高温部に投入する ことにより、熱処理ガス中に含まれる有機塩素化合物が熱分解される。その結果、セ メント製造設備力 排出されるダイォキシン類および PCBなどの有機塩素化合物の 排出量を、従来に比べて大幅に低減させることができる。
[0024] 従来 (例えば特許文献 1に記載された発明)では、ダストを通常運転時に 800°C以 上となるセメント製造設備内の高温部に投入するので、得られたセメントに異物 (ダス ト)が混入してセメントの品質が低下する。し力、も、焼成工程では、ダストの投入量に 応じてセメント原料に対する複雑な温度コントロールを行う必要性がある。これに対し 、本発明によれば、原料工程の前に粉体をセメント原料に混合するので、上記のよう なセメント製造工程におけるセメントの品質低下、および焼成工程におけるセメント原 料の温度コントロールの必要といった悪影響を少なくすることができる。
[0025] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記セ メント製造設備の通常運転時の温度は、 800°C以上であるのが好ましぐ 850°C以上 であるのがより好ましい。この範囲であれば、例えばダイォキシン類などの有機塩素 化合物を完全に熱分解することができる。高温部の温度が 800°C未満では、例えば ダイォキシン類などの有機塩素化合物を完全に熱分解することはできない。
[0026] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記セ メント製造設備は、焼成装置 (例えばロータリキルン)であってもよいし、第 1の予加熱 器、仮焼炉、ロータリキルンなどを有する設備であってもよい。この場合の高温部とし ては、例えば第 1の予加熱器の下段部(850°C)、仮焼炉(850°C)、ロータリキルンの 窯尻部(1000°C)、ロータリキルンの窯前部(最高温度 1450°C)、クリン力クーラの高 温部(800°C以上)など、通常運転時にその温度が 800°C以上になる設備が挙げら れる。これらのうちのひとつに、有機塩素化合物を含む熱処理ガスをすベて投入して もよレ、し、これらの複数または全てに、熱処理ガスを所定の配分で投入してもよい。な お、クリン力クーラの高温部とは、例えばロータリキルンからセメントクリン力が投入され るクリン力クーラの上流部などである。
[0027] 有機塩素化合物を含む熱処理ガスを、第 1の予加熱器の下段部、または仮焼炉に 供給した場合には、熱処理ガスがセメント原料の仮焼用の空気として使用され、仮焼 時の熱により、熱処理ガスに含まれる有機塩素化合物が熱分解される。
[0028] 上記熱処理ガスを、ロータリキルンの窯尻部、同ロータリキルンの窯前部、またはタリ ンカクーラの高温部のレ、ずれかに供給した場合には、熱処理ガスがセメント原料の焼 成用の空気として使用され、クリン力焼成時の高温により、熱処理ガスに含まれる有 機塩素化合物が熱分解される。
[0029] ロータリキルンの窯前部に熱処理ガスを供給する場合には、熱処理ガスを、燃料と ともに燃焼パーナに供給してもよいし、燃料とは別にロータリキルンに供給してもよい 。ロータリキルンへの熱処理ガスの供給位置は限定されない。
[0030] セメントの焼成温度、例えばロータリキルン内の温度は、通常、有機塩素化合物の 熱分解温度(700°C)を上回る 1100〜: 1450°Cである。したがって、熱処理ガスに含 まれる有機塩素化合物は、セメントクリン力が焼成される際に熱分解されて無害化さ れる。このときのロータリキルンの焼成に要する時間(原料滞留時間 =有機塩素化合 物の熱分解時間)は、 30分から 1時間である。有機塩素化合物は、例えば 900°Cの 温度下では、数秒間加熱されれば熱分解される。
[0031] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記加 熱工程は、前記粉体を、第 1の予加熱器に供給する前に有機物除去器に供給して 加熱してもよい。
[0032] セメント製造の初期段階の原料工程では、含水量の多いセメント原料を、原料ドライ ャを使って乾燥させる処理、および原料ミルを使ってセメント原料を粉砕する処理な どが行なわれている。原料ドライヤおよび原料ミルには、予熱時に第 1の予加熱器( プレヒータ)の上部から排出される排ガスがそれぞれ導入され、それらの内部温度は 300°C前後になっている。原料ドライヤおよび原料ミルなどから煙道を通じて大気中 に放出される排ガス (排ガスに含まれるダスト)中には、多量の有機塩素化合物が含 まれている。
[0033] 一方、第 1の予加熱器の上部には、原料ミルによって粉砕されたセメント原料が連 続的に投入される。このとき、セメント原料に付着している有機塩素化合物は、当初 の設定では第 1の予加熱器の内部をセメント原料が下降するのに伴ってその大半が 熱分解されるはずであるが、実際はそのようにはいかず、第 1の予加熱器の上部の熱
(排ガスの熱を含む)によって分離 (気化)し、そのまま排ガスに混入されて原料ミルな どに戻される。これにより、有機塩素化合物がセメント製造の原料工程内で循環し、 徐々に高濃度化する。その結果、原料工程を実施する設備から煙道を通じて大気中 に放出されるダイォキシン類の量、ひレ、てはセメント製造設備から排出されるダイォ キシン類の量が増大してしまう。
[0034] 本発明のセメント製造設備における有機塩素化合物の低減方法によれば、有機塩 素化合物を含む粉体を、第 1の予加熱器に供給する前に有機物除去器に供給して 加熱することにより、粉体中の有機塩素化合物 (塩素分)からダイォキシン類が合成さ れる前に、例えばダイォキシン類の前駆体などが、粉体中から除去される。これにより 、セメント製造の原料工程内で有機塩素化合物の循環が断ち切られ、前述した有機 塩素化合物の高濃度化が抑制される。その結果、セメント製造設備から排出されるダ ィォキシン類および PCBなどの有機塩素化合物の排出量を、従来に比べて大幅に 低減させることができる。
[0035] なお、原料工程を実施する設備としては、例えば粘土などの含水率が高いセメント 原料を乾燥させる原料ドライヤ、セメント原料を粉碎する原料ミルを採用してもよい。 また、有機物除去工程と予熱工程との間では、粉体に対して何らの処理も行わない ことが好ましい。
[0036] 有機物除去器は、粉碎後のセメント原料を加熱する装置であれば、その構造は限 定されない。例えば、外部加熱される移送管に投入されたセメント原料の粉体を、ス クリューにより移送しながら加熱する加熱スクリュー式の加熱器を採用してもよい。ま た、加熱流動床およびサイクロンを有する加熱器を採用してもよい。この加熱器は、 まず、加熱流動床内に粉砕されたセメント原料を投入し、セメント原料から有機塩素 化合物を除去する。次に、加熱されたセメント原料をサイクロンに投入し、セメント原 料と、有機塩素化合物を含む熱処理ガスとを分離するものである。
[0037] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記有 機物除去器によって加熱される粉体の温度は 300°C以上であることが好ましぐ 200 °C以上であることがより好ましい。加熱温度が 200°C未満では、有機塩素化合物が 残留して現実的な除去ができない。
[0038] 有機物除去器の熱源は限定されなレ、。例えば、セメント原料からセメントクリン力を 焼成する際に発生した排ガス(第 1の予加熱器の上部力 原料ミルなどに供給される 排ガス(350°C程度))、クリン力クーラからの排ガス(300°C以上)、クリン力クーラから 煙道に排出された排ガス(200〜300°C程度)などを採用してもよい。また、専用のガ ス発生装置からの加熱ガスを採用してもよい。
[0039] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記有 機物除去器の熱源は、前記第 1の予加熱器の上部力 排出される排ガス、前記ロー タリキルン力 排出されるセメントクリン力を冷却するクリン力クーラの排ガス、前記有 機物除去器に付設されたガス発生装置からの加熱ガスのうちの少なくともひとつであ つてもよい。
[0040] 有機物除去器の熱源としては、例えば、セメント原料からセメントクリン力を焼成する 際に発生した排ガス(例えば予加熱器の上部から原料ミルなどに供給される排ガス( 350°C程度))、クリン力クーラからの排ガス(300°C以上)、クリン力クーラから煙道に 排出された排ガス(200〜300°C程度)のうちのいずれかひとつ、もしくはこれらのレヽ くつかを一緒に採用してもよレ、。
[0041] 加熱ガスとしては、例えば空気、燃焼ガス(C〇、 COを含む)などを採用することが
2
できる。また、ガス発生装置の加熱方式としては、例えばパーナ加熱などを採用する こと力 sできる。
[0042] 本発明のセメント製造設備における有機塩素化合物の低減方法において、熱源か らの熱媒体 (ガス発生装置からの加熱ガスを含む)を、有機物除去器の内部に供給し て直接加熱してもよいし、例えば有機物除去器の外側に設けられたジャケットなどに 熱媒体を供給して間接的に加熱してもよい。ジャケットには、前記第 1の予加熱器の 上部から排出される排ガス、前記ロータリキルンから排出されるセメントクリン力を冷却 するクリン力クーラの排ガス、前記有機物除去器に付設されたガス発生装置から発生 する加熱ガスのうちの少なくともいずれかひとつが供給される。
[0043] ジャケットに熱源としての排ガスが供給されると、排ガスの熱がジャケット、有機物除 去器の外壁を介して有機物除去器内の粉体と熱交換し、粉体が外部から加熱される 。これにより、粉体中の有機塩素化合物の濃度 (例えばダイォキシン濃度)が低下す る。その結果、セメント製造設備力 排出されるダイォキシン類および PCBなどの有 機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。
[0044] 熱媒体としての排ガスの酸素濃度が高い場合は、有機物除去器の内部に排ガスを 導入するのが好ましい。一方、例えば予加熱器から原料ドライャおよび原料ミルなど に排ガスダクトを通じて供給される排ガスなどのように、排ガスの酸素濃度が低い場 合には、有機物除去器のジャケットに排ガスを供給するのが好ましい。なお、ジャケッ トの内部で熱交換した後の排ガスを排ガスダクトに戻せば、セメント製造の原料工程 で排ガス中に含まれる有機塩素化合物を熱処理することができる。
[0045] ジャケットは、有機物除去器の外壁の一部も設けられてもよレ、し、外壁の全てに設 けられてもよレ、。有機物除去器の外壁のうち、ジャケットが設置される領域は任意で ある。また、ジャケットの形状および大きさ(容量)も限定されない。
[0046] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記加 熱工程は、前記粉体を、第 1の予加熱器に供給する前に第 2の予加熱器に供給して 予加熱してもよい。
[0047] 本発明のセメント製造設備における有機塩素化合物の低減方法によれば、有機塩 素化合物を含む粉体を、第 1の予加熱器に供給する前に第 2の予加熱器に供給して 予加熱することにより、粉体中の有機塩素化合物 (塩素分)からダイォキシン類が合 成される前に、例えばダイォキシン類の前駆体などが、粉体中から除去される。その 結果、セメント製造設備力 排出されるダイォキシン類および PCBなどの有機塩素化 合物の排出量を、従来に比べて大幅に低減させることができる。
[0048] 従来 (例えば特許文献 1に記載された発明)は、ダストを、通常運転時に 800°C以 上となるセメント製造設備内の高温部に投入するので、得られたセメントに異物 (ダス ト)が混入してセメントの品質が低下する。し力、も、焼成工程では、ダストの投入量に 応じてセメント原料に対する複雑な温度コントロールを行う必要性がある。これに対し 、本発明によれば、原料工程の前に粉体をセメント原料に混合するので、上記のよう なセメント製造工程におけるセメントの品質低下、および焼成工程におけるセメント原 料の温度コントロールの必要といった悪影響を少なくすることができる。 [0049] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記第 2の予加熱器によって加熱される前記粉体の温度、すなわち予加熱温度は、 100°C 以上 600°C以下であるのが好ましぐ 200°C以上 500°C以下であるのがより好ましい 。予加熱温度が 100°Cに満たない場合には、粉体からの有機塩素化合物の分離、ま たは分解が十分に行えない。また、予加熱温度が 600°Cを超える場合には、加熱の ために余計なエネルギが必要になる。 200°C以上 500°C以下の範囲であれば、物質 (例えば PCB)の性状により、粉体からの有機塩素化合物の分離が十分に可能であ り、エネノレギのロスが少ない。
[0050] 第 2の予加熱器は、既存のセメント製造設備の系外に付設される装置であれば、そ の構造は限定されない。例えば、加熱スクリュー式の加熱器、パドル式の加熱器、口 一タリー式の加熱器などを採用してもよい。または、予加熱しながら粉体を粉砕するこ とが可能な構造を有するものでもよレ、。
[0051] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記第 2の予加熱器の熱源は、セメント原料からセメントクリン力を焼成する際に発生した排 ガス(第 1の予加熱器の上部から原料ミルなどに供給される排ガス(350°C程度) )、ク リンカクーラからの排ガス(300°C以上)、クリン力クーラから煙道に排出された排ガス ( 200〜300°C程度)などを採用してもよい。また、第 2の予加熱器を単独で使用する 以外に、上記熱源からの熱では熱量が不足してしまう場合、専用の熱発生装置(ホッ トガスジェネレータなど)を併用してもよい。
[0052] 本発明のセメント製造設備における有機塩素化合物の低減方法において、熱源か らの熱媒体 (熱発生装置からの熱媒体を含む)を、第 2の予加熱器の内部に供給して 直接加熱してもよいし、例えば第 2の予加熱器の外側に設けられたジャケットなどに 熱媒体を供給して間接的に加熱してもよい。ジャケットには、前記第 1の予加熱器の 上部から排出される排ガス、前記ロータリキルンから排出されるセメントクリン力を冷却 するクリン力クーラの排ガス、前記第 2の予加熱器に付設されたガス発生装置から発 生する加熱ガスのうちの少なくともいずれかひとつが供給される。
[0053] ジャケットに熱源としての排ガスが供給されると、排ガスの熱がジャケット、第 2の予 加熱器の外壁を介して第 2の予加熱器内の粉体と熱交換し、粉体が外部から加熱さ れる。これにより、粉体中の有機塩素化合物の濃度(例えばダイォキシン濃度)が低 下する。その結果、セメント製造設備力 排出されるダイォキシン類および PCBなど の有機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。
[0054] 熱媒体としての排ガスの酸素濃度が高い場合は、第 2の予加熱器の内部に排ガス を導入するのが好ましい。一方、例えば第 1の予加熱器から原料ドライャおよび原料 ミルに排ガスダクトを通じて供給される排ガスなどのように、排ガスの酸素濃度が低い 場合は、第 2の予加熱器のジャケットに排ガスを供給するのが好ましい。ジャケットの 内部で熱交換した後の排ガスを排ガスダクトに戻せば、セメント製造の原料工程で排 ガス中に含まれる有機塩素化合物を熱処理することができる。
[0055] ジャケットは、第 2の予加熱器の外壁の一部も設けられてもよいし、外壁の全てに設 けられてもよレ、。第 2の予加熱器の外壁のうち、ジャケットが設置される領域は任意で ある。また、ジャケットの形状および大きさ(容量)も限定されない。
[0056] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記第 2の予加熱器によって予加熱された前記粉体に対して、通常のセメント製造処理が行 われてもよレヽ。
[0057] ここでいう通常のセメント製造工程での処理とは、例えばセメント製造設備が予加熱 器およびロータリキルンを有する場合には、原料ミルにより粉砕されたセメント原料を 貯蔵サイロにいったん貯蔵し、次に貯蔵サイロ内のセメント原料を予加熱器により石 灰石が脱炭酸されるまで加熱 (予熱)し、加熱されたセメント原料をロータリキルン内 で加熱してセメントクリン力を焼成し、その後、セメントクリン力をクリン力クーラに投入し て冷却するなどのセメント製造に伴う一連の処理をいう。
[0058] 本発明は、粉体に含まれる有機塩素化合物の量を、セメント製造設備において低 減させるセメント製造設備における有機塩素化合物の低減方法であって、前記粉体 を、前記セメント製造設備内で高温ガスに接触させ、前記粉体から前記有機塩素化 合物を分離するか若しくは前記有機塩素化合物を分解する有機物除去工程と、前 記粉体に接触した前記高温ガスに含まれる前記粉体を捕集し、前記高温ガスから前 記粉体を除去する粉体除去工程と、前記粉体を除去された前記高温ガスを吸着粉 に接触させ、前記吸着粉に前記有機塩素化合物を吸着させる有機物吸着工程とを 備える。
[0059] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記粉 体は、前記有機塩素化合物を含むセメント原料 (石灰石、粘土、珪石、鉄原料など)、 および/または前記セメント製造設備内で捕集されたダスト(セメント製造中の原料ェ 程で捕集されたダスト、焼成工程で捕集されたダストなど)であってもよい。なお、セメ ント原料の一部に、有機塩素化合物を含まなレ、ものが混在されてもよい。
[0060] 本発明のセメント製造設備における有機塩素化合物の低減方法によれば、有機塩 素化合物を含む粉体を、セメント製造設備内で高温ガスに接触させることにより、粉 体から有機塩素化合物が分離 (気化)されたり、粉体に含まれる有機塩素化合物が 分解されたりする (有機物除去工程)。
[0061] 粉体に接触した後の高温ガスに含まれる粉体を捕集することにより、高温ガスから 粉体が除去される(粉体除去工程)。粉体を除去された高温ガスを吸着粉に接触させ ることにより、高温ガス中の有機塩素化合物が吸着粉に吸着される(有機物吸着工程 )。これにより、セメント製造設備から排出されるダイォキシン類および PCBなどの有 機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。なお、粉 体から除去される有機塩素化合物とは、例えばダイォキシン類(前駆体を含む)、 PC Bなどに代表される残留有機塩素化合物などである。
[0062] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記高 温ガスの温度は 100°C以上であることが好ましぐ 200°C以上であることがより好まし レ、。ダイォキシン類を粉体から分離するには、粉体を 100°C以上に加熱する必要が あり、ダイォキシン類を分解するには、粉体を 800°C以上に加熱する必要がある。ま た、 PCBを粉体から分離するには、粉体を 100°C以上に加熱する必要があり、 PCB を分解するには、粉体を 800°C以上に加熱する必要がある。高温ガスが 100°C以上 であれば、ダイォキシン類、 PCBの両方が粉体から除去される。
[0063] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記有 機塩素化合物を吸着した前記吸着粉を、セメントクリカを焼成する際の燃料に使用し 、前記吸着粉を燃焼させることによって前記有機塩素化合物を分解してもよい。有機 塩素化合物を吸着した吸着粉を、例えば、ロータリキルンのパーナの燃料として燃料 投入口から投入すると、吸着粉に吸着された有機塩素化合物は、バーナフレーム(1 500°C以上)の熱によって瞬間的に分解される。
[0064] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記粉 体除去工程で除去された粉体を、前記焼成用のセメント原料を粉砕する原料ミルに 投入してもよい。粉体を原料ミルに投入すると、粉体はセメント原料の一部となるので 、セメント原料の生産性を向上させることができる。
[0065] 本発明のセメント製造設備における有機塩素化合物の低減方法において、前記吸 着粉は、石炭微粉末、活性炭微粉末またはオイルコークス微粉末の少なくともいずれ かひとつであってもよい。有機塩素化合物を吸着した吸着粉を、セメントクリン力を焼 成する際の燃料に使用することにより、焼成用の燃料を節約することができる。なお、 吸着粉は、排ガス中のダイォキシン類および PCBなどの有機塩素化合物を吸着可 能な粉体であれば限定されない。ただし、有機塩素化合物の吸着性が高い多孔質 の粉体が好ましい。
[0066] 高温ガス中への吸着粉の供給量は多いほどよいが、多すぎると除塵設備への負担 が増す。そこで、 BET比表面積の大きな吸着粉を採用するのが好ましい。吸着粉の BET比表面積は、 0. lm2/gであるのが好ましい。 BET比表面積が 0. lm2/g未 満では、現実的な吸着性能は得られない。 BET比表面積の大きな吸着粉を使用す ることにより、吸着粉の量が少なくても多くの有機塩素化合物が吸着されるので、集 塵機の負担を小さくすることができる。
[0067] 高温ガスは限定されない。例えば、セメント原料からセメントクリン力を焼成する際に 発生した排ガス(第 1の予加熱器の上部から原料ミルなどに供給される排ガス(350 °C程度))、クリン力クーラからの排ガス(300°C以上)、クリン力クーラから煙道に排出 された排ガス(200〜300°C程度)などを採用してもよレ、。
[0068] 吸着粉を高温ガスに接触させる手段は限定されない。例えば、高温ガスの配管の 途中に、吸着粉の投入口を形成し、その投入口に吸着粉の投入装置を接続してもよ レ、。吸着粉の投入装置としては、スクリューフィーダなどを採用することができる。
[0069] セメント製造設備の構造は限定されなレ、。例えば、焼成装置 (例えばロータリキルン )であってもよいし、第 1の予加熱器、仮焼炉、ロータリキルンなどを有する設備であつ てもよい。
[0070] 高温ガス中から粉体を捕集する手段は限定されない。例えば、電気集塵機、バグフ ィルタなど集塵機を採用してもよい。高温ガスに接触させる粉体は、集塵機によって 捕集されたダストのすべてを高温ガスに接触させてもよいし、ダストの一部のみを高 温ガスに接触させてもよい。
[0071] 本発明は、セメント原料からセメントクリン力を焼成するセメント製造設備であって、 有機塩素化合物を含む粉体を予加熱する第 1の予加熱器と、前記粉体を前記第 1の 予加熱器に供給する前に加熱する加熱器と、前記粉体を加熱することによって発生 した前記有機塩素化合物を含む熱処理ガスを、前記セメント製造設備の高温部に供 給する熱処理ガス供給路とを備える。
[0072] 本発明のセメント製造設備において、前記高温部は、前記第 1の予加熱器の下段 部、仮焼路、ロータリキルンの窯尻部、前記ロータリキルンの窯前部、クリン力クーラの 高温部のうちの少なくともいずれかひとつであってもよい。
[0073] 本発明のセメント製造設備によれば、有機塩素化合物を含む粉体を、第 1の予加 熱器に供給する前に加熱することにより、粉体中の有機塩素化合物 (塩素分)からダ ィォキシン類が合成される前に、例えばダイォキシン類の前駆体などが、粉体中から 除去される。さらに、粉体から分離された有機塩素化合物を、予加熱器内で発生した 熱処理ガスとともにセメント製造設備の高温部に供給することにより、熱処理ガス中に 含まれる有機塩素化合物が熱分解される。その結果、セメント製造設備から排出され るダイォキシン類および PCBなどの有機塩素化合物の排出量を、従来に比べて大 幅に低減させること力できる。
[0074] 本発明のセメント製造設備において、前記加熱器の熱源は、前記第 1の予加熱器 の上部から排出される排ガス、前記ロータリキルン力 排出されるセメントクリン力を冷 却するクリン力クーラの排ガス、前記有機物除去器に付設されたガス発生装置力も発 生する加熱ガスのうちの少なくともいずれかひとつであってもよい。
[0075] 本発明のセメント製造設備において、前記加熱器の外側に設けられ、同加熱器に 供給された前記粉体を加熱するジャケットを備えてもよい。さらに、前記ジャケットには 、前記第 1の予加熱器の上部から排出される排ガス、前記ロータリキルンから排出さ れるセメントクリン力を冷却するクリン力クーラの排ガス、前記有機物除去器に付設さ れたガス発生装置から発生する加熱ガスのうちの少なくともいずれかひとつが供給さ れてもよい。
[0076] 本発明は、セメント原料からセメントクリン力を焼成するセメント製造設備であって、 前記セメントクリン力を焼成するための燃料を粉砕するミルに高温ガスを供給するた めの高温ガス供給路と、有機塩素化合物を含む粉体を前記高温ガス供給路に供給 するための粉体供給路と、前記粉体供給路に設けられ、前記粉体に接触した後の前 記高温ガスに含まれる前記粉体を捕集する捕集手段とを備え、前記粉体を除去され た前記高温ガスは、吸着粉に接触される。
[0077] 本発明のセメント製造設備によれば、粉体に接触した後の高温ガスに含まれる粉体 を捕集することにより、高温ガスから粉体が除去される。粉体を除去された高温ガスを 吸着粉に接触させることにより、高温ガス中の有機塩素化合物が吸着粉に吸着され る。これにより、セメント製造設備から排出されるダイォキシン類および PCBなどの有 機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。
[0078] 本発明のセメント製造設備において、前記吸着粉は、前記燃料として使用されても よい。有機塩素化合物を吸着した吸着粉を、例えば、ロータリキルンのパーナの燃料 として燃料投入口から投入すると、吸着粉に吸着された有機塩素化合物は、パーナ フレームの熱によって瞬間的に分解される。
[0079] 本発明のセメント製造設備は、前記捕集手段によって捕集された前記粉体を前記 セメント原料を粉碎する原料ミルに供給するための粉体供給路を備えていてもよい。
[0080] 本発明のセメント製造設備によれば、高温ガスから除去された粉体を、セメント原料 を粉砕する原料ミルに投入することにより、粉体はセメント原料の一部となる。これに より、セメント原料の生産性を向上させることができる。
発明の効果
[0081] 本発明によれば、有機塩素化合物を含む粉体を、第 1の予加熱器によって加熱す る前に、第 2の予加熱器または有機物除去器によって加熱することにより、有機塩素 化合物からダイォキシン類が合成される前に、例えばダイォキシン類の前駆体などが 、粉体中から分離されたり、分解されたりする。さらに、粉体力 分離された有機塩素 化合物を、有機物除去器内で発生した熱処理ガスとともにセメント製造設備の高温 部に投入することにより、熱処理ガス中に含まれる有機塩素化合物が熱分解される。 その結果、セメント製造設備から排出されるダイォキシン類および PCBなどの有機塩 素化合物の排出量を、従来に比べて大幅に低減させることができる。
