WO2006134786A1 - 触媒組成物 - Google Patents

触媒組成物 Download PDF

Info

Publication number
WO2006134786A1
WO2006134786A1 PCT/JP2006/311105 JP2006311105W WO2006134786A1 WO 2006134786 A1 WO2006134786 A1 WO 2006134786A1 JP 2006311105 W JP2006311105 W JP 2006311105W WO 2006134786 A1 WO2006134786 A1 WO 2006134786A1
Authority
WO
WIPO (PCT)
Prior art keywords
element selected
rare earth
general formula
solution
perovskite
Prior art date
Application number
PCT/JP2006/311105
Other languages
English (en)
French (fr)
Inventor
Hirohisa Tanaka
Isao Tan
Mari Uenishi
Masashi Taniguchi
Kazuya Naito
Mareo Kimura
Keiichi Narita
Hiromasa Suzuki
Satoshi Matsueda
Yoshinori Ishii
Original Assignee
Cataler Corporation
Daihatsu Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corporation, Daihatsu Motor Co., Ltd. filed Critical Cataler Corporation
Priority to US11/922,231 priority Critical patent/US20090131252A1/en
Priority to EP06756926A priority patent/EP1894624A4/en
Priority to ZA200708936A priority patent/ZA200708936B/xx
Publication of WO2006134786A1 publication Critical patent/WO2006134786A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/57Protease inhibitors from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • the present invention relates to a catalyst composition used as a gas phase or liquid phase reaction catalyst.
  • these noble metals are combined with a velovskite complex acid having a crystal structure of the general formula ABO.
  • a perovskite complex oxide of La Fe Co Pd O is used to oxidize exhaust gas.
  • Non-Patent Document 1 In response to fluctuations in reduction, Pd reversibly enters and exits the perovskite crystal structure, and self-regeneration suppresses grain growth and maintains high catalyst activity over a long period of time. It has been reported (see Non-Patent Document 1 below).
  • perovskite type complex oxide coordinated with such a noble metal for example, La
  • Non-Patent Document 1 Y. Nishihata et al., Nature, Vol. 418, No. 6894, pp. 164-167, 11 July 2002 (Nishihata et al., “Nature”, 418 ⁇ , 6894, 164-167 July 11th, 2002)
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-041868
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-041867
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-041866
  • An object of the present invention is to provide a catalyst composition containing a novel perovskite complex oxide capable of reversibly entering and leaving a noble metal.
  • the catalyst composition of the present invention has the general formula (1)
  • A represents at least one element selected from alkaline earth metal forces
  • a ′ represents at least one element selected from rare earth elements
  • B represents a tetravalent rare earth element.
  • B ′ represents a transition element (excluding tetravalent rare earth elements and Rh, Pd, Pt) force
  • at least one element selected from N and N represents at least one element selected from Rh, Pd, Pt X and w are atomic ratios in the numerical range of 0. 8 ⁇ x + w ⁇ l. 3 (0. 8 ⁇ x ⁇ l. 3, 0 ⁇ w ⁇ 0. 4)
  • y represents an atomic ratio of 0 ⁇ y ⁇ l.0
  • z represents an atomic ratio of 0 ⁇ z ⁇ 0.5
  • represents an oxygen excess or oxygen deficiency.
  • represents at least one element selected from Ce, Pr, and Tb forces.
  • the N force Pt is shown in the general formula (1).
  • at least one element selected from Rh, Pd, and Pt represented by N in the general formula (1) is represented by Rh, Pd, Pt represented by N in the general formula (1).
  • a small number chosen from The perovskite complex oxide in an oxidizing atmosphere is preferably present as a solid solution in an amount of 50% by weight or more for each content of at least one element.
  • the catalyst composition of the present invention is preferably an exhaust gas purifying catalyst.
  • the noble metal is efficiently dissolved in the perovskite complex oxide in an oxidizing atmosphere and precipitated in a reducing atmosphere. Since the solid solution precipitation (self-regeneration) is repeated, these can be maintained in a dispersed state, and a high catalytic activity can be maintained over a long period of time by preventing a decrease in activity due to grain growth. Therefore, it can be widely used as a gas phase or liquid phase reaction catalyst.
  • the catalyst composition of the present invention has the general formula (1)
  • A represents at least one element selected from alkaline earth metal forces
  • a ′ represents at least one element selected from rare earth elements
  • B represents a tetravalent rare earth element.
  • B ′ represents a transition element (excluding tetravalent rare earth elements and Rh, Pd, Pt) force
  • at least one element selected from N and N represents at least one element selected from Rh
  • Pd, Pt X and w are atomic ratios in the numerical range of 0.8.8 ⁇ x + w ⁇ l.3 (0.8 ⁇ x ⁇ l.3, 0 ⁇ w ⁇ 0.4)
  • y represents an atomic ratio of 0 ⁇ y ⁇ l.0
  • z represents an atomic ratio of 0 ⁇ z ⁇ 0.5
  • represents an oxygen excess or oxygen deficiency.
  • this composite oxide has a perovskite structure, and at least one element selected from an alkaline earth metal catalyst is coordinated to A as a site. As', at least one element that is selected for the rare earth element force is coordinated. In addition, a tetravalent rare earth element is coordinated as B at the B site, and if necessary, a transition element force other than a tetravalent rare earth element and Rh, Pd, and Pt is selected as B ′. One element is coordinated, and at least one element selected from Rh, Pd, and Pt is coordinated as N.
  • examples of the alkaline earth metal represented by A include Be (beryllium). ), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Ra (radium), etc., preferably Ca, Sr, Ba and the like. These may be used alone or in combination of two or more.
  • the rare earth element represented by A ′ for example, Sc (scandium), Y (yttrium), La (lanthanum), Nd (neodymium), Pm (promethium), Gd (ga Rare earth elements other than trivalent, such as Ce (cerium), Pr (praseodymium), such as Drum), Dy (dysprosium), Ho (holmium), Er (erbium), Lu (lutetium) , Tb (terbium) and other rare-earth elements that change in valence to trivalent or tetravalent, for example, Sm (samarium), Eu (europium), Tm (thulium), Yb (ytterbium), etc. Examples include rare earth elements that vary in number. These may be used alone or in combination of two or more.
  • X and w are numerical values of 0.8 ⁇ x + w ⁇ l. 3 (0. 8 ⁇ x ⁇ l. 3, 0 ⁇ w ⁇ 0.4) Indicates the atomic proportion in the range, preferably the atomic proportion in the numerical range of 0.9 ⁇ x + w ⁇ l .3 (0.9 ⁇ x ⁇ l.3, 0 ⁇ w ⁇ 0.4), i.e.
  • a The total atomic ratio (w + x) of the elements coordinated to the site (A and ⁇ ⁇ ⁇ ′) is not less than 0.8 and not more than 1.3, preferably not less than 0.9 and not more than 1.3.
  • Rh, Pd, and Z or Pt can be stably dissolved at a higher solid solution rate.
  • w + x exceeds 1.3, by-products other than the above complex oxides may be formed.
  • 0.8 ⁇ x ⁇ l. 3, preferably 0.9 ⁇ x ⁇ l. 3, that is, the Al force earth metal represented by A is 0.8 or more and 1.3 or less. It is always included in an atomic ratio of preferably 0.9 or more and 1.3 or less.
  • examples of the tetravalent rare earth element represented by B include Ce (cerium), Pr (praseodymium), and Tb (terbium), and preferably Ce.
  • transition elements may be used alone or in combination of two or more.
  • Rh (rhodium), Pd (palladium), and Pt (platinum) represented by N may be used alone or in combination of two or more. Pt is preferable.
  • y represents an atomic ratio in a numerical range of 0 ⁇ y ⁇ l. 0, preferably 0.4 ⁇ y ⁇ l. 0, and z is 0
  • the atomic ratio is in a numerical range of ⁇ z ⁇ 0.5, preferably in a numerical range of 0 ⁇ z ⁇ 0.1. That is, at the B site, the tetravalent rare earth element force represented by B is always coordinated at an atomic ratio of less than 1, and at least one element force selected from Rh, Pd, and Pt represented by N 0.5 It is always coordinated in the following atomic ratio.
  • the sum of the atomic ratios of the tetravalent rare earth element represented by B and at least one element selected from Rh, Pd, and Pt represented by N at the B site is 1, it is represented by B ′.
