WO2006134911A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2006134911A1
WO2006134911A1 PCT/JP2006/311829 JP2006311829W WO2006134911A1 WO 2006134911 A1 WO2006134911 A1 WO 2006134911A1 JP 2006311829 W JP2006311829 W JP 2006311829W WO 2006134911 A1 WO2006134911 A1 WO 2006134911A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
received signal
transmission beam
target
scanning
Prior art date
Application number
PCT/JP2006/311829
Other languages
English (en)
French (fr)
Inventor
Motoi Nakanishi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2006800187454A priority Critical patent/CN101185009B/zh
Priority to DE112006001358T priority patent/DE112006001358T5/de
Priority to JP2007521298A priority patent/JP4591507B2/ja
Publication of WO2006134911A1 publication Critical patent/WO2006134911A1/ja
Priority to US11/946,657 priority patent/US7463185B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/16Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic
    • G01S3/20Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived sequentially from receiving antennas or antenna systems having differently-oriented directivity characteristics or from an antenna system having periodically-varied orientation of directivity characteristic derived by sampling signal received by an antenna system having periodically-varied orientation of directivity characteristic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to an on-vehicle radar device using millimeter waves, and more particularly to a radar device that scans a beam direction within a predetermined angular range and detects a target from a received signal.
  • the transmission range of the transmission beam has a fan shape, so that the detection range becomes wider as the distance from the own vehicle increases, and the detection range becomes narrower in the vicinity of the own vehicle. I will end up.
  • Patent Document 1 As an angle scanning radar apparatus that solves this problem, Patent Document 1 is provided with a plurality of antennas each having a slightly different directing direction to change the combination of antennas used for transmission and reception. And what sets a long distance and a short distance is disclosed. Specifically, this radar device improves the azimuth resolution at a long distance by narrowing the transmission beam width by using a plurality of P-contact antennas, and is less than the antenna used for such a long distance detection. By increasing the transmission beam width by the number of antennas, the detection range at a short distance is widened.
  • Patent Document 1 JP-A-8-334557
  • the conventional general angle straddle type radar apparatus cannot detect a target outside the range of the strut angle. For example, identify whether the peak of the received signal detected at the outermost angle (the end of the running angle range) is due to a target that exists in that angular direction or a target that exists outside the range It was difficult.
  • the radar apparatus described in Patent Document 1 must use a plurality of antennas, and when performing transmission beam control using these antennas, a control switch group and a control switch group for controlling the switch group are used. Complex control processing must be performed. Furthermore, since the antennas used for long-distance detection and short-distance detection are different, different operation control must be performed for each.
  • an object of the present invention is to provide a radar apparatus that realizes long-distance detection and short-distance wide-angle detection with one antenna.
  • the present invention relates to a transmission beam forming unit that forms a transmission beam to be transmitted from the antenna to the outside, a beam scanning unit that scans the transmission beam within a predetermined scanning angle range, and a transmission beam force s reflected from the target to the antenna.
  • a target having an azimuth angle of X ° toward at least one end from a predetermined azimuth angle of the scanning angle range Rukoto received signal strength for the transmission beam to be transmitted to the azimuth angle of the X ° is, is set to be lower than the received signal strength for at least one transmission beam Ru predetermined azimuth angle side near from the azimuth angle of the X 0
  • Rukoto received signal strength for the transmission beam to be transmitted to the azimuth angle of the X ° is set to be lower than the received signal strength for at least one transmission beam Ru predetermined azimuth angle side near from the azimuth angle of the X 0
  • Rukoto received signal strength for the transmission beam to be transmitted to the azimuth angle of the X ° is set to be lower than the received signal strength for at least one transmission beam Ru predetermined azimuth angle side near from the azimuth angle of the X 0
  • a setting for increasing the intensity of the received signal by the transmission beam in one scanning angle direction is performed for each scanning angle.
  • the strike angle at which the peak of the received signal intensity appears is closer to the predetermined azimuth than the strike angle (azimuth) of the target.
  • the radar apparatus of the present invention is X.
  • the received signal strength for the transmit beam transmitted at the azimuth angle is set to the received signal strength for the transmit beam adjacent to the transmit beam transmitted at the azimuth angle of ⁇ °, which is closer to the azimuth angle than ⁇ °. Set it to a lower value as a special number.
  • the setting to increase the intensity of the received signal by the transmission beam in the direction is performed for each scanning angle.
  • a peak of the received signal intensity appears at an azimuth angle adjacent to a predetermined azimuth angle side with respect to the target scan angle (azimuth angle).
  • the transmission beam forming means gradually increases the antenna gain in each strike angle direction toward one end with respect to the antenna gain in a predetermined direction in the scanning angle range. It is characterized by being set to be low.
  • a reception signal from a transmission beam transmitted in a strike angle direction that is a predetermined direction side from the strike angle direction is a target signal. Becomes larger than the received signal by the transmission beam transmitted in the scanning angle direction.
  • the transmission beam forming means gradually increases the width of the transmission beam in each striking angle direction from a predetermined direction in the striking angle range toward one end. It is a feature.
  • the intensity of the transmission beam in the beam direction can be distributed with the characteristics of only the antenna without reducing the intensity of the transmission beam toward one end. Furthermore, the received signal from a wider range is obtained with the beam on the far end side. As a result, the scanning angle at which the peak of the received signal appears rather than the scanning angle (azimuth angle) of the target is on the predetermined direction side.
  • each of the reception detection means is configured so that the received signal intensity gradually decreases toward one end with respect to the received signal intensity in a predetermined direction of the scanning angle range. The received signal intensity in the scanning angle direction is corrected.
  • the received signal is controlled rather than controlling the transmission beam as in the above-described configurations.
  • the same result as that obtained when the above-described transmission beam is controlled can be obtained.
  • the radar apparatus further includes storage means for storing a correspondence table or relational expression between the azimuth angle of the target and the reception signal intensity, and the reception signal intensity is maximized by the reception detection means. It is characterized by detecting the strike angle and applying the detected strike angle to the correspondence table or relational expression to detect the azimuth angle of the target.
  • the maximal (peak) strike angle of the received signal strength and the target in that case
  • the azimuth angle of the target is detected by detecting the peak of the received signal intensity from the obtained scanning angle distribution of the received signal intensity.
  • the radar apparatus of the present invention is characterized in that the reception detecting means detects the maximum of the received signal intensity by interpolating the received signal intensity by each transmission beam.
  • the received signal in each scanning angle direction that appears discretely with the scanning angle resolution is supplemented (for example, replaced with a predetermined continuous function), and the peak is detected, so that the accuracy is improved. Peak positions can be obtained.
  • the peak of the received signal intensity appears on the center side of the scanning angle range with respect to the actual scanning angle (azimuth angle) where the target exists. In the vicinity of the area, a peak of the received signal strength from the target existing outside the scanning angle range appears in the scanning angle range. As a result, it is possible to detect a target outside the scanning angle range in which the transmission beam is actually transmitted.
  • the present invention it is also possible to control the received signal intensity by the target existing outside the strut angle range at and near the end of the strut angle range by controlling the received signal strength. Appears within the range of the strike angle. As a result, it is possible to detect a target outside the strut angle range in which the transmission beam is actually transmitted.
  • the present invention by associating the target strike angle with the scan angle of the received signal intensity peak regardless of the inside or outside of the strike angle range, the peak of the received signal intensity is obtained. It is possible to easily detect the strike angle or direction of the target.
  • the present invention by interpolating the received signal strength at each scanning angle, the received signal strength that appears discretely becomes continuous, and the scanning angle distribution of the received signal strength becomes more precise. Become .
  • the peak is detected by the scanning angle distribution of the received signal intensity, the target orientation can be detected more accurately.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a radar apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a distribution of received signal intensity by a transmission beam in each scanning angle direction.
  • FIG. 3 is an antenna gain pattern diagram showing a relationship between an azimuth angle (scanning angle) and a relative antenna gain.
  • FIG. 4 is a relationship diagram between the peak azimuth angle of the received signal intensity and the target azimuth angle when the transmission beam has the distribution shown in FIG.
  • FIG. 5 is a diagram showing the relationship between the transmitted beam azimuth angle and the corresponding received signal intensity when a target exists in the 0 ° direction.
  • FIG. 6 is a diagram showing the relationship between the transmitted beam azimuth angle and the corresponding received signal intensity when a target is present in the 5 ° direction.