[0082] 本発明によれば、有機塩素化合物を含む粉体を高温ガスに接触させる。その後、 高温ガス中から粉体を除去した後、有機塩素化合物を含む高温ガスを吸着粉に接 触させ、有機塩素化合物を吸着粉に吸着させる。これにより、セメント製造設備から 排出されるダイォキシン類および PCBなどの有機塩素化合物の排出量を、従来に比 ベて大幅に低減させることができる。さらに、有機塩素化合物を吸着した吸着粉を、 セメントクリン力を焼成する際の燃料に使用することにより、焼成用の燃料を節約する こと力 Sできる。吸着粉に吸着された有機塩素化合物は、セメントクリン力を焼成する際 の熱によって瞬間的に分解される。
図面の簡単な説明
[0083] [図 1]図 1は、本発明の有機塩素化合物の低減方法の第 1の実施形態を実施するた めのセメント製造設備の概略構成図である。
[図 2]図 2は、図 1のセメント製造設備に具備される有機物除去器の概略構成図であ る。
[図 3]図 3は、本発明の有機塩素化合物の低減方法の第 2の実施形態を実施するた めのセメント製造設備に具備される有機物除去器の概略構成図である。
[図 4]図 4は、本発明の有機塩素化合物の低減方法の第 3の実施形態を実施するた めのセメント製造設備の概略構成図である。
[図 5]図 5は、セメント製造設備内の温度とダストに含まれる有機物の減少率との関係 を示すグラフである。
[図 6]図 6は、本発明の有機塩素化合物の低減方法の第 4の実施形態を実施するた めのセメント製造設備の概略構成図である。
符号の説明
[0084] 1…原料工程部、 2…焼成工程部、 10A, 10B, IOC, 10D…セメント製造設備、 1 1…原料貯蔵庫、 12…原料ドライヤ、 13…原料ミル、 14…貯蔵サイロ、 16…プレヒー タ、 18…ロータリキルン、 19…クリン力クーラ、 30…電気集塵機、 100…有機物除去 器、 101…外部ジャケット、 102…ガス発生装置、 200…予カロ熱器
発明を実施するための最良の形態
[0085] 本発明のセメント製造設備における有機塩素化合物の低減方法、およびセメント製 造設備の第 1の実施形態について、図 1および図 2を参照して説明する。
本実施形態のセメント製造設備 1 OAは、図 1に示すように、セメント原料を粉砕する 原料工程部 1と、粉碎されたセメント原料を焼成する焼成工程部 2とを備えている。
[0086] 原料工程部 1は、原料貯蔵庫 11と、原料ドライヤ 12と、原料ミル 13と、貯蔵サイロ 1 4と、電気集塵機 (集塵機) 30とを備えている。原料貯蔵庫 11は、セメント原料として の石灰石、粘土、珪石および鉄原料を個別に貯蔵する。原料ドライャ 12は、含水量 の多いセメント原料を加熱することによって乾燥させる。原料ミル 13は、原料貯蔵庫 1 1から供給されたセメント原料を粉砕する。貯蔵サイロ 14は、原料ミル 13によって粉 砕されたセメント原料を貯蔵する。電気集塵機 30は、原料ドライャ 12および原料ミル 13から排出された排ガス中のダイォキシン類および PCBなどの有機塩素化合物を 含むダスト (粉体)を捕集する。
[0087] 原料貯蔵庫 11は、原料搬送設備 118を通じて原料ミル 13に接続されるとともに、 原料供給設備 131を通じて原料ドライャ 12に接続されている。原料ドライャ 12は、乾 燥原料排出設備 132を通じて原料ミル 13に接続されている。原料ミル 13は、粉砕原 料搬送設備 121を通じて貯蔵サイロ 14に接続されている。原料貯蔵庫 11に貯蔵さ れたセメント原料は、原料搬送設備 118を通じて原料ミル 13に投入される。ただし、 粘土などの含水量の多い一部のセメント原料は、原料供給設備 131を通じていつた ん原料ドライャ 12に投入される。
[0088] 原料ドライャ 12および原料ミル 13には、後述するプレヒータ 16の上部が、排ガスダ タト 21を通じて接続されている。排ガスダクト 21の下流端は二股に分岐しており、一 方の下流端が原料ドライャ 12に、他方の下流端が原料ミル 13にそれぞれ接続され ている。排ガスダクト 21には、排ガスを搬送するファン F1が設けられている。原料ドラ ィャ 12および原料ミル 13には、プレヒータ 16の上部から排出された 300°C以上の排 ガスが、排ガスダクト 21を通じて導入される。上記排ガスが導入されると、原料ドライ ャ 12内部の温度は約 300°C程度になり、原料ミル 13内部の温度は 100°C以上にな る。
[0089] 原料ドライャ 12に投入された含水量の多いセメント原料は、排ガスダクト 21を通じ て導入された排ガスの熱によって乾燥された後、乾燥原料排出設備 132を通じて原 料ミル 13に投入される。
[0090] 原料ミル 13の回転ドラムには、多数の金属ボールが収納されている。回転ドラムを 回転させながら、同回転ドラムにセメント原料を連続的に投入すると、多数の金属ボ ールがセメント原料を細力べ粉砕し、粒の大きさがおよそ 90 μ m以下に粉砕されたセ メント原料粉が得られる。粉砕されたセメント原料は、粉砕原料搬送設備 121を通じ て貯蔵サイロ 14に投入される。
[0091] 原料ドライャ 12および原料ミル 13は、煙道 129を通じて煙突 130に接続されている 。煙道 129の上流端は二股に分岐しており、一方の上流端が原料ドライャ 12に、他 方の上流端が原料ミル 13に接続されている。電気集塵機 30は、分岐部分よりも下流 側の煙道 129に設けられている。原料ミル 13に接続された煙道 129にはファン F2が 設けられ、電気集塵機 30と煙突 130との間の煙道 129にはファン F3が設けられてい る。原料ドライャ 12および原料ミル 13の加熱に供された排ガスは、煙道 129および 煙突 130を通じて大気中に放出される。
[0092] 電気集塵機 30は、ダスト配送設備 123を通じて粉碎原料搬送設備 121の途中に 接続されている。電気集塵機 30によって捕集されたダストは、ダスト配送設備 123お よび粉砕原料搬送設備 121を通じて貯蔵サイロ 14に投入される。
[0093] 貯蔵サイロ 14は、加熱原料粉搬送設備 165を通じて有機物除去器 100に接続さ れている。貯蔵サイロ 14に貯蔵されたセメント原料は、加熱原料粉搬送設備 165を 通じて有機物除去器 100に供給される。
[0094] 焼成工程部 2は、プレヒータ(第 1の予加熱器) 16と、パーナ 17と、ロータリキルン 1 8と、クリン力クーラ 19と、クリン力サイロ 20と、有機物除去器 100と、外部ジャケット(ジ ャケット) 101と、ガス発生装置 102とを備えている。プレヒータ 16は、セメント原料を 次工程のロータリキルン 18によって焼成し易いように、有機物除去器 100によって有 機塩素化合物を除去されたセメント原料を予熱する。ロータリキルン 18の窯尻部には 、プレヒータ 16の下段部が接続されている。ロータリキルン 18は、セメント原料をバー ナ 17で加熱することによって焼成し、セメントクリン力を得る。クリン力クーラ 19は、口 一タリキルン 18の窯前から排出されたセメントクリン力を冷却する。クリン力サイロ 20は 、ロータリキルン 18において得られたセメントクリン力をいつたん貯蔵する。
[0095] プレヒータ 16は、下段(下流)ほど内部温度の高い上下 5段のサイクロン 15を有す る。プレヒータ 16の上部には、排ガスダクト 21の上流端が接続されている。有機物除 去器 100によって有機塩素化合物を除去されたセメント原料は、サイクロン 15を上段 から下段に向けて順次通過する過程で、セメント原料中の石灰石が脱炭酸されるま で予熱される(通常運転時、プレヒータ 16の上部の温度は 300°C以上になる)。
[0096] ロータリキルン 18は、耐火物が内張りされたキルンシェルを有し、セメントクリン力を 生産することが可能である。ロータリキルン 18の窯前部において、重油ゃ微粉石炭を 燃料とするパーナ 17の熱により、セメント原料からセメントクリン力が焼成される。
[0097] 有機物除去器 100は、セメント原料をプレヒータ 16に投入する直前に加熱し、有機 塩素化合物をセメント原料から分離するか、もしくは有機塩素化合物を分解する。外 部ジャケット 101は、有機物除去器 100の外側に設けられ、外部から供給される熱源 によって、有機物除去器 100に投入されたセメント原料を間接的に加熱する。ガス発 生装置 102は、熱源となる加熱ガスを、セメント製造設備 10Aの外部(系外)から外部 ジャケット 101に供給する。
[0098] 有機物除去器 100は、有機物除去粉搬送設備 165aを通じてプレヒータ 16に接続 されている。有機物除去器 100において有機物を除去されたセメント原料は、有機物 除去粉搬送設備 165aを通じてプレヒータ 16に投入され、プレヒータ 16を構成する各 サイクロン 15を通過する過程で予加熱される(通常運転時、セメント原料はプレヒータ 16によって 900°C程度にまで加熱される)。
プレヒータ 16は、ロータリキルン 18に接続され、ロータリキノレン 18は、クリン力クーラ 19に接続されてレ、る。予熱されたセメント原料は、ロータリキルン 18のキルンシェル 内部で回転しながら、パーナ 17によって加熱される。これにより、セメントクリン力が焼 成される。得られたセメントクリン力は、クリン力クーラ 19内部で冷却される。
[0099] 有機物除去器 100は、図 1および図 2に示すように、上記の外部ジャケット 101と、 ケーシング 103と、つづら管 104と、加熱スクリュー式の加熱部 105とを備えている。 ケーシング 103は、平面視四角形状に形成されている。つづら管 104は、ジグザグに 形成されており、ケーシング 103の内部空間に上下方向に配設されている。つづら 管 104は、ケーシング 103の上板に形成されたセメント原料の投入口 103aと、ケー シング 103の下板に形成されたセメント原料の排出口 103bとを接続している。投入 口 103aには、加熱原料粉搬送設備 165の下流端が接続されており、排出口 103b には、有機物除去粉搬送設備 165aの上流端が接続されている。加熱原料粉搬送設 備 165の上流端は貯蔵サイロ 14に接続され、有機物除去粉搬送設備 165aの下流 端はプレヒータ 16の上部に接続されている。
[0100] 加熱部 105は、つづら管 104の途中に、上下方向に離間して 3段階に配置されて いる。加熱部 105は、円筒形状の移送管 106と、円筒ジャケット 107と、スクリュー 10 8と、回転モータ 109とを備えている。円筒形状の移送管 106は、つづら管 104の途 中の水平に配設された部分からなる。円筒ジャケット 107は、移送管 106を囲むよう に設けられ、移送管 106の内部を通過するセメント原料を加熱する。スクリュー 108は 、移送管 106の内部に収納されており、回転モータ 109によって駆動され、セメント原 料を搬送する。
[0101] 各円筒ジャケット 107は、上流端が二股に分岐した 1本の熱源配送管 150を通じて 直列に接続されている。熱源配送管 150の一方の上流端、すなわち枝管 151は、ケ 一シング 103の下板に形成された第 1の熱源供給口 103cに接続されている。熱源 配送管 150の他方の上流端、すなわち枝管 152は、ケーシング 103の下板に形成さ れた第 2の熱源供給口 103dに接続されている。熱源配送管 150の下流端は、ケー シング 103の上板に形成された熱源排出口 103eに接続されている。熱源配送管 15 0の下流端には、最上段の加熱部 105の移送管 106の上流部分から分岐した有機 ガス分離枝管 153が接続されている。
[0102] 第 1の熱源供給口 103cには、予熱分岐管 21aの下流端が接続されている。予熱分 岐管 21aの上流端は、排ガスダクト 21の上流端に接続されている。予熱分岐管 21a にはファン F4が設けられている。プレヒータ 16の上段部から排出された排ガスは、予 熱分岐管 21 aおよび第 1の熱源供給口 103cを通じて熱源配送管 150に供給され、 各加熱部 105の円筒ジャケット 107に順次供給される。第 2の熱源供給口 103dには 、上流端が二股に分岐した熱源導入管 154の下流端が接続されている。熱源導入 管 154の一方の上流端、すなわち枝管 154aは、ロータリキルン 18の窯前部の上部 に接続されている。熱源導入管 154の他方の上流端、すなわち枝管 154bは、クリン 力クーラ 19の上部に接続されている。第 2の熱源供給口 103dに接続された熱源導 入管 154にはファン F5が設けられている。クリン力クーラ 19から排出された排ガス、 およびロータリキルン 18の窯前部から排出された排ガスは、熱源導入管 154および 第 2の熱源供給口 103dを通じて熱源配送管 150に供給され、各加熱部 105の円筒 ジャケット 107に順次供給される。
[0103] 熱源排出口 103eには、排ガス導出管(熱処理ガス供給路) 156の上流端が接続さ れている。排ガス導出管 156の下流端は、プレヒータ 16の下段部に接続されている( 通常運転時、プレヒータ 16の下段部の温度は約 850°Cになる)。排ガス導出管 156 には弁 155が設けられている。
