WO2006118271A1 - エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置 - Google Patents

エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置 Download PDF

Info

Publication number
WO2006118271A1
WO2006118271A1 PCT/JP2006/309034 JP2006309034W WO2006118271A1 WO 2006118271 A1 WO2006118271 A1 WO 2006118271A1 JP 2006309034 W JP2006309034 W JP 2006309034W WO 2006118271 A1 WO2006118271 A1 WO 2006118271A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
temperature
halogen
etched
noble metal
Prior art date
Application number
PCT/JP2006/309034
Other languages
English (en)
French (fr)
Inventor
Hitoshi Sakamoto
Chikako Kobayashi
Original Assignee
Phyzchemix Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phyzchemix Corporation filed Critical Phyzchemix Corporation
Priority to US11/919,341 priority Critical patent/US20100062602A1/en
Priority to JP2007514848A priority patent/JP4550113B2/ja
Priority to EP06745893A priority patent/EP1881525A4/en
Publication of WO2006118271A1 publication Critical patent/WO2006118271A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Definitions

  • Etching method low dielectric constant dielectric film manufacturing method, porous member manufacturing method, etching apparatus and thin film manufacturing apparatus
  • the present invention relates to a novel etching method, an etching apparatus and a thin film manufacturing apparatus that can be used for the method.
  • the present invention also relates to a method for producing a low dielectric constant dielectric film using a novel etching method and a method for producing a porous member.
  • a plasma CVD device is a gas reaction such as an organometallic complex that forms a film material introduced into a chamber, which is converted into a plasma state by a high frequency incident from a high frequency antenna, and a chemical reaction on the substrate surface by active excited atoms in the plasma. Is a device for forming a metal thin film or the like by promoting the above.
  • the inventors of the present invention installed a member to be etched, which is a metal component for producing a high vapor pressure halide and has a metal component force desired to form a film, into a halogen gas to make it a plasma.
  • a plasma CVD apparatus (hereinafter referred to as a new plasma CVD apparatus) that forms a precursor, which is a metal component halide, by etching the member to be etched with radicals of nitrogen, and deposits only the metal component of the precursor on the substrate. ) And a film-forming method were developed (for example, see Patent Document 1 below).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-147534
  • the metal film is formed on the substrate by controlling the temperature of the substrate to be lower than the temperature of the target serving as a metal source to be formed. For example, if the target metal is M and the halogen gas is C1, the target is heated to a high temperature (for example, 3
  • the metal (M) thin film can be formed on the substrate by controlling the substrate at a temperature of 00 ° C. to 700 ° C. and a low temperature (eg, about 200 ° C.). This is thought to be due to the following reactions. [0006] (1) Plasma dissociation reaction; CI ⁇ 2C1 *
  • C1 * represents a C1 radical
  • (g) represents a gas state
  • (ad) represents an adsorption state
  • the film forming reaction is appropriately performed by maintaining an appropriate ratio of MC1 and C1 *.
  • the ratio of MC1 and C1 * can be controlled to be almost equal, and without reducing the film formation rate, Metal (M) is deposited on the substrate without excessive etching due to C1 *.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an etching method using the above-described new CVD method, and an etching apparatus and a thin film manufacturing apparatus applicable thereto.
  • the present inventor has found that by applying the above-described new CVD technique, by using a predetermined target, very fine anisotropic etching is possible, and the present invention has been completed. Further, by using this etching technique, it is possible to form micropores with a high aspect ratio, to form a low dielectric constant member having a desired dielectric constant, and to form a porous material having a desired porosity. It was found that it can be manufactured.
  • a large scale integrated circuit is composed of a transistor, a plurality of wiring layers, and an interlayer insulating film.
  • the interlayer insulating film has a low dielectric constant for speeding up and reducing loss. It is known to be better.
  • an organic silane-based gas such as monomethylsilane (SiH 2 CH 3), dimethylsilane [(CH 3) SiH;)] and N 2 O or
  • SiH4 and O are mixed with He when SiO is formed by CVD.
  • a method of forming a film with a low dielectric constant material such as a method of forming a film by applying and baking an organic film is known.
  • a thin film filter having a porous ceramic force is conventionally used for a gas filter, a catalyst filter, etc.
  • a problem that regeneration is difficult due to the adsorptivity of the ceramic itself. Can be used to provide a porous material that eliminates these problems.
  • a first aspect of the present invention based on such knowledge is obtained from a halogen radical obtained by converting halogen into plasma, a noble metal component obtained by etching a noble metal member with the halogen radical, and halogen. And an adsorption step of adsorbing the crystal nuclei having the precursor force on the member to be etched, and the portion of the member to be etched adsorbed by the crystal nuclei is anisotropic in the thickness direction by the halogen radicals.
  • An etching method comprising performing an etching step of etching.
  • the adsorption step of adsorbing crystal nuclei as a precursor force on the member to be etched, and the portion of the member to be etched on which the crystal nuclei are adsorbed in the thickness direction with the halogen radicals By performing an anisotropic etching process For example, fine holes with a high aspect ratio can be formed.
  • a second aspect of the present invention is the etching method according to the first aspect, wherein a flux ratio between the precursor and the halogen radical is changed between the adsorption step and the etching step, and the adsorption is performed.
  • the precursor flux is controlled to be excessive in the step, while the halogen radical is controlled to be excessive in the etching step.
  • the precursor flux so as to be excessive in the adsorption step, it is possible to efficiently adsorb crystal nuclei as precursor power on the member to be etched.
  • the halogen radicals in the etching process, by controlling the halogen radicals to be excessive, the portion where the crystal nuclei of the member to be etched are adsorbed can be efficiently anisotropically etched with the halogen radicals in the thickness direction.
  • a third aspect of the present invention is the etching method according to the first or second aspect, wherein the temperature of the member to be etched is changed between the adsorption step and the etching step, and in the adsorption step, While the temperature is set such that the crystal nuclei are adsorbed on the member to be etched, the etching process is performed at a higher temperature than the adsorption process so that the crystal nuclei are not adsorbed and etching with the halogen radical is promoted.
  • the etching method is characterized by being controlled to be
  • the adsorption of crystal nuclei is efficiently generated in the adsorption process, and the adsorption is not performed in the etching process! To be promoted.
  • a fourth aspect of the present invention in the etching method according to any one of the first to third aspects, when the noble metal member is etched with the halogen radical, the size of the crystal nucleus is increased.
  • a force for changing the temperature of the noble metal member to a high temperature side in order to control whether the temperature of the noble metal member is changed to a low temperature side in order to reduce the size of the crystal nucleus. is there.
  • a fifth aspect of the present invention is the etching method according to any one of the first to fourth aspects, wherein the precious metal force is S iridium (Ir) or platinum (Pt). Is in the way.
  • the fifth aspect it is possible to adsorb a crystal nucleus of a precursor composed of Ir or Pt and halogen, and to etch a region where the crystal nucleus is adsorbed.
  • a sixth aspect of the present invention is the etching method according to any one of the first to fifth aspects, wherein the crystal nuclei are adsorbed discontinuously in a predetermined etching region of the member to be etched.
  • the etching method is characterized by the above.
  • micropores can be formed discontinuously in the etching region. it can.
  • a seventh aspect of the present invention is the etching method according to the sixth aspect, wherein the etching target member has the crystal nucleus adsorbed on the outermost surface of the etching region as compared with other regions. It is an etching method characterized in that it becomes easy.
  • the crystal nuclei relatively easily adsorbed in the etching region, for example, fine holes with a high aspect ratio can be selectively formed in the etching region.
  • An eighth aspect of the present invention is the etching method according to any one of the first to seventh aspects, wherein the crystal nuclei are selectively adsorbed on a portion irradiated with an excitation beam. And an etching method.
  • a high-aspect-ratio micropore can be formed at a desired location by selectively adsorbing crystal nuclei to the portion irradiated with the excitation beam.
  • the surface of the member to be etched is roughened by the anisotropic etching.
  • the etching method is as follows.
  • the surface of the member to be etched can be roughened by anisotropic etching, and adhesion to a film formed thereon can be improved.
  • a tenth aspect of the present invention is the etching method according to any one of the first to eighth aspects.
  • the thin film formed on the outermost surface of the substrate is used as the member to be etched, and at least one through hole penetrating the thin film is formed by the anisotropic etching.
  • a through-hole penetrating the thin film can be formed by anisotropic etching.
  • the etching method described in any one of the first to eighth aspects is used, and a dielectric film formed on the outermost surface of the substrate is used as the etching target.
  • a low dielectric constant dielectric film manufacturing method is characterized in that a low dielectric constant dielectric film is obtained by anisotropic etching to such an extent that it does not penetrate in the thickness direction.
  • a low dielectric constant dielectric film can be obtained by using a dielectric film as an object to be etched.
  • the etching method described in any one of the first to eighth aspects is used, and a plate-like member is the etching target, and penetrates in the thickness direction of the plate-like member.
  • a method for producing a porous member comprising obtaining a porous member having a large number of through holes.
  • a porous member can be obtained by using a plate-like member as an etching target and forming a large number of through holes.
  • a chamber in which a member to be etched is accommodated, halogen radical supply means for supplying halogen radicals obtained by converting halogen into plasma, and halogen converted into plasma
  • Precursor supply means for supplying a precursor comprising a noble metal component and halogen obtained by etching a noble metal member with halogen radicals to the chamber, a flux ratio of the precursor to the halogen radicals, a temperature of the target, and An adsorption step of adsorbing crystal nuclei made of the precursor on the etching target member by controlling at least one of the temperatures of the etching target member; and a portion of the etching target member where the crystal nuclei are adsorbed Execute an etching process that performs anisotropic etching in the thickness direction with radicals Lying in the etching apparatus according to claim comprising a Etsuchin grayed control means for controlled so.
  • the flux ratio between the precursor and the halogen radical and the target An adsorption process for adsorbing crystal nuclei as a precursor force on the etching target member by controlling at least one of the temperature of the etching target member and the temperature of the etching target member; and a portion of the etching target member where the crystal nucleus is adsorbed
  • an etching step of anisotropically etching in the thickness direction with the halogen radical for example, it is possible to provide an apparatus capable of forming a fine hole with a high aspect ratio.
  • a noble metal member disposed at a position where the member to be etched is opposed to the chamber, and the interior of the chamber.
  • a working gas supply means for supplying a working gas containing halogen; and plasmaizing the inside of the chamber to generate a working radical plasma to generate a halogen radical, and etching the noble metal member with the halogen radical.
  • the working gas plasma generating means for generating a precursor composed of a noble metal component and halogen constitutes the halogen radical supply means and the precursor supply means, while the temperature of the noble metal member and the etching target member Etching temperature control means for controlling the temperature, respectively, and the etching control means includes the etching temperature.
  • the control means controls the temperature of the etching target member to a low temperature side so as to adsorb the crystal nuclei as the precursor force on the etching target member, and executes the adsorption step.
  • the etching process is performed by controlling the temperature of the member to be etched to a high temperature side so that the portion where the crystal nuclei are adsorbed is anisotropically etched in the thickness direction with the halogen radicals. It is in the etching device.
  • the temperature of the member to be etched is changed by the etching temperature control means so that the adsorption of crystal nuclei occurs efficiently in the adsorption process, and the adsorption is performed in the etching process.
  • the etching should be promoted.
  • a fifteenth aspect of the present invention is the etching apparatus according to the fourteenth aspect, wherein the etching control means uses the etching temperature control means to etch the noble metal member with the halogen radical.
  • the temperature of the noble metal member is changed to a high temperature side, and in order to reduce the size of the crystal nucleus, the temperature of the noble metal member is changed to a low temperature side. Special In the etching apparatus.
  • the temperature of the noble metal member is controlled by the etching temperature control means to control the temperature of the noble metal member when the noble metal member is etched with a halogen radical, and to increase the size of the crystal nucleus.
  • the etching temperature control means to control the temperature of the noble metal member when the noble metal member is etched with a halogen radical, and to increase the size of the crystal nucleus.
  • a sixteenth aspect of the present invention includes a chamber in which an etching and film formation target member is accommodated, a film formation metal member provided in the chamber at a position where the etching and film formation target member faces, Working gas supply means for supplying a working gas containing halogen to the inside of the chamber, and plasmaizing the inside of the chamber to generate a working gas plasma to generate halogen radicals. From a metal component obtained by reducing the precursor with the halogen radical, working gas plasma generating means for generating a precursor comprising a metal component and halogen contained in the film-forming metal member by etching the member The temperature of the substrate is controlled to be lower than the temperature of the member to be etched so that a thin film is formed on the substrate.
  • halogen radicals obtained by converting halogen into plasma are supplied to the upper part of the etching and film formation target member in the chamber, and halogen is converted into plasma.
  • Precursor supply means for supplying a precursor composed of a noble metal component obtained by etching a noble metal member with a halogen radical and a halogen above the etching and film formation target member in the chamber;
  • Etching temperature control means for controlling the temperature and the temperature of the etching and film formation target member respectively, and the flux ratio between the precursor and the halogen radical, the temperature of the target and the temperature of the etching target member are reduced. Both are controlled on the etching and film formation target member.
  • An adsorption process for adsorbing crystal nuclei as a precursor force, and an etching process for anisotropically etching the portion where the crystal nuclei of the film forming target member are adsorbed in the thickness direction with the halogen radicals are performed.
  • an etching control means for controlling the thin film forming apparatus for controlling the thin film forming apparatus.
  • the metal film member is etched with halogen radicals.
  • a precursor composed of a metal component and halogen contained in the film-forming metal member By forming a precursor composed of a metal component and halogen contained in the film-forming metal member, a thin film having a metal component force obtained by reducing the precursor with a halogen radical can be formed on the substrate.
  • an adsorption process for adsorbing crystal nuclei that also have a precursor force on the member to be etched, and etching for anisotropically etching the portion of the member to be etched on which the crystal nuclei are adsorbed in the thickness direction with the halogen radical By performing the process, for example, it is possible to provide a thin film manufacturing apparatus capable of forming a fine hole with a high aspect ratio
  • the etching control means is configured to cause the precursor force on the etching and film formation target member by the etching temperature control means.
  • the temperature of the etching and film formation target member is controlled to a low temperature side so as to adsorb the crystal nucleus, and the adsorption step is executed, and the portion of the etching and film formation target member where the crystal nucleus is adsorbed is
  • a thin film manufacturing apparatus having a function of controlling the temperature of the etching and film formation target member to a high temperature side so as to perform anisotropic etching in the thickness direction with a halogen radical and executing the etching process is there.
  • the etching temperature control means by changing the temperature of the member to be etched by the etching temperature control means, adsorption of crystal nuclei is efficiently generated in the adsorption step, and adsorption is performed in the etching step.
  • the etching should be promoted.
  • the etching control means etches the noble metal member with the no- or rogen radicals by the etching temperature control means.
  • the temperature of the noble metal member is changed to a high temperature side, and in order to reduce the size of the crystal nucleus, the temperature of the noble metal member is changed to a low temperature side.
  • the thin film manufacturing apparatus is characterized by having a function of causing
  • the temperature of the noble metal member is controlled by the etching temperature control means when the noble metal member is etched with a halogen radical, so that the size of the crystal nucleus is increased.
  • the temperature of the noble metal member can be changed to the low temperature side in order to change the temperature to the high temperature side and reduce the size of the crystal nucleus.
  • the present invention applies a new type of CVD technology, uses a noble metal member as a target, and adsorbs a crystal nucleus serving as a precursor on the etching target member, and the crystal nucleus of the etching target member.
  • a new type of CVD technology uses a noble metal member as a target, and adsorbs a crystal nucleus serving as a precursor on the etching target member, and the crystal nucleus of the etching target member.
  • a low dielectric constant member having a desired dielectric constant can be formed, and a porous material having a desired porosity can be manufactured.
  • FIG. 1 is a schematic configuration diagram showing an etching apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view taken along the arrow I I in FIG.
  • FIG. 3 is a time chart showing one mode of an etching method using the apparatus shown in FIG. 1 in time series.
  • FIG. 4 is a diagram schematically showing an adsorption process of the etching method of the present invention and a state of etching by the etching process.
  • FIG. 5 is a diagram schematically showing an example of a method for selectively adsorbing crystal nuclei in the etching method of the present invention.
  • FIG. 6 is a schematic configuration diagram showing an etching apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram showing an etching apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram showing a thin film manufacturing apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram schematically showing a ULSI to which the etching method of the present invention can be applied.
  • FIG. 1 is a schematic configuration diagram showing an etching apparatus according to the first embodiment of the present invention.
  • a support base 2 is provided in the vicinity of the bottom of a cylindrical chamber 1 made of, for example, ceramic, and a substrate 3 that is a member to be etched is placed on the support base 2.
  • the support 2 is provided with an etching temperature control means 6 having a heater 4 and a refrigerant flow means 5.
  • the etching temperature control means 6 sets the temperature of the support 2 to a predetermined temperature (for example, the substrate 3 is heated from 100 ° C to 300 ° C). Temperature maintained at ° C).
  • the shape of the chamber is not limited to a cylindrical shape, and for example, a rectangular chamber can be applied.
  • the upper surface of the chamber 1 is an opening, and the opening is closed by a ceramic plate-like ceiling plate 7 which is an insulating material.
  • the ceiling plate 7 may be a chamber 1 that is integrally provided with a ceiling plate that is not necessarily separate from the chamber 1.
  • a plasma antenna 8 for converting the gas supplied into the chamber 1 into plasma, and this plasma antenna 8 is formed in a planar ring shape parallel to the surface of the ceiling plate 7.
  • a matching unit 9 and a high frequency power source 10 are connected to the plasma antenna 8, and a high frequency electromagnetic wave is introduced into the chamber 1 through the plasma antenna 8. That is, the plasma antenna 8, the matching unit 9 and the high frequency power source 10 Configure the Kursa generation means.
  • the noble metal member 11 is formed of a noble metal (in this example, iridium (Ir)) capable of forming a halide, and is disposed in the chamber 1 below the plasma antenna 8.
  • This noble metal member 11 is for forming a noble metal component and a precursor that is capable of reacting with halogen by an etching action using halogen plasma.
  • the halogen plasma is obtained by converting a working gas containing halogen (in this example, chlorine) supplied into the chamber 1 into plasma using high-frequency electromagnetic energy supplied by the plasma antenna 8.
  • the noble metal member 11 is made up of a rod-like protrusion 12 and a ring part 13 as is apparent from FIG. 2 as viewed in the direction of arrow II in FIG. Each base end portion is fixed to the ring portion 13 so that the front end portion extends toward the center of the chamber 1 without contacting the front end portion of the adjacent projecting portion 12.
  • each protrusion 12 has an electrically independent structure, and is devised so as not to shield the electromagnetic field formed by the plasma antenna 8 and introduced into the chamber 1.
  • the noble metal member 11 is structurally discontinuous with respect to the circumferential direction, which is the flow direction of electricity of the plasma antenna 8.
  • the noble metal member may be formed in a lattice shape or a mesh shape.
  • the noble metal member 11 is provided with an etching temperature control means 106 including a heater 104 and a refrigerant circulation means 105 so that the temperature of the noble metal member 11 can be controlled to a predetermined temperature.
  • the noble metal member 11 is heated by a gas plasma 23, which will be described later.
  • the plasma generating means may be maintained at a predetermined temperature by controlling the gas plasma 23. It becomes.
  • etching temperature control means 6 and 106 are controlled by the etching control means 110.
  • a working gas containing chlorine as a halogen inside the chamber 1 around the cylindrical portion of the chamber 1 (a working gas diluted with He to a chlorine concentration of ⁇ 50%, preferably about 10%) 2 1
  • a plurality of nozzles 14 serving as working gas supply means are connected at equal intervals in the circumferential direction (for example, eight locations: two locations are shown in the figure).
  • the working gas 21 is sent to the nozzle 14 via a flow rate controller 15 that controls the flow rate and pressure of the working gas 21.
  • the flow rate It is sufficient for the controller 15 to be provided for each nozzle 14 as long as one flow rate controller 15 is provided for the entire nozzle 14 shown in the figure. Good.
  • FIG. 3 showing a time-series state in the chamber 1 of the etching apparatus.
  • An electromagnetic field generated by high-frequency power enters the chamber 1 via the plasma antenna 8, and as shown in Fig. 3, first, He gas is introduced into the chamber 1 and preheated.
  • the precious metal member 11 reaches a predetermined temperature due to preheating, working gas containing C1 gas 21
  • gas plasma 23 in Fig. 1 means chlorine plasma.
  • Chlorine radicals (C1 *) are formed by etching the noble metal member 11 to form a precursor 24 composed of noble metal, that is, iridium (Ir) and halogen, and at the same time, by etching temperature control means 6 and 106.
  • the substrate 3 is held at a temperature lower than the temperature of the noble metal member 11 so that the precursor 24 is adsorbed on the substrate 3, and the precursor 24 (MC1) is adsorbed on the surface of the substrate 3 as a crystal nucleus. This is the adsorption step, and a desired amount of crystal nuclei is adsorbed on the substrate 3. The above is the adsorption process.
  • the temperature of the substrate 3 is controlled to the high temperature side by the etching temperature control means 6 and 106 so that the precursor 24 is not adsorbed.
  • chlorine radicals (C1 *) selectively act on the crystal nuclei adsorbed on the substrate 3, and only the crystal nuclei and the region where the crystal nuclei are adsorbed are anisotropically etched in the thickness direction of the substrate 3.
  • anisotropic etching means that the etching rate in the thickness direction proceeds significantly more significantly than the etching rate in the direction intersecting with it, and in the thickness direction almost depending on the size of crystal nuclei. Only let the etching progress. Therefore, holes having the size of crystal nuclei are formed by the number of adsorbed crystal nuclei.
  • anisotropic etching is performed in parallel in the adsorption process depending on the conditions where the adsorption process and the etching process are not clearly distinguished. There is a possibility to go forward.
  • the amount of crystal nuclei is controlled by the adsorption process force by the timing of transfer to the etching process, and the amount of etching, that is, the depth of the hole is determined by the time of the etching process, the amount of chlorine radicals (C1 *) and It is controlled by the temperature of the substrate 3 and the like.
  • the longer the etching process is, the greater the amount of chlorine radicals (C1 *), and the higher the temperature of the substrate 3, the deeper the depth of the formed hole.
  • the speed of such anisotropic etching varies depending on the temperature of the substrate 3 and the film quality of the object to be etched, but is, for example, about 1 ⁇ mZmin.
  • the etching temperature control means 6 and 106 in the adsorption process and the etching process described above are controlled by the etching control means 110. That is, in this embodiment, the etching control means 110 controls the etching temperature control means 6 and 106 to adsorb crystal nuclei made of the precursor 24 on the substrate 3, for example, the temperature of the substrate 3.
  • the etching control means 110 controls the etching temperature control means 6 and 106 to adsorb crystal nuclei made of the precursor 24 on the substrate 3, for example, the temperature of the substrate 3.
  • the etching control means 110 controls the etching temperature control means 6 and 106 to adsorb crystal nuclei made of the precursor 24 on the substrate 3, for example, the temperature of the substrate 3.
  • C1 * chlorine radicals
  • FIG. 4 schematically shows the state of etching by such an adsorption process and an etching process.
  • (a) shows an adsorption process in the case of using the substrate 3 having an acid silicon film 132 formed on the surface of the silicon substrate 131.
  • a state in which a plurality of crystal nuclei 133 of iridium chloride (IrCl 3) are adsorbed on 132 is shown.
  • (A) also shows the state in which chlorine radicals (C1 *) act on the crystal nuclei 133 adsorbed on the silicon oxide film 132 in the etching process after the adsorption process.
  • the etching control means 110 is the etching temperature control means 6.
  • the adsorption process force is controlled to shift to the etching process.
  • the adsorption process force is also controlled to the etching process.
  • the flux of the precursor 24 composed of chlorine radical (C1 *), iridium) and halogen is controlled. This may be done by changing the ratio. In other words, in the adsorption process, the flux of the precursor 24 is controlled to be excessive, while in the etching process, the chlorine radical (C1 *) is controlled to be excessive.
  • the flow rate of the working gas 21 is controlled by the flow rate controller 15 so that chlorine radicals (C1 *) are used only for etching the noble metal member 11 and free chlorine radicals.
  • the flow rate controller 15 controls the flow rate of the working gas 21 to be larger than the appropriate flow rate in the adsorption process, so that chlorine radicals (C1 *) are generated. Try to be excessive.
  • Such control of the flow rate controller 15 is executed by the etching control means 110.
  • the temperature of the noble metal member 11 and the substrate 3 may be controlled simultaneously. For example, the temperature of the noble metal member 11 is lowered by the etching temperature control means 106 so that the noble metal member 11 is hardly etched.
  • the precursor 24 may be difficult to adsorb by controlling the temperature of the substrate 3 to the high temperature side by the etching temperature control means 6.
  • the size of the crystal nucleus adsorbed on the substrate 3 can be adjusted. That is, in order to increase the size of the crystal nucleus adsorbed on the substrate 3, the temperature of the noble metal member 11 should be changed to the high temperature side, and in order to reduce the size of the crystal nucleus, the noble metal member 11 Change the temperature to the low temperature side. That is, the higher the temperature of the noble metal member 11, the larger the clusters of the precursor 24 formed by etching of the chlorine radicals (C1 *). As a result, the crystal nuclei adsorbed on the substrate 3 increase.
  • Such temperature control of the noble metal member 11 is performed by the etching temperature control means 6.
  • the size of crystal nuclei adsorbed on the substrate 3 is controlled, and the etching time is changed as described above to adjust the depth of anisotropic etching, thereby adjusting the depth of the formed holes. Aspect ratio can be changed.
  • micropores having a diameter of about lOnm can be formed, and anisotropic etching can be performed to a depth of about lOOnm with a microhole having a diameter of about lOnm.
  • the aspect ratio (depth Z diameter) is about 10.
  • crystal nuclei are adsorbed on the substrate 3 discontinuously and intermittently. As a result, a plurality of holes discontinuously and intermittently arranged are formed.