  • FIG. 7 is a diagram showing the relationship between the transmitted beam azimuth angle and the corresponding received signal intensity when a target is present in the 10 ° direction.
  • FIG. 8 is a diagram showing the relationship between the transmitted beam azimuth and the corresponding received signal strength when a target is present in the 15 ° direction.
  • FIG. 9 is an antenna gain pattern diagram showing the relationship between the azimuth angle and the relative antenna gain in the second embodiment.
  • FIG. 10 is a relationship diagram between the peak azimuth angle of the received signal intensity and the target azimuth angle when the transmission beam has the distribution shown in FIG.
  • FIG. 11 is a diagram showing a relationship between a transmission beam azimuth angle and a corresponding received signal intensity when a target exists in the 0 ° direction.
  • FIG. 12 is a diagram showing the relationship between the transmission beam azimuth angle and the corresponding received signal strength when the target is present in the 5 ° direction.
  • FIG. 13 is a diagram showing a relationship between a transmission beam azimuth angle and a corresponding received signal intensity when a target exists in the 10 ° direction.
  • FIG. 14 is a diagram showing the relationship between the transmission beam azimuth angle and the corresponding received signal strength when a target is present in the 15 ° direction.
  • FIG. 15 is a diagram showing the relationship between the transmitted beam azimuth angle and the corresponding received signal strength when the target exists in the 20 ° direction.
  • FIG. 16 is a schematic configuration diagram of a radar apparatus according to a third embodiment.
  • FIG. 17 is a schematic configuration diagram showing another configuration of the radar apparatus according to the third embodiment.
  • FIG. 18 is a conceptual diagram when interpolation is performed by approximating the received signal strength with a quadratic function.
  • a radar apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
  • an FM-CW radar device mounted on an automobile will be described as an example of a radar device.
  • FIG. 1 is a schematic configuration diagram showing the configuration of the radar apparatus of this embodiment.
  • the radar apparatus of the present embodiment includes a control unit 1, VC02, coupler 3, circulator 4, antenna 5, mixer 6, low-pass filter (LPF) 7, A / D conversion unit 8, antenna scanning mechanism 9, and data processing. Part 10 is provided.
  • the data processing unit 10 includes an FFT processing unit 11, a peak detection unit 12, and a target detection unit 13.
  • the control unit 1 sequentially generates digital data of a modulation signal that modulates a transmission signal, and outputs a control voltage based on the digital data to VC02.
  • VC02 changes the oscillation frequency according to the control voltage input from the control unit 1.
  • the oscillation frequency of VC02 is FM-modulated continuously, for example, in a triangular waveform.
  • the power bra 3 transmits the FM-modulated transmission signal to the circulator 4 side, and supplies a part of the transmission signal to the mixer 6 as a low-power signal with a predetermined distribution ratio.
  • the circulator 4 transmits the transmission signal to the antenna 5 side and supplies the reception signal from the antenna 5 to the mixer 6.
  • Antenna 5 transmits a transmission signal of a continuous wave that is FM-modulated by VC02 as a transmission beam having a predetermined spread.
  • the antenna 5 scans the transmission beam by periodically changing the direction of the transmission beam over a predetermined range of the angle of strike by the antenna strike mechanism 9.
  • the beam strike is performed along the horizontal direction from the own vehicle, and the strike angle corresponds to the azimuth.
  • the angular pitch of the center of each transmission beam in the radial direction that is, the resolution of the running angle is set in advance, and the distribution of the transmission beam intensity for each scanning angle is also set in advance.
  • FIG. 2 is a schematic diagram showing a distribution of received signal intensity by a transmission beam in each scanning angle direction, where (A) is an overall view and (B) is a partially enlarged view.
  • 501, 502R to 505R and 502L to 505L indicate the shape of the transmission beam and the shape of the received signal intensity distribution obtained from the transmission beam.
  • the received signal strength by the transmitted beam indicates the received signal strength obtained by transmitting the transmitted beam to the target at the same distance from the own vehicle in the azimuth direction (running angle direction).
  • FIG. 3 is an antenna gain pattern diagram showing the relationship between the azimuth angle (scanning angle) and the relative antenna gain.
  • the azimuth angle indicates the angle formed with the 0 ° direction when the center direction of the range of the strike angle of the antenna 5 is the 0 ° direction.
  • the azimuth angle is the direction in which the right direction when viewed from the vehicle in the radial direction is the direction in which the angle is +, and the left direction is the direction in which the angle is one.
  • the transmission beam is set so that the received signal intensity by the transmission beam in the center direction of the strike angle range is stronger than the received signal intensity by the transmission beam in the other strike angle direction.
  • Received signal strength by transmission beam gradually from the center to the end of the range It is set to be weak.
  • 505R is set to become weaker in order.
  • the received intensity 502L, 503L, 504L, and 505L in each striking angle direction from the center direction to the end is sequentially compared to the received intensity 501 of the transmitted beam in the center direction.
  • the setting is made weaker.
  • the X ° -y ° direction adjacent to the center side is greater than the received signal strength in the X ° direction due to the transmitted beam transmitted in the X ° direction. It is set so that the received signal strength in the X ° direction due to the transmitted beam transmitted at is stronger. For example, as shown in FIG.
  • the transmission beam 504R is caused by the transmission beam 504R rather than the reception intensity 551R of the transmission beam in the center direction by the transmission beam 505R
  • the received signal strength 542R in the center direction of the transmission beam 505R is set to be stronger.
  • the scanning angle resolution is 1 °.
  • the received signal strength of the transmission beam centered in the 0 ° direction is greater than the received signal strength of the transmission beam centered in the + 1 ° direction relative to the target in the direction of + 1 °. Is set higher. This relationship (distribution) is set to be the same even when the scanning angle increases from the center (0 ° direction) of the scanning angle range to the + 15 ° direction at the end.
  • the transmission signal centered in the + 14 ° direction is stronger than the received signal strength of the transmission beam centered in the + 15 ° direction.
  • the received signal strength due to is set higher.
  • the distribution with respect to the scanning angle in the + angle direction (right direction) is shown, but the distribution with respect to the scanning angle in the one angle direction (left direction) is the same.
  • the distribution in the + angle direction and the distribution in the ⁇ angle direction may not be completely the same, and may be only in one direction (+ angle direction or one angle direction).
  • the peak scanning angle of the received signal intensity is shifted by 1 ° from the target azimuth angle to the central direction (0 ° direction) except for the central direction (0 ° direction).
  • the transmission beam set in this way is reflected by the target and received by the antenna 5 as a reflected signal from the same direction.
  • Antenna 5 outputs the received signal to circulator 4, and circulator 4 transmits the received signal to mixer 6.
  • Mixer 6 mixes the local signal from coupler 3 and the received signal from circulator 4 and outputs an IF beat signal.
  • the LPF 7 removes unnecessary high frequency components from the IF beat signal, and the A / D converter 8 converts the signal into a sampling data string and supplies it to the FFT processor 11 of the data processor 10.
  • the FFT processing unit 11 performs FFT processing on the sampling data string converted by the AZD conversion unit 8 and supplies the result to the peak detection unit 12.
  • the peak detection unit 12 detects the received signal intensity in each scanning angle direction by performing threshold processing on the FFT-processed data, and supplies the detected signal strength to the target detection unit 13.
  • the target detection unit 13 detects the azimuth angle of the target from the distribution of the received signal intensity in each scanning angle direction by the following method. At this time, the target detection unit 13 detects the relative distance and relative speed from the vehicle to the target by a known FM-CW method.
  • FIG. 5 to FIG. 8 are diagrams showing the relationship between the transmission beam strike angle and the corresponding received signal intensity when the target exists in each azimuth angle direction. These results in FIGS. 5 to 8 show the case where the transmission beam pattern shown in FIG. 3 is used for both transmission and reception.
  • Fig. 5 shows the case where the target exists in the 0 ° direction (the center direction of the scanning angle range)
  • Fig. 6 shows the case where the target exists in the + 5 ° direction
  • Figure 7 shows the case where the target is in the + 10 ° direction
  • Figure 8 shows the case where the target is in the + 15 ° direction.
  • the target detection unit 13 detects the scanning angle distribution of the reception signal intensity using the reception signal intensity detected by the peak detection unit 12.
  • the data processing unit 10 stores in advance the target azimuth angle and the corresponding scan angle distribution of the received signal intensity in association with each other.
  • the relationship between the target azimuth angle and the maximum scan angle of the received signal intensity as shown in FIG. the target detection unit 13 detects the scanning angle direction that takes the maximum received signal strength from the scanning angle distribution of the received signal strength obtained by the current scan, and the stored received signal strength becomes the maximum value.
  • the relationship between the scanning angle and the target azimuth angle (Fig. 4) is read, and the detection results are compared with the stored information.
  • the target detection unit 13 detects the target azimuth angle based on the comparison result. For example, if a received signal intensity distribution having a maximum is obtained when the transmission beam azimuth angle is 9 ° as shown in FIG. 7, it is detected that the target is present in the 10 ° direction, and the transmission as shown in FIG. If the received signal intensity distribution with the maximum is obtained when the beam azimuth angle is 14 °, it is detected that the target exists in the 15 ° direction.