[0104] 弁 155よりも上流側の排ガス導出管 156は、第 1の分岐管(熱処理ガス供給路) 15 6aを通じてクリン力クーラ 19の上流部に接続されている(通常運転時、クリン力クーラ 19の上流部の温度は約 1100°Cになる)。第 1の分岐管 156aには弁 157が設けられ ている。第 1の分岐管 156aよりも上流側の排ガス導出管 156は、第 2の分岐管(熱処 理ガス供給路) 156bを通じて、ロータリキルン 18の窯前部の端壁に接続されている( 通常運転時、ロータリキルン 18の窯前部の温度は約 1450°Cになる)。第 2の分岐管 156bには弁 158が設けられている。第 2の分岐管 156bよりも上流側の排ガス導出 管 156には、ファン F6が設けられている。
[0105] ガス発生装置 102の図示しない加熱ガス供給部は、加熱ガス供給管 159を通じて 外部ジャケット 101の外壁の一部に接続されている。外部ジャケット 101の外壁の他 部は、外熱排ガス管 160を通じて排ガスダクト 21に接続されている。
[0106] ガス発生装置 102は、前述した 3つの熱源(プレヒータ 16の上段部、ロータリキルン 18の窯前部、およびクリン力クーラ 19の上部)から排出される排ガスの熱だけでは、 セメント原料力 有機塩素化合物を除去することが困難な場合に使用される。ガス発 生装置 102によって生成された加熱ガスは、加熱ガス供給管 159を通じて外部ジャ ケット 101の内部空間に供給される(ガス発生装置 102運転時、外部ジャケット 101 の内部空間の温度は、 300°C程度になる)。なお、プレヒータ 16の上部から排出され る排ガスの一部を、外部ジャケット 101に供給するようにしてもよい。
[0107] このように、各加熱部 105による加熱とともに、外部ジャケット 101に供給された加熱 ガスによってケーシング 103内部の空気を加熱することにより、つづら管 104の内部 を流れるセメント原料が加熱される。セメント原料の加熱に供された加熱ガスは、外熱 排ガス管 160を通じて排ガスダクト 21に導入される。
[0108] 本実施形態のセメント製造設備 10Aの内部(系内)で行われる有機塩素化合物の 低減方法について説明する。
まず、 3 の弁 155, 157, 158力 S開力れる。そのう免で、図 1に示すように、原料貯 蔵庫 11に貯蔵されたセメント原料 (石灰石、粘土、珪石および鉄原料)が、原料搬送 設備 118を通じて原料ミル 13に投入される。ただし、粘度など含水量の多い一部の セメント原料は、原料供給設備 131を通じて原料ドライャ 12に投入され、原料ドライ ャ 12によって乾燥されたうえで、乾燥原料排出設備 132を通じて原料ミル 13に投入 される。原料ドライャ 12および原料ミル 13には、プレヒータ 16の上部から排出された 高温の排ガスが、排ガスダクト 21を通じて導入されるので、原料ドライャ 12内部の温 度は約 300°C以上、原料ミル 13内部の温度は 100°C以上に保たれている。そのた め、原料ドライャ 12においては、原料貯蔵庫 11から供給された含水量の多いセメン ト原料が乾燥される。原料ミル 13においては、原料ドライャ 12から供給された乾燥粘 土を含むセメント原料力 100°C程度に加熱されるとともに、多数の金属ボールによ つて粒の大きさがおよそ 90 μ ΐη以下に粉砕される。。原料ミル 13において粉砕され たセメント原料は、粉砕原料搬送設備 121を通じて貯蔵サイロ 14に投入される。
[0109] ダイォキシン類および PCBなどの有機塩素化合物、有機物および塩素などを含む 廃棄物 (都市ごみおよび焼却灰など)をセメント原料に混入した場合、原料ミル 13に 投入されたセメント原料に含まれる有機塩素化合物は、約 100°C以上に保たれた原 料ミル 13の内部で加熱されることによってセメント原料から分離される。また、原料ド ライヤ 12に投入されたセメント原料に含まれる有機塩素化合物は、約 300°C以上に 保たれた原料ドライャ 12の内部で加熱されることによって分解 (気化)される。 [0110] 原料ドライャ 12および原料ミル 13に導入された排ガスは、セメント原料を加熱する ことで熱を奪われるため、電気集塵機 30の入口における排ガスの温度は、 90°C程度 に低下する。セメント原料力 分離、もしくは分解された有機塩素化合物の多くは、排 ガス中のダストに吸着される。有機塩素化合物を吸着したダストは、煙道 129を通じ て煙突 130に導出される過程で電気集塵機 30によって捕集される。捕集されたダス トは、ダスト配送設備 123および粉砕原料搬送設備 121を通じて貯蔵サイロ 14に投 入される。
[0111] 貯蔵サイロ 14に貯蔵されたセメント原料 (ダストを含む)は、加熱原料粉搬送設備 1 65を通じて有機物除去器 100の投入口 103aに投入される。このとき、各加熱部 105 では、円筒ジャケット 107の内部を流れる各熱源からの排ガスによって移送管 106が 300°C程度に加熱されるとともに、回転モータ 109によってスクリュー 108が同期回 転している。これにより、有機物除去器 100に投入されたセメント原料は、つづら管 1 04の内部を移送されながら、 3つの加熱部 105を順次通過し、その過程で有機塩素 化合物を除去され、有機物除去器 100の排出口 103bから排出される。有機物除去 器 100から排出されたセメント原料は、有機物除去粉搬送設備 165aを通じてプレヒ ータ 16の上部に投入される。
[0112] 有機物除去器 100の内部、具体的にはつづら管 104の内部で発生した有機塩素 化合物を含む熱処理ガス (排ガス)は、有機ガス分離枝管 153を通じて熱源配送管 1 50の下流端に導入される。これにより、つづら管 104の内部で発生した熱処理ガス は、セメント原料の加熱に供された各熱源からの排ガスと混合され、熱源排出口 103 eを通じて排ガス導出管 156に導入される。混合された排ガスおよび熱処理ガスは、 排ガス導出管 156を通じてプレヒータ 16の下段部に供給され、第 1の分岐管 156aを 通じてクリン力クーラ 19の上流部に供給され、第 2の分岐管 156bを通じてロータリキ ルン 18の窯前部に供給される。上記の各部は、通常運転時にいずれも 800°C以上 になるので、上記の各部に供給された排ガスおよび熱処理ガスに含まれる有機塩素 化合物は熱分解される。
[0113] 有機物除去器 100において有機塩素化合物を除去されたセメント原料は、焼成ェ 程部 2に供給され、プレヒータ 16の最上段のサイクロン 15から下段側のサイクロン 15 に向けて順次流下し、最終的に 800°C程度に予熱される。その後、セメント原料は口 一タリキルン 18の窯尻部へ投入される。ロータリキルン 18の窯前部においては、バ ーナ 17の熱により、セメント原料からセメントクリン力が焼成される。焼成されたセメント クリン力は、クリン力クーラ 19によって冷却された後、クリン力サイロ 20にいつたん貯蔵 される。
[0114] 従来のセメント製造設備においては、セメント原料が貯蔵サイロからプレヒータの上 部に直接投入される。この場合、セメント原料に含まれる有機塩素化合物は、当初の 設定ではプレヒータの内部をセメント原料が下降するのに伴ってその大半が熱分解さ れるはず力 実際はそのようにはいかず、プレヒータの上部の熱(排ガスの熱を含む) によって分離 (気化)し、そのまま排ガスに混入されて原料ミルなどに戻される。これに より、有機塩素化合物が原料工程部内で循環し、徐々に高濃度化する。その結果、 原料工程を実施する設備から煙道を通じて大気中に放出されるダイォキシン類の量 、ひいてはセメント製造設備から排出されるダイォキシン類の量が増大してしまう。
[0115] これに対し、本実施形態のセメント製造設備 10Aにおいては、セメント原料力 プレ ヒータ 16に投入される直前に、有機物除去器 100に投入されて加熱され、有機塩素 化合物を除去される。これにより、原料工程部内での有機塩素化合物の循環が断ち 切られるので、有機塩素化合物の高濃度化を抑えることができる。その結果、セメント 製造設備 10A力 排出されるダイォキシン類および PCBなどの有機塩素化合物の 排出量を、従来に比べて大幅に低減させることができる。
[0116] 本発明のセメント製造設備 10Bにおける有機塩素化合物の低減方法、およびセメ ント製造設備の第 2の実施形態について、図 3を参照して説明する。なお、第 1の実 施形態において既に説明した構成要素には同一符号を付し、その説明は省略する。
[0117] 本実施形態のセメント製造設備 10Bは、図 3に示すように、第 1の実施形態の有機 物除去器 100に代えて、有機物除去器 170が設けられている。有機物除去器 170は 、流動床 171と、サイクロン 173とを備えている。流動床 171は、セメント原料を加熱し 、このセメント原料中の有機塩素化合物を除去する。サイクロン 173は、流動床 171 の上部に連結管 172を通じて接続されており、有機塩素化合物が除去されたセメント 原料を流動床 171から取り出す。 [0118] 流動床 171は、加熱塔 174と、搬送設備 175とを備えている。加熱塔 174は、縦置 きの円筒状に形成され、有機塩素化合物を含むセメント原料を加熱する。搬送設備 1 75の下流端は、加熱塔 174の外壁の下部に接続されている。搬送設備 175の上流 端には、加熱原料粉搬送設備 165が接続されている。セメント原料は、貯蔵サイロ 14 から加熱原料粉搬送設備 165および搬送設備 175を通じて加熱塔 174の内部に一 定流量で投入される。加熱塔 174の底部には、多孔板(図示略)が水平に設けられ ている。前述した 3つの熱源(プレヒータ 16の上段部、クリン力クーラ 19の上部、ロー タリキルン 18の窯前部)から排出される排ガスは、多孔板の各孔を通じて、加熱塔 17 4の内部に常時一定の圧力で供給される。
[0119] 加熱塔 174の内部に供給された排ガスは上方に吹き上げられるので、搬送設備 17 5を通じて加熱塔 174に投入されたセメント原料は、加熱塔 174の内部を旋回しなが ら上昇する。その過程で、排ガスの熱によって有機塩素化合物がセメント原料から分 離、もしくは熱分解する。その後、有機塩素化合物を含む熱処理ガス、および有機塩 素化合物を除去されたセメント原料は、連結管 172を通じてサイクロン 173に供給さ れる。
[0120] サイクロン 173に供給された有機塩素化合物を含む熱処理ガスは、セメント原料か ら分離され、排ガス導出管 156、第 1の分岐管 156aおよび第 2の分岐管 156bを通じ て、プレヒータ 16の下段部、ロータリキルン 18の窯前部、およびクリン力クーラ 19の 上流部にそれぞれ供給される。上記の各部は、通常運転時にいずれも 800°C以上 になるので、上記の各部に供給された排ガスおよび熱処理ガスに含まれる有機塩素 化合物は熱分解される。一方、有機塩素化合物を除去されたセメント原料は、サイク ロン 173の底部から有機物除去粉搬送設備 165aを通じてプレヒータ 16の上部に投 入される。
[0121] 本実施形態のセメント製造設備 10Bにおいて、有機物除去器 170は、有機物除去 器 100と比較して構造が簡単であり、メンテナンスがし易レ、。その他の構成、作用お よび効果は、第 1の実施形態と同様なので説明は省略する。
[0122] 第 1の実施形態のセメント製造設備 10Bを運転した場合と、従来のセメント製造設 備を運転した場合とで、大気中に放出される排ガス中の PCBの減少率を調査した。 その結果、フィード原料中の PCB含有量は、従来の 500ng/gから 10ng/gまで低 下した。また、脱塵ガス中の PCB含有量は、それまでの 10000ng/Nm3から 250ng /Nm3まで低下した。
[0123] 本発明のセメント製造設備における有機塩素化合物の低減方法、およびセメント製 造設備の第 3の実施形態について、図 4を参照して説明する。なお、第 1の実施形態 において既に説明した構成要素には同一符号を付し、その説明は省略する。
本実施形態のセメント製造設備 10Cは、図 4に示すように、セメント原料を粉砕する 原料工程部 1と、粉砕されたセメント原料を焼成する焼成工程部 2と、焼成によって得 られたセメントクリン力に石膏を混ぜて粉砕する仕上げ工程部 3とを備えている。
[0124] 原料工程部 1は、原料貯蔵庫 11と、原料ドライヤ 12と、原料ミル 13と、電気集塵機
(集塵機) 30と、貯蔵サイロ 14と、予加熱器 (第 2の予加熱器) 200と、熱発生装置 20 1とを備えている。予加熱器 200は、加熱スクリュー式の加熱器であって、有機塩素 化合物を含むセメント原料を予加熱する。熱発生装置 201は、予加熱器 200だけで はセメント原料を予加熱する熱量が不足する場合に駆動する。
[0125] 原料貯蔵庫 11は、原料供給設備 202を通じて予加熱器 200に接続されている。原 料供給設備 202には弁 203が設けられている。原料貯蔵庫 11に貯蔵されたセメント 原料は、原料供給設備 202を通じて予加熱器 200に供給される。
[0126] 電気集塵機 30は、ダスト配送設備 204を通じて、弁 203よりも下流側の原料供給設 備 202に接続されている。電気集塵機 30によって捕集されたダストは、ダスト配送設 備 204および原料供給設備 202を通じて予加熱器 200に供給される。プレヒータ 16 の下段部は、加熱原料配送管 205を通じて、弁 203よりも下流側の原料供給設備 20 2に接続されている。プレヒータ 16によって加熱されたセメント原料に含まれる有機塩 素化合物を低減させるために、プレヒータ 16の下段部付近から加熱されたセメント原 料の一部が抽出され、加熱原料配送管 205および原料供給設備 202を通じて予加 熱器 200に供給される。