  • the tetravalent rare earth elements and transition element forces other than Rh, Pd, and Pt are not coordinated.
  • represents an oxygen excess or oxygen deficiency, and most of them have a cage-type perovskite structure.
  • Such a complex oxide of the present invention having a belobskite structure is not particularly limited, and may be any suitable method for preparing a complex oxide such as a coprecipitation method, a taenoic acid complex method, an alkoxide. It can be prepared by a method or the like.
  • a mixed salt solution containing the above-described salt of each element in the above stoichiometric ratio is prepared, and a neutralizing agent is added to the mixed salt solution to cause coprecipitation.
  • Coprecipitate After drying, heat treatment is performed.
  • the salt of each element examples include inorganic salts such as sulfate, nitrate, chloride, and phosphate, and organic acid salts such as acetate and oxalate.
  • the mixed salt aqueous solution can be prepared, for example, by adding the salt of each element to water at a ratio that makes the above stoichiometric ratio and stirring and mixing.
  • a neutralizing agent is added to the aqueous mixed salt solution to cause coprecipitation.
  • the neutralizing agent is not particularly limited.
  • ammonia for example, an organic base such as amines such as triethylamine and pyridine, and an inorganic base such as caustic soda, caustic potash, potassium carbonate, and ammonium carbonate are used.
  • the neutralizing agent is added dropwise so that the pH of the solution after the neutralizing agent is added is about 6-10. By dripping in this way, the salt of each element can be efficiently coprecipitated.
  • the obtained coprecipitate is washed with water as necessary, and dried by, for example, vacuum drying or ventilation drying, and then, for example, about 500 to 1200 ° C, preferably about 600 to 1000 ° C.
  • the perovskite type complex oxide can be produced by heat treatment with.
  • taenoic acid complex method for example, an aqueous solution of citrate is added to the mixed salt aqueous solution so that the amount of citrate is slightly higher than the stoichiometric ratio with respect to each element described above.
  • An acid mixed salt aqueous solution is prepared, and the citrate mixed salt aqueous solution is dried to form a taenoic acid complex of each element described above.
  • the obtained taenoic acid complex is calcined and then heat-treated.
  • Drying removes moisture at a temperature at which the formed taenoic acid complex does not decompose, for example, at room temperature to about 150 ° C.
  • Pre-baking may be performed, for example, by heating at 250 to 350 ° C. in a vacuum or an inert atmosphere. Then, for example, about 500-1200. C, preferably about 600-1000. By heat treatment with C, a perovskite-type complex oxide can be produced.
  • a mixed alkoxide solution containing the alkoxides of the above-described elements other than Rh, Pd, and Pt in the above-described stoichiometric ratio is prepared, and this mixed alkoxide solution is used.
  • a slurry is prepared, and an aqueous solution containing Rh, Pd, and Pt salts is added to the slurry, and the resulting precipitate is dried and then heat-treated.
  • the alkoxide of each element includes, for example, an alcoholate that forms a force with each element and alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, and an alkoxy alcoholate of each element represented by the following general formula (2). It is done.
  • E represents each element, R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and i represents 1 to (An integer of 3 or an integer of 2 to 4.)
  • the alkoxy alcoholate includes, for example, methoxyethylate, methoxypropylate, methoxybutyrate, ethoxychelate, ethoxypropylate, propoxyethylate, butoxychelate and the like.
  • the mixed alkoxide solution can be prepared, for example, by adding the alkoxide of each element to the organic solvent so as to have the above stoichiometric ratio and stirring and mixing.
  • the organic solvent is not particularly limited as long as the alkoxide of each element can be dissolved, and examples thereof include aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ketones, esters and the like.
  • aromatic hydrocarbons such as benzene, toluene and xylene are used.
  • the mixed alkoxide solution also distills off the organic solvent to prepare a slurry, and an aqueous solution containing Rh, Pd and Pt salts is prepared in this slurry at a predetermined stoichiometric ratio.
  • aqueous solutions containing Rh, Pd, and Pt salts include nitrate aqueous solution, chloride aqueous solution, hexamamine salt aqueous solution, dinitrodiammine nitric acid aqueous solution, hexacrolate acid hydrate, and cyanogen potassium salt. It is done.
  • a mixed solution containing the organometallic salts of Rh, Pd, and Pt is mixed with the mixed alkoxide solution described above to prepare a uniform mixed solution, and water is added thereto. Then, after precipitation by hydrolysis, the obtained precipitate is dried and heat-treated. It's better to prepare than Kotobuki.
  • organometallic salts of Rh, Pd, and Pt include carboxylates of the above-mentioned noble metals formed, for example, acetates and propionates, such as ⁇ -diketones represented by the following general formula (3) And a metal chelate complex of the above-mentioned noble metal formed from a compound or a j8-ketoester compound and Z or an ⁇ 8-dicarboxylic acid ester compound represented by the following general formula (4).
  • R 3 is an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group or aryl group having 1 to 6 carbon atoms
  • R 4 is an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 6 represents an alkyl group having 1 to 6 carbon atoms
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R 4 and R 6 include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, t-amyl, t-hexyl and the like. It is done.
  • Examples of the alkyl group having 1 to 4 carbon atoms of R 5 and R 7 include methyl, ethyl, propyl, isopropyl, n-butyl, sbutyl, t-butyl and the like.
  • Furuoroarukiru group having 1 to 6 carbon atoms R 3 and R 4 for example, like triflate Ruo b methyl.
  • Examples of the aryl group of R 3 and R 4 include a file.
  • Examples of the alkyloxy group having 1 to 4 carbon atoms of R 4 include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy and the like.
  • ⁇ -diketone compounds include, for example, 2,4 pentanedione, 2,4 monohexanedione, 2,2 dimethyl-3,5 hexanedione, 1 phenyl 1,3 butanedione, 1 Examples thereof include trifluoromethyl-1,3 butanedione, hexafluoroacetylacetone, 1,3 diphenenoyl 1,3 propanedione, and dipivaloidolemethane.
  • specific examples of the / 3-ketoester compound include, for example, methylacetoacetate, ethylacetoacetate, t-butylacetoacetate and the like.
  • ⁇ -dicarboxylic acid ester compound examples include dimethyl malonate and jetyl malonate.
  • the solution containing the organometallic salts of Rh, Pd, and Pt can be prepared by, for example, adding the organometallic salts of Rh, Pd, and Pt to the organic solvent so as to have the above stoichiometric ratio and stirring and mixing.
  • the organic solvent described above is used as the organic solvent.
  • the solution containing the organometallic salts of Rh, Pd, and Pt prepared in this manner is mixed with the above mixed alkoxide solution to prepare a uniform mixed solution, and then this uniform mixed solution Water is added to and precipitated by hydrolysis.
  • the obtained precipitate is dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, about 400 to: LOOO ° C, preferably about 500 to 850 ° C.
  • a lobskite complex oxide can be produced.
  • the verobskite-type complex oxide of the present invention is obtained by the above-described stoichiometry from the above elements except for Rh, Pd and Pt by the coprecipitation method, the taenoic acid complex method, and the alkoxide method.
  • Rh, Pd and Pt are dissolved in the obtained velovskite type complex oxide at the above stoichiometric ratio. Get away with it.
  • the solid solution of Rh, Pd and Pt in the perovskite complex oxide there are no particular limitations on the solid solution of Rh, Pd and Pt in the perovskite complex oxide, and any known method can be used.
  • a solution of a salt containing Rh, Pd and Pt is prepared, and this salt-containing solution is impregnated with a mouth-bskite type complex oxide, followed by firing.
  • the salt-containing solution the above-described salt solutions may be used, and practically, an aqueous solution of nitrate, a dinitrodiammine nitric acid solution, an aqueous solution of saline, etc. may be mentioned.
  • the palladium salt solution for example, an aqueous palladium nitrate solution, a dinitrodiammine palladium nitric acid solution, a tetravalent palladium ammine nitric acid solution, etc.
  • the rhodium salt solution for example, rhodium nitrate solution
  • the platinum salt solution such as a solution include dinitrodiammine platinum nitric acid solution, chloroplatinic acid solution, and tetravalent platinum ammine solution.
  • it is dried at 50 to 200 ° C for 1 to 48 hours, and further calcined at 350 to 1000 ° C for 1 to 12 hours.
  • the perovskite complex oxide of the present invention thus obtained can be used as it is as a catalyst composition, but it is usually obtained by a known method such as loading on a catalyst carrier. It is prepared as a catalyst composition.
  • the catalyst carrier is not particularly limited, and for example, a known catalyst carrier such as a powerful Hercum monolith carrier such as cordierite is used.
  • Rh, Pd and Pt are high in solid solution.
  • the solid solution Rh, Pd, and Pt are precipitated in a crystal structure force in a reducing atmosphere and dissolved in the crystal structure in an acid atmosphere.
  • the solid solution ratio of Rh, Pd, Pt in the crystal structure of the velovskite-type composite acid can be adjusted by the final firing temperature and firing time.
  • At least one element selected from Rh, Pd, and Pt represented by N is represented by N in the general formula (1), Rh, Pd In the perovskite type complex oxide in an oxidizing atmosphere with respect to each content of at least one element selected from Pt, preferably 50% by weight or more, more preferably 80 to: LOO % By weight is present as a solid solution.
  • At least one element selected from Rh, Pd, and Pt if the abundance ratio (solid solution ratio) of at least one element selected from Rh, Pd, and Pt is less than 50% by weight.
  • sintering may result in a decrease in activity of the catalyst composition as a catalyst.
  • the solid solution ratio of the noble metal can be calculated by using, for example, the measurement methods of Examples described later.
  • the catalyst composition of the present invention has a self-regeneration function that repeats solid solution in an oxidizing atmosphere and precipitation in a reducing atmosphere.
  • the grain growth of Pd and Pt is effectively suppressed, and these dispersed states are maintained.
  • the amount of Rh, Pd, and Pt used is significantly reduced, high catalytic activity can be achieved over a long period of time.
  • the solid solution ratio of Rh, Pd, and Pt can be further increased and stable. Can be provided with the same quality.
  • the catalyst composition containing the velovskite complex oxide of the present invention can be widely used as a gas phase or liquid phase reaction catalyst.
  • it can achieve excellent exhaust gas purification performance over a long period of time.
  • a mixed alkoxide solution was prepared by adding the above components to a round bottom flask and adding toluene to dissolve with stirring. Then, platinum acetyl cettonate (Pt content: 0.007 mol) was dissolved in toluene to prepare an organometallic salt solution, and this organometallic salt solution was further added to the mixed alkoxide solution in the round bottom flask.
  • a homogeneous mixed solution containing BaCePt was prepared.
  • this powder has a Pt-containing perovskite that has Ba Ce Pt O force.
  • Norium isopropoxide (with Ba containing 0.095 mol;)
  • Cerium isopropoxide (including Ce: 0.0465 mol)
  • Praseodymium isopropoxide (including Pr) 0.0465 mol)
  • a mixed alkoxide solution was prepared by adding the above components to a round bottom flask and adding toluene to dissolve with stirring. Deionized water was added dropwise to the mixed alkoxide solution for hydrolysis. As a result, a white viscous precipitate was formed by hydrolysis. Toluene was distilled off from this mixed alkoxide solution to form a slurry, and dinitrodiammine platinum nitrate aqueous solution (Pt content: 0.007 mol) was added to the slurry, followed by stirring at room temperature for 1 hour.
  • Pt-containing perovskite complex oxide composed of Pr Pt O (Pt content: 4.23 layers)
  • This powder was found to be Ba Ce Pr Pt as a result of powder X-ray diffraction.
  • Cerium isopropoxide (Ce content: 0.095 mol)
  • this powder was found to contain Pt containing Ca Ce Pt 2 O.
  • Cerium isopropoxide (containing Ce: J: 0.0475 mol;)
  • Pt-containing perovskite complex oxide composed of Zr Pt O (Pt content: 4.68 layers)
  • This powder has a Ca Ce Zr Pt O force as a result of powder X-ray diffraction.
  • Cerium isopropoxide (Ce content: 0.094 mol)
  • this powder was found to contain Pt-containing materials consisting of Sr Ce Pt 2 O. It was confirmed to have a single crystal phase of bskite type complex oxide.
  • Cerium isopropoxide (Ce content: 0.047 mol)
  • Zirconium isopropoxide (Zr content: 0.047 monole)
  • Pt-containing perovskite complex oxide composed of Zr Pt O (Pt content: 4.57 wt%)
  • this powder contains Pt containing Sr Ce Zr Pt O.
  • Cerium isopropoxide (Ce content: 0.044 mol)
  • Zirconium isopropoxide (Zr content: 0.044 monole)
  • this powder is Pt made of Ca Ce Zr Y Pt ⁇
  • Pt-containing perovskite complex oxide composed of Al Co Pt O (Pt content: 4. 41
  • This powder also has La Sr Al Co Pt O force as a result of powder X-ray diffraction.
  • the sample was dissolved in a 7% by weight hydrofluoric acid aqueous solution and allowed to stand at room temperature for 20 hours.
  • the amount of precious metal dissolved in the filtrate was quantitatively analyzed by ICP (radio frequency inductively coupled plasma) emission spectrometry, and the precious metal in the residue was qualitatively analyzed by XRD (X-ray diffraction) analysis. From these results, the precious metal solid solution ratio after the oxidation treatment and after the reduction treatment was calculated. Further, the precipitation rate of the noble metal was calculated from the difference between the noble metal solid solution rate after the oxidation treatment and the noble metal solid solution rate after the reduction treatment. These results are shown in Table 1.
  • the powder obtained in 1 above was alternately exposed to an oxidizing atmosphere and a reducing atmosphere, and then cooled to room temperature in the reducing atmosphere.
  • the inert atmosphere, the oxidizing atmosphere, and the reducing atmosphere respectively correspond to exhaust gas atmospheres that are discharged when the stoichiometric, lean, and rich gas mixtures are burned.
  • Each atmosphere was prepared by supplying a gas having a composition shown in Table 2 containing high-temperature steam at a flow rate of 300 ⁇ 10 ⁇ 3 m 3 Zhr.
  • the ambient temperature was maintained at about 1000 ° C.
  • the catalyst composition of the present invention is a gas phase or liquid phase reaction catalyst, for example, an internal combustion engine such as a gasoline engine or a diesel engine, or an exhaust gas purifier for purifying exhaust gas that also emits power such as a boiler. It can be suitably used as a soot catalyst.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Pulmonology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 貴金属を可逆的に出入りさせることのできる新規なペロブスカイト型複合酸化物を含む触媒組成物を提供するために、  触媒組成物を、一般式(1)             AxA'wByB'(1-y-z)NzO3±σ     (1)  (式中、Aは、アルカリ土類金属から選ばれる少なくとも1種の元素を示し、A'は、希土類元素から選ばれる少なくとも1種の元素を示し、Bは、4価の希土類元素を示し、B'は、遷移元素(4価の希土類元素およびRh、Pd、Ptを除く)から選ばれる少なくとも1種の元素を示し、Nは、Rh、Pd、Ptから選ばれる少なくとも1種の元素を示し、xおよびwは、0.8≦x+w≦1.3(0.8≦x≦1.3、0≦w≦0.4)の数値範囲の原子割合を示し、yは、0<y<1.0の原子割合を示し、zは、0<z≦0.5の原子割合を示し、σは、酸素過剰分または酸素過少分を示す。)で表されるペロブスカイト型複合酸化物を含むように調製する。

Description

触媒組成物
技術分野
[0001] 本発明は、気相や液相の反応触媒として用いられる触媒組成物に関する。
背景技術
[0002] 現在まで、排ガス中に含まれる一酸ィ匕炭素 (CO)、炭化水素 (HC)および窒素酸 化物(NOx)を同時に浄ィ匕できる三元触媒として、 Pt (白金)、 Rh (ロジウム)、 Pd (パ ラジウム)などの貴金属が、触媒活性成分として広く用いられて!/ヽる。
また、これら貴金属を、一般式 ABOの結晶構造を有するベロブスカイト型複合酸
3
化物に配位させた排ガス浄ィ匕用触媒が、高い触媒活性を示すことが知られている。
[0003] 例えば、 La Fe Co Pd Oのぺロブスカイト型複合酸化物が、排ガスの酸化
1.00 0.57 0.38 0.05 3
還元の変動に対応して、ぺロブスカイト型の結晶構造に対して、 Pdを可逆的に出入 りさせて、このような自己再生により、粒成長を抑制して、長期にわたって高い触媒活 性を保持することが報告されて ヽる(下記非特許文献 1参照)。
また、そのような貴金属が配位したぺロブスカイト型複合酸ィ匕物として、例えば、 La
0.
Sr Fe Mn Pt O、 La Ag Al Mn Pt Ru O、 La Ce Co Pt
90 0.10 0.54 0.36 0.10 3 0.95 0.05 0.80 0.10 0.08 0.02 3 0.9 0.1 0.9 0
Ru O、 Nd Ba Mg Al Pt Rh O、 La Ca Fe Pt O、 Y Sr
.05 0.05 3 0.80 0.10 0.10 0.85 0.10 0.05 3 0.90 0.10 0.90 0.10 3 0.50 0
Fe Pt O、 La Sr Mn Pt O (例えば、下記特許文献 1参照。)、 La F
.50 0.50 0.50 3 0.90 0.10 0.90 0.10 3 1.00 e Rh O、 La Pr Fe Rh O、 La Nd Ce Fe Mn Rh O、 La
0.95 0.05 3 0.70 0.30 0.95 0.05 3 0.80 0.15 0.05 0.60 0.35 0.05 3 0.9
Y Fe Al Rh O、 Pt担持/ La Al Rh O、 La Ce Fe Rh O、
0 0.10 0.70 0.20 0.10 3 1.00 0.95 0.05 3 0.80 0.20 0.65 0.35 3
La Fe Rh O、 La Fe Mn Rh O (例えば、下記特許文献 2参照。 )、 L
1.00 0.90 0.105 3 1.00 0.60 0.30 0.10 3
a Fe Pd O、 La Fe Pd O、 La Fe Mn Pd O、 La Nd Fe
1.00 0.95 0.05 3 1.00 0.90 0.10 3 1.00 0.57 0.38 0.05 3 0.80 0.20 0.90
Pd O (例えば、下記特許文献 3参照。)などが提案されている。
0.10 3
非特許文献 1 :Y. Nishihata et al. , Nature, Vol. 418, No. 6894, pp. 164 - 167, 11 July 2002 (西畑他、「ネイチヤー」誌、 418卷、 6894号、 164— 167 頁、 2002年 7月 11曰)
特許文献 1:特開 2004— 041868号公報 特許文献 2:特開 2004 - 041867号公報
特許文献 3 :特開 2004— 041866号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、上記のぺロブスカイト型複合酸ィ匕物では、貴金属を結晶構造中にぉ 、て、 可逆的に出入りできるように配位させる必要があることから、特定の元素を組み合わ せて結晶構造を形成する必要がある。そのため、上記のぺロブスカイト型複合酸ィ匕 物を製造するには、使用する原料が限定され、原料価格の変動などに起因して、ェ 業的に安定して生産することが困難となる場合がある。そこで、貴金属を可逆的に出 入りさせることのできる新規な結晶構造の提案が望まれている。
[0005] 本発明の目的は、貴金属を可逆的に出入りさせることのできる新規なぺロブスカイト 型複合酸化物を含む触媒組成物を提供することにある。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明の触媒組成物は、一般式(1)
A A' B B' N O (1)
x w y (1-y-z) z 3± σ
(式中、 Aは、アルカリ土類金属力も選ばれる少なくとも 1種の元素を示し、 A'は、希 土類元素から選ばれる少なくとも 1種の元素を示し、 Bは、 4価の希土類元素を示し、 B'は、遷移元素(4価の希土類元素および Rh、 Pd、 Ptを除く)力 選ばれる少なくと も 1種の元素を示し、 Nは、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素を示し、 X および wは、 0. 8≤x+w≤l . 3 (0. 8≤x≤l . 3, 0≤w≤0. 4)の数値範囲の原子 割合を示し、 yは、 0<y< l . 0の原子割合を示し、 zは、 0< z≤0. 5の原子割合を示 し、 σは、酸素過剰分または酸素過少分を示す。 )
で表されるぺロブスカイト型複合酸化物を含むことを特徴としている。
[0007] また、本発明では、一般式(1)において、 Βが、 Ce、 Pr、 Tb力も選ばれる少なくとも 1種の元素を示すことが好ま 、。
また、本発明では、一般式(1)において、 N力 Ptを示すことが好ましい。 また、本発明では、一般式(1)において、 Nで示される、 Rh、 Pd、 Ptから選ばれる 少なくとも 1種の元素が、一般式(1)中の Nで示される、 Rh、 Pd、 Ptから選ばれる少 なくとも 1種の元素の各含有量に対して、酸化雰囲気下のぺロブスカイト型複合酸化 物において、 50重量%以上、固溶体として存在することが好ましい。
[0008] また、本発明の触媒組成物は、排ガス浄ィ匕用触媒であることが好ま 、。
発明の効果
[0009] 本発明のベロブスカイト型複合酸化物を含む触媒組成物では、貴金属が、ぺロブ スカイト型複合酸化物に対して、効率的に、酸化雰囲気下で固溶し、還元雰囲気下 で析出する固溶析出(自己再生)を繰り返すので、これらを分散状態に保つことがで き、長期にわたって、粒成長による活性低下を防いで、高い触媒活性を保持すること ができる。そのため、気相や液相の反応触媒として広く用いることができる。
発明の実施形態
[0010] 本発明の触媒組成物は、一般式(1)
A A' B B' N O (1)
x w y (1-y-z) z 3± σ
(式中、 Aは、アルカリ土類金属力も選ばれる少なくとも 1種の元素を示し、 A'は、希 土類元素から選ばれる少なくとも 1種の元素を示し、 Bは、 4価の希土類元素を示し、 B'は、遷移元素(4価の希土類元素および Rh、 Pd、 Ptを除く)力 選ばれる少なくと も 1種の元素を示し、 Nは、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素を示し、 X および wは、 0. 8≤x+w≤l . 3 (0. 8≤x≤l. 3, 0≤w≤0. 4)の数値範囲の原子 割合を示し、 yは、 0<y< l. 0の原子割合を示し、 zは、 0< z≤0. 5の原子割合を示 し、 σは、酸素過剰分または酸素過少分を示す。 )
で表されるぺロブスカイト型複合酸ィ匕物を含んで 、る。
[0011] すなわち、この複合酸化物は、ぺロブスカイト型構造であって、 Αサイトには、 Aとし て、アルカリ土類金属カゝら選ばれる少なくとも 1種の元素が配位されており、 A'として 、希土類元素力も選ばれる少なくとも 1種の元素が配位されている。また、 Bサイトに は、 Bとして、 4価の希土類元素が配位されており、必要により、 B'として、 4価の希土 類元素および Rh、 Pd、 Ptを除く遷移元素力 選ばれる少なくとも 1種の元素が配位 されており、さらに、 Nとして、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素が配位さ れている。
[0012] 一般式 (I)において、 Aで示されるアルカリ土類金属としては、例えば、 Be (ベリリウ ム)、 Mg (マグネシウム)、 Ca (カルシウム)、 Sr (ストロンチウム)、 Ba (バリウム)、 Ra ( ラジウム)などが挙げられ、好ましくは、 Ca、 Sr、 Baなどが挙げられる。これらは、単独 で用いてもよぐまた、 2種以上併用してもよい。
また、一般式 (I)において、 A'で示される希土類元素としては、例えば、 Sc (スカン ジゥム)、 Y (イットリウム)、 La (ランタン)、 Nd (ネオジム)、 Pm (プロメチウム)、 Gd (ガ ドリ-ゥム)、 Dy (ジスプロシウム)、 Ho (ホルミウム)、 Er (エルビウム)、 Lu (ルテチウム )などの 3価以外に価数変動しない希土類元素、例えば、 Ce (セリウム)、 Pr (プラセ オジム)、 Tb (テルビウム)などの 3価または 4価に価数変動する希土類元素、例えば 、 Sm (サマリウム)、 Eu (ユーロピウム)、 Tm (ツリウム)、 Yb (イッテルビウム)などの 2 価または 3価に価数変動する希土類元素などが挙げられる。これらは、単独で用いて もよぐまた、 2種以上併用してもよい。
[0013] 一般式(1)において、 Aサイトでは、 Xおよび wが 0. 8≤x+w≤l. 3 (0. 8≤x≤l . 3, 0≤w≤0. 4)の数値範囲の原子割合、好ましくは、 0. 9≤x+w≤l . 3 (0. 9≤ x≤l. 3、 0≤w≤0. 4)の数値範囲の原子割合を示し、すなわち、 Aサイトに配位さ れる元素 (Aおよび Α')の原子割合の合計 (w+x)が 0. 8以上 1. 3以下、好ましくは 0. 9以上 1. 3以下である。 w+xが 0. 8以上である場合には、 Rh、 Pd、および Zまた は Ptを、より高い固溶率で、安定して固溶させることができる。 w+xが 1. 3を超える 場合には、上記の複合酸ィ匕物以外の副生成物を生じる場合がある。
[0014] また、 0. 8≤x≤l. 3、好ましくは、 0. 9≤x≤l. 3、すなわち、 Aで示されるアル力 リ土類金属は、 0. 8以上 1. 3以下の原子割合、好ましくは 0. 9以上 1. 3以下の原子 割合で必ず含まれている。
一方、 0≤w≤0. 4、すなわち、 A'で示される希土類元素は、 Aで示されるアルカリ 土類金属の原子割合が、 1. 3である場合 (x= l . 3)には、含まれず (w=0)、0. 8以 上 1. 3未満 (0. 8≤χ< 1. 3)である場合には、 0. 4以下の原子割合で、任意的に含 まれる(0≤w≤0. 4)。
[0015] Bサイトにおいて、 Bで示される、 4価の希土類元素としては、 Ce (セリウム)、 Pr (プ ラセオジム)、 Tb (テルビウム)が挙げられ、好ましくは、 Ceが挙げられる。
Bサイトにおいて、 B'で示される、 4価の希土類元素および Rh、 Pd、 Pt以外の遷移 元素としては、周期律表(IUPAC、 1990年)において、原子番号 21 (Sc)〜原子番 号 30 (Zn)、原子番号 39 (Y)〜原子番号 48 (Cd)、および、原子番号 57 (La)〜原 子番号 80 (Hg)の各元素(4価の希土類元素および Rh、 Pd、 Ptを除く)が挙げられ、 特に制限されないが、具体的には、 Zr (ジルコニウム)、 Ti (チタン)、 Y (イットリウム)、 Nd (ネオジム)などが挙げられる。
[0016] これらの遷移元素は、単独で用いてもよぐまた、 2種以上併用してもよい。
Bサイトにおいて、 Nで示される Rh (ロジウム)、 Pd (パラジウム)、 Pt (白金)は、単独 で用いてもよぐまた、 2種以上併用してもよい。好ましくは、 Ptが挙げられる。
一般式(1)において、 Bサイトでは、 yが、 0<y< l. 0の数値範囲、好ましくは、 0. 4<y< l. 0の数値範囲の原子割合を示し、 zが、 0< z≤0. 5の数値範囲、好ましく は、 0< z< 0. 1の数値範囲の原子割合を示す。すなわち、 Bサイトでは、 Bで示され る 4価の希土類元素力 1未満の原子割合で必ず配位され、 Nで示される Rh、 Pd、 P tから選ばれる少なくとも 1種の元素力 0. 5以下の原子割合で必ず配位される。また 、 B'で示される 4価の希土類元素および Rh、 Pd、 Ptを除く遷移元素力 選ばれる少 なくとも 1種の元素力 (1 y— z)の原子割合、すなわち、 Bサイトにおいて、上記し た Bで示される 4価の希土類元素および Nで示される Rh、 Pd、 Ptから選ばれる少なく とも 1種の元素の残余の原子割合で任意的に配位される。なお、 Bサイトにおいて、 B で示される 4価の希土類元素および Nで示される Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素の原子割合の合計が 1となる場合には、 B'で示される 4価の希土類元素 および Rh、 Pd、 Ptを除く遷移元素力 選ばれる少なくとも 1種の元素は、配位されな い。
[0017] また、一般式(1)において、 σは、酸素過剰分または酸素過少分を示し、大部分が 、 ΑΒΟ型のぺロブスカイト型構造を有していることを示す。
3
そして、このような本発明のベロブスカイト型構造の複合酸ィ匕物は、特に制限される ことなぐ複合酸化物を調製するための適宜の方法、例えば、共沈法、タエン酸錯体 法、アルコキシド法などによって、調製することができる。
[0018] 共沈法では、例えば、上記した各元素の塩を上記した化学量論比で含む混合塩水 溶液を調製し、この混合塩水溶液に中和剤を加えて共沈させた後、得られた共沈物 を乾燥後、熱処理する。
各元素の塩としては、例えば、硫酸塩、硝酸塩、塩化物、りん酸塩などの無機塩、 例えば、酢酸塩、しゅう酸塩などの有機酸塩などが挙げられる。また、混合塩水溶液 は、例えば、各元素の塩を、上記したィ匕学量論比となるような割合で水に加えて、攪 拌混合することにより調製することができる。
[0019] その後、この混合塩水溶液に、中和剤を加えて共沈させる。中和剤としては、特に 制限されないが、例えば、アンモニア、例えば、トリェチルァミン、ピリジンなどのアミン 類などの有機塩基、例えば、カセイソーダ、カセイカリ、炭酸カリ、炭酸アンモンなど の無機塩基が用いられる。また、中和剤は、その中和剤をカ卩えた後の溶液の pHが、 6〜10程度となるように滴下する。このように滴下すれば、各元素の塩を効率よく共 沈させることができる。
[0020] そして、得られた共沈物を、必要により水洗し、例えば、真空乾燥や通風乾燥など により乾燥させた後、例えば、約 500〜1200°C、好ましくは、約 600〜1000°Cで熱 処理することにより、ぺロブスカイト型複合酸化物を製造することができる。
また、タエン酸錯体法では、例えば、クェン酸が、上記した各元素に対して化学量 論比よりやや過剰の割合となるように、混合塩水溶液にクェン酸の水溶液をカ卩えてク ェン酸混合塩水溶液を調製し、このクェン酸混合塩水溶液を乾固させて、上記した 各元素のタエン酸錯体を形成させた後、得られたタエン酸錯体を仮焼成後、熱処理 する。
[0021] 乾固は、形成されるタエン酸錯体が分解しない温度、例えば、室温〜 150°C程度 で、水分を除去する。
仮焼成は、例えば、真空または不活性雰囲気下において 250〜350°Cで加熱す ればよい。その後、例えば、約 500〜1200。C、好ましくは、約 600〜1000。Cで熱処 理することにより、ぺロブスカイト型複合酸ィ匕物を製造することができる。
[0022] また、アルコキシド法では、例えば、 Rh、 Pd、 Ptを除く上記した各元素のアルコキシ ドを、上記したィ匕学量論比で含む混合アルコキシド溶液を調製し、この混合アルコキ シド溶液を加水分解して沈殿を生成させた後、スラリーを調製し、このスラリーに、 Rh 、 Pd、 Ptの塩を含む水溶液を加え、得られた沈殿物を乾燥後、熱処理する。 各元素のアルコキシドとしては、例えば、各元素と、メトキシ、エトキシ、プロボキシ、 イソプロボキシ、ブトキシなどのアルコキシと力も形成されるアルコラートや、下記一般 式(2)で示される各元素のアルコキシアルコラートなどが挙げられる。
[0023] EtOCH CR1) - (CH ) -OR2] (2)
2 i j
(式中、 Eは、各元素を示し、 R1は、水素原子または炭素数 1〜4のアルキル基を示し 、 R2は、炭素数 1〜4のアルキル基を示し、 iは、 1〜3の整数、 ま、 2〜4の整数を示 す。)
アルコキシアルコラートは、より具体的には、例えば、メトキシェチレート、メトシキプ ロピレート、メトキシブチレート、ェトキシェチレート、エトキシプロピレート、プロポキシ ェチレート、ブトキシェチレートなどが挙げられる。
[0024] そして、混合アルコキシド溶液は、例えば、各元素のアルコキシドを、上記した化学 量論比となるように有機溶媒に加えて、攪拌混合することにより調製することができる 。有機溶媒としては、各元素のアルコキシドを溶解できれば、特に制限されないが、 例えば、芳香族炭化水素類、脂肪族炭化水素類、アルコール類、ケトン類、エステル 類などが挙げられる。好ましくは、ベンゼン、トルエン、キシレンなどの芳香族炭化水 素類が挙げられる。
[0025] その後、この混合アルコキシド溶液に水をカ卩えて加水分解し、沈殿を生成させる。
そして、混合アルコキシド溶液力も有機溶媒を留去して、スラリーを調製し、このスラリ 一に、所定の化学量論比で、 Rh、 Pd、 Ptの塩を含む水溶液をカ卩える。
Rh、 Pd、 Ptの塩を含む水溶液としては、例えば、硝酸塩水溶液、塩化物水溶液、 へキサアンミン塩ィ匕物水溶液、ジニトロジアンミン硝酸水溶液、へキサクロ口酸水和物 、シアンィ匕カリウム塩などが用いられる。
[0026] そして、得られた沈殿物を、例えば、真空乾燥や通風乾燥などにより水を留去し、 乾燥させた後、例えば、約 500〜1200°C、好ましくは、約 600〜1000°Cで熱処理( 焼成)することにより、ベロブスカイト型複合酸ィ匕物を製造することができる。
また、このようなアルコキシド法においては、例えば、上記した混合アルコキシド溶 液に、 Rh、 Pd、 Ptの有機金属塩を含む溶液を混合して、均一混合溶液を調製し、こ れに水を加えて加水分解により沈殿させた後、得られた沈殿物を乾燥後、熱処理す ること〖こより、調製することちでさる。
[0027] Rh、 Pd、 Ptの有機金属塩としては、例えば、酢酸塩、プロピオン酸塩などカゝら形成 される上記貴金属のカルボン酸塩、例えば、下記一般式(3)に示される βージケトン 化合物または j8—ケトエステルイ匕合物、および Zまたは、下記一般式 (4)で示される ι8—ジカルボン酸エステル化合物から形成される上記貴金属の金属キレート錯体が 挙げられる。
[0028] R3COCHR5COR4 (3)
(式中、 R3は、炭素数 1〜6のアルキル基、炭素数 1〜6のフルォロアルキル基または ァリール基、 R4は、炭素数 1〜6のアルキル基、炭素数 1〜6のフルォロアルキル基、 ァリール基または炭素数 1〜4のアルキルォキシ基、 R5は、水素原子または炭素数 1 〜4のアルキル基を示す。 )
R7CH (COOR6) (4)
2
(式中、 R6は、炭素数 1〜6のアルキル基、 R7は、水素原子または炭素数 1〜4のアル キル基を示す。 )
上記一般式(3)および上記一般式 (4)中、
Figure imgf000010_0001
R4および R6の炭素数 1〜6のアルキ ル基としては、例えば、メチル、ェチル、プロピル、イソプロピル、 n—ブチル、 s ブチ ル、 t—ブチル、 t ァミル、 t—へキシルなどが挙げられる。また、 R5および R7の炭素 数 1〜4のアルキル基としては、例えば、メチル、ェチル、プロピル、イソプロピル、 n- ブチル、 s ブチル、 t—ブチルなどが挙げられる。また、 R3および R4の炭素数 1〜6 のフルォロアルキル基としては、例えば、トリフルォロメチルなどが挙げられる。また、 R3および R4のァリール基としては、例えば、フエ-ルが挙げられる。また、 R4の炭素数 1〜4のアルキルォキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロ ポキシ、 n—ブトキシ、 s—ブトキシ、 t—ブトキシなどが挙げられる。
[0029] βージケトン化合物は、より具体的には、例えば、 2, 4 ペンタンジオン、 2, 4一へ キサンジオン、 2, 2 ジメチルー 3, 5 へキサンジオン、 1 フエ二ルー 1 , 3 ブタ ンジオン、 1 トリフルォロメチルー 1 , 3 ブタンジオン、へキサフルォロアセチルァ セトン、 1 , 3 ジフエニノレー 1 , 3 プロパンジオン、ジピバロイノレメタンなどが挙げら れる。 [0030] また、 /3ーケトエステルイ匕合物は、より具体的には、例えば、メチルァセトアセテート 、ェチルァセトアセテート、 t—ブチルァセトアセテートなどが挙げられる。
また、 βージカルボン酸エステルイ匕合物は、より具体的には、例えば、マロン酸ジメ チル、マロン酸ジェチルなどが挙げられる。
また、 Rh、 Pd、 Ptの有機金属塩を含む溶液は、例えば、 Rh、 Pd、 Ptの有機金属 塩を、上記した化学量論比となるように有機溶媒に加えて、攪拌混合することにより 調製することができる。有機溶媒としては、上記した有機溶媒が用いられる。
[0031] そして、このようにして調製された Rh、 Pd、 Ptの有機金属塩を含む溶液を、上記し た混合アルコキシド溶液に混合して、均一混合溶液を調製した後、この均一混合溶 液に水を加えて加水分解により沈殿させる。そして、得られた沈殿物を、例えば、真 空乾燥や通風乾燥などにより乾燥させた後、例えば、約 400〜: LOOO°C、好ましくは、 約 500〜850°Cで熱処理することにより、ぺロブスカイト型複合酸化物を製造すること ができる。
[0032] また、本発明のベロブスカイト型複合酸ィ匕物は、上記した、共沈法、タエン酸錯体 法、アルコキシド法によって、 Rh、 Pdおよび Ptを除く上記の元素から、上記の化学量 論比で、まず、ベロブスカイト型複合酸ィ匕物を調製し、次いで、得られたベロブスカイ ト型複合酸化物に、上記の化学量論比で、 Rh、 Pdおよび Ptを固溶させることにより 得ることちでさる。
[0033] ぺロブスカイト型複合酸化物に、 Rh、 Pdおよび Ptを固溶させるには、特に制限され ず、公知の方法を用いることができる。例えば、 Rh、 Pdおよび Ptを含む塩の溶液を 調製し、この含塩溶液をべ口ブスカイト型複合酸ィ匕物に含浸させた後、焼成する。 含塩溶液としては、上記した例示の塩の溶液を用いてもよぐまた実用的には、硝 酸塩水溶液、ジニトロジアンミン硝酸溶液、塩ィ匕物水溶液などが挙げられる。
[0034] より具体的には、パラジウム塩溶液として、例えば、硝酸パラジウム水溶液、ジニトロ ジアンミンパラジウム硝酸溶液、 4価パラジウムアンミン硝酸溶液など、ロジウム塩溶 液として、例えば、硝酸ロジウム溶液、塩ィ匕ロジウム溶液など、白金塩溶液として、例 えば、ジニトロジアンミン白金硝酸溶液、塩化白金酸溶液、 4価白金アンミン溶液など が挙げられる。また、ベロブスカイト型複合酸ィ匕物に貴金属を含浸させた後は、例え ば、 50〜200°Cで 1〜48時間乾燥し、さらに、 350〜1000°Cで 1〜12時間焼成す る。
[0035] このようにして得られる本発明のぺロブスカイト型複合酸ィ匕物は、そのまま、触媒組 成物として用いることもできるが、通常、触媒担体上に担持させるなど、公知の方法に より、触媒組成物として調製される。
触媒担体としては、特に限定されず、例えば、コージエライトなど力 なるハ-カム 状のモノリス担体など、公知の触媒担体が用いられる。
[0036] 触媒担体上に担持させるには、例えば、まず、得られたぺロブスカイト型複合酸ィ匕 物に、水を加えてスラリーとした後、触媒担体上にコーティングし、乾燥させ、その後、 約 300〜800。C、好まし <は、約 300〜600。Cで熱処理する。
そして、このようにして得られる本発明のベロブスカイト型複合酸ィ匕物を含む触媒組 成物では、ぺロブスカイト型複合酸ィ匕物の結晶構造中において、 Rh、 Pd、 Ptが高い 固溶率で固溶し、その固溶した Rh、 Pd、 Ptが、還元雰囲気下において、結晶構造 力 析出し、酸ィ匕雰囲気下において、結晶構造中に固溶する。なお、 Rh、 Pd、 Ptの ベロブスカイト型複合酸ィヒ物の結晶構造中への固溶率は、最終的な焼成温度と焼成 時間によって調整することができる。
[0037] 本発明においては、一般式(1)において、 Nで示される、 Rh、 Pd、 Ptから選ばれる 少なくとも 1種の元素が、一般式(1)中の Nで示される、 Rh、 Pd、 Ptから選ばれる少 なくとも 1種の元素の各含有量に対して、酸化雰囲気下のぺロブスカイト型複合酸ィ匕 物において、好ましくは、 50重量%以上、さらに好ましくは、 80〜: LOO重量%が固溶 体として存在する。 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素の、固溶体としての 存在割合(固溶率)が、 50重量%未満の場合には、 Rh、 Pd、 Ptから選ばれる少なく とも 1種の元素が、シンタリングし、触媒組成物の触媒としての活性低下を招くおそれ がある。
[0038] なお、貴金属の固溶率は、例えば、後述の実施例の測定法などを用いて算出でき る。
これによつて、本発明の触媒組成物は、このような酸化雰囲気下での固溶および還 元雰囲気下での析出を繰り返す自己再生機能によって、長期使用においても、 Rh、 Pd、 Ptの粒成長が効果的に抑制され、これらの分散状態が保持される。その結果、 Rh、 Pd、 Ptの使用量を大幅に低減しても、高い触媒活性を長期にわたって実現す ることがでさる。
[0039] また、本発明の触媒組成物において、 Aサイトに配位される元素の原子割合が 1を 超える場合には、 Rh、 Pd、 Ptの固溶率をより高くすることができ、安定した品質で提 供することができる。
そのため、本発明のベロブスカイト型複合酸化物を含む触媒組成物は、気相や液 相の反応触媒として広く用いることができる。特に、優れた排ガス浄化性能を長期に わたって実現することができるので、例えば、ガソリンエンジン、ディーゼルエンジンな どの内燃機関や、ボイラなどカゝら排出される排ガスを浄ィ匕するための排ガス浄ィ匕用触 媒として、好適に用いることができる。
実施例
[0040] 以下に、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発 明は、これら実施例および比較例に何ら限定されるものではない。
実施例 1
(Ba Ce Pt Oの製造)
1.00 0.93 0.07 3
ノ リウムメトキシプロピレート (Ba含量: 0. 100モノレ)
セリウムメトキシプロピレート (Ce含量: 0. 093モル)
上記の成分を、丸底フラスコに加え、トルエンを加えて攪拌溶解させることにより、混 合アルコキシド溶液を調製した。そして、白金ァセチルァセトナート(Pt含量: 0. 007 モル)をトルエンに溶解して有機金属塩溶液を調製し、この有機金属塩溶液を、さら に丸底フラスコの混合アルコキシド溶液にカロえて、 BaCePtを含む均一混合溶液を 調製した。
[0041] 次いで、この丸底フラスコ中に、脱イオン水を、約 15分かけて滴下して加水分解し た。そうすると、加水分解により粘稠沈殿が生成した。
その後、室温下で 2時間攪拌した後、トルエンおよび水を減圧下において留去乾固 して、 BaCePt複合酸ィ匕物の前駆体を得た。これを、 60°Cにて 24時間通風乾燥後、 大気中、電気炉にて、 650°C、 2時間熱処理(焼成)を行ない、 Ba Ce Pt Oか らなるベロブスカイト型複合酸化物(Pt含有量: 4. 15重量%)の粉末を得た
[0042] なお、この粉末は、粉末 X線回折の結果、 Ba Ce Pt O力 なる Pt含有ぺロ
1.00 0.93 0.07 3
ブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
実施例 2
(Ba Ce Pr Pt O の製造)
5 0.465 0.465 0.07 3— σ
ノ リウムイソプロボキシド (Ba含 0. 095モル;)
セリウムイソプロボキシド (Ce含 0. 0465モル)
プラセオジムイソプロポキシド (Pr含』 0. 0465モル)
上記の成分を、丸底フラスコに加え、トルエンを加えて撹拌溶解させることにより、混 合アルコキシド溶液を調製した。この混合アルコキシド溶液に脱イオン水を滴下して 加水分解した。そうすると、加水分解により白色の粘稠沈殿が生成した。この混合ァ ルコキシド溶液からトルエンを留去し、スラリーとした後、このスラリーにジニトロジアン ミン白金硝酸水溶液 (Pt含量: 0. 007モル)を加え、室温下において 1時間撹拌した
[0043] 次 、で、水を減圧下にお 、て留去乾固して、 BaCePrPt複合酸ィ匕物の前駆体を得 た。これを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行ない、 Ba Ce
0.95 0.4
Pr Pt O からなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 23重
65 0.465 0.07 3—σ
0 /0)の粉末を得た。なお、この粉末は、粉末 X線回折の結果、 Ba Ce Pr Pt
0.95 0.465 0.465 0
O 力 なる Pt含有ぺロブスカイト型複合酸ィ匕物の単一結晶相を有して 、ることが
.07 3- σ
確認された。
[0044] 実施例 3
(Ca Ce Pt O の製造)
0.80 0.95 0.05 3 - σ
カルシウムイソプロポキシド (Ca含量: 0. 080モル)
セリウムイソプロポキシド (Ce含量: 0. 095モル)
上記の成分を、丸底フラスコに加え、実施例 2と同様に処理した後、ジニトロジアンミ ン白金硝酸水溶液 (Pt含量: 0. 005モル)をカ卩え、室温下において 1時間撹拌した。
[0045] 次 、で、水を減圧下にお ヽて留去乾固して、 CaCePt複合酸化物の前駆体を得た
:れを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行ない、 Ca
80 0.95 Pt O からなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 38重量%)の
0.05 3- σ
粉末を得た。
なお、この粉末は、粉末 X線回折の結果、 Ca Ce Pt O からなる Pt含有べ
0.80 0.95 0.05 3- σ
口ブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
[0046] 実施例 4
(Ca Ce Zr Pt O の製造)
1.02 0.475 0.475 0.05 3+ σ