  • the azimuth angle where the target exists is 1 ° away from the center with respect to the strike angle indicating the local maximum of the received signal intensity distribution (running angle). Corner).
  • a target that exists at an azimuth angle of 16 ° outside the scanning angle range can be detected when the maximum received signal strength appears at 15 °. Therefore, it is possible to detect a target outside the angular range in which the transmission beam is actually scanned. That is, by using the above-described configuration of the present embodiment, it is possible to widen the range in which short-distance detection is possible.
  • the received signal intensity of the transmission beam is set to be lower at the end of the scanning angle range, and therefore, a target that is located at a long distance from the own vehicle is detected in the end direction. It is not possible, but it can detect targets that are close.
  • the azimuth angle of the target is detected from the maximum of the received signal intensity in the strike angle direction.
  • the target azimuth and received signal as shown in Figs.
  • the detected received signal intensity distribution pattern is compared with the stored received signal intensity distribution pattern to determine the target azimuth. It is also possible to detect.
  • a different distribution pattern is obtained for each target azimuth, so that the target azimuth can be uniquely determined.
  • the radar apparatus of the present embodiment has the same configuration as the radar apparatus shown in the first embodiment.
  • the transmission beam control method and the accompanying peak detection method are different. Therefore, description of each component is omitted, and only a transmission beam control method and a peak detection method will be described below.
  • FIG. 9 is an antenna gain pattern diagram showing the relationship between the azimuth angle and the relative antenna gain in the present embodiment.
  • the azimuth angle and the scanning angle are angles formed with the 0 ° direction as the center direction of the range of the strike angle of the antenna 5.
  • the azimuth angle is the direction in which the right-hand direction when viewed from the vehicle toward the radial direction is the direction in which the angle is +, and the left-hand direction is the direction in which the angle is one.
  • the scanning angle resolution is 1 °.
  • the transmission beam is set so that the reception intensity of the transmission beam in the center direction of the scanning angle range is stronger than the reception intensity of the transmission beam in other scanning angle directions. It is set so that the received signal strength due to the transmission beam gradually decreases from to the edge. In addition, the transmission beam is set so that the transmission beam width gradually increases from the center direction to the end direction of the scanning angle range.
  • the beam width of the transmitted beam in the 0 ° direction is about ⁇ 3 °, which is about 6 °. Is the end of +15.
  • the beam width of the transmitting beam in the direction will spread over 20 °.
  • the transmitted beam in the direction of + 15 ° is reflected by the target having an azimuth angle of + 25 °, and a received signal is obtained.
  • FIG. 10 is a relationship diagram between the peak scanning angle of the received signal intensity and the target azimuth angle when the transmission beam has the distribution shown in FIG.
  • the peak scanning angle of the received signal intensity is substantially shifted from the target azimuth angle to the central direction (0 ° direction) except for the 0 ° direction.
  • the peak strike angle of the received signal strength is 4 °
  • the peak strike angle of the received signal strength is 13 °
  • the target azimuth is 22 °.
  • FIG. 11 to FIG. 15 are diagrams showing the relationship between the transmission beam scanning angle and the corresponding received signal intensity when there are targets in each azimuth angle direction.
  • FIGS. 11 to 15 show the case where the transmission beam pattern shown in FIG. 9 is used for both transmission and reception.
  • FIG. 11 shows the case where the target exists in the 0 ° direction (the central direction of the scanning angle range)
  • FIG. 12 shows the case where the target exists in the + 5 ° direction
  • FIG. 13 shows the case where the target exists in the + 10 ° direction
  • FIG. 14 shows the case where the target exists in the + 15 ° direction.
  • Figure 15 shows the case where the target is in the + 20 ° direction.
  • the data processing unit 10 stores in advance the target azimuth angles and the corresponding received signal intensity scanning angle distributions as shown in FIG. 11 to FIG.
  • the relationship between the target azimuth angle and the maximum tilt angle of the received signal strength is stored in advance.
  • the target detection unit 13 detects the driving angle direction taking the maximum received signal intensity from the scanning angle distribution of the received signal intensity obtained by the current scan, and the stored received signal intensity becomes the maximum value.
  • the relationship between the scanning angle and the target azimuth angle (Fig. 4) is read, and the detection results are compared with the stored information. Then, the target detection unit 13 detects the target azimuth based on the comparison result.
  • a received signal intensity distribution having a maximum is obtained when the transmission beam scanning angle is 8 ° as shown in FIG. 13, it is detected that the target is present in the 10 ° direction, and the transmission as shown in FIG. If the received signal intensity distribution with the maximum is obtained when the beam scanning angle is 11 °, it is detected that the target exists in the 15 ° direction. Furthermore, if a received signal intensity distribution having a maximum is obtained when the transmit beam strike angle is 13 ° as shown in FIG. 15, it is detected that a target exists in the 20 ° direction.
  • the azimuth angle where the target exists is on the side away from the center with respect to the azimuth angle indicating the maximum of the received signal intensity distribution.
  • the transmission beam width is made closer to the end of the scanning angle range, so that it is possible to detect a wider range than the method shown in the first embodiment.
  • the azimuth angle of the target is detected from the scanning angle at which the received signal intensity is maximum.
  • the detected received signal intensity scanning angle distribution pattern and The azimuth angle of the target can be detected by comparing with the stored distribution pattern of the received signal intensity.
  • a different distribution pattern is obtained for each azimuth angle of the target, so that the direction angle of the target can be uniquely determined.
  • FIG. 16 is a schematic configuration diagram of the radar apparatus of this embodiment.
  • the radar apparatus according to this embodiment is different from the radar apparatus shown in FIG. 1 according to the first embodiment between the mixer 6 and the LPF 7.
  • a GA (Variable Gain Amplifier) 15 is installed, and other configurations are the same.
  • the VGA 15 is an amplifier capable of controlling the gain.
  • the VGA 15 receives the strike angle information of the transmission beam from the antenna strike mechanism 9, and the VGA 15 changes the amplification factor of the IF beat signal output from the mixer 6 based on the strike angle information. This makes it possible to control the relative antenna gain with respect to the azimuth angle as shown in FIG. 3 without controlling the intensity of the transmitted beam.
  • the IF beat signal thus gain-adjusted is digitally converted by the AZD conversion unit 8 via the LPF 7 and supplied to the data processing unit 10 as in the first embodiment.
  • the data processing unit 10 detects the target by processing the input data as shown in the first embodiment.
  • FIG. 16 the force showing the configuration in which VGA15 is installed between mixer 6 and LPF7. As shown in Fig. 17, VGA15 is not used and FFT processing unit 11 of data processing unit 10 and peak detection are performed. A level correction unit 14 may be installed between the unit 12 and the unit 12.
  • FIG. 17 is a schematic configuration diagram showing another configuration of the radar apparatus of the present embodiment.
  • an IF beat signal is obtained from a transmission beam that is not subjected to intensity control in the scanning angle direction, and FFT processing is performed.
  • the level correction unit 14 corrects the level of the FFT processed data based on the scanning beam scanning angle information input from the control unit 1. As a result, the relative antenna gain with respect to the azimuth angle as shown in FIG. 3 can be controlled without controlling the intensity of the transmitted beam.
  • the example in which the azimuth angle at which the reception intensity is maximized is arranged so as to be the center of the scanning angle range is shown. It may be set so that the received signal intensity in the direction other than the center of the scanning angle range is the highest. For example, when two radars are installed on both sides of the front of the vehicle, the left radar is set so that the received signal intensity in the right direction from the center of the scanning angle range is maximum, and the right radar is set to the strike angle range. Set so that the received signal strength in the direction to the left of the center is the maximum.
  • the received signal intensity distribution of the radar can be corrected by the level correction unit 14, and this correction can be varied depending on the conditions. Therefore, for example, it is possible to change the target detectable range at any time by switching the maximum reception intensity point in the running angle range according to the steering angle of the vehicle.
  • the actual measured value peak of the discrete received signal strength based on the scanning angle pitch is detected.
  • the peak of the received signal strength distribution is interpolated to obtain the peak.
  • the scanning angle may be detected.
  • FIG. 18 is a conceptual diagram when the received signal strength is approximated by a quadratic function and interpolated.
  • the scanning angle of the received signal strength curve force peak represented by the approximate expression is detected.
  • the scanning angle of the detected peak the scanning angle closest to the angle that becomes the peak obtained from the curve represented by the approximate expression is adopted.
  • the azimuth angle of the target is detected by the method described in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 送信ビームは、走査角範囲の中心方向から端部方向にかけて徐々に送信ビームによる受信強度が弱くなるように設定されている。例えば、送信ビーム(505R)の中心方向にターゲットとなる他車(100)が存在する場合、送信ビーム(505R)による中心方向の受信強度(551R)よりも、送信ビーム(504R)による受信信号強度(542R)のほうが強くなるように設定されている。この送信ビームによる受信信号強度の走査角分布を検出すると、受信信号強度のピークが現れる走査角は、実際にターゲットが存在する方位角よりも走査角範囲の中心側となる。したがって、送信ビームの走査角範囲よりも所定量外側迄の領域に存在するターゲットによる受信信号強度のピークが走査角範囲内に現れる。