[0127] 予加熱器 200は、原料貯蔵庫 11から原料供給設備 202を通じて供給されたセメン ト原料、および電気集塵機 30からダスト配送設備 204および原料供給設備 202を通 じて供給されたダストを、スクリュー 200aの回転に伴って搬送する過程で予加熱する [0128] 予加熱器 200の外側には、ジャケット 206が設けられている。ジャケット 206は、予 加熱器 200の外側から間接的にセメント原料を予加熱する。ジャケット 206には、そ の熱源として、セメント製造設備 10Cの各所で発生した排ガスが供給される。なお、 通常運転時、予加熱器 200による予加熱温度は 250°C、予加熱時間は 20分間程度 である。
[0129] 予加熱器 200の熱源としては、プレヒータ 16の上部から排ガスダクト 21を通じて原 料ドライヤ 12および原料ミル 13に供給される 300°C程度の排ガスと、クリン力クーラ 1 9から排出される 300°C以上の排ガスと、クリン力クーラ 19から煙道 236を通じて排出 される 200°Cから 300°C程度の排ガスとが採用される。
[0130] ファン F1よりも下流側の排ガスダクト 21は、第 1の熱媒管 208を通じて予加熱器 20 0に接続されている。第 1の熱媒管 208には、弁 207が設けられている。プレヒータ 16 力 排出される排ガスの一部は、第 1の熱媒管 208を通じて予加熱器 200に供給さ れる。クリン力クーラ 19は、第 2の熱媒管 210を通じて第 1の熱媒管 208に接続されて いる。第 2の熱媒管 210には、弁 209が設けられている。クリン力クーラ 19から排出さ れる排ガスの一部は、第 2の熱媒管 210および第 1の熱媒管 208を通じて予加熱器 2 00に供給される。煙道 236は、第 3の熱媒管 212を通じて第 2の熱媒管 210に接続 されている。第 3の熱媒管 212には、弁 211が設けられている。クリン力クーラ 19から 煙道 236を通じて排出される排ガスの一部は、第 3の熱媒管 212、第 2の熱媒管 210 および第 1の熱媒管 208を通じて予加熱器 200に供給される。
[0131] 弁 207よりも下流側の第 1の熱媒管 208は、分岐管 214を通じて予加熱器 200のジ ャケット 206に接続されている。分岐管 214には、弁 213が設けられている。プレヒー タ 16から原料ミル 13などに供給される排ガスは、酸素濃度が低ぐ燃焼を伴う加熱用 ガスには適さない場合がある。このような場合は、弁 213が開かれ、プレヒータ 16から の排ガスが分岐管 214を通じてジャケット 206に供給され、セメント原料などが間接的 に加熱される。
[0132] 予加熱器 200は、ジャケット排管 216を通じて、第 1の熱媒管 208との接続部分より も下流側の排ガスダクト 21に接続されている。ジャケット排管 216には、排ガスを搬送 するファン 215が設けられている。セメント原料などの加熱に供された後にジャケット 2 06から排出された排ガスは、ジャケット排管 216を通して排ガスダクト 21に戻される。 これにより、プレヒータ 16から排出される排ガスに含まれる若干の有機塩素化合物は 、セメント製造の原料工程 (原料ドライヤ 12および原料ミル 13)で熱処理される。
[0133] 予加熱器 200は、原料排管 218を通じて原料ミル 13に接続されている。原料排管 218には、弁 217が設けられている。予加熱器 200によって予加熱されたセメント原 料およびダストは、原料排管 218を通じて原料ミル 13に投入される。弁 217よりも上 流側の原料排管 218は、ダスト専用配管 220を通じて、粉砕原料搬送設備 121に接 続されている。ダスト専用配管 220には、弁 219が設けられている。セメント製造設備 10Cの夜間運転時には、弁 203, 217が閉じられるとともに弁 219が開かれ、ダスト のみが予加熱器 200に供給される。これにより、ダストから有機塩素化合物が分離、 もしくは分解される。有機塩素化合物を除去されたダストは、原料排管 218、ダスト専 用配管 220および粉砕原料搬送設備 121を通じて貯蔵サイロ 14に投入される。
[0134] 熱発生装置 201は、前述した 3つの熱源だけではセメント原料を予加熱する熱量が 不足する場合に駆動し、予加熱器 200の熱量不足を補う。具体的には、ホットガスジ エネレータ方式の加熱装置が採用される。
[0135] 熱発生装置 201は、補助熱配送管 222を通じて、弁 207よりも下流側の第 1の熱媒 管 208に接続されている。補助熱配送管 222は、補助熱分岐管 224を通じて予加熱 器 200のジャケット 206に接続されている。補助熱分岐管 224には、弁 223が設けら れている。通常運転時、熱発生装置 201によって生成された 400°C程度の加熱空気 は、補助熱配送管 222および第 1の熱媒管 208を通じて予加熱器 200に供給される 。予加熱器 200の熱量不足を補う必要がある場合は、弁 223が開かれ、熱発生装置 201によって生成された加熱空気力 S、補助熱配送管 222および補助熱分岐管 224 を通じてジャケット 206に供給される。
[0136] 予加熱器 200は、ガス配送管 23を通じて、プレヒータ 16の下段部、ロータリキルン 1 8の窯尻部、およびロータリキルン 18の窯前部に接続されている。ガス配送管 23に は、ファン 225が設けられている。ガス配送管 23の下流端は三股に分岐している。 3 つの分岐管のうち、第 1の分岐管 23aはロータリキルン 18の窯前部に接続され、第 2 の分岐管 23bはロータリキルン 18の窯尻部に接続され、第 3の分岐管 23cはプレヒー タ 16の最下段(5つ目)のサイクロン 15に接続されている。ダストを含むセメント原料 の予加熱時、予加熱器 200において発生した有機塩素化合物を含む熱処理ガス( 排ガス)は、ガス配送管 23を通じて、プレヒータ 16の下段部、ロータリキルン 18の窯 尻部、およびロータリキルン 18の窯前部にそれぞれ供給される。なお、セメント製造 設備 10Cが仮焼炉を有する場合には、上記の熱処理ガスを仮焼炉に供給してもよレ、 。また、上記の熱処理ガスをクリン力クーラ 19の上流部に供給してもよい。
[0137] 第 1の分岐管 23aには第 1の弁 226が設けられ、第 2の分岐管 23bには第 2の弁 22 7が設けられ、第 3の分岐管 23cは第 3の弁 228が設けられている。第 1の弁 226、第 2の弁 227および第 3の弁 228を開閉することにより、熱処理ガスを、プレヒータ 16の 下段部、ロータリキルン 18の窯尻部、およびロータリキルン 18の窯前部のうちの少な くともレ、ずれかひとつに供給することが可能である。
[0138] 焼成工程部 2は、プレヒータ 16と、パーナ 17と、ロータリキノレン 18と、クリン力クーラ 19と、クリン力サイロ 20と、集塵機 5とを備えている。集塵機 5は、クリン力サイロ 20か ら排出された有機塩素化合物を含むダストを捕集する。
[0139] 仕上げ工程部 3は、仕上げミル 6と、セメントサイロ 7とを備えている。仕上げミル 6は 、所定量の石膏をカ卩えられたセメントクリン力を粉砕し、最終製品としてのセメントに仕 上げる。セメントサイロ 7は、得られたセメントをいつたん貯蔵する。
[0140] 本実施形態のセメント製造設備 10Cの内部(系内)で行われる有機塩素化合物の 低減方法にっレ、て説明する。
まず、 3つの弁 213, 219, 223力 S閉じられ、他の弁力 S開力れる。そのうえで、図 4に 示すように、原料貯蔵庫 11に貯蔵されたセメント原料 (石灰石、粘土、珪石および鉄 原料)が、原料供給設備 202を通じて予加熱器 200に供給される。ただし、粘度など 含水量の多い一部のセメント原料は、原料供給設備 131を通じて原料ドライャ 12に 投入され、原料ドライャ 12によって乾燥されたうえで、乾燥原料排出設備 132を通じ て原料ミル 13に投入される。
[0141] 原料ドライャ 12には、プレヒータ 16の上部から排出された高温の排ガス力 排ガス ダクト 21を通じて導入されるので、原料ドライャ 12内部の温度は約 300°C以上に保 たれている。ダイォキシン類および PCBなどの有機塩素化合物、有機物および塩素 などを含む廃棄物 (都市ごみおよび焼却灰など)をセメント原料に混入した場合、原 料ドライヤ 12に投入されたセメント原料に含まれる有機塩素化合物は、原料ドライャ 12の内部で加熱されることによって分解 (気化)される。
[0142] 原料ドライャ 12に導入された排ガスは、セメント原料を加熱することで熱を奪われる ため、電気集塵機 30の入口における排ガスの温度は、 90°C程度に低下する。分解 された有機塩素化合物の多くは、排ガス中のダストに吸着される。有機塩素化合物を 吸着したダストは、煙道 129を通じて煙突 130に導出される過程で電気集塵機 30に よって捕集される。捕集されたダストは、ダスト配送設備 204および原料供給設備 20 2を通じて予加熱器 200に導入される。カロえて、プレヒータ 16の最下段部付近から抽 出されたセメント原料の一部が、加熱原料配送管 205および原料供給設備 202を通 じて予加熱器 200に導入される。セメント原料は、プレヒータにおいて 800°C程度に まで加熱されているので、予加熱器 200の熱源として利用することが可能である。
[0143] 予加熱器 200の内部に供給されたセメント原料およびダスト(以下、単にセメント原 料とする)は、スクリュー 200aの回転に伴って搬送される過程で、 400°C程度にまで 徐々に予加熱される。予加熱に要する時間は 10分程である。ダイォキシン類の前駆 体(例えばベンゼン、フエノール、クロ口ベンゼン、クロ口フエノールなど)をセメント原 料から分離するには、セメント原料を 200°C以上に加熱する必要があり、同前駆体を 熱分解するには、セメント原料を 800°C以上に加熱する必要がある。 PCBをセメント 原料から分離するには、セメント原料を 100°C以上に加熱する必要があり、 PCBを熱 分解するには、セメント原料を 800°C以上に加熱する必要がある。臭気成分 (例えば ァセトアルデヒドなど)をセメント原料から分離するには、セメント原料を 50°C以上に 加熱する必要がある。したがって、原料ミル 13において粉砕される前のセメント原料 を予加熱器 200において 250°Cにまで予加熱することにより、ダイォキシン類の前駆 体および臭気成分などがセメント原料から分離される。
[0144] 予加熱器 200には、プレヒータ 16の上部から排出された排ガス(300°C程度)、タリ ンカクーラ 19から排出された排ガス(300°C以上)、およびクリン力クーラ 19から煙道 236を通じて排出される排ガス(200°Cから 300°C程度)力 熱源として供給される。 また、必要に応じて弁 213が開かれ、プレヒータ 16の上部から排出された排ガスの一 部がジャケット 206に供給される。その結果、予加熱器 200に供給されたセメント原料 力 予加熱器 200の内側からだけでなく外側からも加熱される。これでも熱量が不足 している場合は、熱発生装置 201において生成された加熱空気が、補助熱配送管 2 22および第 1の熱媒管 208を通じて予加熱器 200に供給される。併せて弁 223が開 かれ、熱発生装置 201において生成された加熱空気の一部力 ジャケット 206に供 給されることもある。これにより、予加熱器 200に求められる熱量を補うことが可能であ る。予加熱器 200において有機塩素化合物が除去されたセメント原料は、原料排管 218を通じて原料ミル 13に投入される。
[0145] 原料ミル 13には、プレヒータ 16の上部から排出された高温の排ガス力 排ガスダク ト 21を通じて導入されているので、原料ミル 13内部の温度は 100°C以上に保たれて いる。そのため、原料ミル 13においては、原料ドライャ 12から供給された乾燥粘土を 含むセメント原料が、 100°C程度に加熱されるとともに、多数の金属ボールによって 粒の大きさがおよそ 90 μ ΐη以下に粉碎される。粉砕されたセメント原料は、粉碎原料 搬送設備 121を通じて貯蔵サイロ 14に投入される。
[0146] ダイォキシン類および PCBなどの有機塩素化合物、有機物および塩素などを含む 廃棄物 (都市ごみおよび焼却灰など)をセメント原料に混入した場合、原料ミル 13に 投入されたセメント原料に含まれる有機塩素化合物は、約 100°C以上に保たれた原 料ミル 13の内部で加熱されることによってセメント原料から分離される。
[0147] 原料ミル 13に導入された排ガスは、セメント原料を加熱することで熱を奪われるた め、電気集塵機 30の入口における排ガスの温度は、 90°C程度に低下する。したがつ て、セメント原料から分離された有機塩素化合物の多くは、排ガス中のダストに吸着さ れる。有機塩素化合物を吸着したダストは、煙道 129を通じて煙突 130に導出される 過程で電気集塵機 30によって捕集される。捕集されたダストは、ダスト配送設備 204 および原料供給設備 202を通じて予加熱器 200に導入される。
[0148] 予加熱工程において発生した有機塩素化合物を含む熱処理ガスは、ガス配送管 2 3を通じてプレヒータ 16の下段部、ロータリキルン 18の窯尻部、およびロータリキルン 18の窯前部のいずれカ もしくは全てに供給される。 有機塩素化合物を含む熱処理ガスがロータリキルン 18の窯尻部に供給される場合 には、ロータリキルン 18の内部で、ダイォキシンの熱分解温度を上回る 1100〜145 0°Cにまでパーナ 17による加熱が行われており、し力も、 l〜3rpmの回転速度でキ ルンシェルが周方向に低速回転していることから、ロータリキルン 18の窯尻部に供給 された有機塩素化合物を含む熱処理ガスは、ロータリキルン 18の内部で 30分以上 にわたつて加熱される。これにより、セメントクリン力が焼成されると同時に、熱処理ガ スに含まれる有機塩素化合物の全てが熱分解されて無害化される。
