WO2006134738A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2006134738A1
WO2006134738A1 PCT/JP2006/309332 JP2006309332W WO2006134738A1 WO 2006134738 A1 WO2006134738 A1 WO 2006134738A1 JP 2006309332 W JP2006309332 W JP 2006309332W WO 2006134738 A1 WO2006134738 A1 WO 2006134738A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
engine
fuel injection
injection control
fuel
Prior art date
Application number
PCT/JP2006/309332
Other languages
English (en)
French (fr)
Inventor
Takeshi Takahashi
Takao Kawabe
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to EP06746163A priority Critical patent/EP1895128B1/en
Priority to CN2006800149378A priority patent/CN101171410B/zh
Priority to US11/912,656 priority patent/US7711471B2/en
Publication of WO2006134738A1 publication Critical patent/WO2006134738A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0095Synchronisation of the cylinders during engine shutdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/60Fuel-injection apparatus having means for facilitating the starting of engines, e.g. with valves or fuel passages for keeping residual pressure in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle

Definitions

  • the present invention relates to an engine fuel injection control technique, and more particularly to an engine startability improvement and vibration reduction technique by engine fuel injection control.
  • a common rail system (CRS) has come to be adopted in order to perform fine fuel injection control by electronic control.
  • the CRS can control the fuel injection timing and the fuel injection amount according to the engine speed and load conditions by controlling the solenoid valve of the injector.
  • an injection start cylinder is determined by a specific crank (TDC) signal and a signal indicating an explosion stroke. This is different from the one in which the fuel injection cylinder is mechanically determined like the jerk type, and the cylinder which starts the fuel injection is determined by the electric signal input.
  • the main thing that electrically distinguishes the fuel injection cylinder is that when the TDC of the first cylinder and the signal indicating the explosion process of the first cylinder are input, the fuel is injected into the first cylinder.
  • the start is always performed by fuel injection in the first cylinder.
  • an electronically controlled injection device for an internal combustion engine in which the injection order of engine cylinders is predetermined is provided with an engine speed sensor, a cylinder discrimination sensor, and a cylinder discrimination section (patent) Reference 1).
  • the engine speed sensor generates a speed pulse signal consisting of two missing teeth pulses and multiple pulses located at a crank angle of 360 degrees due to the rotation of the engine at 720 degrees crank angle. Rotating at 720 degrees crank angle generates 1 pulse, and this pulse is generated simultaneously with one of the two missing teeth pulses.
  • the cylinder discriminating unit determines an engine cylinder to be injected with fuel based on the presence / absence of the cylinder discriminating pulse signal when the missing tooth pulse signal is generated.
  • Patent Document 1 JP-A-6-93917
  • One cylinder is used as a start start cylinder, and a sensor is attached only to this cylinder, and fuel injection for start is started, and the position force of the start start cylinder due to engine stop varies depending on key-off. For this reason, if the crank does not rotate a maximum of two times, the start cylinder may not reach the fuel injection start position, and the response at the start may be lower than that of the mechanical type.
  • Patent Document 1 If the time required for starting the engine is shortened by shortening the discrimination time based on the explosion process signal of each cylinder, the number of sensors increases or an expensive sensor such as a Hall element is required. In addition, the possibility of electrical failure due to an increase in sensors increases.
  • the technique described in Patent Document 1 has the same problem.
  • the cylinder position at which fuel injection is started can be easily specified by controlling the cylinder position at which fuel injection is started.
  • the operation for specifying the cylinder at the time of engine start can be omitted, the time required for engine start can be shortened, and the amount of fuel required at the time of start can also be reduced.
  • the engine timing as a whole is controlled to reduce engine vibration as a whole by canceling vibration between the engines when driving a plurality of engines.
  • a fuel injection control method for performing fuel injection control on a plurality of cylinders of an engine a fuel having engine stop operation recognition means, specific cylinder recognition means, and fuel injection control means.
  • the fuel injection control means stops the fuel injection after the fuel injection to the specific cylinder recognized by the specific cylinder recognition means after the engine stop operation is recognized by the engine stop operation recognition means.
  • the engine stop operation recognizing means can be constituted by a key switch or a sensor, and the specific cylinder recognizing means includes a crank sensor, a cam sensor, and a cylinder mounted on a specific cylinder. It can be configured with a sensor or a combination of a storage unit and sensor in the engine control unit.
  • the fuel injection control means an engine control unit connected to an injector can be used.
  • the crank signal is recognized for a certain period of time, and information for identifying the last injection cylinder in which fuel injection has been performed last is specified.
  • the cylinder is stored, and a cylinder after at least one step of the cylinder specified by the information at the time of engine start is specified, and fuel injection is started from the cylinder.
  • the engine is stopped by recognizing the difference between the final injection cylinder where fuel was last injected and the engine stop cylinder after the fuel injection timing when the engine is stopped.
  • the final injection cylinder is determined so that the engine stop cylinder becomes the explosion cylinder before one process when the cylinder does not become the explosion process at least one process before the specific cylinder that starts the fuel injection when the engine is started.
  • any engine is used as a reference engine, and another engine is used for fuel injection start in the reference engine.
  • the fuel injection control is performed by providing a phase difference between the two fuel injections.
  • vibrations can be reduced by causing phase differences evenly. If a phase difference that reduces vibration is set between two of the plurality of engines, and there are an odd number of engines, the vibration can be reduced by evenly generating the phase difference between the three engines.
  • a phase difference is provided at the start of fuel injection so that combined vibration due to several engine vibrations is reduced.
  • an injection timing phase difference between engines is detected, and an arbitrary engine temperature is detected. Determined by means, time setting from start of start, or means for detecting vibration.
  • crank angle signals of a plurality of engines are transmitted to one fuel injection control means, and the fuel injection control means recognizes the relative relationship between the crank signals of the plurality of engines.
  • the secondary vibration of the engine can be greatly reduced.
  • FIG. 1 is a schematic diagram showing a fuel injection control mechanism having a common rail.
  • FIG. 2 is a schematic diagram showing a control configuration when the engine is stopped.
  • FIG. 3 is a schematic diagram showing signal states recognized by a controller.
  • FIG. 4 is a flowchart showing fuel injection control when the engine is stopped.
  • FIG. 5 is a diagram showing a control configuration of a controller in a second embodiment.
  • FIG. 6 is a schematic diagram showing a connection configuration between an engine and a controller.
  • FIG. 7 is a schematic diagram showing a configuration of phase difference control using a crankshaft signal.
  • FIG. 8 is a diagram showing a control configuration of idle speed.
  • FIG. 9 is a diagram showing a configuration of phase difference control based on engine temperature.
  • FIG. 10 is a diagram showing the relationship between vibration and phase difference.
  • the present invention recognizes the end cylinder of the last explosion stroke when the engine is stopped.
  • the fuel injection cylinder at the time of starting the gin is specified, and the startability is improved.
  • the start timing is controlled to reduce vibration in multiple engine drives.
  • FIG. 1 is a schematic diagram showing a fuel injection control mechanism having a common rail.
  • the fuel injection control mechanism mainly includes a fuel pump 13, a common rail 1
  • the fuel pump 13 pumps fuel from the fuel tank 14 to the common rail 11 through a filter.
  • the common rail 11 stores fuel at a high pressure and supplies high pressure fuel to the injector 12.
  • a plurality of injectors 12 are connected to the common rail 11.
  • the injector 12 performs fuel injection into the engine cylinder.
  • the injector 12 is electronically controlled by a controller 15 to adjust the fuel injection timing with respect to engine rotation.