  • the amount can be controlled by the adsorption time and the amount of precursor 24.
  • the region where crystal nuclei are adsorbed to the substrate 3, that is, a predetermined etching region can be set as appropriate. For example, a mask is formed on the substrate 3 with a resist or the like, and only the etching region is opened. Can be set.
  • the etching region can be set by changing the film quality on the surface of the substrate 3 in addition to a method of masking with a resist or the like. For example, since a metal film is easier to adsorb crystal nuclei than an oxide film, it is possible to set an etching area by using only the etching region as a metal film and the other regions as an acid film. It is.
  • a treatment that makes it difficult for crystal nuclei to be adsorbed may be applied to regions other than the etching region, or a treatment that selectively adsorbs crystal nuclei only to the etching region.
  • an excitation beam 141 that is a secondary electron is irradiated onto a predetermined region in which a hole is to be formed by anisotropic etching of the substrate 3.
  • force X-rays, ultraviolet rays, or the like suitable for electron beams can be used.
  • an electron beam for example, an electron beam having an acceleration voltage of 200 to 500 eV can be used.
  • the excitation beam 141 is irradiated to a predetermined position, for example, if the temperature of the substrate 3 is set to a high temperature at which the crystal nuclei are not adsorbed, the precursor 24, iridium chloride, is excited.
  • etching method of the present invention can be applied to a semiconductor process and used as a via hole penetrating the thin film. For example, if the etching process time is extremely shortened, the surface of the thin film is roughened. It can be used to make it face.
  • the amount of crystal nuclei adsorbed is relatively increased so that the crystal nuclei are adsorbed on almost the entire surface, and then the etching process is performed to such an extent that no holes are formed.
  • the surface of the thin film can be roughened, and the adhesion to the next formed film can be improved.
  • the force used to form the chlorine plasma in the adsorption process and the etching process with a set of plasma generation means may be used to form these independently with separate plasma generation means. it can.
  • FIG. 6 is a schematic diagram showing an etching apparatus according to a second embodiment of the present invention in which chlorine plasma in the adsorption process and chlorine plasma in the etching process are independently formed by separate plasma generating means. It is a block diagram.
  • another coil-shaped plasma antenna 48 is disposed on the lower peripheral surface of the chamber 1.
  • the plasma antenna 48 is connected to a high-frequency power source 50 through a matching unit 49, and forms another plasma generating means.
  • a working gas supply for supplying a working gas 22 containing chlorine as a halogen (a working gas diluted with He to a chlorine concentration of ⁇ 50%, preferably about 10%) 22 in the lower part of the chamber 1
  • a plurality of nozzles 16 as means are connected at equal intervals in the circumferential direction (for example, eight locations: two locations are shown in the figure).
  • the nozzle 16 is supplied with the working gas 22 via a flow rate controller 17 that controls the flow rate and pressure of the working gas 22, and supplies the working gas 22 to the lower part of the chamber 1. It should be noted that it is sufficient for the flow rate controller 17 to be provided for each nozzle 16, as long as one flow rate controller 17 is provided for the entire nozzle 16 shown in the figure. May be provided.
  • the adsorption step first, He gas is introduced into the chamber 1 and preheating is performed.
  • the precious metal member 11 reaches a predetermined temperature due to preheating, the working gas 21 containing C1 gas is supplied to the chamber via the flow rate controller 15 and the nozzle 14. Supply within 1.
  • chlorine contained in the working gas 21 is turned into plasma to form chlorine plasma 43 to generate chlorine radicals (C1 *), and the noble metal member 11 is etched by the chlorine radicals (C1 *).
  • a precursor 24 composed of a noble metal, that is, iridium (Ir) and halogen is formed.
  • the substrate 24 is held at a temperature lower than the temperature of the noble metal member 11 by at least one of the etching temperature control means 6 and 106 so that the precursor 24 is adsorbed on the substrate 3. Adsorbed on the surface of the substrate 3 as crystal nuclei.
  • the steps up to here are the adsorption step, and a desired amount of crystal nuclei is adsorbed on the substrate 3.
  • the supply to the chamber 1 is stopped and the C1 gas is supplied via the flow controller 17 and the nozzle 16.
  • a working gas 22 is supplied to the lower part of the noble metal member 11 in the chamber 1.
  • the C1 gas is generated by the plasma generating means comprising the plasma antenna 48, the matching unit 49 and the high frequency power source 50.
  • the noble metal member 11 is not etched by the chlorine radical (C1 *), and the production of the precursor 24 is stopped. Then, the chlorine radical (C1 *) selectively acts on the crystal nucleus adsorbed on the surface of the substrate 3, and anisotropically etches the crystal nucleus and the region where the crystal nucleus is adsorbed. As a result, as in the first embodiment, the same number of crystal nuclei as the number of crystal nuclei adsorbed are formed. In the case of the present embodiment, it is not necessary to control the temperature of the substrate 3 to the high temperature side by the etching temperature control means 6 and 106 so that the precursor 24 is not adsorbed during the etching process. Such temperature control may be performed.
  • the force is a case where chlorine radicals are formed in the chamber 1 in any of the adsorption process and the etching process, and is formed outside the chamber 1 in either process or both processes.
  • a configuration in which the chlorine radicals are introduced into the chamber 1 can also be adopted.
  • the etching apparatus according to the third embodiment exemplifies a so-called remote plasma type apparatus that forms chlorine radicals outside the chamber 1 in the etching process.
  • FIG. 7 is a schematic configuration diagram showing an etching apparatus according to the third embodiment of the present invention.
  • an opening 71 is formed at a plurality of locations (for example, four locations) around the lower portion of the chamber 1, and one end of a cylindrical passage 72 is fixed to the opening 71.
  • An insulating excitation chamber 73 is provided in the middle of the passage 72, and a coil-shaped plasma antenna 74 is provided around the excitation chamber 73! /.
  • the plasma antenna 74 is connected to a high frequency power source 76 through a matching unit 75.
  • a flow rate controller 17 that controls the flow rate and pressure of the working gas 22 is controlled on the other end side of the passage 72, and the working gas 22 is supplied into the passage 72 via the flow rate controller 17.
  • the supply into the chamber 1 is stopped, the chlorine gas 22 is supplied into the flow rate controller 17 passage 72, and electromagnetic waves are incident on the inside of the excitation chamber 73 from the plasma antenna 74.
  • the generated chlorine radical (C1 *) is introduced into the chamber 1 through the opening 71.
  • the noble metal member 11 is not etched by the chlorine radical (C1 *), and the precursor 24 is not generated.
  • the chlorine radical (C1 *) selectively acts on the crystal nucleus adsorbed on the surface of the substrate 3 and anisotropically etches the crystal nucleus and the region where the crystal nucleus is adsorbed.
  • the same number of crystal nuclei as the number of crystal nuclei adsorbed are formed.
  • FIG. 8 is a schematic configuration diagram showing a thin film manufacturing apparatus according to the fourth embodiment of the present invention.
  • this thin film production apparatus includes a chamber 1 made of, for example, ceramics for etching and a chamber 201 made of, for example, ceramics for producing a thin film, and a support base 2 is provided near the bottom of the chamber 1.
  • the support base 2 is rotatably provided via a support portion 2a.
  • the support 2 is driven to rotate by a rotation drive device (not shown), and the substrate 3 as a member to be etched and deposited on the support 2 is moved into the channels 1 and 201. It is possible.
  • the support 2 is provided with a temperature control means 206 having a heater 4 and a refrigerant flow means 5.
  • the etching temperature control means 206 the temperature of the support 2 is set to a predetermined temperature (for example, the substrate 3 is changed from 100 ° C). Temperature maintained at 300 ° C).
  • the upper surfaces of the chambers 1 and 201 are openings, and the openings are closed by a flat ceiling plate 7 made of ceramics which is an insulating material.
  • the ceiling plate 7 may be a chamber 1 that is integrally provided with a ceiling plate that is not necessarily separate from the chamber 1.
  • Plasma antennas 8 and 208 for converting the gas supplied to the inside of the chamber 1 into plasma are respectively provided above the channels 1 and 201 of the ceiling plate 7.
  • the plasma antennas 8 and 208 are respectively provided on the ceiling plate 7. It is formed in a plane ring shape parallel to the surface.
  • Matching devices 9 and 209 and high-frequency power supplies 10 and 210 are connected to the plasma antennas 8 and 208, respectively, and high-frequency electromagnetic waves are introduced into the channels 1 and 201 through the plasma antennas 8 and 208, respectively. It is configured to be able to. That is, the plasma antenna 8, the matching unit 9, and the high frequency power source 10 are the plasma generation means of the chamber 1, and the plasma antenna 208, the matching unit 209 and the high frequency power source 210 are the plasma generation means of the chamber 201.
  • the noble metal member 11 arranged in the chamber 1 is provided with a member 211 to be etched having the same configuration as the noble metal member 11 in the force chamber 201 as in the above-described embodiment.
  • the member to be etched 211 is formed of, for example, a metal (for example, copper (Cu)) capable of forming a halide, and is disposed in the chamber 201 below the plasma antenna 208.
  • This member to be etched 211 is made of metal by etching action with halogen plasma. This is for forming a precursor composed of a component (for example, copper) and a halogen.
  • the halogen plasma 300 is obtained by converting the working gas 221 containing halogen (chlorine in this example) supplied into the chamber 201 into plasma using high-frequency electromagnetic energy supplied from the plasma antenna 208. .
  • a working gas containing chlorine as a halogen inside chamber 201 as in chamber 1 (a working gas diluted with He to a chlorine concentration of ⁇ 50%, preferably about 10%)
  • a plurality of nozzles 214 serving as working gas supply means for supplying 221 are connected at equal intervals in the circumferential direction.
  • the working gas 221 is sent to the nozzle 214 via a flow rate controller 215 that controls the flow rate and pressure of the working gas 221.
  • the film formation mode in the film formation process using the chamber 201 is the same as the conventional one. That is, chlorine radicals (C1 *) obtained by converting the working gas 221 (C1 gas) into plasma,
  • the member 211 is etched to form a precursor 224 made of metal, that is, copper and halogen, and at the same time, the substrate 3 is held at a temperature lower than the temperature of the member 211 to be etched by the temperature control means 206, and the precursor 224 (MC1)
  • the flux ratio of chlorine radicals (C1 *) falls within a predetermined range
  • the formation of the copper thin film 219 having the copper power reduced from the precursor 224 by the chlorine radicals (C1 *) is started.
  • the precursor 224 (MC1) is adsorbed on the surface of the substrate 3, and then the precursor 224 (MC1) is reduced with chlorine radicals (C1 *) to be precipitated as copper.
  • Thin film 219 is expected.
  • various metal films can be formed by changing the material of the member to be etched 211, for example, Al, Ta, Ti, W, Zn, In, Cd, or the like. Further, the present invention is not limited to these metal films, and a silicon film or an oxide silicon film can be formed.
  • the film formation process and the etching process can be performed alternately and alternately without discharging the substrate 3 out of the chamber by rotating the support base 2. That is, the copper thin film 219 can be formed in the chamber 201, and the support 2 is rotationally driven to be positioned in the chamber 1, and the copper 24 is selectively adsorbed by the precursor 24 and selectively etched by chlorine radicals.
  • a predetermined etching process (via hole formation or the like) can be performed on the thin film 219, and various semiconductor devices can be formed. For example, a via hole is formed in the thin film formed in the chamber 201 in the chamber 1, and this via hole is further formed in the chamber. It becomes possible to embed with 201. Further, after the surface of the copper thin film 219 formed in the chamber 201 is roughened in the chamber 1 to improve adhesion, another thin film can be formed in the chamber 201 thereon.
  • the surface of the fine hole or thin film such as a through hole can be roughened.
  • the substrate 3 is made of a metal plate or the like.
  • a porous member can be produced and used for filter applications such as a gas filter and a catalyst filter.
  • filter applications such as a gas filter and a catalyst filter.
  • thin film filters with porous ceramic force have been used for such applications, and there is a problem that regeneration is difficult due to the adsorptivity of the ceramic itself.
  • the porous member produced by the etching method of the present invention has a problem. Is a solution to this problem.
  • the density can be reduced.
  • a low dielectric constant dielectric film can be easily formed.
  • Such a low dielectric constant dielectric film can be applied to, for example, an interlayer insulating film in a large scale integrated circuit (ULSI).
  • ULSI 300 includes a transistor 310, a wiring layer 320, and an interlayer insulating film 324 therebetween.
  • Such an interlayer insulating film 324 is made of, for example, an oxide silicon film, and a fine hole that does not penetrate in the thickness direction as shown in FIG. By forming this amount, the density can be reduced, and a low dielectric constant dielectric layer having a predetermined dielectric constant can be obtained.
  • Such a low dielectric constant dielectric layer can be formed by performing only the formation of fine holes with the above-described etching apparatus, and using the above-described thin film manufacturing apparatus with various processes such as the formation power of transistors. Can also be used.
  • the through hole for the formation of the W-plug 321 Formation and reduction of the dielectric constant of the dielectric film can be performed by the etching method of the present invention.
  • the apparatus according to the first to fourth embodiments that can perform the etching method of the present invention can be applied to various applications.
  • the noble metal member 11 is made of Ir.
  • the present invention is not limited to this.
  • a noble metal such as platinum (Pt) is used.
  • the source gas is not limited to C1 gas, but is generally used for halogen gas.
  • the etching method, the low dielectric constant dielectric film manufacturing method, the porous member manufacturing method, the etching apparatus and the thin film manufacturing apparatus of the present invention are used in the industry for manufacturing a thin film on the surface of a substrate.
  • it is useful for a wide range of applications such as the manufacture of filters such as gas filters and catalytic filters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 新方式のCVDを応用したエッチング方法並びにこれに適用できるエッチング装置を提供する。  ハロゲンをプラズマ化して得られるハロゲンラジカルと、貴金属部材11をハロゲンラジカルでエッチングして得られる貴金属成分とハロゲンとからなる前駆体24とを用い、基板3上に前駆体24からなる結晶核を吸着させる吸着工程と、基板3の結晶核が吸着した部分をハロゲンラジカルで厚さ方向に異方性エッチングするエッチング工程とを実行する。

Description

明 細 書
エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方 法並びにエッチング装置及び薄膜作製装置
技術分野
[0001] 本発明は、新規なエッチング方法及びこれに用いることができるエッチング装置及 び薄膜作製装置に関する。
また、本発明は新規なエッチング方法を用いた低誘電率誘電体膜の製造方法及 び多孔性部材の製造方法に関する。
背景技術
[0002] 現在、半導体等の製造にお!、ては、プラズマ CVD(Chemical Vapor Deposition)装 置を用いた成膜が知られている。プラズマ CVD装置とは、チャンバ内に導入した膜 の材料となる有機金属錯体等のガスを、高周波アンテナから入射する高周波により プラズマ状態にし、プラズマ中の活性な励起原子によって基板表面の化学的な反応 を促進して金属薄膜等を成膜する装置である。
[0003] これに対し、本発明者等は、高蒸気圧ハロゲン化物を作る金属成分であって、成膜 を望む金属成分力 なる被エッチング部材をチャンバに設置し、ハロゲンガスをブラ ズマ化して前記被エッチング部材をノヽロゲンのラジカルによりエッチングすることで金 属成分のハロゲンィ匕物である前駆体を生成させるとともに、前駆体の金属成分のみ を基板上に成膜するプラズマ CVD装置 (以下、新方式のプラズマ CVD装置と ヽぅ) および成膜方法を開発した (例えば、下記、特許文献 1参照)。
[0004] 特許文献 1:特開 2003— 147534号公報
[0005] 上記新方式のプラズマ CVD装置では、成膜される金属源となるターゲットの温度に 対して基板の温度が低くなるように制御して基板に当該金属膜を成膜している。例え ば、ターゲットの金属を M、ハロゲンガスを C1とした場合、ターゲットを高温 (例えば 3
2
00°C〜700°C)に、また基板を低温 (例えば 200°C程度)に制御することにより、前記 基板に金属 (M)薄膜を形成することができる。これは、次のような反応によるものと考 えられる。 [0006] (1)プラズマの解離反応; CI→2C1*
2
(2)エッチング反応; M + C1*→MC1 (g)
(3)基板への吸着反応; MCI (g)→MC1 (ad)
(4)成膜反応; MCl (ad) +Cl*→M + Cl †
2
ここで、 C1*は C1のラジカルであることを、(g)はガス状態であることを、(ad)は吸着 状態であることをそれぞれ表して 、る。
[0007] 前述した新方式の CVD装置においては、 MC1と C1*との割合を適正に保つことで 、成膜反応が適切に行われる。即ち、成膜条件として、 C1ガスの流量、圧力、パワー
2
、基板およびターゲットの温度、基板とターゲットとの距離等を適正に設定することで 、 MC1と C1*との割合をほぼ等しく制御することができ、成膜速度を低下させることなく 、し力も、基板に対して C1*によるエッチング過多が生じることなく金属(M)が析出さ れる。
[0008] 本発明者は、このような新方式の CVD技術は、薄膜作製だけでなく、種々の処理 に応用でき得ることを知見した。
発明の開示
発明が解決しょうとする課題
[0009] 本発明は上記状況に鑑みてなされたもので、上述の如き新方式の CVDを応用した エッチング方法並びにこれに適用できるエッチング装置及び薄膜作製装置を提供す ることを課題とする。
課題を解決するための手段
[0010] 本発明者は、上述した新方式の CVD技術を応用すると、所定のターゲットを用いる ことにより、非常に微細な異方性エッチングが可能であることを知見し、本発明を完成 させた。また、このエッチング技術を用いると、高アスペクト比の微細孔を形成でき、ま た、所望の誘電率を有する低誘電率部材を形成でき、さらに、所望の多孔性を有す る多孔性物質を製造できることを知見した。
[0011] ところで、従来、半導体プロセスにおいて、スルーホール等の微細孔を形成する場 合、レジストパターンを形成してエッチングを行う必要がある。このレジストパターンを 形成するフォトレジストプロセスは煩雑であった力 上記技術を応用すると、このような 問題が解決できる。
[0012] 一方、大規模集積回路 (ULSI)は、トランジスタと複数の配線層、及びその層間絶 縁膜からなるが、この層間絶縁膜は、高速化、低損失化のために低誘電率とした方 がよいことが知られている。このような低誘電率膜の作製方法としては、モノメチルシ ラン(SiH CH )、ジメチルシラン [ (CH ) SiH;) ]等の有機シラン系ガスと N O又は
3 3 3 2 2 2
Oとを原料ガスとした MOCVDにより CHの気泡が混入して低密度の SiO膜を形成
2 2 する方法、 SiH4と Oとを CVD方により SiOを形成する際に Heを混入させて Heの
2 2
気泡が混入した SiO膜を形成する方法などが知られている。また、窒化ホウ素 (BN)
2
など低誘電率の物質で膜を形成する方法、有機膜を塗布 ·焼成して成形する方法な どが知られている。
[0013] し力しながら、気泡を混入させる方法では気泡の量の制御が困難であり、所望の誘 電率とするのは困難であるという問題があり、また、窒化ホウ素を用いる場合には所 定の結晶系にしなければならないという問題がある。さらに、有機膜では耐久性に問 題があるという課題があるが、上記エッチング技術を応用すると、このような課題を解 決できる。
[0014] さらに、従来、ガスフィルタや触媒フィルタなどには多孔性セラミックス力 なる薄膜 フィルタが用いられている力 セラミックス自体の吸着性により、再生が困難であると いう問題があるが、上記エッチング技術を応用すると、このような問題を解消した多孔 性物質を提供できる。
[0015] このような知見に基づく本発明の第 1の態様は、ハロゲンをプラズマ化して得られる ノ、ロゲンラジカルと、貴金属部材を前記ハロゲンラジカルでエッチングして得られる貴 金属成分とハロゲンとからなる前駆体とを用い、エッチング対象部材上に前記前駆体 力 なる結晶核を吸着させる吸着工程と、前記エッチング対象部材の前記結晶核が 吸着した部分を前記ハロゲンラジカルで厚さ方向に異方性エッチングするエッチング 工程とを実行することを特徴とするエッチング方法にある。
[0016] 力かる第 1の態様では、エッチング対象部材上に前駆体力 なる結晶核を吸着させ る吸着工程と、前記エッチング対象部材の前記結晶核が吸着した部分を前記ハロゲ ンラジカルで厚さ方向に異方性エッチングするエッチング工程とを実行することにより 、例えば、高アスペクト比の微細孔を形成できる。
[0017] 本発明の第 2の態様は、第 1の態様に記載するエッチング方法において、前記吸 着工程と前記エッチング工程とで前記前駆体と前記ハロゲンラジカルとのフラックス 比を変更し、前記吸着工程では前記前駆体のフラックスが過多となるように制御する 一方、前記エッチング工程では前記ハロゲンラジカルが過多となるように制御するこ とを特徴とするエッチング方法にある。
[0018] かかる第 2の態様では、吸着工程では前記前駆体のフラックスが過多となるように制 御することにより、エッチング対象部材上に前駆体力 なる結晶核を効率よく吸着さ せることができ、一方、エッチング工程ではハロゲンラジカルが過多となるように制御 することにより、エッチング対象部材の結晶核が吸着した部分をハロゲンラジカルで 厚さ方向に効率的に異方性エッチングすることができる。
[0019] 本発明の第 3の態様は、第 1又は 2の態様に記載するエッチング方法において、前 記吸着工程と前記エッチング工程とで前記エッチング対象部材の温度を変更し、前 記吸着工程では前記エッチング対象部材上に前記結晶核が吸着するような温度に する一方、前記エッチング工程では前記結晶核が吸着しな 、で前記ハロゲンラジカ ルによるエッチングが促進されるように前記吸着工程より高温になるように制御するこ とを特徴とするエッチング方法にある。
[0020] かかる第 3の態様では、エッチング対象部材の温度を変更することにより、吸着工 程では結晶核の吸着が効率的に生じるようにすると共に、エッチング工程では吸着し な!、でエッチングが促進されるようにする。
[0021] 本発明の第 4の態様は、第 1〜3の何れかの態様に記載するエッチング方法におい て、前記貴金属部材を前記ハロゲンラジカルでエッチングする際に、前記結晶核の 大きさを大きくするために前記貴金属部材の温度を高温側へ変更する力 前記結晶 核の大きさを小さくするために前記貴金属部材の温度を低温側へ変更するかの制御 を行うことを特徴とするエッチング方法にある。
[0022] かかる第 4の態様では、貴金属部材の温度を制御することにより、結晶核の大きさを 変更することができ、この結果、エッチングで形成される孔の直径を変更することがで きる。 [0023] 本発明の第 5の態様は、第 1〜4の何れかの態様に記載するエッチング方法におい て、前記貴金属力 Sイリジウム (Ir)又は白金 (Pt)であることを特徴とするエッチング方 法にある。
[0024] かかる第 5の態様では、 Ir又は Ptとハロゲンとからなる前駆体の結晶核を吸着させ、 この結晶核が吸着した領域をエッチングすることができる。
[0025] 本発明の第 6の態様は、第 1〜5の何れかの態様に記載するエッチング方法におい て、前記結晶核を、前記エッチング対象部材の所定のエッチング領域内に不連続に 吸着させることを特徴とするエッチング方法にある。
[0026] かかる第 6の態様では、エッチング対象部材の所定のエッチング領域内に不連続 に吸着させることにより、エッチング領域内に不連続に、例えば、高アスペクト比の微 細孔を形成することができる。
[0027] 本発明の第 7の態様は、第 6の態様に記載するエッチング方法において、前記エツ チング対象部材は、前記エッチング領域の最表面が他の領域と比較して前記結晶核 が吸着され易 、ようになって 、ることを特徴とするエッチング方法にある。
[0028] かかる第 7の態様では、エッチング領域に結晶核が相対的に吸着され易くすること により、エッチング領域に選択的に、例えば、高アスペクト比の微細孔を形成すること ができる。
[0029] 本発明の第 8の態様は、第 1〜7の何れかの態様に記載するエッチング方法におい て、前記結晶核を、励起用ビームを照射した部分に選択的に吸着させることを特徴と するエッチング方法にある。
[0030] 力かる第 8の態様では、励起用ビームを照射した部分に選択的に結晶核を吸着さ せることにより、所望の場所に、例えば、高アスペクト比の微細孔を形成できる。
[0031] 本発明の第 9の態様は、第 1〜8の何れかの態様に記載するエッチング方法におい て、前記エッチング対象部材の表面を、前記異方性エッチングにより粗面化すること を特徴とするエッチング方法にある。
[0032] かかる第 9の態様では、エッチング対象部材の表面を異方性エッチングにより粗面 化し、この上に形成する膜との密着性の向上等を図ることができる。
[0033] 本発明の第 10の態様は、第 1〜8の何れかの態様に記載するエッチング方法にお いて、基板の最表面に形成された薄膜を前記エッチング対象部材とし、前記異方性 エッチングにより前記薄膜を貫通する少なくとも一つの貫通孔を形成することを特徴 とするエッチング方法にある。
[0034] かかる第 10の態様では、異方性エッチングにより、薄膜を貫通する貫通孔を形成 することができる。
[0035] 本発明の第 11の態様は、第 1〜8の何れかの態様に記載するエッチング方法を用 い、基板の最表面に形成された誘電体膜を前記エッチング対象とし、この薄膜の厚さ 方向に貫通しない程度に異方性エッチングすることにより低誘電率誘電体膜を得るこ とを特徴とする低誘電率誘電体膜の製造方法にある。
[0036] かかる第 11の態様では、エッチング対象を誘電体膜とすることにより、低誘電率誘 電体膜を得ることができる。
[0037] 本発明の第 12の態様は、第 1〜8の何れかの態様に記載するエッチング方法を用 い、板状部材を前記エッチング対象とし、この板状部材の厚さ方向に貫通する多数 の貫通孔を有する多孔性部材を得ることを特徴とする多孔性部材の製造方法にある
[0038] 力かる第 12の態様は、エッチング対象を板状部材とし、多数の貫通孔を形成するこ とにより、多孔性部材を得ることができる。
[0039] 本発明の第 13の態様は、エッチング対象部材が収容されるチャンバと、ハロゲンを プラズマ化して得られるハロゲンラジカルを前記チャンバ内に供給するハロゲンラジ カル供給手段と、ハロゲンをプラズマ化したハロゲンラジカルで貴金属部材をエッチ ングして得られる貴金属成分とハロゲンとからなる前駆体を前記チャンバに供給する 前駆体供給手段と、前記前駆体と前記ハロゲンラジカルとのフラックス比並びに前記 ターゲットの温度及び前記エッチング対象部材の温度の少なくとも一つを制御して、 前記エッチング対象部材上に前記前駆体からなる結晶核を吸着させる吸着工程と、 前記エッチング対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚 さ方向に異方性エッチングするエッチング工程とを実行するように制御するエツチン グ制御手段とを具備することを特徴とするエッチング装置にある。
[0040] 力かる第 13の態様では、前駆体とハロゲンラジカルとのフラックス比並びにターゲッ トの温度及びエッチング対象部材の温度の少なくとも一つを制御することにより、エツ チング対象部材上に前駆体力 なる結晶核を吸着させる吸着工程と、前記エツチン グ対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ方向に異 方性エッチングするエッチング工程とを実行することにより、例えば、高アスペクト比の 微細孔を形成できる装置を提供できる。
[0041] 本発明の第 14の態様は、第 13の態様に記載のエッチング装置において、前記チ ヤンバ内に前記エッチング対象部材が対向する位置に配置される貴金属部材と、前 記チャンバの内部にハロゲンを含有する作用ガスを供給する作用ガス供給手段と、 前記チャンバの内部をプラズマ化して、作用ガスプラズマを発生させてハロゲンラジ カルを生成し、このハロゲンラジカルで前記貴金属部材をエッチングすることにより貴 金属成分とハロゲンとからなる前駆体を生成する作用ガスプラズマ発生手段とで、前 記ハロゲンラジカル供給手段と前記前駆体供給手段とを構成する一方、前記貴金属 部材の温度及び前記エッチング対象部材の温度をそれぞれ制御するエッチング温 度制御手段を具備し、前記エッチング制御手段は、前記エッチング温度制御手段に より、前記エッチング対象部材上に前記前駆体力 なる結晶核を吸着させるように前 記エッチング対象部材の温度を低温側に制御して前記吸着工程を実行させると共に 、前記エッチング対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで 厚さ方向に異方性エッチングするよう前記エッチング対象部材の温度を高温側に制 御して前記エッチング工程を実行させる機能を備えていることを特徴とするエツチン グ装置にある。
[0042] かかる第 14の態様では、エッチング温度制御手段により、エッチング対象部材の温 度を変更することにより、吸着工程では結晶核の吸着が効率的に生じるようにすると 共に、エッチング工程では吸着しな 、でエッチングが促進されるようにする。
[0043] 本発明の第 15の態様は、第 14の態様に記載するエッチング装置において、前記 エッチング制御手段は、前記エッチング温度制御手段により、前記貴金属部材を前 記ハロゲンラジカルでエッチングする際に、前記結晶核の大きさを大きくするために 前記貴金属部材の温度を高温側へ変更させると共に、前記結晶核の大きさを小さく するために前記貴金属部材の温度を低温側へ変更させる機能を備えて 、ることを特 徴とするエッチング装置にある。
[0044] かかる第 15の態様では、エッチング温度制御手段により、貴金属部材をハロゲンラ ジカルでエッチングする際に当該貴金属部材の温度を制御し、結晶核の大きさを大 きくするために貴金属部材の温度を高温側へ変更させると共に、結晶核の大きさを 小さくするために貴金属部材の温度を低温側へ変更させることができる。
[0045] 本発明の第 16の態様は、エッチング及び成膜対象部材が収容されるチャンバと、 前記エッチング及び成膜対象部材が対向する位置における前記チャンバに設けら れる成膜金属部材と、前記チャンバの内部にハロゲンを含有する作用ガスを供給す る作用ガス供給手段と、前記チャンバの内部をプラズマ化して、作用ガスプラズマを 発生させてハロゲンラジカルを生成し、このハロゲンラジカルで前記成膜金属部材を エッチングすることにより前記成膜金属部材に含まれる金属成分とハロゲンとからなる 前駆体を生成する作用ガスプラズマ発生手段と、前記前駆体を前記ハロゲンラジカ ルで還元して得られる金属成分からなる薄膜が前記基板上に形成されるよう、前記 基板の温度を前記被エッチング部材の温度よりも低温に制御する成膜温度制御手 段とを具備する薄膜作製装置において、ハロゲンをプラズマ化して得られるハロゲン ラジカルを前記チャンバ内の前記エッチング及び成膜対象部材の上方に供給する ハロゲンラジカル供給手段と、ハロゲンをプラズマ化したノヽロゲンラジカルで貴金属 部材をエッチングして得られる貴金属成分とハロゲンとからなる前駆体を前記チャン バ内の前記エッチング及び成膜対象部材の上方に供給する前駆体供給手段と、前 記貴金属部材の温度及び前記エッチング及び成膜対象部材の温度をそれぞれ制 御するエッチング温度制御手段を具備し、前記前駆体と前記ハロゲンラジカルとのフ ラックス比並びに前記ターゲットの温度及び前記エッチング対象部材の温度の少なく とも一つを制御して前記エッチング及び成膜対象部材上に前記前駆体力 なる結晶 核を吸着させる吸着工程と、前記エッチング及び成膜対象部材の前記結晶核が吸 着した部分を前記ハロゲンラジカルで厚さ方向に異方性エッチングするエッチングェ 程とを実行するように制御するエッチング制御手段とを具備することを特徴とする薄 膜作製装置にある。
[0046] かかる第 16の態様では、ハロゲンラジカルで成膜金属部材をエッチングすることに より成膜金属部材に含まれる金属成分とハロゲンとからなる前駆体を生成することに より、この前駆体をハロゲンラジカルで還元して得られる金属成分力 なる薄膜を基 板上に形成することができ、また、エッチング対象部材上に前駆体力もなる結晶核を 吸着させる吸着工程と、前記エッチング対象部材の前記結晶核が吸着した部分を前 記ハロゲンラジカルで厚さ方向に異方性エッチングするエッチング工程とを実行する ことにより、例えば、高アスペクト比の微細孔を形成できる薄膜作製装置を提供できる
[0047] 本発明の第 17の態様は、第 16の態様に記載の薄膜作製装置において、前記エツ チング制御手段は、前記エッチング温度制御手段により、前記エッチング及び成膜 対象部材上に前記前駆体力 なる結晶核を吸着させるように前記エッチング及び成 膜対象部材の温度を低温側に制御して前記吸着工程を実行させると共に、前記エツ チング及び成膜対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで 厚さ方向に異方性エッチングするよう前記エッチング及び成膜対象部材の温度を高 温側に制御して前記エッチング工程を実行させる機能を備えていることを特徴とする 薄膜作製装置にある。
[0048] かかる第 17の態様では、エッチング温度制御手段により、エッチング対象部材の温 度を変更することにより、吸着工程では結晶核の吸着が効率的に生じるようにすると 共に、エッチング工程では吸着しな 、でエッチングが促進されるようにする。
[0049] 本発明の第 18の態様は、第 17の態様に記載する薄膜作製装置において、前記ェ ツチング制御手段は、前記エッチング温度制御手段により、前記貴金属部材を前記 ノ、ロゲンラジカルでエッチングする際に、前記結晶核の大きさを大きくするために前 記貴金属部材の温度を高温側へ変更させると共に、前記結晶核の大きさを小さくす るために前記貴金属部材の温度を低温側へ変更させる機能を備えて 、ることを特徴 とする薄膜作製装置にある。
[0050] 力かる第 18の態様は、エッチング温度制御手段により、貴金属部材をハロゲンラジ カルでエッチングする際に当該貴金属部材の温度を制御し、結晶核の大きさを大きく するために貴金属部材の温度を高温側へ変更させると共に、結晶核の大きさを小さ くするために貴金属部材の温度を低温側へ変更させることができる。 発明の効果
[0051] 本発明は、新方式の CVD技術を応用し、貴金属部材をターゲットとして用い、エツ チング対象部材上に前駆体力 なる結晶核を吸着させる吸着工程と、前記エツチン グ対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ方向に異 方性エッチングするエッチング工程とを実行することにより、例えば、高アスペクト比の 微細孔を形成できると 、う効果を奏する。
[0052] また、このエッチング技術を用いると、所望の誘電率を有する低誘電率部材を形成 でき、さらに、所望の多孔性を有する多孔性物質を製造できる。
図面の簡単な説明
[0053] [図 1]本発明の第 1の実施の形態に係るエッチング装置を示す概略構成図である。
[図 2]図 1の I I矢視図である。
[図 3]図 1に示す装置を用いたエッチング方法の一態様を時系列に示すタイムチヤ一 トである。
[図 4]本発明のエッチング方法の吸着工程及びエッチング工程によるエッチングの状 態を模式的に示す図である。
[図 5]本発明のエッチング方法において結晶核を選択的に吸着させる方法の一例を 模式的に示す図である。
[図 6]本発明の第 2の実施の形態に係るエッチング装置を示す概略構成図である。
[図 7]本発明の第 3の実施の形態に係るエッチング装置を示す概略構成図である。
[図 8]本発明の第 4の実施の形態に係る薄膜作製装置を示す概略構成図である。
[図 9]本発明のエッチング方法を適用可能な ULSIを模式的に表す概略構成図であ る。
符号の説明
[0054] 1 チャンバ
3 基板
6、 106 エッチング温度制御手段
7 天井板
8 プラズマアンテナ 9 整合器
10 高周波電源
11 貴金属部材
14 ノズル
15 流量制御器
16 ノズル
21 作用ガス
110 エッチング制御手段
219 銅薄膜
発明を実施するための最良の形態
[0055] 以下、本発明の実施の形態を図面に基づき詳細に説明する。なお、各実施の形態 において同一部分には同一番号を付し、重複する説明は省略する。
[0056] <第 1の実施の形態 >
図 1は本発明の第 1の実施の形態に係るエッチング装置を示す概略構成図である 。同図に示すように、円筒状に形成された、例えばセラミックス製のチャンバ 1の底部 近傍には支持台 2が設けられ、支持台 2にはエッチング対象部材である基板 3が載置 されて 、る。支持台 2にはヒータ 4及び冷媒流通手段 5を備えたエッチング温度制御 手段 6が設けられ、エッチング温度制御手段 6により支持台 2の温度は所定温度 (例 えば、基板 3が 100°Cから 300°Cに維持される温度)に制御される。なお、チャンバの 形状は円筒状に限らず、例えば、矩形状のチャンバを適用することも可能である。
[0057] チャンバ 1の上面は開口部とされ、開口部は絶縁材料であるセラミックス製の平板 状の天井板 7によって塞がれている。なお、天井板 7は、必ずしもチャンバ 1と別体と する必要はなぐ天井板を一体的に備えたチャンバ 1を用いてもよい。天井板 7の上 方にはチャンバ 1の内部に供給されたガスをプラズマ化するためのプラズマアンテナ 8が設けられ、このプラズマアンテナ 8は天井板 7の面と平行な平面リング状に形成さ れている。プラズマアンテナ 8には整合器 9及び高周波電源 10が接続されており、プ ラズマアンテナ 8を介して高周波の電磁波をチャンバ 1内に導入するように構成して ある。すなわち、これら、プラズマアンテナ 8、整合器 9及び高周波電源 10によりブラ ズマ発生手段を構成して 、る。
[0058] 貴金属部材 11は、ハロゲンィ匕物を形成し得る貴金属 (本例ではイリジウム (Ir) )で 形成して、プラズマアンテナ 8の下方のチャンバ 1内に配設してある。この貴金属部材 11は、ハロゲンプラズマによるエッチング作用により貴金属成分とハロゲンと力 なる 前駆体を形成するためのものである。ここで、ハロゲンプラズマは、チャンバ 1内に供 給するハロゲン (本例では塩素)を含有する作用ガスを前記プラズマアンテナ 8が供 給する高周波の電磁エネルギーを利用してプラズマ化することにより得る。
[0059] また、貴金属部材 11は、図 1の I I線矢視図である図 2を参照すれば明らかなとお り、棒状の突起部 12とリング部 13とからなり、各突起部 12はその先端部が隣接する 突起部 12の先端部と接触することなくチャンバ 1の中心に向力つて延びるように、そ の各基端部をリング部 13に固着してある。これにより、各突起部 12は電気的に独立 した構造となっており、プラズマアンテナ 8で形成し、チャンバ 1内に導入される電磁 界を遮蔽することがないように工夫してある。また、貴金属部材 11はプラズマアンテ ナ 8の電気の流れ方向である周方向に対して構造的に不連続な状態とされている。 なお、プラズマアンテナ 8の電気の流れに対して不連続状態にする構成としては、貴 金属部材を格子状に形成したり網目状に構成する等とすることも可能である。
[0060] さらに、貴金属部材 11には、ヒータ 104及び冷媒流通手段 105を備えたエッチング 温度制御手段 106が設けられ、貴金属部材 11の温度を所定の温度に制御できるよ うになつている。なお、貴金属部材 11は後述するガスプラズマ 23により加熱されるが 、ガスプラズマ 23の制御により所定の温度に保持するようにしてもよぐこの場合には 、上述したプラズマ発生手段がエッチング温度制御手段となる。
[0061] なお、エッチング温度制御手段 6及び 106は、エッチング制御手段 110により制御 されるようになつている。
[0062] チャンバ 1の筒部の周囲にはチャンバ 1の内部にハロゲンとしての塩素を含有する 作用ガス (Heで塩素濃度が≤ 50%、好ましくは 10%程度に希釈された作用ガス) 2 1を供給する作用ガス供給手段としてのノズル 14が周方向に等間隔で複数 (例えば 8箇所:図には 2箇所を示してある)接続されている。ノズル 14には作用ガス 21の流 量及び圧力を制御する流量制御器 15を介して作用ガス 21が送られる。なお、流量 制御器 15は、ノズル 14毎に設けられているように図示してある力 全体のノズル 14 で一つの流量制御器 15を設ければ十分であり、また、複数のノズル 14毎に設けても よい。
[0063] 成膜に関与しないガス等は排気口 18から排気され、天井板 7によって塞がれたチ ヤンバ 1の内部は真空ポンプ(図示せず。 )によって所定の真空圧に維持される。
[0064] 力かるエッチング装置を用いたエッチング方法の一例のエッチング時の態様を、当 該エッチング装置のチャンバ 1内の時系列な状態を示す図 3を追加して説明する。
[0065] プラズマアンテナ 8を介して高周波電力による電磁界をチャンバ 1内に入射するとと もに、図 3に示すように、先ず、チャンバ 1内に Heガスを導入して予備加熱する。予備 加熱により貴金属部材 11が所定の温度になった時点で、 C1ガスを含む作用ガス 21
2
を流量制御器 15及びノズル 14を介してチャンバ 1内に供給する。このことにより作用 ガス 21に含まれる塩素をプラズマ化して塩素ラジカル (C1*)を生成する。なお、図 1 中のガスプラズマ 23は塩素プラズマを意味する。
[0066] 塩素ラジカル (C1*)は、貴金属部材 11をエッチングして貴金属、すなわちイリジゥ ム (Ir)とハロゲンとからなる前駆体 24を形成すると同時に、エッチング温度制御手段 6及び 106の少なくとも一方により基板 3を貴金属部材 11の温度よりも低温に保持し て前駆体 24が基板 3上に吸着されるようにし、前駆体 24 (MC1)を基板 3の表面に結 晶核として吸着させる。ここまでが吸着工程であり、所望の量の結晶核を基板 3上に 吸着させる。以上が吸着工程である。
[0067] 次に、基板 3の温度をエッチング温度制御手段 6及び 106により高温側に制御して 前駆体 24が吸着しない状態とする。この状態では、塩素ラジカル (C1*)が基板 3上に 吸着した結晶核に選択的に作用して結晶核及び結晶核が吸着していた領域のみを 基板 3の厚さ方向に異方性エッチングする。ここで、異方性エッチングとは、厚さ方向 のエッチング速度がそれに交差する方向のエッチング速度より顕著に有意に進むこ とを 、 、、結晶核の大きさにほぼ依存して厚さ方向にのみエッチングが進むことを ヽ う。したがって、結晶核の大きさの孔が吸着された結晶核の数の分だけ形成される。
[0068] 以上がエッチング工程である。なお、吸着工程とエッチング工程とは明確に区別さ れるものではなぐ条件によっては吸着工程においても異方性エッチングが並行して 進む可能性がある。また、結晶核の量の制御は吸着工程力もエッチング工程への移 行のタイミングにより制御され、エッチングの量、すなわち、孔の深さはエッチングェ 程の時間及び塩素ラジカル (C1*)の量並びに基板 3の温度等により制御される。す なわち、エッチング工程の時間が長いほど、塩素ラジカル (C1*)の量が多いほど、ま た、基板 3の温度が高いほど、形成される孔の深さは深くなる。このような異方性エツ チングの速度は基板 3の温度やエッチング対象の膜質などによって異なるが、例え ば、 1 μ mZmin程度の速度となる。
[0069] 以上説明した吸着工程及びエッチング工程におけるエッチング温度制御手段 6及 び 106の制御はエッチング制御手段 110により制御される。すなわち、本実施形態で は、エッチング制御手段 110は、エッチング温度制御手段 6及び 106を制御して、基 板 3上に前駆体 24からなる結晶核を吸着させるように、例えば、基板 3の温度を低温 側に制御して前記吸着工程を実行させると共に、基板 3の前記結晶核が吸着した部 分を塩素ラジカル (C1*)で厚さ方向に異方性エッチングするよう、例えば、基板 3の 温度を高温側に制御してエッチング工程を実行させる機能を備えて 、る。このように 、基板 3の温度を低温側に制御するほど前駆体 4が吸着し易くなり、一方、基板 3の 温度を高温側に制御すれほど前駆体 24が吸着し難くなる。
[0070] 図 4には、このような吸着工程及びエッチング工程によるエッチングの状態を模式 的に示す。図 4に示すように、(a)は基板 3として、シリコン基板 131表面に酸ィ匕シリコ ン膜 132を形成したものを用いた場合の吸着工程を表したものであり、酸ィ匕シリコン 膜 132上に塩化イリジウム (IrCl )の結晶核 133が複数個吸着した状態を表している 。また、(a)は、吸着工程の後のエッチング工程において、酸ィ匕シリコン膜 132に吸着 した結晶核 133に塩素ラジカル (C1*)が作用している状態も表しており、塩素ラジカ ル (C1*)が作用して異方性エッチングが進むと、(b)に示すように、結晶核 133の大 きさに依存する直径を有する孔 134が形成される。なお、(b)は異方性エッチングを 酸ィ匕シリコン膜 132を貫通するまで行った場合を示している力 エッチング工程の時 間を調整すれば、(c)に示すように、酸ィ匕シリコン膜 132を厚さ方向に貫通しない孔 1 35を形成することもできる。
[0071] ここで、上述した説明では、エッチング制御手段 110は、エッチング温度制御手段 6 及び 106の制御により吸着工程力もエッチング工程に移行するように制御するとした 力 吸着工程力もエッチング工程への制御は、塩素ラジカル (C1*)と、イリジウム ) とハロゲンとからなる前駆体 24とのフラックス比を変更することにより行ってもよい。す なわち、吸着工程では前駆体 24のフラックスが過多となるように制御する一方、エツ チング工程では塩素ラジカル (C1*)が過多となるように制御するようにすればょ 、。 具体的には、例えば、吸着工程では、流量制御器 15により作用ガス 21の流量を制 御して塩素ラジカル (C1*)が貴金属部材 11のエッチングのみに使用される程度とし てフリーの塩素ラジカル (C1*)ができるだけ存在しないようにし、一方、エッチングェ 程では、流量制御器 15により作用ガス 21の流量を吸着工程の適正流量より大きくす るように制御して塩素ラジカル (C1*)が過多となるようにする。このような流量制御器 1 5の制御はエッチング制御手段 110により実行される。なお、この場合、貴金属部材 1 1や基板 3の温度を同時に制御してもよぐ例えば、エッチング温度制御手段 106に より貴金属部材 11の温度を低下させて貴金属部材 11がエッチングされ難いようにし てもよいし、また、エッチング温度制御手段 6により基板 3の温度を高温側に制御して 前駆体 24が吸着し難 、ようにしてもょ 、。
[0072] また、貴金属部材 11をハロゲンラジカルでエッチングする際に、基板 3に吸着する 結晶核の大きさを調整することが可能である。すなわち、基板 3に吸着する結晶核の 大きさを大きくするためには、貴金属部材 11の温度を高温側へ変更すればよぐまた 、結晶核の大きさを小さくするためには、貴金属部材 11の温度を低温側へ変更すれ ばよい。すなわち、貴金属部材 11の温度が高くなればなるほど、塩素ラジカル (C1*) のエッチングにより形成される前駆体 24のクラスタが大きくなり、この結果、基板 3に 吸着する結晶核が大きくなる。なお、このような貴金属部材 11の温度の制御はエッチ ング温度制御手段 6により行われる。
[0073] このように基板 3に吸着する結晶核の大きさを制御すると共に、上述したようにエツ チング時間を変更して異方性エッチングの深さを調整することにより、形成される孔の アスペクト比を変更することができる。
[0074] 本発明のエッチング方法によると、直径 lOnm程度の微細孔が形成でき、また、直 径 lOnm程度の微細孔で lOOnm程度の深さまで異方性エッチング可能であるから、 この場合のアスペクト比 (深さ Z直径)は 10程度となる。
[0075] 本発明のエッチング方法においては、結晶核は、不連続に間欠的に基板 3に吸着 し、その結果、互いに不連続で間欠的に配置された複数の孔が形成されるが、その 量は吸着時間や前駆体 24の量により制御できる。また、このように基板 3へ結晶核が 吸着する領域、すなわち、所定のエッチング領域は、適宜設定することができ、例え ば、基板 3にレジスト等によりマスクを形成し、エッチング領域のみを開放することによ り設定することができる。これにより、所定のエッチング領域のみに結晶核を不連続で 間欠的に吸着させることができ、その後、エッチング工程を実行すれば、エッチング 領域のみ内に複数の孔が不連続に間欠的に形成される。また、エッチング領域の設 定は、レジストなどによりマスクする方法のほか、基板 3の表面の膜質を変更すること によっても行うことができる。例えば、酸ィ匕膜より金属膜の方が結晶核が吸着し易い ので、エッチング領域のみを金属膜とし、他の領域を酸ィ匕膜とすることにより、エッチ ング領域を設定することが可能である。また、エッチング領域以外の領域に、結晶核 が吸着し難いような処理を施してもよいし、エッチング領域のみに結晶核が選択的に 吸着するような処理を施してもょ 、。
[0076] さらに、このようなエッチング領域の設定のほか、本発明のエッチング方法により形 成する孔の位置をスポットで設定することが可能であり、これにより所定の位置にビア ホール用などの貫通孔形成することが可能である。この方法の一例を以下に述べる。
[0077] 図 5に示すように、基板 3の異方性エッチングによる孔を形成したい所定の領域に、 二次電子である励起用ビーム 141を照射する。この励起用ビーム 141としては、電子 線が適している力 X線や紫外線なども使用することができる。電子線を用いる場合 には、例えば、加速電圧 200〜500eVの電子ビームを用いることができる。このよう に励起ビーム 141を所定の位置に照射する場合、例えば、基板 3の温度を結晶核が 吸着しないような高温に設定しておくと、前駆体 24である塩化イリジウムは、励起ビー ム 141が照射されたポイントに選択的に作用してイリジウムが吸着し、これに塩素ラジ カル (C1*)が作用して塩化イリジウムの結晶核となる。このように結晶核を所定のボイ ントのみに吸着させた後は、上述したエッチング工程を実行する。これにより、所定の ポイントに、例えば、高アスペクト比の貫通孔を形成することができる。 [0078] 以上説明した本発明のエッチング方法は、半導体プロセスに応用して薄膜を貫通 するビアホールとして使用することができる他、例えば、エッチング工程の時間を極端 に短くすれば、薄膜の表面を粗面化させることに用いることができる。すなわち、結晶 核の吸着量を比較的多くして表面ほぼ全体に結晶核が吸着するようにし、その後、 エッチング工程を孔が形成されない程度に実行する。これにより、薄膜表面を粗面化 することができ、次に形成される膜との密着性を向上させることができる。
[0079] <第 2の実施の形態 >
上記第 1の実施の形態では、一組のプラズマ発生手段で吸着工程及びエッチング 工程の塩素プラズマを形成するようにした力 これらを別々のプラズマ発生手段で独 立に形成するよう〖こすることもできる。
[0080] 図 6は吸着工程の塩素プラズマとエッチング工程の塩素プラズマとを別々のプラズ マ発生手段で独立に形成するようにした本発明の第 2の実施の形態に係るエツチン グ装置を示す概略構成図である。
[0081] 同図に示すように、本形態に係るエッチング装置においてはチャンバ 1の下部の周 面にコイル状の別のプラズマアンテナ 48が配設してある。このプラズマアンテナ 48は 整合器 49を介して高周波電源 50に接続してあり、別のプラズマ発生手段を形成して いる。
[0082] また、チャンバ 1の下部にハロゲンとしての塩素を含有する作用ガス (Heで塩素濃 度が≤ 50%、好ましくは 10%程度に希釈された作用ガス) 22を供給する作用ガス供 給手段としてのノズル 16がノズル 14と同様に周方向に等間隔で複数 (例えば 8箇所 :図には 2箇所を示してある)接続されている。ノズル 16〖こは、作用ガス 22の流量及 び圧力を制御する流量制御器 17を介して作用ガス 22が送られ、作用ガス 22をチヤ ンバ 1の下部に供給するようになっている。なお、流量制御器 17は、ノズル 16毎に設 けられているように図示してある力 全体のノズル 16で一つの流量制御器 17を設け れば十分であり、また、複数のノズル 16毎に設けてもよい。
[0083] このような本実施の形態によれば、吸着工程においては、先ず、チャンバ 1内に He ガスを導入して予備加熱する。予備加熱により貴金属部材 11が所定の温度になった 時点で、 C1ガスを含む作用ガス 21を流量制御器 15及びノズル 14を介してチャンバ 1内に供給する。このことにより作用ガス 21に含まれる塩素をプラズマ化することで塩 素プラズマ 43を形成して塩素ラジカル (C1*)を生成し、この塩素ラジカル (C1*)によ り、貴金属部材 11をエッチングして貴金属、すなわちイリジウム (Ir)とハロゲンとから なる前駆体 24を形成する。これと同時に、エッチング温度制御手段 6及び 106の少 なくとも一方により基板 3を貴金属部材 11の温度よりも低温に保持して前駆体 24が 基板 3上に吸着されるようにし、前駆体 24を基板 3の表面に結晶核として吸着させる 。ここまでが吸着工程であり、所望の量の結晶核を基板 3上に吸着させる。
[0084] 次いで、流量制御器 15及びノズル 14を介しての作用ガス 21である C1ガスのチヤ
2
ンバ 1内への供給を停止し、流量制御器 17及びノズル 16を介して C1ガスを含む作
2
用ガス 22をチャンバ 1内の貴金属部材 11の下部に供給する。これにより、プラズマァ ンテナ 48、整合器 49及び高周波電源 50によりなるプラズマ発生手段により C1ガス
2 がプラズマ化され、塩素プラズマ 44が形成される。この場合、貴金属部材 11は塩素 ラジカル (C1*)によりエッチングされず、前駆体 24の生成は停止する。そして、塩素 ラジカル (C1*)は、基板 3の表面に吸着した結晶核に選択的に作用し、結晶核及び 当該結晶核が吸着していた領域を異方性エッチングする。これにより、実施形態 1と 同様に結晶核の大きさの孔が吸着された結晶核の数の分だけ形成される。なお、本 実施形態の場合には、エッチング工程にぉ 、て基板 3の温度をエッチング温度制御 手段 6及び 106により高温側に制御して前駆体 24が吸着しない状態とする必要はな いが、このような温度制御をしてもよい。
[0085] <第 3の実施の形態 >
上述の各実施の形態は、吸着工程及びエッチング工程の何れにぉ 、てもチャンバ 1内で塩素ラジカルを形成する場合である力 何れかの工程又は両方の工程にぉ ヽ てチャンバ 1外で形成した塩素ラジカルをチャンバ 1内に導入する構成とすることもで きる。第 3の実施の形態に係るエッチング装置は、エッチング工程における塩素ラジ カルをチャンバ 1外で形成する、いわゆるリモートプラズマ方式の装置を例示する。
[0086] 図 7は本発明の第 3の実施の形態に係るエッチング装置を示す概略構成図である 。同図に示すように、チャンバ 1の下部の周囲の複数個所 (例えば 4箇所)には開口 部 71が形成され、開口部 71には筒状の通路 72の一端がそれぞれ固定されている。 通路 72の途中部には絶縁体製の励起室 73が設けられ、励起室 73の周囲にはコィ ル状のプラズマアンテナ 74が設けられて!/、る。プラズマアンテナ 74は整合器 75を介 して高周波電源 76に接続されている。通路 72の他端側には作用ガス 22の流量及 び圧力を制御する流量制御器 17が制御され、この流量制御器 17を介して通路 72内 に作用ガス 22が供給される。
[0087] このようなエッチング装置では、吸着工程においては、先ず、チャンバ 1内に Heガ スを導入して予備加熱する。予備加熱により貴金属部材 11が所定の温度になった時 点で、 C1ガスを含む作用ガス 21を流量制御器 15及びノズル 14を介してチャンバ 1
2
内に供給する。このことにより作用ガス 21に含まれる塩素をプラズマ化することで塩 素プラズマ 43を形成して塩素ラジカル (C1*)を生成し、この塩素ラジカル (C1*)によ り、貴金属部材 11をエッチングして貴金属、すなわちイリジウム (Ir)とハロゲンとから なる前駆体 24を形成する。これと同時に、エッチング温度制御手段 6及び 106の少 なくとも一方により基板 3を貴金属部材 11の温度よりも低温に保持して前駆体 24が 基板 3上に吸着されるようにし、前駆体 24を基板 3の表面に結晶核として吸着させる 。ここまでが吸着工程であり、所望の量の結晶核を基板 3上に吸着させる。
[0088] 次いで、流量制御器 15及びノズル 14を介しての C1ガスを含む作用ガス 21のチヤ
2
ンバ 1内への供給を停止し、流量制御器 17通路 72内に塩素ガス 22を供給し、ブラ ズマアンテナ 74から電磁波を励起室 73の内部に入射することで、塩素ガスがプラズ マ化されて発生した塩素ラジカル (C1* )が開口部 71を介してチャンバ 1内に導入さ れる。この場合、貴金属部材 11は塩素ラジカル (C1*)によりエッチングされず、前駆 体 24は生成しなくなる。そして、塩素ラジカル (C1*)は、基板 3の表面に吸着した結 晶核に選択的に作用し、結晶核及び当該結晶核が吸着していた領域を異方性エツ チングする。これにより、実施形態 1と同様に結晶核の大きさの孔が吸着された結晶 核の数の分だけ形成される。なお、本実施形態の場合には、エッチング工程におい て基板 3の温度をエッチング温度制御手段 6及び 106により高温側に制御して前駆 体 24が吸着しな 、状態とする必要はな 、が、このような温度制御をしてもよ!、。
[0089] <第 4の実施の形態 >
上述した各実施の形態は本発明のエッチング装置を説明したが、本実施の形態で は、本発明のエッチング装置を備えた薄膜作製装置の一例を説明する。
[0090] 図 8は本発明の第 4の実施の形態に係る薄膜作製装置を示す概略構成図である。
同図に示すように、この薄膜作製装置は、エッチング用の例えばセラミックス製のチヤ ンバ 1と、薄膜作製用の例えばセラミックス製のチャンバ 201とを具備し、チャンバ 1の 底部近傍には支持台 2が設けられ、支持台 2は支持部 2aを介して回転自在に設けら れている。この支持台 2は、図示しない回転駆動装置により回転駆動されるようになつ ており、支持台 2上に載置されたエッチング及び成膜対象部材である基板 3がチャン ノ 1及び 201内に移動可能になっている。なお、支持台 2にはヒータ 4及び冷媒流通 手段 5を備えた温度制御手段 206が設けられ、エッチング温度制御手段 206により、 支持台 2の温度は所定温度 (例えば、基板 3が 100°Cから 300°Cに維持される温度) に制御される。
[0091] チャンバ 1及び 201の上面は開口部とされ、開口部は絶縁材料であるセラミックス製 の平板状の天井板 7によって塞がれている。なお、天井板 7は、必ずしもチャンバ 1と 別体とする必要はなぐ天井板を一体的に備えたチャンバ 1を用いてもよい。天井板 7のチャンノ 1及び 201のそれぞれの上方にはチャンバ 1の内部に供給されたガスを プラズマ化するためのプラズマアンテナ 8及び 208がそれぞれ設けられ、このプラズ マアンテナ 8及び 208は天井板 7の面と平行な平面リング状に形成されている。ブラ ズマアンテナ 8及び 208には整合器 9及び 209と、高周波電源 10及び 210とがそれ ぞれ接続されており、プラズマアンテナ 8及び 208を介して高周波の電磁波をチャン ノ 1及び 201内にそれぞれ導入することができるように構成してある。すなわち、これ ら、プラズマアンテナ 8、整合器 9及び高周波電源 10がチャンバ 1のプラズマ発生手 段であり、プラズマアンテナ 208、整合器 209及び高周波電源 210がチャンバ 201の プラズマ発生手段である。
[0092] チャンバ 1内に配置された貴金属部材 11は上述した実施形態のとおりである力 チ ヤンバ 201内には、貴金属部材 11と同様な構成の被エッチング部材 211が設けられ ている。被エッチング部材 211は、例えば、ハロゲンィ匕物を形成し得る金属(例えば、 銅(Cu) )で形成して、プラズマアンテナ 208の下方のチャンバ 201内に配設してある 。この被エッチング部材 211は、ハロゲンプラズマによるエッチング作用により金属成 分 (例えば、銅)とハロゲンとからなる前駆体を形成するためのものである。ここで、ハ ロゲンプラズマ 300は、チャンバ 201内に供給するハロゲン (本例では塩素)を含有 する作用ガス 221を前記プラズマアンテナ 208が供給する高周波の電磁エネルギー を利用してプラズマ化することにより得る。
[0093] チャンバ 201の周囲にはチャンバ 1と同様にチャンバ 201の内部にハロゲンとして の塩素を含有する作用ガス (Heで塩素濃度が≤ 50%、好ましくは 10%程度に希釈 された作用ガス) 221を供給する作用ガス供給手段としてのノズル 214が周方向に等 間隔で複数接続されて ヽる。ノズル 214には作用ガス 221の流量及び圧力を制御す る流量制御器 215を介して作用ガス 221が送られる。
[0094] チャンバ 201を用いた成膜工程における成膜態様は、従来と同様である。すなわち 、作用ガス 221 (C1ガス)をプラズマ化して得る塩素ラジカル (C1*)で、被エッチング
2
部材 211をエッチングして金属、すなわち銅とハロゲンとからなる前駆体 224を形成 すると同時に、温度制御手段 206により基板 3を被エッチング部材 211の温度よりも 低温に保持し、前駆体 224 (MC1)と塩素ラジカル (C1*)のフラックス比が所定の範囲 になると、前記前駆体 224が塩素ラジカル (C1*)で還元された銅力もなる銅薄膜 219 の形成が開始される。具体的な成膜過程は、例えば、前駆体 224 (MC1)が基板 3の 表面に吸着され、その後、前駆体 224 (MC1)が塩素ラジカル (C1*)で還元されて銅 として析出し、銅薄膜 219となると考えられる。
[0095] このような成膜工程では、被エッチング部材 211の材質を、例えば、 Al、 Ta、 Ti、 W 、 Zn、 In, Cd等変更することにより、各種金属膜を成膜することができ、また、これら の金属膜に限定されず、シリコン膜や酸ィ匕シリコン膜を形成することもできる。
[0096] このような薄膜作製装置を用い、支持台 2を回転駆動させることで基板 3をチャンバ 外に排出することなく成膜工程とエッチング工程を連続的に交互に行うことができる。 即ち、チャンバ 201内で銅薄膜 219を形成することができ、支持台 2を回転駆動させ てチャンバ 1内に位置させ、前駆体 24の吸着及び塩素ラジカルによる選択的なエツ チングを行うことにより銅薄膜 219に所定のエッチング処理 (ビアホール形成等)を行 うことができ、各種半導体装置を形成することが可能である。例えば、チャンバ 201で 成膜した薄膜にチャンバ 1でビアホールを形成し、さらに、このビアホールをチャンバ 201で埋め込むことが可能となる。また、チャンバ 201で成膜した銅薄膜 219の表面 をチャンバ 1で粗面化して密着性を向上させた後、さらにその上にチャンバ 201で別 の薄膜を成膜することもできる。
[0097] <他の実施の形態 >
以上説明したエッチング装置又は薄膜作製装置を用いると、上述したように、貫通 孔などの微細孔ゃ薄膜の表面の粗面化を行うことができる他、例えば、基板 3を金属 製などの板状部材とし、微細な貫通孔を多数形成することにより、多孔性部材を製造 することができ、ガスフィルタや触媒フィルタなどのフィルタ用途に使用することができ る。このような用途には、従来、多孔性セラミックス力もなる薄膜フィルタが用いられて おり、セラミックス自体の吸着性により、再生が困難であるという問題があるが、本発 明のエッチング方法による多孔性部材は、このような問題を解消したものである。
[0098] また、薄膜や板状部材をエッチング対象として、厚さ方向に貫通する貫通孔ゃ厚さ 方向には貫通しない微細孔を形成することにより、低密度化を図ることができ、これを 誘電体に適用すれば、低誘電率誘電体膜を容易に形成することができる。
[0099] 従来、このような低誘電率ィ匕には、気泡を混入させる方法等が採用されているが、 この方法では気泡の量の制御が困難であり、所望の誘電率とするのは困難であると いう問題があるが、本発明の上記エッチング技術を応用すると、微細孔の直径及び 深さ並びに数を高度に制御することができ、所望の誘電率の誘電体を得ることができ る。
[0100] このような低誘電率誘電体膜は、例えば、大規模集積回路 (ULSI)における層間 絶縁膜に応用することができる。この例を図 9に示す。図 9に示すように、 ULSI300 は、トランジスタ 310と、配線層 320と、その間の層間絶縁膜 324とで構成される。こ のような層間絶縁膜 324は例えば酸ィ匕シリコン膜からなるが、酸ィ匕シリコン膜に、例え ば、図 4 (c)に示すような、厚さ方向には貫通しない微細孔を所定の量だけ形成する ことにより低密度化し、所定の誘電率を有する低誘電率誘電体層とすることができる。
[0101] このような低誘電率誘電体層の形成は、微細孔の形成のみを上述したエッチング 装置で行ってもょ ヽし、トランジスタの形成力ゝらの各種工程を上述した薄膜作製装置 を用いて行うこともできる。この場合には、 W—プラグ 321の形成のための貫通孔の 形成や誘電体膜の低誘電率化を本発明のエッチング方法で行うことができる。
[0102] このように、本発明のエッチング方法を実施できる上述した第 1乃至第 4の実施形 態の装置は各種用途に適用可能である。
[0103] また、上記第 1乃至第 4の実施の形態において、貴金属部材 11は Irを材料として構 成したが、これに限定するものではなぐ例えば、白金 (Pt)などの貴金属を用いるこ とができる。また、原料ガスとしては C1ガスに限らず、ハロゲンガスであれば一般に用
2
いることがでさる。
産業上の利用可能性
[0104] 本発明のエッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方 法並びにエッチング装置及び薄膜作製装置は基板の表面に薄膜を作製する産業、 特にメモリ、トランジスタ、光学膜を作製する場合の他、ガスフィルタや触媒フィルタな どのフィルタ製造など、幅広 、用途に有用なものである。

Claims

請求の範囲
[1] ハロゲンをプラズマ化して得られるハロゲンラジカルと、貴金属部材を前記ハロゲン ラジカルでエッチングして得られる貴金属成分とハロゲンとからなる前駆体とを用い、 エッチング対象部材上に前記前駆体力 なる結晶核を吸着させる吸着工程と、前記 エッチング対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ方 向に異方性エッチングするエッチング工程とを実行することを特徴とするエッチング 方法。
[2] 請求項 1に記載するエッチング方法にぉ 、て、
前記吸着工程と前記エッチング工程とで前記前駆体と前記ハロゲンラジカルとのフ ラックス比を変更し、前記吸着工程では前記前駆体のフラックスが過多となるように制 御する一方、前記エッチング工程では前記ハロゲンラジカルが過多となるように制御 することを特徴とするエッチング方法。
[3] 請求項 1又は 2に記載するエッチング方法において、
前記吸着工程と前記エッチング工程とで前記エッチング対象部材の温度を変更し 、前記吸着工程では前記エッチング対象部材上に前記結晶核が吸着するような温度 にする一方、前記エッチング工程では前記結晶核が吸着しな 、で前記ハロゲンラジ カルによるエッチングが促進されるように前記吸着工程より高温になるように制御する ことを特徴とするエッチング方法。
[4] 請求項 1〜3の何れかに記載するエッチング方法において、
前記貴金属部材を前記ハロゲンラジカルでエッチングする際に、前記結晶核の大 きさを大きくするために前記貴金属部材の温度を高温側へ変更するか、前記結晶核 の大きさを小さくするために前記貴金属部材の温度を低温側へ変更するかの制御を 行うことを特徴とするエッチング方法。
[5] 請求項 1〜4の何れかに記載するエッチング方法において、
前記貴金属力 Sイリジウム (Ir)又は白金 (Pt)であることを特徴とするエッチング方法。
[6] 請求項 1〜5の何れかに記載するエッチング方法において、
前記結晶核を、前記エッチング対象部材の所定のエッチング領域内に不連続に吸 着させることを特徴とするエッチング方法。
[7] 請求項 6に記載するエッチング方法にお 、て、
前記エッチング対象部材は、前記エッチング領域の最表面が他の領域と比較して 前記結晶核が吸着され易 、ようになって!/、ることを特徴とするエッチング方法。
[8] 請求項 1〜7の何れかに記載するエッチング方法において、
前記結晶核を、励起用ビームを照射した部分に選択的に吸着させることを特徴とす るエッチング方法。
[9] 請求項 1〜8の何れかに記載するエッチング方法において、
前記エッチング対象部材の表面を、前記異方性エッチングにより粗面化することを 特徴とするエッチング方法。
[10] 請求項 1〜8の何れかに記載するエッチング方法において、
基板の最表面に形成された薄膜を前記エッチング対象部材とし、前記異方性エツ チングにより前記薄膜を貫通する少なくとも一つの貫通孔を形成することを特徴とす るエッチング方法。
[11] 請求項 1〜8の何れかに記載するエッチング方法を用い、
基板の最表面に形成された誘電体膜を前記エッチング対象とし、この薄膜の厚さ 方向に貫通しない程度に異方性エッチングすることにより低誘電率誘電体膜を得るこ とを特徴とする低誘電率誘電体膜の製造方法。
[12] 請求項 1〜8の何れかに記載するエッチング方法を用い、
板状部材を前記エッチング対象とし、この板状部材の厚さ方向に貫通する多数の 貫通孔を有する多孔性部材を得ることを特徴とする多孔性部材の製造方法。
[13] エッチング対象部材が収容されるチャンバと、
ハロゲンをプラズマ化して得られるハロゲンラジカルを前記チャンバ内に供給する ノ、ロゲンラジカル供給手段と、
ノ、ロゲンをプラズマ化したハロゲンラジカルで貴金属部材をエッチングして得られる 貴金属成分とハロゲンとからなる前駆体を前記チャンバに供給する前駆体供給手段 と、
前記前駆体と前記ハロゲンラジカルとのフラックス比並びに前記ターゲットの温度及 び前記エッチング対象部材の温度の少なくとも一つを制御して、前記エッチング対象 部材上に前記前駆体力 なる結晶核を吸着させる吸着工程と、前記エッチング対象 部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ方向に異方性エツ チングするエッチング工程とを実行するように制御するエッチング制御手段と を具備することを特徴とするエッチング装置。
[14] 請求項 13に記載のエッチング装置において、
前記チャンバ内に前記エッチング対象部材が対向する位置に配置される貴金属部 材と、
前記チャンバの内部にハロゲンを含有する作用ガスを供給する作用ガス供給手段 と、
前記チャンバの内部をプラズマ化して、作用ガスプラズマを発生させてハロゲンラ ジカルを生成し、このハロゲンラジカルで前記貴金属部材をエッチングすることにより 貴金属成分とハロゲンとからなる前駆体を生成する作用ガスプラズマ発生手段とで、 前記ハロゲンラジカル供給手段と前記前駆体供給手段とを構成する一方、 前記貴金属部材の温度及び前記エッチング対象部材の温度をそれぞれ制御する エッチング温度制御手段を具備し、
前記エッチング制御手段は、前記エッチング温度制御手段により、前記エッチング 対象部材上に前記前駆体力 なる結晶核を吸着させるように前記エッチング対象部 材の温度を低温側に制御して前記吸着工程を実行させると共に、前記エッチング対 象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ方向に異方性 エッチングするよう前記エッチング対象部材の温度を高温側に制御して前記エツチン グ工程を実行させる機能を備えていることを特徴とするエッチング装置。
[15] 請求項 14に記載するエッチング装置において、
前記エッチング制御手段は、前記エッチング温度制御手段により、前記貴金属部 材を前記ハロゲンラジカルでエッチングする際に、前記結晶核の大きさを大きくする ために前記貴金属部材の温度を高温側へ変更させると共に、前記結晶核の大きさを 小さくするために前記貴金属部材の温度を低温側へ変更させる機能を備えて!/ヽるこ とを特徴とするエッチング装置。
[16] エッチング及び成膜対象部材が収容されるチャンバと、 前記エッチング及び成膜対象部材が対向する位置における前記チャンバに設けら れる成膜金属部材と、
前記チャンバの内部にハロゲンを含有する作用ガスを供給する作用ガス供給手段 と、
前記チャンバの内部をプラズマ化して、作用ガスプラズマを発生させてハロゲンラ ジカルを生成し、このハロゲンラジカルで前記成膜金属部材をエッチングすることに より前記成膜金属部材に含まれる金属成分とハロゲンとからなる前駆体を生成する 作用ガスプラズマ発生手段と、
前記前駆体を前記ハロゲンラジカルで還元して得られる金属成分力 なる薄膜が 前記基板上に形成されるよう、前記基板の温度を前記被エッチング部材の温度よりも 低温に制御する成膜温度制御手段とを具備する薄膜作製装置において、
ハロゲンをプラズマ化して得られるハロゲンラジカルを前記チャンバ内の前記エッチ ング及び成膜対象部材の上方に供給するハロゲンラジカル供給手段と、
ノ、ロゲンをプラズマ化したハロゲンラジカルで貴金属部材をエッチングして得られる 貴金属成分とハロゲンとからなる前駆体を前記チャンバ内の前記エッチング及び成 膜対象部材の上方に供給する前駆体供給手段と、
前記貴金属部材の温度及び前記エッチング及び成膜対象部材の温度をそれぞれ 制御するエッチング温度制御手段を具備し、
前記前駆体と前記ハロゲンラジカルとのフラックス比並びに前記ターゲットの温度及 び前記エッチング対象部材の温度の少なくとも一つを制御して前記エッチング及び 成膜対象部材上に前記前駆体力 なる結晶核を吸着させる吸着工程と、前記エッチ ング及び成膜対象部材の前記結晶核が吸着した部分を前記ハロゲンラジカルで厚さ 方向に異方性エッチングするエッチング工程とを実行するように制御するエッチング 制御手段と
を具備することを特徴とする薄膜作製装置。
請求項 16記載の薄膜作製装置において、
前記エッチング制御手段は、前記エッチング温度制御手段により、前記エッチング 及び成膜対象部材上に前記前駆体力 なる結晶核を吸着させるように前記エツチン グ及び成膜対象部材の温度を低温側に制御して前記吸着工程を実行させると共に 、前記エッチング及び成膜対象部材の前記結晶核が吸着した部分を前記ハロゲンラ ジカルで厚さ方向に異方性エッチングするよう前記エッチング及び成膜対象部材の 温度を高温側に制御して前記エッチング工程を実行させる機能を備えて 、ることを 特徴とする薄膜作製装置。
請求項 17に記載する薄膜作製装置において、
前記エッチング制御手段は、前記エッチング温度制御手段により、前記貴金属部 材を前記ハロゲンラジカルでエッチングする際に、前記結晶核の大きさを大きくする ために前記貴金属部材の温度を高温側へ変更させると共に、前記結晶核の大きさを 小さくするために前記貴金属部材の温度を低温側へ変更させる機能を備えて!/ヽるこ とを特徴とする薄膜作製装置。
PCT/JP2006/309034 2005-04-28 2006-04-28 エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置 WO2006118271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/919,341 US20100062602A1 (en) 2005-04-28 2006-04-28 Etching method, method for producing dielectric film of low dielectric constant, method for producing porous member, etching system and thin film forming equipment
JP2007514848A JP4550113B2 (ja) 2005-04-28 2006-04-28 エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置
EP06745893A EP1881525A4 (en) 2005-04-28 2006-04-28 SCRAPPING METHOD, METHOD FOR PRODUCING DIELECTRIC DIELECTRIC FILM WITH LOW DIELECTRIC CONSTANT, METHOD FOR PRODUCING POROUS MEMBER, SCALE SYSTEM, AND FINE FILM FORMING EQUIPMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-133266 2005-04-28
JP2005133266 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118271A1 true WO2006118271A1 (ja) 2006-11-09

Family

ID=37308065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309034 WO2006118271A1 (ja) 2005-04-28 2006-04-28 エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置

Country Status (5)

Country Link
US (1) US20100062602A1 (ja)
EP (1) EP1881525A4 (ja)
JP (1) JP4550113B2 (ja)
KR (1) KR20080014799A (ja)
WO (1) WO2006118271A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187486B1 (en) * 2007-12-13 2012-05-29 Novellus Systems, Inc. Modulating etch selectivity and etch rate of silicon nitride thin films
EP2390925A1 (en) * 2010-05-31 2011-11-30 Applied Materials, Inc. Thin film solar fabrication process, etching method, device for etching, and thin film solar device
JP5870568B2 (ja) * 2011-05-12 2016-03-01 東京エレクトロン株式会社 成膜装置、プラズマ処理装置、成膜方法及び記憶媒体
JP5712874B2 (ja) * 2011-09-05 2015-05-07 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5803714B2 (ja) * 2012-02-09 2015-11-04 東京エレクトロン株式会社 成膜装置
JP6051788B2 (ja) * 2012-11-05 2016-12-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ発生装置
JP5939147B2 (ja) * 2012-12-14 2016-06-22 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
US9431268B2 (en) 2015-01-05 2016-08-30 Lam Research Corporation Isotropic atomic layer etch for silicon and germanium oxides
US9425041B2 (en) 2015-01-06 2016-08-23 Lam Research Corporation Isotropic atomic layer etch for silicon oxides using no activation
WO2019226341A1 (en) 2018-05-25 2019-11-28 Lam Research Corporation Thermal atomic layer etch with rapid temperature cycling
CN112424914A (zh) 2018-07-09 2021-02-26 朗姆研究公司 电子激励原子层蚀刻

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151962A (ja) * 2001-11-14 2003-05-23 Mitsubishi Heavy Ind Ltd エッチング方法及びエッチング装置
JP2004083945A (ja) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd 酸化金属膜及び窒化金属膜を作製する方法及び装置
JP2004200560A (ja) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd 金属膜作製装置及び金属膜作製方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083413A (en) * 1995-10-19 2000-07-04 Massachusetts Institute Of Technology Metals removal process
SG79292A1 (en) * 1998-12-11 2001-03-20 Hitachi Ltd Semiconductor integrated circuit and its manufacturing method
JP3727878B2 (ja) * 2001-11-14 2005-12-21 三菱重工業株式会社 金属膜作製装置
US20030145790A1 (en) * 2002-02-05 2003-08-07 Hitoshi Sakamoto Metal film production apparatus and metal film production method
EP1512772A1 (en) * 2002-03-08 2005-03-09 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film
US6753250B1 (en) * 2002-06-12 2004-06-22 Novellus Systems, Inc. Method of fabricating low dielectric constant dielectric films
JP2004083845A (ja) * 2002-06-25 2004-03-18 Nippon Shokubai Co Ltd 樹脂モルタル組成物及びその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151962A (ja) * 2001-11-14 2003-05-23 Mitsubishi Heavy Ind Ltd エッチング方法及びエッチング装置
JP2004083945A (ja) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd 酸化金属膜及び窒化金属膜を作製する方法及び装置
JP2004200560A (ja) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd 金属膜作製装置及び金属膜作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1881525A4 *

Also Published As

Publication number Publication date
US20100062602A1 (en) 2010-03-11
KR20080014799A (ko) 2008-02-14
JPWO2006118271A1 (ja) 2008-12-18
JP4550113B2 (ja) 2010-09-22
EP1881525A1 (en) 2008-01-23
EP1881525A4 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4550113B2 (ja) エッチング方法、低誘電率誘電体膜の製造方法、多孔性部材の製造方法並びにエッチング装置及び薄膜作製装置
JP6890550B2 (ja) 高アスペクト比ビアの洗浄
KR102588666B1 (ko) 기판 상의 구조물 형성 방법
TWI781279B (zh) 氧化矽薄膜的沉積後處理之方法
US9659791B2 (en) Metal removal with reduced surface roughness
US8551891B2 (en) Remote plasma burn-in
TWI463566B (zh) 低溫氧化矽轉換
TWI535882B (zh) 使用非碳可流動cvd製程形成氧化矽的方法
CN111247269A (zh) 介电膜的几何选择性沉积
TWI400343B (zh) A substrate processing method and a substrate processing apparatus
TW201617471A (zh) 在基板上在反應空間中形成氮化矽薄膜之方法
JP2006261217A (ja) 薄膜形成方法
WO2009057838A1 (en) Apparatus for surface-treating wafer using high-frequency inductively-coupled plasma
JP2006009144A (ja) 真空成膜装置
TW201903896A (zh) 被處理體之處理方法
WO2010045595A2 (en) Method for improving process control and film conformality of pecvd films
JP7494209B2 (ja) 調整された原子層堆積
TW201001620A (en) Method and apparatus for UV curing with water vapor
US20190393030A1 (en) Carbon Gapfill Films
JP2017139297A (ja) 成膜方法及び成膜装置
CN110310901A (zh) 清洁工艺腔室的方法
TW575912B (en) Method of depositing thin film using magnetic field
CN114156152A (zh) 利用等离子体的基板处理装置及方法
CN112391607A (zh) 成膜方法和成膜装置
TWI850649B (zh) 半導體處理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514848

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11919341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077027604

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745893

Country of ref document: EP