[0149] 有機塩素化合物を含む熱処理ガスがロータリキルン 18の窯前部に供給される場合 には、熱処理ガスが、パーナ 17における燃焼用の空気として使用される。これにより 、熱処理ガス中の有機塩素化合物が完全に熱分解される。
有機塩素化合物を含む熱処理ガスがプレヒータ 16の最下段のサイクロン 15に供給 される場合には、熱処理ガスが、セメント原料中の石灰石が脱炭酸されるまで加熱す る空気として使用される。このセメント原料の加熱の過程で、有機塩素化合物が完全 に熱分解される。
[0150] セメント製造設備 10Cの夜間運転時には、弁 203, 217が閉じられるとともに弁 219 が開かれ、ダストのみが予加熱器 200に供給される。これにより、ダストから有機塩素 化合物が分離、もしくは分解される。有機塩素化合物を除去されたダストは、原料排 管 218、ダスト専用配管 220および粉碎原料搬送設備 121を通じて貯蔵サイロ 14に 一旦貯蔵される。
[0151] 貯蔵サイロ 14に貯蔵されたセメント原料は、焼成工程部 2に供給され、プレヒータ 1 6の最上段のサイクロン 15から下段側のサイクロン 15に向けて順次流下し、最終的 に 800°C程度に予熱される。その後、セメント原料はロータリキルン 18の窯尻部に投 入される。ロータリキルン 18の窯前部においては、パーナ 17の熱により、セメント原 料からセメントクリン力が焼成される。焼成されたセメントクリン力は、クリン力クーラ 19 によって冷却された後、クリン力サイロ 20にいつたん貯蔵される。
[0152] クリン力サイロ 20に貯蔵されたセメントクリン力は、所定量の石膏を加えられた後、仕 上げミル 6に供給される。仕上げミル 6では、原料ミル 13と同様に、セメントクリン力が 多数の金属ボールによって粉砕され、最終的製品としてのセメントとなる。得られたセ メントは、同じく図示しないセメントサイロによりいつたん貯蔵され、出荷を待つ。
[0153] 従来法のセメント製造設備においては、セメント原料が、原料貯蔵庫 11から原料ド ライヤおよび原料ミルに予加熱されることなく投入されるので、原料ドライャおよび原 料ミルから排出される排ガス中のダストには、ダイォキシン類、 PCBおよび臭気成分 などの有機塩素化合物が多量に含まれる。排ガス中のダストは、集塵機によって捕 集され、貯蔵サイロに搬送されてセメント原料の一部となる。貯蔵サイロに貯蔵された ダストを含むセメント原料は、プレヒータに供給されて加熱される力 ダストを含むセメ ント原料の一部は、プレヒータの上部力、ら排ガスとともに抽出され、排ガスダクトを通し て原料ドライャおよび原料ミルに戻される。これにより、有機塩素化合物が原料工程 部内で循環し、徐々に高濃度化する。その結果、原料工程を実施する設備から煙道 を通じて大気中に放出されるダイォキシン類の量、ひいてはセメント製造設備から排 出されるダイォキシン類の量が増大してしまう。し力、も、集塵機を通過した脱塵ガスに も、若干ではあるがダイォキシン類、 PCBおよび臭気成分などの有機性汚泥が含ま れる。これらを含む脱塵ガスが、煙道を通じて煙突から大気中に放出されるおそれも ある。
[0154] これに対し、本実施形態のセメント製造設備 10Cにおいては、セメント原料が、原料 ミル 13に投入される前に、予加熱器 200において加熱され、ダイォキシン類、 PCB および臭気成分などを除去される。これにより、原料工程部内での有機塩素化合物 の循環が断ち切られるので、有機塩素化合物の高濃度化を抑えることができる。その 結果、セメント製造設備 10Cから排出されるダイォキシン類、 PCBおよび臭気成分な どの有機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。
[0155] 予加熱器 200による加熱温度は、例えば 100°C以上でもよい。加熱温度が 100°C 以上であれば、セメント原料およびダストに含まれる有機塩素化合物(臭気成分を含 む)が気化し、セメント原料およびダストから分離される。図 5は、セメント製造設備内 の温度とダストに含まれる有機物の減少率との関係を示すグラフである。図 5におい て、原料 Aは製油所跡地の土壌、原料 Bはガソリンスタンド跡地の土壌、原料 Cはィ匕 学プラントから発生する汚泥、原料 Dは炭ガラ含有土壌、原料 Eは廃白土、原料 Fは 化学プラントから発生する汚泥である。いずれの原料に含まれる有機塩素化合物も、 50°C程度の温度下で気化し、セメント原料およびダストから分離する。
[0156] ただし、有機塩素化合物が PCBである場合、これをセメント原料およびダストから十 分に分離させるには、加熱温度を 500°Cから 800°Cまでの範囲に設定するのが好ま しレ、。例えば、ダストを加熱しない時の PCB残留率を 100。/oとするとき、加熱温度と P CB残留率との関係は、加熱温度が 300°Cのときで 25%、 500°Cのときで 5%、 800 °Cのときで 5%である。有機塩素化合物を除去されたダストは、その後、輸送装置の 下流部に連結された図示しない集塵機によって捕集し、セメント原料として再利用す ること力 Sできる。
[0157] このように、有機塩素化合物を含むセメント原料およびダストが、原料ミル 13に投入 される前に予加熱器 200によって予加熱されるので、原料ミル 13におけるセメント原 料粉砕中の熱処理によってセメント原料およびダスト中の有機塩素化合物からダイォ キシン類および PCBなどが合成される前に、セメント原料およびダストから有機塩素 化合物を分離、もしくは分解される。さらに、セメント原料およびダストから分離された 有機塩素化合物は、通常運転時に 800°C以上となるセメント製造設備 10Cの高温部 に投入されて熱分解される。その結果、セメント製造設備から排出されるダイォキシン 類および PCBなどの有機塩素化合物の排出量を、従来に比べて大幅に低減させる こと力 Sできる。
[0158] 従来 (例えば特許文献 1に記載された発明)は、ダストを、通常運転時に 800°C以 上となるセメント製造設備内の高温部に投入するので、得られたセメントに異物 (ダス ト)が混入してセメントの品質が低下する。し力も、焼成工程では、ダストの投入量に 応じてセメント原料に対する複雑な温度コントロールを行う必要性がある。これに対し 、本実施形態のセメント製造設備 10Cにおいては、原料工程の前にダストをセメント 原料に混合するので、このようなセメント製造工程でのセメントの品質低下、および焼 成工程におけるセメント原料の温度コントロールの必要といった悪影響を少なくする こと力 Sできる。
[0159] 本実施形態のセメント製造設備 10Cを運転し、電気集塵機 30によって捕集された ダスト中の PCB濃度の径時変化と、脱塵ガス(電気集塵機 30を通過したガス成分) 中の PCB濃度の経時変化とを調査した。 [表 1]
Figure imgf000038_0001
[0160] 表 1から明らかなように、ダスト中の PCB濃度も、脱塵ガス中の PCB濃度も、セメント 製造設備 10Cの運転日数が増加するほど低下することがわかった。
[0161] 従来では、燃焼などによって発生する微量の PCB力 電気集塵機によってダストに 付着した状態で捕集される。そのダストをセメント原料として再利用することにより、セ メント製造設備の系内で PCBの循環が発生する。そのため、セメント製造設備の系内 における排ガス中の PCB濃度が上昇し、 PCB濃度の高い排ガスが電気集塵機 30を 通過し、煙道を通じて煙突から大気中に放出される。
[0162] 本実施形態のセメント製造設備 10Cによれば、上記のような排ガス中の PCBの高 濃度化を、セメント原料およびダストを予加熱器 200によって予加熱し、 PCBを気ィ匕 させることによって断つこと力 Sできる。しかも、予加熱時に発生した PCBを含む熱処理 ガスは、パーナ 17における燃焼用の空気として使用される。これにより、セメント製造 設備 10から大気中に放出される排ガス中の PCB濃度を低減させることができる。
[0163] また、本実施形態のセメント製造設備 10Cを運転した場合と、従来のセメント製造 設備を運転した場合とで、大気中に放出される排ガス中の有機塩素化合物の減少 率 (加熱原料使用原単位; 50kg/t. cliのとき)を調査した。その結果、 THC (全有 機ガス)が 72%、ダイォキシン類が 85%、 PCBsが 96%、ベンゼンが 76%とそれぞ れ従来よりも減少した。
[0164] 本発明のセメント製造設備における有機塩素化合物の低減方法、およびセメント製 造設備の第 4の実施形態について、図 6を参照して説明する。なお、第 1の実施形態 において既に説明した構成要素には同一符号を付し、その説明は省略する。
本実施形態のセメント製造設備 10Dは、図 6に示すように、セメント原料を粉碎する 原料工程部 1と、粉砕されたセメント原料を焼成する焼成工程部 2とを備えている。 [0165] 原料工程部 1は、原料貯蔵庫 11と、原料ドライャ 12と、原料ミル 13と、貯蔵サイロ 1 4と、第 1の電気集塵機 (集塵機) 30とを備えている。貯蔵サイロ 14は、加熱原料粉搬 送設備 165を通じてプレヒータ 16に接続されている。貯蔵サイロ 14に貯蔵されたセメ ント原料は、加熱原料粉搬送設備 165を通じてプレヒータ 16に供給される。第 1の電 気集塵機 30は、煙道 129の下流側に設けられている。第 1の電気集塵機 30は、ダス ト配送設備 (粉体供給路) 323を通じて、原料ミル 13および後述する排ガス分岐管( 高温ガス供給路) 350に接続されている。排ガス分岐管 350にはダスト投入口 350a が設けられている。第 1の電気集塵機 30によって捕集されたダストの一部は、ダスト 配送設備 323を通じてダスト投入口 350aから排ガス分岐管 350の内部に投入され、 残りは、ダスト配送設備 323を通じて原料ミル 13に投入される。
[0166] 焼成工程部 2は、プレヒータ 16と、パーナ 17と、ロータリキノレン 18と、クリン力クーラ 19と、クリン力サイロ 20と、石炭ミル 50と、クリン力サイロから排出されたダストを捕集 する集塵機(図示略)とを備えている。石炭ミル 50は、石炭を粉碎してパーナ 17の燃 焼としての石炭部粉末を得る。集塵機は、クリン力サイロから排出されたダストを捕集 する。
[0167] プレヒータ 16は、下段(下流)のものほど内部温度が高い多段式のサイクロン 15を 有し、有機物除去器 100によって有機塩素化合物を除去されたセメント原料を予熱 する。プレヒータ 16の上部には、排ガスダクト 21の上流端が接続されている。分岐さ れた下流端よりも上流側の排ガスダクト 21は、排ガス分岐管 350を通じて石炭ミル 50 の石炭投入口に接続されている。ダスト投入口 350aよりも下流側の排ガス分岐管 35 0には、第 2の電気集塵機 (捕集手段) 31と、ファン F7とが設けられている。第 2の電 気集塵機 31は、有機除去ダスト管 351を通じて原料ミル 13に接続されている。
[0168] ファン F7は、第 2の電気集塵機 31よりも下流側に設けられている。ファン F7が駆動 することにより、排ガスダクト 21を流れる高温の排ガスの一部が排ガス分岐管 350に 流れ込むとともに、第 1の電気集塵機 30によって捕集された有機塩素化合物を含む ダストが、ダスト投入口 350aから排ガス分岐管 350に流れ込む。第 1の電気集塵機 3 0からダスト配送設備 323を通じてダスト投入口 350aから排ガス分岐管 350に流入し たダストは、プレヒータ 16の上部力も排出された 300°C以上の排ガスに接触する。こ れにより、ダストに含まれる有機塩素化合物がダストから分離、もしくは分解する。さら に、第 2の電気集塵機 31を通過した有機塩素化合物を含むガスは、石炭ミル 50に 流入する。第 2の電気集塵機 31によって捕集されたダストは、有機除去ダスト管 351 を通じて原料ミル 13に供給される。
[0169] 石炭ミル 50の回転ドラムには、多数の金属ボールが収納されている。回転ドラムを 回転させながら、同回転ドラムに、第 2の電気集塵機 31を通過した有機塩素化合物 を含むガスと石炭とを連続的に投入すると、多数の金属ボールが石炭を細かく粉砕 し、有機塩素化合物が吸着された石炭微粉末 (吸着粉)が得られる。石炭微粉末は、 微粉炭配送管 352を通じてパーナ 17に連続的に投入される。石炭微粉末の燃料投 入口からの投入量は、ガス lm3当たり 500gから 900gである。なお、石炭微粉末に代 えて活性炭微粉末またはオイルコークス微粉末を使用してもよい。
[0170] 本実施形態のセメント製造設備 10Dの内部(系内)で行われる有機塩素化合物の 低減方法にっレ、て説明する。
[0171] 原料貯蔵庫 11に貯蔵されたセメント原料 (石灰石、粘土、珪石および鉄原料)が、 原料搬送設備 118を通じて原料ミル 13に投入される。ただし、粘度など含水量の多 い一部のセメント原料は、原料供給設備 131を通じて原料ドライャ 12に投入され、原 料ドライヤ 12によって乾燥されたうえで、乾燥原料排出設備 132を通じて原料ミル 13 に投入される。原料ドライャ 12および原料ミル 13には、プレヒータ 16の上部から排出 された高温の排ガス力 排ガスダクト 21を通じて導入されるので、原料ドライャ 12内 部の温度は約 300°C以上、原料ミル 13内部の温度は 100°C以上に保たれている。 そのため、原料ミル 13においては、原料ドライャ 12から供給された乾燥粘土を含む セメント原料力 75°C程度に加熱されるとともに、多数の金属ボールによって粒の大 きさが平均 10 x mから 30 z m程度に粉砕される。粉砕されたセメント原料は、粉砕原 料搬送設備 121を通じて貯蔵サイロ 14に投入される。
[0172] 貯蔵サイロ 14に貯蔵されたセメント原料は、焼成工程部 2に供給され、プレヒータ 1 6の最上段のサイクロン 15から下段側のサイクロン 15に向けて順次流下し、最終的 に 800°C程度に予熱される。その後、セメント原料はロータリキルン 18の窯尻部に投 入される。 [0173] ダイォキシン類および PCBなどの有機塩素化合物、有機物および塩素などを含む 廃棄物 (都市ごみおよび焼却灰など)をセメント原料に混入した場合、原料ミル 13に 投入されたセメント原料に含まれる有機塩素化合物は、約 100°C以上に保たれた原 料ミル 13の内部で加熱されることによってセメント原料から分離される。また、原料ド ライヤ 12に投入されたセメント原料に含まれる有機塩素化合物は、約 300°C以上に 保たれた原料ドライャ 12の内部で加熱されることによって分解 (気化)される。
[0174] 原料ドライャ 12および原料ミル 13に導入された排ガスは、セメント原料を加熱する ことで熱を奪われるため、電気集塵機 30の入口における排ガスの温度は、 90°C程度 に低下する。したがって、セメント原料力 分離、もしくは分解された有機塩素化合物 の多くは、排ガス中のダストに吸着される。有機塩素化合物を吸着したダストは、煙道 129を通じて煙突 130に導出される過程で第 1の電気集塵機 30によって捕集される 。捕集されたダストの一部は、ダスト配送設備 323を通じてダスト投入口 350aから排 ガス分岐管 350に投入され、残りは、ダスト配送設備 323を通じて原料ミル 13に投入 される。
[0175] 排ガス分岐管 350に投入された有機塩素化合物を含むダストは、プレヒータ 16の 上部から排出された 300°C以上の排ガスに接触する。これにより、ダストに含まれた 有機塩素化合物がダストから分離、もしくは熱分解する。その結果、ダスト投入口 350 aよりも下流側の排ガス分岐管 350を流れる排ガス中には、ダストと有機塩素化合物と が分離した状態で混在する。有機塩素化合物を含まないダストは、排ガス分岐管 35 0を流れる過程で第 2の電気集塵機 31によって捕集される。ダストから分離された有 機塩素化合物を含む脱塵ガスは、第 2の電気集塵機 31を通過する。
[0176] 第 2の電気集塵機 31によって捕集されたダストは、有機除去ダスト管 351を通じて 原料ミル 13に投入される。一方、第 2の電気集塵機 31を通過した脱塵ガスは、排ガ ス分岐管 350を通じて石炭ミル 50に供給される。脱塵ガスと石炭とが連続的に投入 されると、有機塩素化合物 (ダイォキシン類および PCBなど)を吸着した石炭微粉末 が得られる。石炭微粉末は、微粉炭配送管 352を通じてパーナ 17に連続的に投入 される。
[0177] ロータリキルン 18の窯前部においては、パーナ 17の熱により、セメント原料からセメ ントクリン力が焼成される。このとき、石炭微粉末に含まれた有機塩素化合物が熱分 解される。焼成されたセメントクリン力は、クリン力クーラ 19によって冷却された後、タリ ンカサイロ 20に貯蔵される。
[0178] 本実施形態のセメント製造設備 10Dにおいては、有機塩素化合物を含むダストを 高温ガスに接触させる。その後、高温ガス中からダストを除去した後、有機塩素化合 物を含む脱塵ガスを石炭微粉末に接触させ、有機塩素化合物を石炭微粉末に吸着 させる。これにより、セメント製造設備 10Dから排出されるダイォキシン類および PCB などの有機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。さ らに、有機塩素化合物を吸着した石炭微粉末を、セメントクリン力を焼成する際の燃 料に使用することにより、焼成用の燃料を節約することができる。石炭微粉末に吸着 された有機塩素化合物は、セメントクリン力を焼成する際の熱によって瞬間的に分解 される。
[0179] 本実施形態のセメント製造設備 10Dを運転した場合と、従来のセメント製造設備を 運転した場合とで、大気中に放出される排ガス中の有機塩素化合物の減少率 (加熱 原料使用原単位; 50kg/t. cliのとき)を調査した。その結果、脱塵ガス中から、 PC Bが 95重量%、ァセトアルデヒドが 99重量%以上、メチルアルコールが 99重量%以 上、クロ口フエノールが 100重量%、プロパノールが 99重量%以上、アセトンが 99重 量%以上、ベンゼンが 99重量%以上、トルエンが 99重量%以上、それぞれ従来より も減少した。これらは、脱塵ガスから除去されなければならない代表的な有害物質で ある。
産業上の利用可能性
[0180] 本発明は、粉体に含まれる有機塩素化合物の量を、セメント製造設備において低 減させるセメント製造設備における有機塩素化合物の低減方法であって、前記粉体 を加熱し、前記粉体から前記有機塩素化合物を分離するか若しくは前記有機塩素 化合物を分解する加熱工程と、前記粉体を加熱することによって発生した前記有機 塩素化合物を含む熱処理ガスを、前記セメント製造設備の高温部に供給し、前記熱 処理ガス中に含まれる前記有機塩素化合物を熱分解するガス熱分解工程とを備える セメント製造設備における有機塩素化合物の低減方法に関する。 本発明によれば、セメント製造設備から排出されるダイォキシン類および PCBなど の有機塩素化合物の排出量を、従来に比べて大幅に低減させることができる。

Claims

請求の範囲
[1] 粉体に含まれる有機塩素化合物の量を、セメント製造設備において低減させるセメ ント製造設備における有機塩素化合物の低減方法であって、
前記粉体を第 1の予加熱器に供給する前に加熱し、前記粉体から前記有機塩素化 合物を分離するか若しくは前記有機塩素化合物を分解する加熱工程と、
前記粉体を加熱することによって発生した前記有機塩素化合物を含む熱処理ガス を、前記セメント製造設備の高温部に供給し、前記熱処理ガス中に含まれる前記有 機塩素化合物を熱分解する熱分解工程と
を備えるセメント製造設備における有機塩素化合物の低減方法。
[2] 前記粉体は、前記有機塩素化合物を含むセメント原料、および/または前記セメン ト製造設備内で捕集されたダストである請求項 1に記載のセメント製造設備における 有機塩素化合物の低減方法。
[3] 前記高温部の、前記セメント製造設備の通常運転時の温度は、 800°C以上である 請求項 1または 2に記載のセメント製造設備における有機塩素化合物の低減方法。
[4] 前記高温部は、前記第 1の予加熱器の下段部、仮焼路、ロータリキルンの窯尻部、 前記ロータリキルンの窯前部、クリン力クーラの高温部のうちの少なくともいずれかひ とつである請求項 1から 3のいずれか一項に記載のセメント製造設備における有機塩 素化合物の低減方法。
[5] 前記加熱工程は、前記粉体を、第 1の予加熱器に供給する前に有機物除去器に 供給して加熱する請求項 1から 4のいずれか一項に記載のセメント製造設備における 有機塩素化合物の低減方法。
[6] 前記有機物除去器によって加熱される前記粉体の温度は 300°C以上である請求 項 5に記載のセメント製造設備における有機塩素化合物の低減方法。
[7] 前記有機物除去器は、前記第 1の予加熱器の前記粉体が供給される上部に連結 される請求項 5または 6に記載のセメント製造設備における有機塩素化合物の低減 方法。
[8] 前記有機物除去器の熱源は、前記第 1の予加熱器の上部力 排出される排ガス、 前記ロータリキルンから排出されるセメントクリン力を冷却するクリン力クーラの排ガス、 前記有機物除去器に付設されたガス発生装置から発生する加熱ガスのうちの少なく ともいずれかひとつである請求項 5から 7のいずれか一項に記載のセメント製造設備 における有機塩素化合物の低減方法。
[9] 前記有機物除去器の外側に、前記有機物除去器に供給された前記粉体を加熱す るジャケットが設けられ、
前記ジャケットには、前記第 1の予加熱器の上部から排出される排ガス、前記ロータ リキルン力 排出されるセメントクリン力を冷却するクリン力クーラの排ガス、前記有機 物除去器に付設されたガス発生装置から発生する加熱ガスのうちの少なくともいずれ かひとつが供給される請求項 8に記載のセメント製造設備における有機塩素化合物 の低減方法。
[10] 前記加熱工程は、前記粉体を、第 1の予加熱器に供給する前に第 2の予加熱器に 供給して予加熱する請求項 1から 4のいずれか一項に記載のセメント製造設備にお ける有機塩素化合物の低減方法。
[11] 前記第 2の予加熱器によって加熱される前記粉体の温度は、 100°C以上 600°C以 下である請求項 10に記載のセメント製造設備における有機塩素化合物の低減方法
[12] 前記第 2の予加熱器の熱源は、前記第 1の予加熱器の上部から排出される排ガス 、前記ロータリキルンから排出されるセメントクリン力を冷却するクリン力クーラの排ガス 、前記第 1の予加熱器に付設されたガス発生装置から発生する加熱ガスのうちの少 なくともいずれかひとつである請求項 10または 11に記載のセメント製造設備におけ る有機塩素化合物の低減方法。
[13] 前記第 2の予加熱器の外側に、前記第 1の予加熱器に供給された前記粉体を加熱 するジャケットが設けられ、
前記ジャケットには、前記第 1の予加熱器の上部から排出される排ガス、前記ロータ リキルン力、ら排出されるセメントクリン力を冷却するクリン力クーラの排ガス、前記第 2の 予加熱器に付設されたガス発生装置から発生する加熱ガスのうちの少なくともいずれ かひとつが供給される請求項 12に記載のセメント製造設備における有機塩素化合 物の低減方法。
[14] 前記第 2の予加熱器によって予加熱された前記粉体に対して、通常のセメント製造 処理が行われる請求項 10から 13のいずれか一項に記載のセメント製造設備におけ る有機塩素化合物の低減方法。
[15] 粉体に含まれる有機塩素化合物の量を、セメント製造設備において低減させるセメ ント製造設備における有機塩素化合物の低減方法であって、
前記粉体を、前記セメント製造設備内で高温ガスに接触させ、前記粉体から前記 有機塩素化合物を分離するか若しくは前記有機塩素化合物を分解する有機物除去 工程と、
前記粉体に接触した後の前記高温ガスに含まれる前記粉体を捕集し、前記高温ガ スから前記粉体を除去する粉体除去工程と、
前記粉体を除去された前記高温ガスを吸着粉に接触させ、前記吸着粉に前記有 機塩素化合物を吸着させる有機物吸着工程と
を備えるセメント製造設備における有機塩素化合物の低減方法。
[16] 前記粉体は、前記有機塩素化合物を含むセメント原料、および/または前記セメン ト製造設備内で捕集されたダストである請求項 15に記載のセメント製造設備における 有機塩素化合物の低減方法。
[17] 前記高温ガスの温度は 100°C以上である請求項 15または 16に記載のセメント製造 設備における有機塩素化合物の低減方法。
[18] 前記吸着粉は、石炭微粉末、活性炭微粉末またはオイルコークス微粉末の少なくと もいずれかひとつである請求項 15から 17のいずれか一項に記載のセメント製造設備 における有機塩素化合物の低減方法。
[19] 前記高温ガスは、前記セメント製造設備の第 1の予加熱器の上部から排出される排 ガスである請求項 15から 18のいずれか一項に記載のセメント製造設備における有 機塩素化合物の低減方法。
[20] 前記有機塩素化合物を吸着した前記吸着粉を、セメントクリカを焼成する際の燃料 に使用し、前記吸着粉を燃焼させることによって前記有機塩素化合物を分解する請 求項 15から 19のいずれか一項に記載のセメント製造設備における有機塩素化合物 の低減方法。
[21] 前記粉体除去工程において前記高温ガスから除去された前記粉体を、セメント原 料を粉碎する原料ミルに供給する請求項 15から 20のいずれか一項に記載のセメント 製造設備における有機塩素化合物の低減方法。
[22] セメント原料からセメントクリン力を焼成するセメント製造設備であって、
有機塩素化合物を含む粉体を予加熱する第 1の予加熱器と、
前記粉体を前記第 1の予加熱器に供給する前に加熱する加熱器と、
前記粉体を加熱することによって発生した前記有機塩素化合物を含む熱処理ガス を、前記セメント製造設備の高温部に供給する熱処理ガス供給路と
を備えるセメント製造設備。
[23] 前記高温部は、前記第 1の予加熱器の下段部、仮焼路、ロータリキルンの窯尻部、 前記ロータリキルンの窯前部、クリン力クーラの高温部のうちの少なくともいずれかひ とつである請求項 22に記載のセメント製造設備。
[24] 前記加熱器の熱源は、前記第 1の予加熱器の上部から排出される排ガス、前記口 一タリキルン力 排出されるセメントクリン力を冷却するクリン力クーラの排ガス、前記 有機物除去器に付設されたガス発生装置から発生する加熱ガスのうちの少なくともい ずれかひとつである請求項 22または 23に記載のセメント製造設備。
[25] 前記加熱器の外側に設けられ、同加熱器に供給された前記粉体を加熱するジャケ ットを備 、
前記ジャケットには、前記第 1の予加熱器の上部から排出される排ガス、前記ロータ リキルン力 排出されるセメントクリン力を冷却するクリン力クーラの排ガス、前記有機 物除去器に付設されたガス発生装置から発生する加熱ガスのうちの少なくともいずれ かひとつが供給される請求項 22から 24のいずれか一項に記載のセメント製造設備。
[26] セメント原料からセメントクリン力を焼成するセメント製造設備であって、
前記セメントクリン力を焼成するための燃料を粉砕するミルに高温ガスを供給するた めの高温ガス供給路と、
有機塩素化合物を含む粉体を前記高温ガス供給路に供給するための粉体供給路 と、
前記粉体供給路に設けられ、前記粉体に接触した後の前記高温ガスに含まれる前 記粉体を捕集する捕集手段とを備え、
前記粉体を除去された前記高温ガスを吸着粉に接触させるセメント製造設備。
[27] 前記吸着粉は、前記燃料として使用される請求項 26に記載のセメント製造設備。
[28] 前記捕集手段によって捕集された前記粉体を前記セメント原料を粉砕する原料ミル に供給するための粉体供給路を備える請求項 26または 27に記載のセメント製造設 備。
PCT/JP2006/312128 2005-06-16 2006-06-16 セメント製造設備における有機塩素化合物の低減方法、およびセメント製造設備 WO2006135047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06766816.0A EP1905747B1 (en) 2005-06-16 2006-06-16 Method for reduction of organic chlorinated compound in cement manufacture plant
CN2006800209256A CN101193831B (zh) 2005-06-16 2006-06-16 降低水泥生产设备中有机氯化合物的方法以及水泥生产设备
US11/917,683 US8075686B2 (en) 2005-06-16 2006-06-16 Method for reducing organic chlorine compounds in cement production facility, and cement production facility

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-177019 2005-06-16
JP2005177019A JP4075909B2 (ja) 2005-06-16 2005-06-16 セメント製造設備からの排ガス中の有機塩素化合物低減方法
JP2005-205064 2005-07-14
JP2005205064A JP5092211B2 (ja) 2005-07-14 2005-07-14 セメント製造設備
JP2005-213442 2005-07-22
JP2005213442A JP4075916B2 (ja) 2005-07-22 2005-07-22 セメント製造設備およびセメント製造設備内での有機塩素化合物低減方法

Publications (1)

Publication Number Publication Date
WO2006135047A1 true WO2006135047A1 (ja) 2006-12-21

Family

ID=37532400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312128 WO2006135047A1 (ja) 2005-06-16 2006-06-16 セメント製造設備における有機塩素化合物の低減方法、およびセメント製造設備

Country Status (3)

Country Link
US (1) US8075686B2 (ja)
EP (1) EP1905747B1 (ja)
WO (1) WO2006135047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067498A (ja) * 2013-09-30 2015-04-13 太平洋セメント株式会社 セメントキルン排ガスの処理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905748B1 (en) * 2005-06-30 2017-11-08 Mitsubishi Materials Corporation Method of diminishing organochlorine compound in a cement production facility
CA2687038A1 (en) * 2007-06-12 2008-12-18 Flsmidth A/S Method and plant for the simultaneous production of electricity and cement clinker
DE112009001646T5 (de) * 2008-07-09 2011-06-01 Flsmidth Inc. Verfahren und Vorrichtung zum Entfernen von Staubpartikeln aus vorgewärmten Partikelmaterial
FR2934590B1 (fr) * 2008-08-01 2010-08-13 Fives Fcb Procede de fabrication de clinker de ciment dans une installation, et installation de fabrication de clinker de ciment en tant que telle.
EP2342168A1 (en) * 2008-09-17 2011-07-13 FLSmidth A/S Rotary kilns for alternative fuels
CN103221158A (zh) * 2010-12-21 2013-07-24 英派尔科技开发有限公司 土壤修复系统和方法
JP6187315B2 (ja) * 2014-02-28 2017-08-30 三菱マテリアル株式会社 流動仮焼炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100243A (ja) * 1997-07-14 1999-04-13 Taiheiyo Cement Corp セメント原料化処理方法
JP2000157832A (ja) * 1998-11-30 2000-06-13 Nkk Corp 廃活性炭の処理方法及び活性コークスの処理方法
JP2003103243A (ja) * 2001-09-28 2003-04-08 Taiheiyo Cement Corp 揮発性有機化合物を含む汚染土壌の処理方法、セメント製造方法および加熱処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510392A (en) * 1976-01-19 1978-05-10 Ass Portland Cement Portland cement manufacture and utilisation of waste matter
US4115137A (en) * 1977-05-13 1978-09-19 Boris Izrailovich Nudelman Method of producing cement clinker from chlorine-containing raw mixture
EP0162215B1 (de) * 1984-03-27 1989-08-09 Alexander Grisar Verfahren zur Entsorgung von brennbaren Abfällen
FR2660218B1 (fr) * 1990-04-02 1992-06-05 Philippe Pichat Procede d'incineration de dechets.
US5374310A (en) * 1992-09-29 1994-12-20 Dow Corning Corporation Hydrolyzed chlorosilicon by-product addition to cement
JP3095739B2 (ja) * 1998-08-28 2000-10-10 新日本製鐵株式会社 樹脂または有機化合物、あるいはそれらを含む廃プラスチックの処理方法
JP2002147722A (ja) 2000-11-10 2002-05-22 Taiheiyo Cement Corp Pcb含有物の無害化処理装置
JP2002233732A (ja) * 2000-12-08 2002-08-20 Taiheiyo Cement Corp 排煙処理剤およびそれを用いたセメント製造方法
US7265254B2 (en) * 2001-07-30 2007-09-04 Taiheiyo Cement Corporation Waste processing method, waste processing system, integrated waste processing method, and integrated waste processing system
JP4230371B2 (ja) 2003-01-22 2009-02-25 太平洋セメント株式会社 セメント製造装置の排ガスの処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100243A (ja) * 1997-07-14 1999-04-13 Taiheiyo Cement Corp セメント原料化処理方法
JP2000157832A (ja) * 1998-11-30 2000-06-13 Nkk Corp 廃活性炭の処理方法及び活性コークスの処理方法
JP2003103243A (ja) * 2001-09-28 2003-04-08 Taiheiyo Cement Corp 揮発性有機化合物を含む汚染土壌の処理方法、セメント製造方法および加熱処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1905747A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067498A (ja) * 2013-09-30 2015-04-13 太平洋セメント株式会社 セメントキルン排ガスの処理方法

Also Published As

Publication number Publication date
US20090084290A1 (en) 2009-04-02
EP1905747A1 (en) 2008-04-02
EP1905747A4 (en) 2013-05-01
EP1905747B1 (en) 2015-12-23
US8075686B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
WO2006135047A1 (ja) セメント製造設備における有機塩素化合物の低減方法、およびセメント製造設備
JP5629053B2 (ja) セメントの製造方法
JP5428736B2 (ja) セメント製造設備からの排ガス中の水銀成分及び有機塩素化合物の低減方法
JP4075909B2 (ja) セメント製造設備からの排ガス中の有機塩素化合物低減方法
JP4131417B2 (ja) セメント製造設備の排ガス中の有機塩素化合物低減方法
JP5224490B2 (ja) 炉からの煙塵の処理方法
JP2006347822A5 (ja)
JP5092211B2 (ja) セメント製造設備
JP2003262470A (ja) 加熱処理方法とその装置及び施設
JP2007045648A5 (ja)
EP1905748B1 (en) Method of diminishing organochlorine compound in a cement production facility
JP2003292964A (ja) 加熱処理装置及び施設
JP2003103243A (ja) 揮発性有機化合物を含む汚染土壌の処理方法、セメント製造方法および加熱処理装置
JP2007090261A (ja) セメント製造装置の排ガス処理方法及び処理システム
JP2007216210A (ja) 廃棄物の処理方法
JP4075916B2 (ja) セメント製造設備およびセメント製造設備内での有機塩素化合物低減方法
JP2007098343A (ja) セメント製造装置の排ガス処理方法及び処理システム
JP2007216208A (ja) 廃棄物の処理方法
JP2003262315A (ja) 含水性有機物の加熱処理方法とその施設
JP2003232508A (ja) 熱分解処理方法及びその施設
JPH0523539A (ja) 微量有機塩素化合物の除去方法
JP2007063028A5 (ja)
JP3900951B2 (ja) 熱分解処理方法及びその施設
JP5888844B2 (ja) セメント製造設備の排ガス中の有機塩素化合物低減方法及び低減装置
JPH11201425A (ja) 廃棄物の熱分解溶融燃焼装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680020925.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11917683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006766816

Country of ref document: EP