WO2006132010A1 - 流体圧回路、エネルギ回生装置、作業機械の流体圧回路 - Google Patents

流体圧回路、エネルギ回生装置、作業機械の流体圧回路 Download PDF

Info

Publication number
WO2006132010A1
WO2006132010A1 PCT/JP2006/303564 JP2006303564W WO2006132010A1 WO 2006132010 A1 WO2006132010 A1 WO 2006132010A1 JP 2006303564 W JP2006303564 W JP 2006303564W WO 2006132010 A1 WO2006132010 A1 WO 2006132010A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
working fluid
motor
generator
return
Prior art date
Application number
PCT/JP2006/303564
Other languages
English (en)
French (fr)
Inventor
Shoji Tozawa
Madoka Binnaka
Hideto Furuta
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005166179A external-priority patent/JP2006336433A/ja
Priority claimed from JP2005166177A external-priority patent/JP2006336846A/ja
Priority claimed from JP2005166180A external-priority patent/JP2006336848A/ja
Priority claimed from JP2005166178A external-priority patent/JP2006336847A/ja
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Priority to US11/912,060 priority Critical patent/US20090288408A1/en
Priority to EP06714701A priority patent/EP1898104A4/en
Publication of WO2006132010A1 publication Critical patent/WO2006132010A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • Fluid pressure circuit energy regeneration device, fluid pressure circuit for work machine
  • the present invention relates to a fluid pressure circuit including an energy regeneration motor, an energy regeneration device, and a fluid pressure circuit for a work machine having a boom assist pump.
  • a drive device for a work machine such as a hydraulic excavator includes a generator driven by an engine and a capacitor for storing electric power generated by the generator. At least one of these generators and accumulators An electric motor or electric generator that operates with the supplied electric power operates a pump or pump motor.
  • the boom cylinder drive circuit is provided with a bi-directional discharge type pump motor that combines a pump function for supplying a working fluid and a fluid pressure motor function for receiving a supply of the working fluid in a closed circuit.
  • the generator or storage power is also equipped with an electric generator that combines the electric motor function to drive the pump 'motor and the electric generator function to generate electric power driven by the pump motor. For example, see Patent Document 1).
  • a working machine provided with a support circuit that replenishes working fluid between a plurality of drive circuits that drive a fluid pressure actuator for a plurality of work devices by a working fluid pressure generated by a pump or pump motor power.
  • a drive There is a drive.
  • These support circuits for example when excavating hydraulic excavators, can supply hydraulic fluid from the boom cylinder drive circuit to the stick cylinder drive circuit with a low required flow rate, and are also necessary when lifting the swing.
  • the hydraulic fluid can be replenished from the bucket cylinder drive circuit to the boom cylinder drive circuit, which requires a high flow rate, and when swinging, the bucket cylinder drive circuit requires a low flow rate! It is possible to replenish hydraulic oil to the drive circuit of a stick cylinder that requires a flow rate (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-190845 (Page 7, Page 16, Figure 1)
  • the drive device of the work machine is provided with a pump motor in the closed circuit of the boom cylinder, when this pump motor functions as a fluid pressure motor, it suddenly occurs due to the generation of return fluid from the boom cylinder. Since the pump starts and stops suddenly due to the disappearance of the return fluid, a shock is generated, and the pump motor becomes a load on the boom cylinder, and this load varies depending on whether the pump motor is stopped or operating. Therefore, the boom cylinder operation is not stable.
  • the combination of the pump / motor and the motor / generator is limited to a closed circuit, and cannot be applied to an open circuit that returns the discharged fluid to the tank.
  • the support circuit replenishes the working fluid among a plurality of fluid pressure actuators, but there are cases where the replenishment amount of the working fluid is not sufficient.
  • the working fluid supply flow rate required by the large-diameter boom cylinder cannot be obtained, and the working speed may decrease.
  • the crawler belt is driven by a motor via a speed reducer, and therefore, a supporting circuit that replenishes the working fluid cannot be provided for this traveling system.
  • the present invention has been made in view of the above points, and the energy of the return fluid from the fluid pressure actuator can be smoothly absorbed by the energy regenerative motor, and stable operation of the fluid pressure actuator can be obtained.
  • An object is to provide a fluid pressure circuit. It is another object of the present invention to provide an energy regeneration device capable of effectively regenerating the energy of the return fluid discharged from the fluid pressure tank even in an open circuit. It is another object of the present invention to provide a fluid pressure circuit for a work machine that can supply a large flow of working fluid to the head side of the boom cylinder. The purpose is to provide a fluid pressure circuit for a working machine that can supply a sufficient working fluid flow rate to the traveling system.
  • the invention according to claim 1 is one return passage through which the return fluid discharged from the fluid pressure actuator passes, and an energy regenerative motor provided in the one return passage and operated by the energy of the return fluid.
  • the other return path branched from one return path upstream of the energy regeneration motor, the return flow rate in one return path and the other return path. It is the fluid pressure circuit equipped with the flow rate control valve which controls the flow rate ratio with the return flow rate in.
  • the invention according to claim 2 is characterized in that the flow rate control valve in the fluid pressure circuit according to claim 1 has one solenoid valve for controlling the return flow rate in one return passage, and the other return passage in the other return passage. And the other solenoid valve for controlling the return flow rate.
  • the invention according to claim 3 is a boom cylinder in which the fluid pressure actuator in the fluid pressure circuit according to claim 1 or 2 rotates the boom of the work device provided in the machine body of the work machine in the vertical direction.
  • the energy regenerative motor is provided in the return path of the working fluid from the boom cylinder.
  • the invention according to claim 4 is a fluid pressure actuator that is actuated by the working fluid supplied with pumping power, and an energy regenerative motor that is actuated by the energy of the return fluid that is discharged from the fluid pressure actuator.
  • An electric motor / generator that functions as a motor driven by the energy regeneration motor and supplies electric power to the accumulator and functions as an electric motor by the electric power supplied from the electric accumulator, and the electric motor / generator functions as an electric motor.
  • it functions as a generator, it is an energy regeneration device that includes an electric motor and a clutch that also disconnects the pump power from the generator.
  • the invention according to claim 5 is a boom cylinder in which the fluid pressure actuator in the energy regeneration device according to claim 4 rotates the boom of the working device provided in the machine body of the working machine in the vertical direction.
  • the energy regenerative motor is provided in the return passage of the working fluid from the boom cylinder.
  • the boom rotated by the boom cylinder receiving the supply of a plurality of main pump force working fluid, the stick rotated by the stick cylinder, and the packet rotated by the bucket cylinder
  • a working fluid supply passage for the bucket cylinder that supplies the working fluid to the bucket cylinder by branching from the main cylinder, a working fluid supply passage for the stick cylinder that supplies the working fluid from another main pump to the stick cylinder, and one main pump.
  • the invention according to claim 7 is a fluid pressure circuit of a work machine equipped with a work device having a boom rotated by a boom cylinder that is supplied with a plurality of main pump force working fluids,
  • the pump power is also discharged from the boom assist pump for supplying the working fluid to the boom cylinder, the boom assist pump for supplying the working fluid with one main pump to the boom cylinder working fluid supply passage, and the boom assist pump.
  • One solenoid valve having a communication position for joining the working fluid discharged from one main pump with the working fluid and a position for blocking the flow, and the working fluid discharged from one main pump from the other main pump
  • Other solenoid valves that are displaced between the communication position for joining the discharged working fluid and the position for blocking the flow, and for traveling
  • a traveling straight valve disposed in a passage communicating between the main pump and the other main pump and the pair of traveling motors.
  • the invention according to claim 8 is the fluid pressure circuit of the working machine according to claim 6 or 7, wherein the energy regeneration motor operated by the energy of the return fluid discharged from the boom cylinder force, and the energy regeneration motor It functions as a generator that is driven by the power supply to supply power to the battery and functions as an electric motor by the power supplied by the battery
  • the motor / generator and the motor / generator function as a motor, power is transmitted from the motor / generator to the boom assist pump, and when the motor / generator functions as a generator, the motor / generator is also turned off. And a release clutch.
  • the energy regenerative motor is provided in one return passage through which the return fluid discharged from the fluid pressure tank is discharged, the return flow rate passing through the energy regenerative motor, the energy Since the flow rate ratio control valve controls the flow rate ratio with the return flow rate in the other return passage branched from one return passage on the upstream side of the regenerative motor, the force energy when the return fluid from the fluid pressure actuator is generated By gradually increasing the flow ratio divided to the regenerative motor side, the occurrence of shock can be prevented, and stable operation of the fluid pressure actuator can be obtained by suppressing rapid load fluctuations of the fluid pressure actuator.
  • one electromagnetic valve and the other electromagnetic valve can be separately installed at arbitrary locations on one return path and the other return path, respectively.
  • the opening degree of the return path and the return path of the other return path can be individually controlled without being related to each other.
  • the energy regeneration motor operated by the return fluid discharged by the fluid pressure actuator force powers the unloaded electric motor-generator.
  • the electric power generated by efficient input can be stored in the battery, and when the clutch is connected, the pump is driven by the electric generator that functions as an electric motor by the electric power from the battery, and this pump power fluid Since the working fluid can be supplied to the pressure actuator, the energy of the returned fluid can be effectively regenerated in the open circuit even in the open circuit.
  • the boom of the working device provided in the machine body of the working machine is When falling by its own weight, the energy contained in the return fluid discharged from the head side force of the boom cylinder can be absorbed by the energy regeneration motor and the electric generator and stored in the capacitor.
  • the working fluid to one main pump force bucket cylinder is supplied to the boom cylinder via the electromagnetic valve between the packets' boom, and from the other main pump to the stick cylinder
  • the working fluid is supplied to the boom cylinder head via the stick-boom solenoid valve, and the boom assist pump power is supplied to the boom cylinder, so a large flow of working fluid is supplied to the boom cylinder head.
  • the predetermined working fluid pressure required for the bucket cylinder and the stick cylinder can be secured by displacing each solenoid valve to a position where the flow is blocked.
  • FIG. 1 is a circuit diagram showing a first embodiment of a fluid pressure circuit according to the present invention.
  • FIG. 2 is a side view of a work machine to which the fluid pressure circuit is applied.
  • FIG. 3 is a circuit diagram showing a second embodiment of the fluid pressure circuit.
  • FIG. 4 is a circuit diagram showing a third embodiment of the fluid pressure circuit.
  • FIG. 5 is a circuit diagram showing a fourth embodiment of the fluid pressure circuit.
  • FIG. 6 is a circuit diagram showing a fifth embodiment of the fluid pressure circuit.
  • FIG. 7 is a circuit diagram showing a sixth embodiment of the fluid pressure circuit.
  • FIG. 8 is a configuration diagram showing a modification of the hybrid drive device used in the fluid pressure circuit.
  • FIGS. 1 and 2 First, the first embodiment shown in FIGS. 1 and 2 will be described.
  • the work machine 1 is a hydraulic excavator, and an upper swing body 4 is rotatably provided on a lower traveling body 2 via a swing shaft receiving portion 3.
  • 4 includes a power unit 5 such as an engine and a fluid pressure pump, a cap 6 that protects an operator, and the like, and forms an airframe 7.
  • the lower traveling body 2 is provided with traveling motors 2trL and 2trR for driving the left and right crawler belts, respectively
  • the upper revolving body 4 is a swivel for driving a swivel reduction mechanism provided in the swivel bearing portion 3. It is equipped with an electric motor and generator (not shown in Fig. 2).
  • a work device 8 is attached to the upper swing body 4.
  • a boom (8bm), a stick (8st) and a packet (8bk) are rotatably coupled to a bracket (not shown) of the upper swing body (4) in turn, and the boom (8bm) is rotated by a boom cylinder (8bmc) as a fluid pressure actuator.
  • the stick 8st is rotated by the stick cylinder 8stc
  • the packet 8bk is rotated by the bucket cylinder 8bkc.
  • the hybrid drive device 10 shown in FIG. 1 is connected to the engine 11 from the engine 11.
  • a clutch 12 for connecting / disconnecting the applied rotational power is connected, and the input shaft 13 of the power transmission device 14 is connected to the clutch 12, and the main shaft as two variable capacity type pumps is connected to the output shaft 15 of the power transmission device 14.
  • Pumps 17A and 17B are connected.
  • These main pumps 17A and 17B are driven by the engine 11 on the input / output shaft 21 of the power transmission device 14 in a parallel relationship with the engine 11 to function as a generator and receive power supply.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to a motor / generator controller 22c such as an inverter.
  • the electric generator generator 22c stores electric power supplied from the electric generator 22 functioning as a generator via a capacitor controller 23c such as a converter, and also functions as an electric motor.
  • a capacitor 23 for supplying power to the machine 22 is connected.
  • the capacitor 23 is a battery or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and rotates continuously output to the output shaft 15 by a control signal of an external force. Output is possible.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive apparatus 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the power recovered from the generator 27 driven by the energy regenerative motor 26 via the generator controller 27c is supplied to the capacitor 23. Stored.
  • the electric power supplied from the power storage device 23 of the hybrid drive device 10 is operated by the electric motor / swing generator 4sw as a motor and the electric power is generated at the time of the upper braking body 4 during the turning braking.
  • Turning electric motor / generator operated as a machine 4sw force A turning control circuit 28 for collecting the generated electric power in the capacitor 23 is installed.
  • the turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning speed reduction mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter.
  • a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning speed reduction mechanism 4gr
  • a turning electric generator / generator controller 4swc such as an inverter.
  • the electric storage device 2 functions as an electric generator when forcedly rotated by inertial turning force. Collect power in 3.
  • FIG. 1 shows a fluid pressure actuator control circuit 25, and pump passages 31 and 32 connected to the discharge ports of the main pumps 17 A and 17 B are electromagnetic proportional valves provided in a bypass passage returning to the tank 24. It is connected to the solenoid valves 33 and 34 that operate as the travel valve, and is connected to the solenoid valve 35 that operates as a travel straight travel valve.
  • Solenoid valves 33 and 34 function as bypass valves.
  • pump passage 31, 32 is controlled to the fully open position communicating with the tank 24, and the operator is displaced to the closed position in proportion to the magnitude of the operation signal for operating the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc.
  • the solenoid valve 35 can supply the working fluid to the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc from the two main pumps 17A, 17B force in the left working position shown in FIG.
  • the working fluid equally divided into the two travel motors 2tr L and 2trR is supplied from only one main pump 17B, and straight travel is enabled.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the work pump control circuit 37 for controlling the working fluid supplied to the work actuators 8bmc, 8stc, 8bkc for operating the work device 8 from the main pumps 17A, 17B.
  • the traveling control circuit 36 is a solenoid that performs direction control and flow rate control on the working fluid supplied via the traveling motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the work device control circuit 37 includes a boom control circuit 45 that controls a working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the boom cylinder 8bmc, and a main device of the hybrid drive device 10.
  • the boom control circuit 45 includes an electromagnetic valve 49 that controls the direction and the flow rate of the working fluid supplied through the boom cylinder working fluid supply passage 48 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 51 and 52 of the electromagnetic valve 49 are communicated with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • the head side working fluid supply / discharge passage 51 is provided with an electromagnetic valve 53 that functions as a fall prevention valve.
  • the electromagnetic valve 53 When the boom is stopped, the electromagnetic valve 53 is switched to the check valve position on the left side to control the boom 8bm. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc is provided on the tank passage side of the solenoid valve 49.
  • One return passage 56 of the return fluid passage 55 and the other return passage are provided.
  • 57 is provided with flow ratio control valves 58 and 59 for controlling the flow ratio divided into the return passages 56 and 57.
  • the flow rate control valves 58 and 59 are branched on one upstream side of the one solenoid valve 58 and one solenoid valve 58 for flow control provided in one return passage 56 having the energy regeneration motor 26. It is formed by the other solenoid valve 59 for controlling the flow rate provided in the other return passage 57.
  • the rotational speed of the energy regenerative motor 26 to be operated is controlled by the return fluid amount of one return passage 56 whose flow rate is controlled by the flow rate control valves 58 and 59, and this energy regenerative motor 26 Electric power is supplied to and stored in the capacitor 23 of the hybrid drive device 10 by the driven generator 27.
  • the energy regeneration motor 26 is preferably operated when the electromagnetic valve 49 for directional control and flow control is in the right ventricle in FIG. That is, when the boom descends, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 26 is caused by the boom's own weight by the return fluid from which the head side force of the boom cylinder 8bmc is also discharged. It is desirable to operate with a margin.
  • the stick control circuit 46 is a solenoid that performs direction control and flow rate control on the working fluid supplied through the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight travel valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • a solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between both working fluid supply / discharge passages 63, 64, and this solenoid valve 65 is switched to the check valve position when the stick is lowered. By controlling, the rod side chamber force of the stick cylinder 8stc is regenerated into the head side chamber.
  • the packet control circuit 47 includes an electromagnetic valve 67 that controls the direction and the flow rate of the working fluid supplied through the bucket cylinder working fluid supply passage 66 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 68, 69 of the electromagnetic valve 67 are communicated with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • an inter-circuit communication passage 71 between the sticks' booms for communicating them.
  • the stick cylinder working fluid supply passage 61 force Boom cylinder 8bmc is displaced between the position allowing the unidirectional flow to the head side and the position blocking the flow.
  • a solenoid valve 72 is provided between
  • an inter-circuit communication passage 73 is provided between the boom 'sticks communicating with each other.
  • the inter-circuit communication path 73 between the boom and stick solenoid valves 74, each of which has a position for allowing a one-way flow from the boom cylinder working fluid supply path 48 to the stick cylinder 8stc and a position for blocking it. Is provided.
  • Solenoid valves 53, 54, 65, 72, and 74 are switching valves having a flow rate adjusting function incorporating a check valve.
  • Solenoid valves 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74 are solenoids proportionally controlled by a controller (not shown) and return Each is equipped with a spring (not shown), and the displacement is controlled to a position where the solenoid exciting force and the spring restoring force are balanced.
  • the work device control circuit 37 operates the energy regenerative motor 26 with the return fluid discharged from the boom cylinder 8bmc, and drives the generator 27 with the energy regenerative motor 26, so that the hybrid drive device 10 Since electric power is supplied to the battery 23, the energy of the return fluid from which the boom cylinder 8bmc force is discharged can be efficiently recovered in the battery 23 and can be effectively regenerated as the pump power of the hybrid drive device 10.
  • the work device control circuit 37 diverts the return fluid discharged from the boom cylinder 8bmc in the return fluid passage 55, and controls the diverted flow rate ratio by the flow rate control valves 58 and 59. Since the energy regenerative motor 26 is operated by one return fluid whose flow rate is controlled by the flow ratio control valves 58 and 59, when the return fluid from the boom cylinder 8bmc is generated, the force is diverted to the energy regenerative motor 26 side. By gradually increasing the flow rate ratio, it is possible to prevent the occurrence of a shock, and it is possible to obtain a stable operation of the boom cylinder 8bmc by suppressing sudden load fluctuations of the boom cylinder 8bmc.
  • one solenoid valve 58 and the other solenoid valve 59 can be installed separately at any location of one return passage 56 and the other return passage 57, respectively, and one return passage 56
  • the flow rate ratio and flow rate of the return fluid that flows to the energy regeneration motor 26 side can be freely controlled by individually controlling the opening degree of the other return passage 57 independently of each other.
  • the turning control circuit 28 operates the turning electric motor / generator 4sw as an electric motor and stops the upper turning body 4 during turning.
  • the turning electric generator 4sw is operated as a generator to brake the turning of the upper turning body 4, and the electric power generated from the turning electric generator 4sw is transferred by the energy regenerative motor 26.
  • Driven generator 27 It can be efficiently recovered in the battery 23 of the moving device 10 and can be effectively regenerated as the pump power of the hybrid drive device 10.
  • the engine 12 is connected to a clutch 12 for intermittently rotating power output from the engine 11, and the clutch 12 is connected to the input shaft of the power transmission device 14. 13 is connected, and two variable displacement main pumps 17A and 17B are connected to the output shaft 15 of the power transmission device 14.
  • the input / output shaft 21 of the power transmission device 14 is driven by the engine 11 in a parallel relationship with the engine 11 to function as a generator and receive power supply.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to a motor / generator controller 22c such as an inverter.
  • the electric generator controller 22c stores the electric power supplied from the electric generator 22 that functions as a generator via the electric storage controller 23c such as a converter and also functions as an electric motor.
  • a capacitor 23 for supplying power to the machine 22 is connected.
  • Capacitor 23 is Battery or capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and rotates continuously variable on the output shaft 15 by a control signal from an external force. Output is possible.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the power recovered from the generator 27 driven by the energy regenerative motor 26 via the generator controller 27c is supplied to the capacitor 23. Stored.
  • the electric power supplied from the electric storage device 23 of the hybrid type drive device 10 operates the electric motor for swiveling and the generator 4sw as an electric motor and generates electric power when the upper rotating body 4 is braked for turning.
  • Turning electric motor / generator operated as a machine 4sw force A turning control circuit 28 for collecting the generated electric power in the capacitor 23 is installed.
  • the turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning reduction mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter. It functions as an electric motor by the electric power supplied from the electric storage device 23 of the hybrid drive device 10, and functions as a generator when it is forcibly rotated by the inertial turning force, and collects electric power in the electric storage device 23 to drive the electric motor. Use.
  • the pump passages 31, 32 connected to the discharge ports of the main pumps 17A, 17B are the electromagnetic passages provided in the bypass passage returning to the tank 24. It is connected to the solenoid valves 33 and 34 that operate as proportional valves and is connected to the solenoid valve 35 that operates as a travel straight valve!
  • the solenoid valves 33 and 34 function as bypass valves.
  • the pump passage 31 is controlled by a control signal from the controller.
  • 32 is controlled to the fully open position communicating with tank 24, and the operator operates the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc Is displaced to the closed position in proportion to
  • the solenoid valve 35 can supply the working fluid to the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc from the two main pumps 17A, 17B.
  • the working fluid equally divided into the two travel motors 2tr L and 2trR is supplied from only one main pump 17B, and straight travel is enabled.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the work pump control circuit 37 for controlling the working fluid supplied to the work actuators 8bmc, 8stc, 8bkc for operating the work device 8 from the main pumps 17A, 17B.
  • the traveling control circuit 36 is an electromagnetic that controls the direction and the flow rate of the working fluid supplied through the traveling motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the work device control circuit 37 includes a boom control circuit 45 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the boom cylinder 8bmc, and a main device of the hybrid drive device 10.
  • the packet pump is driven by the stick control circuit 46 that controls the working fluid supplied from the pumps 17A and 17B to the stick cylinder 8stc, and the packet motor 81 that is operated by the electric power supplied from the battery 23 of the hybrid drive unit 10.
  • a packet control circuit 47 for driving the 82 and controlling the working fluid supplied to the packet pump 82 force bucket cylinder 8bkc is provided.
  • the rotation speed of the packet motor 81 is controlled by a packet motor controller 81c such as an inverter connected to a controller (not shown).
  • the boom control circuit 45 includes an electromagnetic valve 49 that controls the direction and flow rate of the working fluid supplied through the boom cylinder working fluid supply passage 48 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 51 and 52 of the electromagnetic valve 49 are communicated with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • An electromagnetic valve 53 functioning as a fall prevention valve is interposed in the head side working fluid supply / discharge passage 51, and this solenoid valve 53 is controlled to be switched to the left check valve position when the boom is stopped. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc, and one return passage 56 of the return fluid passage 55 and the other return passage.
  • 57 is provided with flow ratio control valves 58 and 59 for controlling the flow ratio divided into the return passages 56 and 57.
  • the flow rate control valves 58 and 59 are branched on one upstream side of the one solenoid valve 58 and one solenoid valve 58 for flow control provided in one return passage 56 having the energy regeneration motor 26. It is formed by the other solenoid valve 59 for controlling the flow rate provided in the other return passage 57.
  • the rotational speed of the energy regenerative motor 26 to be operated is controlled by the amount of return fluid in one return passage 56 whose flow rate is controlled by the flow rate control valves 58 and 59, and this energy regenerative motor 26 Electric power is supplied to and stored in the capacitor 23 of the hybrid drive device 10 by the driven generator 27.
  • the energy regenerative motor 26 is preferably operated when the electromagnetic valve 49 for directional control and flow control is in the right ventricle in FIG. That is, when the boom is lowered, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 26 is caused by the boom's own weight by the return fluid from which the head side force of the boom cylinder 8bmc is also discharged. It is desirable to operate with a margin.
  • the stick control circuit 46 is a solenoid that performs direction control and flow rate control on the working fluid supplied via the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • a solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between both working fluid supply / discharge passages 63, 64, and this solenoid valve 65 is switched to the check valve position when the stick is lowered. By controlling, the rod side chamber force of the stick cylinder 8stc is regenerated into the head side chamber.
  • the packet control circuit 47 is provided with the power supplied from the battery 23 of the hybrid drive device 10.
  • a packet pump 82 driven by a force is driven by a packet motor 82, and an electromagnetic valve 67 for controlling the direction and flow rate of the working fluid supplied from the packet pump 82 is provided.
  • Fluid supply / discharge passages 68 and 69 communicate with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • an inter-circuit communication passage 73 is provided between the boom 'sticks communicating with each other.
  • the inter-circuit communication passage 73 between the position where the unidirectional flow from the working fluid supply passage 48 for the boom cylinder to the working fluid supply passage 61 for the stick cylinder, the position where the bidirectional flow is possible and both A solenoid valve 83 between the boom and stick having a neutral position for blocking the counterflow is provided.
  • the solenoid valves 53, 54, 65, 83 are switching valves having a flow rate adjusting function with a built-in check valve.
  • Solenoid valves 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 83 are a solenoid proportionally controlled by a controller (not shown) and a return spring (see FIG. (Not shown), and the displacement is controlled to a position where the solenoid excitation force and spring restoring force are balanced.
  • the hybrid drive device 10 has a hybrid drive device 10 that is supplied with the working fluid from the main pumps 17A and 17B, the boom control circuit 45, and the stick control circuit 46.
  • a packet control circuit 47 that drives the packet pump 82 by the packet motor 81 that is operated by the electric power supplied also to the battery 23 and controls the working fluid supplied from the packet pump 82 to the bucket cylinder 8bkc, By installing them independently, the high voltage required by the packet control circuit 47 without being affected by the traveling control circuit 36, the boom control circuit 45, and the stick control circuit 46 can be reliably obtained.
  • the controller (not shown) controls the rotational speed of the packet motor 81, so that the discharge flow rate of the packet pump 82 is variably controlled and supplied from the packet pump 82 to the bucket cylinder 8bkc.
  • the direction of the working fluid is controlled by an electromagnetic valve 67 that is actuated by an electrical signal from a controller (not shown).
  • the boom control circuit 45 diverts the return fluid discharged from the boom cylinder 8bmc in the return fluid passage 55, and controls the diverted flow rate ratio by the flow rate control valves 58 and 59.
  • the energy regenerative motor 26 is operated by one return fluid whose flow rate is controlled by the flow rate control valves 58 and 59, and the generator 27 is driven by the energy regenerative motor 26 to supply power to the capacitor 23 of the hybrid drive device 10.
  • the return fluid is generated from the boom cylinder 8bmc, it is possible to prevent the occurrence of shock by gradually increasing the flow ratio divided to the energy regenerative motor 26, and to prevent the boom cylinder 8bmc from Stable operation of the boom cylinder 8bmc can be obtained by suppressing the load fluctuation.
  • the flow rate ratio of the return fluid discharged to the energy regeneration motor 26 side of the head side force of the boom cylinder 8bmc is gradually increased.
  • the energy regenerative motor 26 can smoothly absorb the energy of the return fluid and suppress the sudden load fluctuation on the head side of the boom cylinder 8bmc, thereby stabilizing the weight drop operation of the boom 8bm.
  • one solenoid valve 58 and the other solenoid valve 59 can be installed separately in any place of one return passage 56 and the other return passage 57, respectively, and one return passage 56
  • the flow rate ratio and flow rate of the return fluid that flows to the energy regeneration motor 26 side can be freely controlled by individually controlling the opening degree of the other return passage 57 independently of each other.
  • the turning control circuit 28 operates the turning electric motor / generator 4sw as an electric motor and stops the upper turning body 4 during turning.
  • the turning electric generator 4sw is operated as a generator to brake the turning of the upper turning body 4, and the electric power generated from the turning electric generator 4sw is transferred by the energy regenerative motor 26.
  • the electric power generated from the driven generator 27 can be efficiently recovered in the battery 23 of the hybrid drive device 10 and can be effectively regenerated as the pump power of the hybrid drive device 10. As a result, the fuel efficiency of the engine 11 of the hybrid drive device 10 can be improved.
  • the boom control circuit is controlled by controlling the electromagnetic valve 83 provided in the inter-circuit communication path 73 between the boom and stick to a position where a unidirectional flow is possible or a position where a bidirectional flow is possible. It is possible to supply the flow rate from 45 to the stick control circuit 46, that is, The working fluid supplied from the main pump 17A to the boom cylinder 8bmc is merged with the working fluid supplied from the other main pump 17B to the stick cylinder 8stc, so that the speed of the stick cylinder 8stc can be increased.
  • a clutch 12 for connecting and disconnecting rotational power output from the engine 11 is connected to an engine 11, and the input shaft of the power transmission device 14 is connected to the clutch 12. 13 is connected, and two variable displacement main pumps 17A and 17B are connected to the output shaft 15 of the power transmission device 14.
  • These main pumps 17A and 17B are driven by the engine 11 to function as a generator and are supplied with electric power to the input / output shaft 21 of the power transmission device 14 in a parallel relationship with the engine 11.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to a motor / generator controller 22c such as an inverter.
  • Electricity 'generator controller 22c stores electric power supplied from electric motor' generator 22 that functions as a generator via electric storage controller 23c such as a converter and also functions as an electric motor
  • electric storage controller 23c such as a converter and also functions as an electric motor
  • a capacitor 23 for supplying power to the machine 22 is connected.
  • the capacitor 23 is a battery or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 is a toroidal, planetary gear type. Incorporating a continuously variable transmission mechanism such as the above, it is possible to output continuously variable speed rotation to the output shaft 15 by an external force control signal.
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • the fluid pressure actuator control circuit 25 controls the working fluid supplied to the traveling motors 2trL and 2trR, the stick cylinder 8stc, and the bucket cylinder 8bkc.
  • a boom control circuit 45 for controlling the working fluid supplied to the boom cylinder 8bmc is provided separately from the fluid pressure actuator control circuit 25.
  • turning electric motor 'generator 4sw is operated as an electric motor by electric power supplied from capacitor 23 of hybrid drive device 10, and upper turning is performed.
  • a turning control circuit 28 for collecting the electric power generated from the turning electric motor / generator 4sw operated as a generator at the time of turning braking of the body 4 in the capacitor 23 is installed.
  • the turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning speed reduction mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter. In addition, it functions as an electric motor by the electric power supplied from the electric storage device 23 of the hybrid drive device 10, and functions as a generator when it is forcibly rotated by the inertial turning force, and collects electric power in the electric storage device 23.
  • the pump passages 31, 32 connected to the discharge ports of the main pumps 17A, 17B of the hybrid drive device 10 operate as electromagnetic proportional valves provided in the bypass passage returned to the tank 24. , 34 and a solenoid valve 35 that operates as a straight traveling valve.
  • the solenoid valves 33 and 34 function as bypass valves.
  • the pump passages 31, 32 are controlled by the control signal from the controller. Is controlled to the fully open position communicating with the tank 24, and the operator is displaced to the closed position in proportion to the magnitude of the operation signal for operating the fluid pressure actuators 2trL, 2trR, 8stc, 8bkc.
  • the solenoid valve 35 has two main pumps 17A and 17B in the left working position shown in FIG.
  • the hydraulic fluid can be supplied to the fluid pressure actuators 2trL, 2trR, 8stc, 8bkc, and when switching to the right traveling straight position, the working fluid equally divided into two traveling motors 2trL, 2trR from only one main pump 17B Supplying it makes it possible to travel straight ahead.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the main pumps 17A and 17B from the main pumps 17A and 17B operate the working device 8.
  • the stick control circuit 46 controls the working fluid supplied to the stc cylinder 8stc, and the hybrid pump 10 main pumps 17A and 17B from the bucket pump 8bkc And a packet control circuit 47 for controlling the supplied working fluid.
  • the traveling control circuit 36 is a solenoid that performs direction control and flow rate control on the working fluid supplied through the traveling motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the boom control circuit 45 includes a boom pump 48p installed separately from the main pumps 17A and 17B of the hybrid drive device 10, and a boom cylinder working fluid supply passage 48a is provided from the boom pump 48p.
  • a solenoid valve 49 for controlling the direction and flow rate of the working fluid supplied to the boom cylinder 8bmc is provided, and the working fluid supply / discharge passages 51 and 52 of the solenoid valve 49 communicate with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • an electromagnetic valve 48b that acts in the same manner as the electromagnetic valves 33 and 34 is provided.
  • the head side working fluid supply / discharge passage 51 is provided with an electromagnetic valve 53 that functions as a fall prevention valve.
  • the solenoid valve 53 is controlled to be switched to the check valve position on the left side of the boom 8bm. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc, and one return passage 56 of the return fluid passage 55 and the other return passage.
  • 57 has a flow rate that controls the flow rate ratio of these return passages 56 and 57.
  • Ratio control valves 58 and 59 are provided.
  • the flow ratio control valves 58 and 59 are connected to one solenoid valve 58 for flow control provided in one return passage 56 and the other return passage 57 branched upstream of the one solenoid valve 58.
  • the other solenoid valve 59 for flow control provided is formed.
  • An energy regeneration motor 86 is provided in one return passage 56 through which the return fluid discharged from the boom cylinder 8bmc passes.
  • the energy regeneration motor 86 is driven by an energy regeneration motor 86 and is hybrid type.
  • the boom motor 'generator 87 is connected to the boom motor' generator 87, which functions as a generator that supplies power to the capacitor 23 of the driving device 10 and also functions as a motor with the supplied power 23.
  • the boom pump 48p is connected to the boom 87 via a clutch 88, and the clutch 88 is an electric motor for the boom that functions as an electric motor. ⁇ Controlled to cut off generator 87 by 48p force for boom pump.
  • the rotational speed of the energy regenerative motor 86 to be operated is controlled by the amount of return fluid in one of the return passages 56 whose flow rate is controlled by the flow rate control valves 58 and 59, and this energy regenerative motor 86
  • the electric power collected from the driven boom electric generator 87 via the electric generator controller 87c is supplied to and stored in the capacitor 23 of the hybrid drive device 10.
  • the energy regeneration motor 86 is preferably operated when the electromagnetic valve 49 for directional control and flow control is in the right ventricle in FIG. That is, when the boom is lowered, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 86 is caused by the boom weight by the return fluid discharged from the head side force of the boom cylinder 8bmc. It is desirable to operate with a margin.
  • the stick control circuit 46 is a solenoid that performs direction control and flow rate control on the working fluid supplied through the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight travel valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • a solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between both working fluid supply / discharge passages 63, 64, and this solenoid valve 65 is switched to the check valve position when the stick is lowered. Control Rod side chamber force of the intake cylinder 8stc The discharged return fluid is regenerated in the head side chamber.
  • the packet control circuit 47 includes a solenoid valve 67 that controls the direction and flow rate of the working fluid supplied via the bucket cylinder working fluid supply passage 66 drawn from the solenoid valve 35 that operates as a straight travel valve.
  • the working fluid supply / discharge passages 68, 69 of the electromagnetic valve 67 are communicated with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • inter-circuit communication passage 73 Between the bucket cylinder working fluid supply passage 66 and the stick cylinder working fluid supply passage 61, there is provided an inter-circuit communication passage 73 between the packet sticks that communicates between them.
  • inter-circuit communication passage 73 between the packet 'sticks there is a position for allowing a one-way flow from the working fluid supply passage 66 for the bucket cylinder to the working fluid supply passage 61 for the stick cylinder, and a blocking position.
  • a solenoid valve 74 between the packet 'sticks is provided.
  • Solenoid valves 53, 54, 65, and 74 are switching valves having a flow rate adjusting function with a built-in check valve.
  • Solenoid valves 33, 34, 35, 43, 44, 48b, 49, 53, 54, 58, 59, 62, 65, 67, 74 are solenoids that are proportionally controlled by a controller (not shown) and return Each is equipped with a spring (not shown), and the displacement is controlled to a position where the solenoid exciting force and the spring restoring force are balanced.
  • the boom control circuit 45 which has a boom pump 48p installed separately from the main pumps 17A and 17B of the drive unit 10 and controls the working fluid supplied from the boom pump 48p to the boom cylinder 8bmc, is independent. Therefore, it is affected by the working fluid supplied to the traveling motors 2trL and 2trR, the stick cylinder 8stc and the bucket cylinder 8bkc by controlling the rotational speed of the boom pump 48p with the boom electric motor / generator 87.
  • the boom control circuit 45 operates the energy regenerative motor 86 by the return fluid discharged from the boom cylinder 8bmc, and the energy regenerative motor 86 drives the boom electric motor / generator 87 to generate a hybrid. Since electric power is supplied to the storage device 23 of the drive device 10, the energy of the return fluid discharged from the boom cylinder 8bmc can be efficiently recovered in the storage device 23, and can be effectively regenerated as the pump power of the hybrid drive device 10.
  • the boom control circuit 45 disengages the clutch 88, whereby the boom regenerative motor 86 operated by the return fluid discharged from the boom cylinder 8b mc is used for the boom electric motor / power generation in the no-load state. Power can be efficiently input to the machine 87 and the generated electric power can be stored in the capacitor 23 of the hybrid drive device 10.
  • the amount of working fluid supplied to the boom cylinder 8bmc is determined by the pump capacity and the rotation speed of the boom pump 48p dedicated to the boom circuit, and the pump capacity is determined according to the main pumps 17A and 17B.
  • the speed is controlled by the boom electric generator 87, and the boom up efficiency can be improved by supplying a sufficient amount of working fluid to the head side of the boom cylinder 8bmc.
  • the boom control circuit 45 divides the return fluid discharged from the boom cylinder 8bmc through the return fluid passage 55, and controls the flow rate ratio by the flow rate control valves 58 and 59. Since the energy regenerative motor 86 is operated by one return fluid whose flow rate is controlled by the volume ratio control valves 58 and 59, the flow rate ratio that is diverted to the energy regenerative motor 86 side from the time when the return fluid from the boom cylinder 8bmc is generated. By gradually increasing the, the occurrence of shock can be prevented and the boom cylinder 8bmc Stable operation of cylinder 8bmc is obtained.
  • the head side force of the boom cylinder 8bmc is gradually increased by increasing the flow rate ratio of the return fluid discharged to the energy regeneration motor 86 side.
  • the energy regeneration motor 86 can smoothly absorb the energy of the return fluid and suppress the sudden load fluctuation on the head side of the boom cylinder 8bmc, so that the operation of dropping the weight of the boom 8bm can be stabilized. In short, the energy during boom down can be stored independently of other circuit forces.
  • the flow ratio control valves 58 and 59 can be installed by separating one solenoid valve 58 and the other solenoid valve 59 in any place in one return passage 56 and the other return passage 57, respectively.
  • the flow rate ratio and flow rate of the return fluid flowing to the energy regeneration motor 86 side can be freely controlled by individually controlling the opening degree of one return passage 56 and the other return passage 57 without being related to each other. .
  • the swing control circuit 28 causes the swing electric motor / generator 4sw to stop.
  • electric power it can be efficiently recovered in the accumulator 23 of the hybrid drive device 10 and can be effectively regenerated as the pump power of the hybrid drive device 10.
  • the electromagnetic valve 74 between the packets' sticks by controlling the electromagnetic valve 74 between the packets' sticks to a position where flow in one direction is possible, the working fluid supplied from one main pump 17A to the bucket cylinder 8bkc is supplied from the other main pump 17B.
  • the electromagnetic valve 74 between the packet sticks is controlled to the cutoff position, and the packet control circuit 47 and stick control
  • the pressure can be controlled separately by separating the packet system and the stick system.
  • the hybrid drive device 10 shown in Fig. 5 is connected to the engine 11 from the engine 11.
  • a clutch 12 is connected to connect and disconnect the applied rotational power.
  • the input shaft 13 of the power transmission device 14 is connected to the clutch 12, and two variable capacity main pumps 17A and 17B are connected to the output shaft 15 of the power transmission device 14. Is connected.
  • the main pumps 17A and 17B are driven by the engine 11 to function as a generator and are supplied with electric power to the input / output shaft 21 of the power transmission device 14 in a parallel relationship with the engine 11.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to a motor / generator controller 22c such as an inverter.
  • the electric generator generator 22c stores the electric power supplied from the electric generator 22 that functions as a generator via the electric storage controller 23c such as a converter and also functions as an electric motor.
  • a capacitor 23 for supplying power to the machine 22 is connected.
  • the capacitor 23 is a battery or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and rotates continuously variable on the output shaft 15 by a control signal of an external force. Output is possible.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the electric power recovered from the electric motor / generator 87 for the boom driven by the energy regenerative motor 26 through the generator controller 87c. Is stored in the battery 23.
  • the electric power of the power storage device 23 of the hybrid drive device 10 is operated by the electric power supplied to the turning electric motor / generator 4sw as an electric motor and the upper rotating body 4 generates electric power during the turning braking.
  • Turning electric motor / generator operated as a machine 4sw force A turning control circuit 28 for collecting the generated electric power in the capacitor 23 is installed.
  • This turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning reduction mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter.
  • a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning reduction mechanism 4gr
  • a turning electric generator / generator controller 4swc such as an inverter.
  • the electric storage device 2 functions as an electric generator when forcedly rotated by inertial turning force. Collect power in 3.
  • the pump passages 31 and 32 connected to the discharge ports of the main pumps 17A and 17B are the electromagnetic passages provided in the bypass passage returning to the tank 24. It is connected to the solenoid valves 33 and 34 that operate as proportional valves and is connected to the solenoid valve 35 that operates as a travel straight valve!
  • the solenoid valves 33 and 34 function as bypass valves.
  • the pump passage 31 is controlled by a control signal from the controller.
  • 32 is controlled to the fully open position communicating with the tank 24, and the operator is displaced to the closed position in proportion to the magnitude of the operation signal for operating the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc.
  • the solenoid valve 35 can supply working fluid to the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, and 8bkc from the two main pumps 17A and 17B in the left working position shown in FIG.
  • the working fluid equally divided into the two travel motors 2tr L and 2trR is supplied from only one main pump 17B, and straight travel is enabled.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the work pump control circuit 37 for controlling the working fluid supplied to the work actuators 8bmc, 8stc, 8bkc for operating the work device 8 from the main pumps 17A, 17B.
  • the traveling control circuit 36 is a solenoid that performs direction control and flow rate control of the working fluid supplied through the working motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the work device control circuit 37 includes a boom control circuit 45 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the boom cylinder 8bmc, and a main device of the hybrid drive device 10.
  • the boom control circuit 45 includes a solenoid valve 49 that controls the direction and the flow rate of the working fluid supplied through the boom cylinder working fluid supply passage 48 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 51 and 52 of the electromagnetic valve 49 are communicated with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • the head side working fluid supply / discharge passage 51 is provided with an electromagnetic valve 53 that functions as a fall prevention valve.
  • the electromagnetic valve 53 is controlled to be switched to the check valve position on the left side of the boom 8bm. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc, and one return passage 56 of this return fluid passage 55 and the other return passage.
  • 57 is provided with flow ratio control valves 58 and 59 for controlling the flow ratio divided into the return passages 56 and 57.
  • the flow rate control valves 58 and 59 are branched on one upstream side of the one solenoid valve 58 and one solenoid valve 58 for flow control provided in one return passage 56 having the energy regeneration motor 26. It is formed by the other solenoid valve 59 for controlling the flow rate provided in the other return passage 57.
  • Boom cylinder working fluid supply passage 48 for supplying the working fluid from the main pumps 17A, 17B of the hybrid drive device 10 to the boom cylinder 8bmc is provided with a boom assist pump for assisting the flow rate of the working fluid.
  • An electromagnetic valve 86 s of a bypass passage that is connected via a working fluid supply passage 85 and operates similarly to the electromagnetic valves 33 and 34 is connected.
  • the boom electric generator 87 which functions as a generator that supplies power to the battery and functions as a motor by the power supplied from the battery 23, is connected.
  • This boom electric generator 87 is connected to a boom assist pump 84as via a clutch 88.
  • the clutch 88 transmits power to the boom assist pump 84as from the boom electric generator 87 functioning as an electric motor, and disconnects the boom electric motor / generator 87 functioning as a generator from the boom assist pump 84as.
  • the rotational speed of the energy regenerative motor 26 to be operated is controlled by the return fluid amount of one return passage 56 whose flow rate is controlled by the flow rate control valves 58 and 59, and this energy regenerative motor 26 Electric power is supplied to and stored in the battery 23 of the hybrid drive device 10 by the driven electric motor / generator 87 for the boom.
  • the energy regeneration motor 26 is preferably operated when the electromagnetic valve 49 for direction control and flow rate control is in the right chamber in FIG. That is, when the boom is lowered, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 26 is caused by the boom's own weight by the return fluid from which the head side force of the boom cylinder 8bmc is also discharged. It is desirable to operate with a margin.
  • the stick control circuit 46 is a solenoid that performs direction control and flow rate control on the working fluid supplied via the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight travel valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • a solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between both working fluid supply / discharge passages 63, 64, and this solenoid valve 65 is switched to the check valve position when the stick is lowered. By controlling, the rod side chamber force of the stick cylinder 8stc is regenerated into the head side chamber.
  • the packet control circuit 47 includes a solenoid valve 67 that controls the direction and the flow rate of the working fluid supplied through the bucket cylinder working fluid supply passage 66 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 68, 69 of the electromagnetic valve 67 are communicated with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • a stick-to-boom circuit communication passage 71 that connects them, and this stick 'the circuit between the booms.
  • the inter-communication passage 71 there is a position and flow that allows a one-way flow to the head side of the boom cylinder 8bmc.
  • Stick 'displaced between the blocking position' and 'boom solenoid valve 72 is provided
  • inter-circuit communication passage 73 Between the working fluid supply passage 48 for the boom cylinder and the working fluid supply passage 61 for the stick cylinder, there is provided an inter-circuit communication passage 73 between the packets' sticks communicating between them.
  • a solenoid valve 74 between the packets' sticks each having a position that enables one-way flow from the boom cylinder working fluid supply passage 48 to the stick cylinder 8stc and a blocking position. It has been.
  • the operation to the bucket cylinder 8bkc is in the working fluid supply passage 48 for the boom cylinder and between the branching portion of the working fluid supply passage 66 for the bucket cylinder and the junction of the boom assist pump 84as force.
  • a solenoid valve 89 between the bucket and the boom that is displaced between a position that enables fluid to be supplied to the boom cylinder 8bmc as a one-way flow, a position that blocks the flow, and a communication position that allows bidirectional flow is provided. ! /
  • Solenoid valves 53, 54, 65, 72, 74, 89 are switching valves having a flow rate adjusting function with a built-in check valve.
  • Solenoid valves 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74, 86s, 89 are solenoids proportionally controlled by a controller not shown And a return spring (not shown), respectively, and the displacement is controlled to a position where the solenoid exciting force and the spring restoring force are balanced.
  • the fluid pressure actuator control circuit 25 controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the traveling motors 2trL and 2trR, the boom cylinder 8bmc, the stick cylinder 8stc and the bucket cylinder 8bkc.
  • the clutch 88 When the clutch 88 is disengaged, power is efficiently input from the energy regenerative motor 26 operated by the return fluid discharged from the boom cylinder 8bmc to the unloaded boom electric motor / generator 87.
  • the generated electric power can be stored in the battery 23 of the hybrid drive unit 10, and when the clutch 88 is connected, the electric motor for the boom that functions as an electric motor by the electric power from the battery 23 of the hybrid drive unit 10 can be used.
  • the boom assist pump 84as is driven by the generator 87, and the boom It can supply working fluid to da 8bmc Therefore, even in the open circuit, the energy of the return fluid discharged from the boom cylinder 8bmc can be regenerated effectively.
  • the return fluid discharged from the boom cylinder 8bmc to the return fluid passage 55 is divided into one return passage 56 and the other return passage 57, and the divided flow ratio is set to the flow ratio control valve 5 8.
  • the energy regenerative motor 26 is operated by one return fluid whose flow rate is controlled by the flow rate control valves 58, 59.
  • the energy regenerative motor 26 drives the electric motor generator 87 for the boom. Since electric power is supplied to the battery 23 of the hybrid drive device 10, a shock is generated by gradually increasing the flow ratio of the flow diverted to the energy regeneration motor 26 from the time when the return fluid from the boom cylinder 8bmc is generated. In addition to preventing sudden fluctuations in the load on the boom cylinder 8bmc, stable operation of the boom cylinder 8bmc can be obtained.
  • the flow rate ratio of the return fluid discharged to the boom cylinder 8bmc to the energy regeneration motor 26 side is gradually increased.
  • the energy regenerative motor 26 can smoothly absorb the energy of the return fluid and suppress the sudden load fluctuation on the head side of the boom cylinder 8bmc, thereby stabilizing the weight drop operation of the boom 8bm.
  • the flow ratio control valves 58 and 59 can be installed by separating one solenoid valve 58 and the other solenoid valve 59 in any place in one return passage 56 and the other return passage 57, respectively.
  • the flow rate ratio and flow rate of the return fluid flowing to the energy regeneration motor 26 side can be freely controlled by individually controlling the opening degree of one return passage 56 and the other return passage 57 independently of each other. .
  • the turning control circuit 28 causes the turning electric motor / generator 4sw to stop. Can be operated as a generator to brake the turning of the upper turning body 4
  • the electric power generated from the swivel electric generator 4sw can be efficiently recovered in the accumulator 23 of the hybrid drive unit 10 together with the electric power generated from the boom electric motor / generator 87 driven by the energy regeneration motor 26. It can be effectively regenerated as the pump power of the hybrid drive unit 10.
  • the electromagnetic valve 89 between the packets' boom is provided in the working fluid supply passage 48 for the boom cylinder, by opening the electromagnetic valve 89 to the one-way flow position, the bucket from one main pump 17A
  • the working fluid supply amount to the cylinder 8bkc can be supplied to the boom cylinder 8bmc via the solenoid valve 89 and merged with the working fluid supply amount from the boom assist pump 84as, especially the left chamber of the directional control solenoid valve 49.
  • the boom up operation by the boom cylinder 8bmc can be accelerated, workability can be improved, and this solenoid valve 89 is closed. By doing so, it is possible to secure a high pressure in the bucket cylinder 8bkc.
  • the boom system, the packet system, and the stick system can be separated from each other, and the pressure can be controlled separately.
  • the generation of high pressure in the bucket cylinder 8bkc can be secured.
  • the main pumps 17A and 17B can be downsized.
  • the stick 'working fluid supply passage 61 and the boom cylinder 8bmc head side communicate with the stick' the boom's solenoid valve 72 is provided in the inter-circuit communication passage 71 between the booms.
  • the solenoid valve 89 passes through the solenoid valve 89 from the main pump 17A, and then merges with the working fluid supplied from the boom assist pump 84as to provide electromagnetic control for direction control.
  • the boom control circuit 45 can be disconnected from the main pumps 17A and 17B by closing the solenoid valves 72 and 89 to the shut-off position.
  • the combination of the switching states of the solenoid valves 72, 74, 89 increases the degree of freedom of the combination and makes the system configuration flexible.
  • the fuel efficiency of the engine 11 can be improved by the hybrid system.
  • a clutch 12 for connecting and disconnecting the rotational power output from the engine 11 is connected to the engine 11, and the input shaft of the power transmission device 14 is connected to the clutch 12. 13 is connected, and two variable displacement main pumps 17A and 17B are connected to the output shaft 15 of the power transmission device 14.
  • These main pumps 17A and 17B are driven by the engine 11 on the input / output shaft 21 of the power transmission device 14 in a parallel relationship with the engine 11 to function as a generator and receive power supply.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • On this electric generator 22 This is connected to the motor / generator controller 22c such as an inverter.
  • the electric generator generator 22c stores electric power supplied from the electric generator 22 functioning as a generator via an electric storage controller 23c such as a converter and also functions as an electric motor.
  • a capacitor 23 for supplying power to the machine 22 is connected.
  • the capacitor 23 is a battery or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and rotates continuously variable on the output shaft 15 by a control signal from an external force. Output is possible.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the electric power recovered from the electric motor / generator 87 for the boom driven by the energy regenerative motor 26 through the generator controller 87c. Is stored in the battery 23.
  • the pump passages 31, 32 connected to the discharge ports of the main pumps 17A, 17B are the electromagnetic passages provided in the bypass passage returning to the tank 24. It is connected to the solenoid valves 33 and 34 that operate as proportional valves and is connected to the solenoid valve 35 that operates as a travel straight valve!
  • the solenoid valves 33 and 34 function as bypass valves.
  • the pump passage 31 is controlled by a control signal from the controller.
  • 32 is controlled to the fully open position communicating with the tank 24, and the operator is displaced to the closed position in proportion to the magnitude of the operation signal for operating the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc.
  • the solenoid valve 35 can supply working fluid to the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc from the two main pumps 17A, 17B force at the left working position shown in FIG.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the work pump control circuit 37 for controlling the working fluid supplied to the work actuators 8bmc, 8stc, 8bkc for operating the work device 8 from the main pumps 17A, 17B.
  • the traveling control circuit 36 is an electromagnetic that controls the direction and the flow rate of the working fluid supplied via the traveling motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the work device control circuit 37 includes a boom control circuit 45 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the boom cylinder 8bmc, and a main device of the hybrid drive device 10.
  • the boom control circuit 45 includes a solenoid valve 49 that controls the direction and flow rate of the working fluid supplied through the boom cylinder working fluid supply passage 48 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 51 and 52 of the electromagnetic valve 49 are communicated with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • a solenoid valve 53 functioning as a fall prevention valve is interposed in the head side working fluid supply / discharge passage 51.
  • the solenoid valve 53 is switched to the check valve position on the left side to control the boom 8bm. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc is provided, and one return passage 56 of the return fluid passage 55 and the other return passage are provided.
  • 57 is provided with flow ratio control valves 58 and 59 for controlling the flow ratio divided into the return passages 56 and 57.
  • the flow rate control valves 58 and 59 are provided with the energy regeneration.
  • One solenoid valve 58 for flow control provided in one return passage 56 having the motor 26 and the other for the flow control provided in the other return passage 57 branched upstream of the one solenoid valve 58. Formed by the other solenoid valve 59.
  • Boom cylinder working fluid supply passage 48 for supplying the working fluid from the main pump 17A of the hybrid drive device 10 to the boom cylinder 8bmc Boom assist pump for assisting the flow rate of the working fluid 84as force Boom assist working fluid Connected via supply passage 85.
  • the energy regeneration motor 26 provided in one return passage 56 through which the return fluid discharged from the boom cylinder 8bmc passes is driven by the energy regeneration motor 26 to store the battery 23 of the hybrid drive device 10.
  • a boom electric generator 87 that functions as a generator that supplies electric power to the battery and functions as an electric motor by the electric power supplied from the capacitor 23 is connected to the boom electric generator 87 through a clutch 88. Connected to boom assist pump 84as.
  • the clutch 88 transmits power to the boom assist pump 84as from the boom electric generator 87 functioning as an electric motor, and disconnects the boom electric motor / generator 87 functioning as a generator from the boom assist pump 84as.
  • the rotational speed of the energy regenerative motor 26 to be operated is controlled by the amount of return fluid in one of the return passages 56 whose flow rate is controlled by the flow rate control valves 58 and 59, and this energy regenerative motor 26 Electric power is supplied to and stored in the battery 23 of the hybrid drive device 10 by the driven electric motor / generator 87 for the boom.
  • the energy regeneration motor 26 is preferably operated when the electromagnetic valve 49 for direction control and flow rate control is in the right ventricle in FIG. That is, when the boom is lowered, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 26 is caused by the boom's own weight by the return fluid from which the head side force of the boom cylinder 8bmc is also discharged. It is desirable to operate with a margin.
  • the control circuit 46 for the stick is an electromagnetic that controls the direction and the flow rate of the working fluid supplied through the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight travel valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • both working fluid A solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between the supply and discharge passages 63 and 64. This solenoid valve 65 is controlled to be switched to the check valve position when the stick 'in' is lowered. Rod side chamber force of cylinder 8stc The discharged return fluid is regenerated to the head side chamber.
  • the packet control circuit 47 includes a solenoid valve 67 that controls the direction and the flow rate of the working fluid supplied through the bucket cylinder working fluid supply passage 66 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 68, 69 of the electromagnetic valve 67 are communicated with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • inter-circuit communication passage 73 Between the working fluid supply passage 48 for the boom cylinder and the working fluid supply passage 61 for the stick cylinder, there is provided an inter-circuit communication passage 73 between the packets' sticks communicating between them.
  • a solenoid valve 74 between the packets' sticks each having a position that enables one-way flow from the boom cylinder working fluid supply passage 48 to the stick cylinder 8stc and a blocking position. It has been.
  • the operation to the bucket cylinder 8bkc is in the working fluid supply passage 48 for the boom cylinder and between the branching portion of the working fluid supply passage 66 for the bucket cylinder and the junction of the boom assist pump 84as force.
  • a packet 'boom solenoid valve 89 is provided which is displaced between a position where fluid can be supplied to the boom cylinder 8bmc as a one-way flow and a position where the flow is interrupted.
  • a turning control circuit 91 is provided separately from the fluid pressure actuator control circuit 25.
  • the turning control circuit 91 controls the working fluid supplied to the turning motor 4swh that drives the upper turning body 4 to turn through the turning speed reduction mechanism 4gr.
  • the turning control circuit 91 includes a closed circuit 92, 93 of the turning motor 4swh provided with a solenoid valve 94 as a directional control valve that also has a flow rate control function. 93 Is connected to the rotary pump motor 95.
  • the swiveling pump motor 95 functions as a pump that supplies the working fluid to the swiveling motor 4swh, and also functions as a fluid pressure motor by the working fluid discharged from the swirling motor 4swh.
  • the solenoid valve 94 is a throttle switching valve function that adjusts the opening between a neutral position that closes between the swing pump motor 95 and the swing motor 4swh and a fully open position for right rotation and left rotation.
  • a turning electric motor generator 96 is connected to the turning pump 'motor 95.
  • This turning electric motor 'generator 96 is connected to a turning electric' generator controller 96c such as an inverter, and this turning electric 'generator controller 96c is connected to the capacitor 23 of the hybrid drive device 10. It has been.
  • the turning electric motor / generator 96 is a turning pump that functions as a fluid pressure motor when the upper turning body 4 is turned and braked. Power generation that is driven by the motor 95 and supplies power to the capacitor 23 of the hybrid drive device 10. In addition to functioning as a motor, the electric power supplied from the capacitor 23 functions as an electric motor that drives the turning pump motor 95 as a pump.
  • the battery 23 stores the electric power supplied from the turning electric motor / generator 96 functioning as the generator and supplies the electric power to the turning electric motor / generator 96 functioning as the electric motor.
  • a working fluid replenishment pump 99 as a working fluid replenishing means for replenishing the working fluid is connected to the pipe between the motor 95 and the solenoid valve 94.
  • Solenoid valves 53, 54, 65, 72, 74, 89, 98, 102 are switching valves having a flow rate adjusting function incorporating a check valve.
  • Various solenoid valves 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74, 89, 94, 98, 102 are proportional to the controller (not shown)
  • a solenoid to be controlled and a return spring (not shown) are provided, respectively, and the displacement is controlled to a position where the solenoid exciting force and the spring restoring force are balanced.
  • the solenoid valve 94 is brought close to the neutral position and the communication passage solenoid valve 98 is flown in one direction;
  • the electric motor for swivel that operates is driven by the generator 96 as a pump for the swivel pump and the motor 95.
  • the motor 95 is connected to the working fluid replenishment pump 99 while receiving the replenishment of the working fluid.
  • the working fluid can be discharged to the external communication passage 97 via 98, and the working fluid can be directly supplied to the fluid pressure actuator control circuit 25 of the lower traveling body 2 and the working device 8 that require the working fluid.
  • the fluid pressure actuator control circuit 25 controls the working fluid supplied from the main pumps 17A, 17B of the hybrid drive device 10 to the travel motors 2trL, 2trR, the boom cylinder 8bmc, the stick cylinder 8stc, and the bucket cylinder 8bkc.
  • the clutch 88 is disengaged, power is efficiently input from the energy regenerative motor 26 operated by the return fluid discharged from the boom cylinder 8bmc to the unloaded boom electric motor / generator 87.
  • the generated electric power can be stored in the battery 23 of the noble drive device 10, and the energy of the return fluid discharged from the boom cylinder 8bmc can be effectively regenerated.
  • the boom assist pump 8 4as is driven by the boom motor 'generator 87 that functions as an electric motor by the electric power from the capacitor 23 of the hybrid drive device 10, and this boom is driven. Since the working fluid can be supplied from the assist pump 84as to the boom cylinder 8bmc, in addition to the main pumps 17A and 17B and the turning pump motor 95 functioning as a pump, the boom assist pump 84as can also supply the working fluid to the boom cylinder 8bmc. It is possible to supply a large amount of working fluid from four pumps, and the work speed can be further improved by the high-speed gear that further raises the boom.
  • the return fluid discharged from the boom cylinder 8bmc to the return fluid passage 55 is divided into one return passage 56 and the other return passage 57, and the divided flow ratio is set to the flow ratio control valves 58, 5
  • the energy regeneration motor 26 is operated by one return fluid controlled by the flow rate control valves 58 and 59 and controlled by the flow ratio control valves 58 and 59. Since the electric machine 87 is driven and electric power is supplied to the battery 23 of the hybrid drive device 10, the flow rate ratio diverted to the energy regeneration motor 26 side is gradually increased from the time when the return fluid from the boom cylinder 8bmc is generated. As a result, it is possible to prevent the occurrence of shock and to suppress the sudden load fluctuation of the boom cylinder 8bmc, thereby obtaining stable operation of the boom cylinder 8bmc.
  • the flow rate ratio of the return fluid discharged to the energy regeneration motor 26 side of the head side force of the boom cylinder 8bmc is gradually increased.
  • the energy regenerative motor 26 can smoothly absorb the energy of the return fluid and suppress the sudden load fluctuation on the head side of the boom cylinder 8bmc, thereby stabilizing the weight drop operation of the boom 8bm.
  • the flow ratio control valves 58 and 59 can be installed by separating one solenoid valve 58 and the other solenoid valve 59 in any place in one return passage 56 and the other return passage 57, respectively.
  • the flow rate ratio and flow rate of the return fluid flowing to the energy regeneration motor 26 side can be freely controlled by individually controlling the opening degree of one return passage 56 and the other return passage 57 independently of each other. .
  • the electromagnetic valve 89 between the packets' booms is provided in the working fluid supply passage 48 for the boom cylinder, the amount of working fluid supplied from the main pump 17A and the boom can be increased by opening the electromagnetic valve 89. Combined with the amount of working fluid supplied from the assist pump 84as, it can be supplied to the boom cylinder 8bmc, and the boom cylinder 8bmc can be used for high-speed boom-up operation, improving workability and closing the solenoid valve 89. High pressure in bucket cylinder 8bkc can be secured.
  • the stick 'boom electromagnetic valve 72 is provided in the stick' boom circuit communication passage 71 between the stick cylinder working fluid supply passage 61 and the boom cylinder 8bmc head side, By controlling this solenoid valve 72 to the one-way flow position, in addition to the working fluid supplied from the main pump 17A and boom assist pump 84as to the head side of the boom cylinder 8bmc via the left chamber of the solenoid valve 49 The working fluid from the other main pump 17B can also be supplied to the head side of the boom cylinder 8bmc via the electromagnetic valve 72, and the boom up operation by the boom cylinder 8bmc can be achieved at high speed, so that workability can be improved.
  • By closing the solenoid valve 72 By closing the solenoid valve 72, the amount of working fluid supplied from the other main pump 17B to the stick cylinder 8stc can be secured.
  • the electromagnetic valve 74 between the packet 'sticks is provided in the inter-circuit communication path 73 between the packet' sticks', the electromagnetic valve 74 is opened to the one-way flow position and the electromagnetic valves 72 and 89 are closed.
  • the working fluid supplied from one main pump 17A to the boom cylinder 8bmc can be merged with the working fluid supplied from the other main pump 17B to the stick cylinder 8stc, and the high speed of the stick cylinder 8stc can be achieved.
  • the inter-pump solenoid valve 102 is provided in the inter-pump communication passage 101, when the boom up flow rate is not required, open the solenoid valve 102 to operate the boom assist pump 84as working fluid.
  • the discharge amount can be merged with the working fluid supply amount from one main pump 14A, so that workability can be improved and the solenoid valve 102 can be closed to secure the working fluid supply amount to the boom cylinder 8bmc. .
  • the boom control circuit 45 can be completely disconnected from the main pumps 17A, 17B by closing the solenoid valves 72, 89, 102 to the shut-off position.
  • the solenoid valve 35 for straight travel is in the straight travel position on the right side, the main valve on one side Since the pump 17B supplies an equal flow rate divided by 2 to a pair of travel motors 2trL, 2trR, it is possible to secure straight travel of the work machine, and the straight travel solenoid valve 35 is located on the left working position or If the solenoid valve 49, 62, 67 is in the neutral position and no working fluid is supplied to the work actuators 8bmc, 8stc, 8bkc when in the high-speed travel position, the communication position of the solenoid valve 102 and the boom assist pump 84as The replenishment flow rate that is replenished through the communication position of the solenoid valve 74 can be merged with the discharge flow rate from one main pump 17A and the other main pump 17B to the pair of travel motors 2trL and 2trR. In addition to ensuring the required working fluid flow rate, the main pumps 17A and 17B can be downsized.
  • the combination of the switching states of the solenoid valves 72, 74, 89, 98, 102 increases the degree of freedom of the combination and makes the system configuration flexible.
  • the fuel efficiency of the engine 11 can be improved by the hybrid system.
  • a clutch 12 for connecting and disconnecting rotational power output from the engine 11 is connected to the engine 11, and the input shaft of the power transmission device 14 is connected to the clutch 12. 13 is connected, and two variable displacement main pumps 17A and 17B are connected to the output shaft 15 of the power transmission device 14.
  • These main pumps 17A and 17B are driven by the engine 11 to function as a generator and are supplied with electric power to the input / output shaft 21 of the power transmission device 14 in a parallel relationship with the engine 11.
  • An electric motor / generator 22 that functions as an electric motor is connected.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to a motor / generator controller 22c such as an inverter.
  • the electric generator / generator controller 22c stores the electric power supplied from the electric generator / generator 22 that functions as the generator via the electric storage controller 23c such as a converter, and the electric generator that functions as the electric motor.
  • a capacitor 23 for supplying power to 22 is connected.
  • the capacitor 23 is a notch or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and is continuously variable on the output shaft 15 by a control signal of an external force. The rotation can be output.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the energy regenerative motor 26 is connected to a no-branch type drive device 10 via a regenerative clutch 111 and a rotary shaft 112 that intermittently transmit rotation.
  • the electric generator / generator 22 is connected.
  • the electric power of the hybrid drive device 10 is operated by the electric power of the hybrid drive device 10.
  • the turning electric motor / generator 4sw is operated as an electric motor and the upper rotating body 4 generates electric power during the turning braking.
  • Turning electric motor / generator operated as a machine 4sw force A turning control circuit 28 for collecting the generated electric power in the capacitor 23 is installed.
  • the turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning deceleration mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter. In addition, it functions as an electric motor by the electric power supplied from the electric storage device 23 of the hybrid drive device 10, and functions as a generator when it is forcibly rotated by the inertial turning force, and collects electric power in the electric storage device 23.
  • the pump passages 31, 32 connected to the discharge ports of the main pumps 17A, 17B are the electromagnetic passages provided in the bypass passage returning to the tank 24. It is connected to the solenoid valves 33 and 34 that operate as proportional valves and is connected to the solenoid valve 35 that operates as a travel straight valve!
  • the solenoid valves 33 and 34 function as bypass valves.
  • the pump passage 31 is controlled by a control signal from the controller.
  • 32 is controlled to the fully open position communicating with the tank 24, and the operator is displaced to the closed position in proportion to the magnitude of the operation signal for operating the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc.
  • the solenoid valve 35 can supply working fluid to the fluid pressure actuators 2trL, 2trR, 8bmc, 8stc, 8bkc from the two main pumps 17A, 17B force at the left working position shown in FIG. Is switched to the travel straight travel position, the working fluid equally divided into the two travel motors 2tr L and 2trR is supplied from only one main pump 17B, and straight travel is enabled.
  • the fluid pressure actuator control circuit 25 includes a travel control circuit 36 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the travel motors 2trL and 2trR, and the hybrid drive device 10.
  • the work pump control circuit 37 for controlling the working fluid supplied to the work actuators 8bmc, 8stc, 8bkc for operating the work device 8 from the main pumps 17A, 17B.
  • the traveling control circuit 36 is a solenoid that performs direction control and flow rate control on the working fluid supplied through the traveling motor working fluid supply passages 41 and 42 drawn from the electromagnetic valve 35 that operates as a straight traveling valve. Valves 43 and 44 are provided.
  • the work device control circuit 37 includes a boom control circuit 45 that controls the working fluid supplied from the main pumps 17A and 17B of the hybrid drive device 10 to the boom cylinder 8bmc, and a main device of the hybrid drive device 10.
  • the boom control circuit 45 includes a solenoid valve 49 that controls the direction and the flow rate of the working fluid supplied through the boom cylinder working fluid supply passage 48 drawn from the solenoid valve 35 that operates as a straight traveling valve.
  • the working fluid supply / discharge passages 51 and 52 of the electromagnetic valve 49 are communicated with the head side chamber and the rod side chamber of the boom cylinder 8bmc.
  • the head side working fluid supply / discharge passage 51 is provided with an electromagnetic valve 53 that functions as a fall prevention valve.
  • the electromagnetic valve 53 is controlled to be switched to the check valve position on the left side of the boom 8bm. Prevents descent due to its own weight.
  • an electromagnetic valve 54 functioning as a regeneration valve is provided between both the working fluid supply / discharge passages 51 and 52, and this solenoid valve 54 is controlled to be switched to the check valve position when the boom is lowered, so that the head of the boom cylinder 8bmc A part of the return fluid from which the side chamber force is also discharged is regenerated into the mouth side chamber.
  • a return fluid passage 55 for diverting the return fluid discharged from the boom cylinder 8bmc.
  • the return passage 57 is provided with flow ratio control valves 58 and 59 for controlling the flow ratio of the flow divided into the return passages 56 and 57.
  • the flow rate control valves 58 and 59 are branched on one upstream side of the one solenoid valve 58 and one solenoid valve 58 for flow control provided in one return passage 56 having the energy regeneration motor 26. It is formed by the other solenoid valve 59 for controlling the flow rate provided in the other return passage 57.
  • the rotational speed of the energy regeneration motor 26 to be operated is controlled by the amount of return fluid in one return passage 56 whose flow rate is controlled by the flow rate control valves 58 and 59.
  • the energy regeneration motor 26 is preferably operated when the electromagnetic valve 49 for direction control and flow rate control is in the right chamber in FIG. That is, when the boom is lowered, the head side working fluid supply / discharge passage 51 of the boom cylinder 8bmc communicates with the return fluid passage 55, and the energy regeneration motor 26 is caused by the boom's own weight by the return fluid from which the head side force of the boom cylinder 8bmc is also discharged. It is desirable to operate with a margin.
  • the stick control circuit 46 is a solenoid that performs direction control and flow rate control on the working fluid supplied through the working fluid supply passage 61 for the stick cylinder drawn from the solenoid valve 35 that operates as a straight travel valve.
  • a valve 62 is provided, and the working fluid supply / discharge passages 63 and 64 of the electromagnetic valve 62 communicate with the head side chamber and the rod side chamber of the stick cylinder 8stc.
  • a solenoid valve 65 that functions as a regeneration valve from the rod side to the head side is provided between both working fluid supply / discharge passages 63, 64, and this solenoid valve 65 is switched to the check valve position when the stick is lowered. By controlling, the rod side chamber force of the stick cylinder 8stc is regenerated into the head side chamber.
  • the packet control circuit 47 includes a solenoid valve 67 that controls the direction and flow rate of the working fluid supplied through the bucket cylinder working fluid supply passage 66 drawn from the solenoid valve 35 that operates as a straight travel valve.
  • the working fluid supply / discharge passages 68, 69 of the electromagnetic valve 67 are communicated with the head side chamber and the rod side chamber of the bucket cylinder 8bkc.
  • Solenoid valves 53, 54, 65, 72, and 74 are switching valves having a flow rate adjusting function incorporating a check valve.
  • Solenoid valves 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74 are solenoids that are proportionally controlled by a controller (not shown) and return Each is equipped with a spring (not shown), and the displacement is controlled to a position where the solenoid exciting force and the spring restoring force are balanced.
  • the boom control circuit 45 diverts the return fluid discharged from the boom cylinder 8bmc through the return fluid passage 55, and controls the flow rate ratio by the flow rate control valves 58 and 59.
  • the energy regenerative motor 26 is operated by one return fluid whose flow rate is controlled by the quantity ratio control valves 58 and 59, and the energy regenerative motor 26 uses the regenerative clutch 111 to drive the hybrid drive device 10. Since the generator 22 is driven directly, the momentary force when the return fluid from the boom cylinder 8bmc is generated. By gradually increasing the flow ratio divided to the energy regenerative motor 26 side, it is possible to prevent the occurrence of shock and the boom cylinder 8bmc Suppressing sudden load fluctuations in this way, stable operation of the boom cylinder 8bmc can be obtained.
  • the flow rate ratio of the return fluid discharged to the energy regeneration motor 26 side of the boom cylinder 8bmc is gradually increased.
  • the energy regenerative motor 26 can smoothly absorb the energy of the return fluid and suppress the sudden load fluctuation on the head side of the boom cylinder 8bmc, thereby stabilizing the weight drop operation of the boom 8bm.
  • the flow ratio control valves 58 and 59 can be installed by separating one solenoid valve 58 and the other solenoid valve 59 in any place in one return passage 56 and the other return passage 57, respectively. ,one
  • the flow rate ratio and flow rate of the return fluid flowing to the energy regeneration motor 26 side can be freely controlled by individually controlling the opening degrees of the return passage 56 and the other return passage 57 independently of each other.
  • the energy regenerative motor 26 operated by the return fluid discharged from the boom cylinder 8bmc of the fluid pressure actuator control circuit 25 is hybridized via the regenerative clutch 111. Since the electric motor / generator 22 is directly driven by the hydraulic drive device 10, the generator in the fluid pressure actuator control circuit 25 does not need to convert surplus energy of the working fluid into electric power in the fluid pressure actuator control circuit 25. It can be made unnecessary and energy efficiency can be improved.
  • the regeneration clutch 111 is disconnected to prevent the energy regeneration motor 26 from becoming a load on the motor / generator 22. Therefore, the electric motor / generator 22 for the boom functioning as an electric motor can be operated efficiently by the electric power from the battery 23.
  • the turning control circuit 28 causes the turning electric motor / generator 4sw to stop.
  • the boom control valve 74 is controlled by controlling the solenoid valve 74 between the booms to the cut-off position.
  • the boom system and the packet system can be separated from the stick system, and the pressure can be controlled separately.
  • the high voltage required in the packet system can be secured.
  • the boom-down return fluid passage 55 is branched, one electromagnetic valve 58 is provided in one return passage 56, and the other electromagnetic valve is provided in the other return passage 57. 59 is provided in parallel, and one solenoid valve 58 is connected to the tank 24 via an energy regeneration motor 26 (86 in FIG. 4) for regenerating the energy of the return fluid during boom down, and the other solenoid valve 59
  • the flow rate balance is controlled by both solenoid valves 58 and 59, so that the energy regeneration motor 26 of the return fluid is smoothed so as not to shock the energy regeneration motor 26 of the return fluid.
  • a rapid back pressure change of the boom cylinder 8bmc can be prevented to ensure a smooth boom lowering operation.
  • Fig. 8 shows a modification of the hybrid drive device 10.
  • the engine 11 is connected to a first clutch 12a for intermittently connecting the rotational power output from the engine 11, and this first drive is connected.
  • the input shaft 13 of the power transmission device 14 is connected to one clutch 12a, and a plurality of variable capacity main pumps 17A and 17B are connected in series to the output shaft 15 of the power transmission device 14.
  • the engine 11 is connected in series with a starter motor generator 18 that functions as a generator driven by the engine 11 and also functions as an electric motor that starts the engine 11 when supplied with electric power. Yes.
  • the starter motor generator 18 is connected to a starter motor generator controller 18c such as an inverter.
  • the second clutch 12b is connected in parallel to the first clutch 12a to the input / output shaft 21 of the power transmission device 14, and the main pumps 17A and 17B are connected to the engine 11 in parallel with the engine 11.
  • an electric motor / generator 22 that is driven by the engine 11 to function as a generator and also receives electric power to function as an electric motor.
  • the motor power of the motor / generator 22 is set smaller than the engine power.
  • the motor / generator 22 is connected to an electric / generator controller 22c such as an inverter.
  • the starter motor generator controller 18c and the electric 'generator controller 22c are supplied from the starter motor generator 18 and the electric' generator 22 that function as a generator via a capacitor controller 23c such as a converter. Starter that stores electric power and functions as an electric motor Motor generator 18 and electric 'connected to capacitor 23 that supplies power to generator 22
  • the capacitor 23 is a battery or a capacitor.
  • the power transmission device 14 in the hybrid drive device 10 incorporates a continuously variable transmission mechanism such as a toroidal type or a planetary gear type, and rotates continuously variable on the output shaft 15 by a control signal of an external force. Output is possible.
  • a continuously variable transmission mechanism such as a toroidal type or a planetary gear type
  • the main pumps 17A and 17B in the hybrid drive device 10 supply a working fluid such as working oil stored in the tank 24 to the fluid pressure actuator control circuit 25.
  • An energy regenerative motor 26 is provided in the fluid pressure actuator control circuit 25, and the electric power recovered from the generator 27 driven by the energy regenerative motor 26 is stored in the capacitor 23.
  • the electric power of the power storage device 23 of the hybrid type drive device 10 is operated by the supplied electric power.
  • a turning control circuit 28 for collecting the generated electric power in the capacitor 23 is installed.
  • the turning control circuit 28 includes a turning electric motor / generator 4sw that drives the upper turning body 4 to turn through a turning reduction mechanism 4gr, and a turning electric generator / generator controller 4swc such as an inverter. In addition, it functions as an electric motor by the electric power supplied from the electric storage device 23 of the hybrid drive device 10, and functions as a generator when it is forcibly rotated by the inertial turning force, and collects electric power in the electric storage device 23.
  • the speed of the engine 11, the on / off state of the first clutch 12a, the speed change of the power transmission device 14 and the like are controlled by signals output from the controller 29.
  • the engine 11 and the starter motor generator 18 are connected in series (series system), and the engine 11 and the electric generator 22 are connected in parallel to the power transmission device 14 (parallel system). ), These series system and parallel system are connected to the first clutch 12a provided between the engine 11 and the power transmission device 14 and the electric generator 22 and the power transmission device 14 according to the work situation.
  • the engine power is stored in the capacitor 23 via the starter motor generator 18, and in the parallel system, the engine power is electrically It is stored in the condenser 23 via the generator 22 So, depending on the working situation, you can take advantage of both of them.
  • both the clutches 12a and 12b are connected, and the starter motor generator 18 and the motor 'generator 22 function as an electric motor.
  • the motor power is input to the crankshaft of the engine 11 and the motor power from the motor / generator 22 is input into the power transmission device 14 to drive the main pumps 17A and 17B with these three powers.
  • the starter motor generator 18 functions as a generator, and the starter motor generator 18 power is also If the generated power is stored in the capacitor 23 and the engine power cannot satisfy the power required by the main pumps 17A and 17B, the starter motor generator 18 is caused to function as an electric motor and the engine 11 is operated as a starter motor generator. Add power. If the engine power still does not meet the power required by the main pumps 17A and 17B, connect both clutches 12a and 12b to allow the parallel system motor / generator 22 to function as the motor. Add starter motor generator power and electric generator power.
  • the first clutch 12a provided between the engine 11 and the power transmission device 14 is disconnected, and the second clutch 12b is connected, so that the engine 11 is stopped in a quiet state. Therefore, the main pumps 17A and 17B can be driven by operating the generator 22 as an electric motor using the electric power stored in the capacitor 23, so that the work up to engine repair should the engine 11 fail. Also suitable for low noise work in urban areas or at night when engine noise is a problem.
  • the first clutch 12a is disconnected, the second clutch 12b is connected, and the engine 11 is operated when the main pumps 17A and 17B are driven using the electric generator 22 as an electric motor. If the starter motor generator 18 is driven as a generator, the capacitor 23 can be charged during operation. On the other hand, when the first clutch 12a is connected and the second clutch 12b is disconnected, the engine 11 can efficiently drive only the pump load without dragging the motor / generator 22.
  • the starter motor generator 18 and the electric motor / generator 22 function as a generator to increase engine power.
  • the starter motor generator 18 and the electric 'generator 22 are supplied to the starter motor generator 18 and the electric' generator 22 so that the capacitor 23 can be efficiently charged.
  • the starter motor generator 18 connected in series to the engine 11 functions as a motor for starting the engine, and is a generator driven by the engine 11 when the engine load is small.
  • the starter motor generator 18 can be generated independently of the hydraulic system power by disengaging the first clutch 12a, the battery 23 together with the motor / generator 22 can be efficiently charged. You can also.
  • the capacitor 23 stores the power supplied to the starter motor generator 18 and the electric generator 22 that function as a generator, and generates power driven by the energy regenerative motor 26 in the fluid pressure actuator control circuit 25. Since the electric power collected from the machine 27 is also stored, it is supplied with sufficient electric power and can be operated for a long time by the electric generator 22 when the engine is stopped.
  • the swing control circuit 28 causes the swing electric motor / generator 4sw to stop.
  • the present invention is also applicable to a power crane vehicle that is suitable for a hydraulic excavator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 流体圧アクチュエータからの戻り流体が有するエネルギをエネルギ回生モータにより円滑に吸収できるとともに流体圧アクチュエータの安定した動作が得られる流体圧回路を提供する。  ブーム用制御回路45の電磁弁49のタンク通路側に、ブームシリンダ8bmcから排出する戻り流体を分流する戻り流体通路55を設ける。戻り流体通路55の一方の戻り通路56および他方の戻り通路57に、これらの戻り通路56,57に分流する流量比を制御する流量比制御弁58,59を設ける。流量比制御弁58,59は、エネルギ回生モータ26を有する一方の戻り通路56に設けた流量制御用の一方の電磁弁58と、この一方の電磁弁58の上流側で分岐した他方の戻り通路57に設けた流量制御用の他方の電磁弁59とによって形成する。

Description

明 細 書
流体圧回路、エネルギ回生装置、作業機械の流体圧回路
技術分野
[0001] 本発明は、エネルギ回生モータを備えた流体圧回路、エネルギ回生装置、ブーム アシストポンプを有する作業機械の流体圧回路に関する。
背景技術
[0002] 油圧ショベルなどの作業機械の駆動装置は、エンジンにより駆動する発電機と、発 電機により発電した電力を蓄える蓄電器とを備えている。これらの発電機および蓄電 器の少なくとも一方力 供給した電力により作動する電動機または電動,発電機は、 ポンプまたはポンプ ·モータを作動する。例えば、ブームシリンダの駆動回路は、閉回 路中に、作動流体を供給するポンプ機能と作動流体の供給を受けて作動する流体 圧モータ機能とを兼備した両方向吐出型のポンプ'モータを設け、発電機または蓄 電器力も供給された電力により作動されてポンプ'モータを駆動する電動機機能とポ ンプ'モータにより駆動されて発電する発電機機能とを兼備した電動'発電機とを備 えている(例えば、特許文献 1参照)。
[0003] さらに、ポンプまたはポンプ ·モータ力 発生した作動流体圧により複数の作業装置 用の流体圧ァクチユエータを駆動する複数の駆動回路間に、作動流体を補充し合う 応援回路を設けた作業機械の駆動装置がある。これらの応援回路は、例えば油圧シ ョベルの掘削作業における掘削時は、必要流量の少な 、ブームシリンダの駆動回路 からスティックシリンダの駆動回路に作動油を補充でき、また、旋回持上時は、必要 流量の少な!/、バケツトシリンダの駆動回路から、流量を必要とするブームシリンダの 駆動回路に作動油を補充でき、さらに、旋回持下時は、必要流量の少ないバケツトシ リンダの駆動回路から、流量を必要とするスティックシリンダの駆動回路に作動油を 補充できるというものである(例えば、特許文献 1参照)。
特許文献 1 :特開 2004— 190845号公報 (第 7頁、第 16頁、図 1)
発明の開示
発明が解決しょうとする課題 [0004] 上記作業機械の駆動装置は、ブームシリンダの閉回路中にポンプ ·モータを設けた ので、このポンプ'モータは、流体圧モータとして機能する場合、ブームシリンダから の戻り流体の発生により急始動し、戻り流体の消滅により急停止するため、ショックが 発生するとともに、ポンプ'モータはブームシリンダにとって負荷となり、この負荷はポ ンプ.モータが停止状態にあるか作動状態にあるかによって変動するので、ブームシ リンダの動作が安定しない。
[0005] また、前記ポンプ ·モータと電動 ·発電機とを組合せたものは閉回路に限られ、流体 圧ァクチユエ一タカ 排出された戻り流体をタンクに戻す開回路には適用できない。
[0006] さらに、前記応援回路は、複数の流体圧ァクチユエータ間で作動流体を補充し合う ものであるが、作動流体の補充量が十分でない場合も生ずる。例えば、油圧ショベル のブームシリンダを伸長動作させてブームを上げるブームアップ動作では、大径のブ 一ムシリンダが要求する作動流体供給流量を得られず、作業速度が低下する場合が ある。
[0007] 一方、従来の走行系は、電動機により減速装置を介して履帯を駆動するので、この 走行系に対しては、作動流体を補充し合う応援回路を設けることができな 、。
[0008] 本発明は、このような点に鑑みなされたもので、流体圧ァクチユエータからの戻り流 体が有するエネルギをエネルギ回生モータにより円滑に吸収できるとともに流体圧ァ クチユエータの安定した動作が得られる流体圧回路を提供することを目的とする。ま た、開回路においても流体圧ァクチユエ一タカも排出された戻り流体が有するェネル ギを有効に回生できるエネルギ回生装置を提供することを目的とする。さらに、ブー ムシリンダのヘッド側に大流量の作動流体を供給できる作業機械の流体圧回路を提 供することを目的とする。カロえて、走行系にも十分な作動流体流量を供給できる作業 機械の流体圧回路を提供することを目的とする。
課題を解決するための手段
[0009] 請求項 1記載の発明は、流体圧ァクチユエータから排出される戻り流体が通る一方 の戻り通路と、この一方の戻り通路中に設けられ戻り流体が有するエネルギにより作 動されるエネルギ回生モータと、このエネルギ回生モータの上流側で一方の戻り通 路より分岐された他方の戻り通路と、一方の戻り通路での戻り流量と他方の戻り通路 での戻り流量との流量比を制御する流量比制御弁とを具備した流体圧回路である。
[0010] 請求項 2記載の発明は、請求項 1記載の流体圧回路における流量比制御弁が、一 方の戻り通路での戻り流量を制御する一方の電磁弁と、他方の戻り通路での戻り流 量を制御する他方の電磁弁とを具備したものである。
[0011] 請求項 3記載の発明は、請求項 1または 2記載の流体圧回路における流体圧ァク チュエータが、作業機械の機体に設けられた作業装置のブームを上下方向に回動 するブームシリンダであり、エネルギ回生モータは、ブームシリンダからの作動流体の 戻り通路中に設けられたものである。
[0012] 請求項 4記載の発明は、ポンプ力 供給された作動流体により作動する流体圧ァク チユエータと、この流体圧ァクチユエ一タカ 排出される戻り流体が有するエネルギ により作動されるエネルギ回生モータと、このエネルギ回生モータにより駆動されて蓄 電器に電力を供給する発電機として機能するとともに蓄電器から供給された電力に より電動機として機能する電動'発電機と、この電動'発電機が電動機として機能する ときは電動 '発電機力 ポンプに動力を伝えるとともに発電機として機能するときは電 動 ·発電機をポンプ力も切離すクラッチとを具備したエネルギ回生装置である。
[0013] 請求項 5記載の発明は、請求項 4記載のエネルギ回生装置における流体圧ァクチ ユエータが、作業機械の機体に設けられた作業装置のブームを上下方向に回動する ブームシリンダであり、エネルギ回生モータは、ブームシリンダからの作動流体の戻り 通路中に設けられたものである。
[0014] 請求項 6記載の発明は、複数のメインポンプ力 作動流体の供給をうけるブームシ リンダにより回動されるブーム、スティックシリンダにより回動されるスティックおよびバ ケットシリンダにより回動されるパケットが順次連結された作業装置を搭載した作業機 械の流体圧回路であって、一のメインポンプ力 ブームシリンダに作動流体を供給す るブームシリンダ用作動流体供給通路と、ブームシリンダ用作動流体供給通路から 分岐されてバケツトシリンダに作動流体を供給するバケツトシリンダ用作動流体供給 通路と、他のメインポンプからスティックシリンダに作動流体を供給するスティックシリ ンダ用作動流体供給通路と、一のメインポンプとともにブームシリンダ用作動流体供 給通路に作動流体を供給するブームアシストポンプと、ブームシリンダ用作動流体供 給通路中であってバケツトシリンダ用作動流体供給通路の分岐部とブームアシストポ ンプカもの合流部との間に設けられバケツトシリンダへの作動流体をブームシリンダ への一方向流れとして供給可能とする位置と流れを遮断する位置との間で変位され るパケット ·ブーム間の電磁弁と、スティックシリンダ用作動流体供給通路よりブームシ リンダのヘッド側に連通可能に設けられたスティック 'ブーム間の回路間連通通路と、 このスティック 'ブーム間の回路間連通通路中に設けられスティックシリンダへの作動 流体をブームシリンダのヘッド側への一方向流れとして供給可能な位置と流れを遮 断する位置との間で変位されるスティック ·ブーム間の電磁弁とを具備した作業機械 の流体圧回路である。
[0015] 請求項 7記載の発明は、複数のメインポンプ力 作動流体の供給をうけるブームシ リンダにより回動されるブームを有する作業装置を搭載した作業機械の流体圧回路 であって、一のメインポンプ力もブームシリンダに作動流体を供給するブームシリンダ 用作動流体供給通路と、このブームシリンダ用作動流体供給通路に一のメインボン プとともに作動流体を供給するブームアシストポンプと、このブームアシストポンプから 吐出された作動流体を一のメインポンプから吐出された作動流体と合流させる連通 位置と流れを遮断する位置とを有する一の電磁弁と、一のメインポンプから吐出され た作動流体を他のメインポンプから吐出された作動流体と合流させる連通位置と流 れを遮断する位置との間で変位される他の電磁弁と、走行用の 1対の走行モータと、 一のメインポンプおよび他のメインポンプと 1対の走行モータとの間を連通する通路 中に介在された走行直進弁とを具備し、この走行直進弁は、ブームアシストポンプか ら一の電磁弁の連通位置および他の電磁弁の連通位置を経て補充された補充流量 を一のメインポンプおよび他のメインポンプから 1対の走行モータへの吐出流量に合 流させる高速走行位置と、いずれかのメインポンプから 1対の走行モータに 2分され た等流量を供給する走行直進位置とを有する作業機械の流体圧回路である。
[0016] 請求項 8記載の発明は、請求項 6または 7記載の作業機械の流体圧回路において 、ブームシリンダ力 排出される戻り流体が有するエネルギにより作動されるエネルギ 回生モータと、このエネルギ回生モータにより駆動されて蓄電器に電力を供給する発 電機として機能するとともに蓄電器力 供給された電力により電動機として機能する 電動'発電機と、この電動'発電機が電動機として機能するときは電動'発電機からブ ームアシストポンプに動力を伝えるとともに発電機として機能するときは電動'発電機 をブームアシストポンプ力も切離すクラッチとを具備したものである。 発明の効果
[0017] 請求項 1記載の発明によれば、流体圧ァクチユエ一タカ 排出される戻り流体が通 る一方の戻り通路中にエネルギ回生モータを設け、このエネルギ回生モータを通過 する戻り流量と、エネルギ回生モータの上流側で一方の戻り通路より分岐された他方 の戻り通路での戻り流量との流量比を流量比制御弁により制御するので、流体圧ァ クチユエータからの戻り流体が発生した時点力 エネルギ回生モータ側に分流される 流量比を徐々に増カロさせることによってショックの発生を防止できるとともに、流体圧 ァクチユエータの急激な負荷変動を抑えることで、流体圧ァクチユエータの安定した 動作が得られる。
[0018] 請求項 2記載の発明によれば、一方の電磁弁と他方の電磁弁とを、一方の戻り通 路および他方の戻り通路の任意の場所にそれぞれ分離して設置できるとともに、一 方の戻り通路および他方の戻り通路の開度を相互に関連することなく個別に制御で きる。
[0019] 請求項 3記載の発明によれば、作業機械の機体に設けられた作業装置のブームが 自重落下する際に、ブームシリンダのヘッド側力 排出される戻り流体が有するエネ ルギをエネルギ回生モータにより円滑に吸収できるとともに、ブームシリンダのヘッド 側の負荷変動を抑えることで、ブームの自重落下動作を安定させることができる。
[0020] 請求項 4記載の発明によれば、クラッチを切離すことにより、流体圧ァクチユエータ 力 排出される戻り流体により作動されるエネルギ回生モータより、無負荷状態の電 動-発電機に動力を効率良く入力して発生した電力を蓄電器に蓄えることができると ともに、クラッチを接続したときは、蓄電器からの電力により電動機として機能する電 動'発電機によりポンプを駆動して、このポンプ力 流体圧ァクチユエータに作動流 体を供給できるので、開回路においても流体圧ァクチユエ一タカも排出された戻り流 体が有するエネルギを有効に回生できる。
[0021] 請求項 5記載の発明によれば、作業機械の機体に設けられた作業装置のブームが 自重落下する際に、ブームシリンダのヘッド側力 排出される戻り流体が有するエネ ルギをエネルギ回生モータおよび電動.発電機により吸収して蓄電器に蓄えることが できる。
[0022] 請求項 6記載の発明によれば、一のメインポンプ力 バケツトシリンダへの作動流体 をパケット 'ブーム間の電磁弁を経てブームシリンダに供給し、他のメインポンプから スティックシリンダへの作動流体をスティック ·ブーム間の電磁弁を経てブームシリンダ のヘッド側に供給するとともに、ブームアシストポンプ力 ブームシリンダに作動流体 を供給するので、ブームシリンダのヘッド側に大流量の作動流体を供給してブームァ ップ動作の高速ィ匕を図ることができ、作業性を向上できる。一方、各電磁弁を、流れ を遮断する位置に変位させることで、バケツトシリンダおよびスティックシリンダに要求 される所定の作動流体圧を確保できる。
[0023] 請求項 7記載の発明によれば、走行直進弁が走行直進位置にあるときは、 Vヽずれ 力のメインポンプから 1対の走行モータに 2分された等流量を供給するので、作業機 械の直進走行を確保でき、また、走行直進弁が高速走行位置にあるときは、ブーム アシストポンプから一の電磁弁の連通位置および他の電磁弁の連通位置を経て補 充された補充流量を、一のメインポンプおよび他のメインポンプから 1対の走行モータ への吐出流量に合流させることができるので、高速走行に必要な作動流体流量を確 保できるとともに、メインポンプの小型化を図れる。
[0024] 請求項 8記載の発明によれば、クラッチを切離すことにより、ブームシリンダから排 出される戻り流体により作動されるエネルギ回生モータより、無負荷状態の電動-発 電機に動力を効率良く入力して発生した電力を蓄電器に蓄えることができるとともに 、クラッチを接続したときは、蓄電器力もの電力により電動機として機能する電動 '発 電機によりブームアシストポンプを駆動して、このブームアシストポンプからブームシリ ンダに作動流体を供給できるので、開回路にぉ 、てもブームシリンダ力 排出された 戻り流体が有するエネルギを有効に回生できる。
図面の簡単な説明
[0025] [図 1]本発明に係る流体圧回路の第 1の実施の形態を示す回路図である。
[図 2]同上流体圧回路が適用された作業機械の側面図である。 [図 3]同上流体圧回路の第 2の実施の形態を示す回路図である。
[図 4]同上流体圧回路の第 3の実施の形態を示す回路図である。
[図 5]同上流体圧回路の第 4の実施の形態を示す回路図である。
[図 6]同上流体圧回路の第 5の実施の形態を示す回路図である。
[図 7]同上流体圧回路の第 6の実施の形態を示す回路図である。
[図 8]同上流体圧回路に用いられるハイブリッド式駆動装置の変形例を示す構成図 である。
符号の説明
1 作業機械
2trL, 2trR 走行モータ
7 機体
8 作業装置
8bm ブーム
8st スティック
8bk パケット
8bmc 流体圧ァクチユエータとしてのブームシリンダ
8stc スティックシリンダ
8bkc バケツトシリンダ
17A, 17B メインポンプ
22 電動,発電機
23 蓄電器
26, 86 エネノレギ回生モータ
35 走行直進弁としての電磁弁
48 ブームシリンダ用作動流体供給通路
48p ポンプとしてのブーム用ポンプ
56, 57 戻り通路
58, 59 流量比制御弁としての電磁弁
61 スティックシリンダ用作動流体供給通路 66 バケツトシリンダ用作動流体供給通路
71 スティック 'ブーム間の回路間連通通路
72 スティック 'ブーム間の電磁弁
74 電磁弁
84as ポンプとしてのブームアシストポンプ
87 電動'発電機としてのブーム用電動 ·発電機
88 クラッチ
89 パケット 'ブーム間の電磁弁
102 電磁弁
発明を実施するための最良の形態
[0027] 以下、本発明を、図 1および図 2に示された第 1の実施の形態、図 3に示された第 2 の実施の形態、図 4に示された第 3の実施の形態、図 5に示された第 4の実施の形態 、図 6に示された第 5の実施の形態、図 7に示された第 6の実施の形態、図 8に示され たハイブリッド式駆動装置の変形例を参照しながら詳細に説明する。
[0028] 先ず、図 1および図 2に示された第 1の実施の形態を説明する。
[0029] 図 2に示されるように、作業機械 1は油圧ショベルであり、下部走行体 2上に旋回軸 受部 3を介して上部旋回体 4が回動自在に設けられ、この上部旋回体 4に、エンジン および流体圧ポンプなどの動力装置 5、オペレータを保護するキヤブ 6などが搭載さ れて、機体 7を形成している。下部走行体 2は、左右の履帯を駆動するための走行モ ータ 2trL, 2trRをそれぞれ備え、また、上部旋回体 4は、旋回軸受部 3に設けられた 旋回減速機構を駆動するための旋回用電動,発電機(図 2には示されず)を備えてい る。
[0030] 上部旋回体 4には、作業装置 8が装着されている。この作業装置 8は、上部旋回体 4のブラケット(図示せず)にブーム 8bm、スティック 8stおよびパケット 8bkが順次回動 自在にピン結合され、ブーム 8bmは流体圧ァクチユエータとしてのブームシリンダ 8bm cにより回動され、スティック 8stはスティックシリンダ 8stcにより回動され、パケット 8bkは バケツトシリンダ 8bkcにより回動される。
[0031] 図 1に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のボン プとしてのメインポンプ 17A, 17Bが接続されている。
[0032] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0033] 電動 '発電機制御器 22cは、コンバータなどの蓄電器制御器 23cを介して、発電機と して機能する電動'発電機 22から供給された電力を蓄えるとともに電動機として機能 する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は、バ ッテリや、キャパシタなどである。
[0034] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0035] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、このエネル ギ回生モータ 26により駆動された発電機 27からその発電機制御器 27cを介して回収 された電力は、蓄電器 23に蓄えられる。
[0036] 流体圧ァクチユエータ制御回路 25に対して、ハイブリッド式駆動装置 10の蓄電器 23 力 供給された電力により旋回用電動 ·発電機 4swを電動機として作動するとともに上 部旋回体 4の旋回制動時に発電機として作動した旋回用電動 ·発電機 4sw力 発生 した電力を蓄電器 23に回収する旋回用制御回路 28が設置されている。
[0037] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収する。
[0038] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速などは、コントローラ
(図示せず)から出力された信号により制御される。
[0039] 図 1は、流体圧ァクチユエータ制御回路 25を示し、メインポンプ 17A, 17Bの吐出口 に接続されたポンプ通路 31, 32は、タンク 24に戻されるバイパス通路中に設けられた 電磁比例弁として作動する電磁弁 33, 34に接続されているとともに、走行直進弁とし て作動する電磁弁 35に接続されて!ヽる。
[0040] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8bmc, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御 信号によりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータ が流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcを操作する操作信号の大きさ に比例して閉じ位置に変位する。
[0041] 電磁弁 35は、図 1に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給でき、右側 の走行直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2tr L, 2trRに等分された作動流体を供給して、直進走行が可能となる。
[0042] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する 作業用ァクチユエータ 8bmc, 8stc, 8bkcに供給される作動流体を制御する作業装置 用制御回路 37とを備えている。
[0043] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0044] 作業装置用制御回路 37は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから ブームシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45と、ハイ ブリツド式駆動装置 10のメインポンプ 17A, 17Bからスティックシリンダ 8stcに供給され る作動流体を制御するスティック用制御回路 46と、ハイブリッド式駆動装置 10のメイン ポンプ 17A, 17Bからバケツトシリンダ 8bkcに供給される作動流体を制御するパケット 用制御回路 47とを備えている。
[0045] ブーム用制御回路 45は、走行直進弁として作動する電磁弁 35から引出されたブー ムシリンダ用作動流体供給通路 48を経て供給された作動流体を方向制御および流 量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51, 52がブームシリ ンダ 8bmcのヘッド側室とロッド側室とに連通されている。
[0046] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0047] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、前記エネルギ回生 モータ 26を有する一方の戻り通路 56に設けられた流量制御用の一方の電磁弁 58と、 この一方の電磁弁 58の上流側で分岐された他方の戻り通路 57に設けられた流量制 御用の他方の電磁弁 59とによって形成されて 、る。
[0048] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 26の回転速度を制御し、このエネルギ回生モ ータ 26により駆動される発電機 27により、ハイブリッド式駆動装置 10の蓄電器 23に電 力を供給し蓄える。
[0049] このエネルギ回生モータ 26が作動するのは、方向制御および流量制御する電磁弁 49が図 1において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力も排出された戻り流体によりエネルギ回生モータ 26がブーム自 重により余裕を持って作動することが望まし 、。 [0050] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0051] パケット用制御回路 47は、走行直進弁として作動する電磁弁 35から引出されたバケ ットシリンダ用作動流体供給通路 66を経て供給された作動流体を方向制御および流 量制御する電磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシ リンダ 8bkcのヘッド側室とロッド側室とに連通されている。
[0052] スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側との間に は、これらを連通するスティック 'ブーム間の回路間連通通路 71が設けられ、このステ イツク 'ブーム間の回路間連通通路 71中には、スティックシリンダ用作動流体供給通 路 61力 ブームシリンダ 8bmcのヘッド側への一方向流れを可能とする位置と流れを 遮断する位置との間で変位されるスティック 'ブーム間の電磁弁 72が設けられている
[0053] ブームシリンダ用作動流体供給通路 48とスティックシリンダ用作動流体供給通路 61 との間には、これらの間を連通するブーム'スティック間の回路間連通通路 73が設け られ、このブーム'スティック間の回路間連通通路 73中には、ブームシリンダ用作動流 体供給通路 48からスティックシリンダ 8stcへの一方向流れを可能とする位置および遮 断する位置をそれぞれ有するブーム'スティック間の電磁弁 74が設けられて ヽる。
[0054] 電磁弁 53, 54, 65, 72, 74は、逆止弁を内蔵した流量調整機能を有する切換弁であ る。
[0055] 電磁弁 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74は、図示されな いコントローラにより比例制御されるソレノイドと、リターンスプリング(図示せず)とをそ れぞれ備え、ソレノイド励磁力とスプリング復元力とがバランスした位置に変位制御さ れる。 [0056] 次に、この図 1および図 2に示された実施の形態の作用効果を説明する。
[0057] 作業装置用制御回路 37は、ブームシリンダ 8bmcから排出される戻り流体によりエネ ルギ回生モータ 26を作動し、このエネルギ回生モータ 26により発電機 27を駆動して、 ハイブリッド式駆動装置 10の蓄電器 23に電力を供給するので、ブームシリンダ 8bmc 力も排出される戻り流体が有するエネルギを蓄電器 23に効率良く回収でき、ハイプリ ッド式駆動装置 10のポンプ動力として有効に回生できる。
[0058] その際、作業装置用制御回路 37は、ブームシリンダ 8bmcから排出される戻り流体を 戻り流体通路 55にて分流し、その分流された流量比を流量比制御弁 58, 59により制 御し、この流量比制御弁 58, 59により流量制御された一方の戻り流体によりエネルギ 回生モータ 26を作動するので、ブームシリンダ 8bmcからの戻り流体が発生した時点 力 エネルギ回生モータ 26側に分流される流量比を徐々に増加させることによってシ ョックの発生を防止できるとともに、ブームシリンダ 8bmcの急激な負荷変動を抑えるこ とで、ブームシリンダ 8bmcの安定した動作が得られる。
[0059] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 26側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 26が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。要するに、ブームダウン時のエネル ギを他の回路力も独立して蓄えることができる。
[0060] さらに、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 56および他方の戻 り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一方の戻り通路 56お よび他方の戻り通路 57の開度を相互に関連することなく個別に制御して、エネルギ回 生モータ 26側に流される戻り流体の流量比および流量を自在に制御できる。
[0061] また、旋回用制御回路 28は、下部走行体 2に対し上部旋回体 4を旋回させるときは 、旋回用電動 ·発電機 4swを電動機として作動させ、旋回中の上部旋回体 4を停止さ せるときは、旋回用電動 ·発電機 4swを発電機として作動させることで、上部旋回体 4 の旋回を制動できるとともに、旋回用電動 ·発電機 4swから発生した電力を、エネルギ 回生モータ 26により駆動された発電機 27から発生した電力とともにハイブリッド式駆 動装置 10の蓄電器 23に効率良く回収でき、ハイブリッド式駆動装置 10のポンプ動力 として有効に回生できる。
[0062] また、ブーム'スティック間の電磁弁 74を開いてスティック 'ブーム間の電磁弁 72を閉 じることで、一のメインポンプ 17Aからブームシリンダ 8bmcに供給される作動流体を、 他のメインポンプ 17Bからスティックシリンダ 8stcに供給される作動流体に合流させて、 スティックシリンダ 8stcの高速ィ匕を図れるとともに、ブーム'スティック間の電磁弁 74を 閉じてスティック 'ブーム間の電磁弁 72を開くことで、他のメインポンプ 17Bからステイツ クシリンダ 8stcに供給される作動流体を、一のメインポンプ 17A力もブームシリンダ用 作動流体供給通路 48、方向制御用の電磁弁 49の左室を経てブームシリンダ 8bmcの ヘッド側に供給される作動流体に合流させることで、ブームアップ動作の高速ィヒを図 れる。
[0063] さらに、ブーム'スティック間の電磁弁 74を遮断位置に制御して、ブーム用制御回路 45とスティック用制御回路 46とを分離独立させたときは、ブーム系およびパケット系と 、スティック系とを切離して、圧力を別々に制御できる。
[0064] 次に、図 3に示された第 2の実施の形態を説明する。なお、この流体圧回路が適用 される作業機械は、図 2に示されたものであり、ここでは、その説明を省略する。
[0065] 図 3に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のメイ ンポンプ 17A, 17Bが接続されている。
[0066] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0067] 電動 '発電機制御器 22cは、コンバータなどの蓄電器制御器 23cを介して、発電機と して機能する電動'発電機 22から供給された電力を蓄えるとともに電動機として機能 する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は、バ ッテリや、キャパシタなどである。
[0068] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0069] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、このエネル ギ回生モータ 26により駆動された発電機 27からその発電機制御器 27cを介して回収 された電力は、蓄電器 23に蓄えられる。
[0070] 流体圧ァクチユエータ制御回路 25に対して、ハイブリッド式駆動装置 10の蓄電器 23 力 供給された電力により旋回用電動 ·発電機 4swを電動機として作動するとともに上 部旋回体 4の旋回制動時に発電機として作動した旋回用電動 ·発電機 4sw力 発生 した電力を蓄電器 23に回収する旋回用制御回路 28が設置されている。
[0071] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収し、電動機の駆動に用いる。
[0072] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速などは、コントローラ
(図示せず)から出力された信号により制御される。
[0073] 図 3に示された流体圧ァクチユエータ制御回路 25において、メインポンプ 17A, 17B の吐出口に接続されたポンプ通路 31, 32は、タンク 24に戻されるバイパス通路中に設 けられた電磁比例弁として作動する電磁弁 33, 34に接続されているとともに、走行直 進弁として作動する電磁弁 35に接続されて!ヽる。
[0074] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8bmc, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御 信号によりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータ が流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcを操作する操作信号の大きさ に比例して閉じ位置に変位する。
[0075] 電磁弁 35は、図 3に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給でき、右側 の走行直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2tr L, 2trRに等分された作動流体を供給して、直進走行が可能となる。
[0076] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する 作業用ァクチユエータ 8bmc, 8stc, 8bkcに供給される作動流体を制御する作業装置 用制御回路 37とを備えている。
[0077] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0078] 作業装置用制御回路 37は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから ブームシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45と、ハイ ブリツド式駆動装置 10のメインポンプ 17A, 17Bからスティックシリンダ 8stcに供給され る作動流体を制御するスティック用制御回路 46と、ハイブリッド式駆動装置 10の蓄電 器 23から供給された電力により作動されるパケット用電動機 81によりパケット用ポンプ 82を駆動するとともにこのパケット用ポンプ 82力 バケツトシリンダ 8bkcに供給される 作動流体を制御するパケット用制御回路 47とを備えている。パケット用電動機 81は、 コントローラ(図示せず)に接続されたインバータなどのパケット用電動機制御器 81c により回転速度が制御される。
[0079] ブーム用制御回路 45は、走行直進弁として作動する電磁弁 35から引出されたブー ムシリンダ用作動流体供給通路 48を経て供給された作動流体を方向制御および流 量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51, 52がブームシリ ンダ 8bmcのヘッド側室とロッド側室とに連通されている。
[0080] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0081] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、前記エネルギ回生 モータ 26を有する一方の戻り通路 56に設けられた流量制御用の一方の電磁弁 58と、 この一方の電磁弁 58の上流側で分岐された他方の戻り通路 57に設けられた流量制 御用の他方の電磁弁 59とによって形成されて 、る。
[0082] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 26の回転速度を制御し、このエネルギ回生モ ータ 26により駆動される発電機 27により、ハイブリッド式駆動装置 10の蓄電器 23に電 力を供給し蓄える。
[0083] このエネルギ回生モータ 26が作動するのは、方向制御および流量制御する電磁弁 49が図 3において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力も排出された戻り流体によりエネルギ回生モータ 26がブーム自 重により余裕を持って作動することが望まし 、。
[0084] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0085] パケット用制御回路 47は、ハイブリッド式駆動装置 10の蓄電器 23から供給された電 力により作動されるパケット用電動機 81によりパケット用ポンプ 82を駆動するとともに、 このパケット用ポンプ 82から供給された作動流体を方向制御および流量制御する電 磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシリンダ 8bkcの ヘッド側室とロッド側室とに連通されている。
[0086] ブームシリンダ用作動流体供給通路 48とスティックシリンダ用作動流体供給通路 61 との間には、これらの間を連通するブーム'スティック間の回路間連通通路 73が設け られ、このブーム'スティック間の回路間連通通路 73中には、ブームシリンダ用作動流 体供給通路 48からスティックシリンダ用作動流体供給通路 61への一方向流れを可能 とする位置、双方向流れを可能とする位置および双方向流れを遮断する中立位置を 有するブーム'スティック間の電磁弁 83が設けられて 、る。
[0087] 電磁弁 53, 54, 65, 83は、逆止弁を内蔵した流量調整機能を有する切換弁である。
[0088] 電磁弁 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 83は、図示されないコ ントローラにより比例制御されるソレノイドと、リターンスプリング(図示せず)とをそれぞ れ備え、ソレノイド励磁力とスプリング復元力とがバランスした位置に変位制御される
[0089] 次に、この図 3に示された実施の形態の作用効果を説明する。
[0090] ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから作動流体の供給を受ける走 行用制御回路 36、ブーム用制御回路 45およびスティック用制御回路 46に対して、ハ イブリツド式駆動装置 10の蓄電器 23力も供給された電力により作動されるパケット用 電動機 81によりパケット用ポンプ 82を駆動するとともにこのパケット用ポンプ 82からバ ケットシリンダ 8bkcに供給される作動流体を制御するパケット用制御回路 47を、独立 させて設置することで、走行用制御回路 36、ブーム用制御回路 45およびスティック用 制御回路 46に影響されることなぐパケット用制御回路 47が要求する高圧を確実に得 ることがでさる。
[0091] このとき、コントローラ(図示せず)によりパケット用電動機 81の回転速度を制御する ことで、パケット用ポンプ 82の吐出流量が可変制御され、このパケット用ポンプ 82から バケツトシリンダ 8bkcに供給される作動流体は、コントローラ(図示せず)からの電気 信号により作動される電磁弁 67により方向制御される。 [0092] また、ブーム用制御回路 45は、ブームシリンダ 8bmcから排出される戻り流体を戻り 流体通路 55にて分流し、その分流された流量比を流量比制御弁 58, 59により制御し 、この流量比制御弁 58, 59により流量制御された一方の戻り流体によりエネルギ回生 モータ 26を作動し、このエネルギ回生モータ 26により発電機 27を駆動して、ハイブリツ ド式駆動装置 10の蓄電器 23に電力を供給するので、ブームシリンダ 8bmcからの戻り 流体が発生した時点力 エネルギ回生モータ 26側に分流される流量比を徐々に増 カロさせることによってショックの発生を防止できるとともに、ブームシリンダ 8bmcの急激 な負荷変動を抑えることで、ブームシリンダ 8bmcの安定した動作が得られる。
[0093] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 26側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 26が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。
[0094] さらに、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 56および他方の戻 り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一方の戻り通路 56お よび他方の戻り通路 57の開度を相互に関連することなく個別に制御して、エネルギ回 生モータ 26側に流される戻り流体の流量比および流量を自在に制御できる。
[0095] また、旋回用制御回路 28は、下部走行体 2に対し上部旋回体 4を旋回させるときは 、旋回用電動 ·発電機 4swを電動機として作動させ、旋回中の上部旋回体 4を停止さ せるときは、旋回用電動 ·発電機 4swを発電機として作動させることで、上部旋回体 4 の旋回を制動できるとともに、旋回用電動 ·発電機 4swから発生した電力を、エネルギ 回生モータ 26により駆動された発電機 27から発生した電力とともにハイブリッド式駆 動装置 10の蓄電器 23に効率良く回収でき、ハイブリッド式駆動装置 10のポンプ動力 として有効に回生できる。これにより、ハイブリッド式駆動装置 10のエンジン 11の燃費 効率を向上できる。
[0096] また、ブーム'スティック間の回路間連通通路 73中に設けられた電磁弁 83を一方向 流れが可能な位置または双方向流れが可能な位置に制御することで、ブーム用制 御回路 45からスティック用制御回路 46への流量供給が可能であり、すなわち一のメイ ンポンプ 17Aからブームシリンダ 8bmcに供給される作動流体を、他のメインポンプ 17B からスティックシリンダ 8stcに供給される作動流体に合流させて、スティックシリンダ 8st cの高速化を図れる。
[0097] さらに、ブーム'スティック間の電磁弁 83を双方向流れが可能な位置に制御すること で、スティック用制御回路 46力 ブーム用制御回路 45への流量供給も可能であり、す なわち他のメインポンプ 17Bからスティックシリンダ 8stcに供給される作動流体を、一の メインポンプ 17Aからブームシリンダ用作動流体供給通路 48、方向制御用の電磁弁 4 9の左室を経てブームシリンダ 8bmcのヘッド側に供給される作動流体に合流させるこ とで、 2つのメインポンプ流量を合流させてブームアップ動作の高速ィ匕を図れる。
[0098] さらに、ブーム'スティック間の電磁弁 83を中立位置に制御して、ブーム用制御回路 45とスティック用制御回路 46とを分離独立させたときは、ブーム系と、スティック系とを 切離して、圧力を別々に制御できる。
[0099] 次に、図 4に示された第 3の実施の形態を説明する。なお、この流体圧回路が適用 される作業機械は、図 2に示されたものであり、ここでは、その説明を省略する。
[0100] 図 4に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のメイ ンポンプ 17A, 17Bが接続されている。
[0101] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0102] 電動 '発電機制御器 22cは、コンバータなどの蓄電器制御器 23cを介して、発電機と して機能する電動'発電機 22から供給された電力を蓄えるとともに電動機として機能 する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は、バ ッテリや、キャパシタなどである。
[0103] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0104] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。流体圧ァ クチユエータ制御回路 25は、走行モータ 2trL, 2trR、スティックシリンダ 8stcおよびバ ケットシリンダ 8bkcに供給される作動流体を制御するものである。
[0105] この流体圧ァクチユエータ制御回路 25に対して、ブームシリンダ 8bmcに供給される 作動流体を制御するブーム用制御回路 45が独立して分離設置されている。
[0106] これらの流体圧ァクチユエータ制御回路 25およびブーム用制御回路 45に対して、 ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により旋回用電動 '発電機 4swを電動機として作動するとともに上部旋回体 4の旋回制動時に発電機として作動 した旋回用電動 ·発電機 4swから発生した電力を蓄電器 23に回収する旋回用制御回 路 28が設置されている。
[0107] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収する。
[0108] ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bの吐出口に接続されたポンプ通 路 31, 32は、タンク 24に戻されるバイパス通路中に設けられた電磁比例弁として作動 する電磁弁 33, 34に接続されているとともに、走行直進弁として作動する電磁弁 35に 接続されている。
[0109] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御信号に よりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータが流体 圧ァクチユエータ 2trL, 2trR, 8stc, 8bkcを操作する操作信号の大きさに比例して閉 じ位置に変位する。
[0110] 電磁弁 35は、図 4に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8stc, 8bkcに作動流体を供給でき、右側の走行 直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2trL, 2trR に等分された作動流体を供給して、直進走行が可能となる。
[0111] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する スティックシリンダ 8stcに供給される作動流体を制御するスティック用制御回路 46と、 ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bからバケツトシリンダ 8bkcに供給さ れる作動流体を制御するパケット用制御回路 47とを備えている。
[0112] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0113] ブーム用制御回路 45は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから分 離して設置されたブーム用ポンプ 48pを備え、このブーム用ポンプ 48pからブームシリ ンダ用作動流体供給通路 48aを経てブームシリンダ 8bmcに供給される作動流体を方 向制御および流量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51 , 52がブームシリンダ 8bmcのヘッド側室とロッド側室とに連通されている。ブームシリ ンダ用作動流体供給通路 48aからタンク 24に戻されるバイパス通路中には、前記電磁 弁 33, 34と同様に作用する電磁弁 48bが設けられて ヽる。
[0114] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0115] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、一方の戻り通路 56 に設けられた流量制御用の一方の電磁弁 58と、この一方の電磁弁 58の上流側で分 岐された他方の戻り通路 57に設けられた流量制御用の他方の電磁弁 59とによって形 成されている。
[0116] ブームシリンダ 8bmcから排出される戻り流体が通る一方の戻り通路 56中にはェネル ギ回生モータ 86が設けられ、このエネルギ回生モータ 86には、エネルギ回生モータ 8 6により駆動されてハイブリッド式駆動装置 10の蓄電器 23に電力を供給する発電機と して機能するとともに蓄電器 23力 供給された電力により電動機として機能するブー ム用電動'発電機 87が接続され、このブーム用電動 '発電機 87にはクラッチ 88を介し て前記ブーム用ポンプ 48pが接続され、クラッチ 88は、電動機として機能するブーム 用電動 '発電機 87からブーム用ポンプ 48pに動力を伝えるとともに発電機として機能 するブーム用電動 ·発電機 87をブーム用ポンプ 48p力 切離すように制御される。
[0117] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 86の回転速度を制御し、このエネルギ回生モ ータ 86により駆動されたブーム用電動 '発電機 87からその電動 '発電機制御器 87cを 介して回収された電力は、ハイブリッド式駆動装置 10の蓄電器 23に供給され蓄えら れる。
[0118] このエネルギ回生モータ 86が作動するのは、方向制御および流量制御する電磁弁 49が図 4において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力 排出された戻り流体によりエネルギ回生モータ 86がブーム自 重により余裕を持って作動することが望まし 、。
[0119] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0120] パケット用制御回路 47は、走行直進弁として作動する電磁弁 35から引出されたバケ ットシリンダ用作動流体供給通路 66を経て供給された作動流体を方向制御および流 量制御する電磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシ リンダ 8bkcのヘッド側室とロッド側室とに連通されている。
[0121] バケツトシリンダ用作動流体供給通路 66とスティックシリンダ用作動流体供給通路 6 1との間には、これらの間を連通するパケット 'スティック間の回路間連通通路 73が設 けられ、このパケット 'スティック間の回路間連通通路 73中には、バケツトシリンダ用作 動流体供給通路 66からスティックシリンダ用作動流体供給通路 61への一方向流れを 可能とする位置および遮断する位置をそれぞれ有するパケット 'スティック間の電磁 弁 74が設けられている。
[0122] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速、クラッチ 88の断続 などは、コントローラ(図示せず)から出力された信号により制御される。
[0123] 電磁弁 53, 54, 65, 74は、逆止弁を内蔵した流量調整機能を有する切換弁である。
[0124] 電磁弁 33, 34, 35, 43, 44, 48b, 49, 53, 54, 58, 59, 62, 65, 67, 74は、図示されな いコントローラにより比例制御されるソレノイドと、リターンスプリング(図示せず)とをそ れぞれ備え、ソレノイド励磁力とスプリング復元力とがバランスした位置に変位制御さ れる。
[0125] 次に、この図 4に示された実施の形態の作用効果を説明する。
[0126] ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから走行モータ 2trL, 2trR、ステ イツクシリンダ 8stcおよびバケツトシリンダ 8bkcに供給される作動流体を制御する流体 圧ァクチユエータ制御回路 25に対し、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから分離して設置されたブーム用ポンプ 48pを備えこのブーム用ポンプ 48pからブ 一ムシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45は、独立し ているので、ブーム用電動 ·発電機 87によりブーム用ポンプ 48pの回転速度を制御す るなどして、走行モータ 2trL, 2trR、スティックシリンダ 8stcおよびバケツトシリンダ 8bkc に供給される作動流体に影響されることなぐブームシリンダ 8bmcが要求する流量を 容易に得ることができる。 [0127] また、ブーム用制御回路 45は、ブームシリンダ 8bmcから排出される戻り流体によりェ ネルギ回生モータ 86を作動し、このエネルギ回生モータ 86によりブーム用電動 ·発電 機 87を駆動して、ハイブリッド式駆動装置 10の蓄電器 23に電力を供給するので、ブ 一ムシリンダ 8bmcから排出される戻り流体が有するエネルギを蓄電器 23に効率良く 回収でき、ハイブリッド式駆動装置 10のポンプ動力として有効に回生できる。
[0128] 特に、作業機械 1の機体 7に設けられた作業装置 8のブーム 8bmが自重落下する際 に、ブームシリンダ 8bmcのヘッド側力も排出される戻り流体が有するエネルギをエネ ルギ回生モータ 86およびブーム用電動'発電機 87により吸収して蓄電器 23に蓄える ことができる。
[0129] このとき、ブーム用制御回路 45は、クラッチ 88を切離すことにより、ブームシリンダ 8b mcから排出される戻り流体により作動されるエネルギ回生モータ 86より、無負荷状態 のブーム用電動 ·発電機 87に動力を効率良く入力して、発生した電力をハイブリッド 式駆動装置 10の蓄電器 23に蓄えることができる。
[0130] 一方、クラッチ 88を接続したときは、蓄電器 23からの電力により電動機として機能す るブーム用電動 ·発電機 87によりブーム用ポンプ 48pを駆動して、このブーム用ポンプ 48pからブームシリンダ 8bmcに作動流体を供給できるので、開回路にぉ 、てもブーム シリンダ 8bmcから排出された戻り流体が有するエネルギを有効に回生できる。
[0131] このとき、ブームシリンダ 8bmcへの作動流体供給量は、ブーム回路専用のブーム用 ポンプ 48pのポンプ容量と回転速度により決定され、ポンプ容量は、メインポンプ 17A , 17Bにしたがって決定され、回転速度はブーム用電動 '発電機 87により制御され、 ブームシリンダ 8bmcのヘッド側への充分な作動流体供給量により、ブームアップ効率 を向上できる。
[0132] ブーム用制御回路 45は、ブームシリンダ 8bmcから排出される戻り流体を戻り流体通 路 55にて分流し、その分流された流量比を流量比制御弁 58, 59により制御し、この流 量比制御弁 58, 59により流量制御された一方の戻り流体によりエネルギ回生モータ 8 6を作動するので、ブームシリンダ 8bmcからの戻り流体が発生した時点からエネルギ 回生モータ 86側に分流される流量比を徐々に増加させることによってショックの発生 を防止できるとともに、ブームシリンダ 8bmcの急激な負荷変動を抑えることで、ブーム シリンダ 8bmcの安定した動作が得られる。
[0133] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 86側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 86が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。要するに、ブームダウン時のエネル ギを他の回路力も独立して蓄えることができる。
[0134] 流量比制御弁 58, 59は、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 5 6および他方の戻り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一 方の戻り通路 56および他方の戻り通路 57の開度を相互に関連することなく個別に制 御して、エネルギ回生モータ 86側に流される戻り流体の流量比および流量を自在に 制御できる。
[0135] また、下部走行体 2に対し電動機として作動する旋回用電動'発電機 4swにより旋 回させた上部旋回体 4を停止させるときは、旋回用制御回路 28により旋回用電動-発 電機 4swを発電機として作動させることで、上部旋回体 4の旋回を制動できるとともに 旋回用電動 ·発電機 4swから発生した電力を、エネルギ回生モータ 86により駆動され たブーム用電動 ·発電機 87から発生した電力とともにノ、イブリツド式駆動装置 10の蓄 電器 23に効率良く回収でき、ハイブリッド式駆動装置 10のポンプ動力として有効に回 生できる。
[0136] また、パケット 'スティック間の電磁弁 74を一方向流れ可能な位置に制御することで 、一のメインポンプ 17Aからバケツトシリンダ 8bkcに供給される作動流体を、他のメイン ポンプ 17Bからスティックシリンダ 8stcに供給される作動流体に合流させて、スティック シリンダ 8stcの高速ィ匕を図れるとともに、パケット 'スティック間の電磁弁 74を遮断位置 に制御して、パケット用制御回路 47とスティック用制御回路 46とを分離独立させたとき は、パケット系と、スティック系とを切離して、圧力を別々に制御できる。
[0137] 次に、図 5に示された第 4の実施の形態を説明する。なお、この流体圧回路が適用 される作業機械は、図 2に示されたものであり、ここでは、その説明を省略する。
[0138] 図 5に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のメイ ンポンプ 17A, 17Bが接続されている。
[0139] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0140] 電動 '発電機制御器 22cは、コンバータなどの蓄電器制御器 23cを介して、発電機と して機能する電動'発電機 22から供給された電力を蓄えるとともに電動機として機能 する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は、バ ッテリや、キャパシタなどである。
[0141] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0142] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、このエネル ギ回生モータ 26により駆動されたブーム用電動 ·発電機 87からその発電機制御器 87 cを介して回収された電力は、蓄電器 23に蓄えられる。
[0143] 流体圧ァクチユエータ制御回路 25に対して、ハイブリッド式駆動装置 10の蓄電器 23 力 供給された電力により旋回用電動 ·発電機 4swを電動機として作動するとともに上 部旋回体 4の旋回制動時に発電機として作動した旋回用電動 ·発電機 4sw力 発生 した電力を蓄電器 23に回収する旋回用制御回路 28が設置されている。
[0144] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収する。
[0145] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速などは、コントローラ
(図示せず)から出力された信号により制御される。
[0146] 図 5に示された流体圧ァクチユエータ制御回路 25において、メインポンプ 17A, 17B の吐出口に接続されたポンプ通路 31, 32は、タンク 24に戻されるバイパス通路中に設 けられた電磁比例弁として作動する電磁弁 33, 34に接続されているとともに、走行直 進弁として作動する電磁弁 35に接続されて!ヽる。
[0147] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8bmc, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御 信号によりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータ が流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcを操作する操作信号の大きさ に比例して閉じ位置に変位する。
[0148] 電磁弁 35は、図 5に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給でき、右側 の走行直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2tr L, 2trRに等分された作動流体を供給して、直進走行が可能となる。
[0149] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する 作業用ァクチユエータ 8bmc, 8stc, 8bkcに供給される作動流体を制御する作業装置 用制御回路 37とを備えている。
[0150] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0151] 作業装置用制御回路 37は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから ブームシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45と、ハイ ブリツド式駆動装置 10のメインポンプ 17A, 17Bからスティックシリンダ 8stcに供給され る作動流体を制御するスティック用制御回路 46と、ハイブリッド式駆動装置 10のメイン ポンプ 17A, 17Bからバケツトシリンダ 8bkcに供給される作動流体を制御するパケット 用制御回路 47とを備えている。
[0152] ブーム用制御回路 45は、走行直進弁として作動する電磁弁 35から引出されたブー ムシリンダ用作動流体供給通路 48を経て供給された作動流体を方向制御および流 量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51, 52がブームシリ ンダ 8bmcのヘッド側室とロッド側室とに連通されている。
[0153] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0154] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、前記エネルギ回生 モータ 26を有する一方の戻り通路 56に設けられた流量制御用の一方の電磁弁 58と、 この一方の電磁弁 58の上流側で分岐された他方の戻り通路 57に設けられた流量制 御用の他方の電磁弁 59とによって形成されて 、る。
[0155] ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bからブームシリンダ 8bmcに作動 流体を供給するブームシリンダ用作動流体供給通路 48には、作動流体の流量を援 助するブームアシストポンプ 84as力 ブームアシスト用作動流体供給通路 85を介して 接続され、また、前記電磁弁 33, 34と同様に作用するバイパス通路の電磁弁 86sが接 続されている。
[0156] ブームシリンダ 8bmcから排出される戻り流体が通る一方の戻り通路 56中に設けられ たエネルギ回生モータ 26には、このエネルギ回生モータ 26により駆動されてハイブリ ッド式駆動装置 10の蓄電器 23に電力を供給する発電機として機能するとともに蓄電 器 23から供給された電力により電動機として機能するブーム用電動'発電機 87が接 続され、このブーム用電動 '発電機 87はクラッチ 88を介してブームアシストポンプ 84as に接続されている。クラッチ 88は、電動機として機能するブーム用電動'発電機 87か らブームアシストポンプ 84asに動力を伝えるとともに、発電機として機能するブーム用 電動 ·発電機 87をブームアシストポンプ 84asから切離す。
[0157] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 26の回転速度を制御し、このエネルギ回生モ ータ 26により駆動されるブーム用電動 ·発電機 87により、ハイブリッド式駆動装置 10の 蓄電器 23に電力を供給し蓄える。
[0158] このエネルギ回生モータ 26が作動するのは、方向制御および流量制御する電磁弁 49が図 5において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力も排出された戻り流体によりエネルギ回生モータ 26がブーム自 重により余裕を持って作動することが望まし 、。
[0159] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0160] パケット用制御回路 47は、走行直進弁として作動する電磁弁 35から引出されたバケ ットシリンダ用作動流体供給通路 66を経て供給された作動流体を方向制御および流 量制御する電磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシ リンダ 8bkcのヘッド側室とロッド側室とに連通されている。
[0161] スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側との間に は、これらを連通するスティック 'ブーム間の回路間連通通路 71が設けられ、このステ イツク 'ブーム間の回路間連通通路 71中には、スティックシリンダ用作動流体供給通 路 61力 ブームシリンダ 8bmcのヘッド側への一方向流れを可能とする位置と流れを 遮断する位置との間で変位されるスティック 'ブーム間の電磁弁 72が設けられている
[0162] ブームシリンダ用作動流体供給通路 48とスティックシリンダ用作動流体供給通路 61 との間には、これらの間を連通するパケット 'スティック間の回路間連通通路 73が設け られ、このパケット 'スティック間の回路間連通通路 73中には、ブームシリンダ用作動 流体供給通路 48からスティックシリンダ 8stcへの一方向流れを可能とする位置および 遮断する位置をそれぞれ有するパケット 'スティック間の電磁弁 74が設けられている。
[0163] ブームシリンダ用作動流体供給通路 48中であって、バケツトシリンダ用作動流体供 給通路 66の分岐部とブームアシストポンプ 84as力 の合流部との間には、バケツトシリ ンダ 8bkcへの作動流体をブームシリンダ 8bmcへの一方向流れとして供給可能とする 位置と流れを遮断する位置と双方向流れ可能な連通位置との間で変位されるバケツ ト ·ブーム間の電磁弁 89が設けられて!/、る。
[0164] 電磁弁 53, 54, 65, 72, 74, 89は、逆止弁を内蔵した流量調整機能を有する切換弁 である。
[0165] 電磁弁 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74, 86s, 89は、図 示されないコントローラにより比例制御されるソレノイドと、リターンスプリング(図示せ ず)とをそれぞれ備え、ソレノイド励磁力とスプリング復元力とがバランスした位置に変 位制御される。
[0166] 次に、この図 5に示された実施の形態の作用効果を説明する。
[0167] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trR、ブームシリンダ 8bmc、スティックシリンダ 8stcおよび バケツトシリンダ 8bkcに供給される作動流体を制御する際に、クラッチ 88を切離すこと により、ブームシリンダ 8bmcから排出される戻り流体により作動されるエネルギ回生モ ータ 26より、無負荷状態のブーム用電動 ·発電機 87に動力を効率良く入力して、発生 した電力をハイブリッド式駆動装置 10の蓄電器 23に蓄えることができるとともに、クラッ チ 88を接続したときは、ハイブリッド式駆動装置 10の蓄電器 23からの電力により電動 機として機能するブーム用電動 ·発電機 87によりブームアシストポンプ 84asを駆動し て、このブームアシストポンプ 84asからブームシリンダ 8bmcに作動流体を供給できる ので、開回路においてもブームシリンダ 8bmcから排出された戻り流体が有するェネル ギを有効に回生できる。
[0168] 特に、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのヘッド 側から排出される戻り流体が有するエネルギを、エネルギ回生モータ 26からブーム用 電動'発電機 87により吸収してハイブリッド式駆動装置 10の蓄電器 23に効率良く蓄え ることがでさる。
[0169] このとき、ブームシリンダ 8bmcから戻り流体通路 55に排出される戻り流体を一方の 戻り通路 56と他方の戻り通路 57とに分流し、その分流された流量比を流量比制御弁 5 8, 59により制御し、この流量比制御弁 58, 59により流量制御された一方の戻り流体に よりエネルギ回生モータ 26を作動し、このエネルギ回生モータ 26によりブーム用電動 '発電機 87を駆動して、ハイブリッド式駆動装置 10の蓄電器 23に電力を供給するので 、ブームシリンダ 8bmcからの戻り流体が発生した時点からエネルギ回生モータ 26側 に分流される流量比を徐々に増カロさせることによってショックの発生を防止できるとと もに、ブームシリンダ 8bmcの急激な負荷変動を抑えることで、ブームシリンダ 8bmcの 安定した動作が得られる。
[0170] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 26側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 26が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。
[0171] 流量比制御弁 58, 59は、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 5 6および他方の戻り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一 方の戻り通路 56および他方の戻り通路 57の開度を相互に関連することなく個別に制 御して、エネルギ回生モータ 26側に流される戻り流体の流量比および流量を自在に 制御できる。
[0172] また、下部走行体 2に対し電動機として作動する旋回用電動'発電機 4swにより旋 回させた上部旋回体 4を停止させるときは、旋回用制御回路 28により旋回用電動-発 電機 4swを発電機として作動させることで、上部旋回体 4の旋回を制動できるとともに 旋回用電動 ·発電機 4swから発生した電力を、エネルギ回生モータ 26により駆動され たブーム用電動 ·発電機 87から発生した電力とともにノ、イブリツド式駆動装置 10の蓄 電器 23に効率良く回収でき、ハイブリッド式駆動装置 10のポンプ動力として有効に回 生できる。
[0173] また、ブームシリンダ用作動流体供給通路 48中にパケット 'ブーム間の電磁弁 89を 設けたので、この電磁弁 89を一方向流れ位置に開くことで、一のメインポンプ 17Aから バケツトシリンダ 8bkcへの作動流体供給量を、電磁弁 89を経て、ブームアシストポン プ 84asからの作動流体供給量と合流させてブームシリンダ 8bmcに供給でき、特に、 方向制御用の電磁弁 49の左室を経てブームシリンダ 8bmcのヘッド側に供給される作 動流体の供給量を増加させることで、ブームシリンダ 8bmcによるブームアップ動作の 高速化を図れ、作業性を向上できるとともに、この電磁弁 89を閉じることで、バケツトシ リンダ 8bkcでの高圧を確保できる。
[0174] また、パケット 'スティック間の回路間連通通路 73中にパケット 'スティック間の電磁 弁 74を設けたので、この電磁弁 74を一方向流; ^立置に制御するとともに、電磁弁 72, 89を閉じることで、一のメインポンプ 17Aからブームシリンダ用作動流体供給通路 48に 供給された作動流体を、この電磁弁 74を経てスティックシリンダ用作動流体供給通路 61に供給し、他のメインポンプ 17Bからこのスティックシリンダ用作動流体供給通路 61 に供給された作動流体に合流させてスティックシリンダ 8stcに供給でき、スティックシリ ンダ 8stcの高速ィ匕を図れるので、作業性を向上できる。
[0175] 一方、この電磁弁 74を遮断位置に制御することで、ブーム系およびパケット系と、ス ティック系とを切離して、圧力を別々に制御できる。特に、バケツトシリンダ 8bkcでの高 圧発生を確保できる。
[0176] また、走行直進用の電磁弁 35が、右側の走行直進位置にあるときは、片側のメイン ポンプ 17Bから 1対の走行モータ 2trL, 2trRに 2分された等流量を供給するので、作 業機械の直進走行を確保でき、また、走行直進用の電磁弁 35が左側の作業位置ま たは高速走行位置にあるときに、電磁弁 49, 62, 67が中立位置で作業用ァクチユエ ータ 8bmc, 8stc, 8bkcに作動流体が供給されないときは、ブームアシストポンプ 84as から電磁弁 89の連通位置および電磁弁 74の連通位置を経て補充された補充流量を 、一のメインポンプ 17Aおよび他のメインポンプ 17Bから 1対の走行モータ 2trL, 2trR への吐出流量に合流させることができるので、高速走行に必要な作動流体流量を確 保できるととも〖こ、メインポンプ 17A, 17Bの小型化を図れる。
[0177] スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側とを連通 するスティック 'ブーム間の回路間連通通路 71中にスティック 'ブーム間の電磁弁 72を 設けたので、このスティック 'ブーム間の電磁弁 72を一方向流れ位置に制御すること で、一のメインポンプ 17Aから電磁弁 89を経た後さらにブームアシストポンプ 84asから 供給された作動流体と合流して、方向制御用の電磁弁 49の左室を経てブームシリン ダ 8bmcのヘッド側に供給される作動流体の供給量に加えて、他のメインポンプ 17Bか ら電磁弁 72を経た作動流体をブームシリンダ 8bmcのヘッド側に供給することで、ブー ムシリンダ 8bmcによるブームアップ動作の高速ィ匕を図れるので、作業性を向上できる 。この電磁弁 72を閉じることで、スティックシリンダ 8stcへの作動流体供給量を確保し て、スティックシリンダ 8stcの高速化を図ることができる。
[0178] 電磁弁 72, 89を遮断位置に閉じることで、ブーム用制御回路 45をメインポンプ 17A, 17Bから切離すことができる。
[0179] 電磁弁 72, 74, 89の切換状態の組合せによって、組合せの自由度が高くなり、シス テム構成の変更がフレキシブルとなる。また、ハイブリッドシステムにより、エンジン 11 の燃費効率を向上できる。
[0180] 次に、図 6に示された第 5の実施の形態を説明する。なお、この流体圧回路が適用 される作業機械は、図 2に示されたものであり、ここでは、その説明を省略する。
[0181] 図 6に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のメイ ンポンプ 17A, 17Bが接続されている。
[0182] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0183] 電動 '発電機制御器 22cは、コンバータなどの蓄電器制御器 23cを介して、発電機と して機能する電動'発電機 22から供給された電力を蓄えるとともに電動機として機能 する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は、バ ッテリや、キャパシタなどである。
[0184] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0185] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、このエネル ギ回生モータ 26により駆動されたブーム用電動 ·発電機 87からその発電機制御器 87 cを介して回収された電力は、蓄電器 23に蓄えられる。
[0186] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速などは、コントローラ
(図示せず)から出力された信号により制御される。
[0187] 図 6に示された流体圧ァクチユエータ制御回路 25において、メインポンプ 17A, 17B の吐出口に接続されたポンプ通路 31, 32は、タンク 24に戻されるバイパス通路中に設 けられた電磁比例弁として作動する電磁弁 33, 34に接続されているとともに、走行直 進弁として作動する電磁弁 35に接続されて!ヽる。
[0188] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8bmc, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御 信号によりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータ が流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcを操作する操作信号の大きさ に比例して閉じ位置に変位する。
[0189] 電磁弁 35は、図 6に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給でき、右側 の走行直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2tr L, 2trRに等分された作動流体を供給して、直進走行が可能となる。 [0190] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する 作業用ァクチユエータ 8bmc, 8stc, 8bkcに供給される作動流体を制御する作業装置 用制御回路 37とを備えている。
[0191] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0192] 作業装置用制御回路 37は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから ブームシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45と、ハイ ブリツド式駆動装置 10のメインポンプ 17A, 17Bからスティックシリンダ 8stcに供給され る作動流体を制御するスティック用制御回路 46と、ハイブリッド式駆動装置 10のメイン ポンプ 17A, 17Bからバケツトシリンダ 8bkcに供給される作動流体を制御するパケット 用制御回路 47とを備えている。
[0193] ブーム用制御回路 45は、走行直進弁として作動する電磁弁 35から引出されたブー ムシリンダ用作動流体供給通路 48を経て供給された作動流体を方向制御および流 量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51, 52がブームシリ ンダ 8bmcのヘッド側室とロッド側室とに連通されている。
[0194] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0195] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、前記エネルギ回生 モータ 26を有する一方の戻り通路 56に設けられた流量制御用の一方の電磁弁 58と、 この一方の電磁弁 58の上流側で分岐された他方の戻り通路 57に設けられた流量制 御用の他方の電磁弁 59とによって形成されて 、る。
[0196] ハイブリッド式駆動装置 10のメインポンプ 17Aからブームシリンダ 8bmcに作動流体を 供給するブームシリンダ用作動流体供給通路 48には、作動流体の流量を援助する ブームアシストポンプ 84as力 ブームアシスト用作動流体供給通路 85を介して接続さ れている。
[0197] ブームシリンダ 8bmcから排出される戻り流体が通る一方の戻り通路 56中に設けられ たエネルギ回生モータ 26には、このエネルギ回生モータ 26により駆動されてハイブリ ッド式駆動装置 10の蓄電器 23に電力を供給する発電機として機能するとともに蓄電 器 23から供給された電力により電動機として機能するブーム用電動'発電機 87が接 続され、このブーム用電動 '発電機 87はクラッチ 88を介してブームアシストポンプ 84as に接続されている。クラッチ 88は、電動機として機能するブーム用電動'発電機 87か らブームアシストポンプ 84asに動力を伝えるとともに、発電機として機能するブーム用 電動 ·発電機 87をブームアシストポンプ 84asから切離す。
[0198] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 26の回転速度を制御し、このエネルギ回生モ ータ 26により駆動されるブーム用電動 ·発電機 87により、ハイブリッド式駆動装置 10の 蓄電器 23に電力を供給し蓄える。
[0199] このエネルギ回生モータ 26が作動するのは、方向制御および流量制御する電磁弁 49が図 6において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力も排出された戻り流体によりエネルギ回生モータ 26がブーム自 重により余裕を持って作動することが望まし 、。
[0200] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0201] パケット用制御回路 47は、走行直進弁として作動する電磁弁 35から引出されたバケ ットシリンダ用作動流体供給通路 66を経て供給された作動流体を方向制御および流 量制御する電磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシ リンダ 8bkcのヘッド側室とロッド側室とに連通されている。
[0202] スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側との間に は、これらを連通するスティック 'ブーム間の回路間連通通路 71が設けられ、このステ イツク 'ブーム間の回路間連通通路 71中には、スティックシリンダ用作動流体供給通 路 61力 ブームシリンダ 8bmcのヘッド側への一方向流れを可能とする位置と流れを 遮断する位置との間で変位されるスティック 'ブーム間の電磁弁 72が設けられている
[0203] ブームシリンダ用作動流体供給通路 48とスティックシリンダ用作動流体供給通路 61 との間には、これらの間を連通するパケット 'スティック間の回路間連通通路 73が設け られ、このパケット 'スティック間の回路間連通通路 73中には、ブームシリンダ用作動 流体供給通路 48からスティックシリンダ 8stcへの一方向流れを可能とする位置および 遮断する位置をそれぞれ有するパケット 'スティック間の電磁弁 74が設けられている。
[0204] ブームシリンダ用作動流体供給通路 48中であって、バケツトシリンダ用作動流体供 給通路 66の分岐部とブームアシストポンプ 84as力 の合流部との間には、バケツトシリ ンダ 8bkcへの作動流体をブームシリンダ 8bmcへの一方向流れとして供給可能とする 位置と流れを遮断する位置との間で変位されるパケット 'ブーム間の電磁弁 89が設け られている。
[0205] 流体圧ァクチユエータ制御回路 25に対して旋回用制御回路 91が分離設置されてい る。この旋回用制御回路 91は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動 する旋回モータ 4swhに供給される作動流体を制御する。
[0206] この旋回用制御回路 91は、旋回モータ 4swhの閉回路 92, 93に流量制御機能も有 する方向制御弁としての電磁弁 94が設けられ、この電磁弁 94を介して閉回路 92, 93 に旋回用ポンプ'モータ 95が接続されている。この旋回用ポンプ'モータ 95は、旋回 モータ 4swhに作動流体を供給するポンプとして機能するとともに旋回モータ 4swhから 吐出された作動流体により流体圧モータとして機能する。
[0207] 電磁弁 94は、旋回用ポンプ'モータ 95と旋回モータ 4swhとの間を閉じる中立位置と 、右回転用および左回転用の全開位置との間で開度を調整する絞り切換弁機能を 有する。
[0208] 旋回用ポンプ'モータ 95には旋回用電動'発電機 96が接続されている。この旋回用 電動'発電機 96にはインバータなどの旋回用電動'発電機制御器 96cが接続され、こ の旋回用電動 '発電機制御器 96cはノ、イブリツド式駆動装置 10の蓄電器 23に接続さ れている。
[0209] 旋回用電動 ·発電機 96は、上部旋回体 4の旋回制動時に流体圧モータとして機能 する旋回用ポンプ.モータ 95により駆動されてハイブリッド式駆動装置 10の蓄電器 23 に電力を供給する発電機として機能するとともに、蓄電器 23から供給された電力によ り旋回用ポンプ ·モータ 95をポンプとして駆動する電動機として機能する。
[0210] すなわち、蓄電器 23は、この発電機として機能する旋回用電動'発電機 96から供給 された電力を蓄えるとともに電動機として機能する旋回用電動 ·発電機 96に電力を供 給する。
[0211] 旋回用ポンプ ·モータ 95と電磁弁 94との間の配管より、下部走行体 2および作業装 置 8の流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給する系 外連絡通路 97が弓 I出されて ヽる。
[0212] この系外連絡通路 97中には、下部走行体 2および作業装置 8の流体圧ァクチユエ ータ 2trL, 2trR, 8bmc, 8stc, 8bkcへの作動流体供給を可能とする一方向流; ^立置と 、流れを遮断する位置との間で開度調整される連絡通路電磁弁 98が設けられている
[0213] 旋回用ポンプ ·モータ 95と電磁弁 94との間の配管に、作動流体を補充する作動流 体補充手段としての作動流体補充ポンプ 99が接続されている。
[0214] ブームアシストポンプ 84asのブームアシスト用作動流体供給通路 85と一のメインポ ンプ 17Aの吐出通路 31との間には、これらの通路を連通するポンプ間連通通路 101が 設けられ、このポンプ間連通通路 101中には、ブームアシストポンプ 84asのブームァ シスト用作動流体供給通路 85力 メインポンプ 17Aの吐出通路 31への一方向流れを 可能とする位置および遮断する位置をそれぞれ有するポンプ間の電磁弁 102が設け られている。
[0215] 電磁弁 53, 54, 65, 72, 74, 89, 98, 102は、逆止弁を内蔵した流量調整機能を有す る切換弁である。
[0216] 各種電磁弁 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74, 89, 94, 98 , 102は、図示されないコントローラにより比例制御されるソレノイドと、リターンスプリン グ(図示せず)とをそれぞれ備え、ソレノイド励磁力とスプリング復元力とがバランスし た位置に変位制御される。
[0217] 次に、この図 6に示された実施の形態の作用効果を説明する。
[0218] 作業機械 1の下部走行体 2に対し上部旋回体 4を旋回駆動するときは、電磁弁 94を 右回転または左回転の方向制御位置に制御するとともに、ハイブリッド式駆動装置 10 の蓄電器 23からの電力により旋回用電動'発電機 96を介し駆動される旋回用ポンプ' モータ 95力 発生した作動流体圧により旋回モータ 4swhを作動して、上部旋回体 4を 旋回系のみで独立して旋回駆動できるとともに、上部旋回体 4を停止させる制動時は 、連絡通路電磁弁 98を閉じて、上部旋回体 4の慣性運動で回転する旋回モータ 4swh がポンプとして吐出した作動流体により旋回用ポンプ ·モータ 95を流体圧モータ負荷 として作動させ、旋回用電動 ·発電機 96を発電機として駆動するので、上部旋回体 4 の慣性運動エネルギを電気工ネルギに変換して、上部旋回体 4の旋回運動を制動し つつハイブリッド式駆動装置 10の蓄電器 23に電力を効率良く回収できる。
[0219] 一方、旋回モータ 4swhが多量の作動流体を必要としない場合は、電磁弁 94を中立 位置に近付けるとともに、連絡通路電磁弁 98を一方向流; ^立置に近付け、電動機と して作動する旋回用電動 ·発電機 96により旋回用ポンプ ·モータ 95をポンプとして駆 動し、この旋回用ポンプ.モータ 95は、作動流体補充ポンプ 99により作動流体の補充 を受けながら、連絡通路電磁弁 98を経て系外連絡通路 97に作動流体を吐出し、作 動流体を必要とする下部走行体 2および作業装置 8の流体圧ァクチユエータ制御回 路 25に対して作動流体を直接供給できる。 [0220] すなわち、系外連絡通路 97は、ブームシリンダ 8bmc、スティックシリンダ 8stcおよび 走行モータ 2trL, 2trRに作動流体を供給するメインポンプ 17Bの吐出通路 32に接続さ れたので、これらの流体圧ァクチユエータに対して、メインポンプ 17A, 17Bと、ポンプ として機能する旋回用ポンプ ·モータ 95とから、十分な作動流体を供給できる。そして 、旋回用ポンプ'モータ 95をポンプとして駆動する分、メインポンプ 17A, 17Bの小型 化を図れる。
[0221] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trR、ブームシリンダ 8bmc、スティックシリンダ 8stcおよび バケツトシリンダ 8bkcに供給される作動流体を制御する際に、クラッチ 88を切離すこと により、ブームシリンダ 8bmcから排出される戻り流体により作動されるエネルギ回生モ ータ 26より、無負荷状態のブーム用電動 ·発電機 87に動力を効率良く入力して、発生 した電力をノヽイブリツド式駆動装置 10の蓄電器 23に蓄えることができ、ブームシリンダ 8bmcから排出された戻り流体が有するエネルギを有効に回生できる。
[0222] 特に、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのヘッド 側から排出される戻り流体が有するエネルギを、エネルギ回生モータ 26からブーム用 電動'発電機 87により吸収してハイブリッド式駆動装置 10の蓄電器 23に蓄えることが できる。
[0223] また、クラッチ 88を接続したときは、ハイブリッド式駆動装置 10の蓄電器 23からの電 力により電動機として機能するブーム用電動 '発電機 87によりブームアシストポンプ 8 4asを駆動して、このブームアシストポンプ 84asからブームシリンダ 8bmcに作動流体を 供給できるので、メインポンプ 17A, 17Bと、ポンプとして機能する旋回用ポンプ'モー タ 95とに加えて、ブームアシストポンプ 84asからもブームシリンダ 8bmcに作動流体を 供給でき、 4つのポンプから多量の作動流体を供給でき、ブームアップ動作のさらな る高速ィ匕により、作業性のさらなる向上を図れる。
[0224] また、ブームシリンダ 8bmcから戻り流体通路 55に排出される戻り流体を一方の戻り 通路 56と他方の戻り通路 57とに分流し、その分流された流量比を流量比制御弁 58, 5 9により制御し、この流量比制御弁 58, 59により流量制御された一方の戻り流体により エネルギ回生モータ 26を作動し、このエネルギ回生モータ 26によりブーム用電動 '発 電機 87を駆動して、ハイブリッド式駆動装置 10の蓄電器 23に電力を供給するので、 ブームシリンダ 8bmcからの戻り流体が発生した時点からエネルギ回生モータ 26側に 分流される流量比を徐々に増加させることによってショックの発生を防止できるととも に、ブームシリンダ 8bmcの急激な負荷変動を抑えることで、ブームシリンダ 8bmcの安 定した動作が得られる。
[0225] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 26側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 26が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。
[0226] 流量比制御弁 58, 59は、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 5 6および他方の戻り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一 方の戻り通路 56および他方の戻り通路 57の開度を相互に関連することなく個別に制 御して、エネルギ回生モータ 26側に流される戻り流体の流量比および流量を自在に 制御できる。
[0227] また、ブームシリンダ用作動流体供給通路 48中にパケット 'ブーム間の電磁弁 89を 設けたので、この電磁弁 89を開くことで、一のメインポンプ 17Aからの作動流体供給量 とブームアシストポンプ 84asからの作動流体供給量とを合わせてブームシリンダ 8bmc に供給でき、ブームシリンダ 8bmcによるブームアップ動作の高速ィ匕を図れ、作業性を 向上できるとともに、この電磁弁 89を閉じることで、バケツトシリンダ 8bkcでの高圧を確 保できる。
[0228] さらに、スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側 とを連通するスティック 'ブーム間の回路間連通通路 71中にスティック 'ブーム間の電 磁弁 72を設けたので、この電磁弁 72を一方向流れ位置に制御することで、一のメイン ポンプ 17Aおよびブームアシストポンプ 84asから電磁弁 49の左室を経てブームシリン ダ 8bmcのヘッド側へ供給される作動流体に加えて、他のメインポンプ 17Bからの作動 流体もこの電磁弁 72を経てブームシリンダ 8bmcのヘッド側に供給でき、ブームシリン ダ 8bmcによるブームアップ動作の高速ィ匕を図れるので、作業性を向上できる。一方、 この電磁弁 72を閉じることで、他のメインポンプ 17Bからスティックシリンダ 8stcへの作 動流体供給量を確保できる。
[0229] また、パケット 'スティック間の回路間連通通路 73中にパケット 'スティック間の電磁 弁 74を設けたので、この電磁弁 74を一方向流れ位置に開くとともに、電磁弁 72, 89を 閉じることで、一のメインポンプ 17Aからブームシリンダ 8bmcに供給される作動流体を 、他のメインポンプ 17Bからスティックシリンダ 8stcに供給される作動流体に合流させて 、スティックシリンダ 8stcの高速ィ匕を図れるとともに、パケット 'スティック間の電磁弁 74 を閉じて電磁弁 72, 89を開くことで、他のメインポンプ 17Bからスティックシリンダ 8stcに 供給される作動流体を、一のメインポンプ 17Aからブームシリンダ用作動流体供給通 路 48、電磁弁 89、電磁弁 49の左室を経てブームシリンダ 8bmcのヘッド側に供給され る作動流体に合流させることで、ブームアップ動作の高速ィヒを図れ、作業性を向上 できる。
[0230] さらに、パケット 'スティック間の電磁弁 74を遮断位置に制御して、ブーム用制御回 路 45とスティック用制御回路 46とを分離独立させたときは、ブーム系と、スティック系と を切離して、圧力を別々に制御できる。特に、この電磁弁 74とともに電磁弁 89を閉じ ることで、バケツトシリンダ 8bkcでの高圧を確保できる。
[0231] また、ポンプ間連通通路 101中にポンプ間の電磁弁 102を設けたので、ブームアツ プ流量を必要としないときは、この電磁弁 102を開くことで、ブームアシストポンプ 84as 力 の作動流体吐出量を一のメインポンプ 14Aからの作動流体供給量に合流させる ことができ、作業性を向上できるとともに、この電磁弁 102を閉じることで、ブームシリン ダ 8bmcへの作動流体供給量を確保できる。
[0232] そして、これらのスティック 'ブーム間の電磁弁 72、パケット 'スティック間の電磁弁 74 、パケット 'ブーム間の電磁弁 89、ポンプ間の電磁弁 102に加えて、連絡通路電磁弁 9 8を開閉することで、作動流体を補充し合う回路間の組合せの自由度が高くなり、種 々の作動パターン要求に容易に対応できる。
[0233] 電磁弁 72, 89, 102を遮断位置に閉じることで、ブーム用制御回路 45をメインポンプ 17A, 17Bから完全に切離すこともできる。
[0234] また、走行直進用の電磁弁 35が、右側の走行直進位置にあるときは、片側のメイン ポンプ 17Bから 1対の走行モータ 2trL, 2trRに 2分された等流量を供給するので、作 業機械の直進走行を確保でき、また、走行直進用の電磁弁 35が左側の作業位置ま たは高速走行位置にあるときに、電磁弁 49, 62, 67が中立位置で作業用ァクチユエ ータ 8bmc, 8stc, 8bkcに作動流体が供給されないときは、ブームアシストポンプ 84as から電磁弁 102の連通位置および電磁弁 74の連通位置を経て補充された補充流量 を、一のメインポンプ 17Aおよび他のメインポンプ 17Bから 1対の走行モータ 2trL, 2trR への吐出流量に合流させることができるので、高速走行に必要な作動流体流量を確 保できるととも〖こ、メインポンプ 17A, 17Bの小型化を図れる。
[0235] このように、電磁弁 72, 74, 89, 98, 102の切換状態の組合せによって、組合せの自 由度が高くなり、システム構成の変更がフレキシブルとなる。また、ハイブリッドシステ ムにより、エンジン 11の燃費効率を向上できる。
[0236] 次に、図 7に示された第 6の実施の形態を説明する。なお、この流体圧回路が適用 される作業機械は、図 2に示されたものであり、ここでは、その説明を省略する。
[0237] 図 7に示されたハイブリッド式駆動装置 10は、エンジン 11に、このエンジン 11から出 力された回転動力を断続するクラッチ 12が接続され、このクラッチ 12に動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15に 2つの可変容量型のメイ ンポンプ 17A, 17Bが接続されている。
[0238] これらのメインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で動力伝達装置 14の入出力軸 21に、エンジン 11により駆動されて発電機として機能するとともに電力 の供給を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 · 発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動'発電機 22に は、インバータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0239] 電動.発電機制御器 22cには、コンバータなどの蓄電器制御器 23cを介して、発電 機として機能する電動 ·発電機 22から供給された電力を蓄えるとともに電動機として 機能する電動'発電機 22に電力を供給する蓄電器 23が接続されている。蓄電器 23は 、 ノ ッテリや、キャパシタなどである。
[0240] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0241] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、エネルギ回 生モータ 26には、回転伝達を断続する回生用クラッチ 111および回転軸 112を介して 、ノ、イブリツド式駆動装置 10の電動 ·発電機 22が接続されて 、る。
[0242] 流体圧ァクチユエータ制御回路 25に対して、ハイブリッド式駆動装置 10の蓄電器 23 力 供給された電力により旋回用電動 ·発電機 4swを電動機として作動するとともに上 部旋回体 4の旋回制動時に発電機として作動した旋回用電動 ·発電機 4sw力 発生 した電力を蓄電器 23に回収する旋回用制御回路 28が設置されている。
[0243] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収する。
[0244] エンジン 11の速度、クラッチ 12の断続、動力伝達装置 14の変速などは、コントローラ
(図示せず)から出力された信号により制御される。
[0245] 図 7に示された流体圧ァクチユエータ制御回路 25において、メインポンプ 17A, 17B の吐出口に接続されたポンプ通路 31, 32は、タンク 24に戻されるバイパス通路中に設 けられた電磁比例弁として作動する電磁弁 33, 34に接続されているとともに、走行直 進弁として作動する電磁弁 35に接続されて!ヽる。
[0246] 電磁弁 33, 34は、バイパス弁として機能し、オペレータが流体圧ァクチユエータ 2trL , 2trR, 8bmc, 8stc, 8bkcを操作する操作信号がないときは、コントローラからの制御 信号によりポンプ通路 31, 32をタンク 24に連通する全開位置に制御され、オペレータ が流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcを操作する操作信号の大きさ に比例して閉じ位置に変位する。
[0247] 電磁弁 35は、図 7に示された左側の作業位置では、 2つのメインポンプ 17A, 17B力 ら流体圧ァクチユエータ 2trL, 2trR, 8bmc, 8stc, 8bkcに作動流体を供給でき、右側 の走行直進位置に切換わると、一方のメインポンプ 17Bのみから 2つの走行モータ 2tr L, 2trRに等分された作動流体を供給して、直進走行が可能となる。
[0248] 流体圧ァクチユエータ制御回路 25は、ハイブリッド式駆動装置 10のメインポンプ 17A , 17Bから走行モータ 2trL, 2trRに供給される作動流体を制御する走行用制御回路 3 6と、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから、作業装置 8を作動する 作業用ァクチユエータ 8bmc, 8stc, 8bkcに供給される作動流体を制御する作業装置 用制御回路 37とを備えている。
[0249] 走行用制御回路 36は、走行直進弁として作動する電磁弁 35から引出された走行モ ータ用作動流体供給通路 41, 42を経て供給された作動流体を方向制御および流量 制御する電磁弁 43, 44を備えている。
[0250] 作業装置用制御回路 37は、ハイブリッド式駆動装置 10のメインポンプ 17A, 17Bから ブームシリンダ 8bmcに供給される作動流体を制御するブーム用制御回路 45と、ハイ ブリツド式駆動装置 10のメインポンプ 17A, 17Bからスティックシリンダ 8stcに供給され る作動流体を制御するスティック用制御回路 46と、ハイブリッド式駆動装置 10のメイン ポンプ 17A, 17Bからバケツトシリンダ 8bkcに供給される作動流体を制御するパケット 用制御回路 47とを備えている。
[0251] ブーム用制御回路 45は、走行直進弁として作動する電磁弁 35から引出されたブー ムシリンダ用作動流体供給通路 48を経て供給された作動流体を方向制御および流 量制御する電磁弁 49を備え、この電磁弁 49の作動流体給排通路 51, 52がブームシリ ンダ 8bmcのヘッド側室とロッド側室とに連通されている。
[0252] ヘッド側作動流体給排通路 51には、落下防止弁として機能する電磁弁 53が介在さ れ、この電磁弁 53をブーム停止時に左側の逆止弁位置に切換制御してブーム 8bm の自重による下降を防止する。また、両方の作動流体給排通路 51, 52間には再生弁 として機能する電磁弁 54が設けられ、この電磁弁 54をブーム下降時に逆止弁位置に 切換制御して、ブームシリンダ 8bmcのヘッド側室力も排出された戻り流体の一部を口 ッド側室に再生する。
[0253] 電磁弁 49のタンク通路側には、ブームシリンダ 8bmcから排出される戻り流体を分流 する戻り流体通路 55が設けられ、この戻り流体通路 55の一方の戻り通路 56および他 方の戻り通路 57には、これらの戻り通路 56, 57に分流される流量比を制御する流量 比制御弁 58, 59が設けられている。この流量比制御弁 58, 59は、前記エネルギ回生 モータ 26を有する一方の戻り通路 56に設けられた流量制御用の一方の電磁弁 58と、 この一方の電磁弁 58の上流側で分岐された他方の戻り通路 57に設けられた流量制 御用の他方の電磁弁 59とによって形成されて 、る。
[0254] そして、流量比制御弁 58, 59により流量制御された一方の戻り通路 56の戻り流体量 により、作動されるエネルギ回生モータ 26の回転速度を制御する。
[0255] このエネルギ回生モータ 26が作動するのは、方向制御および流量制御する電磁弁 49が図 7において右室にあるときが望ましい。すなわち、ブーム下降時に、ブームシリ ンダ 8bmcのヘッド側作動流体給排通路 51が戻り流体通路 55に連通して、ブームシリ ンダ 8bmcのヘッド側力も排出された戻り流体によりエネルギ回生モータ 26がブーム自 重により余裕を持って作動することが望まし 、。
[0256] スティック用制御回路 46は、走行直進弁として作動する電磁弁 35から引出されたス テイツクシリンダ用作動流体供給通路 61を経て供給された作動流体を方向制御およ び流量制御する電磁弁 62を備え、この電磁弁 62の作動流体給排通路 63, 64がスティ ックシリンダ 8stcのヘッド側室とロッド側室とに連通されている。また、両方の作動流体 給排通路 63, 64間にはロッド側からヘッド側への再生弁として機能する電磁弁 65が 設けられ、この電磁弁 65をスティック 'イン下降時に逆止弁位置に切換制御して、ステ イツクシリンダ 8stcのロッド側室力 排出された戻り流体をヘッド側室に再生する。
[0257] パケット用制御回路 47は、走行直進弁として作動する電磁弁 35から引出されたバケ ットシリンダ用作動流体供給通路 66を経て供給された作動流体を方向制御および流 量制御する電磁弁 67を備え、この電磁弁 67の作動流体給排通路 68, 69がバケツトシ リンダ 8bkcのヘッド側室とロッド側室とに連通されている。
[0258] スティックシリンダ用作動流体供給通路 61とブームシリンダ 8bmcのヘッド側との間に は、これらを連通するスティック 'ブーム間の回路間連通通路 71が設けられ、このステ イツク 'ブーム間の回路間連通通路 71中には、スティックシリンダ用作動流体供給通 路 61力 ブームシリンダ 8bmcのヘッド側への一方向流れを可能とする位置と流れを 遮断する位置との間で変位されるスティック 'ブーム間の電磁弁 72が設けられている [0259] ブームシリンダ用作動流体供給通路 48とスティックシリンダ用作動流体供給通路 61 との間には、これらの間を連通するブーム'スティック間の回路間連通通路 73が設け られ、このブーム'スティック間の回路間連通通路 73中には、ブームシリンダ用作動流 体供給通路 48からスティックシリンダ 8stcへの一方向流れを可能とする位置および遮 断する位置をそれぞれ有するブーム'スティック間の電磁弁 74が設けられて ヽる。
[0260] 電磁弁 53, 54, 65, 72, 74は、逆止弁を内蔵した流量調整機能を有する切換弁であ る。
[0261] 電磁弁 33, 34, 35, 43, 44, 49, 53, 54, 58, 59, 62, 65, 67, 72, 74は、図示されな いコントローラにより比例制御されるソレノイドと、リターンスプリング(図示せず)とをそ れぞれ備え、ソレノイド励磁力とスプリング復元力とがバランスした位置に変位制御さ れる。
[0262] 次に、この図 7に示された実施の形態の作用効果を説明する。
[0263] ブーム用制御回路 45は、ブームシリンダ 8bmcから排出される戻り流体を戻り流体通 路 55にて分流し、その分流された流量比を流量比制御弁 58, 59により制御し、この流 量比制御弁 58, 59により流量制御された一方の戻り流体によりエネルギ回生モータ 2 6を作動し、このエネルギ回生モータ 26により、回生用クラッチ 111を介して、ハイブリツ ド式駆動装置 10の電動'発電機 22を直接駆動するので、ブームシリンダ 8bmcからの 戻り流体が発生した時点力 エネルギ回生モータ 26側に分流される流量比を徐々に 増加させることによってショックの発生を防止できるとともに、ブームシリンダ 8bmcの急 激な負荷変動を抑えることで、ブームシリンダ 8bmcの安定した動作が得られる。
[0264] すなわち、作業装置 8のブーム 8bmが自重落下する際に、ブームシリンダ 8bmcのへ ッド側力 排出される戻り流体のエネルギ回生モータ 26側への流量比を徐々に増加 させることで、戻り流体が有するエネルギをエネルギ回生モータ 26が円滑に吸収でき るとともに、ブームシリンダ 8bmcのヘッド側の急激な負荷変動を抑えることで、ブーム 8bmの自重落下動作を安定させることができる。
[0265] 流量比制御弁 58, 59は、一方の電磁弁 58と他方の電磁弁 59とを、一方の戻り通路 5 6および他方の戻り通路 57の任意の場所にそれぞれ分離して設置できるとともに、一 方の戻り通路 56および他方の戻り通路 57の開度を相互に関連することなく個別に制 御して、エネルギ回生モータ 26側に流される戻り流体の流量比および流量を自在に 制御できる。
[0266] さらに、回生用クラッチ 111を接続することにより、流体圧ァクチユエータ制御回路 25 のブームシリンダ 8bmcから排出される戻り流体により作動されるエネルギ回生モータ 2 6は、回生用クラッチ 111を介してハイブリッド式駆動装置 10の電動 '発電機 22を直接 駆動するので、流体圧ァクチユエータ制御回路 25中で作動流体が有する余剰エネ ルギを電力に変換する必要がなぐ流体圧ァクチユエータ制御回路 25中の発電機を 不要とすることができるとともに、エネルギ効率を向上することができる。
[0267] 一方、ハイブリッド式駆動装置 10の電動 ·発電機 22を電動機として用いるときは、回 生用クラッチ 111を切離して、エネルギ回生モータ 26が電動'発電機 22の負荷となるこ とを防止でき、蓄電器 23からの電力により電動機として機能するブーム用電動 ·発電 機 22を効率良く作動できる。
[0268] さらに、下部走行体 2に対し、電動機として作動する旋回用電動'発電機 4swにより 旋回させた上部旋回体 4を停止させるときは、旋回用制御回路 28により旋回用電動- 発電機 4swを発電機として作動させることで、上部旋回体 4の旋回を制動できるととも に、旋回用電動 ·発電機 4swから発生した電力を、エネルギ回生モータ 26により駆動 された電動 '発電機 22から発生した電力とともにハイブリッド式駆動装置 10の蓄電器 2 3に効率良く回収でき、ハイブリッド式駆動装置 10のポンプ動力として回生できる。
[0269] また、ブーム'スティック間の電磁弁 74を開いてスティック 'ブーム間の電磁弁 72を閉 じることで、一のメインポンプ 17Aからブームシリンダ 8bmcに供給される作動流体を、 他のメインポンプ 17Bからスティックシリンダ 8stcに供給される作動流体に合流させて、 スティックシリンダ 8stcの高速ィ匕を図れるとともに、ブーム'スティック間の電磁弁 74を 閉じてスティック 'ブーム間の電磁弁 72を開くことで、他のメインポンプ 17Bからステイツ クシリンダ 8stcに供給される作動流体を、一のメインポンプ 17A力もブームシリンダ用 作動流体供給通路 48、方向制御用の電磁弁 49の左室を経てブームシリンダ 8bmcの ヘッド側に供給される作動流体に合流させて、ブームアップ動作の高速ィ匕を図れる。
[0270] さらに、ブーム'スティック間の電磁弁 74を遮断位置に制御して、ブーム用制御回路 45およびパケット用制御回路 47と、スティック用制御回路 46とを分離独立させたときは 、ブーム系およびパケット系と、スティック系とを切離して、圧力を別々に制御できる。 特に、パケット系で要求される高圧を確保できる。
[0271] 以上の各実施の形態に示されるように、ブームダウンの戻り流体通路 55を分岐して 、一方の戻り通路 56に一方の電磁弁 58を、他方の戻り通路 57に他方の電磁弁 59を 並列に設け、一方の電磁弁 58は、ブームダウン時の戻り流体のエネルギを回生させ るためのエネルギ回生モータ 26 (図 4では 86)を介しタンク 24に接続し、他方の電磁 弁 59は、タンク 24に直接接続することで、両方の電磁弁 58, 59により流量バランスを 制御して、戻り流体のエネルギ回生モータ 26にショックを与えないように、このエネル ギ回生モータ 26を円滑に動かすことができるとともに、ブームシリンダ 8bmcの急激な 背圧変化を防止して、円滑なブーム下降動作を確保できる。
[0272] 次に、図 8は、ハイブリッド式駆動装置 10の変形例を示し、エンジン 11に、このェン ジン 11から出力された回転動力を断続する第 1のクラッチ 12aが接続され、この第 1の クラッチ 12aに動力伝達装置 14の入力軸 13が接続され、動力伝達装置 14の出力軸 15 に可変容量型の複数のメインポンプ 17A, 17Bが直列に接続されている。
[0273] エンジン 11には、このエンジン 11により駆動されて発電機として機能するとともに電 力の供給を受けてエンジン 11を始動する電動機として機能するスタータモータ発電 機 18が、直列的に接続されている。このスタータモータ発電機 18には、インバータな どのスタータモータ発電機制御器 18cが接続されている。
[0274] 動力伝達装置 14の入出力軸 21に対し第 1のクラッチ 12aと並列的に第 2のクラッチ 1 2bが接続され、メインポンプ 17A, 17Bに対してエンジン 11と並列的な関係で第 2のク ラッチ 12bに、エンジン 11により駆動されて発電機として機能するとともに電力の供給 を受けて電動機として機能する電動 ·発電機 22が接続されて 、る。この電動 ·発電機 22の電動機動力は、エンジン動力より小さく設定する。この電動 ·発電機 22には、イン バータなどの電動 ·発電機制御器 22cが接続されて ヽる。
[0275] スタータモータ発電機制御器 18cおよび電動 '発電機制御器 22cは、コンバータなど の蓄電器制御器 23cを介して、発電機として機能するスタータモータ発電機 18および 電動'発電機 22から供給された電力を蓄えるとともに電動機として機能するスタータ モータ発電機 18および電動 '発電機 22に電力を供給する蓄電器 23に接続されている
。蓄電器 23は、ノ ッテリや、キャパシタなどである。
[0276] ノ、イブリツド式駆動装置 10における動力伝達装置 14は、トロイダル式、遊星歯車式 などの無段変速機構を内蔵し、外部力 の制御信号により出力軸 15に無段変速され た回転を出力可能となっている。
[0277] ハイブリッド式駆動装置 10におけるメインポンプ 17A, 17Bは、タンク 24内に収容され た作動油などの作動流体を流体圧ァクチユエータ制御回路 25に供給する。この流体 圧ァクチユエータ制御回路 25中にはエネルギ回生モータ 26が設けられ、このエネル ギ回生モータ 26により駆動された発電機 27から回収された電力は、蓄電器 23に蓄え られる。
[0278] 流体圧ァクチユエータ制御回路 25に対して、ハイブリッド式駆動装置 10の蓄電器 23 力 供給された電力により旋回用電動 ·発電機 4swを電動機として作動するとともに上 部旋回体 4の旋回制動時に発電機として作動した旋回用電動 ·発電機 4sw力 発生 した電力を蓄電器 23に回収する旋回用制御回路 28が設置されている。
[0279] この旋回用制御回路 28は、上部旋回体 4を旋回減速機構 4grを介して旋回駆動す る旋回用電動 ·発電機 4swと、インバータなどの旋回用電動 '発電機制御器 4swcとを 備え、ハイブリッド式駆動装置 10の蓄電器 23から供給された電力により電動機として 機能するとともに、慣性旋回力により強制回転されると発電機として機能して蓄電器 2 3に電力を回収する。
[0280] エンジン 11の速度、第 1のクラッチ 12aの断続、動力伝達装置 14の変速などは、コン トローラ 29から出力された信号により制御される。
[0281] このように、エンジン 11とスタータモータ発電機 18が直列に接続され (直列システム) 、エンジン 11と電動 '発電機 22が、動力伝達装置 14に対して並列に接続され (並列シ ステム)、これらの直列システムと並列システムとを、作業状況に応じて、エンジン 11と 動力伝達装置 14との間に設けられた第 1のクラッチ 12a、および電動 '発電機 22と動 力伝達装置 14との間に設けられた第 2のクラッチ 12bにより選択可能であるから、直列 システムでは、エンジン動力は、スタータモータ発電機 18を経て蓄電器 23に蓄えられ 、並列システムでは、エンジン動力は、電動'発電機 22を経て蓄電器 23に蓄えられる ので、作業状況に応じて、それらの両方の利点を利用できる。
[0282] 例えば、ポンプ負荷が大きな重負荷作業のときは、両方のクラッチ 12a, 12bを接続 するとともに、スタータモータ発電機 18および電動 '発電機 22を電動機として機能させ 、スタータモータ発電機 18力もの電動機動力をエンジン 11のクランクシャフトに入力さ せるとともに、電動 ·発電機 22からの電動機動力を動力伝達装置 14内に入力させて、 これらの 3動力によりメインポンプ 17A, 17Bを駆動する。
[0283] また、直列システムでは、メインポンプ 17A, 17Bから要求される動力に対してェンジ ン動力に余裕がある場合は、スタータモータ発電機 18を発電機として機能させ、スタ ータモータ発電機 18力も発電された電力を蓄電器 23に蓄え、また、エンジン動力がメ インポンプ 17A, 17Bから要求される動力を満たせない場合は、スタータモータ発電機 18を電動機として機能させ、エンジン 11にスタータモータ発電機動力を付加する。こ れでもエンジン動力がメインポンプ 17A, 17Bから要求される動力を満たせない場合 は、両方のクラッチ 12a, 12bを接続して、並列システムの電動'発電機 22を電動機とし て機能させ、エンジン 11にスタータモータ発電機動力および電動'発電機動力を付 加する。
[0284] ポンプ負荷が比較的小さな軽負荷作業のときは、一方のクラッチ 12aまたは 12bを接 続するとともに、他方のクラッチ 12bまたは 12aを切離して、エンジン 11または電動'発 電機 22の片方によりメインポンプ 17A, 17Bを駆動する。
[0285] 例えば、エンジン 11と動力伝達装置 14との間に設けられた第 1のクラッチ 12aを切離 して、第 2のクラッチ 12bを接続することにより、エンジン 11を停止させた静かな状態で 、蓄電器 23に蓄えられた電力により電動 '発電機 22を電動機として作動させてメイン ポンプ 17A, 17Bを駆動することができるので、エンジン 11に故障が生じた場合のェン ジン修理までの作業や、エンジン騒音が問題となる市街地または夜間での低騒音作 業に適する。
[0286] さらに、この第 1のクラッチ 12aを切離して、第 2のクラッチ 12bを接続し、電動'発電 機 22を電動機としてメインポンプ 17A, 17Bを駆動しているときに、エンジン 11を作動さ せてスタータモータ発電機 18を発電機として駆動すると、作業中に蓄電器 23を充電 することが可能である。 [0287] 一方、第 1のクラッチ 12aを接続して、第 2のクラッチ 12bを切離した場合は、エンジン 11は電動 ·発電機 22を引きずることなくポンプ負荷のみを効率良く駆動できる。
[0288] また、両方のクラッチ 12a, 12bを接続したときに、ポンプ負荷が無い場合あるいは軽 微な場合は、スタータモータ発電機 18および電動'発電機 22を発電機として機能させ 、エンジン動力をスタータモータ発電機 18および電動'発電機 22に供給して、スター タモータ発電機 18および電動'発電機 22により蓄電器 23を効率良く充電することがで きる。
[0289] このように、両方のクラッチ 12a, 12bを接続したときは、動力伝達装置 14を介しェン ジン 11の動力と電動 ·発電機 22の動力とを同時に利用して大きなポンプ動力を得るこ ともでき、一方、エンジン 11に直列的に接続されたスタータモータ発電機 18は、ェン ジン始動用の電動機として機能するとともに、エンジン負荷が小さいときなどはェンジ ン 11により駆動される発電機として機能することができ、さらに、第 1のクラッチ 12aを切 離すことにより、油圧システム力 独立してスタータモータ発電機 18を発電できるから 、電動 ·発電機 22とともに蓄電器 23を効率良く充電することもできる。
[0290] 蓄電器 23は、発電機として機能するスタータモータ発電機 18および電動'発電機 22 力も供給された電力を蓄えるとともに、流体圧ァクチユエータ制御回路 25中のエネル ギ回生モータ 26により駆動された発電機 27から回収された電力も蓄えるので、十分な 電力の供給を受けて、エンジン停止状態での電動'発電機 22による長時間のポンプ 馬区動ちでさる。
[0291] また、下部走行体 2に対し電動機として作動する旋回用電動'発電機 4swにより旋 回させた上部旋回体 4を停止させるときは、旋回用制御回路 28により旋回用電動-発 電機 4swを発電機として作動させることで、上部旋回体 4の旋回を制動できるとともに 旋回用電動 ·発電機 4swから発生した電力を、エネルギ回生モータ 26により駆動され た発電機 27から発生した電力とともにハイブリッド式駆動装置 10の蓄電器 23に効率 良く回収でき、ノ、イブリツド式駆動装置 10のポンプ動力として回生できる。
産業上の利用可能性
[0292] 本発明は、油圧ショベルに好適なものである力 クレーン車などにも利用可能であ る。

Claims

請求の範囲
[1] 流体圧ァクチユエ一タカ 排出される戻り流体が通る一方の戻り通路と、
この一方の戻り通路中に設けられ戻り流体が有するエネルギにより作動されるエネ ノレギ回生モータと、
このエネルギ回生モータの上流側で一方の戻り通路より分岐された他方の戻り通 路と、
一方の戻り通路での戻り流量と他方の戻り通路での戻り流量との流量比を制御する 流量比制御弁と
を具備したことを特徴とする流体圧回路。
[2] 流量比制御弁は、
一方の戻り通路での戻り流量を制御する一方の電磁弁と、
他方の戻り通路での戻り流量を制御する他方の電磁弁と
を具備したことを特徴とする請求項 1記載の流体圧回路。
[3] 流体圧ァクチユエータは、作業機械の機体に設けられた作業装置のブームを上下 方向に回動するブームシリンダであり、
エネルギ回生モータは、ブームシリンダ力 の作動流体の戻り通路中に設けられた ことを特徴とする請求項 1または 2記載の流体圧回路。
[4] ポンプ力 供給された作動流体により作動する流体圧ァクチユエータと、
この流体圧ァクチユエ一タカ 排出される戻り流体が有するエネルギにより作動され るエネノレギ回生モータと、
このエネルギ回生モータにより駆動されて蓄電器に電力を供給する発電機として機 能するとともに蓄電器から供給された電力により電動機として機能する電動'発電機 と、
この電動 '発電機が電動機として機能するときは電動 '発電機力 ポンプに動力を 伝えるとともに発電機として機能するときは電動 ·発電機をポンプ力 切離すクラッチ と
を具備したことを特徴とするエネルギ回生装置。
[5] 流体圧ァクチユエータは、作業機械の機体に設けられた作業装置のブームを上下 方向に回動するブームシリンダであり、
エネルギ回生モータは、ブームシリンダ力 の作動流体の戻り通路中に設けられた ことを特徴とする請求項 4記載のエネルギ回生装置。
[6] 複数のメインポンプ力 作動流体の供給をうけるブームシリンダにより回動されるブ ーム、スティックシリンダにより回動されるスティックおよびバケツトシリンダにより回動さ れるパケットが順次連結された作業装置を搭載した作業機械の流体圧回路であって 一のメインポンプ力 ブームシリンダに作動流体を供給するブームシリンダ用作動 流体供給通路と、
ブームシリンダ用作動流体供給通路力 分岐されてバケツトシリンダに作動流体を 供給するバケツトシリンダ用作動流体供給通路と、
他のメインポンプからスティックシリンダに作動流体を供給するスティックシリンダ用 作動流体供給通路と、
一のメインポンプとともにブームシリンダ用作動流体供給通路に作動流体を供給す るブームアシストポンプと、
ブームシリンダ用作動流体供給通路中であってバケツトシリンダ用作動流体供給通 路の分岐部とブームアシストポンプからの合流部との間に設けられバケツトシリンダへ の作動流体をブームシリンダへの一方向流れとして供給可能とする位置と流れを遮 断する位置との間で変位されるパケット 'ブーム間の電磁弁と、
スティックシリンダ用作動流体供給通路よりブームシリンダのヘッド側に連通可能に 設けられたスティック 'ブーム間の回路間連通通路と、
このスティック 'ブーム間の回路間連通通路中に設けられスティックシリンダへの作 動流体をブームシリンダのヘッド側への一方向流れとして供給可能な位置と流れを 遮断する位置との間で変位されるスティック ·ブーム間の電磁弁と
を具備したことを特徴とする作業機械の流体圧回路。
[7] 複数のメインポンプ力 作動流体の供給をうけるブームシリンダにより回動されるブ ームを有する作業装置を搭載した作業機械の流体圧回路であって、
一のメインポンプ力 ブームシリンダに作動流体を供給するブームシリンダ用作動 流体供給通路と、
このブームシリンダ用作動流体供給通路に一のメインポンプとともに作動流体を供 給するブームアシストポンプと、
このブームアシストポンプから吐出された作動流体を一のメインポンプから吐出され た作動流体と合流させる連通位置と流れを遮断する位置とを有する一の電磁弁と、 一のメインポンプから吐出された作動流体を他のメインポンプから吐出された作動 流体と合流させる連通位置と流れを遮断する位置との間で変位される他の電磁弁と 走行用の 1対の走行モータと、
一のメインポンプおよび他のメインポンプと 1対の走行モータとの間を連通する通路 中に介在された走行直進弁とを具備し、
この走行直進弁は、
ブームアシストポンプから一の電磁弁の連通位置および他の電磁弁の連通位置を 経て補充された補充流量を一のメインポンプおよび他のメインポンプから 1対の走行 モータへの吐出流量に合流させる高速走行位置と、
いずれかのメインポンプから 1対の走行モータに 2分された等流量を供給する走行 直進位置とを有する
ことを特徴とする作業機械の流体圧回路。
ブームシリンダ力 排出される戻り流体が有するエネルギにより作動されるエネルギ 回生モータと、
このエネルギ回生モータにより駆動されて蓄電器に電力を供給する発電機として機 能するとともに蓄電器から供給された電力により電動機として機能する電動'発電機 と、
この電動 '発電機が電動機として機能するときは電動 '発電機力 ブームアシストポ ンプに動力を伝えるとともに発電機として機能するときは電動 '発電機をブームアシス トポンプ力 切離すクラッチと
を具備したことを特徴とする請求項 6または 7記載の作業機械の流体圧回路。
PCT/JP2006/303564 2005-06-06 2006-02-27 流体圧回路、エネルギ回生装置、作業機械の流体圧回路 WO2006132010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/912,060 US20090288408A1 (en) 2005-06-06 2006-02-27 Hydraulic circuit, energy recovery device, and hydraulic circuit for work machine
EP06714701A EP1898104A4 (en) 2005-06-06 2006-02-27 FLUID PRESSURE CIRCUIT, ENERGY RECOVERY DEVICE AND FLUID PRESSURE RECOVERY CIRCUIT FOR WORKING MACHINE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005166179A JP2006336433A (ja) 2005-06-06 2005-06-06 作業機械の流体圧回路
JP2005166177A JP2006336846A (ja) 2005-06-06 2005-06-06 流体圧回路
JP2005166180A JP2006336848A (ja) 2005-06-06 2005-06-06 作業機械の流体圧回路
JP2005-166180 2005-06-06
JP2005-166177 2005-06-06
JP2005166178A JP2006336847A (ja) 2005-06-06 2005-06-06 エネルギ回生装置
JP2005-166179 2005-06-06
JP2005-166178 2005-06-06

Publications (1)

Publication Number Publication Date
WO2006132010A1 true WO2006132010A1 (ja) 2006-12-14

Family

ID=37498219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303564 WO2006132010A1 (ja) 2005-06-06 2006-02-27 流体圧回路、エネルギ回生装置、作業機械の流体圧回路

Country Status (3)

Country Link
US (1) US20090288408A1 (ja)
EP (1) EP1898104A4 (ja)
WO (1) WO2006132010A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128453A1 (en) * 2007-03-06 2009-12-02 Caterpillar Japan Ltd. Hydraulic control circuit for construction machine
WO2011118322A1 (ja) * 2010-03-26 2011-09-29 カヤバ工業株式会社 ハイブリッド建設機械の制御システム
CN103403269A (zh) * 2011-04-19 2013-11-20 日立建机株式会社 工程机械的电动驱动装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663442B (zh) * 2007-03-23 2012-02-29 株式会社小松制作所 混合动力建筑机械的发电控制方法及混合动力建筑机械
DE102008021889A1 (de) * 2008-05-02 2009-11-05 Robert Bosch Gmbh Fahrzeug, insbesondere mobile Arbeitsmaschine
DE202009004071U1 (de) * 2009-03-23 2010-08-12 Liebherr-France Sas, Colmar Antrieb für einen Hydraulikbagger
US8672069B2 (en) * 2009-08-25 2014-03-18 Deere & Company Hybrid vehicle with multiple electric drive systems
EP2333351B1 (de) 2009-12-11 2013-03-20 HAWE Hydraulik SE Elektrohydraulisches Hubmodul
KR101652112B1 (ko) * 2009-12-23 2016-08-29 두산인프라코어 주식회사 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
JP5461234B2 (ja) * 2010-02-26 2014-04-02 カヤバ工業株式会社 建設機械の制御装置
US8362629B2 (en) * 2010-03-23 2013-01-29 Bucyrus International Inc. Energy management system for heavy equipment
JP5341005B2 (ja) * 2010-03-29 2013-11-13 日立建機株式会社 建設機械
DE102010020573A1 (de) * 2010-05-14 2011-11-17 Netstal-Maschinen Ag Verfahren zum Betrieb eines Hybridantriebs und Hybridantrieb
JP5496135B2 (ja) 2011-03-25 2014-05-21 日立建機株式会社 油圧作業機の油圧システム
US20140026548A1 (en) * 2011-04-15 2014-01-30 Volvo Construction Equipment Ab Method and a device for reducing vibrations in a working machine
JP5562288B2 (ja) * 2011-05-25 2014-07-30 日立建機株式会社 建設機械の電動駆動装置
WO2013005809A1 (ja) 2011-07-06 2013-01-10 住友重機械工業株式会社 ショベル及びショベルの制御方法
DE102011107084A1 (de) * 2011-07-11 2013-01-17 Liebherr-Hydraulikbagger Gmbh Arbeitsmaschine
US8944103B2 (en) 2011-08-31 2015-02-03 Caterpillar Inc. Meterless hydraulic system having displacement control valve
US8966892B2 (en) 2011-08-31 2015-03-03 Caterpillar Inc. Meterless hydraulic system having restricted primary makeup
US8863509B2 (en) 2011-08-31 2014-10-21 Caterpillar Inc. Meterless hydraulic system having load-holding bypass
CN103781972B (zh) 2011-09-09 2016-08-24 住友重机械工业株式会社 挖土机以及挖土机的控制方法
US8966891B2 (en) 2011-09-30 2015-03-03 Caterpillar Inc. Meterless hydraulic system having pump protection
US9151018B2 (en) 2011-09-30 2015-10-06 Caterpillar Inc. Closed-loop hydraulic system having energy recovery
US9057389B2 (en) 2011-09-30 2015-06-16 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
US9051714B2 (en) 2011-09-30 2015-06-09 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
US9080310B2 (en) 2011-10-21 2015-07-14 Caterpillar Inc. Closed-loop hydraulic system having regeneration configuration
US8943819B2 (en) 2011-10-21 2015-02-03 Caterpillar Inc. Hydraulic system
US8978373B2 (en) 2011-10-21 2015-03-17 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8978374B2 (en) 2011-10-21 2015-03-17 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8893490B2 (en) 2011-10-21 2014-11-25 Caterpillar Inc. Hydraulic system
US8910474B2 (en) 2011-10-21 2014-12-16 Caterpillar Inc. Hydraulic system
US8973358B2 (en) 2011-10-21 2015-03-10 Caterpillar Inc. Closed-loop hydraulic system having force modulation
US9068578B2 (en) 2011-10-21 2015-06-30 Caterpillar Inc. Hydraulic system having flow combining capabilities
US8984873B2 (en) 2011-10-21 2015-03-24 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
US8919114B2 (en) 2011-10-21 2014-12-30 Caterpillar Inc. Closed-loop hydraulic system having priority-based sharing
US20130152565A1 (en) * 2011-12-16 2013-06-20 Pengfei Ma Hydraulic system having energy recovery
JP5791530B2 (ja) * 2012-01-25 2015-10-07 カヤバ工業株式会社 建設機械の制御装置
JP5762328B2 (ja) * 2012-02-03 2015-08-12 カヤバ工業株式会社 建設機械の制御装置
US9279236B2 (en) 2012-06-04 2016-03-08 Caterpillar Inc. Electro-hydraulic system for recovering and reusing potential energy
US9574425B2 (en) * 2012-07-12 2017-02-21 Halliburton Energy Services, Inc. Downhole power generation using hydraulic flow regulation
US9290912B2 (en) 2012-10-31 2016-03-22 Caterpillar Inc. Energy recovery system having integrated boom/swing circuits
JP5661085B2 (ja) * 2012-11-13 2015-01-28 株式会社神戸製鋼所 作業機械の油圧駆動装置
JP5661084B2 (ja) 2012-11-13 2015-01-28 株式会社神戸製鋼所 作業機械の油圧駆動装置
US9290911B2 (en) 2013-02-19 2016-03-22 Caterpillar Inc. Energy recovery system for hydraulic machine
US9863124B2 (en) 2013-05-24 2018-01-09 Hitachi Construction Machinery Co., Ltd. Construction machinery
EP2811172B1 (en) * 2013-06-04 2019-02-27 Danfoss Power Solutions Aps A hydraulic valve arrangement
KR102284285B1 (ko) * 2014-03-11 2021-07-30 스미도모쥬기가이고교 가부시키가이샤 쇼벨
DE102014216031A1 (de) * 2014-08-13 2016-03-10 Robert Bosch Gmbh Hydrostatischer Antrieb und Ventilvorrichtung dafür
JP6510396B2 (ja) * 2015-12-28 2019-05-08 日立建機株式会社 作業機械
CN108248089B (zh) * 2016-11-30 2019-07-19 合肥工业大学 一种双执行单元液压机的控制方法
JP6718370B2 (ja) 2016-12-22 2020-07-08 川崎重工業株式会社 液圧システム
US10468944B2 (en) * 2017-01-25 2019-11-05 General Electric Company System and method for synchronous condensing
DE102017011476A1 (de) * 2017-12-12 2019-06-13 Bomag Gmbh Baumaschine mit Antriebsstrang mit CVT-Einheit
EP3597934A1 (en) * 2018-06-15 2020-01-22 Dana Italia S.r.L. Hydraulic circuit
CN108755794B (zh) * 2018-06-21 2020-11-06 太原理工大学 基于液电复合驱动的液压挖掘机
JP7152968B2 (ja) * 2019-02-28 2022-10-13 川崎重工業株式会社 油圧ショベル駆動システム
CN111022396B (zh) * 2019-12-24 2022-02-08 浙江三一装备有限公司 一种起重机液压系统及起重机
US20230175234A1 (en) * 2020-05-01 2023-06-08 Cummins Inc. Distributed pump architecture for multifunctional machines
GB2602992A (en) * 2021-01-22 2022-07-27 Bamford Excavators Ltd A Working Machine
US20240003118A1 (en) * 2022-06-30 2024-01-04 Caterpillar Sarl Electro-hydraulic controlled excavator travel to tool control priority function

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566901A (en) * 1979-06-27 1981-01-24 Hitachi Constr Mach Co Ltd Hydraulic circuit for construction equipment
JPS61151333A (ja) * 1984-12-25 1986-07-10 Komatsu Ltd 建設機械の液圧回路装置
JPH04107501U (ja) * 1991-03-01 1992-09-17 油谷重工株式会社 小型シヨベルの油圧回路
JPH10131901A (ja) * 1996-10-21 1998-05-22 Caterpillar Inc エネルギー変換装置
JPH10184615A (ja) * 1996-12-26 1998-07-14 Komatsu Ltd アクチュエータの戻り圧油回収装置
JP2000136806A (ja) * 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
JP2002089517A (ja) * 2000-09-08 2002-03-27 Husco Internatl Inc 相互再生機能を有する油圧装置
JP2002105985A (ja) * 2000-09-29 2002-04-10 Kobelco Contstruction Machinery Ltd ショベル
JP2004011168A (ja) * 2002-06-04 2004-01-15 Komatsu Ltd 建設機械
JP2004084470A (ja) * 2002-07-31 2004-03-18 Komatsu Ltd 建設機械
JP2004116603A (ja) * 2002-09-25 2004-04-15 Komatsu Ltd 圧油回収装置
JP2004190845A (ja) 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP2004324742A (ja) * 2003-04-23 2004-11-18 Saxa Inc 液圧装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129422A1 (ja) * 2005-06-02 2006-12-07 Shin Caterpillar Mitsubishi Ltd. 作業機械

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566901A (en) * 1979-06-27 1981-01-24 Hitachi Constr Mach Co Ltd Hydraulic circuit for construction equipment
JPS61151333A (ja) * 1984-12-25 1986-07-10 Komatsu Ltd 建設機械の液圧回路装置
JPH04107501U (ja) * 1991-03-01 1992-09-17 油谷重工株式会社 小型シヨベルの油圧回路
JPH10131901A (ja) * 1996-10-21 1998-05-22 Caterpillar Inc エネルギー変換装置
JPH10184615A (ja) * 1996-12-26 1998-07-14 Komatsu Ltd アクチュエータの戻り圧油回収装置
JP2000136806A (ja) * 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
JP2002089517A (ja) * 2000-09-08 2002-03-27 Husco Internatl Inc 相互再生機能を有する油圧装置
JP2002105985A (ja) * 2000-09-29 2002-04-10 Kobelco Contstruction Machinery Ltd ショベル
JP2004011168A (ja) * 2002-06-04 2004-01-15 Komatsu Ltd 建設機械
JP2004084470A (ja) * 2002-07-31 2004-03-18 Komatsu Ltd 建設機械
JP2004116603A (ja) * 2002-09-25 2004-04-15 Komatsu Ltd 圧油回収装置
JP2004190845A (ja) 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP2004324742A (ja) * 2003-04-23 2004-11-18 Saxa Inc 液圧装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1898104A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128453A1 (en) * 2007-03-06 2009-12-02 Caterpillar Japan Ltd. Hydraulic control circuit for construction machine
EP2128453A4 (en) * 2007-03-06 2011-10-05 Caterpillar Sarl HYDRAULIC CONTROL CIRCUIT FOR CONSTRUCTION MACHINE
WO2011118322A1 (ja) * 2010-03-26 2011-09-29 カヤバ工業株式会社 ハイブリッド建設機械の制御システム
JP2011202458A (ja) * 2010-03-26 2011-10-13 Kyb Co Ltd 建設機械の制御装置
CN102822422A (zh) * 2010-03-26 2012-12-12 萱场工业株式会社 混合动力施工机械的控制系统
KR101421362B1 (ko) * 2010-03-26 2014-07-18 카야바 고교 가부시기가이샤 하이브리드 건설 기계의 제어 시스템
CN102822422B (zh) * 2010-03-26 2015-07-29 萱场工业株式会社 混合动力施工机械的控制系统
US9200430B2 (en) 2010-03-26 2015-12-01 Kayaba Industry Co., Ltd. Control system for hybrid construction machine
CN103403269A (zh) * 2011-04-19 2013-11-20 日立建机株式会社 工程机械的电动驱动装置

Also Published As

Publication number Publication date
EP1898104A4 (en) 2009-05-06
US20090288408A1 (en) 2009-11-26
EP1898104A1 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2006132010A1 (ja) 流体圧回路、エネルギ回生装置、作業機械の流体圧回路
WO2006129422A1 (ja) 作業機械
US7565801B2 (en) Swing drive device and work machine
CN1969129B (zh) 作业机械
JP2006336846A (ja) 流体圧回路
US7596893B2 (en) Work machine
JP2006336432A (ja) 作業機械
JP2006336306A (ja) 作業機械
JP5180518B2 (ja) ハイブリッド型駆動装置を備えた建設機械
JP5378061B2 (ja) ハイブリッド建設機械の制御装置
JP6166995B2 (ja) ハイブリッド建設機械の制御システム
JP2004190845A (ja) 作業機械の駆動装置
JP2006336549A (ja) ハイブリッド式駆動装置
JP2006335221A (ja) ハイブリッド式駆動装置
JP2006336847A (ja) エネルギ回生装置
JP2006336845A (ja) 作業機械
JP2006336848A (ja) 作業機械の流体圧回路
JP2006336849A (ja) 旋回用駆動装置
JP2006336307A (ja) 作業機械
JP2006336304A (ja) 作業機械
JP6383226B2 (ja) 作業機械の駆動システム
JP2006336433A (ja) 作業機械の流体圧回路
JP2006335222A (ja) ハイブリッド式駆動装置
JP2006336305A (ja) 作業機械
JP5948704B2 (ja) ハイブリッド式建設機械の動力回生回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001524.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006714701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11912060

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE