WO2006132366A1 - 光センサ回路およびイメージセンサ - Google Patents

光センサ回路およびイメージセンサ Download PDF

Info

Publication number
WO2006132366A1
WO2006132366A1 PCT/JP2006/311632 JP2006311632W WO2006132366A1 WO 2006132366 A1 WO2006132366 A1 WO 2006132366A1 JP 2006311632 W JP2006311632 W JP 2006311632W WO 2006132366 A1 WO2006132366 A1 WO 2006132366A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
mos transistor
voltage value
optical sensor
gate voltage
Prior art date
Application number
PCT/JP2006/311632
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Kamiyama
Sukeyuki Shinotsuka
Masaki Kunigami
Makoto Furukawa
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US11/719,802 priority Critical patent/US7880788B2/en
Priority to DE112006001471T priority patent/DE112006001471T5/de
Publication of WO2006132366A1 publication Critical patent/WO2006132366A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/573Control of the dynamic range involving a non-linear response the logarithmic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/575Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor

Definitions

  • the present invention relates to an optical sensor circuit and an image sensor, and particularly suitable for realizing a MOS type image sensor having linear output characteristics and logarithmic output characteristics according to the illuminance of incident light and having a wide dynamic range.
  • the present invention relates to an optical sensor circuit, and an image sensor manufactured using this optical sensor circuit as one pixel.
  • the types of photosensor circuits that form each pixel of a MOS image sensor can be classified into three circuits.
  • the first is an optical sensor circuit that has linear output characteristics with respect to changes in the illuminance (intensity) of incident light
  • the second is an optical sensor circuit that has logarithmic output characteristics with respect to changes in the illuminance of incident light.
  • the third is an optical sensor circuit having a linear output characteristic for incident light with low illuminance and a logarithmic output characteristic for incident light with high illuminance.
  • these optical sensor circuits will be outlined and their characteristics will be evaluated in terms of SN ratio, dynamic range, afterimage, sensitivity at low illumination, and so on.
  • FIG. 21 shows a circuit example of an optical sensor circuit having a linear output characteristic.
  • the optical sensor circuit 101 includes a photodiode PD as an optical sensor element that detects incident light (optical signal) L1 and converts it into an electrical signal.
  • the photodiode PD has a capacitor C1 that is a parasitic capacitance (including the stray capacitance of the wiring).
  • the optical sensor circuit 101 further includes a MOS transistor Q1 for charging / discharging the electric charge of the capacitor C1, a MOS transistor Q2 for amplifying the terminal voltage of the capacitor C1, and the amplified terminal voltage (Vout).
  • MOS transistor Q3 that selectively outputs as a pixel signal.
  • MOS transistor Q1 is referred to as “first MOS transistor Ql”
  • MOS transistor Q2 is referred to as “second MOS transistor Q2”
  • MOS transistor Q3 is referred to as “third MOS transistor Q3J.
  • Third MOS type Resistor R is connected to the drain terminal of transistor Q3
  • the gate terminal G1 and the drain terminal D1 of the first MOS transistor Q1 are voltage control ports.
  • the required voltages VI and V2 are applied by the controller 102.
  • the required voltages V3 and V4 are applied to the gate terminal G3 of the third MOS transistor Q3 and the outer terminal T1 of the resistor R by the voltage controller 102 or the like (pixel selection circuit or the like).
  • Timing of generating the required voltages V1 to V4 output by the voltage controller 102 is instructed by the timing signal generator 103.
  • the gate voltage VI of the first MOS transistor Q1 is set to the noise level at the initialization timing.
  • the charge remaining in the capacitor C1 of the photodiode PD is discharged to the drain of the first MOS transistor Q1.
  • the gate voltage VI is switched to the low level (OV) and the first MOS transistor Q1 is turned off.
  • charge is further accumulated in the capacitor C1 of the photodiode PD.
  • the terminal voltage of the capacitor C1 generated by the charge accumulation is applied to the gate of the second MOS transistor Q2.
  • the photocurrent flowing through the photodiode PD is governed by the discharge current of the charge charged in the capacitor C1 of the photodiode PD. Therefore, the output voltage Vout, which is the sensor output of the optical sensor circuit 101, exhibits a linear output characteristic proportional to the discharge current. Since the optical sensor circuit 101 can control the sensor output based on the exposure time, it is a storage type image sensor. However, according to the circuit configuration of the optical sensor circuit 101, since the output voltage Vout to be output is proportional to the intensity of the incident light L1, it is saturated when light is incident, and the dynamic range cannot be widened. Have problems.
  • FIG. 1 An optical sensor circuit having a circuit configuration similar to the optical sensor circuit 101 is shown in FIG.
  • FIG. 22 shows a circuit example of an optical sensor circuit having logarithmic output characteristics.
  • elements that are substantially the same as the elements described in FIG. 21 are given the same reference numerals, and redundant detailed description of these elements is omitted.
  • the optical sensor circuit 201 the optical sensor Instead of the first MOS transistor Ql in the circuit 101, a MOS transistor Q21 is used.
  • the gate is electrically connected to the drain. Since the MOS transistor Q21 corresponds to the first MOS transistor Q1 and is an alternative to this, it is referred to as “first MOS transistor Q21”.
  • the first MOS transistor Q21 converts the sensor current of the photodiode PD into a sensor voltage having a logarithmic characteristic in a weak inversion state.
  • the gate of the first MOS transistor Q21 is connected to its drain, the drain voltage and the gate voltage are set to the same constant drain voltage V2, and the third MOS transistor Q3 is turned on. An optical signal is detected as the output voltage Vout.
  • a high level gate voltage is supplied from the voltage controller 102 to the gate terminal G3 of the third MOS transistor Q3.
  • the optical sensor circuit 201 can take a wide dynamic range because it uses logarithmic output characteristics.
  • the photocurrent flows through the channel of the first MOS transistor Q21, the exposure time cannot be increased and the SZN ratio cannot be improved as in the case of a storage type image sensor. Therefore, the sensitivity of low illumination is inferior to that of the storage type image sensor using the photosensor circuit 101.
  • the impedance of the channel becomes high, and there is a problem that an afterimage tends to occur.
  • FIG. 23 shows a circuit example of an optical sensor circuit having linear output characteristics with respect to incident light L1 with low illuminance and logarithmic output characteristics with respect to incident light with high illuminance.
  • the circuit configuration of the optical sensor circuit 301 shown in FIG. 23 is the same as that of the optical sensor circuit 101 described above, and the same elements as those shown in FIG.
  • the gate voltage Vg is supplied to the gate of the first MOS transistor Q1, and the drain voltage Vd is supplied to its drain.
  • Figure 24 shows the voltage waveforms related to the supplied gate voltage Vg and drain voltage Vd.
  • the optical sensor circuit 301 sets the drain voltage Vd of the first MOS transistor Q1 to a predetermined value (Vdl), and sets the gate voltage Vg to the drain voltage for a predetermined time (t2-tl). It is set to a voltage sufficiently higher than Vd (Vgl: high level (H)) and controlled to charge and discharge the capacitor C1 of the photodiode PD connected to the source.
  • This control is executed by the voltage controller 102 and the timing signal generator 103.
  • the functional part that executes this control is called “initial setting means”.
  • Other configurations are the same as those of the optical sensor circuit 101 described in FIG.
  • the drain voltage Vd has a constant voltage value (Vdl) that is converted into a voltage having a logarithmic output characteristic in the weak inversion state when the gate current Vg flowing through the first MOS transistor Q1 is low (L). Is set.
  • the gate voltage Vg is set to a high voltage (Vgl: high level) between tl and t2.
  • Vgl high level
  • the first MOS transistor Q1 is turned on, the channel impedance of the first MOS transistor Q1 becomes low resistance, and the voltage of the source terminal, that is, the terminal voltage VC1 of the capacitor C1, is close to the drain voltage Vd. Charge to value.
  • This operation is hereinafter referred to as “reset operation”.
  • the gate voltage Vg is switched to a low level.
  • the photocurrent flowing through the photodiode PD is dominated by the discharge current of the charge charged in the capacitor C1 of the photodiode PD. Therefore, in the time interval t2 to t3, the terminal voltage VC1 of the capacitor C1 decreases due to the discharge of the charge, and the sensor output shows a linear output proportional to the discharge current.
  • the time interval t 2 to t 3 becomes the linear output region 302.
  • the current supplied from the first MOS transistor Q1 is dominant in the photocurrent flowing through the photodiode PD after the time t3, and the sensor output is logarithmic. It is converted to a voltage having a characteristic and exhibits a logarithmic output.
  • the time interval t3 to t4 is a logarithmic output area 303.
  • the optical sensor circuit 301 includes a linear response region 302 that detects a voltage proportional to the discharge current of the capacitor C1 when the photocurrent of the photodiode PD is very small, and the photocurrent of the photodiode PD In the case of a large current, a logarithmic response region 303 for detecting a voltage having a logarithmic characteristic is provided. Therefore, the optical sensor circuit 301 can detect minute light with high accuracy and widen the dynamic range. [0017] Furthermore, since the optical sensor circuit 301 can average noise by the integration action of the capacitor C1, the SZN ratio can be improved, and the lower limit of the detectable light illuminance can be further lowered to achieve high sensitivity. Therefore, it is possible to realize a high-sensitivity optical sensor circuit with a high SZN ratio and a wide dynamic range.
  • the force sensor circuit 301 when this is connected as a pixel to form a two-dimensional matrix to form an imaging region, and a two-dimensional image sensor is configured, the region having linear output characteristics There is a problem that the change point between the region having the logarithmic output characteristic varies from pixel to pixel.
  • FIG. 25 is a characteristic diagram showing variation in incident light intensity (horizontal axis) and sensor output (vertical axis) for each pixel in the two-dimensional image sensor.
  • the sensor output voltage at each incident light intensity is drawn by taking the difference from the output voltage in the dark state. This variation in sensor output is due to the variation in threshold value of the first MOS transistor Q1.
  • FIG. 26 Two pixels A and B made by the optical sensor circuit 301 are shown in the horizontal axis direction, and the potential state of the terminal voltage VC1 of the capacitor (parasitic capacitance) C1 is shown in the vertical axis direction.
  • the upper side corresponds to “dark”
  • the lower side corresponds to “bright”.
  • the terminal voltage VC1 of the capacitor C1 of the photodiode PD becomes a potential corresponding to the drain voltage Vd in each of the pixels A and B (state 310).
  • the change points (304A, 304B) between the regions (302A, 302B) showing the linear output and the regions (303A, 303B) showing the logarithmic output are the threshold (Vth) of the first MOS transistor Q1. Therefore, when the threshold value varies as VthA and VthB, the potential at this transition point is different for each pixel. However, the terminal potential immediately after reset is the drain voltage for each pixel. Since the voltage Vd is common (state 310), the difference between the terminal potential immediately after the reset and the potential at the change point (304A, 304B) is different for each pixel A, B. As described above, since the potential difference between the terminal potential immediately after the reset and the change point is different between the pixels A and B, the region having the linear characteristics varies from pixel to pixel.
  • Patent Document 2 discloses an optical sensor signal processing device that solves the above problems in the optical sensor circuit 301.
  • this optical sensor signal processing device fixed pattern noise caused by variations in the characteristics of each pixel in a MOS type image sensor is suppressed, and the output of each pixel switches to a linear characteristic area force and a logarithmic characteristic area. Variations in output characteristics are corrected. For this reason, an output value correction table is provided for each pixel (photosensor circuit) to correct the output value of each pixel.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-329616
  • Patent Document 2 Japanese Patent Laid-Open No. 11-298799
  • An object of the present invention is to provide an optical sensor circuit having a linear output characteristic and a logarithmic output characteristic in accordance with the illuminance of incident light in view of the above problems, and between the linear output characteristic area and the logarithmic output characteristic area.
  • the change point of the change point can be controlled to stably eliminate the variation of the change point potential between each photo sensor circuit, and the light sensor with high sensitivity, high SZN ratio, low illuminance, etc., wide dynamic lens and little afterimage. It is to provide a circuit and an image sensor.
  • an optical sensor circuit and an image sensor according to the present invention are configured as follows.
  • the first optical sensor circuit (corresponding to claim 1) includes a capacitive element (capacitor C1) for storing electricity and converts a light signal into a current signal (photodiode PD, etc.)
  • a MOS transistor for conversion (Q1) for converting the current signal output from the photoelectric conversion element into a voltage signal having a logarithmic characteristic in a weak inversion state, and a gate voltage at the gate of the MOS transistor (Q1).
  • a control means voltage controller 13 and timing signal generator 14 for supplying drain voltage to the drain, and the control means further comprises an initial setting means (15) as follows.
  • the initial setting means sets the gate voltage of the conversion MOS transistor (Q1) to a high gate voltage value (VgH) for the first predetermined time and lowers the drain voltage for the second predetermined time.
  • Set the voltage value (VdL) to charge / discharge the capacitive element of the photoelectric conversion element, then set the drain voltage to the high drain voltage value (VdH), and then the third predetermined time has elapsed After that, the gate voltage is set to a low gate voltage (VgL).
  • the initial setting means (15) has a high gate voltage value (VgH), a high drain voltage value (VdH), and a low drain voltage value (VdL), such that “VgH—VdH ⁇ Vth and VgH—VdL> Vth, where Vth: threshold voltage of MOS transistor for conversion (Q1) ”is set to satisfy the relational expression.
  • the optical sensor circuit having the above configuration produces the following action.
  • the MOS transistor for conversion (Q1) has a sub-threshold current and has transient characteristics, and in the initial state, a high gate voltage value (VgH) that satisfies the above relational expression and a low gate voltage
  • VgH high gate voltage value
  • VgL low gate voltage value
  • AW W (Low) -W (High)
  • W (Low) and W (High) are defined based on the formula (2) for W described later with reference to FIG.
  • the potential difference AW is also defined.
  • the potential difference can be made independent of variations in threshold voltage of the MOS transistor (Q1).
  • the potential difference AW can be made the same between each of the different photosensor circuits in the image sensor.
  • the range indicating the logarithmic output characteristic region can be arbitrarily controlled, and this makes it possible to eliminate variations in output between the optical sensor circuits (pixels).
  • the second photosensor circuit (corresponding to claim 2) is preferably configured such that the control means sets a high gate voltage value (VgH) of the MOS transistor for conversion (Q1) to an arbitrary value. It has a switching means (31) for switching to a voltage value and setting.
  • the third photosensor circuit (corresponding to claim 3) is preferably an amplifying MOS transistor for amplifying a voltage signal output from the converting MOS transistor (Q1). (Q2) is provided.
  • the fourth photosensor circuit (corresponding to claim 4) is preferably an output selector for selectively outputting a voltage signal output from the amplifying MOS transistor (Q2). It is configured to have a MOS transistor (Q3).
  • the fifth photosensor circuit (corresponding to claim 5) preferably has another electrostatic capacitance element (capacitor C2) that accumulates charges based on the terminal voltage of the photoelectric conversion element in the above configuration. And a charge transfer MOS transistor (Q4) for selectively transferring charges between the above-described capacitance element and another capacitance element.
  • the initial setting means (15) turns on the charge transfer MOS transistor (Q4) and increases the gate voltage (Vg H) of the conversion MOS transistor (Q1) by a first predetermined time.
  • the drain voltage is set to a lower drain voltage value (VdL) for the second predetermined time, and the electrostatic capacitance element of the photoelectric conversion element and other electrostatic capacity elements are charged and discharged, and then the drain voltage is discharged.
  • the gate voltage is set to a low gate voltage value (VgL), and the above relational expression satisfies the high gate voltage value (VgH) and high, the drain voltage value (VdH) and low, and the drain voltage value (VdL).
  • VgH high gate voltage value
  • VdH drain voltage value
  • VdL drain voltage value
  • An image sensor according to the present invention (corresponding to claim 6) is characterized in that a one-dimensional or two-dimensional imaging region is formed by using the first to fifth photosensor circuits described above as one pixel.
  • each potential difference AW can be made the same between different optical sensor circuits in the image sensor. Furthermore, since this potential difference can be set arbitrarily, the range indicating the linear output characteristic region with respect to the photoelectric conversion element terminal voltage (VC1), which is the sensor detection potential in the dark state of each photosensor circuit (pixel), The range showing the logarithmic output characteristic region can be controlled arbitrarily, and this eliminates variations in output between the optical sensor circuits (pixels).
  • VC1 photoelectric conversion element terminal voltage
  • the change point between the linear output characteristic area and the logarithmic output characteristic area is controlled by the photosensor circuit having the linear output characteristic and the logarithmic output characteristic in accordance with the illuminance of the incident light. It is possible to eliminate the variation of the potential of the changing point for each optical sensor circuit stably, to achieve high sensitivity with a high SZN ratio at low illuminance, etc., and to further reduce afterimages with a wide dynamic lens.
  • FIG. 1 is an electric circuit diagram of a first embodiment of an optical sensor circuit according to the present invention.
  • FIG. 2 is a timing waveform diagram showing signal states of respective parts of the photosensor circuit according to the first embodiment.
  • FIG. 3 is a diagram for explaining a relationship between VgH, Vth, and VC 1 of a MOS transistor Q1 of the photosensor circuit according to the first embodiment.
  • FIG. 4 is a diagram for explaining the relationship between Vg, Vth, and VC1 of a MOS transistor Q1 of the photosensor circuit according to the first embodiment.
  • FIG. 5 is a diagram for explaining a relationship among VgL, Vth, VC 1 and a linear output range of a MOS transistor Q1 of the photosensor circuit according to the first embodiment.
  • FIG. 6 is a diagram for explaining the relationship between VgH, Vth, and VC1 of the MOS transistor Q1 of the photosensor circuits A and B according to the first embodiment.
  • FIG. 7 is a diagram for explaining the relationship between VgH, Vth, and VC1 of the MOS transistor Q1 of the photosensor circuits A and B according to the first embodiment.
  • FIG. 8 is a diagram for explaining the relationship between VgH, Vth, and VC1 (after the gate voltage is lowered by AVg) in the MOS transistor Q1 of the photosensor circuits A and B according to the first embodiment.
  • FIG. 10 is an electric circuit diagram of a second embodiment of the photosensor circuit according to the present invention.
  • FIG. 12 is an electric circuit diagram of a third embodiment of the photosensor circuit according to the present invention.
  • FIG. 14 is a timing waveform diagram showing signal states of respective parts of the photosensor circuit according to the third or fourth embodiment.
  • FIG. 16 is a timing waveform chart showing signal states of respective parts of the photosensor circuit according to the fifth embodiment.
  • FIG. 17 is an electric circuit diagram showing an image sensor configured using an optical sensor circuit according to a fourth embodiment of the present invention.
  • FIG. 18 is an electric circuit diagram showing an image sensor configured using an optical sensor circuit according to a fifth embodiment of the present invention.
  • FIG. 19 is a timing waveform diagram showing only voltages VI and V2.
  • FIG. 6 is a timing waveform diagram illustrating ⁇ 3.
  • FIG. 22 is an electric circuit diagram of a conventional photosensor circuit having logarithmic output characteristics.
  • FIG. 24 is a timing waveform diagram showing signal states of respective parts of a conventional photosensor circuit having linear output characteristics and logarithmic output characteristics.
  • FIG. 26 is a diagram for explaining a problem of an image sensor formed by a conventional optical sensor circuit having linear output characteristics and logarithmic output characteristics.
  • FIG. 1 shows a circuit configuration of the photosensor circuit according to the first embodiment.
  • elements that are substantially the same as the elements shown in FIG. 21 to FIG. 26 used in the description of the “Background Art” section are given the same reference numerals.
  • the optical sensor circuit 10 includes a photodiode PD that is an optical sensor element that detects light L1 and converts it into an electrical signal, and a capacitor that is a parasitic capacitance (including stray capacitance such as wiring) of the photodiode PD. It has C1. Capacitor C1 is connected in parallel between the anode and cathode of photodiode PD.
  • the photodiode PD is an example of an optical sensor element, and the optical sensor element is not limited to this.
  • the photodiode PD is provided with a conversion MOS transistor Q1 for converting the sensor current into a sensor voltage having a logarithmic characteristic in a weak inversion state.
  • the MOS transistor Q1 has a drain l id, a source l is, and a gate l lg.
  • the cathode of the photodiode PD is connected to the source lis of the MOS transistor Q1.
  • the anode of the photodiode PD is connected to the ground terminal.
  • the drain voltage 12 is supplied from the voltage controller 13 to the drain terminal 12d of the MOS transistor Q1, and the gate voltage Vg is supplied from the voltage controller 13 to the gate terminal 12g.
  • the timing signal generator 14 instructs the supply timing of the voltages Vd and Vg supplied by the voltage controller 13.
  • a voltage waveform diagram of the voltage Vd supplied by the voltage controller 13 and a voltage waveform diagram of the voltage Vg supplied by the voltage controller 13 are shown in FIG.
  • the output voltage Vout from the optical sensor circuit 10 is taken out as the terminal voltage VC1 of the photodiode PD or the capacitor C1.
  • Light intensity of L1 (or strong) with photodiode PD The sensor current that flows according to the degree) is converted to the sensor voltage and detected as the output voltage Vout.
  • the output voltage Vout matches the terminal voltage VC1 of the photodiode PD (or capacitor C1).
  • an electric signal corresponding to the light L1 is obtained by supplying a drain voltage Vd and a gate voltage Vg having voltage waveforms as shown in FIG. That is, the gate voltage Vg of the MOS transistor Q1 is set to a high gate voltage value (VgH) and the drain voltage Vd is set to a low drain voltage value (VdL) in the time interval from timing t1 to t2.
  • VgH gate voltage value
  • VdL low drain voltage value
  • the drain voltage Vd of the MOS transistor Q1 is set to a high drain voltage value VdH.
  • the value of the gate voltage Vg remains VgH and does not change.
  • the gate voltage Vg becomes a low gate voltage value (VgL).
  • the high gate voltage value VgH of the MOS transistor Q1 in the time interval of timing tl to t3, the low drain voltage value VdL of the MOS transistor Q1 set between tl and t2, and the time t2 or later The high drain voltage value VdH of the MOS transistor Q1 is set so that the potential difference between them satisfies the following relational expression (1).
  • the difference between the gate voltage value VgH and the drain voltage value VdH is smaller than the threshold voltage Vth of the MOS transistor Q1, and the difference between the gate voltage value VgH and the drain voltage value VdL is the same as that of the MOS transistor Q1. It is set to be larger than the threshold voltage Vth.
  • the voltage controller 13 controls and sets the voltage values of the gate voltage Vg and the drain voltage Vd in the MOS transistor Q1 based on the voltage waveform pattern shown in FIG. And is executed based on the operations of the timing signal generator 14.
  • the voltage controller 13 and the timing signal generator 14 form a control means for the optical sensor circuit 10. Further, the control function portion realized by the voltage controller 13 and the timing signal generator 14 is referred to as “initial setting means 15”. I will call it.
  • FIG. 3 shows the relationship between the high gate voltage value VgH and threshold voltage Vth of the MOS transistor Q1 and the terminal voltage VC1 of the photodiode PD.
  • the terminal voltage VC1 of the photodiode PD is equal to the threshold voltage of the MOS transistor Q1 with respect to the high gate voltage value VgH of the MOS transistor Q1.
  • the potential difference corresponding to the value voltage Vth is low! It rises rapidly at a speed of nanosecond order or less so as to become a voltage.
  • the photodiode PD terminal voltage VC1 rises as shown in the right block 22 of FIG. 3, and the high gate voltage VgH of the MOS transistor Q1 and the photovoltage are increased.
  • Voltage difference with the terminal voltage VC1 of the diode PD Lower than the threshold voltage Vth of the MOS transistor Q1.
  • the increase in the terminal voltage VC1 of the photodiode PD is the force that the channel impedance of the MOS transistor Q1 increases and the subthreshold current flows.
  • the sub-threshold current flows and has transient characteristics, and at time t3 in this state, the high gate voltage value VgH of the MOS transistor Q1 is switched to the low gate voltage value VgL.
  • the interval between time point t2 and time point t3 is preferably set to a time on the order of about microseconds.
  • the terminal voltage VC1 of the photodiode PD reaches the state in which the subthreshold current is flowing.
  • the purpose of setting the difference between the high gate voltage value VgH and the high drain voltage VdH to be smaller than the threshold voltage Vth of the MOS transistor Q1 is that the photodiode is in a state where such a subthreshold current flows. This is for setting the PD terminal voltage VC1.
  • W VCl-(Vg-Vth)--(2)
  • Vth MOS transistor Q 1 threshold! /, Value voltage
  • the above equation (2) is an equation obtained for setting the terminal voltage VC1 of the photodiode PD higher than the potential (Vg ⁇ Vth) lower than the gate voltage Vg by the threshold voltage Vth.
  • FIG. 4 shows the relationship between the gate voltage Vg of the MOS transistor Q1 and the threshold voltage Vth, and the relationship between the terminal voltage VC1 of the photodiode PD.
  • the relationship W (Low)> W (High) is obtained.
  • the range (potential difference) W can be increased by changing the gate voltage Vg to high, the gate voltage value VgH force low, and changing the gate voltage value VgL by ⁇ Vg.
  • Fig. 5 shows the low gate voltage VgL and threshold voltage Vth of the MOS transistor Q1. It shows the relationship with the relationship, the terminal voltage VC1 of the photodiode PD, the range of the linear output characteristics, and so on.
  • range 23 shows the region of linear output characteristics
  • range 24 shows the region of logarithmic output characteristics.
  • the boundary point 25 between the linear output characteristic region 23 and the logarithmic output characteristic region 24 is a change point.
  • the terminal voltage VC1 of the photodiode PD can be set to a potential in the range 23 of any linear output characteristic, so an image composed of multiple pixels like a two-dimensional MOS image sensor.
  • a sensor imaging area
  • it is effective for suppressing variations in the output of the optical sensor circuit caused by variations in the threshold voltage of each pixel of the MOS transistor.
  • the terminal voltage VC1 of the photodiode PD described above is set to the MOS transistor Q1.
  • the potential difference corresponding to the threshold voltage Vth of the MOS transistor Q1 is lower than the gate voltage, and the voltage rapidly rises at a speed of the order of nanoseconds or less.
  • the terminal voltage VC1 differs between the photosensor circuits A and B. That is, as indicated by blocks 26 and 27 in FIG. 6, the terminal voltage of the optical sensor circuit A is VC1A, and the terminal voltage of the optical sensor circuit B is VC1B.
  • the sub-threshold current flows and has a transient characteristic, so that the high gate voltage value VgH of the MOS transistor Q1 is switched and the low gate voltage value VgL is switched.
  • the linear output characteristic region is set with respect to the terminal voltage VC1 of the photodiode PD that is the sensor detection potential in the dark state of each photosensor circuit (pixel).
  • the range shown and the range showing the logarithmic output characteristic region can be controlled arbitrarily, and this eliminates output variations between the optical sensor circuits (pixels).
  • FIG. 9 shows sensor output characteristics when the optical sensor circuit 10 according to the present embodiment and the driving method thereof are applied to a plurality of (for example, six) optical sensor circuits.
  • the sensor output characteristics in Fig. 9 there is almost no variation in the sensor output values among the six pixels. If the optical sensor circuit and the driving method according to the present embodiment are used, the potential difference between the terminal potential immediately after reset and the change point between the linear output characteristic range and the logarithmic output characteristic range, which was a problem in the conventional optical sensor circuit. However, it is possible to solve the problem that the pixel is different.
  • FIG. 10 elements that are substantially the same as those described in FIG. 1 are denoted by the same reference numerals.
  • the gate voltage Vg of the MOS transistor Q1 is set to a high gate voltage value VgH based on the initial setting means 15 configured by the voltage controller 13 and the timing signal generation 14.
  • the initial setting means 15 is configured to include a switching means 31 that can arbitrarily set the voltage value related to the high gate voltage value VgH.
  • the gate voltage Vg of the MOS transistor Q1 when the gate voltage Vg of the MOS transistor Q1 is set to the high gate voltage value VgH, the voltage value can be arbitrarily switched by the switching means 31 and set.
  • the potential difference AW described in the first embodiment can be arbitrarily set. Therefore, according to the photosensor circuit 30 according to the second embodiment, the gate voltage value VgH having a high gate voltage Vg of the MOS transistor Q 1 can be set as described above. Range and logarithmic output characteristic range can be set arbitrarily.
  • FIG. 11 shows a characteristic pattern of sensor output characteristics obtained by the optical sensor circuit 30 according to the second embodiment.
  • the horizontal axis in Fig. 11 is a logarithmic scale (log).
  • the gate voltage value VgH which is the gate voltage Vg of the MOS transistor Q1, can be arbitrarily switched to output the sensor signal in an optimum state that suits the shooting conditions.
  • the gate voltage Vg is high and AVg is changed from “small” to “large” with respect to the gate voltage value VgH, the sensor output characteristics change as shown by arrow 32.
  • FIG. 12 and FIG. 13 show modifications of the photosensor circuit according to the present invention.
  • FIG. 12 shows an optical sensor circuit according to the third embodiment of the present invention
  • FIG. 13 shows an optical sensor circuit according to the fourth embodiment of the present invention.
  • the photosensor circuit 40 according to the third embodiment shown in FIG. 12 is a second sensor for amplifying the sensor output voltage with respect to the circuit elements of the photosensor circuit according to the first or second embodiment.
  • a MOS type transistor Q2 is attached. Elements that are substantially the same as those described in the previous embodiment are given the same reference numerals.
  • the voltage VI is supplied to the gate terminal 12g of the MOS transistor Q1, and the voltage V2 is supplied to the drain terminal 12d.
  • the force voltage VI indicated by the voltages VI and V2 is the same voltage as the aforementioned gate voltage Vg, and the voltage V2 is the same voltage as the aforementioned drain voltage Vd.
  • the conversion MOS transistor Q1 for converting the sensor current of the photodiode PD into a sensor voltage having a logarithmic characteristic in a weakly inverted state is the first MOS transistor.
  • the second MOS transistor Q2 is an amplifying MOS transistor for amplifying the sensor voltage output from the first MOS transistor Q1.
  • the terminal voltage VC1 of the photodiode PD which is the sensor output voltage
  • the gate 41g of the MOS transistor Q2 MOS type transistor A drain voltage V3 is also supplied to the drain terminal 42d of the capacitor Q2 as a voltage controller, and the source 41s is connected to the ground terminal.
  • the sensor output voltage Vout is extracted from the drain 41d of the second MOS transistor Q2 in an amplified state.
  • a third MOS transistor Q3 is added to the circuit elements of the photosensor circuit 40 according to the third embodiment. .
  • elements that are substantially the same as those described in the third embodiment are denoted by the same reference numerals.
  • the third MOS transistor Q3 is an output selection MOS transistor for selectively outputting the voltage signal output from the second MOS transistor Q2 for amplification.
  • the drain 41d of the MOS transistor Q2 and the source 51s of the MOS transistor Q3 are connected.
  • the gate voltage V3 is supplied to the gate terminal 52g of the third MOS transistor Q3.
  • a resistor R is connected to the drain 51d of the third MOS transistor Q3, and a drain voltage V4 is supplied to the other terminal 52d of the resistor R.
  • the sensor output voltage Vout is taken out from the drain 5 Id of the third MOS transistor Q3.
  • control signals VI, V2, V3, and V4 for driving each part, As shown in Fig. 14 VC1, make an electrical signal according to the incident light L1.
  • FIG. 15 shows an optical sensor circuit according to the fifth embodiment of the present invention.
  • a fourth MOS transistor Q4 is further added to the circuit elements of the photosensor circuit 50 according to the fourth embodiment. Elements that are substantially the same as those described in the fourth embodiment are given the same reference numerals.
  • the source 61s of the fourth MOS transistor Q4 is connected to the force sword of the photodiode PD, and the drain 61d is connected to the gate 41g of the MOS transistor Q2.
  • the voltage V5 is supplied to the gate terminal 62g of the gate 61g of the MOS transistor Q4.
  • a capacitor C2 for further accumulating charges and a fourth MOS transistor Q4 for charge transfer are provided.
  • the fourth MOS transistor Q4 is a charge transfer MOS transistor for selectively transferring charge between the capacitor C1 and the capacitor C2.
  • the initial setting means 15 controls and sets the MOS transistors Q 1 to Q 4 as follows.
  • MOS transistors Q1 to Q3 are controlled and set while the fourth MOS transistor Q4 for charge transfer is turned on by the voltage V5.
  • the gate voltage VI of the first MOS transistor Q1 is set to a high gate voltage value VgH between tl and t3, and the drain voltage V2 is set low for a predetermined time between tl and t2.
  • VdL to charge and discharge the photodiode PD capacitor C1 and capacitor C2.
  • the gate voltage VI is set to the low gate voltage value Vg L and the high gate voltage value is set.
  • VgH and high drain voltage VdH are set so that the relational expression (1) is satisfied.
  • time point t4 Thereafter, after a certain exposure time has elapsed (time point t4), the fourth MOS transistor Q4 for charge transfer is turned off. As a result, the capacitor C2 is opened, and the third MOS transistor Q3 for output selection is turned on to output a sensor signal.
  • the optical sensor circuit 60 In the circuit configuration of the photosensor circuit 60, when the MOS transistor Q4 is turned off after the time point t4, the charge of the capacitor C2 is held, and the MOS transistor Q4 is then turned on. Until it is turned on, the charge of capacitor C2 is held constant. In other words, during the period when the MOS transistor Q4 is off, in other words, during the charge retention period of the capacitor C2, the same output signal is obtained as the sensor output signal even if the terminal voltage of the capacitor C1 changes. Therefore, by operating the optical sensor circuit 60 shown in FIG. 15 based on the timing signal shown in FIG. 16, it is possible to realize a pixel having a logarithmic output having a logarithmic output which is not affected by the afterimage and has a wide dynamic range. It becomes like this. [0088]
  • the optical sensor circuit 10, 30, 40, 50, 60 according to the present invention described above is used as a component for one pixel, and the image sensor is configured in a one-dimensional or two-dimensional arrangement. can do.
  • FIG. 17 shows an example of the configuration of an image sensor having a rectangular imaging region 71 in which the photosensor circuit 50 shown in FIG. 13 is arranged as a pixel (S) in a two-dimensional matrix as an example. It shows.
  • block 13 is the voltage controller described above
  • block 72 is a pixel selection circuit provided in common to each pixel S
  • block 73 is a signal selection circuit for sequentially outputting pixel signals of each pixel S. is there.
  • the voltages VI and V2 are supplied from the voltage controller 13
  • the voltage V3 is supplied from the pixel selection circuit 72
  • the voltage V4 is supplied to the terminal 52d.
  • FIG. 18 shows an example of the configuration of an image sensor having a rectangular imaging area 71 formed by arranging the photosensor circuit 60 shown in FIG. 15 as one pixel in a two-dimensional matrix as an example.
  • block 13 is the voltage controller described above
  • block 72 is a pixel selection circuit provided in common to each pixel S
  • block 73 is a signal selection circuit for sequentially outputting pixel signals of each pixel S. is there.
  • the voltages VI, V2, and V5 are supplied from the voltage controller 13
  • the voltage V3 is supplied from the pixel selection circuit 72
  • the voltage V4 is supplied to the terminal 52d.
  • FIG. 19 is a timing waveform diagram showing the voltage VI and the voltage V2 extracted as described above.
  • the setting time of the low voltage V2 is the rise of the voltage VI and the voltage V2 as long as the time necessary for charging and discharging the photodiode PD can be secured.
  • the fall timing is arbitrary. Examples 1 to 3 of this timing are shown in FIG.
  • the gate of the logarithmic conversion transistor is in an open state, and the charge and discharge of the photodiode PD are performed.
  • the voltage V2 becomes a high voltage value, the potential of the photodiode PD quickly rises to a voltage that depends on the transistor threshold voltage.
  • FIG. 19 shows a period T between the rise of voltage V2 and the fall of voltage VI.
  • This period T reaches the state in which the subthreshold current begins to flow, Since the threshold of the transistor becomes a photodiode potential corresponding to the value, a period of microsecond order is sufficient. By shortening this period ⁇ , it is possible to quickly shift to linear output operation after resetting the photodiode. Therefore, since the integration time can be long, the sensitivity is high during low illumination exposure.
  • the MOS type transistor is described as an n-channel type, but it is needless to say that a p-channel type MOS transistor can be used instead.
  • the present invention is used as an optical sensor circuit (or pixel) that forms a one-dimensional or two-dimensional image sensor of a MOS image sensor that is an imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 光センサ回路は、フォトダイオードPD、MOS型トランジスタQ1、このトランジスタにゲート電圧とドレイン電圧を供給する電圧コントローラ13等を備える。電圧コントローラは初期設定手段15を含む。初期設定手段は、トランジスタQ1のゲート電圧を所定時間だけ高いゲート電圧値VgHに設定し、ドレイン電圧を所定時間だけ低いドレイン電圧値VdLに設定してフォトダイオードの静電容量要素の充電・放電を行い、その後にドレイン電圧をVdHに設定し、所定時間が経過した後にゲート電圧をVgLに設定する。VgHとVdHとVdLは「VgH-VdH<Vth、かつ、VgH-VdL>Vth、Vth:MOS型トランジスタQ1のしきい値電圧」の関係式を満たす。

Description

光センサ回路およびイメージセンサ
技術分野
[0001] 本発明は光センサ回路およびイメージセンサに関し、特に、入射光の照度に応じた 線形出力特性と対数出力特性を有し、かつダイナミックレンジが広 ヽ MOS型ィメー ジセンサを実現するのに好適な光センサ回路、およびこの光センサ回路を 1つの画 素として用いて作製されるイメージセンサに関する。
背景技術
[0002] MOS型イメージセンサの各画素を形成する光センサ回路の種類は 3つの回路に 分類できる。第 1は入射光の照度 (強度)の変化に対して線形出力特性を有する光セ ンサ回路であり、第 2は入射光の照度の変化に対して対数出力特性を有する光セン サ回路であり、第 3は低い照度の入射光に対して線形出力特性を有しかつ高い照度 の入射光に対して対数出力特性を有する光センサ回路である。以下に、これらの光 センサ回路を概説し、併せてその特性を SN比、ダイナミックレンジ、残像、低照度時 の感度等の点で評価する。
[0003] 図 21に、線形出力特性を有する光センサ回路の回路例を示す。この光センサ回路 101は、入射光 (光信号) L1を検出して電気信号に変換する光センサ素子としての フォトダイオード PDを備える。フォトダイオード PDは、寄生容量 (配線の浮遊容量を 含む)であるコンデンサ C1を有している。光センサ回路 101は、さらに、コンデンサ C 1の電荷を充放電するための MOS型トランジスタ Q1と、コンデンサ C1の端子電圧を 増幅するための MOS型トランジスタ Q2と、その増幅された端子電圧 (Vout)を画素 信号として選択的に出力させる MOS型トランジスタ Q3を備える。以下では、 MOS型 トランジスタ Q1を「第 1MOS型トランジスタ Ql」と記し、 MOS型トランジスタ Q2を「第 2MOS型トランジスタ Q2」と記し、 MOS型トランジスタ Q3を「第 3MOS型トランジスタ Q3Jと記す。第 3MOS型トランジスタ Q3のドレイン端子には抵抗 Rが接続されている
[0004] 第 1MOS型トランジスタ Q1のゲート端子 G1およびドレイン端子 D1は電圧コント口 ーラ 102によって所要の電圧 VI, V2が印加される。また第 3MOS型トランジスタ Q3 のゲート端子 G3および抵抗 Rの外側端子 T1には同じく電圧コントローラ 102等 (画 素選択回路等)によって所要の電圧 V3, V4が印加される。上記の電圧コントローラ 1 02によって出力される所要の電圧 V1〜V4の発生のタイミングは、タイミング信号発 生部 103によって指示される。
[0005] 上記光センサ回路 101の動作を説明する。第 1MOS型トランジスタ Q1のドレイン 電圧 V2をノヽィレベルに維持した状態で、初期化のタイミングで、第 1MOS型トランジ スタ Q1のゲート電圧 VIをノヽィレベルにする。これにより、フォトダイオード PDのコン デンサ C1に残っている電荷は第 1MOS型トランジスタ Q1のドレインに排出される。 その後、ゲート電圧 VIをローレベル(OV)に切り換え、第 1MOS型トランジスタ Q1を オフする。その後、さらにフォトダイオード PDのコンデンサ C1に電荷の蓄積を行わせ る。電荷の蓄積で生じたコンデンサ C1の端子電圧は第 2MOS型トランジスタ Q2の ゲートに印加される。フォトダイオード PDでの一定の露光時間の経過後に、第 3MO S型トランジスタ Q3をオンにすると、第 3MOS型トランジスタ Q3のドレイン力 光信号 が電圧 Voutとして出力される。
[0006] 上記光センサ回路 101において、フォトダイオード PDに流れる光電流は、フォトダ ィオード PDのコンデンサ C1に充電された電荷の放電電流により支配される。従って 、光センサ回路 101のセンサ出力である出力電圧 Voutは、放電電流に比例した線 形出力特性を示すことになる。光センサ回路 101は、露光時間に基づいてセンサ出 力を制御できることから、蓄積型イメージセンサとなる。しかし、光センサ回路 101の 回路構成によれば、出力される出力電圧 Voutは入射光 L1の強度に比例するため、 強 、光が入射した場合は飽和し、ダイナミックレンジは広くとれな 、と 、う問題を有し ている。
[0007] 光センサ回路 101に類似した回路構成を有する光センサ回路は、特許文献 1の図 7等に示されている。
[0008] 次に図 22に対数出力特性を有する光センサ回路の回路例を示す。図 22において 、上記の図 21で説明した要素と実質的に同一の要素には同一の符号を付し、これら の要素に関して重複する詳細説明を省略する。この光センサ回路 201では、光セン サ回路 101における第 1MOS型トランジスタ Qlの代わりに MOS型トランジスタ Q21 が用いられている。 MOS型トランジスタ Q21では、ゲートがドレインに電気的に接続 されている。 MOS型トランジスタ Q21は、第 1MOS型トランジスタ Q1に対応しかっこ れに代わるものであるので、「第 1MOS型トランジスタ Q21」と記す。フォトダイオード PD、コンデンサ Cl、第 2MOS型トランジスタ Q2、第 3MOS型トランジスタ Q3、抵抗 R等のその他の回路構成は、図 21で説明したものと同じである。この光センサ回路 2 01では、第 1MOS型トランジスタ Q21によって、フォトダイオード PDのセンサ電流を 弱反転状態で対数特性を有するセンサ電圧に変換するようにしている。
[0009] 光センサ回路 201において、第 1MOS型トランジスタ Q21のゲートはそのドレイン に接続され、ドレイン電圧とゲート電圧とを同一の一定のドレイン電圧 V2に設定し、 第 3MOS型トランジスタ Q3をオンにして出力電圧 Voutとして光信号を検出するよう にしている。第 3MOS型トランジスタ Q3のゲート端子 G3には電圧コントローラ 102か らハイレベルのゲート電圧が供給される。
[0010] 光センサ回路 201は、対数出力特性を利用するためダイナミックレンジを広くとるこ とができる。しかし、光電流が第 1MOS型トランジスタ Q21のチャネルを介して流れる ため、蓄積型イメージセンサのように露光時間を長くして SZN比を向上させることが できない。従って上記光センサ回路 101による蓄積型イメージセンサに比べて低照 度の感度は劣る。さらに第 1MOS型トランジスタ Q21に流れる電流が少ないと、その チャネルのインピーダンスが高くなるため、残像を生じ易いという問題がある。
[0011] 対数出力特性を有する光センサ回路は特許文献 1に記載されている。
[0012] 図 23に、低照度の入射光 L1に対して線形出力特性を有しかつ高照度の入射光に 対して対数出力特性を有する光センサ回路の回路例を示す。図 23に示した光セン サ回路 301の回路構成は上記の光センサ回路 101と同じであり、図 21に示した要素 と同一の要素には同一の符号を付し、説明を省略する。第 1MOS型トランジスタ Q1 のゲートにはゲート電圧 Vgが供給され、そのドレインにはドレイン電圧 Vdが供給され るものとする。供給されるゲート電圧 Vgとドレイン電圧 Vdに関する電圧波形は図 24 に示される。さらに光センサ回路 301は、第 1MOS型トランジスタ Q1のドレイン電圧 Vdを所定値 (Vdl)に設定し、ゲート電圧 Vgを所定時間 (t2— tl)だけドレイン電圧 Vdより十分に高い電圧 (Vgl :ハイレベル (H) )に設定し、ソースに接続されたフォト ダイオード PDのコンデンサ C1の電荷の充放電を行うように制御される。この制御は、 電圧コントローラ 102とタイミング信号発生部 103によって実行される。当該制御を実 行する機能部分は「初期設定手段」と呼ばれる。その他の構成は図 21で説明した光 センサ回路 101と同じである。
[0013] 光センサ回路 301の動作を図 24に示したタイミングチャート (電圧波形図)を参照し て説明する。ドレイン電圧 Vdは、第 1MOS型トランジスタ Q1に流れる電流力 ゲート 電圧 Vgをローレベル (L)としたとき、弱反転状態で対数出力特性を有する電圧に変 換される一定の電圧値 (Vdl)に設定されている。
[0014] 上記の状態において、 tl〜t2の間でゲート電圧 Vgを高い電圧(Vgl :ハイレベル) に設定する。これにより、第 1MOS型トランジスタ Q1はオン状態となり、第 1MOS型ト ランジスタ Q1のチャネルインピーダンスは低抵抗となり、そのソース端子の電圧、す なわちコンデンサ C 1の端子電圧 VC 1をドレイン電圧 Vdに近 、値に充電する。この 動作を以下では「リセット動作」と呼ぶ。
[0015] 次に、 t2の時点でゲート電圧 Vgがローレベルに切り換わる。 t2〜t3の間において は、フォトダイオード PDに流れる光電流は、フォトダイオード PDのコンデンサ C1に充 電された電荷の放電電流が支配的となる。従って、時間間隔 t2〜t3では、電荷の放 電によりコンデンサ C 1の端子電圧 VC 1は低下し、センサ出力は放電電流に比例し た線形出力を示す。時間間隔 t2〜t3は線形出力領域 302となる。電荷の放電により コンデンサ C1の端子電圧 VC1がさらに低下すると、 t3の時点以降では、フォトダイォ ード PDに流れる光電流は、第 1MOS型トランジスタ Q1から供給される電流が支配 的となり、センサ出力は対数特性を有する電圧に変換され、対数出力を示す。時間 間隔 t3〜t4は対数出力領域 303となる。
[0016] 光センサ回路 301では、フォトダイオード PDの光電流が微小電流の場合にはコン デンサ C1の放電電流に比例した電圧を検出する線形応答領域 302を備えると共に 、フォトダイオード PDの光電流が大電流の場合には対数特性を有する電圧を検出 する対数応答領域 303を備える。従って光センサ回路 301は、微小な光を精度よく 検出し、かつダイナミックレンジを広くすることができる。 [0017] さらに光センサ回路 301は、コンデンサ C1の積分作用によってノイズを平均化でき るので、 SZN比を向上でき、検出可能な光照度の下限をより低下させて高感度化を 実現できる。よって、 SZN比が高ぐ高感度で、かつダイナミックレンジが広い光セン サ回路を実現できる。
[0018] し力し光センサ回路 301によれば、これを 1画素として 2次元マトリクス状に接続して 撮像領域を形成し、 2次元イメージセンサを構成した場合、線形出力特性を有する領 域と対数出力特性を有する領域との間の変化点が、画素毎にばらつくという問題が ある。
[0019] 図 25は、 2次元イメージセンサにおける画素毎の入射光強度 (横軸)とセンサ出力( 縦軸)のばらつきを示した特性図である。この図では、一例として 6個の画素に関して 、各入射光強度におけるセンサ出力電圧を暗状態の出力電圧との差をとつて描画し たものである。このセンサ出力のばらつきは、第 1MOS型トランジスタ Q1のしきい値 のばらつきに起因している。
[0020] 上記のばらつきが生じる原因について図 26を参照して説明する。図 26では、横軸 方向には光センサ回路 301で作られた 2つの画素 A, Bが示され、縦軸方向にはコン デンサ (寄生容量) C1の端子電圧 VC1の電位状態を示す。端子電圧 VC1を示す縦 軸において、上側は「暗」に対応し、下側は「明」に対応している。上記のリセット動作 の直後には、フォトダイオード PDのコンデンサ C1の端子電圧 VC1は、各画素 A, B 共にドレイン電圧 Vdに相当する電位になる(状態 310)。その後フォトダイオード PD に流れる光電流は、フォトダイオード PDのコンデンサ C1に充電された電荷の放電電 流が支配的となるから、放電により端子電圧 VC1は低下し、センサ出力は放電電流 に比例した線形出力特性(302A, 302B)を示す。電荷の放電により端子電圧 VC1 力 Sさらに低下すると、第 1MOS型トランジスタ Q1から供給される電流が支配的となり 対数出力特性(303A, 303B)を示す。
[0021] 線形出力を示す領域(302A, 302B)と対数出力を示す領域(303A, 303B)との 間の変化点(304A, 304B)は、第 1MOS型トランジスタ Q1のしきい値 (Vth)と関係 しているから、しきい値が VthA, VthBのごとくばらついている場合、この変化点の電 位は各画素で異なっている。しかし、リセット直後の端子電位は各画素ともドレイン電 圧 Vdで共通であるから (状態 310)、リセット直後の端子電位と上記変化点(304A, 304B)の電位との差は各画素 A, Bで異なることになる。このように、リセット直後の端 子電位と上記変化点の電位差が各画素 A, Bで異なることに起因して、線形特性を 有する領域が画素毎にばらつ 、てしまう。
[0022] 特許文献 2は、光センサ回路 301での上記問題点を解決する光センサ信号処理装 置を開示している。この光センサ信号処理装置では、 MOS型イメージセンサにおけ る各画素の特性のばらつきに起因する固定パターンノイズを抑制し、各画素の出力 が線形特性領域力 対数特性領域に切り換わる変曲点での出力特性のばらつきを 補正している。このため、各画素(光センサ回路)毎に出力値補正用のテーブルを設 け、各画素の出力値を補正する。
特許文献 1 :特開 2000— 329616号公報
特許文献 2:特開平 11― 298799号公報
発明の開示
発明が解決しょうとする課題
[0023] 低照度の入射光に対して線形出力特性を有しかつ高照度の入射光に対して対数 出力特性を有する光センサ回路では、前述の通り、線形出力特性の領域と対数出力 特性の領域との間の変化点の電位力 各光センサ回路の第 1MOS型トランジスタ Q 1のしきい値 (Vth)に依存し、リセット直後の端子電位は各光センサ回路ともドレイン 電圧 Vdで共通であるから、各光センサ回路すなわち各画素でばらついてしまう。そこ で特許文献 2によってその問題の解決案が提案される。
[0024] し力しながら、特許文献 2によって提案される解決案では、各画素が出力値補正用 のテーブルを持つ必要がある。さらに使用温度による MOS型トランジスタの特性変 化や経年変化が生じる。その結果、出荷時に設定された上記のテーブルの内容が、 時間の経緯と共に実際の画素の特性とずれ、各画素毎に再びばらつきが生じるとい う問題が発生した。このため、特許文献 2に開示される解決案によれば、実用性の観 点で改良の余地が残るものである。
[0025] 本発明の目的は、上記の課題に鑑み、入射光の照度に応じて線形出力特性と対 数出力特性を有する光センサ回路で、線形出力特性領域と対数出力特性領域の間 の変化点を制御可能にして変化点の電位の各光センサ回路毎のばらつきを安定的 になくし、低照度等で SZN比が高ぐ高感度で、ダイナミックレンズが広ぐかつ残像 が少ない光センサ回路およびイメージセンサを提供することにある。
課題を解決するための手段
[0026] 本発明に係る光センサ回路およびイメージセンサは、上記目的を達成するために、 次のように構成される。
[0027] 第 1の光センサ回路 (請求項 1に対応)は、蓄電を行う静電容量要素(コンデンサ C 1)を含みかつ光信号を電流信号に変換する光電変換素子 (フォトダイオード PD等) と、この光電変換素子から出力される電流信号を弱反転状態で対数特性を有する電 圧信号に変換するための変換用 MOS型トランジスタ (Q1)と、 MOS型トランジスタ( Q1)のゲートにゲート電圧を供給しかつドレインにドレイン電圧を供給する制御手段( 電圧コントローラ 13およびタイミング信号発生部 14)とを備え、さらに制御手段は次 のような初期設定手段(15)を備える。すなわち初期設定手段(15)は、変換用 MOS 型トランジスタ (Q1)のゲート電圧を第 1の所定時間だけ高いゲート電圧値 (VgH)に 設定しかつドレイン電圧を第 2の所定時間だけ低 、ドレイン電圧値 (VdL)に設定し て光電変換素子の静電容量要素の充電 ·放電を行 、、その後にドレイン電圧を高 ヽ ドレイン電圧値 (VdH)に設定し、さらに第 3の所定時間が経過した後にゲート電圧を 低いゲート電圧値 (VgL)に設定する機能を有する。上記において、さらに初期設定 手段(15)は、高いゲート電圧値 (VgH)と高いドレイン電圧値 (VdH)と低いドレイン 電圧値(VdL)が、「VgH— VdHく Vth、かつ、 VgH— VdL>Vth、ここで Vth:変 換用 MOS型トランジスタ (Q1)のしきい値電圧」の関係式を満たすように設定する。
[0028] 上記の構成を有する光センサ回路では次の作用を生じる。変換用 MOS型トランジ スタ(Q1)でサブスレショルド電流が流れて過渡特性を有して 、る初期の状態にぉ ヽ て、上記の関係式を満足する高いゲート電圧値 (VgH)と低いゲート電圧値 (VgL)に 基づき、変換用 MOS型トランジスタ(Q1)の高いゲート電圧値 (VgH)を低いゲート 電圧値 (VgL)に切り換えて設定すると、複数の光センサ回路の各々で、その電位差 AW (ここで、 AW=W(Low)—W(High)である。なお W (Low)および W (High) については、図 4を参照して後述の Wに関する式(2)に基づいて定義され、これに関 連して同様に電位差 AWも定義されて ヽる。)を変換用 MOS型トランジスタ (Q1)の 高!、ゲート電圧値 (VgH)と低 、ゲート電圧値 (VgL)との差で設定されるから、ィメー ジセンサの各光センサ回路を構成する変換用 MOS型トランジスタ (Q1)のしきい値 電圧のばらつきに依存しない電位差にすることが可能となる。これにより、イメージセ ンサにおける異なる光センサ回路の各々の間において各電位差 AWを同一にするこ とが可能となる。以上のように、電位差 を任意に設定できるから、各光センサ回 路 (画素)の暗状態のセンサ検出電位となる光電変換素子の端子電圧 (VC1)に対し て、線形出力特性領域を示す範囲と対数出力特性領域を示す範囲を任意に制御す ることができ、これにより光センサ回路 (画素)間の出力のばらつきをなくすことが可能 となる。
[0029] 第 2の光センサ回路 (請求項 2に対応)は、上記の構成において、好ましくは、制御 手段は、変換用 MOS型トランジスタ (Q1)の高いゲート電圧値 (VgH)を、任意の電 圧値に切り換えて設定する切換手段 (31)を有することを特徴とする。
[0030] 第 3の光センサ回路 (請求項 3に対応)は、上記の構成において、好ましくは、変換 用 MOS型トランジスタ(Q1)から出力される電圧信号を増幅するための増幅用 MOS 型トランジスタ (Q2)を備えるように構成される。
[0031] 第 4の光センサ回路 (請求項 4に対応)は、上記の構成において、好ましくは、増幅 用 MOS型トランジスタ (Q2)から出力される電圧信号を選択的に出力させるための 出力選択用 MOS型トランジスタ(Q3)を備えるように構成される。
[0032] 第 5の光センサ回路 (請求項 5に対応)は、上記の構成において、好ましくは、光電 変換素子の端子電圧に基づいて電荷を蓄積する他の静電容量要素 (コンデンサ C2 )と、上記の静電容量要素と他の静電容量要素の間で電荷を選択的に移動させるた めの電荷移動用 MOS型トランジスタ (Q4)とを備えるように構成される。上記の初期 設定手段(15)は、電荷移動用 MOS型トランジスタ (Q4)をオンすると共に、変換用 MOS型トランジスタ (Q1)のゲート電圧を第 1の所定時間だけ高いゲート電圧値 (Vg H)に設定しかつドレイン電圧を第 2の所定時間だけ低いドレイン電圧値 (VdL)に設 定し、光電変換素子の静電容量要素と他の静電容量要素の充電'放電を行い、その 後にドレイン電圧を高いドレイン電圧値 (VdH)に設定し、さらに第 3の所定時間が経 過した後にゲート電圧を低いゲート電圧値 (VgL)に設定すると共に、高いゲート電 圧値 (VgH)と高 、ドレイン電圧値 (VdH)と低 、ドレイン電圧値 (VdL)を上記関係式 が満たされるように設定する。その後、一定の露光時間の経過後に電荷移動用 MO S型トランジスタ (Q4)がオフして他の静電容量要素をオープン状態とした上で、出力 選択用 MOS型トランジスタ(Q3)をオンにしてセンサ信号が出力されるようにする。
[0033] 本発明に係るイメージセンサ (請求項 6に対応)は、前述の第 1から第 5の光センサ 回路を 1画素として 1次元または 2次元の撮像領域が形成されることで特徴づけられ る。
発明の効果
[0034] 本発明によれば、変換用 MOS型トランジスタ(Q1)でサブスレショルド電流が流れ て過渡特性を有している初期の状態において、変換用 MOS型トランジスタ (Q1)の 高いゲート電圧値 (VgH)を低いゲート電圧値 (VgL)に切り換えて設定し、複数の光 センサ回路で各々での電位差 Δ W ( = W (Low)— W (High) )を変換用 MOS型 トランジスタ (Q1)の高 、ゲート電圧値 (VgH)と低 、ゲート電圧値 (VgL)との差で設 定するようにしたため、各光センサ回路を構成する変換用 MOS型トランジスタ (Q1) のしきい値電圧のばらつきに依存しない電位差にすることができる。そのため、ィメー ジセンサにおける異なる光センサ回路の間において各電位差 AWを同一にすること ができる。さらに、この電位差 を任意に設定できることから、各光センサ回路 (画 素)の暗状態のセンサ検出電位となる光電変換素子の端子電圧 (VC1)に対して、線 形出力特性領域を示す範囲と対数出力特性領域を示す範囲を任意に制御すること ができ、これにより光センサ回路 (画素)間の出力のばらつきをなくすことができる。
[0035] 以上に基づき、本発明によれば、入射光の照度に応じて線形出力特性と対数出力 特性を有する光センサ回路で、線形出力特性領域と対数出力特性領域の間の変化 点を制御することができ、変化点の電位の各光センサ回路毎のばらつきを安定的に なくし、低照度等で SZN比が高ぐ高感度で、ダイナミックレンズが広ぐさらに残像 を少なくすることができる。
図面の簡単な説明
[0036] [図 1]本発明に係る光センサ回路の第 1実施形態の電気回路図である。 [図 2]第 1実施形態に係る光センサ回路の各部の信号状態を示すタイミング波形図で ある。
[図 3]第 1実施形態に係る光センサ回路の MOS型トランジスタ Q1の VgHと Vthと VC 1の関係を説明する図である。
[図 4]第 1実施形態に係る光センサ回路の MOS型トランジスタ Q1の Vgと Vthと VC1 の関係を説明する図である。
[図 5]第 1実施形態に係る光センサ回路の MOS型トランジスタ Q1の VgLと Vthと VC 1と線形出力範囲の関係を説明する図である。
[図 6]第 1実施形態に係る光センサ回路 A, Bの MOS型トランジスタ Q1の VgHと Vth と VC1の関係を説明する図である。
[図 7]第 1実施形態に係る光センサ回路 A, Bの MOS型トランジスタ Q1の VgHと Vth と VC1の関係を説明する図である。
[図 8]第 1実施形態に係る光センサ回路 A, Bの MOS型トランジスタ Q1の VgHと Vth と VC1の関係 (ゲート電圧を AVg低下させた後)を説明する図である。
圆 9]第 1実施形態に係る光センサ回路で構成されたイメージセンサの各光センサ回 路のセンサ出力特性を示すグラフである。
圆 10]本発明に係る光センサ回路の第 2実施形態の電気回路図である。
圆 11]第 2実施形態に係る光センサ回路のセンサ出力の変化特性を示すグラフであ る。
圆 12]本発明に係る光センサ回路の第 3実施形態の電気回路図である。
圆 13]本発明に係る光センサ回路の第 4実施形態の電気回路図である。
[図 14]第 3または第 4の実施形態に係る光センサ回路の各部の信号状態を示すタイ ミング波形図である。
圆 15]本発明に係る光センサ回路の第 5実施形態の電気回路図である。
[図 16]第 5実施形態に係る光センサ回路の各部の信号状態を示すタイミング波形図 である。
圆 17]本発明の第 4実施形態に係る光センサ回路を利用して構成されたイメージセ ンサを示す電気回路図である。 圆 18]本発明の第 5実施形態に係る光センサ回路を利用して構成されたイメージセ ンサを示す電気回路図である。
[図 19]電圧 VI, V2のみを取り出して示したタイミング波形図である。
[図 20]電圧 VIの立上りと電圧 V2の立下りのタイミングの例について 3つの実施例 1
〜3を示すタイミング波形図である。
圆 21]線形出力特性を有する従来の光センサ回路の電気回路図である。
圆 22]対数出力特性を有する従来の光センサ回路の電気回路図である。
圆 23]線形出力特性と対数出力特性を有する従来の光センサ回路の電気回路図で ある。
圆 24]線形出力特性と対数出力特性を有する従来の光センサ回路の各部の信号状 態を示すタイミング波形図である。
圆 25]線形出力特性と対数出力特性を有する従来の光センサ回路で形成されたィメ ージセンサの各光センサ回路のセンサ出力特性を示すグラフである。
圆 26]線形出力特性と対数出力特性を有する従来の光センサ回路で形成されたィメ ージセンサの問題点を説明する図である。
符号の説明
10 光センサ回路
13 電圧コントローラ
14 タイミング信号発生
15 初期設定手段
30 光センサ回路
31 切換手段
40 光センサ回路
50 光センサ回路
60 光センサ回路
PD フォトダイオード
C1 コンデンサ
C2 コンデンサ Ql 変換用 MOS型トランジスタ
Q2 増幅用 MOS型トランジスタ
Q3 出力選択用 MOS型トランジスタ
Q4 電荷移動用 MOS型トランジスタ
発明を実施するための最良の形態
[0038] 以下に、本発明の好適な実施形態 (実施例)を添付図面に基づいて説明する。
[0039] 図 1〜図 9を参照して本発明に係る光センサ回路の第 1実施形態を説明する。図 1 は第 1実施形態に係る光センサ回路の回路構成を示す。図 1〜図 9において、前述 の「背景技術」の欄の説明で用いた図 21〜図 26で示した要素と実質的に同一の要 素には同一の符号を付して 、る。
[0040] 光センサ回路 10は、光 L1を検出して電気信号に変換する光センサ素子であるフォ トダイオード PDと、フォトダイオード PDの寄生容量 (配線等の浮遊容量を含む)であ るコンデンサ C1を備えている。コンデンサ C1はフォトダイオード PDのアノード'カソ ード間に並列に接続されている。なおフォトダイオード PDは光センサ素子の一例で あり、光センサ素子はこれに限定されない。
[0041] フォトダイオード PDに対して、そのセンサ電流を弱反転状態で対数特性を有する センサ電圧に変換する変換用の MOS型トランジスタ Q1が備えられる。 MOS型トラン ジスタ Q1はドレイン l idとソース l isとゲート l lgを有する。フォトダイオード PDのカソ ードは MOS型トランジスタ Q1のソース l isに接続されている。他方、フォトダイオード PDのアノードはアース端子に接続されて 、る。
[0042] MOS型トランジスタ Q 1のドレイン端子 12dには電圧コントローラ 13からドレイン電 圧 Vdが供給され、さらにそのゲート端子 12gには電圧コントローラ 13からゲート電圧 Vgが供給される。電圧コントローラ 13によって供給される電圧 Vd, Vgの供給タイミン グはタイミング信号発生部 14によって指示される。電圧コントローラ 13によって供給 される電圧 Vdの電圧波形図、および電圧コントローラ 13によって供給される電圧 Vg の電圧波形図は図 2に示される。
[0043] 光センサ回路 10からの出力電圧 Voutは、フォトダイオード PDまたはコンデンサ C1 の端子電圧 VC1として取り出される。フォトダイオード PDで、光 L1の照度 (または強 度)に応じて流れるセンサ電流は、センサ電圧に変換され、出力電圧 Voutとして検出 される。出力電圧 Voutはフォトダイオード PD (またはコンデンサ C1)の端子電圧 VC 1と一致している。
[0044] 光センサ回路 10では、図 2に示すような電圧波形を有するドレイン電圧 Vdとゲート 電圧 Vgを供給することにより、光 L1に応じた電気信号を得る。すなわち、タイミング t l〜t2の時間間隔において、 MOS型トランジスタ Q1のゲート電圧 Vgを高いゲート電 圧値 (VgH)に設定し、かつドレイン電圧 Vdを低いドレイン電圧値 (VdL)に設定する 。これにより、フォトダイオード PDのコンデンサ C1での電荷の充放電を制御し、さらに フォトダイオード PDのコンデンサ C1に蓄積された電荷を放電させることにより残像を 抑制する。残像を抑制する動作を「リセット動作」と呼ぶ。
[0045] さらに図 2に示すごとぐ t2の時点で MOS型トランジスタ Q1のドレイン電圧 Vdを高 いドレイン電圧値 VdHに設定する。この時、ゲート電圧 Vgの値は VgHのままであり、 変わらない。時点 t3の以降、ゲート電圧 Vgは低いゲート電圧値 (VgL)になる。
[0046] タイミング tl〜t3の時間間隔における MOS型トランジスタ Q1の高いゲート電圧値 VgHと、 tl〜t2の間で設定される MOS型トランジスタ Q1の低いドレイン電圧値 VdL と、時点 t2以降に設定される MOS型トランジスタ Q1の高いドレイン電圧値 VdHは、 それらの間の電位差が下記に示す関係式(1)を満たすように設定される。
[0047] VgH— VdH<Vth、力、つ、 VgH— VdL>Vth …ひ)
ここで、 Vth: MOS型トランジスタ Q1のしきい値電圧
[0048] すなわち、ゲート電圧値 VgHとドレイン電圧値 VdHの差は MOS型トランジスタ Q1 のしきい値電圧 Vthより小さくなり、かつ、ゲート電圧値 VgHとドレイン電圧値 VdLの 差は MOS型トランジスタ Q1のしきい値電圧 Vthより大きくなるように設定される。
[0049] MOS型トランジスタ Q1におけるゲート電圧 Vgおよびドレイン電圧 Vdの各電圧値 を、初期の状態について、上記のごとく図 2に示される電圧波形パターンに基づいて 制御し設定するのは、電圧コントローラ 13およびタイミング信号発生部 14の各々の 動作に基づいて実行される。上記の電圧コントローラ 13およびタイミング信号発生部 14は光センサ回路 10の制御手段を形成する。さらに電圧コントローラ 13およびタイミ ング信号発生部 14によって実現される上記の制御機能の部分を「初期設定手段 15 」と呼ぶことにする。
[0050] 次に図 3〜図 5を参照して、時点 t2以降、すなわちリセット動作以降の光センサ回 路 10におけるセンサ出力について説明する。
[0051] 図 3は、 MOS型トランジスタ Q1の高いゲート電圧値 VgHとしきい値電圧 Vth、およ びフォトダイオード PDの端子電圧 VC1の関係を示している。
[0052] 図 3の左側ブロック 21の部分で示すように、時点 t2の直後、フォトダイオード PDの 端子電圧 VC1は、 MOS型トランジスタ Q1の高いゲート電圧値 VgHに対して MOS 型トランジスタ Q1のしき ヽ値電圧 Vthに相当する電位差だけ低!、電圧になるように、 ナノ秒オーダ以下のスピードで急激に上昇する。
[0053] その後は、さらに時間が経過すると、図 3の右側ブロック 22の部分に示すように、フ オトダイオード PDの端子電圧 VC1が上昇し、 MOS型トランジスタ Q1の高いゲート電 圧値 VgHとフォトダイオード PDの端子電圧 VC1との電圧差力 MOS型トランジスタ Q1のしきい値電圧 Vthより小さくなる。フォトダイオード PDの端子電圧 VC1が上昇 するのは、 MOS型トランジスタ Q1のチャネルインピーダンスが高くなり、サブスレショ ルド電流が流れる力 である。
[0054] 上記のごとくサブスレショルド電流が流れ過渡特性を有して 、る状態の t3の時点で 、 MOS型トランジスタ Q1の高いゲート電圧値 VgHを低いゲート電圧値 VgLに切り換 える。
[0055] なお、時点 t2と時点 t3の間隔は、好ましくは、約マイクロ秒オーダの時間に設定さ れる。このように時間間隔に設定することで、サブスレショルド電流が流れている状態 にフォトダイオード PDの端子電圧 VC1は到達する。高いゲート電圧値 VgHと高いド レイン電圧 VdHの差を、 MOS型トランジスタ Q1のしきい値電圧 Vthより小さくなるよ うに設定した目的は、このようなサブスレショルド電流が流れている状態にフォトダイ オード PDの端子電圧 VC1を設定するためである。
[0056] 時点 t3以降において、フォトダイオード PDの端子電圧 VC1を検出することにより、 図 2の(C)に示すごとく光 L1の入射光強度に応じた電気信号を得ることができる。時 点 t3で、 MOS型トランジスタ Q1のゲート電圧 Vgを高いゲート電圧値 VgHから低い ゲート電圧値 VgLに変更する目的は、下記の式 (2)で表される電圧 (電位差) Wを高 く設定するためである。この電圧 (電位差) Wは電圧 VC1と電圧 (Vg— Vth)との差と して求められている。
[0057] W=VCl - (Vg-Vth) - -- (2)
ここで、 VC1:フォトダイオード PDの端子電圧
Vg: MOS型トランジスタ Q 1のゲート電圧
Vth: MOS型トランジスタ Q 1のしき!/、値電圧
[0058] 上記の式(2)は、フォトダイオード PDの端子電圧 VC1を、ゲート電圧 Vgよりしきい 値電圧 Vthだけ低い電位 (Vg— Vth)より高く設定するために得られる式である。この ように端子電圧 VC1を高く設定することによって、線形出力特性の領域を大きくする ことができる。この理由を以下に図 4を参照して詳細を説明する。
[0059] 図 4は、 MOS型トランジスタ Q1のゲート電圧 Vgとしきい値電圧 Vthの関係、および フォトダイオード PDの端子電圧 VC1との関係を示している。ゲート電圧 Vgを低下さ せることにより、フォトダイオード PDの端子電圧 VC1を保持したまま、ゲート電圧 Vg やしきい値電圧 Vthとの関係を変化させることができる。すなわち、図 4中に特定の範 囲として示された上記 W、すなわち電位差 Wを変化させることができる。
[0060] 図 4では、図中左側に示した電位関係から、ゲート電圧 Vgを高 、ゲート電圧値 Vg Hから Δ Vgだけ低下させて低 ヽゲート電圧値 VgLにすると ヽぅ図中右側に示した電 位関係への変化を示している。これにより、左側の電位関係に基づく範囲 W (High) (=VC1—(VgH—Vth) )は、右側の電位関係に基づく範囲 W (Low) (=VCl - ( VgL— Vth) )に変化する。ここでゲート電圧 Vgに関して VgL=VgH— AVgという関 係がある。これにより W(Low) >W(High)という関係が得られる。こうしてゲート電圧 Vgを、高 、ゲート電圧値 VgH力も低 、ゲート電圧値 VgLへ Δ Vgだけ変化させること により、範囲 (電位差) Wを大きくすることができる。
ここでさらに、電位差 を、 AW=W(Low)—W (High)として定義する。このよう に電位差 を定義すると、電位差 AWについては、光センサ回路 10の MOS型ト ランジスタ Q1のゲート電圧 Vgを適宜に変化させることにより AW>0の状態で任意 の値に変化させることが可能となる。
[0061] また図 5は、 MOS型トランジスタ Q1の低いゲート電圧値 VgLとしきい値電圧 Vthの 関係、フォトダイオード PDの端子電圧 VC1、線形出力特性の範囲等との関係を示し ている。図 5において、範囲 23は線形出力特性の領域を示し、範囲 24は対数出力 特性の領域を示す。線形出力特性の領域 23と対数出力特性の領域 24との境界点 2 5は変化点である。
[0062] 図 5に示すごとぐフォトダイオード PDの端子電圧 VC1を、任意の線形出力特性の 範囲 23の電位に設定できるので、 2次元 MOS型イメージセンサのように複数の画素 で構成されるイメージセンサ (撮像領域)に適用する場合、 MOS型トランジスタの各 画素のしきい値電圧のばらつきに起因する、光センサ回路の出力ばらつきを抑制す る場合に有効である。
[0063] 次に、図 6〜図 9を参照して、一例として 2つの光センサ回路(画素) A, Bの間での 出力のばらつきを抑制する態様について説明する。
[0064] 図 6に示すように、時点 t2でのリセット動作以降では、光センサ回路 A, Bの各々に おいて、前述したフォトダイオード PDの端子電圧 VC1は、 MOS型トランジスタ Q1の 設定されたゲート電圧に対して、 MOS型トランジスタ Q1のしきい値電圧 Vthに相当 する電位差だけ低 、電圧にナノ秒オーダ以下のスピードで急激に上昇する。この時 、 MOS型トランジスタ Q1のしきい値電圧 Vthが光センサ回路 A, Bでばらついている ため、端子電圧 VC1は光センサ回路 A, Bの各々で異なる。すなわち、図 6のブロッ ク 26, 27のそれぞれで示すごとぐ光センサ回路 Aの端子電圧は VC1Aとなり、光セ ンサ回路 Bの端子電圧は VC1Bになって 、る。
[0065] この後、さらに時間が経過すると、図 7に示すようになる。すなわち、図 7の同ブロッ ク 26, 27での光センサ回路 A, Bの各々で、フォトダイオード PDの端子電圧の電位( VC1A, VC1B)の上昇と共に、 MOS型トランジスタ Q1の高いゲート電圧値 VgHと フォトダイオード PDの端子電圧との電位差力 MOS型トランジスタ Q1のしきぃ値電 圧(VthA, VthB)以下となる。 MOS型トランジスタ Q1のチャネルインピーダンスが 高くなるため、サブレショルド電流が流され、これによりフォトダイオード PDの端子電 圧の電位 (VC1A, VC1B)が上昇する。
[0066] このように、サブスレショルド電流が流れて過渡特性を有して 、る状態にぉ 、て、 M OS型トランジスタ Q1の高いゲート電圧値 VgHを切り換えて低いゲート電圧値 VgL に設定すると、図 8に示すようになる。すなわち、 2つの光センサ回路 A, Bにおいて、 前述した W (Low)と W(High)の電位差 AW(=W(Low)— W (High) )は、 MOS 型トランジスタ Q1の高 、ゲート電圧値 VgHと低 、ゲート電圧値 VgLとの差( Δ Vg)で 設定されるから、光センサ回路 A, Bの各々を構成する MOS型トランジスタ Q1のしき い値電圧のばらつきに依存しない電位差となる。従って、異なる光センサ回路 Aと光 センサ回路 Bにお!/、て各電位差 Δ W ( = W (Low)— W (High) )は同一となる。
[0067] 以上のように、電位差 AWを任意に設定できるから、各光センサ回路 (画素)の暗 状態のセンサ検出電位となるフォトダイオード PDの端子電圧 VC1に対して、線形出 力特性領域を示す範囲と対数出力特性領域を示す範囲を任意に制御することがで き、これにより光センサ回路 (画素)間の出力のばらつきをなくすことができる。
[0068] 図 9は、本実施形態に係るの光センサ回路 10とその駆動手法を複数 (例えば 6個) の光センサ回路に適用したときのセンサ出力特性である。図 9のセンサ出力特性で 明らかなように、 6個の画素の間のセンサ出力値のばらつきはほとんど生じない。本 実施形態に係る光センサ回路と駆動手法を用いれば、従来の光センサ回路で課題 であった、リセット直後の端子電位と、線形出力特性範囲と対数出力特性範囲の間 の変化点との電位差が、各画素で異なるという問題を解消することができる。
[0069] 次に図 10を参照して本発明に係る光センサ回路の第 2の実施形態を説明する。図 10において、図 1で説明した要素と実質的に同一の要素には同一の符号を付してい る。
[0070] 図 10に示す光センサ回路 30では、電圧コントローラ 13とタイミング信号発生 14に よって構成される初期設定手段 15に基づいて MOS型トランジスタ Q1のゲート電圧 Vgを高いゲート電圧値 VgHに設定する場合に、当該初期設定手段 15に、当該高 いゲート電圧値 VgHに係る電圧値を任意に設定できるようにした切換手段 31を備え るように構成されている。この光センサ回路 30によれば、図 2に示すように、光センサ 回路 10の各部を駆動するための駆動用制御信号 Vg, Vdを与えることにより、光 L1 に応じた電気信号が得られる。
[0071] 上記のごとぐ MOS型トランジスタ Q1のゲート電圧 Vgを高いゲート電圧値 VgHに 設定する時の当該電圧値を、切換手段 31によって任意に切り換えて設定することが できるようにしたため、第 1実施形態で説明した電位差 AWを任意に設定することが できる。従って第 2実施形態に係る光センサ回路 30によれば、 MOS型トランジスタ Q 1のゲート電圧 Vgの高いゲート電圧値 VgHを上記のごとく設定することができ、これ により、センサ出力特性において線形出力特性範囲と対数出力特性範囲を任意に 設定することができる。
[0072] 図 11に、第 2実施形態に係る光センサ回路 30によって得られるセンサ出力特性の 特性パターンを示す。図 11の横軸は対数目盛 (log)になっている。 MOS型トランジ スタ Q1のゲート電圧 Vgの高いゲート電圧値 VgHを任意に切り替えて、撮影条件に 見合った最適な状態でセンサ信号を出力させることができる。ゲート電圧 Vgの高い ゲート電圧値 VgHに関して AVgを「小」から「大」へ変化させると、センサ出力特性は 矢印 32のごとく変化する。
[0073] 本発明に係る光センサ回路の変形例を図 12と図 13に示す。図 12は本発明の第 3 実施形態に係る光センサ回路を示し、図 13は本発明の第 4実施形態に係る光セン サ回路を示す。
[0074] 図 12に示した第 3実施形態に係る光センサ回路 40は、第 1または第 2の実施形態 に係る光センサ回路の回路要素に対してセンサ出力電圧を増幅するための第 2の M OS型トランジスタ Q2が付設されている。前述の実施形態で説明した要素と実質的に 同一の要素には同一の符号を付している。ただし、 MOS型トランジスタ Q1のゲート 端子 12gには電圧 VIが供給され、ドレイン端子 12dには電圧 V2が供給されている。 ここでは、説明の便宜上、電圧 VI, V2で示している力 電圧 VIは前述のゲート電圧 Vgと同一電圧であり、電圧 V2は前述のドレイン電圧 Vdと同一電圧である。
[0075] 第 2の MOS型トランジスタ Q2に対して、フォトダイオード PDのセンサ電流を弱反転 状態で対数特性を有するセンサ電圧に変換する上記の変換用 MOS型トランジスタ Q1は第 1の MOS型トランジスタであるとする。第 2の MOS型トランジスタ Q2は、第 1 の MOS型トランジスタ Q1から出力されるセンサ電圧を増幅するための増幅用 MOS 型トランジスタである。
[0076] 上記の光センサ回路 40では、センサ出力電圧であるフォトダイオード PDの端子電 圧 VC1が MOS型トランジスタ Q2のゲート 41gに印加されている。 MOS型トランジス タ Q2のドレイン端子 42dにはドレイン電圧 V3が電圧コントローラ等力も供給され、ソ ース 41sはアース端子に接続されている。第 2の MOS型トランジスタ Q2のドレイン 41 dからセンサ出力電圧 Voutが増幅された状態で取り出される。
[0077] 図 13に示した第 4実施形態に係る光センサ回路 50では、上記の第 3の実施形態に 係る光センサ回路 40の回路要素に対して第 3の MOS型トランジスタ Q3が付設され る。図 13において、第 3の実施形態で説明した要素と実質的に同一の要素には同一 の符号を付している。
[0078] 第 3の MOS型トランジスタ Q3は、増幅用の第 2の MOS型トランジスタ Q2から出力 される電圧信号を選択的に出力させるための出力選択用 MOS型トランジスタである
[0079] この光センサ回路 50では、 MOS型トランジスタ Q2のドレイン 41dと MOS型トランジ スタ Q3のソース 51sが接続されている。第 3の MOS型トランジスタ Q3のゲート端子 5 2gにはゲート電圧 V3が供給される。第 3の MOS型トランジスタ Q3のドレイン 51dに は抵抗 Rが接続され、抵抗 Rの他端子 52dにはドレイン電圧 V4が供給される。第 3の MOS型トランジスタ Q3のドレイン 5 Idからセンサ出力電圧 Voutが取り出される。
[0080] 上記のように構成された光センサ回路 40, 50において、図 14に示すように、各部 を駆動するための制御信号 (電圧信号 VI, V2, V3, V4)を与えることにより、図 14 の VC1に示されるごとく入射される光 L1に応じた電気信号が得られるようにして ヽる
[0081] 図 15は本発明の第 5実施形態に係る光センサ回路を示す。この光センサ回路 60 では、上記の第 4の実施形態に係る光センサ回路 50の回路要素に対してさらに第 4 の MOS型トランジスタ Q4が付設される。第 4の実施形態で説明した要素と実質的に 同一の要素には同一の符号を付している。この光センサ回路 60では、第 4の MOS 型トランジスタ Q4のソース 61sがフォトダイオード PDの力ソードに接続され、そのドレ イン 61dが MOS型トランジスタ Q2のゲート 41gに接続される。また MOS型トランジス タ Q4のゲート 61gのゲート端子 62gには電圧 V5が供給される。
[0082] 上記の光センサ回路 60では、第 4実施形態の光センサ回路 50の構成にぉ 、て、さ らに電荷を蓄積するコンデンサ C2と、電荷移動用の第 4の MOS型トランジスタ Q4を 備える。第 4の MOS型トランジスタ Q4は、コンデンサ C1とコンデンサ C2の間で電荷 を選択的に移動させるための電荷移動用 MOS型トランジスタである。前述の初期設 定手段 15は、図 16に示したタイミング信号に基づいて、次のように MOS型トランジス タ Q 1〜Q4を制御 ·設定する。
[0083] 電圧 V5によって電荷移動用の第 4の MOS型トランジスタ Q4がオンされた状態に お!、て、 MOS型トランジスタ Q1〜Q3を制御.設定する。
[0084] 第 1の MOS型トランジスタ Q1のゲート電圧 VIを tl〜t3の間の所定時間だけ高い ゲート電圧値 VgHに設定しかつドレイン電圧 V2を tl〜t2の間の所定時間だけ低い ドレイン電圧値 VdLに設定し、フォトダイオード PDのコンデンサ C1とコンデンサ C2の 充電'放電を行う。その後にドレイン電圧 V2を高いドレイン電圧値 VdHに設定し、さ らに上記の所定時間が経過した後(時点 t3)にゲート電圧 VIを低いゲート電圧値 Vg Lに設定すると共に、高いゲート電圧値 VgHと高いドレイン電圧値 VdHを前述の関 係式( 1)が満たされるように設定する。
[0085] その後、一定の露光時間の経過後(時点 t4)に電荷移動用の第 4の MOS型トラン ジスタ Q4がオフされる。これによりコンデンサ C2をオープン状態とした上で、出力選 択用の第 3の MOS型トランジスタ Q3をオンにしてセンサ信号を出力する。
[0086] 光センサ回路 60では、上記のごとぐ図 16に示すような回路各部を駆動するため の制御信号 (電圧信号 VI, V2, V3, V4, V5)を与えることにより、照射された光 L1 の入射光強度に応じた電気信号が得られる。
[0087] なお光センサ回路 60の回路構成にあっては、 t4の時点以降に MOS型トランジスタ Q4がオフ状態になると、コンデンサ C2の電荷が保持されることになり、次に MOS型 トランジスタ Q4をオンにするまではコンデンサ C2の電荷は一定に保持される。つまり 、 MOS型トランジスタ Q4がオフの期間、換言すればコンデンサ C2の電荷保持期間 は、コンデンサ C1の端子電圧が変化しても画素力もセンサ出力信号としては、同じ 出力信号が得られることになる。従って、図 15に示した光センサ回路 60を図 16に示 したタイミング信号に基づいて動作させることによって、残像の影響がなぐかつダイ ナミックレンジの広い対数出力を有するシャツタ機能を有した画素を実現できるように なる。 [0088] 以上に説明した本発明による光センサ回路 10, 30, 40, 50, 60を 1画素分の構成 要素として、それを 1次元状または 2次元状に配設することによってイメージセンサを 構成することができる。
[0089] 図 17は、一例として図 13に示した光センサ回路 50を 1画素(S)として 2次元のマト リクス状に配設して成る矩形の撮像領域 71を有するイメージセンサの構成例を示し ている。図 17中、ブロック 13は前述の電圧コントローラ、ブロック 72は各画素 Sに共 通に設けられた画素選択回路であり、ブロック 73は各画素 Sの画素信号を順次出力 させるための信号選択回路である。電圧コントローラ 13から電圧 VI, V2が供給され 、画素選択回路 72から電圧 V3が供給され、端子 52dには電圧 V4が供給される。
[0090] 図 18は、一例として図 15に示した光センサ回路 60を 1画素として 2次元のマトリクス 状に配設して成る矩形の撮像領域 71を有するイメージセンサの構成例を示している 。図 18中、ブロック 13は前述の電圧コントローラ、ブロック 72は各画素 Sに共通に設 けられた画素選択回路であり、ブロック 73は各画素 Sの画素信号を順次出力させる ための信号選択回路である。電圧コントローラ 13から電圧 VI, V2, V5が供給され、 画素選択回路 72から電圧 V3が供給され、端子 52dには電圧 V4が供給される。
[0091] ここで、図 14および図 16に示された前述の電圧 VI, V2の設定と利点に関して、 図 19と図 20を参照して説明を付加する。
[0092] 図 19は、前述した電圧 VIと電圧 V2を取り出して示したタイミング波形図である。図 19で、電圧 VIが高電圧値である時における電圧 V2の低電圧値の設定時間は、フ オトダイオード PDにおける電荷の充放電に必要な時間を確保できればよぐ電圧 VI の立上りと電圧 V2の立下りのタイミングは任意である。このタイミングの例について、 実施例 1〜3を図 20に示す。
[0093] また電圧 V2につ 、ては、低電圧値とすることで、対数変換トランジスタのゲートはォ ープン状態になり、フォトダイオード PDの電荷の充放電が行われる。電圧 V2が高電 圧値になることで、速やかにトランジスタしきい値電圧に依存した電圧まで、フォトダイ オード PDの電位は上昇する。
[0094] また図 19では、電圧 V2の立上りと電圧 VIの立下りの間の期間 Tが示されている。
この期間 Tは、サブスレショルド電流が流れ始める状態に到達することで、各画素内 のトランジスタのしき 、値に応じたフォトダイオード電位となるから、マイクロ秒オーダ の期間で十分である。この期間 τを短くすることにより、フォトダイオードのリセット後に 線形出力動作に早く移行することができる。従って、積分時間を長くとることができる ため、低照度露光時に高感度となる。
[0095] なお、上記の各実施形態の説明では MOS型トランジスタを nチャネル型として説明 したが、その代わりに pチャネル型の MOS型トランジスタを用いることができるのは勿 論である。
[0096] 以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発 明が理解 ·実施できる程度に概略的に示したものにすぎず、また数値および各構成 の組成 (材質)については例示にすぎない。従って本発明は、説明された実施形態 に限定されるものではなぐ特許請求の範囲に示される技術的思想の範囲を逸脱し ない限り様々な形態に変更することができる。
本出願は、 2005年 6月 10日出願の日本特許出願 (特願 2005-170936)に基づくもの であり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0097] 本発明は、撮像装置である MOS型イメージセンサの 1次元または 2次元のイメージ センサを形成する光センサ回路 (または画素)として利用される。

Claims

請求の範囲
[1] 蓄電を行う静電容量要素を含みかつ光信号を電流信号に変換する光電変換素子 と、この光電変換素子力 出力される前記電流信号を弱反転状態で対数特性を有す る電圧信号に変換するための変換用 MOS型トランジスタと、前記 MOS型トランジス タのゲートにゲート電圧を供給しかつドレインにドレイン電圧を供給する制御手段とを 備える光センサ回路にぉ 、て、
前記制御手段は、
前記変換用 MOS型トランジスタの前記ゲート電圧を第 1の所定時間だけ高いゲー ト電圧値 (VgH)に設定しかつ前記ドレイン電圧を第 2の所定時間だけ低 、ドレイン 電圧値 (VdL)に設定して前記光電変換素子の前記静電容量要素の充電'放電を行 い、その後に前記ドレイン電圧を高いドレイン電圧値 (VdH)に設定し、さらに第 3の 所定時間が経過した後に前記ゲート電圧を低 ヽゲート電圧値 (VgL)に設定すると共 に、前記高 、ゲート電圧値 (VgH)と前記高!、ドレイン電圧値 (VdH)と前記低!、ドレ イン電圧値 (VdL)を、
「VgH—VdH<Vth、かつ、 VgH—VdL>Vth、ここで Vth:前記変換用 MOS型 トランジスタのしき 、値電圧」
の関係式が満たされるように設定する、という初期設定を行う初期設定手段を有す る、 ことを特徴とした光センサ回路。
[2] 前記制御手段は、前記変換用 MOS型トランジスタの前記高 ヽゲート電圧値 (VgH )を、任意の電圧値に切り換えて設定する切換手段を有することを特徴とする請求項 1記載の光センサ回路。
[3] 前記変換用 MOS型トランジスタ力 出力される前記電圧信号を増幅するための増 幅用 MOS型トランジスタを備えることを特徴とする請求項 1または 2記載の光センサ 回路。
[4] 前記増幅用 MOS型トランジスタ力 出力される電圧信号を選択的に出力させるた めの出力選択用 MOS型トランジスタを備えることを特徴とする請求項 3記載の光セン サ回路。
[5] 前記光電変換素子の端子電圧に基づいて電荷を蓄積する他の静電容量要素と、 前記静電容量要素と前記他の静電容量要素の間で電荷を選択的に移動させるた めの電荷移動用 MOS型トランジスタとを備え、
前記初期設定手段は、
前記電荷移動用 MOS型トランジスタをオンすると共に、
前記変換用 MOS型トランジスタの前記ゲート電圧を前記第 1の所定時間だけ前記 高!、ゲート電圧値 (VgH)に設定しかつ前記ドレイン電圧を前記第 2の所定時間だけ 前記低いドレイン電圧値 (VdL)に設定し、前記光電変換素子の前記静電容量要素 と前記他の静電容量要素の充電'放電を行い、その後に前記ドレイン電圧を前記高 いドレイン電圧値 (VdH)に設定し、さらに前記第 3の所定時間が経過した後に前記 ゲート電圧を前記低いゲート電圧値 (VgL)に設定すると共に、前記高いゲート電圧 値 (VgH)と前記高!、ドレイン電圧値 (VdH)と前記低!、ドレイン電圧値 (VdL)を前記 関係式が満たされるように設定し、
その後、一定の露光時間の経過後に前記電荷移動用 MOS型トランジスタがオフし て前記他の静電容量要素をオープン状態とした上で、前記出力選択用 MOS型トラ ンジスタをオンにしてセンサ信号が出力されるようにした、
ことを特徴とする請求項 4記載の光センサ回路。
[6] 請求項 1〜5のいずれか 1項に記載された光センサ回路を 1画素として撮像領域が 形成されることを特徴とするイメージセンサ。
PCT/JP2006/311632 2005-06-10 2006-06-09 光センサ回路およびイメージセンサ WO2006132366A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/719,802 US7880788B2 (en) 2005-06-10 2006-06-09 Optical sensor circuit and image sensor
DE112006001471T DE112006001471T5 (de) 2005-06-10 2006-06-09 Optische Sensorschaltung und Bildsensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005170936A JP4308170B2 (ja) 2005-06-10 2005-06-10 イメージセンサ
JP2005-170936 2005-06-10

Publications (1)

Publication Number Publication Date
WO2006132366A1 true WO2006132366A1 (ja) 2006-12-14

Family

ID=37498560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311632 WO2006132366A1 (ja) 2005-06-10 2006-06-09 光センサ回路およびイメージセンサ

Country Status (5)

Country Link
US (1) US7880788B2 (ja)
JP (1) JP4308170B2 (ja)
CN (1) CN100512395C (ja)
DE (1) DE112006001471T5 (ja)
WO (1) WO2006132366A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696463B2 (en) * 2005-12-01 2010-04-13 Honda Motor Co., Ltd. Photosensor circuit presenting linear and logarithimic output characteristics and image sensor using the same
JP5274424B2 (ja) * 2009-10-07 2013-08-28 本田技研工業株式会社 光電変換素子、受光装置、受光システム及び測距装置
JP5211008B2 (ja) * 2009-10-07 2013-06-12 本田技研工業株式会社 光電変換素子、受光装置、受光システム及び測距装置
JP5211007B2 (ja) 2009-10-07 2013-06-12 本田技研工業株式会社 光電変換素子、受光装置、受光システム及び測距装置
GB0920750D0 (en) * 2009-11-26 2010-01-13 Isis Innovation High dynamic range pixel
JP5695338B2 (ja) * 2010-04-22 2015-04-01 セイコーインスツル株式会社 照度センサ
CN102157533B (zh) * 2011-01-18 2013-07-17 江苏康众数字医疗设备有限公司 具有存储电容结构的非晶硅图像传感器
JP5868056B2 (ja) * 2011-07-27 2016-02-24 キヤノン株式会社 光電変換装置、焦点検出装置及び撮像システム
WO2014008946A1 (en) * 2012-07-13 2014-01-16 Teledyne Dalsa B.V. Method of reading out a cmos image sensor and a cmos image sensor configured for carrying out such method
EP2940923B1 (en) * 2014-04-28 2018-09-05 Université de Genève Method and device for optics based quantum random number generator
WO2021051999A1 (zh) * 2019-09-16 2021-03-25 上海集成电路研发中心有限公司 去除固定模式噪声的方法
TW202332072A (zh) * 2022-01-19 2023-08-01 友達光電股份有限公司 感測裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298799A (ja) * 1998-04-15 1999-10-29 Honda Motor Co Ltd 光センサ信号処理装置
JP2000329616A (ja) * 1999-05-18 2000-11-30 Honda Motor Co Ltd 光センサ回路
JP2001145024A (ja) * 1999-11-12 2001-05-25 Honda Motor Co Ltd 光センサ回路
JP2002077733A (ja) * 2000-08-31 2002-03-15 Minolta Co Ltd 固体撮像装置
JP2002223392A (ja) * 2001-01-26 2002-08-09 Minolta Co Ltd 固体撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046444A (en) * 1997-12-08 2000-04-04 Intel Corporation High sensitivity active pixel with electronic shutter
EP1265291A1 (fr) * 2001-06-08 2002-12-11 EM Microelectronic-Marin SA Capteur d'image CMOS et procédé permettant d'opérer un capteur d'image CMOS avec une dynamique accrue
US6911640B1 (en) * 2002-04-30 2005-06-28 Ess Technology, Inc. Reducing reset noise in CMOS image sensors
EP1582054B1 (en) * 2003-01-08 2009-04-08 Cypress Semiconductor Corporation Cmos active pixel with hard and soft reset
US7525579B2 (en) * 2004-12-27 2009-04-28 Konica Minolta Holdings, Inc. Image sensing apparatus and image processing method for use therein
US7696463B2 (en) * 2005-12-01 2010-04-13 Honda Motor Co., Ltd. Photosensor circuit presenting linear and logarithimic output characteristics and image sensor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298799A (ja) * 1998-04-15 1999-10-29 Honda Motor Co Ltd 光センサ信号処理装置
JP2000329616A (ja) * 1999-05-18 2000-11-30 Honda Motor Co Ltd 光センサ回路
JP2001145024A (ja) * 1999-11-12 2001-05-25 Honda Motor Co Ltd 光センサ回路
JP2002077733A (ja) * 2000-08-31 2002-03-15 Minolta Co Ltd 固体撮像装置
JP2002223392A (ja) * 2001-01-26 2002-08-09 Minolta Co Ltd 固体撮像装置

Also Published As

Publication number Publication date
JP2006345389A (ja) 2006-12-21
CN100512395C (zh) 2009-07-08
CN101080922A (zh) 2007-11-28
US7880788B2 (en) 2011-02-01
JP4308170B2 (ja) 2009-08-05
US20090147119A1 (en) 2009-06-11
DE112006001471T5 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006132366A1 (ja) 光センサ回路およびイメージセンサ
JP3576715B2 (ja) 光センサ回路
CA2393514C (en) Photodetector and method for detecting radiation
US20080007640A1 (en) Photoelectric conversion circuit and solid-state image-sensing device using it
US20120119787A1 (en) Imaging device
US9270905B2 (en) Readout circuit, solid-state imaging apparatus, and method for driving readout circuit
US8013660B2 (en) System and method for charge integration
JP4252078B2 (ja) 光検出装置
JP5335318B2 (ja) 光センサ、測定装置及びカメラシステム
JP2007179000A (ja) 液晶表示装置および表示装置
US7696463B2 (en) Photosensor circuit presenting linear and logarithimic output characteristics and image sensor using the same
KR100619126B1 (ko) kTC 잡음을 저감한 CMOS 이미지 센서, 그 이미지센서에 사용하는 리셋 트랜지스터 제어 회로, 및 그 제어회로에 사용하는 전압 전환 회로
US20100289932A1 (en) Solid-state imaging device
JP3861245B2 (ja) 光センサ回路
JP4205717B2 (ja) 光センサ回路およびイメージセンサ
US7485839B2 (en) Image sensor with image signal shaping circuit
JP3596130B2 (ja) 昇圧回路、これを搭載した固体撮像装置
JP4420402B2 (ja) 光センサ回路およびイメージセンサ
JP2018117291A (ja) 光検出回路、及び光検出装置
US7067785B2 (en) Solid-state image pickup device used as a photoelectric conversion device with improved dynamic range
JP5234852B2 (ja) 表示装置
JP2007096913A (ja) 撮像デバイス回路、固体撮像装置、撮像デバイス回路の感度調整方法
JP4528221B2 (ja) 光センサ回路およびイメージセンサ
JP3537095B2 (ja) 光電変換装置
JP2004048438A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11719802

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001403.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120060014714

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001471

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06766544

Country of ref document: EP

Kind code of ref document: A1