カルシウムイソプロポキシド (Ca含 : 0. 102モル;)
セリウムイソプロボキシド (Ce含 J : 0. 0475モル;)
ジルコニウムイソプロポキシド (Zr含』 : 0. 0475モル)
上記の成分を、丸底フラスコに加え、実施例 2と同様に処理した後、ジニトロジアンミ ン白金硝酸水溶液 (Pt含量 0. 005モル)をカ卩え、室温下において 1時間撹拌した。
[0047] 次いで、水を減圧下において留去乾固して、 CaCeZrPt複合酸ィ匕物の前駆体を得 た。これを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行ない、 Ca Ce
1.02 0.4
Zr Pt O からなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 68重
75 0.475 0.05 3+ σ
量%)の粉末を得た。
なお、この粉末は、粉末 X線回折の結果、 Ca Ce Zr Pt O 力もなる Pt
1.02 0.475 0.475 0.05 3+ σ
含有ぺロブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
[0048] 実施例 5
(Sr Ce Pt O の製造)
0.90 0.94 0.06 3- σ
ストロンチウムイソプロポキシド (Sr含量: 0. 090モノレ)
セリウムイソプロポキシド (Ce含量: 0. 094モル)
上記の成分を、丸底フラスコに加え、実施例 2と同様に処理した後、ジニトロジアンミ ン白金硝酸水溶液 (Pt含量: 0. 006モル)をカ卩え、室温下において 1時間撹拌した。
[0049] 次いで、水を減圧下において留去乾固して、 SrCePt複合酸化物の前駆体を得た 。これを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行ない、 Sr Ce P
0.90 0.94 t O からなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 33重量%)の粉
0.06 3— σ
末を得た。
なお、この粉末は、粉末 X線回折の結果、 Sr Ce Pt O からなる Pt含有ぺロ ブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
[0050] 実施例 6
(Sr Ce Zr Pt Oの製造)
1.00 0.47 0.47 0.06 3
ストロンチウムイソプロポキシド (Sr含量: 0. 100モノレ)
セリウムイソプロポキシド (Ce含量: 0. 047モル)
ジルコニウムイソプロポキシド (Zr含量: 0. 047モノレ)
上記の成分を、丸底フラスコに加え、実施例 2と同様に処理した後、ジニトロジアンミ ン白金硝酸水溶液 (Pt含量: 0. 006モル)をカ卩え、室温下において 1時間撹拌した。
[0051] 次いで、水を減圧下において留去乾固して、 SrCeZrPt複合酸ィ匕物の前駆体を得 た。これを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行ない、 Sr Ce
1.00 0.4
Zr Pt Oからなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 57重量%
7 0.47 0.06 3
)の粉末を得た。
なお、この粉末は、粉末 X線回折の結果、 Sr Ce Zr Pt Oからなる Pt含有
1.00 0.47 0.47 0.06 3
ぺロブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
[0052] 実施例 7
(Ca Ce Zr Y Pt Οの製造)
1.00 0.44 0.44 0.06 0.06 3
カルシウムイソプロポキシド (Ca含量: 0. 100モル)
セリウムイソプロポキシド (Ce含量: 0. 044モル)
ジルコニウムイソプロポキシド (Zr含量: 0. 044モノレ)
イットリウムイソプロポキシド (Y含量: 0. 006モノレ)
上記の成分を、丸底フラスコに加え、トルエン 200mLをカ卩えて攪拌溶解させること により、混合アルコキシド溶液を調製した。この混合アルコキシド溶液に脱イオン水を 滴下して加水分解した。そうすると、加水分解により粘稠沈殿が生成した。この混合 アルコキシド溶液からトルエンを留去し、スラリーとした後、このスラリーにジニトロジァ ンミン白金硝酸水溶液 (Pt含量: 0. 007モル)をカ卩え、室温下において 1時間撹拌し た。
[0053] 次いで、水を減圧下において留去乾固して、 CaCeZrYPt複合酸化物の前駆体を 得た。これを、大気中、電気炉にて、 900°C、 2時間熱処理 (焼成)を行な 、、 Ca C e Zr Y Pt Oからなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 5. 66
0.44 0.44 0.06 0.06 3
重量%)の粉末を得た。
なお、この粉末は、粉末 X線回折の結果、 Ca Ce Zr Y Pt Οからなる Pt
1.00 0.44 0.44 0.06 0.06 3
含有ぺロブスカイト型複合酸ィ匕物の単一結晶相を有していることが確認された。
[0054] 比較例 1
(La Sr Al Co Pt Oの製造)
0.95 0.05 0.90 0.05 0.05 3
ランタンェトキシェチレート (La含:! :: 0. 095モル;)
ストロンチウムェトキシェチレート (Sr含量 : 0. 005モル;)
アルミニウムエトキシェチレート (A1含量 : 0. 090モル;)
コバルトェトキシェチレート (Co含! 0. 005モル)
上記の成分を、丸底フラスコに加え、実施例 2と同様に処理した後、ジニトロジアンミ ン白金硝酸水溶液 (Pt含量: 0. 005モル)をカ卩え、室温下において 1時間撹拌した。
[0055] 次いで、水を減圧下において留去乾固して、 LaSrAlCoPt複合酸化物の前駆体を 得た。これを、大気中、電気炉にて、 800°C、 2時間熱処理 (焼成)を行な 、、 La Sr
0.95
Al Co Pt Oからなる Pt含有ぺロブスカイト型複合酸化物(Pt含有量: 4. 41
0.05 0.90 0.05 0.05 3
重量%)の粉末を得た。
なお、この粉末は、粉末 X線回折の結果、 La Sr Al Co Pt O力もなる Pt
0.95 0.05 0.90 0.05 0.05 3 含有ぺロブスカイト型複合酸化物 · BR〉7単一結晶相を有して ヽることが確認された。
[0056] 比較例 2
(Pt/ α -ΑΙ Οの製造)
2 3
市販の a— Al O (比表面積 13m2/g)に、ジニトロジアンミン白金硝酸溶液を用い
2 3
て、 Ptを含浸した後、 60°Cにて 24時間通風乾燥後、大気中、電気炉を用いて 500 °Cで 1時間熱処理した。 a -Al Oの Pt担持量は、 2. 00重量%であった。
2 3
[0057] 試験例 1 (物性試験)
1)比表面積の測定
上記により得られた各実施例および各比較例の粉末の比表面積を、 BET法に従つ て、測定した。その結果を表 1に示す。
2)貴金属の固溶率の測定 各実施例および各比較例で得られた粉末を、酸化処理 (大気中、 800°Cで 1時間 熱処理)後および還元処理(10%Hを含有する Nガス中、 800°Cで 1時間熱処理)
2 2
後のそれぞれにおいて、 7重量%フッ酸水溶液に溶解し、室温にて 20時間放置後、 各溶液を、 0. Ι μ ηι φのフィルターによりろ過した。ろ液に溶解している貴金属量を、 ICP (高周波誘導結合プラズマ)発光分析法により定量分析し、残渣における貴金属 を、 XRD (X線回折)分析法により定性分析した。これらの結果から、酸化処理後およ び還元処理後における貴金属固溶率を算出した。また、酸化処理後における貴金属 固溶率と還元処理後における貴金属固溶率との差から、貴金属の析出率を算出した 。これらの結果を表 1に示す。
[0058] なお、上記の方法にぉ 、ては、 7重量%フッ酸水溶液への各粉末の溶解時にぉ ヽ て、それぞれフッ化物の残渣が生成した力 ぺロブスカイト型の結晶構造中に固溶し ていた貴金属は、溶解したため、溶液中の貴金属の濃度を測定することにより、ぺロ ブスカイト型の結晶構造中に固溶している貴金属の比率を求めることができた。
試験例 2 (耐久試験)
1)酸化還元耐久試験
不活性雰囲気 5分、酸化雰囲気 10分、不活性雰囲気 5分および還元雰囲気 10分 の計 30分を 1サイクルとし、このサイクルを 20サイクル、合計 10時間繰り返して、各実 施例および各比較例で得られた粉末を、酸化雰囲気と還元雰囲気とに交互に暴露 した後、還元雰囲気のまま室温まで冷却した。
[0059] 不活性雰囲気、酸化雰囲気および還元雰囲気は、ストィキ状態、リーン状態および リッチ状態の混合気を燃焼させた場合に排出される排ガス雰囲気に、それぞれ相当 する。
なお、各雰囲気は、高温水蒸気を含む表 2に示した組成のガスを、 300 X 10— 3m3 Zhrの流量で供給することによって調製した。また、雰囲気温度は、約 1000°Cに維 持した。
[0060] [表 2] 【表 2】
Figure imgf000019_0001
[0061] 2)活性評価
4%NOおよび 6%Hを含むガス(Heバランス)を、合計 50mLZ分流通させながら
2
、上記の酸化還元耐久試験に供した各粉末 40mgを、室温力 400°Cまで、 3°C/ 分にて昇温した。この間に、質量分析計にて、 NO (質量 30)の信号を観測し、その力 ゥント数が室温に比べて 30%減少した温度を、 NO30%浄ィ匕温度とした。これらの結 果を表 1に示す。
[0062] [表 1]
Figure imgf000020_0001
[0063] なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示 にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな 本発明の変形例は、後記請求の範囲に含まれるものである。
産業上の利用可能性
[0064] 本発明の触媒組成物は、気相や液相の反応触媒、例えば、ガソリンエンジン、ディ ーゼルエンジンなどの内燃機関や、ボイラなど力も排出される排ガスを浄ィ匕するため の排ガス浄ィ匕用触媒として、好適に用いることができる。

Claims

請求の範囲
[1] 一般式 (1)
A A' B B' N O (1)
x w y (1-y-z) z 3± σ
(式中、 Aは、アルカリ土類金属力も選ばれる少なくとも 1種の元素を示し、 A'は、希 土類元素から選ばれる少なくとも 1種の元素を示し、 Bは、 4価の希土類元素を示し、 B'は、遷移元素(4価の希土類元素および Rh、 Pd、 Ptを除く)力 選ばれる少なくと も 1種の元素を示し、 Nは、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素を示し、 X および wは、 0. 8≤x+w≤l . 3 (0. 8≤x≤l. 3, 0≤w≤0. 4)の数値範囲の原子 割合を示し、 yは、 0<y< l. 0の原子割合を示し、 zは、 0< z≤0. 5の原子割合を示 し、 σは、酸素過剰分または酸素過少分を示す。 )
で表されるベロブスカイト型複合酸化物を含むことを特徴とする、触媒組成物。
[2] 一般式(1)において、 Β力 Ce、 Pr、 Tb力 選ばれる少なくとも 1種の元素を示すこと を特徴とする、請求項 1に記載の触媒組成物。
[3] 一般式(1)にお 、て、 Nが、 Ptを示すことを特徴とする、請求項 1に記載の触媒組成 物。
[4] 一般式(1)において、 Nで示される、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素 力 一般式(1)中の Nで示される、 Rh、 Pd、 Ptから選ばれる少なくとも 1種の元素の 各含有量に対して、酸ィ匕雰囲気下のぺロブスカイト型複合酸ィ匕物において、 50重量 %以上、固溶体として存在することを特徴とする、請求項 1に記載の触媒組成物。
[5] 排ガス浄化用触媒であることを特徴とする、請求項 1に記載の触媒組成物。
PCT/JP2006/311105 2005-06-16 2006-06-02 触媒組成物 WO2006134786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/922,231 US20090131252A1 (en) 2005-06-16 2006-06-02 Catalyst Composition
EP06756926A EP1894624A4 (en) 2005-06-16 2006-06-02 CATALYST COMPOSITIONS
ZA200708936A ZA200708936B (en) 2005-06-16 2006-06-02 Catalyst compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005177044A JP2006346603A (ja) 2005-06-16 2005-06-16 触媒組成物
JP2005-177044 2005-06-16

Publications (1)

Publication Number Publication Date
WO2006134786A1 true WO2006134786A1 (ja) 2006-12-21

Family

ID=37532150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311105 WO2006134786A1 (ja) 2005-06-16 2006-06-02 触媒組成物

Country Status (6)

Country Link
US (1) US20090131252A1 (ja)
EP (1) EP1894624A4 (ja)
JP (1) JP2006346603A (ja)
CN (1) CN101175566A (ja)
WO (1) WO2006134786A1 (ja)
ZA (1) ZA200708936B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264597A1 (en) * 2009-07-20 2012-10-18 Council Of Scientific & Industrial Research CEAlO3 PEROVSKITES CONTAINING TRANSITION METAL

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347825A (ja) * 2005-06-16 2006-12-28 Daihatsu Motor Co Ltd 複合酸化物の製造方法
JP2007069077A (ja) * 2005-09-05 2007-03-22 Mazda Motor Corp 排気ガス浄化用触媒並びに触媒付きディーゼルパティキュレートフィルタ
JP5299603B2 (ja) * 2006-11-08 2013-09-25 株式会社豊田中央研究所 酸化物複合体前駆体水溶液、酸化物複合体の製造方法、酸化物複合体、その酸化物複合体を備える排ガス浄化用触媒及びその排ガス浄化用触媒を用いた排ガス浄化方法
JP5412789B2 (ja) * 2008-10-17 2014-02-12 マツダ株式会社 排気ガス浄化用触媒
JP5412788B2 (ja) * 2008-10-17 2014-02-12 マツダ株式会社 排気ガス浄化用触媒
US8343888B2 (en) * 2009-10-01 2013-01-01 GM Global Technology Operations LLC Washcoating technique for perovskite catalysts
WO2015087836A1 (ja) * 2013-12-11 2015-06-18 株式会社キャタラー 排ガス浄化用触媒
JP6303834B2 (ja) * 2014-06-05 2018-04-04 株式会社村田製作所 有機物分解触媒
US9527033B2 (en) * 2015-01-23 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Mixed metal oxide catalyst
JP6725084B2 (ja) * 2018-05-11 2020-07-15 株式会社村田製作所 有機物分解用触媒、有機物分解用凝集体、および、有機物分解装置
CN109453769A (zh) * 2018-10-30 2019-03-12 中海油太原贵金属有限公司 一种钙钛矿氧化物负载铂的氨氧化制氮氧化物的催化剂
WO2021193851A1 (ja) * 2020-03-27 2021-09-30 京セラ株式会社 触媒、ハニカム構造体および排ガス浄化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10358A (ja) * 1995-07-20 1998-01-06 Toyota Motor Corp 排ガス浄化用触媒
JP2002204955A (ja) * 2001-01-10 2002-07-23 Toyota Motor Corp 排気ガス浄化用触媒
JP2004041868A (ja) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd 排ガス浄化用触媒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622680A (en) * 1990-07-25 1997-04-22 Specialites Et Techniques En Traitement De Surfaces-Stts Post-combustion catalysts
JP2001224963A (ja) * 2000-02-16 2001-08-21 Nissan Motor Co Ltd 触媒組成物、その製造方法及びその使用方法
EP1695761A4 (en) * 2003-12-17 2012-04-04 Daihatsu Motor Co Ltd CATALYTIC COMPOSITION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10358A (ja) * 1995-07-20 1998-01-06 Toyota Motor Corp 排ガス浄化用触媒
JP2002204955A (ja) * 2001-01-10 2002-07-23 Toyota Motor Corp 排気ガス浄化用触媒
JP2004041868A (ja) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd 排ガス浄化用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1894624A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264597A1 (en) * 2009-07-20 2012-10-18 Council Of Scientific & Industrial Research CEAlO3 PEROVSKITES CONTAINING TRANSITION METAL

Also Published As

Publication number Publication date
US20090131252A1 (en) 2009-05-21
EP1894624A4 (en) 2009-04-22
CN101175566A (zh) 2008-05-07
JP2006346603A (ja) 2006-12-28
EP1894624A1 (en) 2008-03-05
ZA200708936B (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4311918B2 (ja) ペロブスカイト型複合酸化物の製造方法
WO2006134786A1 (ja) 触媒組成物
JP4953813B2 (ja) ぺロブスカイト型複合酸化物、触媒組成物およびぺロブスカイト型複合酸化物の製造方法
JP2004041868A (ja) 排ガス浄化用触媒
JP4916173B2 (ja) 排ガス浄化用触媒組成物
JP5166245B2 (ja) 触媒組成物
JP3917479B2 (ja) 排ガス浄化用触媒
WO2006064809A1 (ja) 耐熱性酸化物
JP2004041867A (ja) 排ガス浄化用触媒
JP4647406B2 (ja) 排ガス浄化用触媒
US20160038921A1 (en) Catalyst composition
WO2006049137A1 (ja) 貴金属含有耐熱性酸化物の製造方法
JP4812359B2 (ja) 排ガス浄化用触媒組成物
JP4263470B2 (ja) 排ガス浄化用触媒およびその製造方法
JP4969496B2 (ja) 排ガス浄化用触媒
JP4997176B2 (ja) 排ガス浄化用触媒組成物
JP5506286B2 (ja) 排ガス浄化用触媒
JP2011046567A (ja) 酸素吸蔵放出材
JP2010240598A (ja) 排ガス浄化用触媒
JP5822682B2 (ja) 排ガス浄化用触媒
JP2009160556A (ja) 排ガス浄化用触媒および排ガス浄化用触媒の製造方法
JP4693514B2 (ja) 触媒組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017098.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006756926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11922231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE