WO2006120720A1 - 回折光学素子の製造方法 - Google Patents

回折光学素子の製造方法 Download PDF

Info

Publication number
WO2006120720A1
WO2006120720A1 PCT/JP2005/008285 JP2005008285W WO2006120720A1 WO 2006120720 A1 WO2006120720 A1 WO 2006120720A1 JP 2005008285 W JP2005008285 W JP 2005008285W WO 2006120720 A1 WO2006120720 A1 WO 2006120720A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
optical element
depth
diffractive optical
manufacturing
Prior art date
Application number
PCT/JP2005/008285
Other languages
English (en)
French (fr)
Inventor
Ryo Sekikawa
Yoshinori Maeno
Original Assignee
Oki Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co., Ltd. filed Critical Oki Electric Industry Co., Ltd.
Priority to PCT/JP2005/008285 priority Critical patent/WO2006120720A1/ja
Priority to CNB2005800496862A priority patent/CN100523879C/zh
Priority to US11/913,074 priority patent/US20090087794A1/en
Publication of WO2006120720A1 publication Critical patent/WO2006120720A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface

Definitions

  • the present invention relates to a method for manufacturing a diffractive optical element having a step shape.
  • Non-Patent Document 1 As a method of manufacturing a diffractive optical element having a staircase shape, as described in Non-Patent Document 1 below, exposure is performed using m (m is a natural number) masks using semiconductor microfabrication technology. There is a method of manufacturing a 2 m stage diffractive optical element by repeating a series of development and etching processes. For example, in the case of an eight-step staircase, the exposure, development, and etching are repeated three times using three masks. This manufacturing process will be described with reference to FIG.
  • P is the width of the period in which the staircase shape is formed
  • L is the width of the staircase formed in the final process
  • D is the step.
  • the period width P is the so-called lattice pitch P.
  • the region is indicated by a dashed line.
  • k is the number of steps.
  • H HZ (k – 1).
  • Figure 12 (7) shows the final staircase shape and the above P, L, D, and H.
  • FIG. 12 is a process cross-sectional view in each process. First, in the first process, Fig. 12
  • the mask 12 has two light shielding portions and openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are 2L each. Next, etching is performed to a depth of 2D using the resist pattern 72 to form the groove shape shown in Fig. 12 (5). Next, the resist pattern 72 is removed.
  • the third process is entered.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using the mask 13 shown in FIG. 12 (6) to form a resist pattern 73 shown in FIG. 12 (6).
  • the mask 13 has four light shielding portions and openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are each L.
  • etching is performed to a depth D using the resist pattern 73 to form the groove shape shown in Fig. 12 (7).
  • a diffractive optical element having an eight-step staircase shape is obtained.
  • FIG. 13 is a process cross-sectional view in each process. First, in the first process, Fig. 13
  • resist 2 on substrate 1 as shown in (1) Apply resist 2 on substrate 1 as shown in (1).
  • exposure and development are performed using the mask 21 shown in FIG. 13 (2) to form a resist pattern 81 shown in FIG. 13 (2).
  • the mask 21 has one light shielding part and one opening part in the lattice pitch P, and the pattern widths of the light shielding part and the opening part are 3L and 4L, respectively.
  • etching is performed using the resist pattern 81 to form the groove shape shown in Fig. 13 (3).
  • the etching depth Dc in this first process is 4D.
  • the resist pattern 81 is removed.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and development are performed using the mask 22 shown in FIG. 13 (4) to form a resist pattern 82 shown in FIG. 13 (4).
  • the mask 22 has two light-shielding portions and openings in the lattice pitch P.
  • the pattern width of the two light-shielding portions is on the upper and lower sides. They are L and 2L, respectively, and the pattern width of the two openings is 2L.
  • etching is performed using the resist pattern 82 to form the groove shape shown in Fig. 13 (5). In this second process, the etching depth Dc is 2D.
  • the resist pattern 82 is removed.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using the mask 23 shown in FIG. 13 (6) to form a resist pattern 83 shown in FIG. 13 (6).
  • the mask 23 has three light shielding portions and four openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are all L.
  • etching is performed using resist pattern 83 to form the groove shape shown in Fig. 13 (7).
  • the etching depth Dc in this third process is D.
  • Non-Patent Document 1 Hiroki Sasaki, 6 others, “High-precision mounting technology of light source and silicon microlens”, Journal of Japan Institute of Electronics Packaging, 2002, Vol5, No. 5, p. 466-472 1: Japanese Patent Laid-Open No. 11-14813
  • FIG. 14 (1) is a process sectional view at the time of exposure in the third process shown in FIG.
  • the resist 2 is represented by diagonal lines with different directions in order to distinguish the light-shielded part from the exposed part. As shown in Fig.
  • Figure 14 (1) in the third process using mask 13, there are four exposed areas 31, 32, 33, 34 at the grating pitch P, and there are 7 boundaries between the light-shielding area and the aperture. . Each exposed area has a different level, so the applied resist thickness also varies.
  • Figure 14 (2) is an example of a resist pattern 73 obtained by exposing and developing the one shown in Figure 14 (1). When attention is paid to the boundary with the light shielding part, the formed resist pattern 73 is not shaped as the mask pattern. This is because the resist thickness applied on the substrate varies from step to step, and the optimum exposure conditions for the four exposed areas are different. In the exposed area 31 where the optimum exposure time has been exceeded, adjacent light shielding Part of resist 2 is removed and the pattern width becomes wider than the design value.
  • Figure 14 (3) is a cross-sectional view after the resist pattern 73 is removed by etching using the resist pattern 73 of Figure 14 (2).
  • the shape of the design value is represented by a dotted line, and the shape actually formed is represented by a solid line.
  • a step 41 with a wider width than the design value occurs at the location corresponding to the exposure part 31.
  • protrusions 43 are generated at the edge of the staircase shape, resulting in a step 44 having a narrower width than the design value.
  • the conventional manufacturing method has a problem that a stepped shape having a dimension different from the design value may be formed or a protrusion may be formed at the edge portion, which causes a decrease in diffraction efficiency. .
  • an object of the present invention is to provide a new and improved diffraction technique capable of manufacturing a diffractive optical element having a step shape with high accuracy.
  • An object of the present invention is to provide a method for manufacturing an optical element.
  • a process of surface-cleaning a substrate by etching using a resist pattern is repeated a plurality of times to obtain a periodic k (k is 2 or more).
  • Diffractive optical element manufacturing method for manufacturing a diffractive optical element having a stepped shape of steps In the first process, k is the number of etched parts and the number of non-etched parts in one period region. In the case of an even number, both are kZ2, and in the case where k is an odd number, (k 1) Z2 and (k + 1) Z2, respectively.
  • the number of etched parts and the non-etched part in one period region There is provided a method of manufacturing a diffractive optical element characterized in that the number of each is less than that of the first process.
  • the one-cycle region is a region for constructing the staircase shape, and does not include regions that are not involved in the staircase shape configuration.
  • the etched part is a part that is etched in the etching process
  • the non-etched part is a part that is not etched in the etching process. Regardless of the steps that are formed, consecutive etched parts in one period are counted as one etched part, and consecutive non-etched parts in one period are counted as one non-etched part.
  • Resist pattern also has resist removal and resist residual force It is a pattern.
  • the resist removal portion is etched and the remaining resist portion is not etched, and a desired region can be etched by using a predetermined resist pattern. .
  • the number of etched and non-etched parts directly corresponds to the number of resist removal and resist residues.
  • the later the process the greater the difference in resist thickness at each stage, and errors in resist pattern shapes tend to occur. An error occurs at the boundary between the resist removal part and the resist residual part.
  • the number of etched parts and non-etched parts in one period region is the largest in the first process and decreases in the later processes.
  • the number of resist removal parts and resist remaining parts in one cycle area is also the largest in the first process, and decreases in later processes.
  • the number of boundaries between the resist removal area and the resist residual area is the largest in the first process and decreases in the later processes. Therefore, according to the configuration of the present invention, it is possible to reduce the number of boundaries that are error-prone portions in the post-process where the difference in resist thickness at each stage becomes significant. Therefore, the error can be reduced, and a diffractive optical element having a staircase shape can be manufactured with high accuracy.
  • both the number of etched portions and the number of non-etched portions in one cycle region are one. According to this configuration, the boundary between the resist removal part and the resist residual part becomes one in the second and subsequent processes where the number of steps increases. Therefore, there is only one place that takes the resist pattern error into consideration, and if the exposure condition is determined so that no error occurs in this place, the optimum condition can be easily determined.
  • a diffractive optical element that manufactures a diffractive optical element having a periodic step shape by repeating a process of surface processing of a substrate by etching using a resist pattern a plurality of times.
  • the first process there is provided a method of manufacturing a diffractive optical element characterized in that the pattern width of the etched portion in one cycle region is substantially the same as the minimum width of the staircase.
  • the minimum width of the staircase is the width of the step having the minimum width if the width of each step of the staircase finally formed is different. If the widths of all are the same, the width of one step
  • the level difference increases and the difference in resist thickness at each level increases.
  • the portion having the minimum pattern width is etched in the first process.
  • the resist is applied on a flat substrate and the resist thickness is uniform. Therefore, it is easy to form the minimum pattern width with high accuracy in this state.
  • a diffractive optical element for manufacturing a diffractive optical element having a seven-step staircase shape by repeating a process of surface processing a substrate by etching using a resist pattern a plurality of times.
  • the first step for etching the second, fourth, and sixth steps at the first depth which is the step of the staircase, and the bottom step, twice the first depth.
  • 2nd process to etch at depth 3rd process to etch the 5th, 6th and 7th steps at a depth twice as high as the 1st depth, and 3, 4, 5, 6, 7th steps
  • a fourth step of etching the target portion at a depth twice that of the first depth is provided.
  • a method of manufacturing a diffractive optical element is provided.
  • the top level is the first level, and the second level and the third level are used as you go down.
  • the minimum pattern width can be used in the first process, and the larger pattern width can be used in the subsequent processes as the process proceeds.
  • the larger pattern width is adopted, so errors in the resist pattern shape are less likely to occur. Therefore, a diffractive optical element having a stepped shape can be manufactured with high accuracy.
  • a diffractive optical element for manufacturing a diffractive optical element having a nine-step staircase shape by repeating a process of surface-treating a substrate by etching using a resist pattern a plurality of times.
  • a method for manufacturing an element in which a first step is performed by etching the second, fourth, sixth, and eighth steps at a first depth, which is a stepped step, and a lowermost portion is formed by a first depth.
  • a method for manufacturing a diffractive optical element comprising: a fourth step of etching the sixth, seventh, eighth and ninth step portions at a depth four times the first depth.
  • a diffractive optical element for manufacturing a diffractive optical element having an eight-step staircase shape by repeating a process of surface-treating a substrate by etching using a resist pattern a plurality of times.
  • Device manufacturing method where steps 2, 4, 6, and 8 are steps A first process that etches at a first depth which is a step of the second, a second process that etches the seventh and eighth step portions at a depth twice the first depth, and 5, 6, 7 , The third step to etch the 8th step at twice the depth of the first depth, and the 3, 4, 5, 6, 7, 8th step to the first depth And a fourth step of etching at twice the depth.
  • a method of manufacturing a diffractive optical element is provided.
  • a diffractive optical element that manufactures a diffractive optical element having a five-step staircase shape by repeating a process of surface processing of a substrate by etching using a resist pattern a plurality of times.
  • This is a device manufacturing method, in which the first and second steps are etched at the first depth, which is the step of the staircase, and the bottom step is twice the first depth.
  • a diffractive optical element comprising: a second step of etching at a depth; and a third step of etching a portion of the third, fourth, and fifth steps at a depth twice the first depth. This manufacturing method is provided.
  • a diffractive optical element that manufactures a diffractive optical element having a seven-step staircase shape by repeating a process of surface processing of a substrate by etching using a resist pattern a plurality of times.
  • This is a device manufacturing method, in which the first step is etched at the first depth, which is twice the step height of the staircase, and the second, fourth, and sixth steps are the staircase step.
  • a second step of etching at a certain second depth a third step of etching the first, fifth, sixth, and seventh steps to a first depth, and third, fourth, fifth, sixth, and seventh steps.
  • a fourth step of etching the portion at a first depth is provided.
  • a diffractive optical element that manufactures a diffractive optical element having a nine-step staircase shape by repeating a process of surface processing a substrate by etching using a resist pattern a plurality of times.
  • a device manufacturing method in which the first step is etched at a first depth that is twice the step of the staircase, and the second, fourth, sixth, and eighth steps are stepped.
  • a second step of etching at the second depth which is a level difference of 3, a third step of etching the first, third, fourth, fourth, fourth, eighth, and ninth steps; And a fourth step of etching the seventh, eighth, and ninth stage portions at a depth twice as high as the first depth.
  • a method for manufacturing a diffractive optical element is provided.
  • a diffractive optical element that manufactures a diffractive optical element having a five-step staircase shape by repeating a process of surface-treating a substrate by etching using a resist pattern a plurality of times. This is a device manufacturing method, in which the first step is etched at the first depth, which is twice the step of the staircase, and the second and fourth steps are the step difference.
  • a method of manufacturing a diffractive optical element comprising: a second step of etching at a second depth; and a third step of etching at a first depth at portions 3, 4, and 5 Is provided.
  • the etching is preferably anisotropic etching.
  • the substrate may be silicon, quartz, GaAs, or InP.
  • a diffractive optical element having a staircase shape can be manufactured with high accuracy, thereby improving the diffraction efficiency.
  • FIG. 1 is a schematic view showing an example of a diffractive optical element.
  • FIG. 2 is a schematic diagram showing an example of a diffractive optical element.
  • FIG. 3 is a process cross-sectional view of the method for manufacturing a diffractive optical element according to the first embodiment of the present invention.
  • FIG. 4 is a process cross-sectional view showing a process continued from FIG. 1.
  • FIG. 5 is a diagram for explaining a method of discriminating the manufacturing method of the manufactured diffractive optical element.
  • FIG. 6 is a process cross-sectional view of the method for manufacturing a diffractive optical element according to the second embodiment of the present invention.
  • FIG. 7 is a process cross-sectional view of the method for manufacturing a diffractive optical element according to the third embodiment of the present invention.
  • FIG. 8 is a process cross-sectional view of the method for manufacturing a diffractive optical element according to the fourth embodiment of the present invention.
  • FIG. 9 is a process cross-sectional view of a method for manufacturing a diffractive optical element according to the fifth embodiment of the present invention. It is.
  • FIG. 10 is a process cross-sectional view showing a process continued from FIG. 9.
  • FIG. 11 is a process sectional view of a method for manufacturing a diffractive optical element according to a modification of the present invention.
  • FIG. 12 is a process cross-sectional view of a conventional method for producing a diffractive optical element.
  • FIG. 13 is a process cross-sectional view of a conventional method for producing a diffractive optical element.
  • FIG. 14 is a diagram for explaining problems of a conventional method for manufacturing a diffractive optical element.
  • a diffraction optical element having a periodic step shape is manufactured by repeating a series of processes using a semiconductor microfabrication technique.
  • resist is applied to the substrate, and the substrate is exposed and developed using a mask on which a predetermined pattern has been formed to form a resist pattern that has resist removal and resist residual force. Etching using a resist pattern.
  • Figure 1 shows a diffractive optical element in which diffraction gratings are linearly arranged at a constant grating pitch.
  • Figure 1 (a) is a plan view of the diffractive optical element and shows the arrangement of the diffraction gratings as a straight line.
  • Figure 1 (b) is a partially enlarged view of the cross-section when the diffractive optical element of Figure 1 (a) is cut along a plane perpendicular to the paper surface.
  • Figure 1 (b) shows a periodic staircase configuration with the same width of each step.
  • Figure 1 is called a linear grating type diffractive optical element.
  • Figure 2 shows the diffraction gratings arranged in an annular shape and the grating pitch. H indicates a diffractive optical element that decreases from the center of the circle toward the outside.
  • Figure 2 (a) is a plan view of the diffractive optical element, showing the arrangement of the diffraction gratings in a circle.
  • Fig. 2 (b) is a cross-sectional view of the diffractive optical element shown in Fig. 2 (a) cut along a plane that passes through the center of the circle and is perpendicular to the paper surface.
  • Fig. 2 (c) is a partially enlarged view of Fig. 2 (b).
  • Figure 2 (b) shows a shape in which a plano-convex lens is cut into a constant thickness with respect to the optical axis direction, and a region where the phase change is constant in the surface is removed while dropping the surface shape. .
  • the dotted line in Fig. 2 (c) shows the curved surface shown in Fig. 2 (b), and Fig. 2 (c) shows a periodic staircase configuration approximating this curved surface.
  • the example shown in Fig. 2 is called a Fresnel lens type diffractive optical element.
  • an example of manufacturing a linear grating type diffractive optical element will be described using the first to fourth embodiments, and an example of manufacturing a Fresnel lens type diffractive optical element will be described using the fifth embodiment.
  • the thickness of the substrate depicted in the figure is not always accurate.
  • the regions where grooves were formed by etching are indicated by arrows.
  • the continuous area within the lattice pitch P is counted as one.
  • the etching part or the non-etched part is an area extending over a plurality of steps of a staircase, the etching part or the non-etched part extends over a plurality of adjacent steps, and if it is a continuous area, one etched part or one non-etched part Count as an etched part.
  • the first to sixth steps are not etched continuously. Consider it an etched part.
  • FIG. 3 shows a diffractive optical element useful for the first embodiment of the present invention.
  • Fig. 4 is a cross-sectional view showing the steps of the child manufacturing method, and Fig. 4 is a cross-sectional view showing the steps following Fig. 3.
  • Figure 4 (10) shows the final seven-step shape and the above P, L, D, and H.
  • silicon was used as the substrate.
  • RIE apparatus reactive ion etching apparatus
  • SF was used as the etching gas to perform anisotropic dry etching.
  • FIGS. 3 (1) to 3 (5) are cross-sectional views in the first process.
  • resist 2 is coated on substrate 1.
  • the mask 101 is used for exposure.
  • the mask 101 has four light shielding portions and three openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are L, respectively.
  • development is performed to form a resist pattern 121 shown in Fig. 3 (3).
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 121 are also L, respectively.
  • etching is performed using the resist pattern 121 to form the groove shape shown in Fig. 3 (4).
  • the etching depth DD in this first process is D.
  • depth D etching is performed on the second, fourth, and sixth step regions.
  • the first, third, fifth, and seventh stages are not etched.
  • the resist pattern 121 is removed to form the groove shape shown in Fig. 3 (5). In this way, in the first process, an irregular periodic structure with a groove width of width L is formed.
  • Figures 3 (6) to 3 (10) are cross-sectional views in the second process.
  • resist 2 is applied to the substrate with the groove shape formed in the first process.
  • FIG. 3 (7) exposure is performed using a mask 102.
  • FIG. The mask 102 has one light shielding part and one opening part in the lattice pitch P, and the pattern widths of the light shielding part and the opening part are 6L and L, respectively.
  • development is performed to form a resist pattern 122 shown in Fig. 3 (8).
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 122 are 6L and L, respectively.
  • etching is performed using the resist pattern 122 to form the groove shape shown in Fig. 3 (9). Etch depth Dp in this second process
  • the resist pattern 122 is removed to form the groove shape shown in Fig. 3 (10).
  • Figures 4 (1) to 4 (5) are cross-sectional views in the third process.
  • resist 2 is applied to the substrate with the groove shape formed in the second process.
  • the mask 103 is used for exposure.
  • the mask 103 has one light shielding portion and one opening portion in the lattice pitch P, and the pattern widths of the light shielding portion and the opening portion are 4L and 3L, respectively.
  • development is performed to form a resist pattern 123 shown in Fig. 4 (3).
  • the pattern widths of the remaining resist portion and the removed resist portion of the resist pattern 123 are 4L and 3L, respectively.
  • etching is performed using the resist pattern 123 to form the groove shape shown in Fig. 4 (4). Etch depth Dp in this third process
  • the resist pattern 123 is removed to form the groove shape shown in Fig. 4 (5).
  • Figures 4 (6) to 4 (10) are cross-sectional views in the fourth process.
  • resist 2 is applied to the substrate with the groove shape formed in the third process.
  • the mask 104 is used for exposure.
  • the mask 104 has one light shielding portion and one opening in the lattice pitch P, and the pattern widths of the light shielding portion and the opening are 2L and 5L, respectively.
  • development is performed to form a resist pattern 124 shown in Fig. 4 (8).
  • the pattern widths of the remaining resist portion and the removed resist portion of the resist pattern 124 are 2L and 5L, respectively.
  • etching is performed using the resist pattern 124 to form the groove shape shown in Fig. 4 (9). Etch depth Dp in this fourth process
  • the pattern width of the opening of the mask is the first value.
  • the first, second, third, and fourth processes are L, L, 3L, and 5L, respectively, and the pattern width in the subsequent process is greater than the pattern width in the previous process.
  • the pattern width increases as the process progresses.
  • the exposure conditions are determined so that the shape of this boundary part is as designed. However, since there is only one boundary part, the error in this part is minimized. What is necessary is just to set optimal exposure conditions so that it may become. Therefore, the optimum exposure condition can be fixed to one and the desired groove shape can be formed with high accuracy.
  • the first process there are multiple boundaries between the light-shielding part and the opening, but since the resist thickness is the same, the groove can be formed with high accuracy by a known method without any problem.
  • the boundary between the light-shielding portion and the opening within the lattice pitch P has a plurality of locations and the resist depth is different. It was difficult to set up. For this reason, in the conventional method, the occurrence of protrusions and dimensional errors have occurred due to insufficient exposure time, but this embodiment can solve such problems. Therefore, according to the present embodiment, the staircase shape constituting the diffractive optical element can be manufactured with high accuracy. As a result, the diffraction efficiency can be improved.
  • a seven-stage diffractive optical element having a grating pitch of 3.5 m and a step width of 0.5 ⁇ m was manufactured according to the method of the present embodiment.
  • the width of the step is 0.
  • the error is about 6%, and a precise diffractive optical element can be manufactured. It was.
  • FIG. 5 (a) shows the step shape of the 7-phase step-like diffractive optical element manufactured on the substrate using the manufacturing method of the present embodiment and the patterns of the masks 101, 102, 103, 104 used for manufacturing. The relative positional relationship of is shown.
  • Figure 5 (b) shows the step shape of a conventional 7-phase step diffractive optical element manufactured by the method described in Patent Document 1 and is used for manufacturing.
  • the substrate surface and the highest part of the staircase coincide.
  • the height difference Ha from the substrate surface S to the lowest and highest part of the stage can be expressed by the following equation (3).
  • the substrate surface S does not coincide with the highest step.
  • the height difference Hb from the substrate surface to the lowest part of the staircase can be expressed by the following equation (4) using the wavelength of the diffracted light and the refractive index n of the substrate.
  • Equation 4 Therefore, by measuring the height difference between the diffractive optical element and the substrate surface and referring to Equations (3) and (4), it is possible to know which manufacturing method was used to manufacture the 7-phase diffractive optical element. . This is the first discrimination method.
  • the etching depth is expressed using the step D. Strictly speaking, however, the actual etching depth will vary depending on the etching process, including small errors due to various conditions.
  • the step of each step of the step shape of the diffractive optical element manufactured by the manufacturing method of the present embodiment also has the direction of the highest step in the order of Ha, Ha,. Assuming Ha, it becomes as follows. What is a step?
  • the step of each step of the step-like diffractive optical element By measuring the step of each step of the step-like diffractive optical element and referring to the above relational expression, it is possible to know whether the 7-phase diffractive optical element was manufactured by the manufacturing method of deviation. As described above, in the manufactured seven-phase stepped diffractive optical element, the height difference between the surface of the substrate and the lowest step of the grating, or each step of the grating is measured to measure the manufactured seven-phase. It is possible to confirm whether or not the technique of the present invention is used in the production method of the step-like diffractive optical element.
  • FIG. 6 is a cross-sectional view showing the steps of a method for manufacturing a diffractive optical element that is useful for the second embodiment of the present invention.
  • a method of manufacturing a nine-phase step-like diffractive optical element having nine steps formed periodically is described.
  • silicon was used as the substrate, and in the etching process, a reactive ion etching apparatus (RIE apparatus) was used, and anisotropic dry etching was performed using SF as the etching gas.
  • RIE apparatus reactive ion etching apparatus
  • i-line stepper and standard positive resist were used.
  • a resist is applied on the substrate 1 in the same manner as the step shown in FIG. 3 (1) of the first embodiment.
  • exposure and development are performed using the mask 201 shown in FIG. 6 (1) to form a resist pattern 221 shown in FIG. 6 (1).
  • the mask 201 has five light shielding portions and four openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 221 are also L, respectively.
  • etching is performed using the resist pattern 221 to form the groove shape shown in Fig. 6 (2). In other words, depth D etching is performed on the second, fourth, sixth, and eighth step regions.
  • the first, third, fifth, seventh and ninth stages are not etched. Thus, there are five non-etched parts and four etched parts in the lattice pitch P.
  • the resist pattern 221 is removed. In this way, in the first process, an irregular periodic structure with a groove width of L is formed.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and development are performed using a mask 202.
  • the resist pattern 222 shown in Fig. 6 (3) is formed.
  • the mask 202 has one light shielding portion and one opening portion in the lattice pitch P, and the pattern widths of the light shielding portion and the opening portion are 8L and L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 222 are also 8L and L, respectively.
  • etching is performed using the resist pattern 222 to form the groove shape shown in FIG. In other words, the depth of the 9th step is 2D etched.
  • the first to eighth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 222 is removed.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using a mask 203 to form a resist pattern 223 shown in Fig. 6 (5).
  • the mask 203 has two light shielding portions and openings in the lattice pitch P, the pattern widths of the two light shielding portions are both 2L, and the pattern widths of the two openings are on the upper and lower sides. 2L and 3L respectively.
  • the pattern width of the resist remaining part of resist pattern 223 is 2L, and the pattern width of the resist removal part is 2L and 3L on the upper and lower sides, respectively.
  • etching is performed using the resist pattern 223 to form the groove shape shown in Fig. 6 (6).
  • the 3rd, 4th, 7th and 9th step regions are etched 2D deep.
  • the first, second, fifth and sixth stages are not etched.
  • the resist pattern 223 is removed.
  • a resist is applied to the substrate with the groove shape formed in the third process.
  • exposure and development are performed using a mask 204 to form a resist pattern 224 shown in Fig. 6 (7).
  • the mask 204 has one light shielding part and one opening part in the lattice pitch P, and the pattern widths of the light shielding part and the opening part are 4L and 5L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 224 are 4L and 5L, respectively.
  • etching is performed using resist pattern 224 to form the groove shape shown in Fig. 6 (8).
  • the 5th to 9th steps are etched 4D deep.
  • the first to fourth stages are not etched.
  • a diffractive optical element having a nine-step staircase shape is obtained.
  • the stage shape constituting the diffractive optical element can be manufactured with high accuracy, and the diffraction efficiency can be improved.
  • a nine-stage diffractive optical element having a grating pitch of 4.5 m and a step width of 0.5 m was manufactured according to the method of this embodiment. In the manufactured diffractive optical element, no protrusion is generated at the edge of the step, the width of the step is 0.48 / zm, and the error is about 4%, and a precise diffractive optical element is manufactured. I was able to.
  • FIG. 7 is a cross-sectional view showing the steps of a method for manufacturing a diffractive optical element that is useful for the third embodiment of the present invention.
  • a method of manufacturing an 8-phase step-like diffractive optical element having an 8-step step shape formed periodically will be described.
  • silicon was used as the substrate, and in the etching process, a reactive ion etching apparatus (RIE apparatus) was used, and anisotropic dry etching was performed using SF as the etching gas.
  • RIE apparatus reactive ion etching apparatus
  • i-line stepper and standard positive resist were used.
  • a resist is applied on the substrate 1 as in the step shown in FIG. 3 (1) of the first embodiment.
  • exposure and development are performed using the mask 301 shown in FIG. 7 (1) to form a resist pattern 321 shown in FIG. 7 (1).
  • the mask 301 has four light shielding portions and four openings in the lattice pitch P, and the pattern widths of the light shielding portions and the openings are L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 321 are also L, respectively.
  • etching is performed using resist pattern 321 to form the groove shape shown in Fig. 7 (2). In other words, depth D etching is performed on the second, fourth, sixth, and eighth step regions.
  • the first, third, fifth and seventh stages are not etched. Thus, there are four unetched parts and four etched parts in the lattice pitch P.
  • the resist pattern 321 is removed. In this way, in the first process, an irregular periodic structure with a groove width of L is formed.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and development are performed using a mask 302 to form a resist pattern 322 shown in Fig. 7 (3).
  • Mask 302 has a grid pitch P Each has a shading part and an opening, and the pattern widths of the shading part and the opening are 6L and 2L, respectively.
  • the pattern widths of the resist remaining part and resist removal part of resist pattern 322 are 6L and 2L, respectively.
  • etching is performed using the resist pattern 322 to form the groove shape shown in Fig. 7 (4).
  • the second and eighth steps are etched 2D deep.
  • the first to sixth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 322 is removed.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using a mask 303 to form a resist pattern 323 shown in Fig. 7 (5).
  • the mask 303 has one light-shielding portion and one opening in the lattice pitch P, and the pattern width of the light-shielding portion and the opening is 4L.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 323 are both 4L.
  • the resist pattern 323 is used for etching to form the groove shape shown in Fig. 7 (6). In other words, 2D etching is performed on the 5th to 8th step regions.
  • the first to fourth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 323 is removed.
  • a resist is applied to the substrate with the groove shape formed in the third process.
  • exposure and development are performed using a mask 304 to form a resist pattern 324 shown in Fig. 7 (7).
  • the mask 304 has one light shielding part and one opening part in the lattice pitch P, and the pattern widths of the light shielding part and the opening part are 2L and 6L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 324 are 2L and 6L, respectively.
  • etching is performed using the resist pattern 324 to form the groove shape shown in Fig. 7 (8).
  • 2D etching is performed on the 3rd to 8th steps.
  • the first and second stages are not etched.
  • a diffractive optical element having an eight-step staircase shape is obtained.
  • the step shape constituting the diffractive optical element can be manufactured with high accuracy, and the diffraction efficiency can be improved.
  • an 8-stage diffractive optical element with a grating pitch of 4. O ⁇ m and a step width of 0.5 m is used in this embodiment.
  • the width of the step is 0.47 m, and the error is about 6%, and a precise diffractive optical element must be manufactured. I was able to.
  • FIG. 8 is a cross-sectional view showing the steps of a method for manufacturing a diffractive optical element that is useful for the fourth embodiment of the present invention.
  • a method of manufacturing a five-phase stepped diffractive optical element having a five-step step shape formed periodically will be described.
  • silicon was used as the substrate, and in the etching process, a reactive ion etching apparatus (RIE apparatus) was used, and anisotropic dry etching was performed using SF as the etching gas.
  • RIE apparatus reactive ion etching apparatus
  • i-line stepper and standard positive resist were used.
  • a resist is applied on the substrate 1 in the same manner as the step shown in FIG. 3 (1) of the first embodiment.
  • exposure and development are performed using a mask 401 shown in FIG. 8 (1) to form a resist pattern 421 shown in FIG. 8 (1).
  • the mask 401 has three light shielding portions and two openings in the lattice pitch P, and the pattern widths of the light shielding portions and the opening portions are L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 421 are also L, respectively.
  • etching is performed using the resist pattern 421 to form the groove shape shown in Fig. 8 (2). That is, depth D etching is performed on the second and fourth step areas.
  • the first, third, and fifth stages are not etched. Thus, there are three non-etched parts and two etched parts in the lattice pitch P.
  • the resist pattern 421 is removed. In this way, in the first process, an irregular periodic structure with a groove width of L is formed.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and development are performed using a mask 402 to form a resist pattern 422 shown in Fig. 8 (3).
  • the mask 402 has one light shielding portion and one opening portion in the lattice pitch P, and the pattern widths of the light shielding portion and the opening portion are 4L and L, respectively.
  • the pattern widths of the resist remaining part and resist removal part of resist pattern 422 are 4L and L, respectively.
  • etching is performed using the resist pattern 422, and FIG.
  • the groove shape shown in 4) is formed. In other words, the 5th step is etched 2D deep. The first to fourth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 422 is removed.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using a mask 403 to form a resist pattern 423 shown in Fig. 8 (5).
  • the mask 403 has one light-shielding part and one opening in the lattice pitch P, and the pattern widths of the light-shielding part and the opening are 2L and 3L, respectively.
  • the pattern widths of the resist remaining portion and the resist removal portion of the resist pattern 423 are 2L and 3L, respectively.
  • etching is performed using resist pattern 423 to form the groove shape shown in Fig. 7 (6).
  • the 3rd, 4th, and 5th step regions are etched 2D deep.
  • the first and second stages are not etched.
  • a diffractive optical element having a five-step staircase shape is obtained.
  • the staircase shape constituting the diffractive optical element can be manufactured with high precision, and the diffraction efficiency can be improved.
  • FIG. 9 is a cross-sectional view showing the steps of the method of manufacturing a diffractive optical element according to the fifth embodiment of the present invention
  • FIG. 10 is a cross-sectional view showing the steps following FIG.
  • Figure 10 (4) shows the final seven-step shape.
  • a Fresnel lens type diffractive optical element forms a staircase shape that approximates a curved surface
  • the width of the staircase within the lattice pitch is not constant.
  • the width of gradually decreases. This embodiment can be considered as a change of the width of the stairs from the first embodiment.
  • the width of the period in which the staircase shape is formed is P and the step is D.
  • the period width P is the so-called lattice pitch P.
  • the region is indicated by a chain line.
  • the top step of the staircase is called the first step, and as the force goes down, the second step, the third step, and so on are called.
  • the thickness of the substrate depicted in the figure is not always accurate.
  • the region where grooves are formed by etching is indicated by arrows.
  • the method for counting the etched and non-etched parts is the same as in the first to fourth embodiments. In all of the following processes, silicon was used as the substrate, and in the etching process, a reactive ion etching apparatus (RIE apparatus) was used, and anisotropic dry etching was performed using SF as the etching gas. Also,
  • a resist is applied on the substrate 1 as in the step shown in FIG. 3 (1) of the first embodiment.
  • exposure and development are performed using a mask 501 shown in FIG. 9 (1) to form a resist pattern 521 shown in FIG. 9 (1).
  • the mask 501 has four light shielding parts and three openings in the lattice pitch P.
  • etching is performed using resist pattern 521 to form the groove shape shown in Fig. 9 (2).
  • depth D etching is performed on the second, fourth, and sixth step areas.
  • the first, third, fifth and seventh stages are not etched. Thus, there are four unetched parts and three etched parts in the lattice pitch P.
  • the resist pattern 521 is removed. In this way, an irregular periodic structure is formed in the first process.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and development are performed using a mask 502 to form a resist pattern 522 shown in Fig. 9 (3).
  • the mask 502 has one light shielding portion and one opening in the lattice pitch P.
  • etching is performed using the resist pattern 522 to form the groove shape shown in Fig. 9 (4).
  • the 7th step is etched 2D deep.
  • the first to sixth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 522 is removed.
  • a resist is applied to the substrate having the groove shape formed in the second process.
  • exposure and development are performed using a mask 503 to form a resist pattern 523 shown in Fig. 9 (5).
  • the mask 503 has one light shielding part and one opening part in the lattice pitch P.
  • resist pattern 523 is used.
  • the groove shape shown in Fig. 10 (1) is formed by the tooling. In other words, 2D etching is performed on the 5th to 7th steps. The first to fourth stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • the resist pattern 523 is removed.
  • a resist is applied to the substrate with the groove shape formed in the third process.
  • exposure and image formation are performed using a mask 504 to form a resist pattern 524 shown in Fig. 10 (2).
  • the mask 504 has one light shielding portion and one opening in the lattice pitch P.
  • etching is performed using the resist pattern 524 to form the groove shape shown in Fig. 10 (3). In other words, 2D etching is performed on the third to seventh step areas.
  • the first and second stages are not etched. Thus, there are one non-etched part and one etched part in the lattice pitch P.
  • a Fresnel lens type diffractive optical element having a seven-step shape as shown in Fig. 10 (4) is obtained.
  • the stage shape constituting the diffractive optical element can be manufactured with high accuracy, and the diffraction efficiency can be improved.
  • the force of the first embodiment is also the same as that of the first embodiment, except that the pattern width of the mask is changed. An element can be obtained.
  • the manufacturing method of the Fresnel lens type diffractive optical element is not limited to the seven-step staircase shape, and can be manufactured in the same way by changing the mask pattern width in other steps.
  • the following table shows the number of the non-etched parts and the etched parts in each process in the conventional manufacturing method as well as the manufacturing method that works on the first to fifth embodiments.
  • Conventional example 1 and conventional example 2 in the table are based on the 8-step and 7-step staircase manufacturing methods described in the background art of this specification, respectively.
  • the counting method of the etching part and the non-etching part in these conventional examples is the same as that in the first to fifth embodiments.
  • the number of etched parts and non-etched parts in the region (lattice pitch P) is k / 2 when k is an even number and (k 1 1) / 2 and ( k + l) / 2, and in the second process, the number of etched parts and the number of non-etched parts in the first period are less than those in the first process.
  • both the number of etched parts and the number of non-etched parts in one cycle region are one after the second process.
  • the number of etched and non-etched parts is one in the first process and gradually increases in the second and subsequent processes.
  • the number of etched portions and non-etched portions corresponds to the number of resist removed portions and resist remaining portions as they are.
  • the number of resist removal portions and resist remaining portions in one period region is the largest in the first process and smaller in the later processes. Therefore, the number of boundaries between the resist removal part and the resist residual part is reduced in the later process, which is the largest in the first process. In general, the more Difference in resist thickness occurs, and an error is likely to occur in the resist pattern shape. The error occurs at the boundary between the resist removal part and the resist residual part. From the above, according to the manufacturing method of the embodiment of the present invention, errors can be reduced and a diffractive optical element having a staircase shape can be manufactured with high accuracy.
  • FIG. Fig. 11 is a cross-sectional view showing the steps of the method of manufacturing a diffractive optical element that is useful in this modification.
  • This modification is a method of manufacturing a Fresnel lens type diffractive optical element having a seven-step staircase shape shown in Fig. 10 (4) by switching the order of the first process and the second process of the fifth embodiment.
  • the explanation will focus on this difference, and some explanations of similar points will be omitted.
  • a resist is applied on the substrate 1 as in the step shown in FIG. 3 (1) of the first embodiment.
  • exposure and development are performed using the mask 601 shown in Fig. 11 (1) to form a resist pattern 621 shown in Fig. 11 (1).
  • etching is performed using the resist pattern 621 to form the groove shape shown in Fig. 11 (2).
  • the 7th step is etched 2D deep.
  • the bottom 7th region is the narrowest region of the lattice pitch P.
  • the resist pattern 621 is removed.
  • a resist is applied to the substrate with the groove shape formed in the first process.
  • exposure and image formation are performed using mask 602 to form resist pattern 622 shown in Fig. 11 (3).
  • etching is performed using the resist pattern 622 to form the groove shape shown in Fig. 11 (4).
  • the second, fourth, and sixth stage regions are etched by depth D.
  • the resist pattern 622 is removed.
  • the shape of the groove formed on the substrate 1 is the same as shown in Fig. 9 (4). Therefore, the process moves to the third process of the fifth embodiment, and the subsequent processes are similarly performed using the process described with reference to FIGS. 9 (5) and 10 (1) to 10 (3).
  • a Fresnel lens type diffractive optical element having a seven-step staircase shape as shown in Fig. 10 (4). Get.
  • This modification is characterized in that the lowest step having the narrowest width in the first process is etched.
  • the level difference increases and the difference in resist thickness at each level increases. Therefore, it is difficult to form the minimum pattern width with higher precision as the process progresses.
  • the resist is applied on a flat substrate and the resist thickness is uniform, so it is easy to form the minimum pattern width with high accuracy in this state.
  • the part that has the minimum pattern width is processed in this first process, so the minimum pattern width can be easily formed with high accuracy.
  • the first process and the second process of the method of the fifth embodiment are interchanged in the method of this modification, naturally, the first embodiment related to the seven-step staircase shape is used. It is also applicable to. Also, in the fourth and second embodiments related to the five-step and nine-step staircase shapes, the method of this modification can be adopted by exchanging the first process and the second process. Furthermore, the present modification can also be applied to obtain a Fresnel lens type diffractive optical element having five or nine stepped shapes by changing the pattern width of the fourth and second embodiments.
  • Si is used as the substrate and SF is used as the etching gas.
  • materials that can be used as lenses such as GaAs, InP, and quartz,
  • etching gas that can perform anisotropic etching corresponding to it.
  • Si is used for the substrate
  • C F, CBrF, CF +0 are used as the etching gas.
  • C1, SiCl + C1, SF + N + Ar, BC1 + C1 + Ar can be used.
  • etching gas is C1, CI + HBr, CI +0, CF +0, S
  • etching gas is CF, CF +0, CF + H, CHF +0, CF, CH F +0 + CO and CH F + CF can be used. If SiO is used for the substrate,
  • CI + C1 + N and SiO + C1 can be used, and when Cu is used for the substrate,
  • CF + H +0 can be used as the etching gas when TiN is used for the substrate.
  • the force for forming a resist pattern using a mask pattern is not limited to this, and a method of forming a resist pattern by directly drawing with an electron beam. It may be used.
  • the resist used is not limited to the positive type, and a negative type resist can be used.
  • the mask pattern is the reverse of the mask pattern shown in the previous examples.
  • the Fresnel lens type diffractive optical element can be considered to be applied as, for example, a laser collimator lens for optical communication or a condenser lens for photodiodes.
  • the present invention can be applied to a method for manufacturing a diffractive optical element having a periodic step shape, and for example, can be applied to a method for manufacturing a diffractive optical element that functions as a lens element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

【課題】 高精度に回折光学素子を製造して,回折効率の向上を図ることが可能な,回折光学素子の製造方法を提供すること。 【解決手段】 マスクを用いてレジスト2が塗布された基板1を露光,現像してレジストパターンを形成し,エッチングする一連のプロセスを繰り返して,周期的な階段形状を有する回折光学素子を製造する。第1プロセスで,階段の幅と同じ幅のパターンを形成し,以降のプロセスでは,パターン幅をより大きくしていく。7段階段形状の回折光学素子を製造する場合は,階段の段差Dとしたとき,第1プロセスで,2,4,6段目部分を深さDでエッチングし,第2プロセスで,9段目部分を深さ2Dでエッチングし,第3プロセスで5,6,7段目部分を深さ2Dでエッチングし,第4プロセスで3,4,5,6,7段目部分を深さ2Dでエッチングする。

Description

明 細 書
回折光学素子の製造方法
技術分野
[0001] 本発明は,階段形状を有する回折光学素子の製造方法に関するものである。
背景技術
[0002] 近年,周期的な微細形状により光の進行方向と位相を制御する回折光学素子の需 要が高まっている。回折光学素子の形状は複数種類あり,そのうち,断面が鋸歯形 状のものが理論上の回折効率は高いが,実際には,この鋸歯形状を近似した階段形 状のものが製作容易であり,多用されている。一般に,階段形状を有する回折光学 素子を製造する方法としては,下記非特許文献 1に記載されたように,半導体の微細 加工技術を利用して m (mは自然数)枚のマスクを用いて露光,現像,エッチングの 一連のプロセスを繰り返すことにより 2m段の回折光学素子を製造する方法がある。例 えば, 8段の階段形状の場合には, 3枚のマスクを用いて,露光,現像,エッチングを 3回繰り返す。この製造工程を図 12を参照しながら説明する。
[0003] 以下の説明では,階段形状が形成される周期の幅を P,最終プロセスで形成される 階段の幅を L,段差を Dとする。周期の幅 Pとは,いわゆる格子ピッチ Pのことであり, 図では一点鎖線でその領域を示す。階段の幅は全て等しいものとし, L=PZkとす る。ここで, kは段数であり,例えば 8段の階段形状の場合は k= 8である。また,階段 全体の高さを Hとしたとき,段差 Dは, D=HZ (k— 1)で表される。図 12 (7)に最終 的に形成される階段形状と,上記の P, L, D, Hを示す。
[0004] 図 12は各プロセスにおける工程断面図である。まず,第 1プロセスにおいて,図 12
(1)に示すように,基板 1上にレジスト 2を塗布する。次に,図 12 (2)に示すマスク 11 を用いて露光,現像を行い,図 12 (2)に示すレジストパターン 71を形成する。マスク 11は,格子ピッチ Pの中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパ ターン幅はそれぞれ 4Lである。次に,レジストパターン 71を用いて深さ 4Dまでエツ チングを行い,図 12 (3)に示す溝形状を形成する。次に,レジストパターン 71を除去 する。 [0005] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 12 (4)に示すマスク 12を用いて露光,現像を行い ,図 12 (4)に示すレジストパターン 72を形成する。マスク 12は,格子ピッチ Pの中に 2 つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 2Lである 。次に,レジストパターン 72を用いて深さ 2Dまでエッチングを行い,図 12 (5)に示す 溝形状を形成する。次に,レジストパターン 72を除去する。
[0006] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 12 (6)に示すマスク 13を用いて露光,現像を行い ,図 12 (6)に示すレジストパターン 73を形成する。マスク 13は,格子ピッチ Pの中に 4 つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ Lである 。次に,レジストパターン 73を用いて深さ Dまでエッチングを行い,図 12 (7)に示す 溝形状を形成する。そして,レジストパターン 73を除去することにより, 8段の階段形 状を有する回折光学素子を得る。
[0007] また, 7段の階段状の回折光学素子を, 3枚のマスクを用いて同様なプロセスを繰り 返して製造する方法として,下記特許文献 1に記載されているものがある。この製造 工程を図 13を参照しながら説明する。下記説明で用いられる, P, L, Dの定義は前 述のものと同様であり, k= 7の場合として考えられる。
[0008] 図 13は各プロセスにおける工程断面図である。まず,第 1プロセスにおいて,図 13
(1)に示すように,基板 1上にレジスト 2を塗布する。次に,図 13 (2)に示すマスク 21 を用いて露光,現像を行い,図 13 (2)に示すレジストパターン 81を形成する。マスク 21は,格子ピッチ Pの中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパ ターン幅はそれぞれ 3L, 4Lである。次に,レジストパターン 81を用いてエッチングを 行い,図 13 (3)に示す溝形状を形成する。この第 1プロセスでのエッチング深さ Dc は 4Dである。次に,レジストパターン 81を除去する。
[0009] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 13 (4)に示すマスク 22を用いて露光,現像を行い ,図 13 (4)に示すレジストパターン 82を形成する。マスク 22は,格子ピッチ Pの中に 2 つずつの遮光部と開口部を有し, 2つの遮光部のパターン幅は上段側,下段側がそ れぞれ L, 2Lであり, 2つの開口部のパターン幅は共に 2Lである。次に,レジストパタ ーン 82を用いてエッチングを行い,図 13 (5)に示す溝形状を形成する。この第 2プロ セスでのエッチング深さ Dcは 2Dである。次に,レジストパターン 82を除去する。
2
[0010] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 13 (6)に示すマスク 23を用いて露光,現像を行い ,図 13 (6)に示すレジストパターン 83を形成する。マスク 23は,格子ピッチ Pの中に 3 つの遮光部と 4つの開口部を有し,遮光部と開口部のパターン幅は全て Lである。次 に,レジストパターン 83を用いてエッチングを行い,図 13 (7)に示す溝形状を形成す る。この第 3プロセスでのエッチング深さ Dcは Dである。そして,レジストパターン 83
3
を除去することにより, 7段の階段形状を有する回折光学素子を得る。
[0011] 非特許文献 1 :佐々木浩紀,他 6名, 「光源とシリコンマイクロレンズの高精度実装技 術」,エレクトロニクス実装学会誌, 2002年, Vol5, No. 5, p. 466—472 特許文献 1:特開平 11― 14813号公報
発明の開示
発明が解決しょうとする課題
[0012] 上記に示す従来の階段状回折光学素子の製造方法では,工程が進むにつれて, マスクのパターン幅が細くなつている。そのため,格子ピッチ Pの中に含まれる遮光部 と開口部の数が増え,遮光部と開口部との境界も増えている。また,基板は,工程が 進むにつれ,段数が増加している。図 14 (1)は図 12に示す第 3プロセスの露光時の 工程断面図である。図 14 (1)では,レジスト 2のうち,遮光される部分と露光される部 分を区別するため,方向の異なる斜線で表している。図 14 (1)に示すように,マスク 1 3を用いる第 3プロセスでは,格子ピッチ Pにおいて 4つの露光部 31, 32, 33, 34が あり,遮光部と開口部との境界は 7箇所ある。各露光部は段が異なり,そのため塗布 されたレジスト厚も異なる。図 14 (2)は,図 14 (1)に示すものを露光,現像して得られ たレジストパターン 73の一例である。遮光部との境界に注目すると,形成されたレジ ストパターン 73は,マスクパターンどおりの形状となっていない。というのは,基板上 に塗布されるレジスト厚は各段によって異なるため, 4つの露光部の最適露光条件は それぞれ異なるからである。最適露光時間を超過した露光部 31では,隣接した遮光 部のレジスト 2が余分に除去され,そのパターン幅は設計値より広くなる。最適露光時 間が不足した露光部 33, 34では,レジストが残留することになり,そのパターン幅は 設計値より狭くなる。図 14 (3)は,図 14 (2)のレジストパターン 73を用いてエッチング を行い,レジストパターン 73を除去した後の断面図である。図 14 (3)では,設計値の 形状を点線,実際に形成された形状を実線で表している。図 14 (3)に示すように,露 光部 31に相当する箇所では,設計値と比較して幅が広くなつた段 41が生じている。 また,露光部 33, 34に相当する箇所では,階段形状のエッジ部に突起 43が発生し ,設計値と比較して幅が狭くなつた段 44が生じている。このように,従来の製造方法 では,設計値と異なった寸法の階段形状が形成されたり,エッジ部に突起が発生した りすることがあり,そのために回折効率の低下を招くという問題があった。
[0013] そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは ,階段形状を有する回折光学素子を高精度に製造可能な,新規かつ改良された回 折光学素子の製造方法を提供することにある。
課題を解決するための手段
[0014] 上記課題を解決するために,本発明のある観点によれば,レジストパターンを用い たエッチングにより基板を表面カ卩ェするプロセスを複数回繰り返して,周期的な k(k は 2以上の自然数)段の階段形状を有する回折光学素子を製造する回折光学素子 の製造方法であって, 1回目のプロセスでは, 1周期の領域におけるエッチング部の 数と非エッチング部の数は, kが偶数の場合はともに kZ2であり, kが奇数の場合は それぞれ (k 1)Z2と (k+ l)Z2であり, 2回目以降のプロセスでは, 1周期の領域 におけるエッチング部の数と非エッチング部の数はそれぞれ, 1回目のプロセスのも のより少ないことを特徴とする回折光学素子の製造方法が提供される。ここで, 1周期 の領域とは,階段形状を構成するための領域であり,階段形状の構成に関与しない 領域は含まない。エッチング部とは,エッチング工程においてエッチングされる部分 であり,非エッチング部とは,エッチング工程においてエッチングされない部分である 。形成される階段の段に関係なく, 1周期の領域内の連続したエッチング部を 1つの エッチング部として数え, 1周期の領域内の連続した非エッチング部を 1つの非エツ チング部として数える。レジストパターンとは,レジスト除去部とレジスト残留部力もなる パターンである。このレジストパターンを基板表面に形成してエッチングを行うと,レジ スト除去部はエッチングされ,レジスト残留部はエッチングされず,所定のレジストパタ ーンを用いることにより,所望の領域をエッチングすることができる。このことから,エツ チング部と非エッチング部の数はそのままレジスト除去部とレジスト残留部の数に相 当する。一般に,後工程になるほど,段ごとのレジスト厚の差が生じ,レジストパターン 形状に誤差が発生しやすくなる。誤差はレジスト除去部とレジスト残留部の境界で生 じる。本発明の構成によれば, 1周期の領域内のエッチング部と非エッチング部の数 は 1回目のプロセスで最も多く,後のプロセスではそれより減少する。 1周期の領域内 のレジスト除去部とレジスト残留部の数も 1回目のプロセスで最も多く,後のプロセス ではそれより減少する。レジスト除去部とレジスト残留部の境界の数は, 1回目のプロ セスで最も多く,後のプロセスではそれより減少する。よって,本発明の構成によれば ,段ごとのレジスト厚の差が顕著になる後工程で,誤差の発生しやすい部分である境 界の数を減らすことができる。したがって,誤差を少なくでき,階段形状を有する回折 光学素子を高精度に製造することができる。
[0015] 上記製造方法にお!、て, 2回目以降のプロセスでは, 1周期の領域におけるエッチ ング部の数と非エッチング部の数は共に 1つであるように構成することが好ましい。か 力る構成によれば,段数が増える 2回目以降のプロセスで,レジスト除去部とレジスト 残留部の境界は 1つになる。よって,上記のレジストパターンの誤差を考慮する箇所 は 1箇所のみとなり,この箇所で誤差が生じな 、よう露光条件を決めれば 、 、ため, 最適な条件を容易に決定することができる。
[0016] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して,周期的な階段形状を有する回折光学 素子を製造する回折光学素子の製造方法であって, 1回目のプロセスでは, 1周期 の領域におけるエッチング部のパターン幅は,階段の最小の幅と略同一であることを 特徴とする回折光学素子の製造方法が提供される。ここで,階段の最小の幅とは,最 終的に形成される階段の各段の幅が異なる場合は,最小の幅を有する段の幅であり ,最終的に形成される階段の各段の幅が全て同じ場合は, 1つの段の幅となる。一般 に,後工程に進むにつれて,段差が増し,段ごとのレジスト厚の差が増すため,後ェ 程で最小パターン幅を高精度に形成するのは難しい。本発明の構成によれば, 1回 目のプロセスで最小パターン幅となる部分をエッチングカ卩ェする。 1回目のプロセス では平坦な基板上にレジストが塗布されており,レジスト厚は均一であるから,この状 態で高精度に最小パターン幅を形成するのは容易である。
[0017] 本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板を表 面加工するプロセスを複数回繰り返して, 7段の階段形状を有する回折光学素子を 製造する回折光学素子の製造方法であって, 2, 4, 6段目となる部分を階段の段差 である第 1の深さでエッチングする第 1工程と,最下段となる部分を第 1の深さの 2倍 の深さでエッチングする第 2工程と, 5, 6, 7段目となる部分を第 1の深さの 2倍の深さ でエッチングする第 3工程と, 3, 4, 5, 6, 7段目となる部分を第 1の深さの 2倍の深さ でエッチングする第 4工程と,を含むことを特徴とする回折光学素子の製造方法が提 供される。なお,最上段を 1段目とし,下段にいくに従い 2段目, 3段目としている。か 力る構成によれば,第 1工程で最小のパターン幅を用い,以降の工程では,工程が 進むにつれてより大きなパターン幅を用いることができる。段差が増加し,段ごとのレ ジスト厚の差が顕著になる後工程ほど,大きなパターン幅を採用しているため,レジ ストパターン形状に誤差が発生しにくい。よって,高精度に階段形状を有する回折光 学素子を製造することができる。
[0018] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 9段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって, 2, 4, 6, 8段目となる部分を階段 の段差である第 1の深さでエッチングする第 1工程と,最下段となる部分を第 1の深さ の 2倍の深さでエッチングする第 2工程と, 3, 4, 7, 8, 9段目となる部分を第 1の深さ の 2倍の深さでエッチングする第 3工程と, 5, 6, 7, 8, 9段目となる部分を第 1の深さ の 4倍の深さでエッチングする第 4工程と,を含むことを特徴とする回折光学素子の 製造方法が提供される。
[0019] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 8段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって, 2, 4, 6, 8段目となる部分を階段 の段差である第 1の深さでエッチングする第 1工程と, 7, 8段目となる部分を第 1の深 さの 2倍の深さでエッチングする第 2工程と, 5, 6, 7, 8段目となる部分を第 1の深さ の 2倍の深さでエッチングする第 3工程と, 3, 4, 5, 6, 7, 8段目となる部分を第 1の 深さの 2倍の深さでエッチングする第 4工程と,を含むことを特徴とする回折光学素子 の製造方法が提供される。
[0020] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 5段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって, 2, 4段目となる部分を階段の段差 である第 1の深さでエッチングする第 1工程と,最下段となる部分を第 1の深さの 2倍 の深さでエッチングする第 2工程と, 3, 4, 5段目となる部分を第 1の深さの 2倍の深さ でエッチングする第 3工程と,を含むことを特徴とする回折光学素子の製造方法が提 供される。
[0021] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 7段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって,最下段となる部分を階段の段差 の 2倍である第 1の深さでエッチングする第 1工程と, 2, 4, 6段目となる部分を階段 の段差である第 2の深さでエッチングする第 2工程と, 5, 6, 7段目となる部分を第 1 の深さでエッチングする第 3工程と, 3, 4, 5, 6, 7段目となる部分を第 1の深さでエツ チングする第 4工程と,を含むことを特徴とする回折光学素子の製造方法が提供され る。
[0022] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 9段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって,最下段となる部分を階段の段差 の 2倍である第 1の深さでエッチングする第 1工程と, 2, 4, 6, 8段目となる部分を階 段の段差である第 2の深さでエッチングする第 2工程と, 3, 4, 7, 8, 9段目となる部 分を第 1の深さでエッチングする第 3工程と, 5, 6, 7, 8, 9段目となる部分を第 1の深 さの 2倍の深さでエッチングする第 4工程と,を含むことを特徴とする回折光学素子の 製造方法が提供される。 [0023] また,本発明の別の観点によれば,レジストパターンを用いたエッチングにより基板 を表面加工するプロセスを複数回繰り返して, 5段の階段形状を有する回折光学素 子を製造する回折光学素子の製造方法であって,最下段となる部分を階段の段差 の 2倍である第 1の深さでエッチングする第 1工程と, 2, 4段目となる部分を階段の段 差である第 2の深さでエッチングする第 2工程と, 3, 4, 5段目となる部分を第 1の深さ でエッチングする第 3工程と,を含むことを特徴とする回折光学素子の製造方法が提 供される。
[0024] 上記記載の全ての製造方法において,エッチングは異方性エッチングであることが 好ましい。なお,基板としてシリコン,石英, GaAs, InPのいずれかを用いるようにし てもよい。
発明の効果
[0025] 以上のように本発明の回折光学素子の製造方法によれば,階段形状を有する回折 光学素子を高精度に製造することができ,これにより,回折効率の向上を図ることが できる。
図面の簡単な説明
[0026] [図 1]回折光学素子の例を示す模式図である。
[図 2]回折光学素子の例を示す模式図である。
[図 3]本発明の第 1の実施の形態に力かる回折光学素子の製造方法の工程断面図 である。
[図 4]図 1に続く工程を示す工程断面図である。
[図 5]製造された回折光学素子の製造方法の判別法を説明するための図である。
[図 6]本発明の第 2の実施の形態に力かる回折光学素子の製造方法の工程断面図 である。
[図 7]本発明の第 3の実施の形態に力かる回折光学素子の製造方法の工程断面図 である。
[図 8]本発明の第 4の実施の形態に力かる回折光学素子の製造方法の工程断面図 である。
[図 9]本発明の第 5の実施の形態に力かる回折光学素子の製造方法の工程断面図 である。
[図 10]図 9に続く工程を示す工程断面図である。
[図 11]本発明の変形例に力かる回折光学素子の製造方法の工程断面図である。
[図 12]従来の回折光学素子の製造方法の工程断面図である。
[図 13]従来の回折光学素子の製造方法の工程断面図である。
[図 14]従来の回折光学素子の製造方法の問題点を説明するための図である。
符号の説明
[0027] 1 基板
2 レジスト
11, 12, 13, 14 マスク
101, 102, 103, 104 マスク
発明を実施するための最良の形態
[0028] 以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説 明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構 成要素については,同一の符号を付することにより重複説明を省略する。
[0029] 本発明の実施の形態にかかる回折光学素子の製造方法では,半導体の微細加工 技術を利用した一連のプロセスを繰り返すことにより,周期的な階段形状を有する回 折光学素子を製造する。一連のプロセスとは,基板にレジスト塗布し,所定のパター ンが形成されたマスクを用いてこの基板を露光および現像して,レジスト除去部とレジ スト残留部力 なるレジストパターンを形成し,このレジストパターンを用いてエツチン グするというものである。
[0030] なお,回折光学素子には様々な種類があるが,そのうち 2つの例の模式図をそれぞ れ図 1および図 2に示す。図 1は,回折格子が直線状に一定の格子ピッチで配列され た回折光学素子を示す。図 1 (a)は,その回折光学素子の平面図であり,回折格子 の配列状態を直線で示す。図 1 (b)は,図 1 (a)の回折光学素子を紙面に垂直な面 で切断した場合の断面の部分拡大図である。図 1 (b)では,各段の幅が等しい周期 的な階段形状の構成が示されている。以下では,図 1に示す例をリニアグレーティン グ型の回折光学素子と呼ぶ。図 2は,回折格子が円環状に配列され,その格子ピッ チは円の中心から外側にいくに従い小さくなる回折光学素子を示す。図 2 (a)は,そ の回折光学素子の平面図であり,回折格子の配列状態を円周で示している。図 2 (b )は,図 2 (a)に示す回折光学素子を,円の中心を通り紙面に垂直な面で切断した断 面図である。図 2 (c)は,図 2 (b)の部分拡大図である。図 2 (b)は,平凸レンズを光軸 方向に関して一定の厚さに輪切りにし,その表面形状を保ったまま位相変化が面内 で一定となる領域をだるま落とし的に除去させた形状を示す。図 2 (c)の点線は,図 2 (b)で表された曲面を示し,図 2 (c)では,この曲面を近似した周期的な階段形状の 構成が示されている。以下では,図 2に示す例をフレネルレンズ型の回折光学素子と 呼ぶ。以下では,リニアグレーティング型の回折光学素子の製法例を第 1〜第 4の実 施の形態により説明し,フレネルレンズ型の回折光学素子の製法例を第 5の実施の 形態により説明する。
[0031] 以下の第 1〜第 4の実施の形態の説明では,階段形状が形成される周期の幅を P, 最終プロセスで形成される階段の幅を L,段差を Dとする。周期の幅 Pとは,いわゆる 格子ピッチ Pのことであり,図では一点鎖線でその領域を示す。階段の幅は全て等し いものとし, L=PZkとする。ここで, kは段数であり,例えば 8段の階段形状の場合 は k=8である。また,階段全体の高さを Hとしたとき,段差 Dは, D=HZ (k— 1)で 表される。また,階段の最上段を 1段目として,それから下段にいくに従い 2段目, 3 段目,…と呼んでいる。なお,図で描かれている基板の厚みは必ずしも正確ではない 。また,理解を助けるために,エッチング工程を示す図では,エッチングにより溝を形 成した領域を矢印で示している。以下の説明では,エッチング部および非エッチング 部を数えるとき,格子ピッチ P内の連続した領域を 1つとして数えている。例えば,エツ チング部または非エッチング部が階段の複数の段にわたる領域となっていても,隣接 する複数の段にわたるものであり,連続した領域となっていれば, 1つのエッチング部 または 1つの非エッチング部と数える。ここで一例を挙げれば,後述するように,図 3 ( 9)に示す工程では, 1段目から 6段目までが連続してエッチングされな 、領域となつ ており,この領域を 1つの非エッチング部とみなす。
[0032] 本発明の第 1の実施の形態に力かる回折光学素子の製造方法について,図 3,図 4を参照しながら説明する。図 3は本発明の第 1の実施の形態に力かる回折光学素 子の製造方法の工程を示す断面図であり,図 4は,図 3に続く工程を示す断面図で ある。本実施の形態では,周期的に形成された 7段の階段形状を有する, 7位相階段 状回折光学素子を製造する方法について述べる。図 4 ( 10)に最終的に得られる 7段 の階段形状と,上記の P, L, D, Hを示す。以下の工程では全て,基板としてシリコン を使用し,エッチング工程では,反応性イオンエッチング装置 (RIE装置)を用い,ェ ツチングガスとして SFを使用して異方性のドライエッチングを行った。また,フォトリソ
6
グラフィー工程では, i線ステツパおよび標準的なポジ型レジストを用いた。
[0033] 図 3 ( 1)〜図 3 (5)は第 1プロセスにおける断面図である。まず,図 3 ( 1)に示すよう に,基板 1上にレジスト 2を塗布する。次に,図 3 (2)に示すように,マスク 101を用い て露光する。マスク 101は,格子ピッチ Pの中に 4つの遮光部と 3つの開口部を有し, 遮光部と開口部のパターン幅はそれぞれ Lである。次に,現像を行い,図 3 (3)に示 すレジストパターン 121を形成する。レジストパターン 121のレジスト残留部とレジスト 除去部のパターン幅もそれぞれ Lとなる。次に,レジストパターン 121を用いてエッチ ングを行い,図 3 (4)で示す溝形状を形成する。この第 1プロセスでのエッチング深さ DDは Dである。すなわち, 2, 4, 6段目となる領域を深さ Dエッチングする。 1 , 3, 5, 7段目はエッチングされない。このように,格子ピッチ Pの中に 4つの非エッチング部と 3つのエッチング部がある。次に,レジストパターン 121を除去して,図 3 (5)に示す溝 形状を形成する。このようにして,第 1プロセスで,幅 Lの溝力もなる凹凸の周期構造 を形成する。
[0034] 次に第 2プロセスに移行する。図 3 (6)〜図 3 ( 10)は第 2プロセスにおける断面図で ある。まず,図 3 (6)に示すように,第 1プロセスで形成された溝形状を有する基板上 にレジスト 2を塗布する。次に,図 3 (7)に示すように,マスク 102を用いて露光する。 マスク 102は,格子ピッチ Pの中に 1つずつの遮光部と開口部を有し,遮光部と開口 部のパターン幅はそれぞれ 6L, Lである。次に,現像を行い,図 3 (8)に示すレジスト パターン 122を形成する。レジストパターン 122のレジスト残留部とレジスト除去部の パターン幅もそれぞれ 6L, Lとなる。次に,レジストパターン 122を用いてエッチング を行い,図 3 (9)に示す溝形状を形成する。この第 2プロセスでのエッチング深さ Dp
2 は 2Dである。すなわち, 7段目となる領域を深さ 2Dエッチングする。 1〜6段目はエツ チングされない。このように,格子ピッチ Pの中に 1つの非エッチング部と 1つのエッチ ング部がある。次に,レジストパターン 122を除去して,図 3 (10)に示す溝形状を形 成する。
[0035] 次に第 3プロセスに移行する。図 4 (1)〜図 4 (5)は第 3プロセスにおける断面図で ある。まず,図 4 (1)に示すように,第 2プロセスで形成された溝形状を有する基板上 にレジスト 2を塗布する。次に,図 4 (2)に示すように,マスク 103を用いて露光する。 マスク 103は,格子ピッチ Pの中に 1つずつの遮光部と開口部を有し,遮光部と開口 部のパターン幅はそれぞれ 4L, 3Lである。次に,現像を行い,図 4 (3)に示すレジス トパターン 123を形成する。レジストパターン 123のレジスト残留部とレジスト除去部の パターン幅もそれぞれ 4L, 3Lとなる。次に,レジストパターン 123を用いてエッチング を行い,図 4 (4)に示す溝形状を形成する。この第 3プロセスでのエッチング深さ Dp
3 は 2Dである。すなわち, 5〜7段目となる領域を深さ 2Dエッチングする。 1〜4段目は エッチングされない。このように,格子ピッチ Pの中に 1つの非エッチング部と 1つのェ ツチング部がある。次に,レジストパターン 123を除去して,図 4 (5)に示す溝形状を 形成する。
[0036] 次に第 4プロセスに移行する。図 4 (6)〜図 4 (10)は第 4プロセスにおける断面図で ある。まず,図 4 (6)に示すように,第 3プロセスで形成された溝形状を有する基板上 にレジスト 2を塗布する。次に,図 4 (7)に示すように,マスク 104を用いて露光する。 マスク 104は,格子ピッチ Pの中に 1つずつの遮光部と開口部を有し,遮光部と開口 部のパターン幅はそれぞれ 2L, 5Lである。次に,現像を行い,図 4 (8)に示すレジス トパターン 124を形成する。レジストパターン 124のレジスト残留部とレジスト除去部の パターン幅もそれぞれ 2L, 5Lとなる。次に,レジストパターン 124を用いてエッチング を行い,図 4 (9)に示す溝形状を形成する。この第 4プロセスでのエッチング深さ Dp
4 は 2Dである。すなわち, 3〜7段目となる領域を深さ 2Dエッチングする。 1, 2段目は エッチングされない。このように,格子ピッチ Pの中に 1つの非エッチング部と 1つのェ ツチング部がある。そして,レジストパターン 124を除去することにより,図 4 (10)に示 すような, 7段の階段形状を有する回折光学素子を得る。
[0037] 以上のように,本実施の形態の製造方法では,マスクの開口部のパターン幅は,第 1,第 2,第 3,第 4プロセスでそれぞれ L, L, 3L, 5Lであり,後工程のパターン幅は 前工程のパターン幅以上になっている。第 2プロセス以降では,工程が進むにつれ パターン幅が大きくなつている。また, 03 (7) , 04 (2) ,図 4 (7)に示すように,第 2, 第 3,第 4プロセスでは格子ピッチ P内の遮光部と開口部との境界は 1箇所である。第
2,第 3,第 4プロセスの露光時には,この境界部分の形状が設計値通りになるように 露光条件を決めることになるが,境界部分が 1箇所のみであるため,この箇所の誤差 を最小にするように最適露光条件を設定すればよい。よって,最適露光条件を一つ に固定することができ,高精度に所望の溝形状を形成できる。なお,第 1プロセスで は遮光部と開口部との境界は複数箇所あるが,レジスト厚は全て同一であるため,何 ら問題なく公知の方法で高精度に溝を形成できる。
[0038] 図 14に示すような従来の方法では,格子ピッチ P内の遮光部と開口部との境界は 複数箇所あり,且つレジスト深さが異なっていたため,全ての箇所を最適にする露光 条件を設定することは困難であった。そのため,従来の方法では,露光時間の過不 足により,突起の発生や寸法誤差が生じていたが,本実施の形態では,このような問 題を解決することができる。よって,本実施の形態によれば,回折光学素子を構成す る階段形状を高精度に製造することができる。これにより,回折効率の向上を図ること ができる。
[0039] 実際に,格子ピッチ 3. 5 m,段の幅 0. 5 μ mの 7段の回折光学素子を本実施の 形態の方法に従って製造した。製造された回折光学素子では,段差のエッジ部に突 起は発生せず,またその段の幅は 0. となり,その誤差は約 6%であり,精密な 回折光学素子を製造することができた。
[0040] なお,本発明の実施の形態に力かる 7位相階段状回折光学素子の製造方法につ いて上述したが,既製の 7位相階段状回折光学素子が本発明を用いて製造されたも のかどうかを判別することが可能である。図 5 (a) ,図 5 (b)を参照しながら, 2つの判 別方法について述べる。図 5 (a)は上記の本実施の形態の製造方法を用いて,基板 上に製造した 7位相階段状回折光学素子の段差形状と,製造に使用するマスク 101 , 102, 103, 104のパターンの相対的な位置関係を示す。図 5 (b)は特許文献 1に 記載の方法で製造した従来の 7位相階段状回折光学素子の段差形状と,製造に使 用するマスク 21, 22, 23のパターンの相対的な位置関係を示す。回折の法則から, 回折光の波長えと基板の屈折率 nを用いて, Hは下記式(1)のように表すことができ ,また, 7位相階段状回折光学素子の場合, Dは下記式 (2)のように表すことができる
[0041] [数 1]
Figure imgf000016_0001
[数 2]
Figure imgf000016_0002
[0042] 図 5 (a)に示すように,本発明の第 1の実施の形態の方法で製造した回折光学素子 では,基板表面と階段の最も高い部分とがー致している。そして,基板表面 Sから階 段の最も低 、部分までの高低差 Haは,下記式(3)のように表すことができる。
[0043] [数 3]
Figure imgf000016_0003
[0044] 一方,図 5 (b)に示すように,特許文献 1の方法で製造した回折光学素子では,基 板表面 Sと階段の最も高い部分とは一致していない。そして,基板表面から階段の最 も低い部分までの高低差 Hbは,回折光の波長えと基板の屈折率 nを用いて,下記 式 (4)のように表すことができる。
[0045] [数 4]
Figure imgf000016_0004
よって,回折光学素子と基板表面の高低差を測定し,式 (3) ,式 (4)を参照すること により, 7位相回折光学素子がいずれの製造方法で製造されたかを知ることができる 。これが 1つ目の判別方法である。
[0047] 次に 2つ目の判別方法について述べる。上述の各プロセスの説明では,マスクパタ ーン 101, 102, 103, 104を用いて基板をエッチングする際,そのエッチング深さを 段差 Dを用いて表した。しかし厳密に言えば,実際のエッチング深さは諸条件により 微小の誤差を含み,エッチング工程ごとに異なる。本実施の形態の製造方法によつ て製造された回折光学素子の階段形状の各段の段差を図 5 (a)に示すように,最上 段の方力も順に Ha , Ha , · ··, Haとすると,下記のようになる。段差とは,その段と
1 2 6
その段に隣接する下段との高さの差である。
Ha =Dp
Ha =Dp Dp
2 4 1
Ha =Dp
3 1
Ha =Dp Dp
4 3 1
Ha =Dp
5 1
Ha =Dp Dp
6 2 1
上記より,
Ha =Ha =Ha =Dp
1 3 5 1
であることがわかる。つまり,階段の奇数段目の段差は全て DPiとなる。
[0048] 一方,従来の製造方法による 7位相階段状の回折光学素子の階段形状の各段の 段差を図 5 (b)に示すように最上段の方力 順に Hb , Hb , · ··, Hbとすると,下記
1 2 6
のようになる。
Hb =Dc -De
1 2 3
Hb =Dc
2 3
Hb =Dc 一 (Dc +Dc )
3 1 2 3
Hb =Dc
4 3
Hb =Dc Dc
5 2 3
Hb =Dc
6 3
上記より,
Hb =Hb =Hb =Dc であることがわかる。つまり,階段の偶数段目の段差は全て Dcとなる。よって, 7位相
3
階段状回折光学素子の各段の段差を測定し,上記関係式を参照することにより, 7位 相回折光学素子が 、ずれの製造方法で製造されたかを知ることができる。以上のよう に,製造された 7位相の階段状の回折光学素子において,その基板表面と格子の最 も低い段との高低差,または格子の各段差を測定することにより,製造された 7位相階 段状回折光学素子の制作方法に本発明の技術が使用されているかどうかを確認す ることが可能となる。
[0049] 次に,本発明の第 2の実施の形態に力かる回折光学素子の製造方法について,図 6を参照しながら説明する。図 6は本発明の第 2の実施の形態に力かる回折光学素 子の製造方法の工程を示す断面図である。本実施の形態では,周期的に形成され た 9段の階段形状を有する 9位相階段状回折光学素子を製造する方法について述 ベる。下記説明で用いられる, P, L, Dの定義は第 1の実施の形態のものと同様であ り, k= 9の場合として考えられる。以下の工程では全て,基板としてシリコンを使用し ,エッチング工程では,反応性イオンエッチング装置 (RIE装置)を用い,エッチング ガスとして SFを使用して異方性のドライエッチングを行った。また,フォトリソグラフィ
6
一工程では, i線ステツパおよび標準的なポジ型レジストを用いた。
[0050] 第 1プロセスでは,まず,第 1の実施の形態の図 3 (1)に示す工程と同様に,基板 1 上にレジストを塗布する。次に,図 6 (1)に示すマスク 201を用いて露光,現像を行い ,図 6 (1)に示すレジストパターン 221を形成する。マスク 201は,格子ピッチ Pの中に 5つの遮光部と 4つの開口部を有し,遮光部と開口部のパターン幅はそれぞれ Lであ る。レジストパターン 221のレジスト残留部とレジスト除去部のパターン幅もそれぞれ L となる。次に,レジストパターン 221を用いてエッチングを行い,図 6 (2)に示す溝形 状を形成する。すなわち, 2, 4, 6, 8段目となる領域を深さ Dエッチングする。 1, 3, 5, 7, 9段目はエッチングされない。このように,格子ピッチ Pの中に 5つの非エツチン グ部と 4つのエッチング部がある。次に,レジストパターン 221を除去する。このように して,第 1プロセスで,幅 Lの溝力もなる凹凸の周期構造を形成する。
[0051] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 6 (3)に示すように,マスク 202を用いて露光,現像 を行い,図 6 (3)に示すレジストパターン 222を形成する。マスク 202は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 8L, Lである。レジストパターン 222のレジスト残留部とレジスト除去部のパターン幅も それぞれ 8L, Lとなる。次に,レジストパターン 222を用いてエッチングを行い,図 6 ( 4)に示す溝形状を形成する。すなわち, 9段目となる領域を深さ 2Dエッチングする。 1〜8段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非エッチング 部と 1つのエッチング部がある。次に,レジストパターン 222を除去する。
[0052] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 6 (5)に示すように,マスク 203を用いて露光,現像 を行い,図 6 (5)に示すレジストパターン 223を形成する。マスク 203は,格子ピッチ P の中に 2つずつの遮光部と開口部を有し, 2つの遮光部のパターン幅は共に 2Lであ り, 2つの開口部のパターン幅は上段側,下段側がそれぞれ 2L, 3Lである。レジスト パターン 223のレジスト残留部のパターン幅は 2Lとなり,レジスト除去部のパターン 幅は上段側,下段側がそれぞれ 2L, 3Lとなる。次に,レジストパターン 223を用いて エッチングを行い,図 6 (6)に示す溝形状を形成する。すなわち, 3, 4, 7〜9段目と なる領域を深さ 2Dエッチングする。 1, 2, 5, 6段目はエッチングされない。このように ,格子ピッチ Pの中に 2つの非エッチング部と 2つのエッチング部がある。次に,レジス トパターン 223を除去する。
[0053] 次に第 4プロセスに移行する。まず,第 3プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 6 (7)に示すように,マスク 204を用いて露光,現像 を行い,図 6 (7)に示すレジストパターン 224を形成する。マスク 204は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 4L, 5Lである。レジストパターン 224のレジスト残留部とレジスト除去部のパターン幅 もそれぞれ 4L, 5Lとなる。次〖こ,レジストパターン 224を用いてエッチングを行い,図 6 (8)に示す溝形状を形成する。すなわち, 5〜9段目となる領域を深さ 4Dエツチン グする。 1〜4段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非ェ ツチング部と 1つのエッチング部がある。次に,レジストパターン 224を除去することに より, 9段の階段形状を有する回折光学素子を得る。 [0054] 本実施の形態の場合も,第 1の実施の形態と同様に,回折光学素子を構成する階 段形状を高精度に製造することができ,回折効率の向上を図ることができる。実際に ,格子ピッチ 4. 5 m,段の幅 0. 5 mの 9段の回折光学素子を本実施の形態の方 法に従って製造した。製造された回折光学素子では,段差のエッジ部に突起は発生 せず,またその段の幅は 0. 48 /z mとなり,その誤差は約 4%であり,精密な回折光 学素子を製造することができた。
[0055] 次に,本発明の第 3の実施の形態に力かる回折光学素子の製造方法について,図 7を参照しながら説明する。図 7は本発明の第 3の実施の形態に力かる回折光学素 子の製造方法の工程を示す断面図である。本実施の形態では,周期的に形成され た 8段の階段形状を有する 8位相階段状回折光学素子を製造する方法について述 ベる。下記説明で用いられる, P, L, Dの定義は第 1の実施の形態のものと同様であ り, k= 8の場合として考えられる。以下の工程では全て,基板としてシリコンを使用し ,エッチング工程では,反応性イオンエッチング装置 (RIE装置)を用い,エッチング ガスとして SFを使用して異方性のドライエッチングを行った。また,フォトリソグラフィ
6
一工程では, i線ステツパおよび標準的なポジ型レジストを用いた。
[0056] 第 1プロセスでは,まず,第 1の実施の形態の図 3 (1)に示す工程と同様に,基板 1 上にレジストを塗布する。次に,図 7 (1)に示すマスク 301を用いて露光,現像を行い ,図 7 (1)に示すレジストパターン 321を形成する。マスク 301は,格子ピッチ Pの中に 4つの遮光部と 4つの開口部を有し,遮光部と開口部のパターン幅はそれぞれ Lであ る。レジストパターン 321のレジスト残留部とレジスト除去部のパターン幅もそれぞれ L となる。次に,レジストパターン 321を用いてエッチングを行い,図 7 (2)に示す溝形 状を形成する。すなわち, 2, 4, 6, 8段目となる領域を深さ Dエッチングする。 1, 3, 5, 7段目はエッチングされない。このように,格子ピッチ Pの中に 4つの非エッチング 部と 4つのエッチング部がある。次に,レジストパターン 321を除去する。このようにし て,第 1プロセスで,幅 Lの溝力もなる凹凸の周期構造を形成する。
[0057] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 7 (3)に示すように,マスク 302を用いて露光,現像 を行い,図 7 (3)に示すレジストパターン 322を形成する。マスク 302は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 6L, 2Lである。レジストパターン 322のレジスト残留部とレジスト除去部のパターン幅 もそれぞれ 6L, 2Lとなる。次に,レジストパターン 322を用いてエッチングを行い,図 7 (4)に示す溝形状を形成する。すなわち, 7, 8段目となる領域を深さ 2Dエッチング する。 1〜6段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非エツ チング部と 1つのエッチング部がある。次に,レジストパターン 322を除去する。
[0058] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 7 (5)に示すように,マスク 303を用いて露光,現像 を行い,図 7 (5)に示すレジストパターン 323を形成する。マスク 303は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅は共に 4Lで ある。レジストパターン 323のレジスト残留部とレジスト除去部のパターン幅も共に 4L となる。次に,レジストパターン 323を用いてエッチングを行い,図 7 (6)に示す溝形 状を形成する。すなわち, 5〜8段目となる領域を深さ 2Dエッチングする。 1〜4段目 はエッチングされない。このように,格子ピッチ Pの中に 1つの非エッチング部と 1つの エッチング部がある。次に,レジストパターン 323を除去する。
[0059] 次に第 4プロセスに移行する。まず,第 3プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 7 (7)に示すように,マスク 304を用いて露光,現像 を行い,図 7 (7)に示すレジストパターン 324を形成する。マスク 304は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 2L, 6Lである。レジストパターン 324のレジスト残留部とレジスト除去部のパターン幅 もそれぞれ 2L, 6Lとなる。次に,レジストパターン 324を用いてエッチングを行い,図 7 (8)に示す溝形状を形成する。すなわち, 3〜8段目となる領域を深さ 2Dエツチン グする。 1, 2段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非エツ チング部と 1つのエッチング部がある。次に,レジストパターン 324を除去することによ り, 8段の階段形状を有する回折光学素子を得る。
[0060] 本実施の形態の場合も,第 1の実施の形態と同様に,回折光学素子を構成する階 段形状を高精度に製造することができ,回折効率の向上を図ることができる。実際に ,格子ピッチ 4. O ^ m,段の幅 0. 5 mの 8段の回折光学素子を本実施の形態の方 法に従って製造した。製造された回折光学素子では,段差のエッジ部に突起は発生 せず,またその段の幅は 0. 47 mとなり,その誤差は約 6%であり,精密な回折光 学素子を製造することができた。
[0061] 次に,本発明の第 4の実施の形態に力かる回折光学素子の製造方法について,図 8を参照しながら説明する。図 8は本発明の第 4の実施の形態に力かる回折光学素 子の製造方法の工程を示す断面図である。本実施の形態では,周期的に形成され た 5段の階段形状を有する 5位相階段状回折光学素子を製造する方法について述 ベる。下記説明で用いられる, P, L, Dの定義は第 1の実施の形態のものと同様であ り, k= 5の場合として考えられる。以下の工程では全て,基板としてシリコンを使用し ,エッチング工程では,反応性イオンエッチング装置 (RIE装置)を用い,エッチング ガスとして SFを使用して異方性のドライエッチングを行った。また,フォトリソグラフィ
6
一工程では, i線ステツパおよび標準的なポジ型レジストを用いた。
[0062] 第 1プロセスでは,まず,第 1の実施の形態の図 3 (1)に示す工程と同様に,基板 1 上にレジストを塗布する。次に,図 8 (1)に示すマスク 401を用いて露光,現像を行い ,図 8 (1)に示すレジストパターン 421を形成する。マスク 401は,格子ピッチ Pの中に 3つの遮光部と 2つの開口部を有し,遮光部と開口部のパターン幅はそれぞれ Lであ る。レジストパターン 421のレジスト残留部とレジスト除去部のパターン幅もそれぞれ L となる。次に,レジストパターン 421を用いてエッチングを行い,図 8 (2)に示す溝形 状を形成する。すなわち, 2, 4段目となる領域を深さ Dエッチングする。 1, 3, 5段目 はエッチングされない。このように,格子ピッチ Pの中に 3つの非エッチング部と 2つの エッチング部がある。次に,レジストパターン 421を除去する。このようにして,第 1プ ロセスで,幅 Lの溝力もなる凹凸の周期構造を形成する。
[0063] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 8 (3)に示すように,マスク 402を用いて露光,現像 を行い,図 8 (3)に示すレジストパターン 422を形成する。マスク 402は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 4L, Lである。レジストパターン 422のレジスト残留部とレジスト除去部のパターン幅も それぞれ 4L, Lとなる。次に,レジストパターン 422を用いてエッチングを行い,図 8 ( 4)に示す溝形状を形成する。すなわち, 5段目となる領域を深さ 2Dエッチングする。 1〜4段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非エッチング 部と 1つのエッチング部がある。次に,レジストパターン 422を除去する。
[0064] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 8 (5)に示すように,マスク 403を用いて露光,現像 を行い,図 8 (5)に示すレジストパターン 423を形成する。マスク 403は,格子ピッチ P の中に 1つずつの遮光部と開口部を有し,遮光部と開口部のパターン幅はそれぞれ 2L, 3Lである。レジストパターン 423のレジスト残留部とレジスト除去部のパターン幅 もそれぞれ 2L, 3Lとなる。次に,レジストパターン 423を用いてエッチングを行い,図 7 (6)に示す溝形状を形成する。すなわち, 3, 4, 5段目となる領域を深さ 2Dエッチ ングする。 1, 2段目はエッチングされない。このように,格子ピッチ Pの中に 1つの非 エッチング部と 1つのエッチング部がある。次に,レジストパターン 423を除去すること により, 5段の階段形状を有する回折光学素子を得る。本実施の形態の場合も,第 1 の実施の形態と同様に,回折光学素子を構成する階段形状を高精度に製造すること ができ,回折効率の向上を図ることができる。
[0065] 次に,フレネルレンズ型の回折光学素子の製法例について,第 5の実施の形態と 変形例を用いて説明する。まず,本発明の第 5の実施の形態に力かる回折光学素子 の製造方法について,図 9,図 10を参照しながら説明する。図 9は,本発明の第 5の 実施の形態に力かる回折光学素子の製造方法の工程を示す断面図であり,図 10は ,図 9に続く工程を示す断面図である。本実施の形態では,周期的に形成された 7段 の階段形状を有する,フレネルレンズ型の 7位相階段状回折光学素子を製造する方 法について述べる。図 10 (4)に最終的に得られる 7段の階段形状を示す。フレネル レンズ型の回折光学素子では,曲面を近似した階段形状を構成することになるため, 格子ピッチ内の階段の幅は一定ではなく,近似すべき曲面のカーブが急になるに従 い,階段の幅は徐々に狭くなる。本実施の形態は,第 1の実施の形態から階段の幅 を変更したものとして考えることができる。
[0066] 以下の第 5の実施の形態と変形例の説明では,階段形状が形成される周期の幅を P,段差を Dとする。周期の幅 Pとは,いわゆる格子ピッチ Pのことであり,図では一点 鎖線でその領域を示す。また,階段の最上段を 1段目として,それ力も下段にいくに 従い 2段目, 3段目,…と呼んでいる。なお,図で描かれている基板の厚みは必ずし も正確ではない。また,理解を助けるために,エッチング工程を示す図では,エツチン グにより溝を形成した領域を矢印で示して 、る。エッチング部および非エッチング部 の数え方は,第 1〜第 4の実施の形態と同様である。以下の工程では全て,基板とし てシリコンを使用し,エッチング工程では,反応性イオンエッチング装置 (RIE装置)を 用い,エッチングガスとして SFを使用して異方性のドライエッチングを行った。また,
6
フォトリソグラフィー工程では, i線ステツパおよび標準的なポジ型レジストを用いた。
[0067] 第 1プロセスでは,まず,第 1の実施の形態の図 3 (1)に示す工程と同様に,基板 1 上にレジストを塗布する。次に,図 9 (1)に示すマスク 501を用いて露光,現像を行い ,図 9 (1)に示すレジストパターン 521を形成する。マスク 501は,格子ピッチ Pの中に 4つの遮光部と 3つの開口部を有する。次に,レジストパターン 521を用いてエツチン グを行い,図 9 (2)に示す溝形状を形成する。すなわち, 2, 4, 6段目となる領域を深 さ Dエッチングする。 1, 3, 5, 7段目はエッチングされない。このように,格子ピッチ P の中に 4つの非エッチング部と 3つのエッチング部がある。次に,レジストパターン 52 1を除去する。このようにして,第 1プロセスで,凹凸の周期構造を形成する。
[0068] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 9 (3)に示すように,マスク 502を用いて露光,現像 を行い,図 9 (3)に示すレジストパターン 522を形成する。マスク 502は,格子ピッチ P の中に 1つずつの遮光部と開口部を有する。次に,レジストパターン 522を用いてェ ツチングを行い,図 9 (4)に示す溝形状を形成する。すなわち, 7段目となる領域を深 さ 2Dエッチングする。 1〜6段目はエッチングされない。このように,格子ピッチ Pの中 に 1つの非エッチング部と 1つのエッチング部がある。次に,レジストパターン 522を除 去する。
[0069] 次に第 3プロセスに移行する。まず,第 2プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 9 (5)に示すように,マスク 503を用いて露光,現像 を行い,図 9 (5)に示すレジストパターン 523を形成する。マスク 503は,格子ピッチ P の中に 1つずつの遮光部と開口部を有する。次に,レジストパターン 523を用いてェ ツチングを行い,図 10 (1)に示す溝形状を形成する。すなわち, 5〜7段目となる領 域を深さ 2Dエッチングする。 1〜4段目はエッチングされない。このように,格子ピッ チ Pの中に 1つの非エッチング部と 1つのエッチング部がある。次に,レジストパターン 523を除去する。
[0070] 次に第 4プロセスに移行する。まず,第 3プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 10 (2)に示すように,マスク 504を用いて露光,現 像を行い,図 10 (2)に示すレジストパターン 524を形成する。マスク 504は,格子ピッ チ Pの中に 1つずつの遮光部と開口部を有する。次に,レジストパターン 524を用い てエッチングを行い,図 10 (3)に示す溝形状を形成する。すなわち, 3〜7段目となる 領域を深さ 2Dエッチングする。 1, 2段目はエッチングされない。このように,格子ピッ チ Pの中に 1つの非エッチング部と 1つのエッチング部がある。次に,レジストパターン 524を除去することにより,図 10 (4)に示すような, 7段の階段形状を有するフレネル レンズ型の回折光学素子を得る。
[0071] 本実施の形態の場合も,第 1の実施の形態と同様に,回折光学素子を構成する階 段形状を高精度に製造することができ,回折効率の向上を図ることができる。特に, 本実施の形態では,第 1の実施の形態力もマスクのパターン幅を変更するだけで,そ の他は同様にして,所定の曲面を近似した階段形状を有するフレネルレンズ型の回 折光学素子を得ることができる。なお,フレネルレンズ型の回折光学素子の製造法は 7段の階段形状に限るものではなく,他の段数の場合もマスクのパターン幅を変更す るだけで同様に作製可能である。
[0072] 上記の第 1〜第 5の実施の形態に力かる製法と,従来の製法における各プロセスで の非エッチング部とエッチング部の数を下表に示す。表中の従来例 1および従来例 2 はそれぞれ,本明細書の背景技術で説明した 8段および 7段の階段形状の製法によ るものである。これら従来例でのエッチング部および非エッチング部の数え方も,第 1 〜第 5の実施の形態と同様である。
[0073] [表 1] 第 1 第 2 第 3 第 4
プロセス プロセス プロセス プロセス 第 1の実施の 非エッチング部 4 1 1 1 形態 (7段)
エッチング部 3 1 1 1 第 2の実施の 非エッチング部 5 1 2 1 形態 (9段)
エッチング部 4 1 2 1 第 3の実施の 非エッチング部 4 1 1 1 形態 (8段)
ェツチング部 4 1 1 1 第 4の実施の 非: .ツチング部 3 1 1
形態 (5段)
エッチング部 2 1 1
第 5の実施の 非エッチング部 4 1 1 1 形態 (7段)
エッチング部 3 1 1 1 従来例 1 非エッチング部 1 2 4
( 8段) エッチング部 1 2 4
従来例 2 非エッチング部 1 2 3
( 7段) エッチング部 1 2 4
[0074] 表力 わ力るように,本発明の第 1〜第 5の実施の形態に力かる製造方法では,階 段の段数を kとしたとき,第 1プロセスでは, 1周期の領域 (格子ピッチ Pの領域)にお けるエッチング部の数と非エッチング部の数は, kが偶数の場合はともに k/2であり, kが奇数の場合はそれぞれ (k一 1) /2と (k+ l) /2であり,第 2プロセスでは, 1周 期の領域におけるエッチング部の数と非エッチング部の数はそれぞれ, 1回目のプロ セスのものより少ない。特に,第 1,第 3〜第 5の実施の形態に力かる製造方法では, 第 2プロセス以降では 1周期の領域におけるエッチング部の数と非エッチング部の数 は共に 1つである。逆に,従来の製造方法では,エッチング部および非エッチング部 の数は,第 1プロセスで 1つであり,第 2プロセス以降では順に増加している。
[0075] エッチング部と非エッチング部の数はそのままレジスト除去部とレジスト残留部の数 に相当する。本発明の実施の形態の製法によれば, 1周期の領域内のレジスト除去 部とレジスト残留部の数は 1回目のプロセスで最も多く,後のプロセスではそれより減 少する。したがって,レジスト除去部とレジスト残留部の境界の数は, 1回目のプロセ スで最も多ぐ後のプロセスではそれより減少する。一般に,後工程になるほど,段ご とのレジスト厚の差が生じ,レジストパターン形状に誤差が発生しやすくなる。誤差は レジスト除去部とレジスト残留部の境界で生じる。以上のことから,本発明の実施の形 態の製法によれば,誤差を少なくでき,階段形状を有する回折光学素子を高精度に 製造することができる。特に,第 1,第 3〜第 5の実施の形態にかかる製造方法では, 段数が増える 2回目以降のプロセスで, 1周期の領域内の境界は 1つになる。よって, レジストパターンの誤差を考慮する箇所は 1箇所のみとなり,この箇所で誤差が生じ な 、よう露光条件を決めれば 、 、ため,最適な条件を容易に決定することができる。
[0076] 次に,第 5の実施の形態の変形例に力かる回折光学素子の製造方法について,図 11を参照しながら説明する。図 11は,この変形例に力かる回折光学素子の製造方 法の工程を示す断面図である。この変形例は,第 5の実施の形態の第 1プロセスと第 2プロセスの順番を入れ替えて,図 10 (4)に示す 7段の階段形状を有するフレネルレ ンズ型の回折光学素子を製造する方法に関する。この相違点に着目して説明し,同 様な点は一部重複説明を省略する。
[0077] 第 1プロセスでは,まず,第 1の実施の形態の図 3 (1)に示す工程と同様に,基板 1 上にレジストを塗布する。次に,図 11 (1)に示すマスク 601を用いて露光,現像を行 い,図 11 (1)に示すレジストパターン 621を形成する。次に,レジストパターン 621を 用いてエッチングを行い,図 11 (2)に示す溝形状を形成する。すなわち, 7段目とな る領域を深さ 2Dエッチングする。最下段の 7段目となる領域は,格子ピッチ Pの中で 最も幅が狭い領域である。次に,レジストパターン 621を除去する。
[0078] 次に第 2プロセスに移行する。まず,第 1プロセスで形成された溝形状を有する基板 上にレジストを塗布する。次に,図 11 (3)に示すように,マスク 602を用いて露光,現 像を行い,図 11 (3)に示すレジストパターン 622を形成する。次に,レジストパターン 622を用いてエッチングを行い,図 11 (4)に示す溝形状を形成する。すなわち, 2, 4 , 6段目となる領域を深さ Dエッチングする。次に,レジストパターン 622を除去する。 この時点で基板 1に形成された溝形状は,図 9 (4)に示すものと同じになる。よって, 次に,第 5の実施の形態の第 3プロセスに移行し,以降は同様に図 9 (5) ,および図 1 0 (1)〜図 10 (3)を用いて説明したプロセスで作製することにより,本変形例の場合も ,図 10 (4)に示すような, 7段の階段形状を有するフレネルレンズ型の回折光学素子 を得る。
[0079] 本変形例は,第 1プロセスで最も幅が狭い最下段をエッチング加工する点が特徴で ある。一般に,後工程に進むにつれて,段差が増し,段ごとのレジスト厚の差が増す ため,後工程になるほど,最小パターン幅を高精度に形成するのは難しい。一方,第 1プロセスでは,平坦な基板上にレジストが塗布されており,レジスト厚は均一である から,この状態で高精度に最小パターン幅を形成するのは容易である。本変形例の 製法では,この第 1プロセスで最小パターン幅となる部分を加工するようにしているた め,最小パターン幅を高精度に形成することが容易にできる。
[0080] なお,この変形例の方法は,第 5の実施の形態の方法の第 1プロセスと第 2プロセス を入れ替えたものであるから, 当然, 7段の階段形状に関する第 1の実施の形態にも 適用可能である。また, 5, 9段の階段形状に関する第 4,第 2の実施の形態でも,第 1プロセスと第 2プロセスを入れ替えることにより,本変形例の方法を採用することがで きる。さらに,本変形例は,第 4,第 2の実施の形態のパターン幅を変更して 5, 9段の 階段形状を有するフレネルレンズ型の回折光学素子を得る場合にも適用可能である
[0081] 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本 発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範 囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明 らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される
[0082] 上記第 1〜4の実施の形態においては,基板として Siを使用し,エッチングガスとし て SFを使用しているが, GaAsや InP,石英など,レンズとして使用可能な素材と,
6
それに対応した異方性エッチングが可能なエッチングガスを用いることも可能である o例えば,基板に Siを使用した場合,エッチングガスとして C F , CBrF , CF +0
4 8 3 4 2
, C1, SiCl +C1, SF +N +Ar, BC1 +C1 +Arが使用可能であり,基板に poly
2 4 2 6 2 2 2
— Siを使用した場合,エッチングガスとして C1, CI +HBr, CI +0, CF +0, S
2 2 2 2 4 2
F , CI +N , CI +HC1, HBr+Cl +SFが使用可能であり,基板に Si Nを使用
6 2 2 2 2 6 3 4 した場合,エッチングガスとして CF, CF +0, CF +H, CHF +0, C F, CH F +0 +CO , CH F +CFが使用可能であり,基板に SiOを使用した場合,エツ
3 2 2 2 2 4 2
チングガスとして CF, C F +0 +Ar, C F +0 +Ar, C F +0 +Ar, C F +
4 4 8 2 5 8 2 3 6 2 4 8
CO, CHF +0 , CF +Hが使用可能であり,基板に Alを使用した場合,エツチン
3 2 4 2
グガスとして BCl +C1, BCl +CHF +C1, BCl +CH +C1, B+Br +C1, B
3 2 3 3 2 3 2 2 3 2
CI +C1 +N , SiO +C1が使用可能であり,基板に Cuを使用した場合,エツチン
3 2 2 4 2
グガスとして C1, SiCl +C1 +N +NH, SiCl +Ar+N, BCl +SiCl +N +A
2 4 2 2 3 4 2 3 4 2 r, BCl +N +Arが使用可能であり,基板に Ta Oを使用した場合,エッチングガス
3 2 2 5
として CF +H +0が使用可能であり,基板に TiNを使用した場合,エッチングガス
4 2 2
として CF +0 +H +NH, C F +CO, CH F + CO, BC +C1 +N, CFが使
4 2 2 3 2 6 3 2 3 2 2 4 用可能であり,基板に SiOFを使用した場合,エッチングガスとして CF +C F +CO
4 4 8
+Arが使用可能である。
[0083] また,上記実施の形態では,マスクのパターンを用いてレジストパターンを形成した 力 本発明はこれに限定されるのものではなく,電子ビームで直接描画してレジスト ノターンを形成する方法を用いてもよい。また,使用するレジストはポジ型に限定され るものではなく,ネガ型レジストを用いることも可能である。この場合,マスクのパター ンとしては,前述の各例で示したマスクのパターンに対し,反転したものとなる。また, フォトリソグラフィー工程では, i線ステツパだけでなく, X線リソグラフィ一等の別のリソ グラフィー方法を用いてもよい。なお,上記フレネルレンズ型の回折光学素子は,例 えば,光通信用のレーザコリメータレンズや,フォトダイオード用集光レンズとして応 用することが考免られる。
産業上の利用可能性
[0084] 本発明は,周期的な階段形状を有する回折光学素子の製造方法に適用可能であ り,例えば,レンズ素子として機能する回折光学素子の製造方法に適用可能である。

Claims

請求の範囲
[1] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 7段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
2, 4, 6段目となる部分を前記階段の段差である第 1の深さでエッチングする第 1ェ 程と,
最下段となる部分を前記第 1の深さの 2倍の深さでエッチングする第 2工程と,
5, 6, 7段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 3工程と,
3, 4, 5, 6, 7段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 4 工程と,
を含むことを特徴とする回折光学素子の製造方法。
[2] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 9段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
2, 4, 6, 8段目となる部分を前記階段の段差である第 1の深さでエッチングする第 1工程と,
最下段となる部分を前記第 1の深さの 2倍の深さでエッチングする第 2工程と,
3, 4, 7, 8, 9段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 3 工程と,
5, 6, 7, 8, 9段目となる部分を前記第 1の深さの 4倍の深さでエッチングする第 4 工程と,
を含むことを特徴とする回折光学素子の製造方法。
[3] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 8段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
2, 4, 6, 8段目となる部分を前記階段の段差である第 1の深さでエッチングする第 1工程と,
7, 8段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 2工程と, 5, 6, 7, 8段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 3工程 と,
3, 4, 5, 6, 7, 8段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 4工程と,
を含むことを特徴とする回折光学素子の製造方法。
[4] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 5段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
2, 4段目となる部分を前記階段の段差である第 1の深さでエッチングする第 1工程 と,
最下段となる部分を前記第 1の深さの 2倍の深さでエッチングする第 2工程と,
3, 4, 5段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 3工程と, を含むことを特徴とする回折光学素子の製造方法。
[5] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 7段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
最下段となる部分を前記階段の段差の 2倍である第 1の深さでエッチングする第 1 工程と,
2, 4, 6段目となる部分を前記階段の段差である第 2の深さでエッチングする第 2ェ 程と,
5, 6, 7段目となる部分を前記第 1の深さでエッチングする第 3工程と,
3, 4, 5, 6, 7段目となる部分を前記第 1の深さでエッチングする第 4工程と, を含むことを特徴とする回折光学素子の製造方法。
[6] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 9段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
最下段となる部分を前記階段の段差の 2倍である第 1の深さでエッチングする第 1 工程と, 2, 4, 6, 8段目となる部分を前記階段の段差である第 2の深さでエッチングする第 2工程と,
3, 4, 7, 8, 9段目となる部分を前記第 1の深さでエッチングする第 3工程と,
5, 6, 7, 8, 9段目となる部分を前記第 1の深さの 2倍の深さでエッチングする第 4 工程と,
を含むことを特徴とする回折光学素子の製造方法。
[7] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して, 5段の階段形状を有する回折光学素子を製造する回折光学素子の製造方 法であって,
最下段となる部分を前記階段の段差の 2倍である第 1の深さでエッチングする第 1 工程と,
2, 4段目となる部分を前記階段の段差である第 2の深さでエッチングする第 2工程 と,
3, 4, 5段目となる部分を前記第 1の深さでエッチングする第 3工程と,
を含むことを特徴とする回折光学素子の製造方法。
[8] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して,周期的な k(kは 2以上の自然数)段の階段形状を有する回折光学素子を製 造する回折光学素子の製造方法であって,
1回目のプロセスでは, 1周期の領域におけるエッチング部の数と非エッチング部の 数は, kが偶数の場合はともに kZ2であり, kが奇数の場合はそれぞれ (k—l)Z2と (k+ l)Z2であり,
2回目以降のプロセスでは, 1周期の領域におけるエッチング部の数と非エッチング 部の数はそれぞれ, 1回目のプロセスのものより少ないことを特徴とする回折光学素 子の製造方法。
[9] 2回目以降のプロセスでは, 1周期の領域における前記エッチング部の数と前記非ェ ツチング部の数は共に 1つであることを特徴とする請求項 8に記載の回折光学素子の 製造方法。
[10] レジストパターンを用いたエッチングにより基板を表面カ卩ェするプロセスを複数回繰り 返して,周期的な階段形状を有する回折光学素子を製造する回折光学素子の製造 方法であって,
1回目のプロセスでは, 1周期の領域におけるエッチング部のパターン幅は,前記 階段の最小の幅と略同一であることを特徴とする回折光学素子の製造方法。
[11] 前記エッチングは異方性エッチングであることを特徴とする請求項 1〜: LOのいずれか に記載の回折光学素子の製造方法。
[12] 前記基板としてシリコン,石英, GaAs, InPのいずれかを用いたことを特徴とする請 求項 1〜 11の 、ずれかに記載の回折光学素子の製造方法。
PCT/JP2005/008285 2005-05-02 2005-05-02 回折光学素子の製造方法 WO2006120720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/008285 WO2006120720A1 (ja) 2005-05-02 2005-05-02 回折光学素子の製造方法
CNB2005800496862A CN100523879C (zh) 2005-05-02 2005-05-02 衍射光学元件的制造方法
US11/913,074 US20090087794A1 (en) 2005-05-02 2005-05-02 Method for manufacturing diffractive optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008285 WO2006120720A1 (ja) 2005-05-02 2005-05-02 回折光学素子の製造方法

Publications (1)

Publication Number Publication Date
WO2006120720A1 true WO2006120720A1 (ja) 2006-11-16

Family

ID=37396244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008285 WO2006120720A1 (ja) 2005-05-02 2005-05-02 回折光学素子の製造方法

Country Status (3)

Country Link
US (1) US20090087794A1 (ja)
CN (1) CN100523879C (ja)
WO (1) WO2006120720A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040552B1 (ko) * 2008-11-06 2011-06-16 엘지전자 주식회사 광학 필름, 이를 포함하는 백라이트 유닛 및 액정표시장치
CN103097925B (zh) * 2010-08-06 2016-04-13 旭硝子株式会社 衍射光学元件和计测装置
CN102331594A (zh) * 2011-09-20 2012-01-25 中国科学院微电子研究所 一种阶梯型位相光栅的制作方法
FR2981460B1 (fr) * 2011-10-18 2016-06-24 Commissariat Energie Atomique Procede de realisation d'un dispositif optique refractif ou diffractif
CN103376486B (zh) * 2012-04-12 2015-08-05 福州高意光学有限公司 一种介质膜光栅的制作方法
CN103901516B (zh) * 2012-12-26 2016-06-15 清华大学 光栅的制备方法
CN104237984B (zh) * 2014-09-30 2016-11-16 中国空空导弹研究院 高精度多台阶微透镜阵列的制作方法
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
KR20230159898A (ko) 2016-05-06 2023-11-22 매직 립, 인코포레이티드 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
FI128629B (en) * 2017-06-02 2020-09-15 Dispelix Oy Method for making a master plate and a master plate
CN113574421A (zh) 2019-04-11 2021-10-29 应用材料公司 多深度光学装置的图案化
CN110989290A (zh) * 2019-11-27 2020-04-10 无锡中微掩模电子有限公司 一种高精度多台阶衍射光学图案的制作方法
TWI741924B (zh) * 2020-12-29 2021-10-01 新唐科技股份有限公司 菲涅耳透鏡之形成方法
CN116500711B (zh) * 2023-04-14 2024-04-26 同济大学 一种具备自溯源角度的二维光栅标准物质及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114813A (ja) * 1997-06-25 1999-01-22 Canon Inc 回折光学素子の製造方法
JP2003337216A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 回折素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475704B1 (en) * 1997-09-12 2002-11-05 Canon Kabushiki Kaisha Method for forming fine structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114813A (ja) * 1997-06-25 1999-01-22 Canon Inc 回折光学素子の製造方法
JP2003337216A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 回折素子

Also Published As

Publication number Publication date
CN100523879C (zh) 2009-08-05
CN101171534A (zh) 2008-04-30
US20090087794A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2006120720A1 (ja) 回折光学素子の製造方法
US10551531B2 (en) Hybrid diffraction grating, mold insert and manufacturing methods thereof
KR100425903B1 (ko) 포토마스크에있어서의패턴형상평가방법,포토마스크,포토마스크의제작방법,포토마스크의패턴형성방법,및노광방법
KR100955293B1 (ko) 디바이스 제조 방법과 초기 패턴의 패턴 피쳐 분배 방법 및 이러한 방법에 따라서 제조된 디바이스, 리소그래피 서브 마스크 그룹 및 이를 이용하여 제조된 디바이스
CN110235050B (zh) 一种衍射光学元件的制造方法
KR100498441B1 (ko) 광근접 효과의 보정을 위한 마스크와 그 제조 방법
JPH0661117A (ja) 半導体基板にパターン化されたレジスト層を形成する方法およびその方法に使用するレティクル
US6562253B1 (en) Method of producing an optical element having a multiple-level step-like structure through lithography
JP2010541228A (ja) フォトマスクと基板のアライメントの計測及び制御の方法、構造体及びシステム
US9235114B2 (en) Reflective mask and method for manufacturing the same
JP2008089923A (ja) 光学素子の製造方法
JP2986098B2 (ja) サブ波長構造を使用する多位相フォト・マスク
US5495959A (en) Method of making substractive rim phase shifting masks
JP4817907B2 (ja) レジストパターン形成用のフォトマスク及びその製造方法、並びにこのフォトマスクを用いたレジストパターンの形成方法
JP2010102008A (ja) フォトマスク及び鋸歯型パターン製造方法
JP5008479B2 (ja) レジストパターンの形成方法及びフォトマスク
JP2005140972A (ja) 回折光学素子の製造方法
US11835864B2 (en) Multi-function overlay marks for reducing noise and extracting focus and critical dimension information
JP5841797B2 (ja) 回折格子の製造方法
US9946150B2 (en) Light reflection type lithography mask, its manufacturing method, mask data generation method and mask blank
JP6370755B2 (ja) マスク及びパターン形成方法
JP4562419B2 (ja) 位相シフトマスク及びその製造方法
JP2003228160A (ja) フォトマスク、それを用いて作製した微細光学素子製造用の型、微細光学素子、および該微細光学素子を有する光学系、光学機器、露光装置、デバイス製造方法
JPH07283121A (ja) 露光装置
JPH05150108A (ja) 位相シフト回折格子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11913074

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580049686.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05737373

Country of ref document: EP

Kind code of ref document: A1