  • the engine 15 is connected to an engine rotation sensor 16, a key switch 17, and the like.
  • the controller 15 can recognize the engine rotation state and the top dead center state of the piston in the specific cylinder by the engine rotation sensor 16.
  • the engine rotation sensor 16 can be constituted by a pickup sensor disposed in the vicinity of a gear that rotates in synchronization with the crankshaft of the engine.
  • the engine rotation sensor 16 can recognize the engine rotation state and the top dead center state of the piston in the specific cylinder by cutting out a portion corresponding to the top dead center in the specific cylinder in the gear.
  • the controller 15 can recognize the ON / OFF state of the key switch 17 and can recognize the engine stop operation of the operator by turning the ON force of the key switch 17 to OFF.
  • FIG. 2 is a schematic diagram showing the control configuration when the engine is stopped.
  • the engine 20 is provided with four cylinders 21 ⁇ 22-23-24!
  • a piston is disposed in the cylinder, and an injector 12 is mounted.
  • Each of the four cylinders repeats the process of suction, compression, explosion, and exhaust, and fuel injection is performed in the compression process.
  • changes over time of the engine 20 are shown in FIGS. 2 (a), 2 (b), and 2 (c).
  • the engine is started by fuel injection in a specific cylinder, and the engine is stopped in a cylinder where fuel injection is performed before the specific cylinder.
  • the specific cylinder that starts fuel injection when the engine is started is designated as cylinder 23 !.
  • the controller 15 Connected to the controller 15 are injectors 12..., An engine rotation sensor 16, and a key switch 17 (not shown).
  • the controller 15 is provided with a storage unit for storing and holding information, and a cylinder 23 is stored as a specific cylinder in the storage unit.
  • the specific cylinder is recognized as an injector attached to the cylinder 23, and the fuel injection control to the injector 12 attached to the cylinder 23 is controlled according to the input value (or input waveform) of the engine rotation sensor 16. I do.
  • the engine is controlled so as to maintain the engine operation while the key switch 17 is in the ON state, and the engine stop is controlled when the key switch 17 is in the OFF state.
  • the engine 20 is driven before the compression process of the cylinder 23, which is a specific cylinder of the engine 20, or before fuel injection.
  • the first fuel injection can be performed on the cylinder 23 when the engine is started. That is, the cylinder 23 is changed to the start injection cylinder by engine stop control.
  • the explosion cylinders are in the order of 23 ⁇ 24 ⁇ 22 ⁇ 21 ⁇ 23 ⁇ ⁇ . Since the cylinder 21 is the explosion cylinder (final injection cylinder) when the engine is stopped, the cylinder 23, which is the explosion process next to the cylinder 21, becomes the start injection cylinder.
  • the controller 15 continues to operate even after the key switch 17 is turned OFF. Fuel is injected into Linda 21 and the engine is controlled so that cylinder 23 becomes the starting injection cylinder. The fuel injection amount is adjusted by the controller 15 so that the cylinder 23 is in a state (compression process or suction process) at least one stage before the explosion process. Also, if the engine speed is judged and the fuel injection in the cylinder 21 is unnecessary due to the inertia of the engine, the fuel injection is not performed.
  • the engine 15 is controlled by the controller 15 so that the cylinder 23 becomes the start injection cylinder in preparation for engine start.
  • the cylinder for starting fuel injection is known in advance, and the time required for starting the engine is shortened.
  • FIG. 3 is a schematic diagram showing signal states recognized by the controller.
  • a signal 41 indicating the dead center position of each cylinder and a signal 42 indicating the ON ZOFF state of the key switch 17 are input to the controller 15, and a signal 43 for controlling each indication is output.
  • the controller 15 recognizes the cylinder 23 as a specific cylinder (starting injection cylinder) and injects fuel into the cylinders 22 and 23 in order to stop the engine before the explosion process of the cylinder 23.
  • the specific cylinder is changed to the start injection cylinder by fuel injection.
  • the cylinder 23 when starting the engine, the cylinder 23 can be set one step before the explosion process, and the responsiveness when starting the engine can be improved.
  • FIG. 4 is a flowchart showing fuel injection control when the engine is stopped.
  • a specific cylinder is set.
  • the cylinder 23 is set as a specific cylinder.
  • discrimination 32 ONZOFF of the key switch 17 is recognized.
  • the determination 32 is repeated, and when the key switch 17 is turned OFF, in the determination 33, the cylinder to be the fuel injection process is determined after the cylinder in the fuel injection process. If the next cylinder is not a specific cylinder, fuel is injected into the cylinder at the fuel injection position in process 34. And If the next cylinder is a specific cylinder, the process is terminated without fuel injection.
  • the engine can be stopped in a state where the specific cylinder is in the next explosion stage. And time concerning engine starting can be shortened.
  • FIG. 5 is a diagram showing a control configuration of the controller in the second embodiment.
  • the cylinder that has become the engine stop cylinder after the key switch 17 is turned off is recognized, and the cylinder that is in the explosion process after the engine stop cylinder is set as the start injection cylinder. Then, fuel injection is started from the start injection cylinder when the engine is started. Explosion cylinders are in the order of 23, 24, 22, 21. As shown in Fig. 5, when the key cylinder 17 is turned OFF after the fuel injection to the cylinder 24 and the engine is stopped, the cylinder 22 which is the explosion process after the cylinder 24 is set as the start injection cylinder to the controller 15. Recognition, this information is retained. The controller 15 recognizes the cylinder that performs fuel injection, and the controller holds information on the cylinder that performed fuel injection for each fuel injection.
  • the controller 15 recognizes that the engine has stopped, and then holds the fuel next to the last cylinder held.
  • the cylinder 24 that performs the injection is recognized and held as a start injection cylinder, and fuel is injected from the cylinder 24 when the engine is started. As a result, the time required for starting can be shortened.
  • the cylinder that has received the last corresponding TDC signal is recognized as the final cylinder, and when the engine is started, fuel injection is started from the cylinder that performs fuel injection next to the final cylinder.
  • the starting injection cylinder may be a cylinder in a state (compression process or suction process) at least one process before the cylinder that has finally recognized the TDC signal. That is, the final cylinder is recognized during the operation period of the controller 15 that is arbitrarily set after the key switch 17 is turned OFF, and the starting injection cylinder is calculated from the final cylinder.
  • the controller 15 recognizes the phase difference between the cylinder recognized immediately before the key switch 17 is turned OFF and the final cylinder that has completed the explosion process when the engine is completely stopped, and the calculated starting injection cylinder.
  • the controller 15 statistically stores and holds the difference in the fuel injection sequence.
  • the starting injection cylinder is 5% for the cylinder 24, 85% for the cylinder 22 and 10% for the cylinder 21.
  • the engine start time can be shortened by setting the cylinder 22 that is two steps ahead of the cylinder 23 recognized immediately before the key is turned off as the start injection cylinder.
  • the frequency is high, and the difference is defined as the difference from the cylinder immediately before OFF to the start injection cylinder. Based on this difference, the cylinder immediately before OFF of the key switch 17 is recognized, whereby the start injection cylinder is Can be calculated.
  • the controller 15 learns the relationship between the cylinder immediately before the key switch 17 is turned off and the starting injection cylinder, and the controller 15 after the key switch is turned off after the initial learning process in the controller 15 is completed.
  • the operating period can be shortened or eliminated.
  • the controller 15 by recognizing the cylinder immediately before the key switch 17 is turned off by the controller 15, the final cylinder can be calculated, and the starting injection cylinder can be calculated from this final cylinder.
  • the controller 15 after the key switch 17 is turned off Can shorten the operation time.
  • the difference between the cylinder immediately before the key switch is turned off and the start injection cylinder is stored in advance as a set value, and by this set value, the cylinder force immediately before the key switch is turned off also determines the start injection cylinder. Can be calculated.
  • the controller 15 stores in advance the difference between the cylinder immediately before the cylinder is turned off and the starting injection cylinder in the case of the cylinder.
  • the controller 15 recognizes the cylinder that performs fuel injection, and when the key switch 17 changes from ON to OFF, the controller 15 determines the value of the “difference” corresponding to the cylinder that performed the previous fuel injection. From this, the starting injection cylinder is calculated. Thereby, engine control can be made into a simple structure.
  • the fuel injection control method is performed after the key switch 170FF so that the specific cylinder to be the start injection cylinder is previously determined for the engine cylinder and the specific cylinder becomes the start injection cylinder. And a fuel injection control method for starting the engine by calculating the starting injection cylinder using the learned value of the cylinder just before the key switch is turned off or a predetermined “difference”. These fuel injection control methods are selected according to the situation.
  • the ease of starting the engine can be determined by recognizing the time from the start of rotation of the cell motor to the start of driving due to engine combustion (increase in rotational speed).
  • the controller 15 stores the reference time in advance, measures the time required for starting when the engine is started, and compares it with the reference time to determine the ease of starting in the controller 15. This can be determined by the controller 15 since it is connected to the key switch 17, the engine rotation sensor, and the force S controller 15, which is a start switch of the cell motor.
  • control method can be selected according to the engine starting condition, it is possible to provide a fuel injection control method that can be used universally for various engines.
  • the fuel injection control method shown in the above embodiment can perform engine start control, and can be applied to start a plurality of engines to improve quietness of engine drive. Yen With the gin start control, when a plurality of engines are driven, the engine start timing can be controlled to reduce the combined vibration of the plurality of engines.
  • Fig. 6 is a schematic diagram showing the connection between the engine and the controller.
  • Fig. 6 (a) is a diagram showing a configuration in which two controllers are connected.
  • Fig. 6 (b) is a diagram showing a configuration in which two engines are controlled by one controller.
  • FIG. 7 is a schematic diagram showing a configuration of phase difference control using a crankshaft signal.
  • Controllers 20a and 20b are connected to controllers 101 and 102, respectively, so that each fuel injection can be controlled. Furthermore, the controller 101 is also connected to the controller 102 so that the controller 102 can be controlled by the controller 101.
  • the controller 101 In the fuel injection control at engine start, by controlling the fuel injection timing of one fuel injection timing with respect to the other fuel injection timing, the secondary vibration between the engine 20a and the engine 20b is canceled, and the total Vibration can be reduced.
  • the crank signal of the engine 20a '20b is input to the controller 101, so that the controller 101 can recognize the phase difference between the engines 20a and 20b!
  • the controller 101 starts fuel injection of the engine 20a, and the controller 102 recognizes the fuel injection timing of the engine 20a. At the timing delayed by a half wavelength of the secondary vibration transmitted from the controller 101, the controller 20 Start fuel injection. This cancels the secondary vibration between the two engines. In two engines, engine vibration can be reduced by giving an equidistant explosion phase difference depending on the number of cylinders.
  • Information such as the number of cylinders and the engine shape of the engines 20a'20b is input to and held in the controllers 101 ⁇ 102. Based on this information, the phase difference between the engines is calculated so that the engine vibration is reduced, and the engines 20a 'and 20b are controlled.
  • the optimum phase difference d ⁇ is calculated for reducing the vibration between the engines, and this phase difference d ⁇ is given to reduce the engine vibration.
  • Example for example, in the case of an in-line four-cylinder engine, by giving a phase difference of 180 °, it is possible to construct a configuration in which the mutual vibrations cancel each other.
  • the engine 101 can be controlled by the controller 101.
  • the controller 101 By adjusting the start timing of the engines 20a '20b with the controller 101, it is possible to control two engines with one controller, improving the reliability of engine control by using the controller 102 as a spare controller. it can.
  • any means for recognizing the phase difference between the engines is acceptable as long as the controller 101 can recognize the phase difference of the engine 20a'20b.
  • the phase difference of the engine can be controlled.
  • the controller 100 controls the engines 20a ′ and 20b.
  • the crank angle signal of the engine 20a '20b is input to the controller 100, and the phase difference of the engine rotation between the two engines can be controlled by the fuel injection timing.
  • controller 100 By inputting the crank angle signals of a plurality of engines to one controller 100, vibrations in the plurality of engines as a whole can be reduced.
  • the controllers 20 and 20b are individually connected to the controllers 101 and 102. When the controller 100 is damaged or when one engine is driven independently, the controller connected to each engine Can be used.
  • FIG. 8 is a diagram showing a control configuration of the idle speed.
  • the vertical axis shows the engine speed, and the horizontal axis shows time.
  • the controller 100 or 101 described above performs control so that the engine idle speed decreases after setting the phase difference between the engines so that the vibrations of the plurality of engines are reduced.
  • a phase difference is determined so that vibration is reduced at a predetermined engine speed, and then engine control is performed so that the idle speed is reduced.
  • the idle speed is gradually decreased, and the engine speed R2 is set as the idle speed.
  • control is performed so that the idle speed is reduced.
  • the phase difference so that the vibration of the two engines is reduced to 900 rpm!
  • the engine speed is set to 500 rpm.
  • the engine changes its characteristics depending on its temperature.
  • the viscosity of engine oil changes with temperature.
  • a means for detecting the engine temperature a temperature sensor attached to each engine or a non-contact type temperature sensor can be used.
  • FIG. 9 is a diagram showing a configuration of phase difference control based on engine temperature.
  • the vertical axis shows the absolute value of the phase difference, and the horizontal axis shows the engine temperature.
  • phase difference between the engines is constant up to temperature Twl, decreases with temperature from temperature Twl to temperature Tw2, and is constant above temperature Tw2. In this way, by controlling the phase difference between the engines according to the temperature, it is possible to reduce engine vibration in a state close to the actual engine characteristics.
  • Fig. 10 shows the relationship between vibration and phase difference.
  • the vertical axis is the amount of vibration
  • the horizontal axis is the absolute value of the phase difference.
  • the vibration amount is recognized by a vibration sensor or the like, the phase difference between the engines is adjusted, and engine vibration is reduced.
  • an initial value of a phase difference for reducing engine vibration is calculated from numerical information of engine characteristics. The engine starts with the initial phase difference. After starting the engine, the actual vibration of the engine is recognized by the vibration sensor, and the phase difference is adjusted and set to the phase difference O where the vibration is actually minimized.
  • the phase difference is increased or decreased from the initial phase difference, and the phase difference is adjusted in the direction in which the measured engine frequency decreases.
  • the initial setting is set to the phase difference ⁇ 1
  • the phase difference is changed in the direction in which the phase difference increases, and the vibrations before and after the phase difference change are compared.
  • the vibration after the phase difference change becomes larger than that before the phase difference change
  • the phase difference before the phase difference change is stored as the phase difference O.
  • engine control is performed with the phase difference between the engines as the phase difference ⁇ .
  • the present invention can be used for engine fuel injection control technology, and can be used for improvement of startability and vibration reduction by engine fuel injection control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 本発明は、コモンレールシステムを用いたエンジンにおいて、始動時の応答性を向上させるとともに、複数のエンジンが駆動される構成において、エンジン全体での振動低減を行うことを課題とし、エンジン20の複数気筒に燃料噴射制御を行う燃料噴射制御方法において、エンジン停止操作認識手段17と、特定気筒認識手段16と、燃料噴射制御手段15と、を有する燃料噴射制御装置により、該燃料噴射制御手段15において、エンジン停止操作認識手段17によるエンジン停止操作の認識後、特定気筒認識手段16により認識される特定気筒への燃料噴射の後に燃料噴射を停止する。そして、特定のエンジンの燃料噴射に対して、他のエンジンの燃料噴射に位相差を設けて、燃料噴射制御を行う。

