WO2006126432A1 - シリコンウェハー用研磨組成物 - Google Patents

シリコンウェハー用研磨組成物 Download PDF

Info

Publication number
WO2006126432A1
WO2006126432A1 PCT/JP2006/309828 JP2006309828W WO2006126432A1 WO 2006126432 A1 WO2006126432 A1 WO 2006126432A1 JP 2006309828 W JP2006309828 W JP 2006309828W WO 2006126432 A1 WO2006126432 A1 WO 2006126432A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing composition
polishing
acid
salt
mass
Prior art date
Application number
PCT/JP2006/309828
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Kashima
Masaaki Ohshima
Eiichirou Ishimizu
Naohiko Suemura
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to US11/918,253 priority Critical patent/US20090127501A1/en
Priority to JP2007517787A priority patent/JPWO2006126432A1/ja
Publication of WO2006126432A1 publication Critical patent/WO2006126432A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a polishing composition that can efficiently prevent metal contamination on a silicon wafer.
  • a semiconductor silicon wafer manufacturing method includes a slicing process for slicing a single crystal ingot to obtain a thin disk-shaped wafer, and a method for preventing cracking and chipping of the wafer obtained by the slicing process.
  • a polishing composition is generally used in which fine silica particles are uniformly dispersed in water and further added with a chemical polishing accelerator such as inorganic alkali, ammonium salt, and amine. Polishing is performed.
  • a chemical polishing accelerator such as inorganic alkali, ammonium salt, and amine. Polishing is performed.
  • this alkaline silica-containing polishing composition contains a small amount of metal impurities.
  • the metal impurities contained in the polishing composition include nickel, chromium, iron, copper and the like. These metal impurities easily adhere to the silicon wafer surface in an alkaline solution. Adhering metal impurities, especially copper, easily diffuse into the crystal of silicon wafers with a large diffusion coefficient. It is clear that the metal impurities that have diffused into the crystal cannot be removed by subsequent cleaning, which degrades the quality of the silicon wafer and degrades the characteristics of the semiconductor device that uses the wafer. Natsute speaks.
  • Patent Document 1 JP-A-11-214338 (Claims)
  • An object of the present invention is to provide a polishing composition for a silicon wafer capable of effectively preventing metal contamination such as nickel, chromium, iron and copper, particularly copper contamination, in polishing silicon wafers. To do.
  • the present invention is a polishing composition for silicon wafers comprising silica, a basic substance, a polyaliminopolycarboxylic acid compound having a hydroxyl group, and water.
  • the preferred embodiments of the polishing composition include the following.
  • the polyaminopolycarboxylic acid compound is N-(2-aminopolycarboxylic acid compound
  • R and R represent the same or different alkylene group having 1 to 12 carbon atoms, and n
  • R and R represent the same or different alkylene group having 1 to 12 carbon atoms, and n
  • R represents an alkylene group having 1 to 12 carbon atoms having a hydroxyl group.
  • a polyaminopolycarboxylic acid compound represented by the following formula and its group power of at least one salt is selected.
  • the silica is silica zonole.
  • the average particle diameter of the silica is 5 to 500 nm, and the silica concentration force is 0.05 to 30% by mass with respect to the total mass of the polishing composition.
  • the concentration of the basic substance is 0.01 to 10% by mass with respect to the total mass of the polishing composition.
  • the basic substance is at least one selected from an inorganic salt of an alkali metal, an ammonium salt, and a group power consisting of amines.
  • the inorganic metal salt strength of the alkali metal is lithium hydroxide, sodium hydroxide, potassium hydroxide potassium, lithium carbonate, sodium carbonate, lithium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate.
  • a group power consisting of ammonium, tetramethylammonium chloride and tetraethylammonium chloride is also at least one selected, and the amines are composed of ethylenediamine, monoethanolamine, 2- (2-aminoethyl) aminoethanolamine and piperazine. It can be mentioned that the group power is at least one selected.
  • Compound strength of polyaminopolycarboxylic acid Hydroxyethylene diamine tetraacetic acid, 1-hydroxy-1,3-diaminopropane tetraacetic acid, 2-hydroxy-1,3-diaminopropane tetraacetic acid represented by formula (3) and these
  • the group power of salt power is at least one selected.
  • the salt of the polyaminopolycarboxylic acid compound may be an alkali salt, an ammonium salt or an amine salt.
  • the polishing rate is maintained by adding at least one compound selected from a polyaliminopolycarboxylic acid compound having a hydroxyl group and its salt power to a silica-containing polishing composition.
  • a silica-containing polishing composition it was found that the effect of suppressing metal contamination, particularly copper contamination, on the surface and inside of the silicon wafer was obtained.
  • metal contamination can be suppressed while maintaining a high polishing rate.
  • metal contamination can be suppressed at a low cost.
  • silica (diacid salt) is used as the cannonball.
  • silica sol, fumed silica, precipitated silica, or silicas with different forms are known, and any of these can be used, but in particular for polishing the semiconductor surface with high accuracy.
  • silica sol (a stable dispersion of silica particles) having a uniform particle size and an average particle size of colloidal (nano-dimensional) is preferable.
  • silica sol used in the present invention a silica sol obtained by a known production method can be used. It is not particular about the manufacturing method.
  • a method for producing silica sol a method for producing high-concentration aqueous silica sol by adding an aqueous colloidal solution of active silicic acid to an aqueous solution of alkali silicate while evaporating and removing water at a temperature of 90 ° C. or higher is disclosed in JP-B 46-2 0137. It is disclosed in the gazette.
  • Japanese Patent Publication No. SHO 49-4636 discloses a method for producing a stable silica sol having an arbitrary desired particle size by heat-treating an aqueous silica sol under specific conditions.
  • an alkali silicate aqueous solution is dealkalized with an acid-type cation exchange resin to obtain a silicic acid sol, and nitric acid is added to the sol to make pHl. 2.
  • acid-type strongly acidic Pass the cation exchange resin and the hydroxide type anion exchange resin, and immediately add sodium hydroxide and adjust to pH 8.0, and keep constant in the bath at a temperature of 80 ° C under vacuum.
  • Japanese Patent Publication No. 41-3369 discloses a method for producing a high-purity silica sol which is evaporated and concentrated while maintaining the liquid level.
  • An alkali silicate aqueous solution is dealkalized with an acid-type cation exchange resin to obtain a silicic acid sol, and a strong acid is added to the sol to obtain pHO or 2, and after aging, an acid-type strongly acidic cation-exchange resin and A high-purity, stable silica-based aqueous colloid adjusted to pH 7-8 is heated at 90-150 ° C by passing a hydroxide-type anion exchange resin, containing a high-purity alkali metal hydroxide aqueous solution.
  • JP-A-63-285112 discloses a method for producing a high-purity, large-particle-size silica sol, in which an acid is added and ripened, and further concentrated with a microporous membrane.
  • Japanese Patent Application Laid-Open No. 63-74911 discloses a method for producing fine spherical silica in which alkoxysilane is hydrolyzed in a water-alcohol mixed solution containing an alkaline catalyst.
  • the average particle size is generally 3 to 1000 nm, preferably 5 to 500 nm, most preferably 10 to 500 nm, which is colloidal.
  • the added mass ratio of silica is generally 0.05 to 30% by mass, preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass of the polishing composition. It is. If it is less than 0.05% by mass, a sufficient polishing rate cannot be obtained, and even if it exceeds 30% by mass, no improvement in the polishing rate can be expected.
  • the basic substance used in the present invention is an alkali metal inorganic salt, ammonium salt, or amine.
  • alkali metal salt include alkali metal hydroxide or carbonate. Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc. are preferred. More preferred are potassium, sodium carbonate, potassium carbonate and the like.
  • ammonia salt hydroxylate ammonium, carbonated ammonia, hydrogen carbonate ammonia, quaternary ammonia salt, etc. are preferred.
  • Ammonium and quaternary ammonia salts are more preferred.
  • Specific examples of the quaternary ammonium salt include hydroxyammonium tetramethylammonium, hydroxyammonium tetraethylammonium, salta tetramethylammonium or tetraethylammonium chloride. Among them, tetramethylammonium hydroxide is more preferred!
  • amines examples include ethylenediamine, monoethanolamine, 2- (2-aminoethyl) aminoethanolamine, and piperazine. As amines, not only these amines but also other amines may be contained.
  • the preferred addition amount of basic substances varies depending on the substance used, it is generally decided. Generally, it is 0.01 to 10% by mass with respect to the total mass of the polishing composition.
  • the polishing accelerator is an alkali metal salt, 0.01 to 1.0 wt%, ammonium - if a ⁇ beam salt, 0.01 to 5 mass 0/0, when the Amin class is 0. 1 to 10% by weight is preferred. If the addition is less than 0.01% by mass, the action as a polishing accelerator is not sufficient. Conversely, even if the addition exceeds 10% by mass, no further improvement in the polishing efficiency is expected.
  • two or more may be used in combination.
  • the compound represented by the formula (1), (2) or (3) is a chelating agent of polyaminopolycarboxylic acid having a hydroxyl group.
  • the polyaminopolycarboxylic acid compound used in the present invention is commercially available as a chelating agent and can be easily obtained.
  • polyaminopolycarboxylic acid compound examples include N- (2-hydroxyethyl) ethylenediamin triacetic acid, N- (2-hydroxyethyl) diethylenetriamine tetraacetic acid, N- ( 2-hydroxyethyl) triethylenetetraminepentaacetic acid and salts thereof. Two or more of these compounds can be used.
  • polyaminopolycarboxylic acid compound examples include N, N′-bis (2-hydroxyethyl) ethylenediamindiacetic acid, N, N, and monobis (2-hydroxyl) represented by the above formula (2).
  • polyaminopolycarboxylic acid compound examples include hydroxyethylenediamine 4 acetic acid, 1-hydroxy-1,3-diaminopropane 4 acetic acid, 2-hydroxy-1,1,3-diaminopropane 4 acetic acid represented by the above formula (3). And salts thereof. Two or more of these compounds can be used.
  • the amount of added calories of the polyaminopolycarboxylic acid compound of the above formula (1), (2) or (3) and its salt varies depending on the type, and there is no particular limitation as long as the effect of the present invention is achieved.
  • the content is 0.001 to 10% by mass, preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total mass of the polishing composition. If the addition amount is less than 0.001% by mass, a sufficient addition effect cannot be obtained, and the metal contamination prevention effect may not be sufficient. On the other hand, even if added over 10% by mass, no further effect can be expected from the additive.
  • Silica sol (silica concentration 3.0 mass%, average particle diameter 45 nm, copper concentration (hereinafter referred to as Cu concentration) 5 mass ppb, sodium hydroxide (hereinafter referred to as “polishing agent composition”) Adjusted to pH 9 with NaOH) and add a standard copper solution for atomic absorption analysis (copper nitrate solution with a Cu concentration of 1000 mass ppm) to the silica sol so that the Cu concentration becomes 10 mass ppb.
  • the polishing liquid was forcibly contaminated with copper.
  • HEDTA N-(2-hydroxy Echiru) Echirenjiamin 3 added as acetate
  • a P-type (100) semiconductor silicon wafer was polished for 30 minutes using the above polishing liquid. Polishing was performed using a commercially available single-side polishing machine.
  • ICP-MS inductively coupled plasma mass spectrometry
  • a polishing solution was prepared so that NaOH was 0.1% by mass and HEDTA was 0.5% by mass in the same silica sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing solution. Fixed A quantitative analysis was performed.
  • a polishing solution was prepared so that piperazine was 0.1% by mass and HEDTA was 0.1% by mass in the same copper sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing solution. Quantitative analysis was performed.
  • polishing liquid so that the piperazine is 0.5 mass% and HEDTA is 0.1 mass% in the same silica sol contaminated with copper as in Example 1, and polishing is performed for 30 minutes using this polishing liquid. Quantitative analysis was performed.
  • a polishing liquid was prepared so that the same amount of hydroxide tetramethylammonium (hereinafter referred to as TM AH) was 0.1% by mass and HEDTA was 0.1% by mass in the same silica sol contaminated with copper as in Example 1. Then, polishing was performed for 30 minutes using this polishing liquid, and copper was quantitatively analyzed.
  • TM AH hydroxide tetramethylammonium
  • HEDDA (2-hydroxy E chill) Echirenjiamin 2 acetate
  • Example 1 and NaOH is 0.1 1 mass contaminated silica sol in the same copper 0/0, 2-hydroxy-one 1, 3-Jiaminopuropan 4 acetate Ken as (hereinafter referred DPTA-OH) is 1 wt% 0.1
  • a polishing liquid was prepared, and polishing was performed for 30 minutes using this polishing liquid, and a quantitative analysis of copper was performed.
  • Example 12
  • a polishing solution was prepared so that piperazine was 0.5% by mass and DPTA-OH was 0.1% by mass in the same silica sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing solution. Copper was quantitatively analyzed.
  • a polishing solution was prepared so that TMAH was 0.1% by mass and DPTA-OH was 0.1% by mass in the same silica sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing solution. Quantitative analysis of copper was performed.
  • a polishing solution was prepared so that the silica sol of the same substrate as in Example 1 was not contaminated with copper, but 0.1% by weight of NaOH and 0.1% by weight of DPTA — OH. Polishing was performed for a minute, and copper was quantitatively analyzed.
  • NaOH in the silica sol (silica concentration: 3.0% by mass, average particle size: 45nm, Cu concentration: 0.5% ppb, adjusted to pH 9 with NaOH) as the base material of the abrasive composition (polishing liquid) It was prepared so that the mass% and DPTA-OH were 0.1% by mass, and polishing was performed for 30 minutes using this polishing liquid, and the quantitative analysis of copper was performed.
  • Comparative Example 2 A silica sol of the same base material as in Example 1 was not contaminated with copper, and a polishing liquid was prepared so that piperazine was 0.5% by mass, and this polishing liquid was used for polishing for 30 minutes. Quantitative analysis was performed.
  • a polishing solution was prepared so that NaOH was 0.1% by mass in the same copper-contaminated silica sol as in Example 1. Polishing was performed for 30 minutes using this polishing solution, and the copper was quantitatively analyzed.
  • a polishing liquid was prepared so that the amount of piperazine was 0.5% by mass in the same silica sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing liquid, and the copper was quantitatively analyzed. Comparative Example 6
  • a polishing liquid was prepared so that TMAH was 0.1% by mass in the same silica sol contaminated with copper as in Example 1, and polishing was performed for 30 minutes using this polishing liquid, and copper was quantitatively analyzed.
  • a polishing liquid was prepared in a silica sol of the same base material as in Example 18 so that NaOH was 0.1% by mass. Polishing was performed for 30 minutes using this polishing liquid, and copper was quantitatively analyzed.
  • Example 1 3.0 NaOH 0. 1 HEDTA 0. 1 10 3. 7X 109 0. 30
  • Example 2 3. 0 NaOH 0. 1 HEDTA 0. 05 10 4. 2 X 10 9 0. 32
  • Example 3 3 0 NaOH 0. 1 HEDTA 0.5 5 10 3. 1X109 0. 30
  • Example 4 3. 0 Piperazine 0. 1 HEDTA 0. 1 10 6. 3 109 0. 41
  • Example 5 3.0 Piperazine 0. 5 HEDTA 0. 1 10 6. 5X109 0.52
  • Example 6 3.0 Piperazine 1.5 HEDTA 0. 1 10 6. 8X109 0. 55
  • Example 7 3. 0 TMAH 0. 1 HEDTA 0. 1 10 3. 3X109 0. 38
  • Example 8 3. 0 NaOH 0. 1 HEDDA 0. 1 10 4. 2X109 0. 31
  • Example 9 3. 0 Piperazine 0.5 HEDDA 0. 1 10 7.
  • Tables 1 and 2 show the measurement results and polishing rate of copper contamination on polished wafers. Comparison example 1! If ⁇ Ka ⁇ Shinano ⁇ polyamino polycarboxylic Sani ⁇ thereof as shown teeth 3, copper forced contamination 10 1Q atomZcm 2 units contamination without having to have observed, in Comparative Example 4 to 6 In this way, the contamination of copper further increased. Low copper content as in Comparative Example 7 Even if no silica sol was used, copper contamination in the silicon wafer could not be sufficiently suppressed. Therefore, copper contamination could not be avoided when the polyaliminopolycarboxylic acid compound having a hydroxyl group was not added.
  • Example 14 When DPTA-OH was added as in Example 14, copper contamination of the polished silicon wafer could be suppressed as compared with the case where no polyaminopolycarboxylic acid compound was added. Further, by using a silica sol having a small copper content as in Example 15, copper contamination in the silicon wafer could be further suppressed.
  • Example 11 to 13 even when the forced contaminated with copper, irrespective of the type of basic material, a copper contamination 10 9 atomZcm 2 units and polyamino polycarboxylic Sani ⁇ of silicon wafer after polishing Copper contamination could be suppressed as compared with the case where no was added. In addition, the same effect of suppressing copper contamination as in Examples 1 to 10 was observed even when the type of polyaminopolycarboxylic acid compound was changed from DPTA-OH to HEDTA or HEDDA.
  • metal contamination is maintained while maintaining the polishing rate by adding a polyallyminopolycarboxylic acid compound having a hydroxyl group to the silica-containing polishing composition. It was possible to obtain the effect of being able to be suppressed. In particular, since it is effective for amines, copper contamination can be suppressed while maintaining a high polishing rate. Further, since it is not necessary to make the polishing composition highly pure, metal contamination can be suppressed at a low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】シリコンウェハー用研磨組成物を提供すること。 【解決手段】本発明は、シリコンウェハーの研磨において、ニッケル、クロム、鉄、銅などの金属汚染を効果的に防止することが可能な研磨組成物が必要とされてきた問題を解決するため、金属汚染、特に銅汚染を効率よく防止することを可能とするシリカ、塩基性物質、水酸基を有するポリアリミノポリカルボン酸化合物、及び水を含むシリコンウェハー用研磨組成物を提供することに関する。

Description

シリコンウェハー用研磨組成物
技術分野
[0001] 本発明は、シリコンウェハーに対する金属汚染を効率よく防止することを可能とする 研磨組成物に関する。
背景技術
[0002] 一般に、半導体シリコンウェハーの製造方法は、単結晶インゴットをスライスして薄 円板状のウェハーを得るスライス工程と、該スライス工程によって得られたウェハーの 割れ、欠けを防止するためにその外周部を面取りする面取り工程と、この面取りされ たウェハーを平坦ィ匕するラッピング工程と、面取り及びラッピングされたウェハーに残 留する加工歪みを除去するエッチング工程と、このエッチングされたウェハー表面を 鏡面化する研磨工程と研磨されたウェハーを洗浄してこれに付着した砥粒ゃ異物を 除去する洗浄工程から構成されて!ヽる。
上記研磨工程においては、一般に微細なシリカの砲粒を水中に均一に分散させ、 さらにそれに無機アルカリやアンモ-ゥム塩、ァミンなどの化学的な研磨促進剤を添 カロした研磨組成物を用いて研磨が行われて 、る。
しかし、このアルカリ性のシリカ含有研磨組成物には微量ではあるが金属不純物が 含まれている。研磨組成物中に含まれる金属不純物としてはニッケル、クロム、鉄、銅 などがあげられる。これらの金属不純物は、アルカリ溶液中において容易にシリコンゥ ェハー表面に付着する。付着した金属不純物、とりわけ銅は拡散係数が大きぐシリ コンウェハーの結晶内部へ容易に拡散する。結晶内部へ拡散してしまった金属不純 物は、後の洗浄で除去することができないため、シリコンウェハーの品質を劣化させ、 該ウェハーを用 V、た半導体デバイスの特性を低下させることが明らかとなつて ヽる。 上記のようなシリカ含有研磨糸且成物に起因する半導体ウェハーへの金属汚染に対 する対策としては、高純度化した研磨組成物を用いる方法が考えられる。鉄 'クロム- ニッケル.アルミニウム及び銅の含有量力 それぞれ 1質量 ppb未満であるシリカゾル を用いて、半導体ウェハーの研磨を行った例が開示されている (特許文献 1参照。 ) o しかし、このような高純度の研磨組成物は、一般に高価であるため研磨に力かるコス トが問題となる。
また、組成物に高純度なものを用いたとしても実際に研磨を行う際、研磨パッド、研 磨装置、配管類力 の金属汚染が起こることは避けられない。そのため、たとえ高純 度な組成物を準備したとしても半導体ウェハーへの金属汚染防止が困難であること が問題とされてきた。
このように、シリコンウェハーの研磨において、ニッケル、クロム、鉄、銅などの金属 汚染を効果的に防止することが可能な研磨組成物が必要とされてきた。
特許文献 1:特開平 11— 214338号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0003] 本発明はシリコンゥヱハーの研磨において、ニッケル、クロム、鉄、銅などの金属汚 染、特に銅汚染を効果的に防止することが可能なシリコンウェハー用研磨組成物を 提供することを目的とする。
課題を解決するための手段
[0004] 本発明は、シリカ、塩基性物質、水酸基を有するポリアリミノポリカルボン酸ィ匕合物、 及び水を含むシリコンウェハー用研磨組成物である。
この好まし 、研磨組成物の態様として、以下が挙げられる。
前記ポリアミノポリカルボン酸ィ匕合物が、
式 (1)
[化 1]
Figure imgf000003_0001
〔式中、 R及び Rは同一又は異なる炭素原子数 1ないし 12のアルキレン基を表し、 n
1 2
は 0ないし 4の整数を表す。〕、 式 (2)
[化 2]
Figure imgf000004_0001
〔式中、 R及び Rは同一又は異なる炭素原子数 1ないし 12のアルキレン基を表し、 n
3 4
は 0ないし 4の整数を表す。〕、及び
式 (3)
[化 3]
HOOCH2C CH2COOH
N一 一 N (3)
HOOCH2C I 、CH2COOH
OH
〔式中、 Rは水酸基を有する炭素原子数 1ないし 12のアルキレン基を表す。〕
5
で表されるポリアミノポリカルボン酸ィ匕合物及びその塩力 なる群力 選ばれる少なく とも 1種である。
前記シリカが、シリカゾノレである。
前記シリカの平均粒子径カ 5ないし 500nmであり、そのシリカ濃度力 研磨組成 物全量の質量に対して 0. 05な!、し 30質量%である。
前記塩基性物質の濃度が、研磨組成物全量の質量に対して 0. 01ないし 10質量 %である。
前記塩基性物質が、アルカリ金属の無機塩、アンモ-ゥム塩及びアミン類力 なる 群力 選ばれる少なくとも 1種である。そして、前記アルカリ金属の無機塩力 水酸ィ匕 リチウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム、炭酸力リウ ム、炭酸水素リチウム、炭酸水素ナトリウム及び炭酸水素カリウム力もなる群力も選ば れる少なくとも 1種であり、前記アンモ-ゥム塩力 水酸ィ匕アンモ-ゥム、炭酸アンモ- ゥム、炭酸水素アンモ-ゥム、水酸ィ匕テトラメチルアンモ-ゥム、水酸ィ匕テトラェチル アンモニゥム、塩化テトラメチルアンモニゥム及び塩化テトラエチルアンモニゥムから なる群力も選ばれる少なくとも 1種であり、前記アミン類がエチレンジァミン、モノエタノ ールァミン、 2—(2—アミノエチル)アミノエタノールアミン及びピペラジンからなる群 力も選ばれる少なくとも 1種であることが挙げられる。
前記ポリアミノポリカルボン酸ィ匕合物力 前記式(1)で表される N—(2—ヒドロキシ ェチル)エチレンジァミン 3酢酸、 N— (2—ヒドロキシェチル)ジエチレントリァミン 4酢 酸、 N— (2—ヒドロキシェチル)トリエチレンテトラミン 5酢酸及びこれらの塩からなる群 力も選ばれる少なくとも 1種であることが挙げられる。
前記ポリアミノポリカルボン酸ィ匕合物力 前記式(2)で表される N, N'—ビス(2—ヒ ドロキシェチル)エチレンジァミン 2酢酸、 N, N,,一ビス (2—ヒドロキシェチル)ジェチ レントリアミン 3酢酸、 N, N,,,一ビス(2—ヒドロキシェチル)トリエチレンテトラミン 4酢 酸及びこれらの塩力 なる群力 選ばれる少なくとも 1種であることが挙げられる。 前記ポリアミノポリカルボン酸ィ匕合物力 前記式(3)で表されるヒドロキシエチレンジ ァミン 4酢酸、 1—ヒドロキシ一 1, 3—ジァミノプロパン 4酢酸、 2—ヒドロキシ一 1, 3- ジァミノプロパン 4酢酸及びこれらの塩力 なる群力 選ばれる少なくとも 1種であるこ とが挙げられる。
前記ポリアミノポリカルボン酸化合物の塩力 アルカリ塩、アンモ-ゥム塩又はアミ ン塩であることが挙げられる。
発明の効果
[0006] 本発明によれば、シリカ含有研磨組成物に水酸基を有するポリアリミノポリカルボ ン酸ィ匕合物及びその塩力 選ばれる少なくとも一種の化合物を添加することによって 、研磨速度を維持しつつ、シリコンウェハー表面及び内部への金属汚染、特に銅汚 染を抑制することができるという効果が得られることが分力つた。特に、ァミン類に対し ても効果があることより、高い研磨速度を維持しつつ、銅汚染を抑制することができる 。また、研磨組成物を高純度にする必要が無いため、安価に金属汚染を抑制するこ とがでさる。
発明を実施するための最良の形態
[0007] 本発明の実施形態を説明する。 本発明においては、砲粒としてシリカ(二酸ィ匕ケィ素)を用いる。シリコンウェハーを 研削或いは研磨するための砲粒として、セリアやアルミナが有効であることは知られ ているが、本発明における研磨組成物の砥粒として使用するものは、シリカを好適と する。また、シリカとしては、シリカゾル、フュームドシリカ、沈殿法シリカ或いはその他 形態の異なるシリカが知られており、これらのいずれも使用することが可能であるが、 特に半導体表面を高精度に研磨するためには、粒子径の揃った、しかも平均粒子径 がコロイド次元 (ナノ次元)のシリカゾル (シリカ粒子の安定な分散液)であることが好ま しい。
本発明に用いるシリカゾルとしては、公知の製造方法で得られたシリカゾルを使用 することができる。特に製造方法にはこだわらない。シリカゾルの製造方法としては、 珪酸アルカリの水溶液に 90°C以上の温度で水を蒸発除去しながら活性珪酸の水性 コロイド溶液を添加することにより高濃度水性シリカゾルの製造方法が特公昭 46— 2 0137号公報で開示されている。珪酸アルカリの水溶液に活性珪酸の水性コロイド溶 液を添加して 40な 、し 120nmのシリカ粒子が分散媒中に分散されて 、るシリカゾル を調整した後、これに酸を添加して熟成し、さらに微細多孔性膜で濃縮して大粒子径 シリカゾルの製造方法が特開昭 60— 251119号公報で開示されて 、る。水性シリカ ゾルを特定の条件下で加熱処理する、任意所望の粒子径を有する安定なシリカゾル の製造方法が特公昭 49— 4636号公報に開示されている。また、珪酸アルカリの水 溶液を酸型陽イオン交換樹脂で脱アルカリ処理し、珪酸ゾルを得て、そのゾルに硝 酸を加えて pHl. 2とし、 72時間常温で熟成後、酸型強酸性陽イオン交換榭脂及び 水酸型陰イオン交換榭脂を通過させ、これらに直ちに水酸ィ匕ナトリウムを加えて pH8 . 0に調節して、真空下 80°Cの温度で常に槽内で一定の液面を保ちながら蒸発濃縮 する、高純度シリカゾルの製造方法が特公昭 41— 3369号に開示されている。珪酸 アルカリの水溶液を酸型陽イオン交換樹脂で脱アルカリ処理し、珪酸ゾルを得て、そ のゾルに強酸を加えて pHOないし 2とし、熟成後、酸型強酸性陽イオン交換榭脂及 び水酸型陰イオン交換榭脂を通過させ、これらに高純度アルカリ金属水酸化物水溶 液をカ卩えて pH7ないし 8に調節した高純度安定ィ匕シリカ水性コロイドを 90ないし 150 °Cで加熱しながら高純度安定ィ匕シリカ水性コロイドを添加して、得られたシリカゾルに 酸を添加して熟成後、更に微細多孔性膜で濃縮する、高純度大粒子径シリカゾルの 製造方法が特開昭 63— 285112号公報に開示されている。また、アルカリ性触媒を 含有する水—アルコール混合溶液中においてアルコキシシランを加水分解する、微 細球状シリカの製造方法が特開昭 63— 74911号公報で開示されて 、る。
また、シリカの平均粒子径は、窒素吸着法 (BET法)により測定した比表面積 (Sm2 /g)から計算式 D = 2720ZSで求められる平均粒子径 (Dnm)である。前記平均粒 子径は、一般的にはコロイド次元である 3ないし 1000nm、好ましくは 5ないし 500nm であり、最も好ましくは 10ないし 500nmである。更に、シリカの添加質量割合は、研 磨組成物全量の質量に対して、一般的には 0. 05ないし 30質量%、好ましくは 0. 1 ないし 10質量%、更に好ましくは 1ないし 5質量%である。 0. 05質量%未満では十 分な研磨速度を得られず、 30質量%を超えて添加しても研磨速度の向上は望めな い。
本発明に用いる塩基性物質としては、アルカリ金属の無機塩、アンモ-ゥム塩、又 はァミン類である。アルカリ金属の塩としては、アルカリ金属の水酸ィ匕物又は炭酸塩 などが挙げられる。具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、 炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、 炭酸水素カリウムなどが好ましぐ特に水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリ ゥム、炭酸カリウムなどがより好ましい。
前記アンモ-ゥム塩としては、水酸ィ匕アンモ-ゥム、炭酸アンモ-ゥム、炭酸水素ァ ンモ-ゥム、第四級アンモ-ゥム塩などが好ましぐなかでも、水酸化アンモ-ゥム、 第四級アンモ-ゥム塩がより好ましい。第四級アンモ-ゥム塩の具体的な例としては 、水酸ィ匕テトラメチルアンモ-ゥム、水酸ィ匕テトラェチルアンモ-ゥム、塩ィ匕テトラメチ ルアンモニゥム又は塩化テトラエチルアンモニゥムなどがあり、その中でも水酸化テト ラメチルアンモ -ゥムがより好まし!/、。
前記アミン類としては、エチレンジァミン、モノエタノールァミン、 2—(2—アミノエチ ル)アミノエタノールアミン、ピぺラジンなどが挙げられる。アミン類としてはこれらのァ ミンのみならず、他のアミンを含んでいてもよい。
塩基性物質の好ましい添加量は、使用する物質によって異なるため、一概には決 められないが、一般的には研磨組成物全体の質量に対して 0. 01ないし 10質量% である。特に、研磨促進剤がアルカリ金属塩である場合、 0. 01ないし 1. 0質量%、 アンモ-ゥム塩である場合、 0. 01ないし 5質量0 /0、ァミン類の場合は、 0. 1ないし 10 質量%が好ましい。 0. 01質量%未満の添加では、研磨促進剤としての作用が十分 ではなぐ逆に 10質量%を超えて添加しても、研磨能率の更なる向上は期待でない 。また、上記に示す塩基性物質のうち、 2種以上を併用することも可能である。
前記式(1)、(2)、又は(3)で示される化合物は、水酸基を有するポリアミノポリカル ボン酸のキレート剤である。本発明に使用されるポリアミノポリカルボン酸ィ匕合物はキ レート剤として市販されており、容易に入手できる。
前記ポリアミノポリカルボン酸ィ匕合物としては前記式(1)で表される N—(2—ヒドロ キシェチル)エチレンジァミン 3酢酸、 N— (2—ヒドロキシェチル)ジエチレントリァミン 4酢酸、 N—(2—ヒドロキシェチル)トリエチレンテトラミン 5酢酸及びこれらの塩が挙 げられる。これらの化合物は 2種以上使用することも可能である。
前記ポリアミノポリカルボン酸ィ匕合物としては前記式(2)で表される、 N, N'—ビス( 2—ヒドロキシェチル)エチレンジァミン 2酢酸、 N, N, ,一ビス (2—ヒドロキシェチル) ジエチレントリァミン 3酢酸、 N, N, , ,一ビス(2—ヒドロキシェチル)トリエチレンテトラミ ン 4酢酸及びこれらの塩が挙げられる。これらの化合物は 2種以上使用することも可 能である。
前記ポリアミノポリカルボン酸ィ匕合物としては前記式(3)で表されるヒドロキシェチレ ンジァミン 4酢酸、 1—ヒドロキシ一 1, 3—ジァミノプロパン 4酢酸、 2—ヒドロキシ一 1, 3—ジァミノプロパン 4酢酸及びこれらの塩が挙げられる。これらの化合物は 2種以上 使用することも可能である。
前記式(1)、(2)、又は(3)のポリアミノポリカルボン酸ィ匕合物及びその塩の添カロ量 は種類によって異なり、本発明の効果が達成される限り特別の限定はないが、研磨 組成物全量の質量に対して 0. 001ないし 10質量%、好ましくは 0. 01ないし 10質量 %、更に好ましくは 0. 1ないし 5質量%である。添加量が 0. 001質量%未満であれ ば、十分な添加効果が得られないため、金属汚染の防止効果が十分で無いことがあ る。逆に 10質量%を越えて添加しても、添カ卩による更なる効果は期待できない。 実施例
以下に本発明の実施例を説明する。なお、本発明は以下に説明する実施例に限 定されるものではない。
実施例 1
研磨剤組成物(以下研磨液と ヽぅ)の基材となるシリカゾル〔シリカ濃度 3. 0質量% 、平均粒子径 45nm、銅濃度(以下 Cu濃度という) 5質量 ppb、水酸化ナトリウム(以 下 NaOHという)で pH9に調整済み〕を用意し、前記シリカゾルに原子吸光分析用の 標準銅溶液 (Cu濃度が 1000質量 ppmの硝酸銅溶液)を添加して Cu濃度が 10質量 ppbになるように研磨液を強制的に銅で汚染させた。
上記のように銅で汚染したシリカゾルに NaOHが 0. 1質量0 /0、 N- (2—ヒドロキシ ェチル)エチレンジァミン 3酢酸(以下 HEDTAという)が 0. 1質量0 /0となるように添カロ し、研磨液を調製した。
上記研磨液を用いて P型(100)半導体シリコンウェハーを 30分間研磨した。研磨 は市販の片面研磨機を用いて行った。
研磨ウェハーに公知の SC1洗浄 (アンモニア:過酸化水素:水の混合比 = 1: 1ない し 2 : 5ないし 7の洗浄液(SC1液)に 75ないし 85°C、 10ないし 20分浸漬処理)及び S C2洗浄 (塩酸:過酸化水素:水 = 1: 1ないし 2: 5な 、し 7の洗浄液 (SC2液)に 75な いし 85°C、 10ないし 20分浸漬処理)を施し、ウェハー表面の不純物を除去した後、 洗浄済みのウェハーを 650°Cで 20分間熱処理、 HFZH 0液滴でウェハー表面の
2 2
銅を回収し、回収液中の金属不純物を誘導結合プラズマ質量分析 (以下 ICP— MS という)によって定量分析を行った。
実施例 2
実施例 1と同じ銅で汚染したシリカゾルに NaOHが 0. 1質量%、 HEDTAが 0. 05 質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の 定量分析を行った。
実施例 3
実施例 1と同じ銅で汚染したシリカゾルに NaOHが 0. 1質量%、 HEDTAが 0. 5質 量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定 量分析を行った。
実施例 4
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 0. 1質量%、 HEDTAが 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅 の定量分析を行った。
実施例 5
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 0. 5質量%、 HEDTAが 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅 の定量分析を行った。
実施例 6
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 1. 5質量%、 HEDTAが 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅 の定量分析を行った。
実施例 7
実施例 1と同じ銅で汚染したシリカゾルに水酸ィ匕テトラメチルアンモ -ゥム (以下 TM AHという)が 0. 1質量%、 HEDTAが 0. 1質量%になるように研磨液を調製し、この 研磨液を用いて 30分間研磨を行 ヽ、銅の定量分析を行った。
実施例 8
実施例 1と同じ銅で汚染したシリカゾルに NaOHが 0. 1質量%、Ν, Ν'—ビス(2— ヒドロキシェチル)エチレンジァミン 2酢酸(以下 HEDDAという)が 0. 1質量0 /0になる ように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行 つ 7こ。
実施例 9
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 0. 5質量%、 HEDDAが 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅 の定量分析を行った。
実施例 10
実施例 1と同じ銅で汚染したシリカゾルに ΤΜΑΗが 0. 1質量%、 HEDDAが 0. 1 質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の 定量分析を行った。
実施例 11
実施例 1と同じ銅で汚染したシリカゾルに NaOHが 0. 1質量0 /0、 2—ヒドロキシ一 1 , 3—ジァミノプロパン 4酢酸(以下 DPTA—OHという)が 0. 1質量%になるように研 磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行った。 実施例 12
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 0. 5質量%、 DPTA-OH が 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い 、銅の定量分析を行った。
実施例 13
実施例 1と同じ銅で汚染したシリカゾルに TMAHが 0. 1質量%、 DPTA— OHが 0 . 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅 の定量分析を行った。
実施例 14
実施例 1と同じ基材のシリカゾルに銅汚染を行わず、 NaOHが 0. 1質量%、 DPTA — OHが 0. 1質量%になるように研磨液を調製し、この研磨液を用いて 30分間研磨 を行い、銅の定量分析を行った。
実施例 15
研磨剤組成物 (研磨液)の基材となるシリカゾル (シリカ濃度 3. 0質量%、平均粒 子径 45nm、 Cu濃度 0. 5質量 ppb、 NaOHで pH9に調整済み)に NaOHが 0. 1質 量%、 DPTA— OHが 0. 1質量%となるように調製し、この研磨液を用いて 30分間 研磨を行い、銅の定量分析を行った。
比較例 1
実施例 1と同じ基材のシリカゾルに銅汚染を行わず、 NaOHが 0. 1質量%になるよ うに研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行つ た。
比較例 2 実施例 1と同じ基材のシリカゾルに銅汚染を行わず、ピぺラジンが 0. 5質量%にな るように研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を 行った。
比較例 3
実施例 1と同じ基材のシリカゾルに銅汚染を行わず、 TMAHが 0. 1質量%になるよ うに研磨液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行つ た。
比較例 4
実施例 1と同じ銅で汚染したシリカゾルに NaOHが 0. 1質量%になるように研磨液 を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行った。
比較例 5
実施例 1と同じ銅で汚染したシリカゾルにピペラジンが 0. 5質量%になるように研磨 液を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行った。 比較例 6
実施例 1と同じ銅で汚染したシリカゾルに TMAHが 0. 1質量%になるように研磨液 を調製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行った。
比較例 7
実施例 18と同じ基材のシリカゾルに NaOHが 0. 1質量%になるように研磨液を調 製し、この研磨液を用いて 30分間研磨を行い、銅の定量分析を行った。
[表 1]
塩基性物質 ポリアミノポリカルボン酸 Cu強制汚染 研磨後の Cu濃度 研磨速度 化合物 (質量 w>b) (atoms/cm2) (jLim/min) 種類 添加量 種類 添加量
ay瞓
(質量 ¾) (質量 ¾)
実施例 1 3. 0 NaOH 0. 1 HEDTA 0. 1 10 3. 7X 109 0. 30 実施例 2 3. 0 NaOH 0. 1 HEDTA 0. 05 10 4. 2 X 109 0. 32 実施例 3 3. 0 NaOH 0. 1 HEDTA 0. 5 10 3. 1X109 0. 30 実施例 4 3. 0 ピぺラジン 0. 1 HEDTA 0. 1 10 6. 3 109 0. 41 実施例 5 3. 0 ピぺラジン 0. 5 HEDTA 0. 1 10 6. 5X109 0. 52 実施例 6 3. 0 ピぺラジン 1. 5 HEDTA 0. 1 10 6. 8X109 0. 55 実施例 7 3. 0 TMAH 0. 1 HEDTA 0. 1 10 3. 3X109 0. 38 実施例 8 3. 0 NaOH 0. 1 HEDDA 0. 1 10 4. 2X109 0. 31 実施例 9 3. 0 ピぺラジン 0. 5 HEDDA 0. 1 10 7. 0X109 0. 54 実施例 10 3. 0 TMAH 0. 1 HEDDA 0. 1 10 3. 6X 109 0. 35 実施例 11 3. 0 NaOH 0. 1 DPTA-OH 0. 1 10 3. 5X109 0. 32 実施例 12 3. 0 ピぺラジン 0. 5 DPTA-OH 0. 1 10 5. 8X109 0. 53 実施例 13 3. 0 TMAH 0. 1 DPTA-OH 0. 1 10 3. 2X109 0. 36 実施例 14 3. 0 NaOH 0. 1 DPTA-OH 0. 1 無し 3. 1X109 0. 29 実施例 15 3. 0 NaOH 0. 1 DPTA-OH 0. 1 燕 2. 7X109 0. 31
Figure imgf000014_0001
表 1ないし 2に研磨ウェハーにおける銅汚染の測定結果と研磨速度を示す。比較例 1な!、し 3が示すようにポリアミノポリカルボン酸ィ匕合物を添カ卩しな ヽ場合、銅で強制 汚染を行わなくても 101QatomZcm2台の汚染が見られ、比較例4ないし6のように強 制汚染を行うことにより銅の汚染は更に増加した。比較例 7のように銅の含有量が少 ないシリカゾルを用いてもシリコンウェハー中の銅汚染を十分抑制することは出来な かった。よって、水酸基を有するポリアリミノポリカルボン酸ィ匕合物を添加しない場合 は銅汚染を回避することはできな力つた。
実施例 14のように DPTA— OHを添加するとポリアミノポリカルボン酸ィ匕合物を添 加しない場合と比較して研磨後のシリコンウェハーの銅汚染を抑制することができた 。また、実施例 15のように銅の含有量の少ないシリカゾルを用いることにより更にシリ コンウェハー中の銅汚染を抑制することが出来た。
実施例 11ないし 13のように、銅で強制汚染を行っても、塩基性物質の種類によら ず、研磨後のシリコンウェハーの銅汚染は 109atomZcm2台とポリアミノポリカルボン 酸ィ匕合物を添加しない場合と比較して銅汚染を抑制することができた。また、ポリアミ ノポリカルボン酸化合物の種類を DPTA—OHから HEDTA、 HEDDAに変えても 実施例 1ないし 10のように同様の銅汚染抑制効果が見られた。
実施例 1、実施例 5、実施例 7ないし 13のようにポリアミノポリカルボン酸ィ匕合物を添 加した場合でも比較例 4な 、し 6と同程度の研磨速度が得られており、ポリアミノポリ力 ルボン酸ィ匕合物を添加することによる研磨速度への影響は見られな力つた。また、実 施例 4ないし 6のように塩基性物質を増カロしても、銅汚染の程度には差が見られず、 十分銅汚染の抑制効果があることが分かった。
以上述べたように、本発明によれば、シリカ含有研磨組成物に水酸基を有するポリ アリミノポリカルボン酸ィ匕合物を添加することによって、研磨速度を維持しつつ金属汚 染、特に銅汚染を抑制することができるという効果が得られることが分力つた。特に、 ァミン類に対しても効果があることより、高い研磨速度を維持しつつ、銅汚染を抑制 することができる。また、研磨組成物を高純度にする必要が無いため、安価に金属汚 染を抑制することができる。

Claims

請求の範囲 シリカ、塩基性物質、水酸基を有するポリアリミノポリカルボン酸ィ匕合物、及び水を 含むシリコンウェハー用研磨組成物。 前記ポリアミノポリカルボン酸が、 式 (1)
[化 1]
Figure imgf000016_0001
〔式中、 R及び Rは同一又は異なる炭素原子数 1ないし 12のアルキレン基を表し、 n
1 2
は 0ないし 4の整数を表す。〕、
式 (2)
[化 2]
(2)
Figure imgf000016_0002
〔式中、 R及び Rは同一又は異なる炭素原子数 1ないし 12のアルキレン基を示し、 n
3 4
は 0ないし 4の整数を表す。〕、及び
式 (3)
[化 3]
Figure imgf000016_0003
〔式中、 Rは水酸基を有する炭素原子数 1ないし 12のアルキレン基を表す。〕
5
で表されるポリアミノポリカルボン酸ィ匕合物及びその塩力 なる群力 選ばれる少なく とも 1種であることを特徴とする、請求項 1に記載のシリコンウェハー用研磨組成物。
[3] 前記シリカが、シリカゾルであることを特徴とする、請求項 1又は 2に記載のシリコン ゥ ハー用研磨組成物。
[4] 前記シリカの平均粒子径カ 5な 、し 500nmであり、そのシリカ濃度力 研磨組成 物全量の質量に対して 0. 05ないし 30質量%であることを特徴とする、請求項 1ない し 3のいずれ力 1項に記載のシリコンウェハー用研磨組成物。
[5] 前記塩基性物質の濃度が、研磨組成物全量の質量に対して 0. 01ないし 10質量
%であることを特徴とする、請求項 1ないし 4のいずれか 1項に記載のシリコンウェハ 一用研磨組成物。
[6] 前記塩基性物質が、アルカリ金属の無機塩、アンモ-ゥム塩及びアミン類力 なる 群力も選ばれる少なくとも 1種であることを特徴とする、請求項 1ないし 5のいずれか 1 項に記載のシリコンウェハー用研磨組成物。
[7] 前記アルカリ金属の無機塩力 水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、 炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム及 び炭酸水素カリウム力もなる群力も選ばれる少なくとも 1種であることを特徴とする、請 求項 6に記載のシリコンウェハー用研磨組成物。
[8] 前記アンモ-ゥム塩力 水酸ィ匕アンモ-ゥム、炭酸アンモ-ゥム、炭酸水素アンモ ユウム、水酸ィ匕テトラメチルアンモ-ゥム、水酸ィ匕テトラェチルアンモ-ゥム、塩ィ匕テト ラメチルアンモ -ゥム及び塩ィ匕テトラェチルアンモ-ゥムカもなる群力も選ばれる少な くとも 1種であることを特徴とする、請求項 6に記載のシリコンウェハー用研磨組成物。
[9] 前記アミン類力 エチレンジァミン、モノエタノールァミン、 2—(2—アミノエチル)ァ ミノエタノールァミン及びピペラジン力もなる群力 選ばれる少なくとも 1種であることを 特徴とする、請求項 6に記載のシリコンウェハー用研磨組成物。
[10] 前記ポリアミノポリカルボン酸ィ匕合物力 前記式(1)で表される N—(2—ヒドロキシ ェチル)エチレンジァミン 3酢酸、 N— (2—ヒドロキシェチル)ジエチレントリァミン 4酢 酸、 N— (2—ヒドロキシェチル)トリエチレンテトラミン 5酢酸及びこれらの塩からなる群 力も選ばれる少なくとも 1種であることを特徴とする、請求項 1ないし 9のいずれか 1項 に記載のシリコンウェハー用研磨組成物。
[11] 前記ポリアミノポリカルボン酸ィ匕合物力 前記式(2)で表される N, N'—ビス(2—ヒ ドロキシェチル)エチレンジァミン 2酢酸、 N, N,,一ビス (2—ヒドロキシェチル)ジェチ レントリアミン 3酢酸、 N, N,,,一ビス(2—ヒドロキシェチル)トリエチレンテトラミン 4酢 酸及びこれらの塩力もなる群力も選ばれる少なくとも 1種であることを特徴とする、請 求項 1ないし 9のいずれ力 1項に記載のシリコンウェハー用研磨組成物。
[12] 前記ポリアミノポリカルボン酸ィ匕合物力 前記式(3)で表されるヒドロキシエチレンジ ァミン 4酢酸、 1—ヒドロキシ一 1, 3—ジァミノプロパン 4酢酸、 2—ヒドロキシ一 1, 3- ジァミノプロパン 4酢酸及びこれらの塩力 なる群力 選ばれる少なくとも 1種であるこ とを特徴とする、請求項 1ないし 9のいずれか 1項に記載のシリコンウェハー用研磨組 成物。
[13] 前記ポリアミノポリカルボン酸化合物の塩力 アルカリ塩、アンモ-ゥム塩又はアミン 塩であることを特徴とする、請求項 1ないし 9のいずれか 1項に記載のシリコンウェハ 一用研磨組成物。
PCT/JP2006/309828 2005-05-27 2006-05-17 シリコンウェハー用研磨組成物 WO2006126432A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/918,253 US20090127501A1 (en) 2005-05-27 2006-05-17 Polishing Composition for Silicon Wafer
JP2007517787A JPWO2006126432A1 (ja) 2005-05-27 2006-05-17 シリコンウェハー用研磨組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-154992 2005-05-27
JP2005154992 2005-05-27

Publications (1)

Publication Number Publication Date
WO2006126432A1 true WO2006126432A1 (ja) 2006-11-30

Family

ID=37451857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309828 WO2006126432A1 (ja) 2005-05-27 2006-05-17 シリコンウェハー用研磨組成物

Country Status (4)

Country Link
US (1) US20090127501A1 (ja)
JP (1) JPWO2006126432A1 (ja)
TW (1) TW200740968A (ja)
WO (1) WO2006126432A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190112278A (ko) 2017-01-27 2019-10-04 팰리스 카가쿠 가부시기가이샤 가공 매체, 가공 조성물 및 가공 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247326B2 (en) * 2008-07-10 2012-08-21 Cabot Microelectronics Corporation Method of polishing nickel-phosphorous
US9039914B2 (en) 2012-05-23 2015-05-26 Cabot Microelectronics Corporation Polishing composition for nickel-phosphorous-coated memory disks
MY195756A (en) 2012-09-17 2023-02-09 Grace W R & Co Functionalized Particulate Support Material and Methods of Making and Using the Same
US11628381B2 (en) 2012-09-17 2023-04-18 W.R. Grace & Co. Conn. Chromatography media and devices
JP6853670B2 (ja) 2014-01-16 2021-04-07 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 親和性クロマトグラフィー媒体及びクロマトグラフィーデバイス
ES2929099T3 (es) 2014-05-02 2022-11-24 Grace W R & Co Material de soporte funcionalizado y métodos de fabricación y uso de material de soporte funcionalizado
JP2018517559A (ja) 2015-06-05 2018-07-05 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 吸着性バイオプロセス清澄化剤並びにその製造及び使用方法
WO2017162462A1 (en) 2016-03-22 2017-09-28 Basf Se Use of a chemical mechanical polishing (cmp) composition for polishing of cobalt and / or cobalt alloy comprising substrates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272460A (ja) * 1987-04-28 1988-11-09 Mitsubishi Monsanto Chem Co ウエハ−用研磨剤組成物
JP2002075929A (ja) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd 研磨使用済み液の再生方法
JP2002226836A (ja) * 2001-02-02 2002-08-14 Fujimi Inc 研磨用組成物およびそれを用いた研磨方法
JP2004027042A (ja) * 2002-06-26 2004-01-29 Yuka Sangyo Kk 微粒子分散ゲル化体及びそれから得られた微粒子分散液
WO2004042812A1 (ja) * 2002-11-08 2004-05-21 Fujimi Incorporated 研磨用組成物及びリンス用組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385766A (en) * 1965-06-17 1968-05-28 Agriculture Usa Lead chelates for biological separations
US3782471A (en) * 1971-05-17 1974-01-01 Shell Oil Co Dispersing cellular-micro-organisms with chelating aqueous alkaline surfactant systems
US5342787A (en) * 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
US20040043159A1 (en) * 2002-08-30 2004-03-04 Shipley Company, L.L.C. Plating method
JP2005268665A (ja) * 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272460A (ja) * 1987-04-28 1988-11-09 Mitsubishi Monsanto Chem Co ウエハ−用研磨剤組成物
JP2002075929A (ja) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd 研磨使用済み液の再生方法
JP2002226836A (ja) * 2001-02-02 2002-08-14 Fujimi Inc 研磨用組成物およびそれを用いた研磨方法
JP2004027042A (ja) * 2002-06-26 2004-01-29 Yuka Sangyo Kk 微粒子分散ゲル化体及びそれから得られた微粒子分散液
WO2004042812A1 (ja) * 2002-11-08 2004-05-21 Fujimi Incorporated 研磨用組成物及びリンス用組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190112278A (ko) 2017-01-27 2019-10-04 팰리스 카가쿠 가부시기가이샤 가공 매체, 가공 조성물 및 가공 방법

Also Published As

Publication number Publication date
JPWO2006126432A1 (ja) 2008-12-25
TW200740968A (en) 2007-11-01
US20090127501A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
WO2006126432A1 (ja) シリコンウェハー用研磨組成物
JP6523348B2 (ja) コロイダルシリカ化学機械研磨濃縮物
JP3440419B2 (ja) 研磨用組成物およびそれを用いた研磨方法
TWI718998B (zh) 研磨用組成物
WO2006046641A1 (ja) シリコンウェハー用研磨組成物
JP4586628B2 (ja) 半導体基板表面処理剤及び処理方法
JP5967370B2 (ja) シリコンウェーハ用研磨組成物及びシリコンウェーハの研磨方法
JP4852302B2 (ja) 研磨剤の製造方法及びそれにより製造された研磨剤並びにシリコンウエーハの製造方法
JPH10309660A (ja) 仕上げ研磨剤
EP3163600B1 (en) Composition for polishing silicon wafers
JP2005347737A (ja) シリコンウェハー用研磨組成物
JP4608856B2 (ja) ウエーハの研磨方法
WO2014089907A1 (zh) 一种化学机械抛光液的应用
JP2001077063A (ja) シリコンウェーハの研磨液及びこれを用いた研磨方法
JP3950491B2 (ja) 半導体ウエハーの研磨方法
JP7319190B2 (ja) 研磨用組成物
EP3916061B1 (en) Cation-containing polishing composition for eliminating protrusions at periphery of laser mark
JP2006202932A (ja) 研磨用組成物、その製造方法及び該研磨用組成物を用いる研磨方法
JPH11186202A (ja) 半導体シリコンウエーハ研磨用研磨剤及び研磨方法
JP2021123526A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP3972274B2 (ja) 半導体シリコンウェーハ研磨用研磨剤及び研磨方法
JP2006104354A (ja) 研磨用組成物、その製造方法及び該研磨用組成物を用いる研磨方法
JP2001237203A (ja) シリコンウェーハの研磨液及びこれを用いた研磨方法
JP2010241642A (ja) コロイダルシリカ
TW202334338A (zh) 用於矽晶圓之1次研磨後的後研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517787

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11918253

Country of ref document: US