WO2006120813A1 - グルクロン酸及び/又はグルクロノラクトンの製造方法 - Google Patents

グルクロン酸及び/又はグルクロノラクトンの製造方法 Download PDF

Info

Publication number
WO2006120813A1
WO2006120813A1 PCT/JP2006/306656 JP2006306656W WO2006120813A1 WO 2006120813 A1 WO2006120813 A1 WO 2006120813A1 JP 2006306656 W JP2006306656 W JP 2006306656W WO 2006120813 A1 WO2006120813 A1 WO 2006120813A1
Authority
WO
WIPO (PCT)
Prior art keywords
sucrose
acid
salt
carboxylic acid
yeast
Prior art date
Application number
PCT/JP2006/306656
Other languages
English (en)
French (fr)
Inventor
Kenichi Hamayasu
Hiroki Tadokoro
Eriko Kishino
Tetsuya Ito
Koki Fujita
Kozo Hara
Original Assignee
Ensuiko Sugar Refining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensuiko Sugar Refining Co., Ltd. filed Critical Ensuiko Sugar Refining Co., Ltd.
Priority to US11/913,999 priority Critical patent/US20090030194A1/en
Priority to CA002605396A priority patent/CA2605396A1/en
Priority to EP06730604A priority patent/EP1881078A4/en
Priority to AU2006245188A priority patent/AU2006245188A1/en
Publication of WO2006120813A1 publication Critical patent/WO2006120813A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing glucuronic acid and Z or dalchronolaton, and more specifically, sucrose is oxidized to sucrose carboxylic acid (and its salt) (gnolecronyl-fructoside, ⁇
  • the present invention relates to a method for producing glucuronic acid and / or dalk mouth paste, characterized by collecting ratatones.
  • Glucuronic acid and dalchronolaton or derivatives thereof are widely used as pharmaceuticals and pharmaceutical raw materials.
  • Various methods for synthesizing these glucuronic acid and dalchronolaton are known.
  • As a general method there is a method in which a glucose derivative such as glucose derivative or starch is used as a raw material, oxidized with a nitrogen compound such as nitric acid, and hydrolyzed to obtain gnorecronic acid and gnorechronolaton (patent) References 1 and 2).
  • trehalose carboxylic acid Hi-I D-Dalcronyl-a-D-Gnoreclonate
  • an oxidation catalyst such as platinum oxide, palladium carbon, platinum and carbon.
  • a method of hydrolyzing with an acid or an enzyme to obtain the desired glucuronic acid and glucuronatatone see Patent Document 8).
  • Patent Document 1 Japanese Patent Publication No. 46-3871
  • Patent Document 2 British Patent No. 900977
  • Patent Document 3 Japanese Patent Publication No.42-2595
  • Patent Document 4 Japanese Patent Publication No. 43-5882
  • Patent Document 5 Japanese Patent Publication No. 44-7325
  • Patent Document 6 Japanese Patent Laid-Open No. 2-107790
  • Patent Document 7 Japanese Patent Laid-Open No. 11-147043
  • Patent Document 8 JP-A-10-251263
  • an object of the present invention is to provide a method capable of producing glucuronic acid and / or dalchronolaton by high yield, low cost, easily and safely.
  • sucrose carboxylic acid and Z or a salt thereof
  • sucrose carboxylic acid and Z or a salt thereof
  • microorganisms having invertase activity such as yeast. It has been found that the desired glucuronic acid and / or dalcronolatone can be obtained in a high yield by acting.
  • the sucrose is oxidized to sucrose carboxylic acid or a salt thereof, and then a microorganism having invertase activity is added, and the fructose part of the sucrose carboxylic acid or a salt thereof is added.
  • a method for producing glucuronic acid and / or gnorechronatatone characterized by collecting glucuronic acid and / or dalchronolatonone which is hydrolyzed and assimilated and produced.
  • the present invention according to claim 2 is the production method according to claim 1, wherein the microorganism having invertase activity is yeast.
  • the present invention according to claim 3 is the production method according to claim 1, wherein the sucrose is refined sugar, fine liquor, raw sugar, beet sugar, sweetened preparation, maple no syrup or molasses.
  • the present invention according to claim 4 comprises a reaction force and concentration of 1 to 50 in which a microorganism having invertase activity is added to sucrose carboxylic acid or a salt thereof to hydrolyze the fructose part of the sucrose carboxylic acid or a salt thereof. 0 to 60% aqueous solution of sucrose carboxylic acid or its salt
  • sucrose which is an inexpensive raw material
  • nitrogen oxides such as nitric acid are used as an oxidizing agent.
  • the amount of the product is so small that it is safe and can produce a product that does not affect the environment.
  • the capital investment is relatively small.
  • the method for producing glucuronic acid and / or dalchronolaton of the present invention is an industrial method that is excellent in production efficiency as compared with the current method.
  • FIG. 1 shows an HPLC chromatogram of sodium sucrose carboxylate.
  • FIG. 2 shows an HPLC chromatogram of a crystallization stock solution of gnorecronic acid and / or dalcronolaton after sucrose carboxylic acid sodium salt is assimilated into yeast.
  • a series of reactions in the method for producing glucuronic acid and / or dalchronolaton of the present invention is as shown in the following formula.
  • sucrose used in the present invention (Ihe formula C H 0)
  • sucrose is an original disaccharide. It is mainly produced from sugarcane and beet juice by repeated purification and crystallization.
  • the origin of sucrose is not limited. Preferred is refined sugar, and furthermore, fine liquor, raw sugar, beet sugar, and maple syrup can be used as long as they contain sucrose, such as molasses, sweetened preparations, extra-hull oligosaccharides, etc.
  • the sucrose-containing material such as sucrose may be mentioned, and it may be selected as appropriate in consideration of the price and the manufacturing process.
  • oxidizing sucrose As a method for oxidizing sucrose, an existing method is used. That is, inorganic nitrogen compounds such as nitric acid, nitrous acid and their salts, metal compounds such as manganese, chromium and lead compounds, as well as halogen, ozone, oxygen and the like can be used as the oxidizing agent. Also, the ability to use platinum oxide, platinum'carbon, vanadium oxide, palladium'carbon, etc. as a catalyst. This method produces by-products.
  • inorganic nitrogen compounds such as nitric acid, nitrous acid and their salts, metal compounds such as manganese, chromium and lead compounds, as well as halogen, ozone, oxygen and the like
  • platinum oxide, platinum'carbon, vanadium oxide, palladium'carbon, etc. as a catalyst. This method produces by-products.
  • Patent Document 7 if a halogen-containing compound that is electrolytically oxidized together with a resin adsorbed with an oxidized amine is used, the primary hydroxyl group of the glucose moiety constituting sucrose is selectively oxidized. It is preferred to prepare dalcronyl monofructoside.
  • the most effective method is to perform oxidative fermentation with microorganisms such as Syudo darkonopacter saccharoketogenes as described in Japanese Patent No. 3556690.
  • microorganisms such as Syudo darkonopacter saccharoketogenes as described in Japanese Patent No. 3556690.
  • selective oxidation of the primary hydroxyl group of the glucose moiety that constitutes sucrose results in the formation of dalcuronyl monofuratatoside (1D-fructosyl 1 (2 ⁇ 1) -a-D-dalk mouth acid and its salts.
  • the microorganism or a culture solution of the microorganism or an enzyme produced by the microorganism is allowed to act to produce a sucrose carboxylic acid (gnolecrodirofuratotoside) (and Because the fermentation by microorganisms or the oxidation reaction using enzymes can be carried out under mild conditions, the target product can be produced safely and with little impact on the environment. The capital investment is small.
  • sucrose carboxylic acid and its salt
  • sucrose carboxylic acid and its salt
  • sucrose carboxylic acid prepared by the above method or a salt thereof (dalcronyl-furatatoside) is allowed to act on a microorganism having an invertase activity such as yeast. Just do it. Yeast etc. Hydrolyze and assimilate the fructose moiety. As a result, the intended gnorecronic acid and gnorechronolaton can be obtained.
  • yeast As a condition for allowing yeast or the like to act on sucrose carboxylic acid or a salt thereof (gnoleclodirofuratotoside), yeast hydrolyzes and assimilates the phthalatose portion of dalcuronyl-furatotoside. If it is a condition that can be good ,.
  • water is preferable as a solvent for dissolving sucrose carboxylic acid or a salt thereof (dalcronyl-furatotoside).
  • the concentration of sucrose carboxylic acid or a salt thereof is usually 1 to 50%, preferably 5 to 30%.
  • the temperature of the above reaction is usually in the range of 0 to 60 ° C, preferably 15 to 40 ° C, but it is removed from the system by hydrolyzing and assimilating the fructose moiety by yeast or the like.
  • the present invention is not limited to these conditions.
  • the pH of the above reaction is usually 3 to 10 and preferably 4 to 8. Since the suitable value varies depending on the type of yeast or the like, the test yeast or the like hydrolyzes the fructose moiety, However, the conditions are not limited to these as long as they can be assimilated.
  • the pH value tends to decrease with the progress of the reaction.
  • the microorganism that can be used to hydrolyze sucrose carboxylic acid or a salt thereof is a microorganism having invertase activity, and yeast is particularly preferable.
  • yeast include the genus Saccharomyces represented by baker's yeast and brewing yeast, the genus Candida, the genus Pichia, and the genus Schizosaccharomyces.
  • Other fungi and bacteria can be used in the present invention as long as they have invertase activity and can assimilate the fructose moiety.
  • yeasts belonging to the genus Saccharomyces represented by baker's yeast and brewing yeast as microorganisms Is preferably used. More preferably, it is desirable to use baker's yeast that is inexpensive and has strong invertase activity. Les.
  • the amount of yeast or the like added to the reaction system varies depending on the reaction time, temperature, concentration, pH and other conditions, but is usually 0.1 to 10%, preferably 1 to 5%.
  • the reaction time is usually:! To 240 hours, preferably 24 to 120 hours, as long as the yeast can hydrolyze and assimilate the fructose moiety. It is not something to be done.
  • yeast and the like may be immobilized using a previously reported method such as calcium alginate. If it can be recovered after use, the cost can be reduced. .
  • reaction progresses and fructose is assimilated and can be removed from the reaction system, it is concentrated, decolorized, and desalted with the exception of yeast.
  • the obtained reaction solution containing gnorecronic acid and / or gnolecronolatone contains a salt, an organic acid, a colored product, a protein derived from a microorganism, etc., so that it is acidic or basic, or both. Exclude by using resin with properties. If desired, activated carbon, an electrodialyzer or the like may be used.
  • the solution containing the decolorized and desalted glucuronic acid and / or dalcronolatone may be obtained by using a conventional method for crystallizing a sugar or a sugar derivative. Specifically, the solution is concentrated and then inoculated with crystals of dalchronolaton or dalcronic acid to crystallize.
  • glucuronic acid and dalchronolaton are reached in equilibrium by applying temperature and time. Dalcronolaton is easier to crystallize, so it is usually better to adjust the concentration so that the solids content is 40-70%, inoculate with the crystals of dullchronolaton, and crystallize the target product. Les.
  • the solid content may be concentrated to 65% or more to crystallize gnorecronic acid crystals.
  • the solution containing crystals is isolated by centrifugation, etc., and the filtrate is re-concentrated and recrystallized. If it is repeated, the object can be efficiently recovered.
  • the target product can be produced in a yield of 20 to 40% higher by weight than the raw material sucrose.
  • the target product can be produced at low cost by using inexpensive sucrose as a raw material.
  • sucrose oxidation reaction can be carried out using microorganisms, so that the desired product can be produced using mild conditions throughout the entire process. There are few adverse effects on the environment.
  • Glucuronic acid and / or dalcronolatonone obtained by the production method of the present invention has the same strength and higher purity as those obtained by known methods. Similar to conventional substances, it is widely used in various fields such as the pharmaceutical industry, food industry, cosmetics industry, and chemical industry as a substance that has liver function recovery action, fatigue recovery action, conjugation detoxification action, antirheumatic action, etc. Have.
  • sucrose carboxylic acid sodium salt (glucuronyl monofructoside) from 360 kg of sucrose (granulated sugar) using an oxidase-producing bacterium
  • sucrose 30kg and water 250L Ka ⁇ E, dissolved, to which an equivalent amount of Shiyudodarukono Roh Kuta 1 Sacca location preparative Kenneth (of Pseudogluconobacter saccharoketogenes wash Yi bacteria 3 ⁇ 43 ⁇ 45 0L which is separately prepared in a fermentation tank
  • the total volume was 300 L.
  • sucrose monocarboxylic acid sodium salt (dalcronyl-furatatoside) with a solid content of 360 kg. Prepared.
  • the concentrate was divided into 6 times, activated carbon column 50L (Shirakaba, manufactured by Nippon Enviguchi Chemicals), basic ion exchange resin 50L (Amberley HRA-96SB, manufactured by Organo Corporation), strong It was decolorized and desalted by passing it through an acidic ion exchange resin 150L (Diaion PK-216, manufactured by Mitsubishi Chemical Corporation).
  • activated carbon column 50L Shirakaba, manufactured by Nippon Enviguchi Chemicals
  • basic ion exchange resin 50L Amberley HRA-96SB, manufactured by Organo Corporation
  • strong It was decolorized and desalted by passing it through an acidic ion exchange resin 150L (Diaion PK-216, manufactured by Mitsubishi Chemical Corporation).
  • the desalted solution thus obtained was concentrated to 50% with a concentrator (Ogawara Seisakusho Co., Ltd., Evapor) to obtain a crystallization stock solution.
  • This crystallization stock solution is transferred to a crystal can (manufactured by Tsukishima Kikai Co., Ltd.), concentrated to 62%, and the equilibrium of the ratio of dalcuronic acid and dalcorotalatone in the reaction solution is shifted around 45 ° C.
  • 50 g of rataton seed crystals were collected and crystallized by natural cooling overnight.
  • Glycerol and unknown components generated in the yeast assimilation step in the crystallization stock solution could be easily removed by crystallization.
  • sucrose carboxylic acid was hydrolyzed within 24 hours, and a solution containing gnorecronic acid and glucoronataton was obtained.
  • this solution was mixed with activated carbon column 1L (Shirakaba, Nippon Enviguchi Chemicals), basic ion exchange resin 1L (Amberley HRA-96 SB, Organo Corporation), strong acid ion exchange resin 3L (diamond).
  • Ion PK-216 manufactured by Mitsubishi Chemical Corporation was used for decolorization and desalting.
  • the desalted solution was concentrated to 65% at 40 ° C, and 0.2 g of glucuronic acid seed crystals were added and allowed to cool naturally. The precipitated crystals were centrifuged to obtain 40 g of glucuronic acid.
  • the purity of the obtained gnorecronic acid was confirmed by HPLC (column: Shimadzu SCR-101H column, moving bed: 20 mM sulfuric acid, detection: RI, flow rate: 0.5 mL / min). The purity was 99.9% or more. there were.
  • sucrose carboxylic acid sodium salt solution was concentrated to 30% according to the method described in Example 1 in the same manner, and then baker's yeast (manufactured by Oriental Yeast Co., Ltd., FD-1) was added at 3% per solid content. The reaction was carried out at 37 ° C for 72 hours.
  • the reaction solution was passed through an activated carbon column and a desalting resin column in the same manner to decolorize and desalinate.
  • the obtained desalted solution was concentrated to 58 ° C. and 58%, and 20 g of seed crystals of gnolechronolaton were collected to precipitate crystals. Next, centrifugation was performed to obtain 2 kg of dalcronolaton.
  • Example 1 According to the method described in Example 1, the same amount of sodium sucrose carboxylate was prepared from 20 kg of beet sugar. Similarly, after concentrating 20 kg of sodium sucrose carboxylate solution to 30% according to the method described in Example 1, baker's yeast (manufactured by Oriental Yeast Co., Ltd., FD 1) was added at 4% per solid and reacted at 37 ° C for 72 hours.
  • baker's yeast manufactured by Oriental Yeast Co., Ltd., FD 1
  • the reaction solution was similarly passed through an activated carbon column and a desalting resin column to decolorize and desalinate.
  • the obtained desalted solution was concentrated to 58% at 50 ° C., and 20 g of seed crystals of gnolechronolaton were collected to precipitate crystals. Thereafter, centrifugation was performed to obtain 4 kg of gnolechronolaton.
  • glucuronic acid and / or dalcorotalatone can be produced in high yield from sucrose, which is an inexpensive raw material.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

 本発明は、D-グルクロン酸及びD-グルクロノラクトンを高収率、廉価、容易、且つ安全に製造し得る方法を提供することを目的とするものである。  本発明は、ショ糖を酸化してショ糖カルボン酸(及びその塩)(グルクロニル-フラクトシド,β-D-フラクトシル-(2→1)-α-D-グルクロン酸及びその塩)とし、次いで酵母等を加え、該ショ糖カルボン酸(及びその塩)のフラクトース部分を加水分解すると共に資化し、生成するグルクロン酸及び/又はグルクロノラクトンを採取することを特徴とするグルクロン酸及び/又はグルクロノラクトンの製造方法を提供するものである。

Description

明 細 書
グルクロン酸及び/又はダルクロノラクトンの製造方法 技術分野
[oooi] 本発明はグルクロン酸及び Z又はダルクロノラタトンの製造方法に関し、更に詳細 にはショ糖を酸化し、ショ糖カルボン酸(及びその塩)(グノレクロニル—フラクトシド, β
_D _フラクトシノレ一(2→1) - a _D—グルクロン酸及びその塩)とし、次いで酵母 等の微生物を加え、そのフラクトース部分を加水分解すると共に資化し、生成するグ ルクロン酸及び Z又はダルクロノラタトンを採取することを特徴とするグルクロン酸及 び/又はダルク口ノラ外ンの製造方法に関する。
背景技術
[0002] グルクロン酸及びダルクロノラタトン又はその誘導体は、広く医薬品、医薬品原料と して利用されている。これらグルクロン酸やダルクロノラタトンの合成方法は種々知ら れている。一般的な方法としては、グルコース誘導体あるいは澱粉などのグルコース 誘導体を原料として、硝酸などの窒素化合物を用いて酸化し、加水分解してグノレクロ ン酸及びグノレクロノラタトンを得る方法がある(特許文献 1、 2参照)。
[0003] し力、しながら、上記方法は工業的なスケールで行うことのできる合成方法であるが、 酸化剤として使用する窒素酸化物が比較的コストがかかる。また、副生する一酸化窒 素ガスが発泡し、スケールが巨大化する他、この副生ガスが公害の原因になる。その ため、環境問題が厳しくなつている昨今、回収装置が必要であるという問題がある。 改良発明もあるが、この方法は副生ガスの問題は解決している力 収率の向上という 未解決の問題を抱えている(特許文献 3、 4参照)。
[0004] また、グノレコースの C—1位を保護し、次いで C— 6位を酸化した後、加水分解し、脱 保護し、グノレクロン酸及びダルクロノラタトンを得る方法がある。この方法は、脱保護 の工程が複雑であるという問題を抱えている (特許文献 5参照)。
[0005] また、酸化触媒 6, 6 テトラメチルピペリジン N ォキシル (TEMPO)による選択的 酸化を行う方法もある(特許文献 6参照)。この方法は、変換効率は高いが、好ましい 原料は、グルコースの C 1位を保護したメチルダルコシド等のモノサッカライド誘導 体である。また、 TEMPOを代表とするアミン酸化体の製造コストは高い上に、人体に 悪影響を与える可能性がある。
[0006] 更に、これらを解決する方法として、吸着樹脂を用いて触媒であるアミン酸化体と共 に、ハロゲン含有酸化物又はハロゲン含有化合物の電解酸化物と反応させることを 特徴とする方法も提案されてレ、る (特許文献 7参照)。
しかし、この方法はグルコース誘導体のゥロン酸への変換効率は高ぐ触媒の回収 が容易であるが、やはり触媒は高価であることは変わりなレ、。しかも、原料のダルコ一 ス誘導体にはショ糖も含まれているが、好ましいものは比較的高価なメチル—ひ—グ ルコシド、イソプロピノレ—ひ及び βダルコシドである。また、使用する原料としてハロゲ ン酸イオンを生じる次亜塩素酸ナトリウムなどもあまり安全な原料といえなレ、。 この方 法でメチル一ひ一グノレコピラノシドウロン酸など、得られたグノレクロン酸誘導体からの グノレクロノラタトンの合成は、定法の加水分解反応に付すという工程が必要である。
[0007] 一方、トレハロースを原料として、酸化白金、パラジウム '炭素、白金 ·炭素などの酸 化触媒を使用し、トレハロースカルボン酸(ひ一 D—ダルクロニルー a—D—グノレクロ ン酸塩)を調製し、酸もしくは酵素を用いて加水分解し、 目的のグルクロン酸及びグ ルクロノラタトンを得る方法が開示されている(特許文献 8参照)。
[0008] この方法は、原料からの収率が良い反面、酸化触媒の必要量が多ぐコストがかか る上に、中間原料のトレハロースカルボン酸のダルコシド結合は安定であるため、比 較的過激な酸加水分解を行わなければ、グルクロン酸が遊離しない。また、 α—ダル クロニダーゼなどの酵素を用いる方法もあるが、その価格は一般的に高価な上に、そ の加水分解能は高くない。
[0009] 特許文献 1 :特公昭 46— 3871号公報
特許文献 2:英国特許第 900977号
特許文献 3:特公昭 42— 2595号公報
特許文献 4:特公昭 43— 5882号公報
特許文献 5:特公昭 44— 7325号公報
特許文献 6:特開平 2— 107790号公報
特許文献 7:特開平 11 - 147043号公報 特許文献 8:特開平 10— 251263号公報
発明の開示
発明が解決しょうとする課題
[0010] 斯かる状況に鑑み、本発明は高収率、廉価、容易、且つ安全にグルクロン酸及び /又はダルクロノラタトンを製造し得る方法を提供することを目的とする。
課題を解決するための手段
[ooii] 本発明者らは、鋭意研究の結果、ショ糖を原料としてショ糖カルボン酸 (及び Z又 はその塩)(グノレクロニル一フラクトシド)を調製し、これに酵母などのインベルターゼ 活性を有する微生物を作用せしめることにより、高収率で目的のグルクロン酸及び/ 又はダルクロノラタトンが得られることを見出した。
また、その製造工程において、硝酸等の窒素酸化物等を酸化剤として使用しない か、使用する場合でも、その量は僅かなので安全で、且つ環境に影響を与えることな ぐ 目的物を製造できる。
更に、酵母などの添加量、反応条件、脱塩、結晶化方法を検討し、従来よりも簡便 で効率の良い生産方法を行うことができるという知見を得て、本発明を完成するに至 つに。
[0012] 請求項 1に記載の本発明は、ショ糖を酸化してショ糖カルボン酸又はその塩とし、 次いでインベルターゼ活性を有する微生物を加えて、該ショ糖カルボン酸又はその 塩のフラクトース部分を加水分解すると共に資化し、生成するグルクロン酸及び/又 はダルクロノラタトンを採取することを特徴とするグルクロン酸及び/又はグノレクロノラ タトンの製造方法である。
請求項 2に記載の本発明は、インベルターゼ活性を有する微生物が、酵母である 請求項 1記載の製造方法である。
請求項 3に記載の本発明は、ショ糖が、精製糖、ファインリカー、原料糖、ビート糖、 加糖調製品、メイプノレシロップ又は廃糖蜜である請求項 1記載の製造方法である。 請求項 4に記載の本発明は、ショ糖カルボン酸又はその塩にインベルターゼ活性を 有する微生物を加えて、該ショ糖カルボン酸又はその塩のフラクトース部分を加水分 解する反応力、濃度 1〜50%のショ糖カルボン酸又はその塩の水溶液に温度 0〜60 °C、pH3〜: 10にて該微生物を作用させることにより行う請求項 1記載の製造方法で ある。
発明の効果
[0013] 本発明より、安価な原料であるショ糖より生産できるだけでなぐ飛躍的高収率で目 しかも、上記の如ぐその製造工程において、硝酸等の窒素酸化物等を酸化剤とし て使用しないか、使用する場合でも、その量はごく僅かなので安全で、且つ環境に影 響を与えることなぐ 目的物を製造できる。しかも、設備投資も比較的少ない。
したがって、本発明のグルクロン酸及び/又はダルクロノラタトンの製造方法は、現 行の方法と比較して、生産効率に優れた工業的方法である。
図面の簡単な説明
[0014] [図 1]ショ糖カルボン酸ナトリウム塩の HPLCクロマトグラムを示す。
[図 2]ショ糖カルボン酸ナトリウム塩を酵母資化した後のグノレクロン酸及び/又はダル クロノラタトンの結晶化原液の HPLCクロマトグラムを示す。 発明を実施するための最良の形態
[0015] 以下、本発明を詳細に説明する。
本発明のグルクロン酸及び/又はダルクロノラタトンの製造方法における一連の反 応は、下記の式に示す通りである。
[0016] [化 1]
Figure imgf000007_0001
酵母等による加水分解、 ίヒ反応
COONa
Figure imgf000007_0002
グルクロン酸 ク'ルクロノラク卜ン 本発明に用いるショ糖 (ィヒ学式 C H 0 )は、光合成によって植物が合成する非還
12 22 11
元性の二糖類である。主に、サトウキビ、ビートの搾汁液より精製、結晶化を繰り返し て製造されるものである。 本発明においてショ糖の由来などには制限はない。好ましくは精製糖で、更にはフ ァインリカー、原料糖、ビート糖、メイプノレシロップなどであるが、ショ糖を含有するのも のであれば使用でき、例えば廃糖蜜、加糖調製品、フラ外オリゴ糖などのショ糖含有 物などが挙げられ、価格と製造工程を鑑みて検討し、適宜選択すればよい。
[0018] ショ糖を酸化する方法については、既存の方法を利用する。すなわち、硝酸、亜硝 酸及びそれらの塩などの無機窒素化合物、マンガン、クロム、鉛の化合物などの金属 化合物、その他にハロゲン、オゾン、酸素などを酸化剤に用いることができる。また、 触媒として酸化白金、白金'炭素、酸化バナジウム、パラジウム '炭素などを用レ、るこ とができる力 この方法では副生成物を生じる。
そのため、特許文献 7に示されるように、ァミン酸化体が吸着した樹脂と共に電解酸 化されたハロゲン含有化合物を使用すれば、ショ糖を構成するグルコース部分の 1級 水酸基の選択的酸化をして、ダルクロニル一フラクトシドを調製することが好ましい。
[0019] 最も有効な方法は、特許第 3556690号に記載されているように、シユードダルコノ パクター ·サッカロケトゲネスなどの微生物による酸化発酵を行うことである。 この方法では、ショ糖を構成するグルコース部分の 1級水酸基の選択的酸化をして 、ダルクロニル一フラタトシド( 一 D—フラクトシル一(2→1)— a— D—ダルク口ン酸 及びその塩を製造することができる。すなわち、実施例に記載されているように、当該 微生物あるいはその微生物の培養液又はその微生物が産生する酵素を作用させ、 ショ糖カルボン酸 (グノレクロ二ルーフラタトシド)(及びその塩)を製造できる。微生物に よる発酵又は、酵素を用いた酸化反応は温和な条件で行うことができるため、安全、 且つ環境に影響を与えることも少なく目的物を製造できる。しかも、比較的設備投資 も少ない。
[0020] いずれにしろ、ショ糖を構成するグルコース部分の 1級水酸基の選択的酸化をして 、ショ糖カルボン酸 (及びその塩)(ダルクロニルーフラタトシド)を含む反応液を調製 できれば良い。
[0021] 目的とするグノレクロン酸やダルクロノラタトンを得るには、上記方法で調製されたショ 糖カルボン酸又はその塩(ダルクロニルーフラタトシド)に酵母などのインベルターゼ 活性を有する微生物を作用せしめればよい。酵母等はグノレクロ二ルーフラタトシドの フラクトース部分を加水分解し、且つ資化する。その結果、 目的とするグノレクロン酸や グノレクロノラタトンを得ることができる。
[0022] ショ糖カルボン酸又はその塩 (グノレクロ二ルーフラタトシド)に酵母等を作用せしめる 際の条件としては、酵母等がダルクロニルーフラタトシドのフラタトース部分を加水分 解し、且つ資化することができる条件であれば良レ、。
上記反応において、ショ糖カルボン酸又はその塩 (ダルクロニルーフラタトシド)を溶 解するための溶媒としては水が好ましい。
[0023] 上記反応において、ショ糖カルボン酸又はその塩 (ダルクロニルーフラタトシド)の濃 度としては、通常 1〜50%、好ましくは 5〜30%である。
また、上記反応の温度としては、通常 0〜60°Cの範囲であり、好ましくは 15〜40°C であるが、酵母等がフラクトース部分を加水分解し、且つ資化することによって系から 取り除くことができる条件であれば、これらに限定されるものではない。
[0024] 上記反応の pHとしては、通常 3〜: 10、好ましくは 4〜8である力 酵母等の種類によ つて好適な値が異なるので、供試酵母等がフラクトース部分を加水分解し、且つ資化 することができる条件であれば、これらに限定されるものではない。
一般的に反応の進行と共に pH値は低下する傾向がある力 上記範囲内であれば 、 pH値を調整する必要はない。なお、反応時には攪拌することが好ましぐこれにより 酵母等の増殖と資化が進行する場合がある。
[0025] ショ糖カルボン酸又はその塩を加水分解するために使用できる微生物は、インベル ターゼ活性を有する微生物であり、特に酵母が好ましい。酵母の種類としては、例え ばパン酵母、酒造酵母に代表されるサッカロマイセス属をはじめとして、キャンディダ 属、ピキア属、シゾサッカロマイセス属などがある。その他、真菌、バクテリアであって もインベルターゼ活性を有し、フラクトース部分を資化することができるものであれば、 本発明に使用できる。
本発明によって得られるグルクロン酸やダルクロノラタトンの安全性、並びにこれら 化合物が食品、医薬品などの分野に応用されることを鑑みれば、微生物としてパン 酵母、酒造酵母に代表されるサッカロマイセス属の酵母を使用するのが好ましい。更 に好ましくは、安価、且つインベルターゼ活性の強いパン酵母を使用するのが望まし レ、。
反応系への酵母等の添加量は、反応時間、温度、濃度、 pHなどの条件によっても 異なるが、通常は 0. 1〜: 10%、好ましくは 1〜5%である。
[0026] 反応時間は通常、:!〜 240時間、好ましくは 24〜: 120時間である力 酵母等がフラ クトース部分を加水分解し、且つ資化することができる条件であれば、これらに限定さ れるものではない。
なお、酵母等はアルギン酸カルシウムなど、既報の方法などを使用して固定化して 用いても良ぐこれにより使用後に回収することができれば、コストダウンすることがで きるので好ましレ、態様である。
反応が進行し、フラクトースが資化されることによって反応系から取り除くことができ れば、酵母等を除き、濃縮、脱色、脱塩を行う。
[0027] 酵母は加水分解されたフラクトースを資化し、増殖するとともに、エタノールと二酸 化炭素、グリセリン、有機酸などを生成する。このうち、エタノールと二酸化炭素は加 熱、または、濃縮時に除去できる。エタノールは回収して、別途使用すれば良い。
[0028] 得られたグノレクロン酸及び/又はグノレクロノラタトンを含む反応液は塩、有機酸、着 色物、微生物由来のタンパク質などを含んでいるので、酸性又は塩基性、もしくは両 方の性質を持った樹脂を使って除く。なお、所望により、活性炭、電気透析装置など を使用しても良い。
[0029] 脱色、脱塩したグルクロン酸及び/又はダルクロノラタトンを含む溶液は、糖又は糖 誘導体を結晶化する場合の慣用法を用いて目的物を得ればよい。具体的には該溶 液を濃縮してから、ダルクロノラタトン又はダルクロン酸の結晶を接種して、結晶化す れは'よレ、。
通常、温度と時間をかけることによって、グルクロン酸とダルクロノラタトンが平衡に 達する。ダルクロノラタトンの方が結晶化容易なので、通常は濃度を固形分含量が 40 〜70%となるように調整し、ダルクロノラタトンの結晶を接種し、 目的物を晶出せしめ ると良レ、。一方、グルクロン酸の結晶を得たい場合は、固形分含量を 65%以上に濃 縮し、グノレクロン酸の結晶を晶出せしめれば良い。
結晶を含む溶液は、遠心分離などで、単離し、更にろ液を再濃縮し、再度結晶化を 繰り返せば、効率よく目的物を回収できる。
[0030] 上記一連の反応により、原料のショ糖より重量比で 20〜40%の高い収率で目的物 を製造することができる。本発明では、原料として安価なショ糖を使用することにより、 目的物を安価に製造することができる。
更に、ショ糖の酸化反応を、特許第 3556690号に記載されているように、微生物を 使用して行うことによって、全工程において温和な条件を採用して目的物を製造する ことができるので、環境に対する悪影響も少ない。
[0031] 本発明の製造方法により得られるグルクロン酸及び/又はダルクロノラタトンは、既 知の方法により得られているものと同等力、、それ以上の純度を有していることから、従 来のものと同様に、肝機能回復作用、疲労回復作用、抱合解毒作用、抗リウマチ作 用などを有する物質として、広く医薬品工業、食品工業、化粧品工業、化成品工業 などの諸分野に用途を有する。
実施例 1
[0032] 以下の実施例により、本発明を更に詳細に説明するが、本発明はこれらに制限さ れるものではない。
[0033] (1)ショ糖カルボン酸ナトリウム塩の製造
特許第 3556690号の実施例 1に記載された方法にしたがって、酸化酵素生産菌 を用いてショ糖 (グラニュー糖) 360kgから、同量のショ糖カルボン酸ナトリウム塩(グ ルクロニル一フラクトシド)の溶液を調製した。すなわち、発酵タンクに、ショ糖 30kgと 水 250Lをカ卩え、溶解し、これに同等量の発酵タンクで別途調製したシユードダルコノ ノ クタ1 ~ ·サッカロケトケネス (Pseudogluconobacter saccharoketogenesの洗伊菌¾¾5 0Lをカロえ、全量を 300Lとした。次いで、 32°C、 200rpmで撹拌しながら、空気を 10 0LZ分の割合で通気して 24時間反応を行レ、、 目的とするショ糖カルボン酸ナトリウ ム塩を得た。次いで、菌体を除き、活性の有無に従い、再使用し、同様の方法を 12 回行い、ショ糖モノカルボン酸ナトリウム塩(ダルクロニルーフラタトシド)の固形分 360 kgの溶液を調製した。
[0034] (2)ショ糖モノカルボン酸ナトリウム塩の分解
上記 (1)で得たショ糖カルボン酸ナトリウム塩の固形分 60kg分を 30%に濃縮した後 、 37°Cにて、パン酵母 (オリエンタル酵母 (株)製、 FD— 1)を固形分あたり、 3% (10 . 8kg)添加して 72時間加水分解反応を行った。なお、反応中、系の pH制御を行わ なかったが、最終的に pHは 4付近となった。加水分解終了後、 80°Cで 5分加熱して 殺菌後、 UFろ過を行って透過液を回収した。透過液は濃縮装置((株)大川原製作 所製、エバポール)にて、 50%まで濃縮し、透過液に含まれるエタノール (加水分解 生成物の酵母による資化により生成)を回収した。同様の方法を 6回繰り返し、ショ糖 カルボン酸濃縮液を得た。
[0035] 次いで、濃縮液は 6回に分け、活性炭カラム 50L (白鷺、 日本エンバイ口ケミカルズ( 株)製)、塩基性イオン交換樹脂 50L (アンバーライ HRA-96SB、オルガノ (株)製)、強 酸性イオン交換樹脂 150L (ダイヤイオン PK-216、三菱化学 (株)製)を通過させて脱 色、脱塩した。
[0036] (3)ダルクロノラタトンの結晶化
このようにして得られた脱塩液を 50%まで濃縮装置((株)大川原製作所製、エバポ ール)にて濃縮し、結晶化原液とした。この結晶化原液は、結晶缶 (月島機械 (株)製 )に移送し、 62%まで濃縮し、 45°C付近で反応液中のダルクロン酸とダルク口ノラタト ンの比率の平衡を移動させ、ダルクロノラタトンの含量を増やしたのち、ラタトン種結 晶 50gをカ卩えて一昼夜自然冷却で結晶化させた。
翌日、減圧濃縮しながら、結晶を成長させた(68%、 42°C)後、 45〜60°Cまで上昇 させた。次いで、溶液の流動性を上げた後、助晶機 (月島機械 (株)製)に移送して一 昼夜 20°C (2°C/時)になるまで冷却を行った。得られたラタトンの結晶は遠心分離( 1200rpm)にて回収し、 70%エタノールで洗浄後、棚乾燥機にて 50°Cで乾燥した。
[0037] 以上の操作では、 1回の結晶化で 28. 1kgの結晶を得ることができた。ろ液は回収 して同様の結晶化を行レ、、 100kgのダルクロノラタトンを回収することができた。
結晶化原液中の酵母資化工程で生じたグリセロール及び未知成分は、結晶化によ り簡単に除去することが可能であった。
得られたグノレクロノラタトンの純度は HPLC (カラム:島津製作所 SCR-101Hカラム、 移動層: 20mM 硫酸、検出: RI、流速: 0. 5mL/min)にて確認したところ、純度 9 9. 9%以上であった。 HPLCの溶出時間は試薬のダルクロノラタトンと同一であった。 実施例 2
[0038] 実施例 1に記載した方法に従ってショ糖 15kgより同量のショ糖カルボン酸カリウム 塩を調製した。
このうち、ショ糖カルボン酸カリウム塩 100gをとり、これに巿販パン酵母(ドライィース ト)を 7gカ卩えて 37°Cで加水分解反応並びに資化反応を行った。
その結果、 24時間以内にショ糖カルボン酸は加水分解され、グノレクロン酸及びグ ルクロノラタトンを含む溶液が得られた。次いで、この溶液を活性炭カラム 1L (白鷺、 日本エンバイ口ケミカルズ (株)製)、塩基性イオン交換樹脂 1L (アンバーライ HRA-96 SB、オルガノ (株)製)、強酸性イオン交換樹脂 3L (ダイヤイオン PK-216、三菱化学( 株)製)に通過させて脱色、脱塩した。
[0039] この脱塩した液は 40°Cにて 65%まで濃縮し、グルクロン酸の種結晶 0. 2gを加えて 自然冷却した。析出した結晶を遠心分離し、グルクロン酸を 40g得た。
得られたグノレクロン酸の純度は HPLC (カラム:島津製作所 SCR-101Hカラム、移動 層: 20mM 硫酸、検出: RI、流速: 0. 5mL/min)にて確認したところ、純度 99. 9 %以上であった。
実施例 3
[0040] 実施例 1に記載した方法に従って原料糖 15kgより同量のショ糖カルボン酸ナトリウ ム塩を調製した。
次いで、同様に実施例 1に記載した方法に従ってショ糖カルボン酸ナトリウム塩溶 液 15kgを 30%に濃縮したのち、パン酵母 (オリエンタル酵母 (株)製、 FD— 1)を固形 分あたり 3 %添カ卩して、 37°Cにて 72時間反応を行った。
反応液を活性炭カラムと脱塩樹脂カラムに同様にして通過させ、脱色、脱塩した。 得られた脱塩液を 50°C、 58%まで濃縮し、グノレクロノラタトンの種結晶を 20gカ卩えて 結晶を析出させた。次いで、遠心分離を行い、ダルクロノラタトン 2kgを得た。
実施例 4
[0041] 実施例 1に記載した方法に従ってビート糖 20kgより同量のショ糖カルボン酸ナトリウ ム塩を調製した。以下、同様に実施例 1に記載した方法に従ってショ糖カルボン酸ナ トリウム塩溶液 20kgを 30%に濃縮したのち、パン酵母 (オリエンタル酵母 (株)製、 FD 1)を固形分あたり 4%添加して、 37°Cにて 72時間反応した。
反応液を活性炭カラム、脱塩樹脂カラムに同様に通過させ、脱色、脱塩した。得ら れた脱塩液を 50°C、 58%まで濃縮し、グノレクロノラタトンの種結晶を 20gカ卩えて結晶 を析出させた。その後、遠心分離を行い、グノレクロノラタトン 4kgを得た。
産業上の利用可能性
本発明により、安価な原料であるショ糖からグルクロン酸及び/又はダルク口ノラタト ンを高収率で製造することができる。
しかも、その製造工程において、硝酸等の窒素酸化物等を酸化剤として使用しな いか、使用する場合でも、その量はごく僅かなので安全で、且つ環境に影響を与える ことなく、 目的物を製造できる。

Claims

請求の範囲
[1] ショ糖を酸化してショ糖カルボン酸又はその塩とし、次いでインベルターゼ活性を有 する微生物を加えて、該ショ糖カルボン酸又はその塩のフラクトース部分を加水分解 すると共に資化し、生成するグルクロン酸及び Z又はグノレクロノラタトンを採取するこ とを特徴とするグルクロン酸及び Z又はダルクロノラタトンの製造方法。
[2] インベルターゼ活性を有する微生物が、酵母である請求項 1記載の製造方法。
[3] ショ糖が、精製糖、ファインリカー、原料糖、ビート糖、メイプルシロップ、加糖調製 品又は廃糖蜜である請求項 1記載の製造方法。
[4] ショ糖カルボン酸又はその塩にインベルターゼ活性を有する微生物を加えて、該シ ョ糖カルボン酸又はその塩のフラクトース部分を加水分解する反応が、濃度 1〜50% のショ糖カルボン酸又はその塩の水溶液に温度 0〜60°C、 pH3〜: 10にて該微生物 を作用させることにより行う請求項 1記載の製造方法。
PCT/JP2006/306656 2005-05-11 2006-03-30 グルクロン酸及び/又はグルクロノラクトンの製造方法 WO2006120813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/913,999 US20090030194A1 (en) 2005-05-11 2006-03-30 Process for Production of Glucuronic Acid and/or Glucuronolactone
CA002605396A CA2605396A1 (en) 2005-05-11 2006-03-30 Process for production of glucuronic acid and/or glucuronolactone
EP06730604A EP1881078A4 (en) 2005-05-11 2006-03-30 PROCESS FOR PRODUCING GLUCURONIC ACID AND / OR GLUCURONOLACTONE
AU2006245188A AU2006245188A1 (en) 2005-05-11 2006-03-30 Process for production of glucuronic acid and/or glucuronolactone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005138306A JP2006314223A (ja) 2005-05-11 2005-05-11 グルクロン酸及び/又はグルクロノラクトンの製造方法
JP2005-138306 2005-05-11

Publications (1)

Publication Number Publication Date
WO2006120813A1 true WO2006120813A1 (ja) 2006-11-16

Family

ID=37396330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306656 WO2006120813A1 (ja) 2005-05-11 2006-03-30 グルクロン酸及び/又はグルクロノラクトンの製造方法

Country Status (7)

Country Link
US (1) US20090030194A1 (ja)
EP (1) EP1881078A4 (ja)
JP (1) JP2006314223A (ja)
CN (1) CN101171341A (ja)
AU (1) AU2006245188A1 (ja)
CA (1) CA2605396A1 (ja)
WO (1) WO2006120813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219809A (zh) * 2010-04-16 2011-10-19 江苏天士力帝益药业有限公司 一种葡醛内酯的精制结晶方法
CN101679936B (zh) * 2007-05-08 2013-04-03 盐水港精糖株式会社 通过葡糖醛酸发酵来制造葡糖醛酸的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203769B1 (en) 2017-02-13 2021-12-21 Solugen, Inc. Hydrogen peroxide and gluconic acid production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412542B1 (ja) * 1970-09-09 1979-05-23
EP0599646A2 (en) * 1992-11-27 1994-06-01 Takeda Chemical Industries, Ltd. Production of saccharide carboxylic acids
JP2002153294A (ja) * 2000-11-21 2002-05-28 Hayashibara Biochem Lab Inc グルクロン酸類及び/又はd−グルクロノラクトンの製造方法とその用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556690B2 (ja) * 1992-11-27 2004-08-18 武田薬品工業株式会社 糖カルボン酸の製造法及び新規糖カルボン酸
JP4153057B2 (ja) * 1997-03-10 2008-09-17 中国化薬株式会社 D−グルクロノラクトンの製造方法
KR20010023753A (ko) * 1997-09-08 2001-03-26 나가야마 오사무 유기화합물의 1 급 수산기의 선택적 산화방법 및 그방법에 사용하는 촉매흡착수지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412542B1 (ja) * 1970-09-09 1979-05-23
EP0599646A2 (en) * 1992-11-27 1994-06-01 Takeda Chemical Industries, Ltd. Production of saccharide carboxylic acids
JP2002153294A (ja) * 2000-11-21 2002-05-28 Hayashibara Biochem Lab Inc グルクロン酸類及び/又はd−グルクロノラクトンの製造方法とその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1881078A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679936B (zh) * 2007-05-08 2013-04-03 盐水港精糖株式会社 通过葡糖醛酸发酵来制造葡糖醛酸的方法
CN102219809A (zh) * 2010-04-16 2011-10-19 江苏天士力帝益药业有限公司 一种葡醛内酯的精制结晶方法
CN102219809B (zh) * 2010-04-16 2014-11-05 江苏天士力帝益药业有限公司 一种葡醛内酯的精制结晶方法

Also Published As

Publication number Publication date
US20090030194A1 (en) 2009-01-29
EP1881078A1 (en) 2008-01-23
CN101171341A (zh) 2008-04-30
CA2605396A1 (en) 2006-11-16
JP2006314223A (ja) 2006-11-24
EP1881078A4 (en) 2011-11-09
AU2006245188A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP3333969B2 (ja) D−ケトヘキソース・3−エピメラーゼとその製造方法並びに用途
AU2008249370B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
JPH1087531A (ja) D−アラビトールの調製方法
JPS6214792A (ja) フラクトオリゴ糖高含有物の製造法
JPH02502186A (ja) 配糖体の加水分解
WO2006120813A1 (ja) グルクロン酸及び/又はグルクロノラクトンの製造方法
US4649111A (en) Process for the preparation of 5'-ribonucleotides
US8580955B2 (en) Purification method and production method for cellobiose
KR20010049918A (ko) 고순도 자일리톨의 제조 방법
AU642439B2 (en) Production of glyoxylic acid by enzymatic oxidation of glycolic acid
JPH08154696A (ja) L−ケトヘキソースの製造方法
JP2002153294A (ja) グルクロン酸類及び/又はd−グルクロノラクトンの製造方法とその用途
US5221621A (en) Production of glyoxylic acid from glycolic acid
JP2001292792A (ja) N−アセチルグルコサミンの回収方法
JP3252295B2 (ja) L−ガラクトースの製造方法
WO1999053088A1 (en) Enzymatic preparation of galactose and/or gluconic acid from di- or polysaccharides
JPH07327691A (ja) トレハロースの製造方法
JP3459331B2 (ja) 分岐シクロデキストリンカルボン酸の製造法
JP3073864B2 (ja) グルコビオースの製造法
JP2009215231A (ja) 結晶1,5−d−アンヒドログルシトールの製造法
JP4480100B2 (ja) L−アスコルビン酸−2−リン酸の製造方法
JP2690779B2 (ja) L―アスコルビン酸誘導体及びその製造法
Nehete et al. Recycling of mother liquor of sorbose and glucose for hexitol production
JP3719309B2 (ja) リビトールの製造方法
JPH09154590A (ja) エリスリトールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015896.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2605396

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006730604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006245188

Country of ref document: AU

Ref document number: 11913999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006245188

Country of ref document: AU

Date of ref document: 20060330

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006245188

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730604

Country of ref document: EP