Description

明 細 書
燃料噴射制御装置
技術分野
[0001] 本発明は、エンジンの燃料噴射制御技術に関するものであり、より詳しくはエンジン の燃料噴射制御による始動性向上および振動低減の技術に関する。
背景技術
[0002] 近年、電子制御により、きめ細かな燃料噴射制御を行うために、コモンレールシステ ム(CRS)が採用されるようになった。 CRSは、インジェクタの電磁弁制御により燃料 噴射タイミングおよび燃料噴射量をエンジン回転数、負荷条件により制御可能である 。そして、 CRSを搭載したエンジンの始動制御は、特定クランク (TDC)信号と爆発ェ 程を示す信号とにより、噴射開始気筒を決定している。これは、ジャーク式の様な機 械的に燃料噴射気筒を決められるものとは異なり、電気信号入力により燃料噴射を 開始する気筒を判別して 、る。
このように、電気的に燃料噴射気筒の判別を行うものの主なものは、第 1番気筒の T DCと第 1番気筒の爆発工程を示す信号が入力されたとき、第 1番気筒に噴射開始を 行うもので、始動は必ず第 1番気筒における燃料噴射で行われる。その他の例として 、各気筒の爆発工程信号により、判別時間を短縮させる方式がある。
[0003] また、エンジンの気筒の噴射順序が予め定められている内燃機関用電子制御式噴 射装置に、エンジン回転数センサ、気筒判別センサ、気筒判別部を設けるものが知 られている(特許文献 1)。エンジン回転数センサはエンジンの 720度クランク角の回 転でクランク角 360度離れた所に位置する 2つの欠歯パルスと複数のパルスとからな る回転数パルス信号を発生し、気筒判別センサは、 720度クランク角の回転で 1パル スを発生し、このパルスが 2つの欠歯パルスのいずれかと同時に発生する。そして、 気筒判別部は、欠歯パルス信号の発生時に、気筒判別パルス信号の有無により燃 料噴射を行うべきエンジン気筒を判定する。
特許文献 1:特開平 6— 93917号公報
発明の開示 発明が解決しょうとする課題
[0004] 1つの気筒を始動開始気筒として、この気筒にのみセンサを取付け、始動の燃料噴 射を開始するものでは、エンジン停止による始動開始気筒の位置力 キーオフによつ て、毎回異なる。このため、クランクが最大 2回転しないと始動開始気筒が燃料噴射 開始位置に到達しない場合があり、始動時の応答性が機械式のものに比べて低くな る場合がある。
そして、各気筒の爆発工程信号により判別時間を短縮させて、エンジン始動時の時 間を短縮するものでは、センサの個数が増加したり、ホール素子などの高価なセンサ が必要となったりする。また、センサの増加による電気的な故障の可能性が増加する また、特許文献 1に記載された技術においても同様の問題がある。
[0005] さらに、 CRSを搭載するエンジンを複数駆動する構成においては、各エンジンの始 動までの時間がそれぞれ異なる可能性が高く、始動時のエンジンクランク位相差の 状態によっては、エンジン振動が互いに強めあう場合がある。
課題を解決するための手段
[0006] エンジン停止時において、燃料噴射を開始する気筒位置を制御することにより、燃 料噴射を開始する気筒の特定が容易となる。そして、エンジン始動時における気筒 特定のための動作が省略可能となりエンジン始動に力かる時間を短縮でき、始動時 に必要となる燃料量も低減できる。
さらに、エンジン始動時における始動タイミングを制御して、複数エンジンの駆動に おいて、エンジン間の振動の打ち消しにより、全体としてのエンジン振動を低減する。
[0007] すなわち、本発明においては、エンジンの複数気筒に燃料噴射制御を行う燃料噴 射制御方法において、エンジン停止操作認識手段と、特定気筒認識手段と、燃料噴 射制御手段と、を有する燃料噴射制御装置により、該燃料噴射制御手段において、 エンジン停止操作認識手段によるエンジン停止操作の認識後、特定気筒認識手段 により認識される特定気筒への燃料噴射の後に燃料噴射を停止する。
なお、エンジン停止操作認識手段はキースィッチやセンサなどにより構成でき、特 定気筒認識手段としては、クランクセンサやカムセンサ、特定気筒に装着されるシリン ダセンサ、もしくはエンジンコントロールユニット内の記憶部とセンサとの組み合わせ などにより構成できる。燃料噴射制御手段としては、インジェクタに接続したエンジン コントロールユニットなどを利用できる。
[0008] 本発明にお ヽては、エンジン停止操作認識手段によるエンジン停止操作の認識後 に、一定時間、クランク信号を認識し、最後に燃料噴射が行われた最終噴射気筒を 特定する情報を記憶し、エンジン始動時に該情報により特定される気筒の少なくとも 1工程後の気筒を特定し、該気筒より燃料噴射を開始する。
[0009] 本発明にお ヽては、最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時 に燃料噴射タイミングの後となっているエンジン停止気筒との差を、認識し、エンジン 停止気筒が、エンジン始動時に燃料噴射を開始する特定気筒の少なくとも 1工程前 の爆発工程とならない場合に、該エンジン停止気筒が 1工程前の爆発気筒となるよう に、最終噴射気筒を決定する。
[0010] 本発明においては、最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時 に燃料噴射タイミングの後となっているエンジン停止気筒との差に一定の傾向が見ら れな 、場合、もしくは最終噴射気筒とエンジン停止気筒との差を認識させな 、場合 に、既定の値を、最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時に燃 料噴射タイミングの後となっているエンジン停止気筒との差として、最終噴射気筒を 決定する。
[0011] 本発明にお ヽては、固有のクランク軸を有するエンジンを複数個駆動する構成に おいて、任意のエンジンを基準エンジンとし、該基準エンジンにおける燃料噴射開始 に対して、他のエンジンの燃料噴射との間に位相差を設けて、燃料噴射制御を行う。 なお、複数のエンジンにおいて、均等に位相差を生じさせて、振動を低減できる。 そして、複数の内の 2つのエンジン間において振動を低減する位相差を設定し、ェン ジンが奇数個である場合には、 3つのエンジンで位相差を均等に生じさせて振動を 低減できる。
[0012] 本発明においては、数個のエンジン振動による合成振動が低減されるように、燃料 噴射開始に位相差を設ける。
[0013] 本発明にお 、ては、エンジン間の噴射時期位相差を、任意のエンジン温度を検出 手段、もしくは、始動開始よりの時間設定、もしくは、振動を検知する手段により、決 定する。
[0014] 本発明においては、複数のエンジンのクランク角度信号を、 1つの燃料噴射制御手 段に送信し、該燃料噴射制御手段により、複数エンジンのクランク信号の相対関係を 認識する。
発明の効果
[0015] このような燃料噴射制御方法を用いることにより、始動時における複雑な CRS制御 やコストの力かる機構を追加することなく簡単に、少ないセンサを利用して、エンジン 始動時の応答性を向上できる。
さらに、複数のエンジンを駆動する構成においては、エンジンの 2次振動を大幅に 低減することが可能となる。
図面の簡単な説明
[0016] [図 1]コモンレールを有する燃料噴射制御機構を示す模式図。
[図 2]エンジン停止時の制御構成を示す模式図。
[図 3]コントローラに認識される信号状態を示す模式図。
[図 4]エンジン停止時の燃料噴射制御を示すフローチャート図。
[図 5]第 2実施例におけるコントローラの制御構成を示す図。
[図 6]エンジンとコントローラの接続構成を示す模式図。
[図 7]クランク軸信号による位相差制御の構成を示す模式図。
[図 8]アイドル回転数の制御構成を示す図。
[図 9]エンジン温度による位相差制御の構成を示す図。
[図 10]振動と位相差との関係を示す図。
符号の説明
[0017] 11 コモンレール 12 インジェクタ 13 燃料ポンプ 14 燃料タンク 15 コントローラ 1 6 エンジン回転数センサ 17 キースィッチ
発明を実施するための最良の形態
[0018] 本発明は、エンジン停止時に最後の爆発行程終了気筒を認識することにより、ェン ジンの始動時の燃料噴射気筒を特定し、始動性を向上させる。さらに、始動タイミン グを制御して複数のエンジン駆動における振動低減を実現するものである。
実施例 1
[0019] 次に、第 1実施例について、図を用いて説明する。
図 1はコモンレールを有する燃料噴射制御機構を示す模式図。
第 1実施例において、燃料噴射制御機構は、主に、燃料ポンプ 13、コモンレール 1
1、インジェクタ 12· 12· 12· 12、コントローラ 15、エンジン回転センサ 16、キースイツ チ 17より構成される。この燃料噴射制御機構により、燃料をコモンレール 11において 蓄圧し、エンジン各気筒への燃料噴射制御を行う。
燃料ポンプ 13は、フィルタを介して燃料タンク 14より燃料をコモンレール 11に圧送 する。コモンレール 11は燃料を高圧で蓄えてインジェクタ 12に高圧の燃料を供給す るものであり、コモンレール 11には、複数のインジェクタ 12が接続される。
インジェクタ 12により、エンジン気筒内への燃料噴射が行われる。インジェクタ 12は コントローラ 15により電子的に制御され、エンジン回転に対する燃料噴射タイミングが 調節される。
[0020] コントローラ 15にはエンジン回転センサ 16やキースィッチ 17などが接続されている 。コントローラ 15は、エンジン回転センサ 16により、エンジンの回転状態および特定 シリンダにおけるピストンの上死点状態を認識可能となって 、る。エンジン回転センサ 16としては、エンジンのクランク軸に同期して回転する歯車の近傍に配設されるピッ クアップセンサにより構成することができる。そして、歯車において特定の気筒におけ る上死点相当部を切欠くことにより、エンジン回転センサ 16でエンジン回転状態およ び特定気筒におけるピストンの上死点状態を認識することができる。
コントローラ 15は、キースィッチ 17の ON/OFF状態を認識可能となっており、キ 一スィッチ 17の ON力も OFFへの操作により操縦者のエンジン停止操作を認識可能 としている。
[0021] 次に、エンジン停止時の制御について説明する。エンジン停止時の制御は、特定 シリンダにお ヽてエンジンを停止させて、燃料噴射を行う始動開始気筒の判別を容 易して、エンジン始動を容易にする。 図 2はエンジン停止時の制御構成を示す模式図。図 2に示す構成においては、ェ ンジン 20には 4つのシリンダ 21 · 22- 23 - 24が配設されて!/、る。シリンダ内にはピスト ンが配設され、インジェクタ 12が装着されている。 4つのシリンダは、それぞれ、吸入' 圧縮 '爆発'排気の工程を繰り返し、燃料噴射は圧縮工程において行われる。なお、 図 2において、図 2 (a)、図 2 (b)、図 2 (c)とエンジン 20の経時的変化を示す。
本実施例にぉ 、て、特定のシリンダにおける燃料噴射よりエンジン始動を行うもの であり、エンジンを、特定シリンダの前に燃料噴射が行われるシリンダにおいて、停止 させる。図 2において、エンジン始動時に燃料噴射を開始する特定シリンダをシリンダ 23として!/ヽる。
コントローラ 15には、インジェクタ 12· ·、エンジン回転センサ 16、図示しないキース イッチ 17が接続されている。そして、コントローラ 15には情報を記憶保持する記憶部 が設けられており、この記憶部に特定シリンダとしてシリンダ 23が記憶されている。コ ントローラ 15において特定シリンダは、シリンダ 23に装着されたインジェクタとして認 識されており、エンジン回転センサ 16の入力値 (もしくは入力波形)に応じてシリンダ 23に装着されたインジェクタ 12への燃料噴射制御を行う。
エンジンはキースィッチ 17が ON状態にある間はエンジンの運転を維持するように 制御され、キースィッチ 17が OFF状態となるとエンジン停止の制御が行われる。ェン ジン停止の制御にお!、て、エンジン 20の特定シリンダであるシリンダ 23の圧縮工程 前もしくは燃料噴射前までエンジン 20が駆動される。これにより、エンジン始動時に 初の燃料噴射をシリンダ 23に対して行うことができる。すなわち、エンジン停止制御 により、シリンダ 23を始動噴射気筒にする。
図 2において、図 2 (a)と図 2 (b)との間においてキースィッチ 17が ONから OFFとな ると、コントローラ 15はエンジン停止時にシリンダ 23の 1工程前の爆発気筒がシリンダ 21となるように燃料噴射制御を行う。
図 2に示すエンジン 20にお!/、て、爆発気筒は、 23 · 24 · 22 · 21 · 23 · ·の順となる。 シリンダ 21をエンジン停止時の爆発気筒(最終噴射気筒)とすること〖こより、シリンダ 2 1の次に爆発工程となるシリンダ 23が始動噴射気筒となる。
コントローラ 15は、図 2 (b)に示すごとぐキースィッチ 17が OFFとなった後にも、シ リンダ 21に対して燃料噴射を行 ヽ、シリンダ 23が始動噴射気筒となるようにエンジン を制御する。なお、燃料噴射量は、シリンダ 23が爆発工程の少なくとも 1工程前の状 態 (圧縮工程もしくは吸入工程)となるように、コントローラ 15において調節される。ま た、エンジン回転速度などを判断して、エンジンの慣性などによりシリンダ 21における 燃料噴射が不要である場合には、燃料噴射は行われな 、。
すなわち、キースィッチ 17が OFFとなった後も、コントローラ 15によるエンジン制御 が行われ、エンジン始動に備えて、シリンダ 23が始動噴射気筒となる様にする。 これにより、燃料噴射を開始するシリンダが予め解るとともに、エンジン始動にかか る時間を短縮させる構成になっている。
[0023] 図 3はコントローラに認識される信号状態を示す模式図。
コントローラ 15には、各シリンダの死点位置を示す信号 41とキースィッチ 17の ON ZOFF状態を示す信号 42とが入力され、各インジヱクシヨンを制御する信号 43が出 力される。図 3においては、シリンダ 24への燃料噴射が行われた後に、キースィッチ 1 7が ONから OFFに切換えられている。この状況において、コントローラ 15は、シリン ダ 23を特定シリンダ (始動噴射気筒)として認識しており、シリンダ 23の爆発工程より 前でエンジンを停止させるために、シリンダ 22· 23について燃料噴射を行う。
すなわち、キースィッチ 17が OFFになった後に、燃料噴射により特定シリンダを始動 噴射気筒にする。
これにより、エンジン始動時において、シリンダ 23を爆発工程の 1工程前とすること ができ、エンジン始動時の応答性を向上できる。
[0024] 図 4はエンジン停止時の燃料噴射制御を示すフローチャート図。
コントローラ 15の燃料噴射制御について、図 4のフローチャートを用いて説明する。 まず、処理 31において、特定シリンダの設定が行われる。図 3に示す例においては 、シリンダ 23が特定シリンダとして設定される。この後に、判別 32においてキースイツ チ 17の ONZOFFが認識される。キースィッチ 17が ONである場合に、判別 32を反 復し、キースィッチ 17が OFFとなると、判別 33において、燃料噴射工程にあるシリン ダの次に燃料噴射工程となるシリンダの判別を行う。次のシリンダが特定気筒でな ヽ 場合には、処理 34において燃料噴射位置にあるシリンダへの燃料噴射を行う。そし て、次のシリンダが特定気筒である場合には、燃料噴射を行わず終了する。
これにより、特定シリンダが次に爆発工程となる状態で、エンジンを停止させること ができる。そして、エンジンの始動に係る時間を短くできる。
実施例 2
[0025] 次に、燃料噴射制御の第 2実施例について説明する。
図 5は第 2実施例におけるコントローラの制御構成を示す図。
第 2実施例においては、キースィッチ 17が OFFになった後にエンジン停止気筒と なったシリンダを認識して、エンジン停止気筒の次に爆発工程となるシリンダを始動 噴射気筒とする。そして、エンジン始動時に始動噴射気筒より燃料噴射を開始する。 爆発気筒は、 23 · 24· 22· 21の順となっている。図 5に示すように、シリンダ 24への 燃料噴射の後にキーシリンダ 17が OFFとなり、エンジンが停止した場合には、シリン ダ 24の次に爆発工程となるシリンダ 22が始動噴射気筒としてコントローラ 15に認識、 この情報が保持される。コントローラ 15は燃料噴射を行うシリンダを認識しており、コ ントローラにおいては燃料噴射ごとに燃料噴射を行ったシリンダの情報を保持してい る。燃料噴射の後に一定時間、シリンダの上死点への移動により検出される信号 (T DC)が検出されない場合に、コントローラ 15がエンジンの停止を認識し、保持されて いる最終気筒の次に燃料噴射を行うシリンダ 24を始動噴射気筒として認識保持し、 エンジン始動時にはシリンダ 24から燃料噴射を行う。これにより、始動時にかかる時 間を短縮することができる。
[0026] 実施例 2においては最後に対応する TDC信号を受信したシリンダを最終気筒とし て認識し、エンジン始動時には最終気筒の次に燃料噴射を行うシリンダから燃料噴 射を開始する。このように、最後に TDC信号を認識したシリンダの次のシリンダを始 動噴射気筒としてコントローラ 15において記憶保持することにより、エンジン始動を円 滑に行うことができる。また、始動噴射気筒は、最後に TDC信号を認識したシリンダ の、少なくとも 1工程前の状態 (圧縮工程もしくは吸入工程)のシリンダとしても良い。 すなわち、キースィッチ 17の OFFの後に任意に設定されるコントローラ 15の作動 期間に最終気筒を認識き、最終気筒より始動噴射気筒を算出する。これにより、ェン ジン始動時の時間を短縮する。 [0027] この他に、キースィッチ 17の OFFの後に慣性などにより、エンジンが数工程進むこ とを考慮することも可能である。コントローラ 15において、キースィッチ 17の OFFの直 前に認識されるシリンダと、エンジンが完全に停止状態において爆発工程を終了した 最終気筒を認識した後に、算出された始動噴射気筒との位相差を、燃料噴射順序の 差としてコンローラ 15に統計的に記憶保持させる。
例えば、シリンダ 23が爆発工程を終了した後に、キースィッチ 17が OFFされた場 合、始動噴射気筒となるのは、シリンダ 24が 5%、シリンダ 22が 85%、シリンダ 21が 1 0%とすると、キー OFF直前に認識されたシリンダ 23から、 2工程先のシリンダ 22を 始動噴射気筒として設定すると、多くの場合にエンジンの始動時間を短縮できる。
[0028] このように、頻度の高!、差を OFF直前シリンダより始動噴射気筒までの差とし、この 差より、キースィッチ 17の OFFの直前のシリンダを認識することにより、始動噴射気 筒を算出することができる。
このように、キースィッチ 17の OFFの直前シリンダと、始動噴射気筒との関係をコン トローラ 15において学習させることにより、コントローラ 15における初期の学習過程を 終了した後には、キースィッチ OFF後のコントローラ 15の作動期間を短ぐもしくは無 くすことができる。
すなわち、コントローラ 15によりキースィッチ 17の OFFの直前のシリンダを認識する ことにより、最終気筒が算出され、この最終気筒より始動噴射気筒を算出することが 可能となり、キースィッチ 17の OFF後のコントローラ 15の作動時間を短くできる。
[0029] さらに、コントローラ 15において、キースィッチ OFF直前のシリンダと始動噴射気筒 との差を、予め設定値として記憶させておき、この設定値により、キースィッチ OFF直 前のシリンダ力も始動噴射気筒を算出することができる。
コントローラ 15には、予め、各シリンダが OFF直前のシリンダと場合の始動噴射気 筒までの差が記憶保持されている。コントローラ 15においては、燃料噴射を行うシリ ンダが認識されており、キースィッチ 17が ONから OFFになった場合に、コントローラ 15において、直前に燃料噴射を行ったシリンダに対応する「差」の値より始動噴射気 筒が算出される。これにより、エンジン制御を簡便な構成とすることができる。
実施例 3 [0030] 次に、第 3実施例について説明する。
