WO2006006495A1 - 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関 - Google Patents

蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関 Download PDF

Info

Publication number
WO2006006495A1
WO2006006495A1 PCT/JP2005/012576 JP2005012576W WO2006006495A1 WO 2006006495 A1 WO2006006495 A1 WO 2006006495A1 JP 2005012576 W JP2005012576 W JP 2005012576W WO 2006006495 A1 WO2006006495 A1 WO 2006006495A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
pumping
drive shaft
Prior art date
Application number
PCT/JP2005/012576
Other languages
English (en)
French (fr)
Inventor
Tomohiro Otani
Hitoshi Adachi
Fumiya Kotou
Hideo Shiomi
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004204351A external-priority patent/JP4199705B2/ja
Priority claimed from JP2004204352A external-priority patent/JP2006029094A/ja
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to US11/631,960 priority Critical patent/US7540275B2/en
Priority to CN2005800090026A priority patent/CN1934349B/zh
Priority to EP05765461A priority patent/EP1783355A4/en
Publication of WO2006006495A1 publication Critical patent/WO2006006495A1/ja
Priority to US12/453,101 priority patent/US7753030B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • F02M39/02Arrangements of fuel-injection apparatus to facilitate the driving of pumps; Arrangements of fuel-injection pumps; Pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/205Quantity of fuel admitted to pumping elements being metered by an auxiliary metering device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0265Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0478Torque pulse compensated camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/03Reducing vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the present invention includes a pressure accumulation type (common rail type) fuel injection device including a pressure accumulation pipe (so-called common rail) applied to a fuel supply system of an internal combustion engine (for example, a diesel engine), and the pressure accumulation type fuel injection device. It relates to an internal combustion engine. In particular, the present invention relates to a measure for enabling the idling speed to be set low while suppressing vibration of the internal combustion engine, and a measure for enabling the common rail internal pressure to be adjusted with high accuracy.
  • a pressure accumulation type fuel injection device including a pressure accumulation pipe (so-called common rail) applied to a fuel supply system of an internal combustion engine (for example, a diesel engine), and the pressure accumulation type fuel injection device. It relates to an internal combustion engine. In particular, the present invention relates to a measure for enabling the idling speed to be set low while suppressing vibration of the internal combustion engine, and a measure for enabling the common rail internal pressure to be adjusted with high accuracy.
  • This type of fuel injection device stores fuel pressurized to a predetermined pressure by a high-pressure pump in a common rail, and stores the fuel stored in the common rail from a predetermined injector to a combustion chamber in accordance with the fuel injection timing. It is the composition which injects into.
  • the controller performs arithmetic processing to control fuel pressure in the common rail (hereinafter referred to as common rail internal pressure) and control of each injector so that fuel is injected under the optimal injection conditions for the engine operating conditions. I do.
  • the accumulator fuel injection device can control the fuel injection pressure determined by the common rail internal pressure in accordance with the operating state of the engine in addition to the fuel injection amount and the injection timing. It attracts attention as an injection device with excellent controllability.
  • this pressure-accumulation fuel injection device has good boosting performance in the low engine speed range, so high-pressure fuel injection is possible from the low-speed range, which is impossible with conventional mechanical fuel injection devices.
  • the conventional mechanical fuel injection device has a force that cannot be reduced to about 500 r.p.m.
  • the idling at about 250 r.p.m. Driving can be realized. In this way, idle operation at a low rotational speed can be realized. It is possible to reduce noise and reduce fuel consumption during driving.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-328830
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-84538
  • FIG. 9 is a diagram showing an example of the relationship between the engine speed and the engine vibration amplitude in the idling operation range.
  • the engine speed range R1 in the figure is a range that can be realized even with a conventional mechanical fuel injector, and the engine speed range R2 in the figure cannot be realized with a mechanical fuel injector.
  • This is the range that can be realized by adopting the accumulator fuel injection system.
  • the engine vibration amplitude increases rapidly as the engine speed is set lower.
  • the engine speed range R2 As described above, although it is possible to reduce the engine speed to the engine speed range R2 by adopting the pressure accumulation type fuel injection device, from the viewpoint of engine vibration, the engine speed range R2 However, it was practically impossible to execute idle operation. In other words, due to this vibration of the engine, the merit of using the accumulator fuel injection system cannot be fully utilized, and by realizing idle operation at this low speed, noise reduction and fuel efficiency can be achieved. There was still room for improvement in order to reduce it.
  • pump discharge amount increases the plunger diameter and lift amount of the pump, resulting in coarse control accuracy of the discharge amount. It has the problem of being bad.
  • the present invention has been made in view of the strong point, and one object thereof is to provide an accumulator type fuel injection device that can set an idling engine speed low while suppressing vibration of an internal combustion engine. It is to provide an internal combustion engine provided with a device. Another object of the present invention is to provide an accumulator fuel injection device capable of adjusting the common rail internal pressure with high accuracy in the entire engine operation region, and an internal combustion engine equipped with the accumulator fuel injection device.
  • the solution of the present invention devised in order to achieve the above object is a drive shaft of an engine.
  • the present invention relates to a fuel pump that receives a driving force of a driving shaft force of an internal combustion engine body through a power transmission means and performs a fuel pumping operation, and a fuel pumped by the fuel pump force.
  • This presupposes an internal combustion engine equipped with a pressure accumulating fuel injection device that has a common rail that stores fuel and a fuel injection valve that injects fuel supplied with the common rail force toward the combustion chamber of the internal combustion engine body.
  • the fuel pump and the timing when the load torque acting on the drive shaft of the internal combustion engine body and the drive shaft of the internal combustion engine body are maximized.
  • the rotational torque of each drive shaft is adjusted so that the timing at which the load torque acting on the drive shaft becomes the minimum is almost the same as the power transmission means. Are connected.
  • the load torque fluctuation cycle of the drive shaft of the internal combustion engine body substantially coincides with the load torque fluctuation cycle of the drive shaft of the fuel pump, and the load torque acting on the drive shaft of the internal combustion engine body Is substantially equal to the timing at which the load torque acting on the drive shaft of the fuel pump is minimized, and the timing at which the load torque acting on the drive shaft of the internal combustion engine body is minimized and the fuel pump
  • the drive shaft of the internal combustion engine body and the drive shaft of the fuel pump are connected by power transmission means so that the timing at which the load torque acting on the drive shaft is maximized is made substantially coincident.
  • the fuel pumped by the fuel pump and stored in the common rail is supplied to the fuel injection valve at a predetermined timing, and the fuel injection valve is directed toward the combustion chamber.
  • the fuel will be injected.
  • load torque acts on the drive shaft, and this load torque fluctuates periodically.
  • the load torque becomes maximum at the end of the compression stroke.
  • the load torque becomes minimum at a timing intermediate between the end of the compression stroke of one cylinder and the end of the compression stroke of the cylinder that performs the next compression stroke.
  • the fuel pump receives the driving force of the internal combustion engine body through the power transmission means and performs the fuel pressure feeding operation to the common rail.
  • a load torque acts on the drive shaft, and this load torque fluctuates periodically.
  • the load torque is maximized when the fuel pump starts to pump fuel.
  • the load is at an intermediate timing between the fuel pumping start time of one pumping chamber and the fuel pumping start time of the pumping chamber that performs the next pumping stroke. Torque is minimized.
  • the vibration can be suppressed, and the idling operation at the low rotation speed by adopting the pressure accumulation type fuel injection device can be realized while suppressing the vibration of the internal combustion engine. As a result, it becomes possible to reduce noise and fuel consumption during idling.
  • the fuel pump is provided with a plurality of pumping chambers that perform fuel pumping operations at different timings, and these pumping chambers are divided into a plurality of groups, and the fuel pumping amount from the pumping chamber to the common rail is adjusted in each group.
  • Each is equipped with a pumping amount control mechanism.
  • the fuel pumping operation from only the pumping chamber of a specific group to the common rail is performed.
  • the load torque fluctuation cycle of the pump is made to substantially coincide with the load torque fluctuation cycle of the internal combustion engine, and the load torque acting on the drive shaft of the internal combustion engine body is maximized when the load torque acting on the drive shaft of the fuel pump is minimized.
  • the timing at which the load torque acting on the drive shaft of the fuel pump is maximized is substantially matched with the timing at which the load torque acting on the drive shaft of the internal combustion engine body is minimized.
  • the internal combustion engine body is a multi-cylinder four-stroke engine
  • the fuel pump is provided with a number of pumping chambers corresponding to the number of cylinders of the internal combustion engine body.
  • the group is divided into a group and a second group, and each group is equipped with a pumping amount control mechanism. Further, when the fuel pumping operation is performed only from the second group of pumping chambers on the driving shaft of the internal combustion engine main body and the driving shaft of the fuel pump, the load torque acting on the driving shaft of the fuel pump is minimized.
  • the power transmission means is linked so that the timing at which the load torque is minimized substantially coincides with the timing. Then, by driving only the second group of pumping amount control mechanisms of the two pumping amount control mechanisms, the configuration is such that the fluctuation of the total load torque formed by superimposing the two load torques is suppressed. [0017] For example, when high speed rotation of an internal combustion engine is required (at high load), it is necessary to secure a large amount of fuel pumping per unit time into the common rail.
  • the fuel pumping amount to the common rail may be small, so only a part of the pumping amount control mechanism is driven, and only a specific group of pumping chambers is powered.
  • the fuel pumping operation is performed.
  • the load torque fluctuation cycle of the fuel pump substantially coincides with the load torque fluctuation cycle of the internal combustion engine, and the fluctuation of the total load torque can be suppressed. That is, it is possible to suppress the vibration of the internal combustion engine in the idling operation in which the vibration of the internal combustion engine is a concern.
  • Another solution of the present invention devised in order to achieve the above-described object is that a part of the fuel pumping is performed with respect to the accumulator fuel injection apparatus including a high-pressure pump having a plurality of fuel pumping systems.
  • the purpose is to forcibly stop the system, reduce pump discharge capacity, improve pump discharge control accuracy, and improve rail pressure control accuracy.
  • the present invention relates to a fuel pumping means for pumping fuel, a common rail for storing fuel pumped from the fuel pumping means, and fuel supplied from the common rail cover to the internal combustion engine body.
  • This presupposes an accumulator fuel injection device having a fuel injection valve that injects fuel into the combustion chamber.
  • the fuel pumping means is provided with a plurality of fuel pumping units having pumping paths independent from each other.
  • the discharge amount from the fuel pumping means is 1Z2 compared to the case where all the fuel pumping units are driven. Less.
  • the metering error in the entire fuel pumping means can be reduced, and metering accuracy can be improved. For example, if one fuel pumping unit is forcibly stopped while two fuel pumping units that may cause a metering error of several percent, both fuel pumping units are driven. The metering error is 1Z2 compared to the case of using. Along with this, the common rail internal pressure control error also becomes 1Z2.
  • the switching control of the number of drive of the fuel pumping unit by the pumping unit control means specifically, all the fuel pumping units according to the operating rotational speed of the internal combustion engine body and the fuel injection amount of the fuel injection valve.
  • the operation for driving the engine and the operation for forcibly stopping some of the fuel pumping units are switched.
  • a map for setting the number of drive of the fuel pumping unit according to the operating speed and the fuel injection amount is prepared, and the map of the fuel pumping unit is prepared from this map according to the detected operating speed and the fuel injection amount. Examples include setting the number of drive units. It is also possible to use the engine output torque instead of the fuel injection amount for detecting the engine operating state.
  • Transient determination means for determining whether or not the operation of the internal combustion engine body is in a transient state is provided. Then, when the pressure feeding unit control means receives the signal from the transient judging means and the operation of the internal combustion engine body is in a transient state, the operation for forcibly stopping a part of the fuel pressure feeding unit is canceled and The fuel pumping unit is driven to perform the fuel pumping operation to the common rail.
  • the pressure-feeding unit control means switches the number of the fuel pressure-feeding units to be driven, the determination value for performing the switching determination has hysteresis. This As a result, it is possible to avoid the hunting phenomenon in which the switching operation of the number of fuel pumping units frequently occurs, and to maintain the stability of the driving operation of the fuel pumping means.
  • an internal combustion engine including the accumulator fuel injection device according to any one of the above-described solving means is also within the scope of the technical idea of the present invention.
  • the engine drive shaft In order to suppress fluctuations in the total load torque obtained by superimposing the load torque acting on the engine drive shaft and the load torque acting on the fuel pump drive shaft, the engine drive shaft The timing when the load torque acting on the fuel reaches the maximum is matched with the timing when the load torque acting on the drive shaft of the fuel pump becomes the minimum. For this reason, it is possible to reduce noise and fuel consumption by realizing idle operation at low speeds without causing large vibrations in the internal combustion engine even when idling at low speeds. become. In other words, it is possible to make full use of the merit of realizing idle operation at a low rotational speed by adopting an accumulator fuel injection device.
  • the accumulator fuel injection apparatus including the fuel pumping means having a plurality of fuel pumping units independent from each other, a part of the fuel pumping system is forcibly stopped so that the metering accuracy can be improved.
  • the common rail internal pressure can be maintained at the target pressure with high accuracy, and as a result, the fuel injection amount from the fuel injection valve can be appropriately controlled.
  • FIG. 1 is a view showing a pressure accumulation fuel injection device according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram for determining a fuel injection amount.
  • FIG. 3 is a diagram schematically showing a schematic configuration of a high pressure pump, a low pressure pump to which the high pressure pump is connected, and a common rail.
  • Waveform W1 shows the variation in load torque acting on the pump drive shaft when fuel pumping operation is performed from each pump chamber group of the high-pressure pump, and fuel pumping operation is performed only from the second pump chamber group It is a figure which shows the fluctuation
  • Waveform W3 shows the load torque fluctuation waveform acting on the crankshaft of the engine body.
  • the fluctuation of load torque applied to the pump drive shaft is shown by waveform W2
  • the fluctuation of total load torque is shown by waveform W4.
  • FIG. 6 is a view showing a pressure accumulation type fuel injection device according to a second embodiment.
  • FIG. 7 is a diagram showing a map for switching between the two-actuator driving state and the one-sided actuator driving state.
  • FIG. 8 is a diagram showing the hysteresis of the switching determination value when switching the number of pump chamber groups to be driven.
  • FIG. 9 is a diagram showing an example of the relationship between the engine speed and the engine vibration amplitude in the idle operation range.
  • Second pump chamber group (second group or fuel pressure unit)
  • Figure 1 shows the accumulator fuel injection system equipped in a 6-cylinder marine diesel engine.
  • This accumulator type fuel injection device includes a plurality of fuel injection valves (hereinafter referred to as injectors) 1, 1,... Attached to respective cylinders of a diesel engine (hereinafter simply referred to as an engine).
  • injectors fuel injection valves
  • the high-pressure pump 8 is driven by, for example, an engine, boosts the fuel to a high pressure determined based on an operating state, and supplies the fuel to the common rail 2 through the fuel supply pipe 9.
  • This is a so-called plunger type fuel supply pump for supply.
  • the high-pressure pump 8 is connected to the engine crankshaft via a gear 20 (power transmission means in the present invention) so that power can be transmitted.
  • a gear 20 power transmission means in the present invention
  • a pulley is provided on each of the drive shaft of the high-pressure pump 8 and the crankshaft of the engine, and a belt is placed on the pulley so that power can be transmitted, or a sprocket is provided on each shaft. Let's make it possible to transfer power by linking the chain to this sprocket.
  • Each of the injectors 1, 1,... is attached to the downstream end of the fuel pipe communicating with the common rail 2.
  • the fuel injection from the injector 1 is controlled, for example, by energizing and stopping energization (ON / OFF) of an electromagnetic valve for injection control (not shown) that is integrated with the injector. That is, the injector 1 injects the high-pressure fuel supplied from the common rail 2 toward the combustion chamber of the engine while the injection control electromagnetic valve is open.
  • the controller 12 receives various engine information such as the engine speed and engine load, and performs the injection control so that the optimum fuel injection timing and fuel injection amount determined from these signals can be obtained.
  • a control signal is output to the solenoid valve.
  • the controller 12 outputs a control signal to the high pressure pump 8 so that the fuel injection pressure becomes an optimum value according to the engine speed and the engine load.
  • a pressure sensor 13 for detecting the common rail internal pressure is attached to the common rail 2, and a high pressure is set so that the signal of the pressure sensor 13 becomes a preset optimum value according to the engine speed and the engine load. The amount of fuel discharged from the pump 8 to the common rail 2 is controlled.
  • each injector 1 The fuel supply operation to each injector 1 is performed from the common rail 2 through the branch pipe 3 constituting a part of the fuel flow path. That is, the fuel taken out from the fuel tank 4 through the filter 5 by the low-pressure pump 6 and pressurized to a predetermined suction pressure is sent to the high-pressure pump 8 through the fuel pipe 7.
  • the fuel supplied to the high-pressure pump 8 is stored in the common rail 2 in a state where the pressure is increased to a predetermined pressure, and is supplied from the common rail 2 to the injectors 1, 1,.
  • a plurality of the injectors 1 are provided according to the type of engine (the number of cylinders, six cylinders in the first embodiment), and the fuel supplied from the common rail 2 is optimally controlled at the optimal injection timing under the control of the controller 12.
  • Information on the cylinder number and the crank angle is input to the controller 12, which is an electronic control unit.
  • the controller 12 is configured so that a target fuel injection condition (for example, target fuel injection timing, target fuel injection amount, target common rail) determined in advance based on the engine operating state so that the engine output becomes an optimum output in accordance with the operating state.
  • a target fuel injection condition for example, target fuel injection timing, target fuel injection amount, target common rail
  • target fuel injection conditions that is, fuel injection timing and injection amount by the injector 1
  • the operation of the injector 1 and the fuel pressure in the common rail are controlled so that fuel injection is performed under these conditions.
  • FIG. 2 is a control block of the controller 12 for determining the fuel injection amount.
  • the calculation of the fuel injection amount is performed by the command rotational speed calculation means 12A receiving the opening signal of the regulator operated by the user, and the command rotational speed calculation means 12A corresponds to the opening of the regulator. Calculate “command speed”.
  • the injection amount calculating means 12B calculates the fuel injection amount so that the engine rotational speed force becomes the command rotational speed.
  • Injector 1 of engine body E performs a fuel injection operation with the fuel injection amount obtained by this calculation, and in this state, engine speed calculation means 12C calculates the actual engine speed, and this actual engine speed. And the commanded rotational speed are compared, and the fuel injection amount is corrected (feedback control) so that the actual engine rotational speed approaches the commanded rotational speed!
  • a feature of the first embodiment is that the crankshaft of the engine and the drive shaft of the high-pressure pump 8 are connected. Before describing this connection state, the schematic configuration of the high-pressure pump 8 will be described.
  • FIG. 3 shows the schematic configuration of the high pressure pump 8 and the low pressure pump 6 and the high pressure pump 8.
  • 3 is a diagram schematically showing a connection state of a common rail 2.
  • the high-pressure pump 8 includes six pump mechanisms (first pump mechanism 81 to sixth pump mechanism 86). That is, the pump mechanisms 81 to 86 are configured by six cylinders and pistons that reciprocate within the cylinders, and each pump mechanism 81 to 86 has a pump chamber (pressure feeding chamber in the present invention). (1st pump chamber 81a to 6th pump chamber 86a).
  • these pump mechanisms 81 to 86 perform fuel pumping operation at different timings. Specifically, after the fuel pumping operation of the first pump mechanism 81 is performed, the fuel pumping operation of the fourth pump mechanism 84 is performed, and thereafter, the second pump mechanism 82, the fifth pump mechanism 85, the third pump The fuel pressure feeding operation is performed in the order of the mechanism 83 and the sixth pump mechanism 86.
  • the rotational speed of the drive shaft matches the rotational speed of the crankshaft of the engine, and the fuel is pumped six times with one revolution of the crankshaft (one revolution of the drive shaft of the high-pressure pump 8: 360 °). The operation is performed. In other words, one of the pump mechanisms 81 to 86 performs the fuel pumping operation once every 60 ° rotation of the crankshaft.
  • the six pump mechanisms 81 to 86 are grouped into a first pump chamber group 8A and a second pump chamber group 8B (fuel pumping unit in the present invention). Specifically, the pump mechanisms 81 to 83 become the first pump chamber group 8A (first group in the present invention), and the pump mechanisms 84 to 86 become the second pump chamber group 8B (the second group in the present invention). ) It is divided into groups. For this reason, the discharge side pipe 61 of the low-pressure pump 6 is branched into two systems of the first low-pressure pipe 62 and the second low-pressure pipe 63, and the first low-pressure pipe 62 further includes three pipes corresponding to the pump mechanisms 81 to 83.
  • the branch pipes 62a, 62b and 62c are branched, and each is individually connected to the pump chambers 81a to 83a.
  • the second low-pressure pipe 63 is branched into three branch pipes 63a, 63b and 63c corresponding to the pump mechanisms 84 to 86, and each is individually connected to the pump chambers 84a to 86a.
  • Each branch pipe 62a to 62c and 63a to 63c is provided with a check valve for preventing the back flow of fuel from the pump chamber 81a to 86a to the low pressure pump 6 side.
  • the discharge sides of the pump chambers 81a to 86a are connected to merging spaces 87 and 87 provided for the groups 8A and 8B.
  • the merging spaces 87 and 87 are connected to the common rail 2 via the fuel supply pipe 9. Connected. In addition, the backflow of the fuel from the merge spaces 87, 87 to the pump chambers 81a to 86a is also prevented on the discharge side of each pump chamber 81a to 86a.
  • a check valve is provided for the purpose.
  • first low pressure pipe 62 and the second low pressure pipe 63 are respectively provided with a first discharge amount control actuator 88 and a second discharge amount control actuator 89 (in the present invention, a pressure feed amount control mechanism. 1st and 2nd actuators).
  • These actuators 88 and 89 are equipped with one dollar valve 88a and 89a that can be moved in and out of the low pressure pipe 62 and 63.
  • This makes it possible to adjust the internal pressure of the common rail by adjusting the amount of fuel supplied to the pump chambers 8 la to 86a.
  • the lower the common rail internal pressure the larger the opening area of the low-pressure pipes 62, 63 and the more fuel is supplied to the pump chamber 8 la-86a, thereby increasing the common rail internal pressure to the target pressure! /
  • the controller 12 includes actuator control means 12D for controlling the amount of protrusion of the one-dollar valve of each of the actuators 88 and 89 (see Fig. 1).
  • the actuator control means 12D receives the common rail internal pressure signal from the pressure sensor 13 and drives both the actuators 88 and 89 when the common rail internal pressure is significantly lower than the target value.
  • the valve protrusion amount is reduced, thereby increasing the opening area of the low-pressure pipes 62 and 63.
  • the drive of the first actuator 88 is stopped, that is, the needle valve protrusion amount Fully close the first low-pressure pipe 62 with the maximum.
  • the timing at which the load torque reaches its maximum is almost the same as that at high pressure
  • the rotation phases of the shafts are aligned and linked so that the timing at which the load torque acting on the drive shaft of the pump 8 is maximized substantially coincides with the timing at which the load torque acting on the crank shaft of the engine body is minimized (see above). It is connected by gears and belts as usual).
  • the horizontal axis represents the rotation angle of the crankshaft of the engine body E
  • the vertical axis represents the load torque acting on each axis.
  • Fig. 4 shows the fluctuation of the load torque (waveform W1 in the figure) acting on the pump drive shaft when the fuel pumping operation is performed from each pump chamber group 8A, 8B of the high pressure pump 8, and the second pump chamber. Only group 8B shows the fluctuation of the load torque (waveform W2 in the figure) acting on the pump drive shaft in the state where the fuel pumping operation is performed.
  • the timing at which the load torque becomes maximum is the time point when fuel pumping starts from any one of the pump chambers (eg, point HI in FIG. 4). Further, the load torque becomes minimum at a timing intermediate between the fuel pump start time of one pump chamber and the fuel pump start time of the pump chamber that performs the next pumping stroke (for example, point L 1 in FIG. 4).
  • the load torque fluctuation waveform W2 in the state where the fuel pumping operation is performed only from the second pump chamber group 8B is shown in FIG.
  • the rotational phases of the shafts are aligned and linked so that the load torque fluctuation waveform acting on the shafts (waveform W3 in Fig. 5) has the same period and opposite phase.
  • the load torque fluctuation cycle of the high pressure pump 8 coincides with the load torque fluctuation cycle of the engine body E, and the high pressure pump 8
  • the rotation phases of the shafts are aligned and linked so that the timing at which the load torque reaches the maximum (H2) and the timing at which the load torque acting on the crankshaft of the engine body E reaches the minimum (L3) are approximately the same. .
  • the load torque acting on the crankshaft of the engine body E becomes maximum at the end of the compression stroke of any cylinder.
  • the load torque is minimized at a timing intermediate between the end of the compression stroke of one cylinder and the end of the compression stroke of the cylinder that performs the next compression stroke.
  • the fluctuation of the total load torque (waveform W4 in FIG. 5), which is a combination of the load torque acting on the crankshaft of the engine and the load torque acting on the drive shaft of the high-pressure pump 8, is the above waveform. It is suppressed by offsetting W2 and W3, and as a result, engine vibration can be greatly suppressed.
  • noise is reduced by realizing idle operation at a low rotation speed without causing large vibrations in the engine even when the idle operation is performed at a low rotation speed. And fuel consumption can be reduced. In other words, it is possible to make full use of the merit of realizing idle operation at a low rotational speed by adopting an accumulator fuel injection device.
  • the pump mechanisms 81 to 86 are stopped, so that they act on the pump drive shaft as compared with the case where all the pump mechanisms 81 to 86 are driven.
  • the fluctuation range of the load torque can be increased (the amplitude of the waveform W2 is larger than that of the waveform W1 in Fig. 4), so that this fluctuation range of the load torque is applied to the crankshaft of the engine body E.
  • the fluctuation range of the acting load torque can be increased to the same extent, and the fluctuation of the total load torque can be effectively suppressed.
  • FIG. 6 shows a pressure accumulation type fuel injection device provided in a 6-cylinder marine diesel engine according to the second embodiment.
  • the feature of the second embodiment is that the driving state of the high-pressure pump 8 can be switched according to the operating state of the engine body E.
  • the controller 112 of the second embodiment replaces the actuator control means 12D of the controller 12 of the first embodiment with a pumping unit control means for controlling the fuel pumping operation of the pump chamber groups 8A and 8B.
  • This pumping unit control means 112D is configured to drive both the first pump chamber group 8A and the second pump chamber group 8B, and forcibly stop the first pump chamber group 8A to Switch between driving only group 8B.
  • the pressure feeding unit control means 112D controls the amount of protrusion of the dollar valve of each of the actuators 88 and 89.
  • the needle valve protrusion amount By reducing the needle valve protrusion amount, When the opening area of the pipes 62 and 63 is enlarged, fuel pumping from the pump chamber group increases, and conversely, the opening area of the low-pressure pipes 62 and 63 is increased by increasing the needle valve protrusion. When it is reduced, the fuel pumping by the pump chamber group will decrease.
  • the needle valve protrusion amount is maximized, the low-pressure pipes 62 and 63 are fully closed, and no fuel is pumped from the pump chamber group, that is, the pump chamber group is stopped. Become.
  • the pressure feeding unit control means 112D receives an engine speed signal, a fuel injection amount signal, etc., for example, when the engine is operating at a high speed, and both the fuel demand amount force of the engine body E and the pump chamber group. If it is not possible to drive 8A and 8B, both pump chamber groups 8A and 8B are driven to perform fuel pumping operation to the common rail 2 (hereinafter referred to as a dual actuator drive state).
  • the first pump chamber group 8A is forced
  • the first low pressure pipe 62 is fully closed by maximizing the amount of protrusion of the first dollar valve of the first actuator 88 (hereinafter referred to as a one-side actuator driving state).
  • the fuel pumping operation to the common rail 2 is performed only by the second pump chamber group 8B.
  • the metering accuracy is higher than when both pump chamber groups 8A and 8B are driven.
  • the pump maximum discharge rate is set to lOlZmin when both the first and second pump chamber groups are used, and the pump discharge rate is controlled from 0 to the maximum value, the current must be changed from 0 to 2A.
  • the control resolution of the amplifier is 51 / minZA.
  • the maximum pump discharge rate is 5lZmin and 1Z2, but the current that controls the pump discharge rate from 0 to the maximum value does not change from 0 to 2A.
  • the pump control resolution is 2 It becomes 5lZminZA and 1Z2. That is, since the discharge amount change with respect to the actuator drive current is halved, the control resolution can be improved and the metering accuracy can be improved.
  • FIG. 7 shows the state in which both the actuators are driven according to the engine speed and the fuel injection amount.
  • a map for switching between the one-side actuator drive states is shown.
  • area A (the area shaded with a broken line) shows the area in which both actuators are driven (2-actuator area)
  • area B the area shaded with a dashed-dotted line
  • the two-actuator drive state and the one-side actuator drive state can be switched according to the engine speed and the fuel injection amount.
  • the determination value for performing the switching determination has hysteresis.
  • the broken line is attached to the 2-actuator area, and the dashed-dotted line is attached to the 1-actuator area.
  • the hysteresis width (width B1 in FIG. 8) in the one-side actuator driving state is set to about half of the hysteresis width (width A1 in FIG. 8) in the both-actuator driving state. As a result, the control accuracy can be improved.
  • the controller 112 includes the transient determination means 112E, and the control of the pressure-feed unit control means 112D can be forcibly stopped by the signal of the transient determination means 112E.
  • the transient judging means 112E can detect that the opening of the regulator suddenly increases (a request to suddenly increase the engine speed), and the operation of the engine body E is in a transient state. Judgment is made on whether or not they are powerful.
  • the pressure feed control means 112D Upon receiving a transient judgment signal from the transient judgment means 112E, the pressure feed control means 112D forcibly stops a part of the pump chamber groups, cancels the above operation, and both pumps.
  • the chamber groups 8A and 8B are driven together so that the fuel pressure feeding operation to the common rail 2 is performed. This makes it possible to quickly respond to the above request (request for rapidly increasing the number of engine revolutions).
  • the present invention is applied to a 6-cylinder marine diesel engine.
  • the present invention is not limited to this, and can be applied to various types of engines such as a four-cylinder marine diesel engine. Moreover, it can be applied not only to marine engines but also to engines used for other purposes such as vehicles.
  • the pump mechanisms 81 to 86 are divided into two groups, and the force pump mechanisms described for providing two actuators 88 and 89 are divided into three or more groups.
  • the above-described actuator may be provided, and only a part of the actuators may be selectively driven to suppress the variation of the total load torque and the improvement of the metering accuracy.
  • the present invention is suitable for various types of engines such as a 6-cylinder marine diesel engine and a 4-cylinder marine diesel engine. Moreover, it is suitable not only for marine engines but also for engines used for other purposes such as vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 一実施形態では、コモンレール式燃料噴射装置を備えたエンジンにおける燃料圧送用の高圧ポンプ(8)に2つのアクチュエータ(88,89)を備えさせる。これらのアクチュエータ(88,89)のうち一方(88)を停止し、他方(89)のみから燃料圧送動作を行うことで、エンジンのクランク軸に作用する負荷トルクが極大となるタイミングと高圧ポンプ(8)の駆動軸に作用する負荷トルクが極小となるタイミングとを一致させる。

Description

蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関 技術分野
[0001] 本発明は、内燃機関 (例えばディーゼルエンジン)の燃料供給系に適用される蓄圧 配管 (所謂コモンレール)を備えた蓄圧式 (コモンレール式)燃料噴射装置及びその 蓄圧式燃料噴射装置を備えた内燃機関に係る。特に、本発明は、内燃機関の振動 を抑制しながらもアイドル回転数を低く設定することを可能にするための対策、および コモンレール内圧を高精度に調整することを可能にするための対策に関する。 背景技術
[0002] 従来より、多気筒ディーゼルエンジン等の燃料供給系として、メカ-カルな燃料噴 射ポンプーノズル方式に比べて制御性に優れた蓄圧式燃料噴射装置が提案されて いる(例えば、下記の特許文献 1及び特許文献 2)。
[0003] この種の燃料噴射装置は、高圧ポンプによって所定圧力に加圧された燃料をコモ ンレールに貯留しておき、このコモンレールに貯留した燃料を燃料噴射タイミングに 合わせて所定のインジェクタから燃焼室内に噴射する構成となっている。また、ェン ジンの運転状態に対して最適な噴射条件で燃料が噴射されるように、コントローラが 演算処理を行ってコモンレール内燃料圧力(以下、コモンレール内圧という)の制御 や各インジ クタの制御を行う。
[0004] このように、蓄圧式燃料噴射装置は、燃料噴射量及びその噴射時期に加えて、コ モンレール内圧によって決定される燃料噴射圧力をもエンジンの運転状態に応じて 制御可能であるため、制御性に優れた噴射装置として注目されている。特に、この蓄 圧式燃料噴射装置は、エンジンの低回転速度域での昇圧性が良好であるため、低 速域から高圧燃料噴射が可能であり、従来の機械式燃料噴射装置では実現不可能 であった低回転数でのアイドル運転を行うことが可能である。具体的に、従来の機械 式燃料噴射装置では 500r. p. m程度までしカゝ低回転を実現できなカゝつた力 この 蓄圧式燃料噴射装置によれば 250r. p. m程度でのアイドル運転を実現することが 可能である。このように、低回転数でのアイドル運転が実現できるため、このアイドル 運転時における騒音の低減及び燃費の節減を図ることが可能である。
[0005] また、この種の蓄圧式燃料噴射装置に使用される高圧ポンプとして、例えば下記の 特許文献 3に開示されているように、複数の燃料圧送系を備えたものも知られている 特許文献 1 :特開 2000— 18052号公報
特許文献 2:特開 2003 - 328830号公報
特許文献 3 :特開 2004— 84538号公報
発明の開示
発明が解決しょうとする課題
[0006] ところが、上述の如く蓄圧式燃料噴射装置によってアイドル回転数を低く設定する ことは可能になったものの、単にアイドル回転数を低くしただけでは、エンジンの圧縮 行程や膨張行程での挙動が大きくなりエンジンの振動が大きくなるといった課題が生 じてしまう。
[0007] 図 9は、アイドル運転域におけるエンジン回転数とエンジンの振動振幅との関係の 一例を示す図である。例えば、図中のエンジン回転数範囲 R1は、従来の機械式燃 料噴射装置であっても実現できる範囲であり、図中のエンジン回転数範囲 R2は、機 械式燃料噴射装置では実現できず、蓄圧式燃料噴射装置を採用したことで実現可 能となった範囲である。このように、蓄圧式燃料噴射装置によってのみ実現できるェ ンジン回転数範囲 R2では、エンジン回転数を低く設定するほどエンジンの振動振幅 が急激に大きくなつてしまう。このように、蓄圧式燃料噴射装置を採用することで上記 エンジン回転数範囲 R2までエンジン回転数を低下させることは可能になったものの 、エンジンの振動といった観点からすれば、このエンジン回転数範囲 R2でアイドル運 転を実行することは現実的には不可能であった。言い換えると、このエンジンの振動 が原因で、蓄圧式燃料噴射装置を採用したことのメリットを十分に生かすことができ ず、この低回転数でのアイドル運転を実現することによって騒音の低減や燃費の削 減を図るには未だ改良の余地が残されていた。
[0008] 一方、エンジン性能はコモンレール内圧の影響を大きく受け、エンジンの高出カイ匕
'低燃費'低ェミッション実現のためには、運転状態に応じ低いコモンレール内圧から 高いコモンレール圧力まで幅広ぐ高精度に制御する必要がある。しかし、全ェンジ ン運転領域にぉ 、てコモンレール内圧を幅広く制御するためには、特に高速'高噴 射量条件において高コモンレール内圧の実現のためには、ポンプからレールへ送る 燃料容量を大きくする必要がある。上記のようにポンプ力もレールへ送る燃料量 (以 下ポンプ吐出量)を大きくすると、ポンプのプランジャ径ならびにリフト量が拡大し、吐 出量の制御精度が粗くなり、その結果コモンレール内圧制御精度が悪ィ匕するという 問題点を有する。
[0009] 本発明は、力かる点に鑑みてなされたものであり、 1つの目的は、内燃機関の振動 を抑制しながらもアイドル回転数を低く設定することを可能にする蓄圧式燃料噴射装 置を備えた内燃機関を提供することにある。また、他の目的は、エンジン全運転領域 においてコモンレール内圧を高精度に調整することが可能な蓄圧式燃料噴射装置 及びその蓄圧式燃料噴射装置を備えた内燃機関を提供することにある。
課題を解決するための手段
[0010] 上記の目的を達成するために講じられた本発明の解決手段は、エンジンの駆動軸
(クランク軸)に作用する負荷トルクと燃料ポンプの駆動軸に作用する負荷トルクとが 相殺するように各駆動軸同士を連繋させることで総負荷トルクの変動を抑制している 。つまり、エンジンの駆動軸に作用する負荷トルクが極大となるタイミングと燃料ボン プの駆動軸に作用する負荷トルクが極小となるタイミングとを一致させることにより、両 トルクが重ね合わされてなる総負荷トルクの変動を抑制して低回転数でのアイドル運 転を実現可能にしている。
[0011] 具体的に、本発明は、内燃機関本体の駆動軸力 の駆動力を動力伝達手段を介 して受けて燃料圧送動作を行う燃料ポンプと、この燃料ポンプ力ゝら圧送された燃料を 貯留するコモンレールと、このコモンレール力 供給された燃料を内燃機関本体の燃 焼室に向けて噴射する燃料噴射弁とを有する蓄圧式燃料噴射装置を備えた内燃機 関を前提とする。この蓄圧式燃料噴射装置を備えた内燃機関に対し、上記内燃機関 本体の駆動軸と燃料ポンプの駆動軸とを、内燃機関本体の駆動軸に作用する負荷ト ルクが極大となるタイミングと燃料ポンプの駆動軸に作用する負荷トルクが極小となる タイミングとが略一致するように各駆動軸の回転位相を合わせて動力伝達手段によつ て連繋している。
[0012] より具体的には、内燃機関本体の駆動軸の負荷トルク変動周期と燃料ポンプの駆 動軸の負荷トルク変動周期とを略一致させ、且つ内燃機関本体の駆動軸に作用する 負荷トルクが極大となるタイミングと燃料ポンプの駆動軸に作用する負荷トルクが極 小となるタイミングとを略一致させ、更に内燃機関本体の駆動軸に作用する負荷トル クが極小となるタイミングと燃料ポンプの駆動軸に作用する負荷トルクが極大となるタ イミングとを略一致させるように、内燃機関本体の駆動軸と燃料ポンプの駆動軸とを 動力伝達手段によって連繋して 、る。
[0013] この特定事項により、内燃機関本体の駆動時には、燃料ポンプ力 圧送されてコモ ンレール内に貯留された燃料が所定タイミングで燃料噴射弁に供給され、この燃料 噴射弁から燃焼室に向けて燃料噴射されることになる。そして、この内燃機関本体で は、駆動軸に負荷トルクが作用しており、この負荷トルクは周期的に変動している。特 に、圧縮行程終了時点では負荷トルクが極大になる。また、複数気筒の内燃機関の 場合、一つの気筒の圧縮行程終了時点と、次に圧縮行程を行う気筒の圧縮行程終 了時点との中間のタイミングで負荷トルクが極小になる。一方、燃料ポンプは、上記 内燃機関本体の駆動力を動力伝達手段を介して受けてコモンレールへの燃料圧送 動作を行っている。この燃料ポンプにおいても、駆動軸に負荷トルクが作用しており、 この負荷トルクは周期的に変動している。特に、燃料ポンプの燃料圧送開始時点で は負荷トルクが極大になる。また、複数の圧送室 (ポンプ室)を備えた燃料ポンプの場 合、一つの圧送室の燃料圧送開始時点と、次に圧送行程を行う圧送室の燃料圧送 開始時点との中間のタイミングで負荷トルクが極小になる。
[0014] このようにして、内燃機関本体の駆動軸及び燃料ポンプの駆動軸では負荷トルクは 周期的に変動しているので、内燃機関本体の駆動軸に作用する負荷トルクが極大と なるタイミングと燃料ポンプの駆動軸に作用する負荷トルクが極小となるタイミングとを 略一致させ、また、内燃機関本体の駆動軸に作用する負荷トルクが極小となるタイミ ングと燃料ポンプの駆動軸に作用する負荷トルクが極大となるタイミングとを略一致さ せるように各駆動軸同士を動力伝達手段によって連繋させれば総負荷トルクの変動 を抑制することができる。特に、内燃機関の振動が大きくなることが懸念されるアイド ル運転においてはその振動を抑制することができ、蓄圧式燃料噴射装置を採用した ことによる低回転数でのアイドル運転を、内燃機関の振動を抑制しながら実現するこ とが可能になる。その結果、アイドル運転中の騒音の低減及び燃費の削減を図ること が可能になる。
[0015] 燃料ポンプの燃料圧送動作を変化させることによって総負荷トルクの変動を抑制す るための動作に切り換える構成としては以下のものが掲げられる。つまり、燃料ポンプ に互いに異なるタイミングで燃料圧送動作を行う複数の圧送室を備えさせ、これら圧 送室を複数のグループに分けて、各グループに圧送室からコモンレールへの燃料圧 送量を調整する圧送量制御機構をそれぞれ備えさせる。また、これら複数の圧送量 制御機構のうち選択的に一部の圧送量制御機構のみを駆動することで特定グルー プの圧送室のみからコモンレールへの燃料圧送動作を行い、これによつて、燃料ポ ンプの負荷トルク変動周期を内燃機関の負荷トルク変動周期に略一致させ、燃料ポ ンプの駆動軸に作用する負荷トルクが極小となるタイミングを内燃機関本体の駆動軸 に作用する負荷トルクが極大となるタイミングに略一致させ、燃料ポンプの駆動軸に 作用する負荷トルクが極大となるタイミングを内燃機関本体の駆動軸に作用する負荷 トルクが極小となるタイミングに略一致させる構成としている。
[0016] より具体的には、内燃機関本体を多気筒 4ストロークエンジンとし、燃料ポンプに内 燃機関本体の気筒数に一致する数の圧送室を備えさせ、これら圧送室を半数ずつ に第 1グループと第 2グループとにグループ分けさして各グループに圧送量制御機 構をそれぞれ備えさせる。また、上記内燃機関本体の駆動軸と燃料ポンプの駆動軸 とを、上記第 2グループの圧送室のみから燃料圧送動作を行った際に、燃料ポンプ の駆動軸に作用する負荷トルクが極小となるタイミングと内燃機関本体の駆動軸に作 用する負荷トルクが極大となるタイミングとが略一致し、且つ燃料ポンプの駆動軸に 作用する負荷トルクが極大となるタイミングと内燃機関本体の駆動軸に作用する負荷 トルクが極小となるタイミングとが略一致するように動力伝達手段によって連繋する。 そして、上記 2つの圧送量制御機構のうち第 2グループの圧送量制御機構のみを駆 動することによって、上記両負荷トルクが重ね合わされてなる総負荷トルクの変動を 抑制する構成としている。 [0017] 例えば、内燃機関の高速回転が要求されている場合 (高負荷時)、コモンレール内 への単位時間当たりの燃料圧送量を多く確保する必要があるため、全ての圧送量制 御機構を駆動して全圧送室からコモンレールへの燃料圧送動作を順次行う。一方、 アイドル運転時などのように内燃機関の低速回転時には、コモンレールに対する燃 料圧送量は少なくてよいため、一部の圧送量制御機構のみを駆動させ、特定グルー プの圧送室のみ力 コモンレールへの燃料圧送動作を行う。これにより、燃料ポンプ の負荷トルク変動周期が内燃機関の負荷トルク変動周期に略一致することになり、総 負荷トルクの変動を抑制することができる。つまり、内燃機関の振動が大きくなること が懸念されるアイドル運転における内燃機関の振動を抑制することができる。
[0018] また、上記の目的を達成するために講じられた本発明の他の解決手段は、複数の 燃料圧送系を有する高圧ポンプを備えた蓄圧式燃料噴射装置に対し、一部の燃料 圧送系を強制的に停止し、ポンプ吐出容量を減少させポンプ吐出制御精度を向上し 、レール圧力制御精度を改善することを目的としている。
[0019] 具体的に、本発明は、燃料を圧送する燃料圧送手段と、この燃料圧送手段から圧 送された燃料を貯留するコモンレールと、このコモンレールカゝら供給された燃料を内 燃機関本体の燃焼室に向けて噴射する燃料噴射弁とを備えた蓄圧式燃料噴射装置 を前提とする。この蓄圧式燃料噴射装置に対し、上記燃料圧送手段に、互いに独立 した圧送経路を有する複数の燃料圧送ユニットを備えさせる。そして、上記内燃機関 本体の燃料要求量が所定量以下であるとき、一部の燃料圧送ユニットを強制的に停 止して、残りの燃料圧送ユニットのみによってコモンレールに対する燃料圧送動作を 行わせる圧送ユニット制御手段を備えさせて 、る。
[0020] この特定事項により、例えば内燃機関の高速運転時であって内燃機関本体の燃料 要求量が所定量を超えて 、る場合 (例えば全ての燃料圧送ユニットを駆動せねばこ の燃料要求量が得られない場合)には、全ての燃料圧送ユニットを駆動してコモンレ ールに対する燃料圧送動作が行われる。これに対し、例えば内燃機関の低速運転 時であって内燃機関本体の燃料要求量が所定量以下である場合 (一部の燃料圧送 ユニットを駆動させるだけでこの燃料要求量を得ることができる場合)には、圧送ュ- ット制御手段が、一部の燃料圧送ユニットを強制的に停止させる。これにより、残りの 燃料圧送ユニットのみによってコモンレールに対する燃料圧送動作が行われることに なる。このように残りの燃料圧送ユニットのみによってコモンレールに対する燃料圧送 動作を行った場合には、全ての燃料圧送ユニットを駆動させた場合に比べて、燃料 圧送手段 (燃料ポンプ)からの吐出量が 1Z2と少なくなる。その結果、燃料圧送手段 全体における調量誤差を小さくすることができ、調量精度の向上を図ることができる。 例えば、数パーセントの調量誤差が生じる可能性のある 2つの燃料圧送ユニットを備 えたものに対して、一方の燃料圧送ユニットを強制的に停止させた場合には、両方の 燃料圧送ユニットを駆動させた場合に比べて調量誤差が 1Z2になる。これに伴って コモンレール内圧制御誤差も 1Z2となる。
[0021] 上記圧送ユニット制御手段による燃料圧送ユニットの駆動個数の切り換え制御とし て、具体的には、内燃機関本体の運転回転数及び燃料噴射弁の燃料噴射量に応じ て、全ての燃料圧送ユニットを駆動する動作と一部の燃料圧送ユニットを強制的に停 止する動作とを切り換えるようにしている。例えば、上記運転回転数及び燃料噴射量 に応じた燃料圧送ユニットの駆動個数を設定するためのマップを用意しておき、検知 した運転回転数及び燃料噴射量に応じてこのマップから燃料圧送ユニットの駆動個 数を設定するものなどが掲げられる。なお、エンジン運転状態の検出に燃料噴射量 の替わりにエンジン出力トルクを用いることも可能である。
[0022] また、上記圧送ユニット制御手段による制御動作を強制解除する場合の動作として は次のものが掲げられる。内燃機関本体の運転が過渡状態であるか否かを判定する 過渡判定手段を備えさせる。そして、圧送ユニット制御手段が、過渡判定手段からの 信号を受け、内燃機関本体の運転が過渡状態であるときには、一部の燃料圧送ュニ ットを強制的に停止する動作を解除して全ての燃料圧送ユニットを駆動してコモンレ ールに対する燃料圧送動作を行わせる構成としている。例えば、内燃機関本体の回 転数を急上昇させる要求が生じた場合などの過渡時には、その要求に応えるベぐコ モンレール内圧等の検出値に拘わらず全ての燃料圧送ユニットを駆動してコモンレ ールに対する燃料圧送動作を行わせるようにする。
[0023] 更に、圧送ユニット制御手段が、駆動する燃料圧送ユニットの個数を切り換える際、 その切り換え判定を行うための判定値にヒステリシスを持たせる構成として ヽる。これ により、燃料圧送ユニットの駆動個数の切り換え動作が頻繁に生じてしまうハンチン グ現象を回避することができ、燃料圧送手段の駆動動作の安定性を維持できる。
[0024] 加えて、上述した各解決手段のうち何れか一つに記載の蓄圧式燃料噴射装置を 備える内燃機関も本発明の技術的思想の範疇である。
発明の効果
[0025] 本発明では、エンジンの駆動軸に作用する負荷トルクと燃料ポンプの駆動軸に作 用する負荷トルクとが重ね合わされてなる総負荷トルクの変動を抑制するために、ェ ンジンの駆動軸に作用する負荷トルクが極大となるタイミングと燃料ポンプの駆動軸 に作用する負荷トルクが極小となるタイミングとを一致させている。このため、低回転 数でアイドル運転を行っても内燃機関に大きな振動が生じてしまうことはなぐ低回転 数でのアイドル運転を実現することによって騒音の低減や燃費の削減を図ることが可 能になる。つまり、蓄圧式燃料噴射装置を採用したことによる低回転数でのアイドル 運転の実現といったメリットを十分に生かすことが可能になる。
[0026] また、互いに独立した複数の燃料圧送ユニットを有する燃料圧送手段を備えた蓄 圧式燃料噴射装置に対し、一部の燃料圧送系を強制的に停止し、調量精度の向上 が図れるようにした場合には、コモンレール内圧を高精度で目標圧力に維持すること が可能になり、その結果、燃料噴射弁からの燃料噴射量を適切に制御することがで きる。
図面の簡単な説明
[0027] [図 1]本発明の第 1実施形態に係る蓄圧式燃料噴射装置を示す図である。
[図 2]燃料噴射量を決定するための制御ブロック図である。
[図 3]高圧ポンプ及びこの高圧ポンプが接続する低圧ポンプ及びコモンレールの概 略構成を模式的に示す図である。
[図 4]高圧ポンプの各ポンプ室グループから燃料圧送動作を行った状態でポンプ駆 動軸に作用する負荷トルクの変動を波形 W1で示し、第 2ポンプ室グループのみから 燃料圧送動作を行った状態でポンプ駆動軸に作用する負荷トルクの変動を波形 W2 で示す図である。
[図 5]エンジン本体のクランク軸に作用する負荷トルク変動波形を波形 W3で示し、第 2ポンプ室グループのみ力 の燃料圧送動作を行っている状態でポンプ駆動軸に作 用する負荷トルクの変動を波形 W2で示し、総負荷トルクの変動を波形 W4で示す図 である。
圆 6]第 2実施形態に係る蓄圧式燃料噴射装置を示す図である。
圆 7]両ァクチユエータ駆動状態と片側ァクチユエータ駆動状態とを切り換えるための マップを示す図である。
[図 8]駆動するポンプ室グループの個数を切り換える際の切り換え判定値のヒステリシ スを示す図である。
[図 9]アイドル運転域におけるエンジン回転数とエンジンの振動振幅との関係の一例 を示す図である。
符号の説明
1 インジヱクタ (燃料噴射弁)
2 コモンレーノレ
8 高圧ポンプ (燃料ポンプまたは燃料圧送手段)
8A 第 1ポンプ室グループ (第 1グループまたは燃料圧送ュ:ニット)
81 第 1ポンプ機構
81a 第 1ポンプ室 (圧送室)
82 第 2ポンプ機構
82a 第 2ポンプ室 (圧送室)
83 第 3ポンプ機構
83a 第 3ポンプ室 (圧送室)
8B 第 2ポンプ室グループ (第 2グループまたは燃料圧送ュニニット)
84 第 4ポンプ機構
84a 第 4ポンプ室 (圧送室)
85 第 5ポンプ機構
85a 第 5ポンプ室 (圧送室)
86 第 6ポンプ機構
86a 第 6ポンプ室 (圧送室) 88, 89 ァクチユエータ (圧送量制御機構)
12 コントローフ
12A 指令回転数算出手段
12B 噴射量演算手段
12C 回転数算出手段
12D ァクチユエータ制御手段
112 コントローラ
112D 圧送ユニット制御手段
112E 過渡判定手段
E エンジン本体 (内燃機関本体)
発明を実施するための最良の形態
[0029] 以下、本発明の実施の形態を図面に基づいて説明する。
[0030] <第 1実施形態 >
第 1実施形態では、 6気筒舶用ディーゼルエンジンに本発明を適用した場合につ いて説明する。
[0031] 燃料噴射装置の構成説明
先ず、第 1実施形態に係るエンジンに適用される燃料噴射装置の全体構成につい て説明する。図 1は 6気筒舶用ディーゼルエンジンに備えられた蓄圧式燃料噴射装 置を示している。
[0032] この蓄圧式燃料噴射装置は、ディーゼルエンジン(以下、単にエンジンと 、う)の各 気筒に対応して取り付けられた複数の燃料噴射弁 (以下、インジェクタという) 1, 1, …と、比較的高い圧力(コモンレール内圧:例えば lOOMPa)の高圧燃料を蓄圧する コモンレール 2と、燃料タンク 4力 低圧ポンプ(フィードポンプ) 6を経て吸入した燃料 を高圧に加圧してコモンレール 2内に吐出する燃料ポンプとしての高圧ポンプ 8 (本 発明では燃料圧送手段とも言う)と、上記インジェクタ 1, 1,…及び高圧ポンプ 8を電 子制御するコントローラ (ECU) 12とを備えている。
[0033] 上記高圧ポンプ 8は、例えばエンジンによって駆動され、燃料を運転状態等に基づ いて定められる高圧に昇圧して燃料供給配管 9を通じてコモンレール 2に供給する所 謂プランジャ式のサプライ用燃料供給ポンプである。例えば、この高圧ポンプ 8は、ェ ンジンのクランク軸に対してギア 20 (本発明でいう動力伝達手段)を介して動力伝達 可能に連繋されている。また、この動力伝達手段の他の構成として、高圧ポンプ 8の 駆動軸及びエンジンのクランク軸のそれぞれにプーリを設け、このプーリにベルトを 架け渡して動力伝達可能にしたり、各軸にスプロケットを設け、このスプロケットにチェ ーンを架け渡して動力伝達可能にしてもょ 、。
[0034] 各インジェクタ 1, 1,…は、コモンレール 2にそれぞれ連通する燃料配管の下流端 に取り付けられている。このインジェクタ 1からの燃料の噴射は、例えばこのインジエタ タに一体的に組み込まれた図示しない噴射制御用電磁弁への通電および通電停止 (ON/OFF)により制御される。つまり、インジェクタ 1は、この噴射制御用電磁弁が 開弁している間、コモンレール 2から供給された高圧燃料をエンジンの燃焼室に向け て噴射する。
[0035] また、上記コントローラ 12は、エンジン回転数やエンジン負荷等の各種エンジン情 報が入力され、これらの信号より判断される最適の燃料噴射時期及び燃料噴射量が 得られるように上記噴射制御用電磁弁に制御信号を出力する。同時に、コントローラ 12はエンジン回転数やエンジン負荷に応じて燃料噴射圧力が最適値となるように高 圧ポンプ 8に対して制御信号を出力する。更に、コモンレール 2にはコモンレール内 圧を検出するための圧力センサ 13が取り付けられており、この圧力センサ 13の信号 がエンジン回転数やエンジン負荷に応じて予め設定された最適値となるように高圧 ポンプ 8からコモンレール 2に吐出される燃料吐出量が制御される。
[0036] 各インジェクタ 1への燃料供給動作は、コモンレール 2から燃料流路の一部を構成 する分岐管 3を通じて行われる。つまり、燃料タンク 4からフィルタ 5を経て低圧ポンプ 6によって取り出されて所定の吸入圧力に加圧された燃料は、燃料管 7を通じて高圧 ポンプ 8に送られる。そして、この高圧ポンプ 8に供給された燃料は所定圧力に昇圧 された状態でコモンレール 2に貯留され、コモンレール 2から各インジェクタ 1, 1,… に供給される。インジヱクタ 1は、エンジンの型式 (気筒数、第 1実施形態では 6気筒) に応じて複数個設けられており、コントローラ 12の制御によって、コモンレール 2から 供給された燃料を最適な噴射時期に最適な燃料噴射量でもって、対応する燃焼室 内に噴射する。インジェクタ 1から噴射される燃料の噴射圧はコモンレール 2に貯留さ れて 、る燃料の圧力に略等 、ので、燃料噴射圧を制御するにはコモンレール 2内 の圧力を制御することになる。
[0037] また、分岐管 3からインジヱクタ 1に供給された燃料のうち燃焼室への噴射に費やさ れな力つた燃料やコモンレール内圧が過上昇した場合の余剰燃料は、戻し管 11を 通じて燃料タンク 4に戻される。
[0038] 電子制御ユニットである上記コントローラ 12には、気筒番号及びクランク角度の情 報が入力されている。このコントローラ 12は、エンジン出力が運転状態に即した最適 出力になるようにエンジン運転状態に基づ 、て予め定められた目標燃料噴射条件( 例えば, 目標燃料噴射時期、目標燃料噴射量、目標コモンレール内圧)を関数とし て記憶しており、各種センサが検出した現在のエンジン運転状態を表す信号に対応 して目標燃料噴射条件 (即ち、インジェクタ 1による燃料噴射タイミング及び噴射量) を演算により求めて、その条件で燃料噴射が行われるようにインジェクタ 1の作動とコ モンレール内燃料圧力とを制御している。
[0039] 図 2は燃料噴射量を決定するためのコントローラ 12の制御ブロックである。この図 2 に示すように、燃料噴射量の算出は、ユーザが操作するレギユレ一タの開度信号を 指令回転数算出手段 12Aが受け、この指令回転数算出手段 12Aがレギユレータの 開度に応じた「指令回転数」を算出する。そして、エンジン回転数力この指令回転数 となるように噴射量演算手段 12Bが燃料噴射量を演算する。エンジン本体 Eのインジ ェクタ 1では、この演算により求められた燃料噴射量で燃料噴射動作が行われ、この 状態で回転数算出手段 12Cが実際のエンジン回転数を算出し、この実際のエンジン 回転数と上記指令回転数とを比較して、この実際のエンジン回転数が指令回転数に 近付くように燃料噴射量を補正 (フィードバック制御)するようになって!/、る。
[0040] 第 1実施形態の特徴とするところは、エンジンのクランク軸と高圧ポンプ 8の駆動軸 との連繋状態にある。この連繋状態について説明する前に上記高圧ポンプ 8の概略 構成について説明する。
[0041] 一高圧ポンプ 8の説明
図 3は、高圧ポンプ 8の概略構成及びこの高圧ポンプ 8に対する低圧ポンプ 6及び コモンレール 2の接続状態を模式的に示す図である。この図 3に示すように、本高圧 ポンプ 8は、 6個のポンプ機構 (第 1ポンプ機構 81〜第 6ポンプ機構 86)を備えている 。つまり、 6個のシリンダとこのシリンダ内で往復移動するピストンとによってポンプ機 構 81〜86が構成され、それぞれのポンプ機構 81〜86にはポンプ室 (本発明でいう 圧送室)がそれぞれ形成されている(第 1ポンプ室 81a〜第 6ポンプ室 86a)。
[0042] また、これらポンプ機構 81〜86は互いに異なるタイミングで燃料圧送動作を行うよ うになつている。具体的には、第 1ポンプ機構 81の燃料圧送動作が行われた後に第 4ポンプ機構 84の燃料圧送動作が行われ、以後、第 2ポンプ機構 82,第 5ポンプ機 構 85,第 3ポンプ機構 83,第 6ポンプ機構 86の順で燃料圧送動作が行われていく。 本高圧ポンプ 8では駆動軸の回転数がエンジンのクランク軸の回転数に一致してお り、クランク軸の一回転 (高圧ポンプ 8の駆動軸の一回転: 360° )で 6回の燃料圧送 動作が行われる構成となっている。言い換えると、クランク軸の 60° 回転毎に何れか のポンプ機構 81〜86が 1回の燃料圧送動作を行っていく構成となっている。
[0043] また、これら 6個のポンプ機構 81〜86は、第 1ポンプ室グループ 8 A及び第 2ポンプ 室グループ 8B (本発明でいう燃料圧送ユニット)にグループ分けされている。具体的 には、ポンプ機構 81〜83が第 1ポンプ室グループ 8 A (本発明でいう第 1グループ) となり、ポンプ機構 84〜86が第 2ポンプ室グループ 8B (本発明で 、う第 2グループ) となるようにグループ分けされている。このため、上記低圧ポンプ 6の吐出側配管 61 は 2系統の第 1低圧配管 62及び第 2低圧配管 63に分岐され、第 1低圧配管 62が更 にポンプ機構 81〜83に対応した 3本の分岐配管 62a, 62b, 62cに分岐されて、そ れぞれがポンプ室 81a〜83aに個別に接続されている。同様に、第 2低圧配管 63が ポンプ機構 84〜86に対応した 3本の分岐配管 63a, 63b, 63cに分岐されてそれぞ れがポンプ室 84a〜86aに個別に接続されている。尚、各分岐配管 62a〜62cと 63a 〜63cとにはポンプ室 81a〜86aから低圧ポンプ 6側への燃料の逆流を防止するた めの逆止弁が設けられている。各ポンプ室 81a〜86aの吐出側は、各グループ 8A, 8B毎に備えられた合流空間 87, 87に接続されており、各合流空間 87, 87がコモン レール 2に上記燃料供給配管 9を介して接続されている。尚、各ポンプ室 81a〜86a の吐出側にも合流空間 87, 87からポンプ室 81a〜86aへの燃料の逆流を防止する ための逆止弁が設けられて 、る。
[0044] また、上記第 1低圧配管 62及び第 2低圧配管 63のそれぞれには、第 1吐出量制御 ァクチユエータ 88及び第 2吐出量制御ァクチユエータ 89 (本発明で 、う圧送量制御 機構。以下では第 1ァクチユエータ、第 2ァクチユエータと呼ぶ)が備えられている。こ れらのァクチユエータ 88, 89は、低圧配管 62, 63に出没自在な-一ドル弁 88a, 89 aを備え、この-一ドル弁 88a, 89aの突出量によって低圧配管 62, 63の開口面積を 可変にし、これによつてポンプ室 8 la〜86aへの燃料供給量を調整してコモンレール 内圧を調整できるようになつている。つまり、コモンレール内圧が低くなるほど低圧配 管 62, 63の開口面積を大きくしてポンプ室 8 la〜86aへの燃料供給量を増量し、こ れによってコモンレール内圧を目標圧力まで高めるようになって!/、る。
[0045] 上記コントローラ 12は、上記各ァクチユエータ 88, 89の-一ドル弁突出量を制御 するためのァクチユエータ制御手段 12Dを備えている(図 1参照)。例えば、このァク チユエータ制御手段 12Dは、上記圧力センサ 13からのコモンレール内圧信号を受 け、このコモンレール内圧が目標値よりも大幅に低い場合には両ァクチユエータ 88, 89を駆動して-一ドル弁突出量を小さくし、これによつて低圧配管 62, 63の開口面 積を拡大させる。また、アイドル運転時などのように、エンジン本体 Eが要求する燃料 噴射量が少なく且つコモンレール内圧が目標値に達している場合には第 1ァクチュ エータ 88の駆動を停止、つまり、ニードル弁突出量を最大にして第 1低圧配管 62を 全閉にする。この状態では、第 2ァクチユエータ 89のみの駆動を制御し、この第 2ァク チユエータ 89の-一ドル弁突出量を調整することになる。つまり、ポンプ機構 84〜8 6で成る第 2ポンプ室グループ 8Bのみからの燃料圧送動作が行われる状態となる。
[0046] エンジン本体 Eのクランク軸と高圧ポンプ 8の駆動軸との連繋状態
次に、エンジン本体 Eのクランク軸と高圧ポンプ 8の駆動軸との連繋状態について 説明する。第 1実施形態では、エンジン本体 Eのクランク軸と高圧ポンプ 8の駆動軸と の回転方向の位相が以下の状態が実現できるような連繋状態となっている。
[0047] つまり、上記第 2ポンプ室グループ 8Bのみからの燃料圧送動作を行った状態では 、高圧ポンプ 8の駆動軸に作用する負荷トルクが極小となるタイミングとエンジン本体 Eのクランク軸に作用する負荷トルクが極大となるタイミングとが略一致し、且つ高圧 ポンプ 8の駆動軸に作用する負荷トルクが極大となるタイミングがエンジン本体のクラ ンク軸に作用する負荷トルクが極小となるタイミングに略一致するように各軸同士の 回転位相が合わされて連繋(上述した如くギアやベルトによる連繋)されている。
[0048] 具体的に図 4及び図 5を用いて説明する。これら図の横軸はエンジン本体 Eのクラ ンク軸の回転角度であり、縦軸は各軸に作用する負荷トルクを示している。そして、図 4は、高圧ポンプ 8の各ポンプ室グループ 8A, 8Bから燃料圧送動作を行った状態に おけるポンプ駆動軸に作用する負荷トルクの変動(図中の波形 W1)と、第 2ポンプ室 グループ 8Bのみ力 燃料圧送動作を行った状態におけるポンプ駆動軸に作用する 負荷トルクの変動(図中の波形 W2)とを示して 、る。
[0049] 上述した如く高圧ポンプ 8の通常運転時(両ポンプ室グループ 8A, 8Bから燃料圧 送動作が行われている状態)では、クランク軸の一回転 (高圧ポンプ 8の駆動軸の一 回転: 360° )で 6回の燃料圧送動作が行われるため、図 4における波形 W1のように 、回転角度 60° 毎の周期で高圧ポンプ 8の駆動軸に作用する負荷トルクが変動する 。言い換えると、 4ストロークエンジンで成るエンジン本体 Eの吸気、圧縮、膨張、排気 の 1サイクルが行われる間(クランク軸の回転角度 720° の間)に 12回の燃料圧送動 作が行われ、この 1サイクルで 12回の周期でこの負荷トルクが変動する。ここで、負荷 トルクが極大となるタイミングは何れか一つのポンプ室からの燃料圧送開始時点(例 えば図 4における点 HI)である。また、一つのポンプ室の燃料圧送開始時点と、次に 圧送行程を行うポンプ室の燃料圧送開始時点との中間のタイミングで負荷トルクが極 小になる(例えば図 4における点 L 1 )。
[0050] 一方、上記ァクチユエータ制御手段 12Dの制御によって第 2ポンプ室グループ 8B のみ力もの燃料圧送動作を行った状態では、クランク軸の一回転 (高圧ポンプ 8の駆 動軸の一回転: 360° )で 3回の燃料圧送動作が行われるため、図 4における波形 W 2のように、回転角度 120° 毎の周期で高圧ポンプ 8の駆動軸に作用する負荷トルク が変動する。つまり、エンジン本体 Eの 1サイクル中に 6回の周期でこの負荷トルクが 変動することになる。ここで、負荷トルクが極大となるタイミングは何れか一つのポンプ 室(ポンプ室 84a〜86aのうちの何れか一つ)からの燃料圧送開始時点(例えば図 4 における点 H2)である。また、一つのポンプ室の燃料圧送開始時点と、次に圧送行 程を行うポンプ室の燃料圧送開始時点との中間のタイミングで負荷トルクが極小にな る(例えば図 4における点 L2)。
[0051] そして、第 1実施形態では、この第 2ポンプ室グループ 8Bのみからの燃料圧送動作 を行った状態での負荷トルク変動波形 W2が、図 5に示すように、エンジン本体 Eのク ランク軸に作用する負荷トルク変動波形(図 5における波形 W3)に対して同周期で逆 位相となるように、各軸同士の回転位相が合わされて連繋されている。言い換えると、 この第 2ポンプ室グループ 8Bのみ力 の燃料圧送動作を行って 、る状態では、高圧 ポンプ 8の負荷トルク変動周期がエンジン本体 Eの負荷トルク変動周期に一致し、高 圧ポンプ 8の駆動軸に作用する負荷トルクが極小となるタイミング (L2)とエンジン本 体 Eのクランク軸に作用する負荷トルクが極大となるタイミング (H3)とが一致し、高圧 ポンプ 8の駆動軸に作用する負荷トルクが極大 (H2)となるタイミングとエンジン本体 Eのクランク軸に作用する負荷トルクが極小となるタイミング (L3)とが略一致するよう に各軸同士の回転位相が合わされて連繋されている。
[0052] 具体的に、エンジン本体 Eのクランク軸に作用する負荷トルクは、何れかの気筒の 圧縮行程終了時点では極大になる。また、一つの気筒の圧縮行程終了時点と、次に 圧縮行程を行う気筒の圧縮行程終了時点との中間のタイミングでこの負荷トルクが極 小〖こなる。従って、エンジン本体 Eの何れかの気筒の圧縮行程終了時点と、上記高 圧ポンプ 8の駆動軸に作用する負荷トルクが極小となる時点(一つのポンプ室の燃料 圧送開始時点と、次に圧送行程を行うポンプ室の燃料圧送開始時点との中間のタイ ミング)とが一致するように、且つエンジン本体 Eのクランク軸に作用する負荷トルクが 極小となる時点(一つの気筒の圧縮行程終了時点と、次に圧縮行程を行う気筒の圧 縮行程終了時点との中間のタイミング)と、何れか一つのポンプ室(ポンプ室 84a〜8 6aのうちの何れか一つ)からの燃料圧送開始時点とがー致するように各軸同士の回 転位相が合わされて連繋されて!ヽる。
[0053] このため、エンジンのクランク軸に作用する負荷トルクと高圧ポンプ 8の駆動軸に作 用する負荷トルクとの重ね合わせで成る総負荷トルクの変動(図 5における波形 W4) は、上記波形 W2, W3が相殺されることによって抑制され、その結果、エンジンの振 動を大幅に抑制することが可能になる。 [0054] このように、第 1実施形態では、低回転数でアイドル運転を行ってもエンジンに大き な振動が生じてしまうことはなぐ低回転数でのアイドル運転を実現することによって 騒音の低減や燃費の削減を図ることが可能になる。つまり、蓄圧式燃料噴射装置を 採用したことによる低回転数でのアイドル運転の実現といったメリットを十分に生かす ことが可能になる。
[0055] 特に、第 1実施形態では、ポンプ機構 81〜86のうちの半分を停止するようにしてい るので、全てのポンプ機構 81〜86を駆動した場合に比べてポンプ駆動軸に作用す る負荷トルクの変動幅を大きくすることができ(図 4における波形 W1よりも波形 W2の 振幅が大きくなつている)、これによつて、この負荷トルクの変動幅を、エンジン本体 E のクランク軸に作用する負荷トルクの変動幅と同程度に大きくすることができ、効果的 に総負荷トルクの変動を抑制することができる。
[0056] <第 2実施形態 >
第 2実施形態では、 6気筒舶用ディーゼルエンジンの燃料供給系に備えられた蓄 圧式燃料噴射装置に本発明を適用した場合について説明する。なお、次に述べる 点以外は第 1実施形態と同様であるので、同じ構成要素には同じ参照符号を付すこ ととし、主として相違点について説明する。
[0057] 図 6は、第 2実施形態に係る 6気筒舶用ディーゼルエンジンに備えられた蓄圧式燃 料噴射装置を示している。第 2実施形態の特徴とするところは、高圧ポンプ 8の駆動 状態を、エンジン本体 Eの運転状態に応じて切り換え可能になっている点にある。
[0058] そのため、第 2実施形態のコントローラ 112は、第 1実施形態のコントローラ 12のァ クチユエータ制御手段 12Dに代えて、ポンプ室グループ 8A, 8Bの燃料圧送動作を 制御するための圧送ユニット制御手段 112Dと、過渡判定手段 112Eとを備えている
[0059] この圧送ユニット制御手段 112Dは、第 1ポンプ室グループ 8A及び第 2ポンプ室グ ループ 8Bの両方を駆動させる場合と、第 1ポンプ室グループ 8Aを強制的に停止し て第 2ポンプ室グループ 8Bのみを駆動させる場合とを切り換えるようになって 、る。
[0060] 具体的には、圧送ユニット制御手段 112Dは、上記各ァクチユエータ 88, 89の-一 ドル弁突出量を制御する。そして、このニードル弁突出量を小さくすることで低圧配 管 62, 63の開口面積を拡大させた場合には、そのポンプ室グループからの燃料圧 送が増大し、逆に、ニードル弁突出量を大きくすることで低圧配管 62, 63の開口面 積を縮小させた場合には、そのポンプ室グループ力ゝらの燃料圧送が減少するように なっている。また、ニードル弁突出量を最大にした場合には、低圧配管 62, 63が全 閉状態となり、そのポンプ室グループからは燃料が圧送されない状態、つまり、その ポンプ室グループの駆動を停止した状態となる。
[0061] より具体的には、圧送ユニット制御手段 112Dは、エンジン回転数信号や燃料噴射 量信号等を受け、例えばエンジンの高速運転時であってエンジン本体 Eの燃料要求 量力 両方のポンプ室グループ 8A, 8Bを駆動させねば得られない場合には、両方 のポンプ室グループ 8A, 8Bを駆動してコモンレール 2に対する燃料圧送動作を行う ことになる(以下、両ァクチユエータ駆動状態と呼ぶ)。これに対し、例えばエンジンの 低速運転時であってエンジンの要求燃料圧送量力 一方の第 2ポンプ室グループ 8 Bを駆動させるだけで得ることができる場合には、第 1ポンプ室グループ 8Aを強制的 に停止させる(第 1ァクチユエータ 88の-一ドル弁突出量を最大にして第 1低圧配管 62を全閉にする:以下、片側ァクチユエータ駆動状態と呼ぶ)。これにより、第 2ボン プ室グループ 8Bのみによってコモンレール 2に対する燃料圧送動作が行われること になる。
[0062] このように一方の第 2ポンプ室グループ 8Bのみによってコモンレール 2に対する燃 料圧送動作を行った場合には、両方のポンプ室グループ 8A, 8Bを駆動させた場合 に比べて、調量精度の向上を図ることができるようにしている。例えば第 1 · 2ポンプ室 グループ両方を用いた場合のポンプ最大吐出量を lOlZminとし、ポンプ吐出量を 0から最大値まで制御するのに電流を 0から 2Aまで変更する必要があるとすると、ポ ンプの制御分解能は 51/minZAとなる。第 2ポンプ室グループのみ用いた場合、 ポンプ最大吐出量は 5lZminと 1Z2となるがポンプ吐出量を 0から最大値まで制御 する電流は 0から 2Aと変化せず、その結果、ポンプ制御分解能は 2. 5lZminZAと 1Z2となる。すなわち、ァクチユエータ駆動電流に対する吐出量変化が半分になる ので制御分解能を向上でき、調量精度の向上を図ることができる。
[0063] 図 7は、エンジン回転数及び燃料噴射量に応じて上記両ァクチユエータ駆動状態と 片側ァクチユエータ駆動状態とを切り換えるためのマップを示している。このマップに おける領域 A (破線の斜線を付した領域)は両ァクチユエータ駆動状態となる領域 (2 ァクチユエータ領域)を示し、領域 B (—点鎖線の斜線を付した領域)は片側ァクチュ エータ駆動状態 (第 2ァクチユエータ 89のみを駆動する状態: 1ァクチユエータ領域) を示している。このように、エンジン回転数及び燃料噴射量に応じて、両ァクチユエ一 タ駆動状態と片側ァクチユエータ駆動状態とが切り換えられるようになって 、る。
[0064] また、図 8に示すように、駆動するポンプ室グループ 8A, 8Bの個数を圧送ユニット 制御手段 112Dが切り換える際、その切り換え判定を行うための判定値にヒステリシ スを持たせている。この図 8においても、 2ァクチユエータ領域に破線の斜線を付し、 1ァクチユエータ領域に一点鎖線の斜線を付している。
[0065] このように上記判定値にヒステリシスを持たせたことにより、ポンプ室グループ 8A, 8 Bの駆動個数の切り換え動作が頻繁に生じてしまうハンチング現象を回避することが でき、高圧ポンプ 8の駆動動作の安定性を維持できる。尚、第 2実施形態では、片側 ァクチユエータ駆動状態でのヒステリシス幅(図 8中の幅 B1)を両ァクチユエータ駆動 状態でのヒステリシス幅(図 8中の幅 A1)の約半分に設定している。これにより、制御 精度の向上を図ることができる。
[0066] また、上述したように、コントローラ 112が過渡判定手段 112Eを備えており、この過 渡判定手段 112E力もの信号によって圧送ユニット制御手段 112Dの制御を強制停 止できるようになつている。具体的には、例えば過渡判定手段 112Eはレギユレータ 開度が急激に大きくなつたこと (エンジン回転数を急上昇させる要求が生じたこと)を 検知可能であり、エンジン本体 Eの運転が過渡状態である力否かを判定するようにな つている。そして、この過渡判定手段 112Eからの過渡判定信号を受けた圧送ュ-ッ ト制御手段 112Dは、一部のポンプ室グループを強制的に停止させると 、つた上記 動作を解除して、両方のポンプ室グループ 8A, 8Bを共に駆動させてコモンレール 2 に対する燃料圧送動作を行わせるようにしている。これにより、上記要求 (エンジン回 転数を急上昇させる要求)に迅速に対応させることが可能になる。
[0067] <その他の実施形態 >
以上説明した実施形態では、 6気筒舶用ディーゼルエンジンに本発明を適用した 場合について説明した。本発明はこれに限らず、 4気筒舶用ディーゼルエンジン等、 種々の形式のエンジンに対して適用可能である。また、舶用エンジンに限らず、車両 用など他の用途に使用されるエンジンへの適用も可能である。
[0068] また、上記実施形態では、エンジン本体 Eが要求する燃料噴射量が少なく且つコモ ンレール内圧が目標値に達している場合に第 1ァクチユエータ 88の駆動を停止して 第 2ァクチユエータ 89のみを駆動して第 2ポンプ室グループ 8Bのみからの燃料圧送 動作を行わせるようにしたが、その他の条件 (例えばエンジン回転数や冷却水温度な ど)に応じて、第 2ポンプ室グループ 8Bのみ力ゝらの燃料圧送動作を行わせるようにし てもよい。
[0069] 更に、上記実施形態では、ポンプ機構 81〜86を 2つのグループに分け、 2つのァ クチユエータ 88, 89を備えさせるものについて説明した力 ポンプ機構を 3つ以上の グループに分け、 3つ以上のァクチユエータを備えさせて、これらのうち選択的に一 部のァクチユエータのみを駆動させることによって総負荷トルクの変動や調量精度の 向上を抑制する構成としてもよい。
[0070] なお、本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろ な形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に すぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すも のであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲 に属する変形や変更は、全て本発明の範囲内のものである。
[0071] また、この出願は、日本で 2004年 7月 12日に出願された特願 2004— 204351号 および特願 2004— 204352号に基づく優先権を請求する。それらの内容はこれに 言及することにより、本出願に組み込まれるものである。また、本明細書に引用された 文献は、これに言及することにより、その全部が具体的に組み込まれるものである。 産業上の利用可能性
[0072] 本発明は、 6気筒舶用ディーゼルエンジンや 4気筒舶用ディーゼルエンジン等、種 々の形式のエンジンに好適である。また、舶用エンジンに限らず、車両用など他の用 途に使用されるエンジンにも好適である。

Claims

請求の範囲
[1] 内燃機関本体の駆動軸からの駆動力を動力伝達手段を介して受けて燃料圧送動 作を行う燃料ポンプと、この燃料ポンプ力ゝら圧送された燃料を貯留するコモンレール と、このコモンレール力 供給された燃料を内燃機関本体の燃焼室に向けて噴射す る燃料噴射弁とを有する蓄圧式燃料噴射装置を備えた内燃機関において、 上記内燃機関本体の駆動軸と燃料ポンプの駆動軸とは、内燃機関本体の駆動軸 に作用する負荷トルクが極大となるタイミングと燃料ポンプの駆動軸に作用する負荷 トルクが極小となるタイミングとが略一致するように各駆動軸の回転位相が合わされて 動力伝達手段によって連繋されていることを特徴とする蓄圧式燃料噴射装置を備え た内燃機関。
[2] 上記請求項 1記載の蓄圧式燃料噴射装置を備えた内燃機関において、
内燃機関本体の駆動軸の負荷トルク変動周期と燃料ポンプの駆動軸の負荷トルク 変動周期とが略一致し、且つ内燃機関本体の駆動軸に作用する負荷トルクが極大と なるタイミングと燃料ポンプの駆動軸に作用する負荷トルクが極小となるタイミングと が略一致し、更に内燃機関本体の駆動軸に作用する負荷トルクが極小となるタイミン グと燃料ポンプの駆動軸に作用する負荷トルクが極大となるタイミングとが略一致す るように、内燃機関本体の駆動軸と燃料ポンプの駆動軸とが動力伝達手段によって 連繋されていることを特徴とする蓄圧式燃料噴射装置を備えた内燃機関。
[3] 上記請求項 1または 2記載の蓄圧式燃料噴射装置を備えた内燃機関において、 燃料ポンプは互いに異なるタイミングで燃料圧送動作を行う複数の圧送室を備えて おり、これら圧送室は複数のグループに分けられていて、各グループには圧送室か らコモンレールへの燃料圧送量を調整する圧送量制御機構がそれぞれ備えられて おり、
これら複数の圧送量制御機構のうち選択的に一部の圧送量制御機構のみを駆動 することで特定グループの圧送室のみからコモンレールへの燃料圧送動作を行い、 これによつて、燃料ポンプの負荷トルク変動周期を内燃機関の負荷トルク変動周期に 略一致させ、燃料ポンプの駆動軸に作用する負荷トルクが極小となるタイミングを内 燃機関本体の駆動軸に作用する負荷トルクが極大となるタイミングに略一致させ、燃 料ポンプの駆動軸に作用する負荷トルクが極大となるタイミングを内燃機関本体の駆 動軸に作用する負荷トルクが極小となるタイミングに略一致させる構成となっているこ とを特徴とする蓄圧式燃料噴射装置を備えた内燃機関。
[4] 上記請求項 3記載の蓄圧式燃料噴射装置を備えた内燃機関において、
内燃機関本体は多気筒 4ストロークエンジンであって、燃料ポンプは内燃機関本体 の気筒数に一致する数の圧送室を備えており、これら圧送室は半数ずつに第 1ダル 一プと第 2グループとにグループ分けされて各グループに圧送量制御機構がそれぞ れ備えられており、
上記内燃機関本体の駆動軸と燃料ポンプの駆動軸とは、上記第 2グループの圧送 室のみから燃料圧送動作を行った際に、燃料ポンプの駆動軸に作用する負荷トルク が極小となるタイミングと内燃機関本体の駆動軸に作用する負荷トルクが極大となる タイミングとが略一致し、且つ燃料ポンプの駆動軸に作用する負荷トルクが極大とな るタイミングと内燃機関本体の駆動軸に作用する負荷トルクが極小となるタイミングと が略一致するように動力伝達手段によって連繋されており、
上記 2つの圧送量制御機構のうち第 2グループの圧送量制御機構のみを駆動する ことによって、上記両負荷トルクが重ね合わされてなる総負荷トルクの変動を抑制す る構成となっていることを特徴とする蓄圧式燃料噴射装置を備えた内燃機関。
[5] 燃料を圧送する燃料圧送手段と、この燃料圧送手段から圧送された燃料を貯留す るコモンレールと、このコモンレール力 供給された燃料を内燃機関本体の燃焼室に 向けて噴射する燃料噴射弁とを備えた蓄圧式燃料噴射装置において、
上記燃料圧送手段は、互いに独立した圧送経路を有する複数の燃料圧送ユニット を備えている一方、
上記内燃機関本体の燃料要求量が所定量以下であるとき、一部の燃料圧送ュニッ トを強制的に停止して、残りの燃料圧送ユニットのみによってコモンレールに対する 燃料圧送動作を行わせる圧送ユニット制御手段を備えていることを特徴とする蓄圧 式燃料噴射装置。
[6] 請求項 5記載の蓄圧式燃料噴射装置にぉ 、て、
圧送ユニット制御手段は、内燃機関本体の運転回転数及び燃料噴射弁の燃料噴 射量に応じて、全ての燃料圧送ユニットを駆動する動作と一部の燃料圧送ユニットを 強制的に停止する動作とを切り換えるよう構成されていることを特徴とする蓄圧式燃 料噴射装置。
[7] 請求項 5記載の蓄圧式燃料噴射装置にお 、て、
圧送ユニット制御手段は、内燃機関本体の運転回転数及び燃料噴射弁のエンジン 出力トルクに応じて、全ての燃料圧送ユニットを駆動する動作と一部の燃料圧送ュ- ットを強制的に停止する動作とを切り換えるよう構成されていることを特徴とする蓄圧 式燃料噴射装置。
[8] 請求項 5〜7のいずれか 1項に記載の蓄圧式燃料噴射装置において、
内燃機関本体の運転が過渡状態であるか否かを判定する過渡判定手段を備え、 圧送ユニット制御手段は、過渡判定手段からの信号を受け、内燃機関本体の運転 が過渡状態であるときには、一部の燃料圧送ユニットを強制的に停止する動作を解 除して全ての燃料圧送ユニットを駆動してコモンレールに対する燃料圧送動作を行 わせるよう構成されていることを特徴とする蓄圧式燃料噴射装置。
[9] 請求項 5〜8のいずれか 1項に記載の蓄圧式燃料噴射装置において、
圧送ユニット制御手段は、駆動する燃料圧送ユニットの個数を切り換える際、その 切り換え判定を行うための判定値にヒステリシスを持たせる構成となっていることを特 徴とする蓄圧式燃料噴射装置。
[10] 請求項 5〜9のうちいずれか 1項に記載の蓄圧式燃料噴射装置を備えることを特徴 とする内燃機関。
PCT/JP2005/012576 2004-07-12 2005-07-07 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関 WO2006006495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/631,960 US7540275B2 (en) 2004-07-12 2005-07-07 Accumulator-type fuel injection apparatus and internal combustion engine provided with that accumulator-type fuel injection apparatus
CN2005800090026A CN1934349B (zh) 2004-07-12 2005-07-07 蓄压式燃料喷射装置以及具有该蓄压式燃料喷射装置的内燃机
EP05765461A EP1783355A4 (en) 2004-07-12 2005-07-07 FUEL STORAGE INJECTOR AND FUEL ENGINE WITH FUEL STORAGE INJECTION DEVICE
US12/453,101 US7753030B2 (en) 2004-07-12 2009-04-29 Accumulator-type fuel injection apparatus and internal combustion engine provided with that accumulator-type fuel injection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004204351A JP4199705B2 (ja) 2004-07-12 2004-07-12 蓄圧式燃料噴射装置を備えた内燃機関
JP2004204352A JP2006029094A (ja) 2004-07-12 2004-07-12 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関
JP2004-204352 2004-07-12
JP2004-204351 2004-07-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/631,960 A-371-Of-International US7540275B2 (en) 2004-07-12 2005-07-07 Accumulator-type fuel injection apparatus and internal combustion engine provided with that accumulator-type fuel injection apparatus
US12/453,101 Division US7753030B2 (en) 2004-07-12 2009-04-29 Accumulator-type fuel injection apparatus and internal combustion engine provided with that accumulator-type fuel injection apparatus

Publications (1)

Publication Number Publication Date
WO2006006495A1 true WO2006006495A1 (ja) 2006-01-19

Family

ID=35783839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012576 WO2006006495A1 (ja) 2004-07-12 2005-07-07 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関

Country Status (4)

Country Link
US (2) US7540275B2 (ja)
EP (1) EP1783355A4 (ja)
KR (1) KR100795406B1 (ja)
WO (1) WO2006006495A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094623A1 (en) * 2007-01-30 2008-08-07 Cummins Inc. Fuel pump timing to reduce noise
JP2010169068A (ja) * 2009-01-26 2010-08-05 Mitsubishi Heavy Ind Ltd コモンレール上流側圧力変動制御装置
JP5787042B2 (ja) * 2013-02-18 2015-09-30 日産自動車株式会社 内燃機関の制御装置および制御方法
US8997714B2 (en) * 2013-03-28 2015-04-07 Ford Global Technologies, Llc Method for operating a direct fuel injector
US20160208793A1 (en) * 2015-01-21 2016-07-21 Caterpillar Inc. Hydraulic Drive for Cryogenic Fuel Pump
DE102015219153B4 (de) * 2015-10-05 2017-12-21 Continental Automotive Gmbh Kraftstoffhochdruckpumpe und Verfahren zur Reduktion von Ungleichförmigkeiten in der Antriebskraft einer Kraftstoffhochdruckpumpe
DE102016006259A1 (de) 2016-05-20 2017-02-23 Daimler Ag Kraftstoffpumpe für eine Verbrennungskraftmaschine
JP7102755B2 (ja) * 2018-02-02 2022-07-20 マツダ株式会社 エンジンの燃料供給装置
CN111305985B (zh) * 2020-03-31 2024-06-25 广西玉柴船电动力有限公司 一种降低压力波动的v型多缸柴油机柴油供给系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236065A (ja) * 1996-02-28 1997-09-09 Nippon Soken Inc 蓄圧式燃料噴射装置
JP2000018052A (ja) 1998-07-03 2000-01-18 Denso Corp 蓄圧式燃料噴射装置
JP2002213326A (ja) * 2001-01-18 2002-07-31 Toyota Motor Corp 内燃機関の燃料供給装置
JP2003148222A (ja) * 2001-11-15 2003-05-21 Isuzu Motors Ltd 圧縮着火式内燃機関
JP2003328830A (ja) 2002-05-10 2003-11-19 Denso Corp 蓄圧式燃料噴射装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674448A (en) * 1985-07-04 1987-06-23 Sulzer Brothers Limited Fuel injection system for a multi-cylinder reciprocating internal combustion engine
US5230613A (en) * 1990-07-16 1993-07-27 Diesel Technology Company Common rail fuel injection system
WO1994027039A1 (en) * 1993-05-06 1994-11-24 Cummins Engine Company, Inc. Variable displacement high pressure pump for common rail fuel injection systems
KR100284729B1 (ko) * 1996-04-24 2001-09-28 나까무라히로까즈 벨트 구동장치
DE19633260A1 (de) 1996-08-17 1998-02-19 Bosch Gmbh Robert Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE19646581A1 (de) * 1996-11-12 1998-05-14 Bosch Gmbh Robert Kraftstoffeinspritzsystem
JP3488585B2 (ja) * 1996-12-19 2004-01-19 トヨタ自動車株式会社 内燃機関の動弁装置
DE19756087A1 (de) * 1997-12-17 1999-06-24 Bosch Gmbh Robert Hochdruckpumpe zur Kraftstoffversorgung bei Kraftstoffeinspritzsystemen von Brennkraftmaschinen
FI107831B (fi) * 1998-05-20 2001-10-15 Waertsilae Tech Oy Ab Polttoaineensyöttöjärjestelmä
JP2000310171A (ja) * 1999-04-27 2000-11-07 Mitsubishi Electric Corp 燃料供給装置
DE10023033A1 (de) * 2000-05-11 2001-11-22 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffzumesssystems einer direkteinspritzenden Brennkraftmaschine
US6786205B2 (en) * 2003-01-08 2004-09-07 The United States Of America As Represented By The Environmental Production Agency Hydraulically intensified high pressure fuel system for common rail application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236065A (ja) * 1996-02-28 1997-09-09 Nippon Soken Inc 蓄圧式燃料噴射装置
JP2000018052A (ja) 1998-07-03 2000-01-18 Denso Corp 蓄圧式燃料噴射装置
JP2002213326A (ja) * 2001-01-18 2002-07-31 Toyota Motor Corp 内燃機関の燃料供給装置
JP2003148222A (ja) * 2001-11-15 2003-05-21 Isuzu Motors Ltd 圧縮着火式内燃機関
JP2003328830A (ja) 2002-05-10 2003-11-19 Denso Corp 蓄圧式燃料噴射装置

Also Published As

Publication number Publication date
US7753030B2 (en) 2010-07-13
KR20070019983A (ko) 2007-02-16
EP1783355A4 (en) 2010-08-25
EP1783355A1 (en) 2007-05-09
US20090277420A1 (en) 2009-11-12
US7540275B2 (en) 2009-06-02
KR100795406B1 (ko) 2008-01-17
US20070186907A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4297160B2 (ja) 内燃機関
WO2006006495A1 (ja) 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関
US6899084B2 (en) Fuel supply system for internal combustion engine
US8136508B2 (en) Selective displacement control of multi-plunger fuel pump
US7367323B2 (en) Eight-cylinder engine
US20140251280A1 (en) Control apparatus for internal combustion engine and control method for internal combustion engine
JP2009097385A (ja) 燃料噴射状態検出装置
JP2009108713A (ja) Egr分配ばらつき検出装置
WO2005090776A1 (en) Fuel injection apparatus and fuel injection control method for internal combustion engine
US7406949B2 (en) Selective displacement control of multi-plunger fuel pump
JP5989406B2 (ja) 燃料圧力制御装置
JP3572937B2 (ja) 蓄圧式燃料噴射機構の燃料圧制御装置
EP1441119A2 (en) Fuel injection system for internal combustion engine
JP4135024B2 (ja) 内燃機関の燃料供給装置
JP4199705B2 (ja) 蓄圧式燃料噴射装置を備えた内燃機関
JP4075666B2 (ja) エンジンの始動装置
JP2006029096A (ja) 蓄圧式燃料噴射装置
JP4484604B2 (ja) エンジンの燃料噴射量制御方法およびこれを用いたエンジン運転状態判別方法
EP1447546A2 (en) Engine control unit including phase advance compensator
WO2006006301A1 (ja) 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関
US20160341164A1 (en) Multi-cylinder engine and outboard motor
JP4398315B2 (ja) 多気筒エンジンの燃料制御方法
JP2006029094A (ja) 蓄圧式燃料噴射装置及びその蓄圧式燃料噴射装置を備えた内燃機関
JP2006348878A (ja) 燃料噴射制御装置及び燃料噴射制御方法
JPH0949449A (ja) 燃料噴射装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017916

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580009002.6

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2005765461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005765461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11631960

Country of ref document: US

Ref document number: 2007186907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067017916

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765461

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631960

Country of ref document: US