Description

明 細 書
レーダ装置
技術分野
[0001] この発明は、ミリ波を用いた車載用のレーダ装置、特に、所定角範囲内でビーム方 向を走査し、受信信号からターゲットを検知するレーダ装置に関するものである。 背景技術
[0002] 従来、ミリ波を利用した車載用のレーダ装置が各種考案されており、これらのレーダ 装置のなかには、所定の走査角範囲内でアンテナを走査しながら送信ビームを送信 し、ターゲットに反射した受信信号でターゲットを検知する角度走査型レーダ装置が ある。
[0003] し力しながら、角度走査型レーダ装置では、送信ビームの送信範囲は扇形となるた め、 自車から遠距離であるほど検知範囲が広くなり、 自車近傍では検知範囲が狭くな つてしまう。
[0004] これを解決する角度走査型レーダ装置として、特許文献 1には、それぞれに少しず つ指向方向が異なる複数のアンテナを配設し、送受信に利用するアンテナの組み合 わせを変化させることで、遠距離、近距離、を設定するものが開示されている。具体 的には、このレーダ装置は、 P 接する複数のアンテナを用いて送信ビーム幅を狭め ることで遠距離での方位分解能を向上させ、このような遠距離探知で利用するアンテ ナよりも少ないアンテナ数で送信ビーム幅を広げることにより近距離での検知範囲を 広くさせている。
特許文献 1 :特開平 8— 334557号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、従来の一般的な角度走查型レーダ装置は、走查角範囲外のターグ ットを検知することが出来なかった。例えば、最外角(走查角範囲の端部)で検知され た受信信号のピークが、その角度方向に存在するターゲットによるものであるのか、 範囲外に存在するターゲットによるものであるかを識別することは困難であった。 [0006] また、特許文献 1に記載のレーダ装置は、複数のアンテナを用いなければならず、 これらを用いて送信ビーム制御を行う場合、制御用のスィッチ群とこれらスィッチ群を 制御するための複雑な制御処理を行わなければならない。さらに、遠距離の検知と 近距離の検知で利用するアンテナが異なるので、それぞれに異なる動作制御を行わ なければならない。
[0007] したがって、本発明の目的は、 1つのアンテナで遠距離の検知と近距離の広角検 知とを実現するレーダ装置を提供することにある。
課題を解決するための手段
[0008] この発明は、アンテナから外部に送信する送信ビームを形成する送信ビーム形成 手段と、所定走査角範囲内で送信ビームを走査するビーム走査手段と、送信ビーム 力 sターゲットに反射してアンテナで得られる受信信号力 ターゲットを検知する受信 検知手段と、を備えたレーダ装置において、走査角範囲の所定の方位角から少なく とも一方端に向かって X° の方位角にあるターゲットに対して、 X° の方位角に送信 される送信ビームに対する受信信号強度が、 X0 の方位角より所定の方位角側にあ る少なくとも 1つの送信ビームに対する受信信号強度より低くなるように設定されてい ることを特 ί敷としてレ、る。
[0009] この構成では、或る走查角(方位角) Χ° 方向に存在するターゲットに対して走查角 X0 方向の送信ビームによる受信信号の強度よりも所定の方位角側の少なくとも 1つ の走査角方向の送信ビームによる受信信号の強度が高くなる設定を、各走査角に対 して行う。これにより、ターゲットの走查角(方位角)よりも受信信号強度のピークが現 れる走查角の方が所定の方位角側になる。
[0010] また、この発明のレーダ装置は、 X。 の方位角に送信される送信ビームに対する受 信信号強度を、 χ° の方位角より所定の方位角側にある、 χ° の方位角に送信され る送信ビームに隣接する送信ビームに対する受信信号強度より低くなるように設定す ることを特 ί数としてレ、る。
[0011] この構成では、或る走査角(方位角) χ° 方向に存在するターゲットに対して走査角 X0 方向の送信ビームによる受信信号の強度よりも所定の方位角側に隣接する走査 角方向の送信ビームによる受信信号の強度が高くなる設定を、各走査角に対して行 う。これにより、ターゲットの走査角(方位角)に対して、所定の方位角側に隣接する 方位角に受信信号強度のピークが現れる。
[0012] また、この発明のレーダ装置は、送信ビーム形成手段で、走査角範囲の所定の方 向のアンテナ利得に対して、一方端へ向かって徐々に各走查角方向のアンテナ利 得が低くなるように設定することを特徴としてレ、る。
[0013] この構成では、或る走查角方向にターゲットが存在する場合に、当該走查角方向よ りも所定の方向側の走查角方向に送信される送信ビームよる受信信号が、ターゲット が存在する走査角方向に送信される送信ビームによる受信信号よりも大きくなる。
[0014] また、この発明のレーダ装置は、送信ビーム形成手段で、走查角範囲の所定の方 向から一方端へ向かって徐々に各走查角方向の送信ビームの幅を広くすることを特 徴としている。
[0015] この構成では、送信ビームの強度を一方端方向に向かって弱くせずともアンテナの みの特性で送信波のビーム方向強度に分布を持たせることができる。さらに、より方 端側のビームほど、より広い範囲からの受信信号が得られる。これにより、ターゲット の走査角(方位角)よりも受信信号のピークが現れる走査角の方が所定の方向側に なる。
[0016] また、この発明のレーダ装置は、受信検知手段で、走査角範囲の所定の方向の受 信信号強度に対して、一方端へ向かって徐々に受信信号強度が低くなるように、各 走査角方向の受信信号強度を補正することを特徴としている。
[0017] この構成では、前述の各構成のように送信ビームを制御するのではなぐ受信信号 を制御する。これにより、前述の送信ビームを制御した場合と同様の結果が得られる 。なお、送信ビームの制御に加えて受信信号の制御を行うことも可能であり、これを 行うことにより、さらに走查角方向毎の違いが明確にさせられる。
[0018] また、この発明のレーダ装置は、ターゲットの方位角と受信信号強度との対応表ま たは関係式が記憶された記憶手段を備え、受信検知手段で、受信信号強度が極大 となる走查角を検出し、該検出した走查角を対応表または関係式に適用してターグ ットの方位角を検知することを特徴としてレ、る。
[0019] この構成では、受信信号強度の極大(ピーク)の走查角と、その場合のターゲットの 方位角とが予め関連付けされることで、得られた受信信号強度の走査角分布から受 信信号強度のピークを検出すれば、ターゲットの方位角が検知される。
[0020] また、この発明のレーダ装置は、受信検知手段で、各送信ビームによる受信信号強 度を補間して受信信号強度の極大を検出することを特徴としている。
[0021] この構成では、走査角分解能により離散的に現れる各走査角方向の受信信号を補 間して (例えば、所定の連続関数等に置き換えて)、ピークを検出することで、より正 確なピーク位置が得られる。
発明の効果
[0022] この発明によれば、ターゲットの存在する実際の走査角(方位角)よりも受信信号強 度のピークが、走査角範囲の中心側に現れることにより、走査角範囲の端部および 端部付近では、走査角範囲よりも外側に存在するターゲットによる受信信号強度のピ ークが走査角範囲内に現れる。これにより、実際に送信ビームを送信する走査角範 囲よりも外側のターゲットを検知することができる。
[0023] また、この発明によれば、走査角範囲の端部ほど送信ビームに広がりを持たせるこ とにより、走査角範囲の端部から外側へより離れた位置のターゲットを検知することが できる。
[0024] また、この発明によれば、受信信号強度を制御することでも、走查角範囲の端部お よび端部付近では、走查角範囲よりも外側に存在するターゲットによる受信信号のピ ークが走查角範囲内に現れる。これにより、実際に送信ビームを送信する走查角範 囲よりも外側のターゲットを検知することができる。
[0025] また、この発明によれば、走查角範囲の内外に依らず、ターゲットの走查角と受信 信号強度のピークの走査角とを関連付けしておくことで、受信信号強度のピークから 容易にターゲットの走查角すなわち方位を検知することができる。
[0026] また、この発明によれば、各走査角の受信信号強度を補間することで、離散的に現 れる受信信号強度が連続的になり、受信信号強度の走査角分布が、より緻密になる 。このような受信信号強度の走査角分布によりピークが検知されると、さらに正確にタ 一ゲットの方位を検知することができる。
図面の簡単な説明 [図 1]第 1の実施形態のレーダ装置の構成を示す概略構成図である。
[図 2]各走査角方向の送信ビームによる受信信号強度の分布を示す模式図である。
[図 3]方位角(走査角)と相対アンテナゲインとの関係を示すアンテナゲインパターン 図である。
[図 4]送信ビームを図 3に示す分布にした場合における受信信号強度のピーク方位 角とターゲット方位角との関係図である。
[図 5]0° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対応 する受信信号強度の関係を示した図である。
[図 6]5° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対応 する受信信号強度の関係を示した図である。
[図 7]10° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対 応する受信信号強度の関係を示した図である。
[図 8] 15° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対 応する受信信号強度の関係を示した図である。
[図 9]第 2の実施形態における、方位角と相対アンテナゲインとの関係を示すアンテ ナゲインパターン図である。
[図 10]送信ビームを図 9に示す分布にした場合における受信信号強度のピーク方位 角とターゲット方位角との関係図である。
[図 11]0° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対 応する受信信号強度の関係を示した図である。
[図 12]5° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに対 応する受信信号強度の関係を示した図である。
[図 13]10° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに 対応する受信信号強度の関係を示した図である。
[図 14] 15° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに 対応する受信信号強度の関係を示した図である。
[図 15]20° 方向にターゲットが存在する場合における、送信ビーム方位角とこれに 対応する受信信号強度の関係を示した図である。 [図 16]第 3の実施形態のレーダ装置の概略構成図である。
[図 17]第 3の実施形態のレーダ装置の他の構成を示す概略構成図である。
[図 18]受信信号強度を 2次関数で近似して補間する場合の概念図である。
符号の説明
[0028] 1一制御部
2- VCO
3—力プラ
4 サーキユレータ
5—アンテナ
6—ミキサ
7— LPF
8— A/D変換部
9 アンテナ走査機構
10—データ処理部
11 FFT処理部
12_ピーク検出部
13_ターゲット検知部
14一データ補正部
15- VGA
発明を実施するための最良の形態
[0029] 本発明の第 1の実施形態に係るレーダ装置について図 1〜図 8を参照して説明す る。なお、本実施形態では、レーダ装置として自動車に装着した FM— CWレーダ装 置を例に説明する。
図 1は本実施形態のレーダ装置の構成を示す概略構成図である。
本実施形態のレーダ装置は、制御部 1、 VC02、カプラ 3、サーキユレータ 4、アン テナ 5、ミキサ 6、ローパスフィルタ(LPF) 7、 A/D変換部 8、アンテナ走査機構 9、デ ータ処理部 10を備える。データ処理部 10は FFT処理部 11、ピーク検出部 12、ター ゲット検知部 13を備える。 [0030] 制御部 1は送信信号を変調する変調信号のディジタルデータを順次生成して、この ディジタルデータに基づく制御電圧を VC〇2に出力する。 VC02は制御部 1より入力 される制御電圧に応じて発振周波数を変化させる。これにより、 VC02の発振周波数 を例えば三角波状に連続して FM変調させる。力ブラ 3は、 FM変調された送信信号 をサーキユレータ 4側へ伝送するとともに、所定の分配比で送信信号の一部をロー力 ル信号としてミキサ 6へ与える。サーキユレータ 4は、送信信号をアンテナ 5側へ伝送 し、また、アンテナ 5からの受信信号をミキサ 6へ与える。アンテナ 5は、 VC〇2の FM 変調された連続波の送信信号を所定の広がりをもつ送信ビームとして送信する。また 、アンテナ 5は、アンテナ走查機構 9により送信ビームの方向を所定の走查角度範囲 に亘つて周期的に変化させ、送信ビームのスキャンを行う。なお、以下の説明では、 ビーム走查を自車から水平方向に沿って行う例を示し、前記走查角は方位角に相当 する。この際、各送信ビームの放射方向の中心の角度ピッチ、すなわち走查角の分 解能は予め設定されており、さらに、走査角毎の送信ビーム強度の分布も予め設定 されている。
[0031] 図 2は各走査角方向の送信ビームによる受信信号強度の分布を示す模式図であり 、(A)が全体図、 (B)が部分拡大図である。図 2において、 501, 502R〜505R, 50 2L〜505Lは送信ビーム形状および該送信ビームより得られる受信信号強度分布の 形状を示す。ここで、送信ビームによる受信信号強度とは、それぞれ方位角方向(走 查角方向)において、 自車から同じ距離にあるターゲットに送信ビームを送信して得 られる受信信号強度を示す。
[0032] 図 3は方位角(走査角)と相対アンテナゲインとの関係を示すアンテナゲインパター ン図である。ここで、方位角は、アンテナ 5の走查角範囲の中心方向を 0° 方向とし、 この 0° 方向との成す角を示す。また、方位角は、 自車から放射方向へ向かって見た 場合の右側方向を角度が +となる方向とし、左側方向を角度が一となる方向としたも のである。
[0033] 送信ビームは、走查角範囲の中心方向の送信ビームによる受信信号強度が、他の 走查角方向の送信ビームによる受信信号強度よりも強くなるように設定されており、 走查角範囲の中心方向から端部方向にかけて徐々に送信ビームによる受信信号強 度が弱くなるように設定されている。例えば、図 2に示すように、放射方向に向かって 右側の領域では、中心方向の送信ビームの受信強度 501に対して、中心方向から 端部にかけて各走査角方向の受信強度 502R, 503R, 504R, 505Rが順に弱くな る設定がなされている。また、放射方向に向かって左側の領域では、中心方向の送 信ビームの受信強度 501に対して、中心方向から端部にかけて各走查角方向の受 信強度 502L, 503L, 504L, 505Lが順に弱くなる設定がなされている。
[0034] そして、隣り合う送信ビーム同士では、例えば、 X。 方向にターゲットが存在し、走 查角度ピッチが y° である場合に、 X° 方向に送信された送信ビームによる X° 方向 の受信信号強度よりも、中心側に隣り合う X° -y° 方向に送信された送信ビームに よる X° 方向の受信信号強度の方が強くなるように設定されている。例えば、図 2に 示すように、送信ビーム 505Rの中心方向にターゲットとなる他車 100が存在する場 合、送信ビーム 505Rによるこの送信ビームの中心方向の受信強度 551Rよりも、送 信ビーム 504Rによる送信ビーム 505Rの中心方向での受信信号強度 542Rのほう が強くなるように設定されている。
[0035] これを、具体的に示すのが図 3であり、図 3の場合、走査角分解能は 1° である。図 3の設定では、 + 1° 方向のターゲットに対して、 + 1° 方向を中心方向とする送信ビ ームによる受信信号強度よりも、 0° 方向を中心とする送信ビームによる受信信号強 度の方が高く設定されている。この関係(分布)は、走査角範囲の中心(0° 方向)か ら端部である + 15° 方向まで走査角が増加しても同じに設定されている。そして、走 查角範囲の一方端である + 15° 方向のターゲットに対して、 + 15° 方向を中心方 向とする送信ビームによる受信信号強度よりも、 + 14° 方向を中心とする送信信号 による受信信号強度の方が高く設定されている。なお、図 3の設定では、 +角度方向 (右側方向)の走査角に対する分布を示したが、一角度方向(左側方向)の走査角に 対する分布も同様である。そして、このような +角度方向の分布と—角度方向の分布 とは完全に同じものでなくてもよぐさらには、一方方向(+角度方向または一角度方 向)のみであってもよい。
[0036] このような設定を用いることで、図 4に示すような受信信号強度のピーク走查角とタ 一ゲット方位角との関係を得ることができる。 図 4は受信信号強度のピーク走査角とターゲット方位角との関係図である。
これにより、受信信号強度のピーク走査角は、中心方向(0° 方向)を除いて、ター ゲット方位角から中心方向(0° 方向)へ 1° ずれた関係となる。
[0037] このように設定された送信ビームは、ターゲットに反射して、同方向からの反射信号 としてアンテナ 5で受信される。アンテナ 5は受信信号をサーキユレータ 4に出力し、 サーキユレータ 4は受信信号をミキサ 6に伝送する。
[0038] ミキサ 6は、カプラ 3からのローカル信号とサーキユレータ 4からの受信信号とをミキ シングして IFビート信号を出力する。 LPF7は IFビート信号のうち不要な高周波成分 を除去し、 A/D変換部 8はその信号をサンプリングデータ列に変換してデータ処理 部 10の FFT処理部 11へ与える。
[0039] FFT処理部 11は、 AZD変換部 8により変換されたサンプリングデータ列を FFT処 理し、ピーク検出部 12に与える。ピーク検出部 12は、 FFT処理されたデータに対し て閾値処理を行うことで各走査角方向の受信信号強度を検出して、ターゲット検知部 13に与える。ターゲット検知部 13は、次に示す方法で各走査角方向の受信信号強 度の分布からターゲットの方位角を検知する。この際、ターゲット検知部 13は既知の FM— CWの手法により自車からターゲットまでの相対距離および相対速度を検出す る。
[0040] 図 5〜図 8は、各方位角方向にターゲットが存在する場合における、送信ビーム走 查角とこれに対応する受信信号強度の関係を示した図である。これら図 5〜図 8の結 果は図 3に示す送信ビームのパターンを送信受信の両方に用いた場合について示 したものである。ここで、図 5はターゲットが 0° 方向(走査角範囲の中心方向)に存在 する場合を示し、図 6はターゲットが + 5° 方向に存在する場合を示す。図 7はターグ ットが + 10° 方向に存在する場合を示し、図 8はターゲットが + 15° 方向に存在す る場合を示す。
[0041] ターゲット検知部 13は、送信ビームを少なくとも 1スキャンさせた結果が得られると、 ピーク検出部 12で検出された受信信号強度を用いて、受信信号強度の走査角分布 を検出する。データ処理部 10には、図 5〜図 8に示すような、ターゲットの方位角とこ れに対応する受信信号強度の走査角分布とが関連付けして予め記憶されるか、図 4 に示すようなターゲット方位角と受信信号強度の極大値の走査角との関係が予め記 憶されている。そして、ターゲット検知部 13は、今回のスキャンにより得られる受信信 号強度の走査角分布から極大の受信信号強度を取る走査角方向を検出し、前記記 憶された受信信号強度が極大値となる走査角とターゲットの方位角との関係(図 4)を 読み出し、これら検出結果と記憶情報とを比較する。そして、ターゲット検知部 13は 比較結果に基づいてターゲット方位角を検出する。例えば、図 7に示すような送信ビ ーム方位角度が 9° のときに極大を有する受信信号強度分布が得られれば、 10° 方向にターゲットが存在すると検知し、図 8に示すような送信ビーム方位角度が 14° のときに極大を有する受信信号強度分布が得られれば、 15° 方向にターゲットが存 在すると検知する。
[0042] このように、本実施形態では、受信信号強度分布の極大を示す走查角に対して、タ 一ゲットが存在する方位角は、 1° だけ中心から離れる側の方位角(走查角)となる。 この関係を利用することで、走査角範囲外の方位角 16° の位置に存在するターゲッ トは、受信信号強度の極大が 15° に現れる場合に検知することができる。したがって 、実際に送信ビームを走査する角度範囲よりも外側のターゲットをも検知することがで きる。すなわち、本実施形態の前述の構成を用いることで、近距離の探知可能な方 位を広く取ることができる。
[0043] この際、前述のように送信ビームの受信信号強度は、走査角範囲の端部ほど低く 設定されているので、端部方向では、 自車から遠距離に存在するターゲットを検知す ることはできないが、近距離に存在するターゲットを検知することはできる。
[0044] 一方、走査角範囲の中心部では、従来と略同じ受信信号強度を設定することがで きるので、中心部では自車力 遠距離に存在するターゲットに関しては従来通りに検 矢口すること力 Sできる。
[0045] この結果、走查角範囲の中心方向付近に存在する他車を遠距離まで正確に検知 するとともに、 自車近傍においては広い範囲で他車を検知することができ、急な割り 込みを行う他車等を確実に且つ早期に検知することができる。
[0046] なお、前述の説明では、走查角方向の受信信号強度の極大からターゲットの方位 角を検知した。し力 ながら、図 5〜図 8に示すようなターゲットの方位角と受信信号 強度の分布パターンとを関連付けして記憶しておくことで、検出した受信信号強度の 分布パターンと、記憶しておいた受信信号強度の分布パターンとを比較して、ターゲ ットの方位角を検知することも可能である。このような分布パターンを用いた方法では 、ターゲットの方位角毎に異なる分布パターンが得られるので、ターゲットの方位角を 一義的に決定することができる。
[0047] 次に、第 2の実施形態に係るレーダ装置について図 9〜図 15を参照して説明する 本実施形態のレーダ装置は、第 1の実施形態に示したレーダ装置と同じ構成であり 、送信ビームの制御方法とこれに伴うピーク検出方法が異なるものである。このため、 各構成要素の説明は省略し、送信ビームの制御方法およびピーク検出方法のみを、 以下に説明する。
[0048] 図 9は、本実施形態における、方位角と相対アンテナゲインとの関係を示すアンテ ナゲインパターン図である。ここで、方位角および走査角は、アンテナ 5の走查角範 囲の中心方向を 0° 方向とし、この 0° 方向のとの成す角を示す。また、方位角は、 自車から放射方向へ向かって見た場合の右手方向を角度が +となる方向とし、左手 方向を角度が一となる方向としたものである。また、走査角分解能は 1° である。
[0049] 送信ビームは、走査角範囲の中心方向の送信ビームによる受信強度が、他の走査 角方向の送信ビームによる受信強度よりも強くなるように設定されており、走査角範 囲の中心方向から端部方向にかけて徐々に送信ビームによる受信信号強度が弱く なるように設定されている。また、送信ビームは、走査角範囲の中心方向から端部方 向にかけて徐々に送信ビーム幅が広くなるように設定されている。
[0050] 例えば、図 9の例では、 0° 方向の送信ビームのビーム幅は約 ± 3° で約 6° 程度 であるが、走查角が大きくなるほどビーム幅が広くなり、走查角範囲の端である + 15 。 方向の送信ビームのビーム幅は 20° 以上に広がる。これにより、 + 15° 方向の送 信ビームは方位角が + 25° に存在するターゲットでも反射されて、受信信号が得ら れる。
[0051] このような設定を用いることで、図 10に示すような受信信号強度のピーク走查角とタ 一ゲット方位角との関係を得ることができる。 図 10は、送信ビームを図 9に示す分布にした場合における受信信号強度のピーク 走査角とターゲット方位角との関係図である。
図 10に示すように、受信信号強度のピーク走査角は、 0° 方向を除いて、ほぼター ゲット方位角から中心方向(0° 方向)へずれた関係となる。例えば、ターゲット方位 角が 5° の場合には受信信号強度のピーク走查角は 4° となり、ターゲット方位角が 20° の場合には受信信号強度のピーク走查角は 13° となる。そして、受信信号強 度のピーク走查角が 15° であれば、ターゲット方位角は 22° となる。このように、本 実施形態の送信ビームの制御方法を用いることで、実際に送信ビームを ± 15° でス キャンしただけで、略 ± 22° の範囲に存在するターゲットの方位を検出することが可 能である。
[0052] 一方、図 11〜図 15は、各方位角方向にターゲットが存在する場合における、送信 ビーム走査角とこれに対応する受信信号強度の関係を示した図である。これら図 11 〜図 15の結果は図 9に示す送信ビームのパターンを送信受信の両方に用いた場合 について示したものである。ここで、図 11はターゲットが 0° 方向(走査角範囲の中心 方向)に存在する場合を示し、図 12はターゲットが + 5° 方向に存在する場合を示す 。図 13はターゲットが + 10° 方向に存在する場合を示し、図 14はターゲットが + 15 ° 方向に存在する場合を示す。また、図 15はターゲットが + 20° 方向に存在する場 合を示す。
[0053] 本実施形態のレーダ装置において、データ処理部 10には図 11〜図 15に示すよう なターゲットの方位角とこれに対応する受信信号強度の走査角分布とが関連付けし て予め記憶されるカ 図 10に示すようなターゲット方位角と受信信号強度の極大値 の走查角との関係が予め記憶されている。そして、ターゲット検知部 13は、今回のス キャンにより得られる受信信号強度の走査角分布から極大の受信信号強度を取る走 查角方向を検出し、前記記憶された受信信号強度が極大値となる走査角とターゲッ ト方位角との関係(図 4)を読み出し、これら検出結果と記憶情報とを比較する。そし て、ターゲット検知部 13は比較結果に基づいてターゲット方位角を検出する。例えば 、図 13に示すような送信ビーム走査角が 8° のときに極大を有する受信信号強度分 布が得られれば、 10° 方向にターゲットが存在すると検知し、図 14に示すような送信 ビーム走査角が 11° のときに極大を有する受信信号強度分布が得られれば、 15° 方向にターゲットが存在すると検知する。さらには、図 15に示すような送信ビーム走 查角が 13° のときに極大を有する受信信号強度分布が得られれば、 20° 方向にタ 一ゲットが存在すると検知する。
[0054] このように、本実施形態では、受信信号強度分布の極大を示す方位角に対して、タ 一ゲットが存在する方位角は中心から離れる側に存在する。これにより、図 15の場合 のように、実際に送信ビームを走查する角度範囲よりも外側のターゲットをも検知する こと力 Sできる。すなわち、本実施形態の前述の構成を用いることで、近距離の探知可 能な方位を広く取ることができる。そして、本実施形態では走査角範囲の端ほど送信 ビーム幅をすることで、第 1の実施形態に示した方法よりも、さらに広範囲を検知する こと力 Sできる。
[0055] 一方、走查角範囲の中心部では、従来および第 1の実施形態と略同じ送信ビーム 幅を設定することで、中心部では自車から遠距離に存在するターゲットに関しては従 来通りに検知することができる。
[0056] この結果、走査角範囲の中心方向付近に存在する他車を遠距離まで正確に検知 するとともに、 自車近傍においては、より一層広い範囲で他車を検知することができ、 急な割り込みを行う他車等を確実に且つさらに早期に検知することができる。
[0057] なお、前述の説明では、受信信号強度が極大となる走査角からターゲットの方位角 を検知した。し力 ながら、図 11〜図 15に示すようなターゲット方位角と受信信号強 度の走査角分布パターンとを関連付けして記憶しておくことで、検出した受信信号強 度の走査角分布パターンと、記憶しておいた受信信号強度の分布パターンとを比較 して、ターゲットの方位角を検知することができる。このような分布パターンを用いた方 法では、ターゲットの方位角毎に異なる分布パターンが得られるので、ターゲットの方 位角を一義的に決定することができる。
[0058] 次に、第 3の実施形態に係るレーダ装置について図 16、図 17を参照して説明する 図 16は本実施形態のレーダ装置の概略構成図である。本実施形態のレーダ装置 は、第 1の実施形態の図 1に示したレーダ装置に対して、ミキサ 6と LPF7との間に V GA (Variable Gain Amplifier) 15が設置されたものであり、他の構成は同じであ る。
[0059] VGA15はゲインをコントロールすることが可能な増幅器である。 VGA15にはアン テナ走查機構 9から送信ビームの走查角情報が与えられ、 VGA15は、この走查角 情報に基づいてミキサ 6から出力される IFビート信号の増幅率を変化させる。これに より、送信ビームの強度制御を行わなくても、図 3に示したような方位角に対する相対 アンテナゲインの制御を行うことができる。このようにゲイン調整された IFビート信号は 、第 1の実施形態と同様に、 LPF7を介して AZD変換部 8でディジタル変換されてデ ータ処理部 10に与えられる。データ処理部 10は、第 1の実施形態に示したように入 力データを処理してターゲットを検知する。
[0060] このような構成とすることで、送信ビームの走查角による強度制御を行うことなぐ走 查角範囲の中心方向付近に存在する他車を遠距離まで正確に検知するとともに、自 車近傍にぉレ、ては広レ、範囲で他車を検知することができる。
[0061] なお、図 16ではミキサ 6と LPF7との間に VGA15を設置する構成を示した力 図 1 7に示すように、 VGA15を用いず、データ処理部 10の FFT処理部 11とピーク検出 部 12との間に、レベル補正部 14を設置してもよい。
[0062] 図 17は本実施形態のレーダ装置の他の構成を示す概略構成図である。
この構成の場合、走査角方向による強度制御が行われていない送信ビームによる I Fビート信号を得て、 FFT処理を行う。レベル補正部 14は、 FFT処理されたデータを 、制御部 1から入力される送信ビームの走査角情報に基づいてレベル補正する。こ れにより、送信ビームの強度制御を行わなくても、図 3に示したような方位角に対する 相対アンテナゲインの制御を行うことができる。
[0063] このように、送信ビーム強度の走查角による制御に限らず、受信系の各回路素子で 、受信信号や受信データの強度を調整'補正することで、走査角範囲の中心方向付 近に存在する他車を遠距離まで正確に検知するとともに、 自車近傍においては広い 範囲で他車を検知することができる。
[0064] なお、本実施形態の前述の説明では、送信ビーム強度の走查角による制御を行わ ない場合を示したが、送信ビーム強度の走査角制御を行った状態で受信信号およ び受信データの調整'補正を行ってもよい。
[0065] また、前述の各実施形態では受信強度が最も大きくなる方位角を走査角範囲の中 心となるように配置した例を示した力 レーダ装置の設置位置や設置数に対応させて 、走査角範囲の中心以外の方位の受信信号強度が最も大きくなるように設定してもよ レ、。例えば、車両の前面の両側に 2つのレーダを設置する場合、左側のレーダでは 走査角範囲の中心より右側の方位の受信信号強度が最大となるように設定し、右側 のレーダでは走查角範囲の中心より左側の方位の受信信号強度が最大となるように 設定する。
さらに、第 3の実施形態に示した方法では、レーダの受信信号強度分布はレベル 補正部 14で補正が可能であり、条件に応じてこの補正を異ならせることが可能である 。従って、例えば、車両の舵角に応じて走查角範囲の受信強度最大点を切り替えて 、ターゲットの検知可能範囲を随時変更することが可能となる。
[0066] また、前述の各実施形態では、走査角度ピッチに基づく離散的な受信信号強度の 実測値力 ピークの走査角を検知したが、得られた受信信号強度の分布を補間処理 してピークの走査角を検知してもよい。
例えば、図 18は受信信号強度を 2次関数で近似して補間する場合の概念図であり 、この場合、近似式により表される受信信号強度曲線力 ピークの走査角を検知する 。ここで、検知されるピークの走査角は、近似式により表される曲線から得られるピー クとなる角に最も近い走査角が採用される。そして、このように検知された走査角を用 いて、前述の第 1の実施形態に示した方法でターゲットの方位角を検知する。このよ うな方法を用いることで、走査角毎の受信信号強度のバラツキを補正することができ 、より適正なピークの走查角を検知することができる。なお、補間方法としては、前述 の 2次関数による近似の他に、他の関数での近似や、スムージング (移動平均)や、 受信信号強度とこれに対応する走査角による点を複数取得して重心を求める方法等 を用レ、ることもできる。

Claims

請求の範囲
[1] アンテナから外部に送信する送信ビームを形成する送信ビーム形成手段と、 所定走査角範囲内で送信ビームを走査するビーム走査手段と、
前記送信ビームがターゲットに反射して前記アンテナで得られる受信信号力 前記 ターゲットを検知する受信検知手段と、を備えたレーダ装置において、
前記走查角範囲の所定の方位角から少なくとも一方端に向かって x° の方位角に あるターゲットに対して、前記 x° の方位角に送信される送信ビームに対する受信信 号強度が、前記 x° の方位角より前記所定の方位角側にある少なくとも 1つの送信ビ ームに対する受信信号強度より低くなるように設定されていることを特徴とするレーダ 装置。
[2] 前記 X° の方位角に送信される送信ビームに対する受信信号強度が、前記 X° の 方位角より前記所定の方位角側にある、前記送信ビームに隣接する送信ビームに対 する受信信号強度より低くなるように設定されていることを特徴とする請求項 1に記載 のレーダ装置。
[3] 前記送信ビーム形成手段は、
前記走査角範囲の前記所定の方向のアンテナ利得に対して、前記一方端へ向か つて徐々に各走査角方向のアンテナ利得が低くなるように設定されたことを特徴とす る請求項 1または請求項 2に記載のレーダ装置。
[4] 前記送信ビーム形成手段は、
前記走査角範囲の前記所定の方向から前記一方端へ向かって徐々に各走査角方 向の送信ビームの幅を広くすることを特徴とする請求項 1〜請求項 3のいずれかに記 載のレーダ装置。
[5] 前記受信検知手段は、
前記走査角範囲の前記所定の方向の受信信号強度に対して、前記一方端へ向か つて徐々に受信信号強度が低くなるように、各走査角方向の受信信号強度を補正す ることを特徴とする請求項 1〜4のいずれかに記載のレーダ装置。
[6] 前記ターゲットの方位角と前記受信信号強度との対応表または関係式が記憶され た記憶手段を備え、 前記受信検知手段は、
受信信号強度が極大となる走査角を検出し、該検出した走査角を前記対応表また は関係式に適用して、前記ターゲットの方位角を検知する請求項 1〜5のいずれかに 記載のレーダ装置。
前記受信検知手段は、各送信ビームによる受信信号強度を補間して、前記受信信 号強度の極大を検出する請求項 1〜6のいずれかに記載のレーダ装置。
PCT/JP2006/311829 2005-06-15 2006-06-13 レーダ装置 WO2006134911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800187454A CN101185009B (zh) 2005-06-15 2006-06-13 雷达装置
DE112006001358T DE112006001358T5 (de) 2005-06-15 2006-06-13 Radarvorrichtung
JP2007521298A JP4591507B2 (ja) 2005-06-15 2006-06-13 レーダ装置
US11/946,657 US7463185B2 (en) 2005-06-15 2007-11-28 Radar apparatus having wide-angle detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005174851 2005-06-15
JP2005-174851 2005-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/946,657 Continuation US7463185B2 (en) 2005-06-15 2007-11-28 Radar apparatus having wide-angle detection

Publications (1)

Publication Number Publication Date
WO2006134911A1 true WO2006134911A1 (ja) 2006-12-21

Family

ID=37532269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311829 WO2006134911A1 (ja) 2005-06-15 2006-06-13 レーダ装置

Country Status (5)

Country Link
US (1) US7463185B2 (ja)
JP (1) JP4591507B2 (ja)
CN (1) CN101185009B (ja)
DE (1) DE112006001358T5 (ja)
WO (1) WO2006134911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463185B2 (en) * 2005-06-15 2008-12-09 Murata Manufacturing Co., Ltd. Radar apparatus having wide-angle detection

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137088B1 (ko) * 2010-01-06 2012-04-19 주식회사 만도 통합 레이더 장치 및 통합 안테나 장치
JP5093298B2 (ja) * 2010-06-04 2012-12-12 株式会社デンソー 方位検出装置
US8902103B2 (en) * 2011-03-16 2014-12-02 Electronics And Telecommunications Research Institute Radar apparatus supporting short and long range radar operation
EP3156815B1 (en) * 2014-06-11 2022-03-30 Furuno Electric Co., Ltd. Radar device and transmission-signal control method
JP6331195B2 (ja) * 2014-09-29 2018-05-30 パナソニックIpマネジメント株式会社 レーダ装置
CN105738871A (zh) * 2014-12-24 2016-07-06 松下知识产权经营株式会社 雷达系统
WO2019233830A1 (en) * 2018-06-06 2019-12-12 Sony Corporation Coexistence of radar probing and wireless communication
CN110927724B (zh) * 2019-11-11 2020-11-27 中国地质环境监测院 毫米波雷达泥石流智能监测系统与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242230A (ja) * 1993-02-17 1994-09-02 Honda Motor Co Ltd 時分割型レーダシステム
JPH07270602A (ja) * 1994-03-31 1995-10-20 Omron Corp 受光用レンズ,受光装置,これらを用いた光電センサおよびレーザ・レーダ,ならびにレーザ・レーダを搭載した車両
JP2000174548A (ja) * 1998-12-01 2000-06-23 Honda Motor Co Ltd レーダ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160518A (ja) 1992-11-18 1994-06-07 Mitsubishi Electric Corp 車載用レーダ装置
JP3256374B2 (ja) * 1994-05-27 2002-02-12 本田技研工業株式会社 マルチビーム・レーダ装置
JP3511329B2 (ja) 1995-06-09 2004-03-29 本田技研工業株式会社 車載用レーダ装置
JPH1164500A (ja) 1997-08-21 1999-03-05 Honda Motor Co Ltd レーダ装置
JP3405327B2 (ja) 2000-07-28 2003-05-12 株式会社デンソー 物体認識方法及び装置、記録媒体
JP3994941B2 (ja) * 2003-07-22 2007-10-24 オムロン株式会社 車両用レーダ装置
CN2694291Y (zh) * 2003-12-11 2005-04-20 黄凯 微波汽车防撞驾驶雷达装置
JP2005337759A (ja) 2004-05-24 2005-12-08 Fujitsu Ten Ltd レーダ装置
JP2006201013A (ja) * 2005-01-20 2006-08-03 Hitachi Ltd 車載用レーダ
JP4591507B2 (ja) * 2005-06-15 2010-12-01 株式会社村田製作所 レーダ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242230A (ja) * 1993-02-17 1994-09-02 Honda Motor Co Ltd 時分割型レーダシステム
JPH07270602A (ja) * 1994-03-31 1995-10-20 Omron Corp 受光用レンズ,受光装置,これらを用いた光電センサおよびレーザ・レーダ,ならびにレーザ・レーダを搭載した車両
JP2000174548A (ja) * 1998-12-01 2000-06-23 Honda Motor Co Ltd レーダ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463185B2 (en) * 2005-06-15 2008-12-09 Murata Manufacturing Co., Ltd. Radar apparatus having wide-angle detection

Also Published As

Publication number Publication date
US20080088497A1 (en) 2008-04-17
US7463185B2 (en) 2008-12-09
CN101185009B (zh) 2011-12-07
CN101185009A (zh) 2008-05-21
JPWO2006134911A1 (ja) 2009-01-08
DE112006001358T5 (de) 2008-03-20
JP4591507B2 (ja) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2006134911A1 (ja) レーダ装置
US6335700B1 (en) Radar apparatus for preventing erroneous detection by comparing sensitivities of each combination of transmitting and receiving units
US9128174B2 (en) Radar apparatus
JP3512066B2 (ja) 車載用レーダ装置
JP3562408B2 (ja) レーダ装置特性検出装置及び記録媒体
JP4045041B2 (ja) レーダ装置及びレーダ装置の異常検出方法
JP4844663B2 (ja) レーダ装置
US6204803B1 (en) Radar apparatus
JPH10505429A (ja) モノスタチックfmcwレーダセンサ
US7675457B2 (en) Radar system
JP4984705B2 (ja) レーダ
JP2011117896A (ja) 電子走査型レーダ装置及びコンピュータプログラム
US6040795A (en) Vehicle-mounted radar apparatus
JP2006010410A (ja) 物標検出装置
JP5182645B2 (ja) レーダ装置、及び障害物検知方法
US7230565B2 (en) Radar
JP2009058335A (ja) レーダ装置、及び、相対距離検出方法
JP2008209343A (ja) 車載用レーダシステム
JP3723804B2 (ja) 車載用レーダ装置
JP2012168119A (ja) レーダ装置
JP2001021646A (ja) 車載レーダ装置
US7026976B1 (en) Radar apparatus having function of estimating target's width
JP2005181237A (ja) レーダ装置
JP2001183451A (ja) レーダ装置
JP6981928B2 (ja) 検知装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018745.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521298

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11946657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060013580

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001358

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06766640

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607