第 3実施例にぉ 、ては、エンジンのシリンダにぉ 、て始動噴射気筒となる特定シリ ンダを予め決定して、特定シリンダが始動噴射気筒となるようにキースィッチ 170FF 後に行う燃料噴射制御方法と、キースィッチ OFF直前のシリンダょり学習値もしくは 既定の「差」を用いて始動噴射気筒を算出してエンジン始動を行う燃料噴射制御方 法との二つの制御とを用いる。そして、これらの燃料噴射制御方法を状況に応じて選 択する。
一方の燃料噴射制御方法によりエンジン始動が効果的でな 、場合に、他方の燃料 噴射制御を選択する。
エンジン始動の容易性は、セルモータ回転開始よりエンジンの燃焼による駆動開始 (回転速度の上昇)までの時間を認識することにより判断することができる。コントロー ラ 15に予め基準時間を記憶させ、エンジン始動時に始動に力かる時間を測定し、基 準時間と比較することにより、始動の容易性をコントローラ 15において判別する。 これは、セルモータの起動スィッチであるもキースィッチ 17とエンジン回転センサと 力 Sコントローラ 15に接続していることから、コントローラ 15において判断可能となって いる。
[0031] まず、キースィッチ OFF直前のシリンダより測定値のばらつきにより学習値が定めら れな 、場合や、学習値による始動気筒の決定がエンジン始動性に効果的でな 、場 合には、特定シリンダが始動噴射気筒となるようにキースィッチ 170FF後に行う燃料 噴射制御方法をとる。また、特定シリンダが始動噴射気筒となるようにキースィッチ 17 OFF後に行う燃料噴射制御方法がエンジン始動に効率的でない場合には、他方の 燃料噴射制御方法を利用する。
このように、エンジン始動の状況に応じて、制御方法を選択可能とするので、様々 なエンジンに対して汎用的に対応可能な燃料噴射制御方法を提供することができる 実施例 4
[0032] 上記実施例に示した燃料噴射制御方法は、エンジンの始動制御を行えるものであ り、これを複数エンジンの始動に適用してエンジン駆動の静粛性を向上できる。ェン ジン始動制御により、複数のエンジンを駆動する際に、エンジン始動のタイミングを制 御して、複数個のエンジンの合成振動を小さくすることができる。
第 4実施例は、複数のエンジンを駆動する上で、エンジン振動の低減を燃料噴射 制御により行うものである。複数エンジンの構成例として、二つのエンジン 20a ' 20b を駆動する 2機 2軸の構成について説明する。
図 6はエンジンとコントローラの接続構成を示す模式図。図 6 (a)は 2つのコントロー ラを接続する構成を示す図。図 6 (b)は 1つのコントローラにより 2つのエンジンを制御 する構成を示す図。図 7はクランク軸信号による位相差制御の構成を示す模式図。
[0033] まず、図 6 (a)を用いて、 2つのコントローラを接続する構成にっ 、て説明する。ェン ジン 20a.20bには、それぞれ、コントローラ 101 · 102が接続しており、それぞれの燃 料噴射を制御可能としている。さらに、コントローラ 101はコントローラ 102にも接続し 、コントローラ 101によりコントローラ 102を制御可能にしている。
エンジン始動時の燃料噴射制御において、一方の燃料噴射タイミングに対して、他 方の燃料噴射タイミングを制御することにより、エンジン 20aとエンジン 20bとの二次 振動を打ち消して、 2つのエンジンにおけるトータルの振動を低減することができる。 コントローラ 101にはエンジン 20a ' 20bのクランク信号が入力され、コントローラ 10 1にお 、て、エンジン 20a · 20b間の位相差を認識可能として!/、る。
コントローラ 101において、エンジン 20aの燃料噴射を開始するとともに、コントロー ラ 102においてエンジン 20aの燃料噴射タイミングを認識して、コントローラ 101より伝 達される二次振動の半波長遅れたタイミングで、エンジン 20bの燃料噴射を開始する 。これにより、 2つのエンジン間において、二次振動が打ち消される。 2機のエンジン において、気筒数による等間隔爆発位相差を与えることにより、エンジン振動を低減 できる。
[0034] コントローラ 101 · 102には、エンジン 20a ' 20bの気筒数やエンジン形状などの情 報が入力され、保持される。これらの情報によりエンジン振動が低減するようにェンジ ン間の位相差を算出して、エンジン 20a' 20bを制御する。
すなわち、図 7に示すごとぐ 2つのエンジン間において、エンジン間の振動低減に 最適な位相差 d Θを算出し、この位相差 d Θを与えてエンジン振動の低減を図る。例 えば、直列 4気筒エンジンの場合には、 180° の位相差を与えることにより、互いの 振動が打ち消し合う構成にできる。
また、コントローラ 101により、エンジン 20a ' 20bを制御することも可能である。コント ローラ 101により、エンジン 20a' 20bの始動タイミングを調節することにより、 1つのコ ントローラにより 2つのエンジン制御が可能であり、コントローラ 102を予備のコント口 ーラとして、エンジン制御の信頼性を向上できる。
なお、コントローラ 101にエンジン 20a ' 20bのクランク信号を入力する他に、コント口 ーラ 101においてエンジン 20a' 20bの位相差を認識可能であればよぐエンジン間 の位相差を認識する任意の手段によりエンジンの位相差を制御することができる。
[0035] 図 6 (b)の構成においては、コントローラ 100により、エンジン 20a ' 20bの制御を行 う。コントローラ 100にエンジン 20a' 20bのクランク角度信号が入力され、 2つのェン ジン間におけるエンジン回転の位相差を燃料噴射タイミングにより制御することがで きる。
このように、 1つのコントローラ 100に複数のエンジンのクランク角度信号を入力する ことにより、複数エンジン全体での振動を低減することができる。なお、エンジン 20a' 20bには、個々にコントローラ 101 · 102が接続されており、コントローラ 100が破損し た場合や、一方のエンジンを単独で駆動する際には個々のエンジンに接続するコン 卜ローラを用 、ることができる。
[0036] 次に、複数エンジンの位相制御を行う構成における、アイドル回転数の制御構成に ついて説明する。
図 8はアイドル回転数の制御構成を示す図。縦軸はエンジン回転数を示し、横軸は 時間を示す。
上述のコントローラ 100もしくは 101は、複数のエンジンの振動が低減されるように、 各エンジン間の位相差を設定した後に、エンジンのアイドル回転数が減少するように 制御を行う。まず、所定のエンジン回転数において、振動が低減されるように位相差 を決定し、この後にアイドル回転数が低減するようにエンジン制御を行う。図 8におい ては、エンジン回転数 R1において時間 T1に位相差を決定した後に、徐々にアイド ル回転数を減少させて、エンジン回転数 R2をアイドル回転数とする。 例えば、 2機のエンジンを制御する構成において、エンジン爆発次数がエンジン振 動を低減する様に、任意の位相差に設定された時、アイドル回転数を減少方向に作 動させる制御を行う。具体的には、 2機 2軸の船舶に搭載されるエンジン構成におい て、始動時にエンジン回転数 900rpmにお!/、て 2機のエンジンにおける振動が低減 されるように位相差を設定した後に、エンジン回転数を 500rpmとする。
これにより、エンジン振動を低減するための設定を算出しやすぐアイドル回転を低 減することにより、アイドル時の静粛性を向上でき、消費燃料を低減できる。
[0037] 次に、エンジン間の位相差決定に、エンジン回転数センサとは、別のパラメータを 用いてエンジン噴射時期制御を行う構成について説明する。
まず、エンジンの温度を認識する手段を用いて位相差を調節する構成にっ 、て説 明する。エンジンはその温度により特性が変化する。特にエンジンオイルは温度によ りその粘度が変化することが知られている。ここにおいて、エンジン温度に応じてェン ジン間の位相制御を行うことにより、より実際のエンジン特性に応じたエンジン振動の 低減を行うことができる。エンジン温度の検出手段としては各エンジンに装着された 温度センサや非接触型の温度センサを用いることができる。
図 9はエンジン温度による位相差制御の構成を示す図。縦軸は位相差の絶対値を 示し、横軸はエンジン温度を示す。
エンジン温度による位相差の制御構成の例を、図 9を用いて、説明する。エンジン 間の位相差は温度 Twlまでは一定であり、温度 Twlから温度 Tw2まで温度に応じ て減少し、温度 Tw2以上は一定となっている。このように、温度に応じてエンジン間 の位相差を制御することにより、実際のエンジン特性に近い状態で、エンジンの振動 低減を実現できる。
[0038] また、エンジン間の位相差決定に、エンジン回転数センサと、振動検出手段とを用 いた構成について説明する。
図 10は振動と位相差との関係を示す図。図 10において縦軸は振動量であり、横軸 は位相差の絶対値である。振動検出手段を用いたエンジン振動低減構成にぉ 、て は、振動センサなどにより振動量を認識して、エンジン間の位相差を調節し、ェンジ ン振動を低減する。 エンジン制御を行うコントローラ 101もしくはコントローラ 100においては、エンジン 振動低減のための位相差の初期値がエンジン特性の数値情報より算出される。そし て、初期設定の位相差によりエンジンの始動が開始される。エンジン始動後には振 動センサによりエンジンの実際の振動を認識しながら、位相差を調節して実際に最も 振動が小さくなる位相差 Oへと設定する。
位相差 αへの調節は、初期設定の位相差より位相差を増減させ、これにより測定さ れるエンジン振動数が減少する方向に位相差を調節する。例えば、初期設定が位相 差 α 1に設定されている場合には、位相差が増大する方向に位相差を変化させて、 位相差変化前と位相差変化後との振動を比較する。そして、位相差変化後の振動が 、位相差変化前よりも大きくなると、位相差変化前の位相差が位相差 Oとして記憶さ れる。そして、エンジン間の位相差を位相差 αとして、エンジン制御が行われる。 産業上の利用可能性
本発明は、エンジンの燃料噴射制御技術に利用可能であり、エンジンの燃料噴射 制御による始動性向上および振動低減に利用可能である。

Claims

請求の範囲
[1] エンジンの複数気筒に燃料噴射制御を行う燃料噴射制御方法にぉ 、て、 ェンジ ン停止操作認識手段と、特定気筒認識手段と、燃料噴射制御手段と、を有する燃料 噴射制御装置により、 該燃料噴射制御手段において、エンジン停止操作認識手段 によるエンジン停止操作の認識後、特定気筒認識手段により認識される特定気筒へ の燃料噴射の後に燃料噴射を停止することを特徴とする燃料噴射制御方法。
[2] エンジン停止操作認識手段によるエンジン停止操作の認識後に、一定時間、クラン ク信号を認識し、 最後に燃料噴射が行われた最終噴射気筒を特定する情報を記憶 し、エンジン始動時に該情報により特定される気筒の少なくとも 1工程後の気筒を特 定し、該気筒より燃料噴射を開始することを特徴とする請求項 1に記載の燃料噴射制 御方法。
[3] 最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時に燃料噴射タイミン グの後となっているエンジン停止気筒との差を、認識し、エンジン停止気筒が、ェン ジン始動時に燃料噴射を開始する特定気筒の少なくとも 1工程前の爆発工程となら ない場合に、 該エンジン停止気筒が 1工程前の爆発気筒となるように、最終噴射気 筒を決定することを特徴とする請求項 2に記載の燃料噴射制御方法。
[4] 最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時に燃料噴射タイミン グの後となっているエンジン停止気筒との差に一定の傾向が見られない場合、もしく は最終噴射気筒とエンジン停止気筒との差を認識させない場合に、 既定の値を、 最後に燃料噴射が行われた最終噴射気筒と、エンジン停止時に燃料噴射タイミング の後となっているエンジン停止気筒との差として、最終噴射気筒を決定することを特 徴とする請求項 3に記載の燃料噴射制御方法。
[5] 固有のクランク軸を有するエンジンを複数個駆動する構成において、任意のェンジ ンを基準エンジンとし、該基準エンジンにおける燃料噴射開始に対して、他のェンジ ンの燃料噴射との間に位相差を設けて、燃料噴射制御を行うことを特徴とする請求 項 1から 4のいずれか一項に記載の燃料噴射制御方法。
[6] 数個のエンジン振動による合成振動が低減されるように、燃料噴射開始に位相差 を設けることを特徴とする請求項 5に記載の燃料噴射制御方法。
[7] エンジン間の噴射時期位相差を、任意のエンジン温度を検出手段、もしくは、始動 開始よりの時間設定、もしくは、振動を検知する手段により、決定することを特徴とす る請求項 5に記載の燃料噴射制御方法。
[8] 複数のエンジンのクランク角度信号を、 1つの燃料噴射制御手段に送信し、該燃料 噴射制御手段により、複数エンジンのクランク信号の相対関係を認識することを特徴 とする請求項 5から 7いずれか一項に記載の燃料噴射制御方法。
PCT/JP2006/309332 2005-06-15 2006-05-09 燃料噴射制御装置 WO2006134738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06746163A EP1895128B1 (en) 2005-06-15 2006-05-09 Fuel injection control device
CN2006800149378A CN101171410B (zh) 2005-06-15 2006-05-09 燃料喷射控制方法
US11/912,656 US7711471B2 (en) 2005-06-15 2006-05-09 Fuel injection control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-175240 2005-06-15
JP2005175240A JP2006348826A (ja) 2005-06-15 2005-06-15 燃料噴射制御装置

Publications (1)

Publication Number Publication Date
WO2006134738A1 true WO2006134738A1 (ja) 2006-12-21

Family

ID=37532105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309332 WO2006134738A1 (ja) 2005-06-15 2006-05-09 燃料噴射制御装置

Country Status (6)

Country Link
US (1) US7711471B2 (ja)
EP (2) EP1895128B1 (ja)
JP (1) JP2006348826A (ja)
KR (1) KR100950144B1 (ja)
CN (2) CN101672224B (ja)
WO (1) WO2006134738A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140225035A1 (en) * 2011-09-06 2014-08-14 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
KR101812649B1 (ko) 2013-01-15 2017-12-27 콘티넨탈 오토모티브 시스템 주식회사 차량 엔진위치 동기화 시스템 및 그 동기화 방법
CN104085534B (zh) * 2014-07-18 2016-02-10 浙江师范大学 一种双发动机输出转速平稳过渡装置
KR102262582B1 (ko) * 2017-05-10 2021-06-09 현대자동차주식회사 차량의 엔진 제어 장치 및 그 제어 방법
CN109424449B (zh) * 2017-08-29 2021-10-22 长城汽车股份有限公司 一种发动机控制方法、装置和车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793664A (en) * 1980-11-29 1982-06-10 Fuji Heavy Ind Ltd Phase setting system for internal combustion engine having plural power sources
JPH11107793A (ja) * 1997-10-01 1999-04-20 Honda Motor Co Ltd 内燃機関の停止位置制御装置
JP2003193880A (ja) * 2001-12-26 2003-07-09 Toyota Motor Corp 内燃機関の停止制御装置
JP2004360549A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 内燃機関の停止制御装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1636050A (en) * 1915-02-08 1927-07-19 Fottinger Hermann Device for damping the oscillations of multiple crank shafts
JPS57113935A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Phase control for multiple engine system
DD288199A5 (de) * 1989-09-29 1991-03-21 Veb Ifa-Motorenwerke Nordhausen,De Steueranordnung zur synchronisation der dieseleinspritzpumpen zweier brennkraftmaschinen
JPH0693917A (ja) 1992-09-11 1994-04-05 Nippondenso Co Ltd 内燃機関用電子制御式噴射装置
JPH0693890A (ja) * 1992-09-17 1994-04-05 Mazda Motor Corp 複数エンジンの制御装置
JP3627419B2 (ja) * 1997-01-16 2005-03-09 日産自動車株式会社 エンジンの空燃比制御装置
EP0875414B1 (en) * 1997-04-28 2005-08-03 Nissan Motor Co., Ltd. Vehicle drive force control device
JP3709652B2 (ja) * 1997-05-13 2005-10-26 日産自動車株式会社 車両用駆動力制御装置
JPH11107823A (ja) * 1997-10-01 1999-04-20 Honda Motor Co Ltd 内燃機関の停止位置推定装置
JP3783425B2 (ja) * 1998-09-04 2006-06-07 三菱自動車工業株式会社 内燃機関の始動制御装置
JP3803220B2 (ja) * 1999-12-16 2006-08-02 株式会社日立製作所 電磁駆動式吸排気バルブを備えたエンジンシステムの制御装置
US6493627B1 (en) * 2000-09-25 2002-12-10 General Electric Company Variable fuel limit for diesel engine
US6233943B1 (en) * 2000-09-27 2001-05-22 Outboard Marine Corporation Computerized system and method for synchronizing engine speed of a plurality of internal combustion engines
JP2002276421A (ja) * 2001-03-19 2002-09-25 Mazda Motor Corp 筒内噴射式エンジンの制御装置
JP3699372B2 (ja) * 2001-07-23 2005-09-28 三菱電機株式会社 車載エンジン制御装置
FR2827911B1 (fr) 2001-07-27 2004-01-30 Peugeot Citroen Automobiles Sa Procede de reglage de l'arret et procede de redemarrage d'un moteur a combustion interne
JP3778349B2 (ja) * 2001-11-20 2006-05-24 三菱電機株式会社 内燃機関の始動時燃料噴射制御装置
CN1326747C (zh) * 2002-10-07 2007-07-18 曼B与W狄赛尔公司 具有两个发动机的发动机设备
JP3821090B2 (ja) * 2002-10-22 2006-09-13 トヨタ自動車株式会社 内燃機関の始動制御装置
JP2004204747A (ja) 2002-12-25 2004-07-22 Mazda Motor Corp エンジンの自動停止・始動制御装置
US6814686B2 (en) * 2003-01-09 2004-11-09 Daimlerchrysler Corporation Dual engine crankshaft coupling arrangement
US7263959B2 (en) 2003-01-27 2007-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
US6935295B2 (en) * 2003-09-24 2005-08-30 General Motors Corporation Combustion-assisted engine start/stop operation with cylinder/valve deactivation
CN100443708C (zh) * 2003-10-21 2008-12-17 通用电气公司 自动检测和避免发动机上的涡轮增压器喘振的装置和方法
US7051693B2 (en) * 2003-11-21 2006-05-30 Mazda Motor Corporation Engine starting system
US7079941B2 (en) * 2004-03-29 2006-07-18 Mazda Motor Corporation Engine starting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793664A (en) * 1980-11-29 1982-06-10 Fuji Heavy Ind Ltd Phase setting system for internal combustion engine having plural power sources
JPH11107793A (ja) * 1997-10-01 1999-04-20 Honda Motor Co Ltd 内燃機関の停止位置制御装置
JP2003193880A (ja) * 2001-12-26 2003-07-09 Toyota Motor Corp 内燃機関の停止制御装置
JP2004360549A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 内燃機関の停止制御装置

Also Published As

Publication number Publication date
EP1895128B1 (en) 2012-05-02
CN101171410B (zh) 2010-08-18
EP2351921A1 (en) 2011-08-03
KR20080004574A (ko) 2008-01-09
EP1895128A1 (en) 2008-03-05
CN101672224B (zh) 2013-02-13
EP1895128A4 (en) 2009-08-12
US7711471B2 (en) 2010-05-04
KR100950144B1 (ko) 2010-03-30
EP2351921B1 (en) 2012-10-17
CN101672224A (zh) 2010-03-17
US20090012696A1 (en) 2009-01-08
JP2006348826A (ja) 2006-12-28
CN101171410A (zh) 2008-04-30

Similar Documents

Publication Publication Date Title
EP1288468A2 (en) Control device of an internal combustion engine
US7367323B2 (en) Eight-cylinder engine
JP2008309011A (ja) 燃料噴射制御装置及びエンジン制御システム
JP2006514222A (ja) 内燃機関における直接噴射の制御のための方法
WO2006134738A1 (ja) 燃料噴射制御装置
US10145327B2 (en) Device for stopping diesel engine
JP4623157B2 (ja) 異常検出装置
WO2006006495A1 (ja) 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関
US8301361B2 (en) Internal combustion engine control system
JP5052484B2 (ja) 内燃機関の燃料噴射量学習制御装置
JP2008309077A (ja) 燃料噴射弁の診断装置及び情報取得装置
JP2013130092A (ja) 内燃機関の始動時気筒判別方法
JP2007192156A (ja) 内燃機関の制御装置
US9599085B2 (en) Engine fuel injection device
JP4199705B2 (ja) 蓄圧式燃料噴射装置を備えた内燃機関
JP5381747B2 (ja) 燃料噴射装置
JP4853456B2 (ja) エンジンの自動停止装置
JPH0693917A (ja) 内燃機関用電子制御式噴射装置
WO2012133435A1 (ja) 燃料噴射制御装置
JP2014202179A (ja) 車両用始動判定装置
JP2007056767A (ja) 燃料供給装置の異常判定装置
JP2000213433A (ja) コモンレ―ル式燃料噴射システムを備えたエンジン
JP2006233918A (ja) 内燃機関の制御装置
JP2009203942A (ja) 気筒判別装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014937.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 7462/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11912656

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077025551

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006746163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE