WO2006118021A1 - スイッチングレギュレータ及びこれを備えた電子機器 - Google Patents

スイッチングレギュレータ及びこれを備えた電子機器 Download PDF

Info

Publication number
WO2006118021A1
WO2006118021A1 PCT/JP2006/308104 JP2006308104W WO2006118021A1 WO 2006118021 A1 WO2006118021 A1 WO 2006118021A1 JP 2006308104 W JP2006308104 W JP 2006308104W WO 2006118021 A1 WO2006118021 A1 WO 2006118021A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
slope
sense
output
Prior art date
Application number
PCT/JP2006/308104
Other languages
English (en)
French (fr)
Inventor
Masaki Omi
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US11/910,474 priority Critical patent/US7750617B2/en
Priority to CN200680007078XA priority patent/CN101133543B/zh
Publication of WO2006118021A1 publication Critical patent/WO2006118021A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a switching regulator that generates a desired output voltage as well as an input voltage force, and an electronic device including the switching regulator, and in particular, a power supply device that requires high-speed response to load fluctuations It relates to general (LCD monitor power supplies, large LCD TV power supplies, onboard power supplies, etc.).
  • an energy storage element ON / OFF control (duty control) of an output transistor
  • ON / OFF control duty control
  • switching regulators chopper type regulators
  • the conventional general switching regulator is an error amplifier ERR that amplifies a difference voltage between a feedback voltage Vfb that varies according to an output voltage and a predetermined reference voltage Vref. And the drive control of the output transistor N1 is performed according to the error voltage Verr obtained by the error amplifier ERR.
  • the switch current Isw flowing through the output transistor N1 is detected as a sense voltage Vsense by a sense resistor Rs, and A method of controlling the drive of the output transistor N 1 according to the sense voltage Vsense (so-called current mode control method) is used together (for example, see Patent Document 1).
  • Patent Document 1 JP 2000-92833 A
  • the conventional switching regulator described above is configured to realize current mode control by directly referring to a minute sense voltage Vsense obtained with a sense resistance Rs of about several tens [ ⁇ ⁇ ]. It was said. For this reason, the above-mentioned conventional switching regulator has an output accuracy when used in a poor noise environment where the current mode control is easily affected by noise (for example, when mounted in a mobile phone terminal). There was a risk of lowering.
  • the present invention provides a switching regulator capable of improving the output accuracy under a noise environment that does not cause a decrease in conversion efficiency, and an electronic device including the same. For the purpose.
  • a switching regulator that achieves the above object generates an PWM signal by comparing an error voltage corresponding to a target error of an output voltage and a slope voltage for PWM control,
  • a switching regulator that generates a desired output voltage from an input voltage by driving one end of the energy storage element by performing on / off control of the output transistor based on a PWM signal,
  • Sense current generating means for generating a sense current corresponding to the flowing switch current, and the voltage level of the slope voltage is offset according to the sense current (first configuration).
  • the switching regulator according to the present invention is a switching regulator that generates a desired output voltage from an input voltage by driving one end of the energy storage element by on / off control of the output transistor.
  • a regulator a sense resistor that generates a sense voltage according to a switch current flowing through the output transistor, a sense current generator that generates a sense current according to the sense voltage, and a ramp waveform or a triangular waveform
  • a slope current generating means for generating a slope current, a slope voltage generating means for generating a slope voltage corresponding to the sum current of the sense current and the slope current, a feedback voltage corresponding to the output voltage and a predetermined target setting
  • An error voltage generating means for amplifying a difference from the voltage to generate an error voltage; a PWM signal generating means for generating a PWM signal by comparing the error voltage and the slope voltage; and based on the PWM signal
  • a switching control means for performing on / off control of the output transistor (second configuration).
  • the final slope voltage level can be increased to a desired level while keeping the resistance value of the sense resistor small, resulting in a decrease in conversion efficiency. Realizes current mode control that is less susceptible to noise and improves output accuracy in noisy environments. In addition, since a monitor transistor is not used, it is possible to realize current mode control with excellent power supply voltage characteristics and temperature characteristics that do not cause false detection due to a difference in pair characteristics.
  • the switching regulator having the second constituent force includes an inductor that is the energy storage element, a rectifying element that rectifies or switches an output current, and a smoothing capacitor that smoothes an output voltage. (3rd configuration).
  • the sense current generating means includes a first resistor through which a current corresponding to the sense voltage flows and a current flowing through the first resistor.
  • a first current mirror circuit that generates the sense current by mirroring a slope current generating circuit, the slope current generating means generating an oscillation voltage having a ramp waveform or a triangular waveform, and an oscillation voltage
  • a second current mirror circuit that generates the slope current by mirroring the current flowing through the second resistor, and the slope voltage generation means includes the sense voltage It is preferable to have a configuration (fourth configuration) including a third resistor through which a sum current of the current and the slope current is supplied and the one end force of the slope voltage is extracted.
  • the resistance value of the third resistor is set to a large value, and the voltage level of the final slope voltage is increased to a desired level while the resistance value of the sense resistor is set to a small value. It becomes possible.
  • the relative magnitude of the sense current and the slope current can be increased. It is possible to easily adjust the height.
  • the resistance value of the sense resistor varies with a predetermined temperature coefficient, and at least one of the first to third resistors is It is better to adopt a configuration (fifth configuration) that is adjusted so that the resistance value fluctuates with a temperature coefficient that cancels the temperature coefficient. With this configuration, output feedback control can be performed with high accuracy without depending on temperature fluctuations.
  • an electronic apparatus includes a switching regulator having any one of the first to fifth constituent forces as output conversion means of the apparatus power supply.
  • a battery can be used as the device power source.
  • the switching regulator according to the present invention is used as the power supply means for the data signal generation unit of the liquid crystal panel, the data write voltage to the pixel transistor is less likely to fluctuate, so that the liquid crystal drive is insufficient. Therefore, it is possible to perform excellent image display with less contrast reduction and brightness gradient without being lost or being unable to write to a display memory or the like.
  • FIG. 1 is a block diagram showing an embodiment of a mobile phone terminal according to the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the DCZDC converter 20.
  • FIG. 3 is a circuit diagram showing a conventional example of a switching regulator employing a current mode control method.
  • the present invention is applied to a DCZDC converter that is mounted on a mobile phone terminal and generates a driving voltage for each part of the terminal (for example, a TFT [Thin Film Transistor] liquid crystal panel) by converting the output voltage of the battery.
  • a driving voltage for each part of the terminal for example, a TFT [Thin Film Transistor] liquid crystal panel
  • FIG. 1 is a block diagram showing an embodiment of a mobile phone terminal according to the present invention (in particular, a TFT liquid). Power supply system part).
  • the mobile phone terminal of this embodiment includes a battery 10 as a device power supply, a DCZDC converter 20 as an output conversion means of the battery 10, and a TFT as a display means of the mobile phone terminal. And a liquid crystal panel 30.
  • the cellular phone terminal of the present embodiment has a transmission / reception circuit unit and a force unit as means for realizing the essential functions (communication function, etc.) in addition to the above components. Needless to say, a microphone unit, a display unit, an operation unit, a memory unit, and the like are included.
  • the DCZDC converter 20 generates a constant output voltage Vout from the input voltage Vin applied from the battery 10, and supplies the output voltage Vout to the TFT liquid crystal panel 30. Note that if the power supply to the data signal generation unit (not shown) that generates the data signal (voltage signal applied to the source line of the pixel transistor) of the TFT liquid crystal panel 30 becomes unstable, the liquid crystal is not driven. There is a risk that image quality deterioration such as a decrease in contrast and a luminance gradient may occur due to insufficient or writing to a display memory or the like. For this reason, the DCZDC comparator 20 is required to have high responsiveness to load fluctuations.
  • FIG. 2 is a circuit diagram (partly including a block) showing a configuration example of the DCZDC converter 20.
  • the DCZDC converter 20 of the present embodiment includes an external inductor Lex, a rectifier diode Dex (such as a Schottky barrier diode), a smoothing capacitor Cex, and a resistor Rexl to This is a step-up type switching regulator (Chopper type regulator) comprising Rex2.
  • a step-up type switching regulator Chopper type regulator
  • the switching power supply IC21 includes a switch drive circuit 211, a sense voltage generation circuit 212, a sense current generation circuit 213, a slope current generation circuit 214, a slope voltage generation circuit 215, Output feedback circuit 216, and external terminals T1 to T2 as means for electrical connection with the outside.
  • the switching power supply IC21 may incorporate other protection circuit blocks (such as a low input malfunction prevention circuit or a thermal protection circuit) as appropriate.
  • the switch drive circuit 211 includes a switching control unit CTRL and an N-channel field effect transistor N1.
  • the sense voltage generation circuit 212 includes a sense resistor Rs.
  • the sense current generation circuit 213 includes N-channel field effect transistors N2 to N4, P channel field effect transistors P1 to P4, a constant current source II, and a resistor R1.
  • Throw Current generation circuit 214 includes N-channel field effect transistors N5 to N6, P-channel field effect transistors P5 to P6, constant current source 12, variable current source 13, capacitor C1, and resistor R2.
  • the slope voltage generation circuit 215 includes a resistor R3.
  • the output feedback circuit 216 includes an error amplifier ERR, a DC voltage source E1, and a comparator CMP.
  • the drain of the transistor N1 is connected to the external terminal T1 (switch terminal).
  • the source of transistor N1 is grounded via sense resistor Rs.
  • the gate of the transistor N1 is connected to the control signal output terminal of the switching control unit CTRL.
  • the gate of the transistor P1 is connected to a connection node between the source of the transistor N1 and one end of the sense resistor Rs.
  • the drain of the transistor P1 is connected to the drain of the transistor N2, and the drain of the transistor P2 is connected to the drain of the transistor N3.
  • the gates of the transistors N2 and N3 are connected to each other, and the connection node is connected to the drain of the transistor N2.
  • the sources of the transistors N2 and N3 are both grounded.
  • the gate of the transistor P2 is grounded via the resistor R1 and is also connected to the source of the transistor N4. Of transistor N4.
  • the drain of transistor N4 is connected to the drain of transistor P3 of transistor P3.
  • the gates of transistors! ⁇ And P4 are connected to each other, and the connection node is connected to the drain of transistor P3.
  • the sources of transistors! ⁇ And P4 are all connected to the power line.
  • the drain of transistor P4 is grounded via resistor R3.
  • the drain of the transistor N5 is connected to the power supply line via the constant current source 12.
  • the source of the transistor N5 is grounded via the variable current source 13, and is also grounded via the capacitor C1.
  • the gates of the transistors N5 and N6 are connected to each other, and the connection node is connected to the drain of the transistor N5.
  • the drain of transistor N6 is connected to the drain of transistor P5.
  • the source of transistor N6 is resistor R2. Is grounded.
  • the gates of transistors! ⁇ And P6 are connected to each other, and the connection node is connected to the drain of transistor P5.
  • the sources of transistors! ⁇ And P6 are both connected to the power line.
  • the drain of transistor P6 is grounded through resistor R3.
  • the inverting input terminal (-) of the error amplifier ERR is connected to the external terminal T2 (output feedback terminal).
  • the non-inverting input terminal (+) of the error amplifier ERR is connected to the positive terminal of the DC voltage source E1.
  • the negative terminal of the DC voltage source E1 is grounded.
  • the non-inverting input terminal (+) of the comparator CMP is connected to the output terminal of the error amplifier ERR.
  • the inverting input terminal (one) of the comparator CMP is connected to a connection node between the drains of the transistors P4 and P6 and one end of the resistor R3.
  • the output terminal of the comparator CMP is connected to the PWM signal input terminal of the switching control unit CTRL.
  • the external terminal T1 is connected to one end of the inductor Lex outside the switching power supply IC21, and is also connected to the anode of the rectifier diode Dex.
  • the other end of the inductor Lex is connected to the application terminal of the input voltage Vin given from the battery 10.
  • the sword of the rectifier diode Dex is grounded via the smoothing capacitor Cex, and is also grounded via the resistors Re xl and Rex2.
  • the force sword of the rectifier diode Dex is also connected to the output terminal of the output voltage Vout (the power input terminal of the TFT liquid crystal panel 30 as a load).
  • the transistor N1 is an output transistor that is ON / OFF controlled by the switching control unit CTRL.
  • a switch current Isw flows to the inductor Lex via the transistor N1 toward the ground terminal, and the electrical energy is stored.
  • the current from the smoothing capacitor Cex flows through the load (TFT liquid crystal panel 30 not shown in the figure).
  • the rectifying diode Dex is in a reverse bias state, and the smoothing capacitor Cex is directed to the transistor N1. No current will flow in.
  • the switching power supply IC21 of the present embodiment drives the one end of the inductor Lex, which is an energy storage element, by on / off control of the transistor N1, thereby boosting the input voltage Vin and reducing the output voltage Vout. It functions as a component of the chiyotsuba type booster circuit to be generated.
  • the switch current Isw flowing through the transistor N1 is directly supplied to the sense resistor Rs, and the sense voltage Vsense is also generated at one end thereof.
  • the drain current of the transistor N2 and, moreover, the drain current of the transistor N3 are changed in accordance with the sense voltage Vsense applied to the gate of the transistor P1 from one end of the sense resistor Rs.
  • the opening / closing control of the transistor N4 is performed.
  • a current corresponding to the sense voltage Vsense flows through the resistor R1, and in the current mirror circuit composed of the transistors P3 and P4, a sense current Isense is generated by mirroring the current flowing through the resistor R1.
  • the variable current source 13 is turned on and off at a predetermined cycle, and the capacitor C1 is repeatedly charged and discharged, thereby generating an oscillation voltage Vosc having a ramp waveform (sawtooth waveform).
  • a current corresponding to the oscillation voltage Vosc flows through the resistor R2, and the current mirror circuit composed of the transistors P5 and P6 generates a slope current Islope by mirroring the current flowing through the resistor R2.
  • the slope current Islope may be a triangular waveform current signal.
  • an addition current (Isense + Islope) of the sense current Isense and the slope current Islope is passed through the resistor R3, and the slope voltage Vslope is drawn from one end thereof.
  • Vslope R3 x (lsense + Islope)
  • the voltage level of the slope voltage signal Vslope is offset to a higher level as the sense current Isense (and thus the switch current Isw) is larger.
  • the resistance value of the sense resistor Rs is set small by setting the resistance value of the resistor R3 large. It is possible to increase the voltage level of the final slope voltage Vslope to a desired level. Therefore, it is possible to realize current mode control that is not easily affected by noise without causing a decrease in conversion efficiency, and to improve output accuracy in a noise environment.
  • the relative magnitude of the sense current Isense and the slope current Islope can be adjusted appropriately according to the specifications of the DCZDC converter 20 (for example, the magnitude of the inductor Lex). Good. At that time, in the case of the DCZDC converter 20 of the present embodiment, the above adjustment can be easily performed by appropriately selecting the resistance values of the resistors Rl and R2.
  • the error amplifier ERR is generated by the output feedback voltage Vfb (corresponding to the actual value of the output voltage Vout) drawn from the connection node of the external resistors Rexl and Rex2, and the DC voltage source E1.
  • the error voltage Verr is generated by amplifying the difference from the reference voltage Vref (corresponding to the target set value Vtarget of the output voltage Vout). That is, the voltage level of the error voltage Verr increases as the output voltage Vout is lower than its target set value Vtarge. It becomes.
  • the comparator CMP is a PWM comparator that compares the error voltage Verr and the slope voltage Vslope to generate a PWM [Pulse Width Modulation] signal. That is, the on-duty of the PWM signal (ratio of the on-period of the transistor N1 in the unit period) varies sequentially according to the relative level of the error voltage Verr and the slope voltage Vslope. Specifically, the lower the output voltage Vout is lower than its target set value Vtarge, the larger the on-duty of the PWM signal. As the output voltage Vout approaches the target set value Vtarget, the on-duty of the PWM signal is increased. Becomes smaller. Also, the larger the switch current Isw, the smaller the on-duty of the PWM signal.
  • the switching control unit CTRL performs switching control of the transistor N1 according to the PWM signal. More specifically, the switching control unit CTRL turns on the transistor N1 during the on period of the PWM signal and turns off the transistor N1 during the off period of the PWM signal.
  • the switching power supply IC21 of the present embodiment can adjust the output voltage Vout to the target set value Vtarget by voltage feedback control based on the error voltage Verr.
  • the current mode control based on the switch current Isw can improve the response to input / output fluctuations and load fluctuations.
  • the resistance value of the sense resistor Rs varies with a predetermined temperature coefficient, and at least one of the resistors R1 to R3 cancels the temperature coefficient.
  • the resistance is adjusted to vary with the temperature coefficient.
  • the sense resistor Rs is a resistor using aluminum wiring in order to obtain a minute resistance value of several tens [m ⁇ ], and the resistance value has a positive temperature coefficient (+4000 [ppmZ ° C]).
  • the ppm used as the unit of temperature characteristics is an abbreviation of parts par million and represents one millionth.
  • the resistance value of the sense resistor Rs which has a temperature coefficient of +4000 [ppmZ ° C]
  • the resistance value of the resistor R1 is set so as to cancel out the positive temperature coefficient of the sense resistor Rs.
  • the base resistance semiconductor resistance
  • the resistance value of the resistor R1 needs to be at least several hundred [ ⁇ ] so that the current flowing through the resistor R1 does not become excessive. For this reason, it is not possible to use a highly conductive aluminum resistor as the resistor R1, and since the resistor described later was used alone, the temperature coefficient of the sense resistor Rs and the resistor R1 is about +1000 [ppmZ ° C] The difference remains.
  • the resistor R3 it is necessary to use a resistance element whose resistance value varies with a positive temperature coefficient (about +1000 [ppmZ ° C]) so as to cancel out the difference in temperature coefficient. is there.
  • a resistance element having a resistance value of several tens [k ⁇ ] that increases the voltage level of the slope voltage Vslope to a desired value.
  • a base temperature or poly resistance (polycrystalline silicon resistance) is not used as the resistance R3 alone, but a positive temperature coefficient (about +3000 [ppmZ ° C]).
  • the resistor R3 is formed by serially connecting a base resistor with a negative resistance and a poly resistor with a negative temperature coefficient (about 2000 [ppmZ ° C]).
  • step-up DCZDC converter the case where the present invention is applied to the step-up DCZDC converter has been described as an example.
  • application target of the present invention is not limited to this.
  • step-down and step-up / step-down DCZDC converters various changes can be made to the configuration of the present invention without departing from the spirit of the invention.
  • a synchronous rectifier element may be built in the switching power supply IC, or a neopolar transistor may be used as the output transistor.
  • the present invention is a technique useful for improving the output accuracy of a switching regulator adopting a current mode control method, and particularly requires high conversion efficiency and high-speed power output response to load fluctuations.
  • this is a technique suitable as a power supply means for an electronic apparatus (such as a mobile phone terminal) that is expected to be used in a poor noise environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 本発明に係るスイッチングレギュレータ20は、センス抵抗Rsと、センス電圧Vsenseに応じたセンス電流Isenseを生成するセンス電流生成回路213と、ランプ波或いは三角波のスロープ電流Islopeを生成するスロープ電流生成回路214と、加算電流(Isense+Islope)に応じたスロープ電圧Vslopeを生成するスロープ電圧生成回路215と、出力誤差に応じた誤差電圧Verrを生成する誤差増幅器ERRと、誤差電圧Verrとスロープ電圧Vslopeを比較してPWM信号を生成するコンパレータCMPと、PWM信号に基づいて出力トランジスタN1のオン/オフ制御を行うスイッチング制御部CTRLと、を有して成る構成とされている。

Description

明 細 書
スイッチングレギユレータ及びこれを備えた電子機器
技術分野
[0001] 本発明は、入力電圧力も所望の出力電圧を生成するスイッチングレギユレータ、及 び、これを備えた電子機器に関するものであり、特に、負荷変動に対する高速応答 性が要求される電源装置全般 (液晶モニタ用電源や大型液晶テレビ用電源、オンボ ード用電源など)に関するものである。
背景技術
[0002] 従来より、熱損失が少なぐかつ、入出力較差が大きい場合に比較的効率が良い 安定化電源手段の一つとして、出力トランジスタのオン Zオフ制御(デューティ制御) によってエネルギ貯蔵素子 (コンデンサやインダクタなど)の一端を駆動することで、 入力電圧力 所望の出力電圧を生成するスイッチングレギユレータ (チヨッパ型レギュ レータ)が広く用いられて 、る。
[0003] なお、従来の一般的なスイッチングレギユレータは、図 3で示すように、出力電圧に 応じて変動する帰還電圧 Vfbと所定の基準電圧 Vrefとの差電圧を増幅する誤差ァ ンプ ERRを有して成り、当該誤差アンプ ERRで得られる誤差電圧 Verrに応じて出力 トランジスタ N1の駆動制御を行う構成とされていた。
[0004] また、負荷変動に対する高速応答性が要求されるスイッチングレギユレータでは、 図 3で示すように、出力トランジスタ N1に流れるスィッチ電流 Iswをセンス抵抗 Rsでセ ンス電圧 Vsenseとして検出し、当該センス電圧 Vsenseに応じて出力トランジスタ N 1 の駆動制御を行う方式 ( 、わゆる、電流モード制御方式)が併用されて 、た (例えば、 特許文献 1を参照)。
特許文献 1:特開 2000— 92833号公報
発明の開示
発明が解決しょうとする課題
[0005] 確力に、上記従来のスイッチングレギユレータであれば、負荷変動に誤差アンプ ER Rの出力が追従できなくても、スィッチ電流 Iswの検出結果に応じて出力トランジスタ Nlを直接駆動制御することができるので、変動の少ない安定した出力電圧を生成す ることが可能である。
[0006] し力しながら、上記従来のスイッチングレギユレータは、数十 [πι Ω ]程度のセンス抵 抗 Rsで得られる微少なセンス電圧 Vsenseを直接参照して電流モード制御を実現す る構成とされていた。そのため、上記従来のスイッチングレギユレータは、その電流モ ード制御がノイズの影響を受け易ぐ劣悪なノイズ環境下での使用時 (例えば携帯電 話端末への搭載時)には、出力精度が低下するおそれがあった。
[0007] なお、図 3に示すように、出力トランジスタ N1にセンス抵抗 Rsを直列接続した構成 では、センス抵抗 Rsの抵抗値を大きくしてセンス電圧 Vsenseの電圧レベルを高めた 場合、その SZNを向上し得る反面、スイッチングレギユレータの変換効率の低下を 招く結果となっていた。
[0008] 本発明は、上記の問題点に鑑み、変換効率の低下を招くことなぐノイズ環境下で の出力精度を向上することが可能なスイッチングレギユレータ及びこれを備えた電子 機器を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成すベぐ本発明に係るスイッチングレギユレータは、出力電圧の目 標誤差に応じた誤差電圧と PWM制御用のスロープ電圧とを比較して PWM信号を 生成し、該 PWM信号に基づいて出力トランジスタのオン Zオフ制御を行うことにより エネルギ貯蔵素子の一端を駆動することで、入力電圧から所望の出力電圧を生成す るスイッチングレギユレータであって、前記出力トランジスタに流れるスィッチ電流に応 じたセンス電流を生成するセンス電流生成手段を有して成り、前記スロープ電圧の電 圧レベルは、前記センス電流に応じてオフセットされる構成 (第 1の構成)とされている
[0010] より具体的に述べると、本発明に係るスイッチングレギユレータは、出力トランジスタ のオン Zオフ制御によりエネルギ貯蔵素子の一端を駆動することで、入力電圧から 所望の出力電圧を生成するスイッチングレギユレータであって、前記出力トランジスタ に流れるスィッチ電流に応じたセンス電圧を生成するセンス抵抗と、前記センス電圧 に応じたセンス電流を生成するセンス電流生成手段と、ランプ波形或いは三角波形 のスロープ電流を生成するスロープ電流生成手段と、前記センス電流と前記スロープ 電流との加算電流に応じたスロープ電圧を生成するスロープ電圧生成手段と、前記 出力電圧に応じた帰還電圧と所定の目標設定電圧との差分を増幅して誤差電圧を 生成する誤差電圧生成手段と、前記誤差電圧と前記スロープ電圧とを比較して PW M信号を生成する PWM信号生成手段と、前記 PWM信号に基づいて前記出力トラ ンジスタのオン Zオフ制御を行うスイッチング制御手段と、を有して成る構成 (第 2の 構成)とされている。
[0011] このような構成とすることにより、センス抵抗の抵抗値を小さく設定したまま、最終的 なスロープ電圧の電圧レベルを所望のレベルにまで高めることができるので、変換効 率の低下を招くことなぐノイズの影響を受けにくい電流モード制御を実現し、ノイズ 環境下での出力精度を向上することが可能となる。また、モニタトランジスタを用いな いので、ペア性のずれなどに起因して誤検出を起こすことがなぐ電源電圧特性や温 度特性に優れた電流モード制御を実現することが可能となる。
[0012] なお、上記第 2の構成力も成るスイッチングレギユレータは、前記エネルギ貯蔵素子 であるインダクタと、出力電流を整流またはスイッチングする整流素子と、出力電圧を 平滑化する平滑コンデンサと、を有して成る構成 (第 3の構成)にするとよい。
[0013] また、上記第 2または第 3の構成力 成るスイッチングレギユレータにおいて、前記 センス電流生成手段は、前記センス電圧に応じた電流が流される第 1抵抗と、該第 1 抵抗に流れる電流をミラーして前記センス電流を生成する第 1カレントミラー回路と、 を有して成り、前記スロープ電流生成手段は、ランプ波形或いは三角波形の発振電 圧を生成する発振回路と、前記発振電圧に応じた電流が流される第 2抵抗と、該第 2 抵抗に流れる電流をミラーして前記スロープ電流を生成する第 2カレントミラー回路と 、を有して成り、前記スロープ電圧生成手段は、前記センス電流とスロープ電流との 加算電流が流されてその一端力 前記スロープ電圧が引き出される第 3抵抗を有し て成る構成 (第 4の構成)にするとよい。このような構成とすることにより、第 3抵抗の抵 抗値を大きく設定することで、センス抵抗の抵抗値を小さく設定したまま、最終的なス ロープ電圧の電圧レベルを所望のレベルにまで高めることが可能となる。また、第 1、 第 2抵抗の抵抗値を適宜選択することでセンス電流とスロープ電流との相対的な大き さを容易に調整することが可能となる。
[0014] また、上記第 4の構成力 成るスイッチングレギユレータにおいて、前記センス抵抗 の抵抗値は、所定の温度係数をもって変動するものであり、第 1〜第 3抵抗の少なく とも一は、上記の温度係数を相殺する温度係数をもってその抵抗値が変動するよう に調整されている構成 (第 5の構成)にするとよい。このような構成とすることにより、温 度変動に依ることなぐ高精度に出力帰還制御を行うことが可能となる。
[0015] また、本発明に係る電子機器は、装置電源の出力変換手段として、上記第 1〜第 5 いずれかの構成力も成るスイッチングレギユレータを備えて成る。なお、前記装置電 源としては、ノ ッテリを用いることができる。このような構成とすることにより、バッテリの 浪費を招くことなぐノイズ環境下でも安定した電力供給を行うことが可能となる。特に 、液晶パネルのデータ信号生成部に対する電力供給手段として、本発明に係るスィ ツチングレギユレータを用いれば、画素トランジスタへのデータ書き込み電圧が変動 しにくくなるので、液晶の駆動が不十分となったり、表示メモリ等への書き込みができ なくなったりすることなぐコントラスト低下や輝度傾斜等の少ない優れた画像表示を 行うことができる。
発明の効果
[0016] 上記したように、本発明に係るスイッチングレギユレータであれば、変換効率の低下 を招くことなぐノイズ環境下での出力精度を向上することが可能となり、延いては、こ れを備えた電子機器の消費電力低減並びに信頼性向上を図ることが可能となる。 図面の簡単な説明
[0017] [図 1]は、本発明に係る携帯電話端末の一実施形態を示すブロック図である。
[図 2]は、 DCZDCコンバータ 20の一構成例を示す回路図である。
[図 3]は、電流モード制御方式を採用したスイッチングレギユレ一タのー従来例を示 す回路図である。
符号の説明
[0018] 10 バッテリ
20 DCZDCコンバータ(スイッチングレギユレータ)
30 TFT液晶パネル 21 スイッチング電源 IC
211 スィッチ駆動回路
212 センス電圧生成回路
213 センス電流生成回路
214 スロープ電流生成回路
215 スロープ電圧生成回路
216 出力帰還回路
CTRL スイッチング制御部
N1〜N6 Nチヤネノレ電界効果トランジスタ
P1〜P6 Pチャネル電界効果トランジスタ
Rs センス抵抗
R1〜R3 抵抗
11〜12 定電流源
13 可変電流源
C1 コンデンサ
ERR 誤差増幅器
E1 直流電圧源
CMP コンノ レータ
T1〜T2 外部端子
Lex インダクタ (外付け)
Dex 整流ダイオード (外付け)
Cex 平滑コンデンサ(外付け)
Rexl〜Rex2 抵抗(外付け)
発明を実施するための最良の形態
[0019] 以下では、携帯電話端末に搭載され、ノ ッテリの出力電圧を変換して端末各部 (例 えば TFT[Thin Film Transistor]液晶パネル)の駆動電圧を生成する DCZDCコ ンバータに本発明を適用した場合を例に挙げて説明を行う。
[0020] 図 1は、本発明に係る携帯電話端末の一実施形態を示すブロック図(特に、 TFT液 晶パネルへの電源系部分)である。本図に示すように、本実施形態の携帯電話端末 は、装置電源であるノ ッテリ 10と、ノ ッテリ 10の出力変換手段である DCZDCコンパ ータ 20と、携帯電話端末の表示手段である TFT液晶パネル 30と、を有して成る。な お、本図には明示されていないが、本実施形態の携帯電話端末は、上記構成要素 のほか、その本質機能 (通信機能など)を実現する手段として、送受信回路部、スピ 一力部、マイク部、表示部、操作部、メモリ部など、を当然に有して成る。
[0021] DCZDCコンバータ 20は、バッテリ 10から印加される入力電圧 Vinから一定の出 力電圧 Voutを生成し、該出力電圧 Voutを TFT液晶パネル 30に供給する。なお、 T FT液晶パネル 30のデータ信号 (画素トランジスタのソース線に印加される電圧信号 )を生成するデータ信号生成部 (不図示)への電源供給が不安定になると、液晶の駆 動が不十分となったり、表示メモリ等への書き込みができなくなったりして、コントラスト 低下や輝度傾斜等の画質劣化を生じるおそれがある。そのため、 DCZDCコンパ一 タ 20には、負荷変動に対する高応答性が要求されている。
[0022] 図 2は、 DCZDCコンバータ 20の一構成例を示す回路図(一部にブロックを含む) である。本図に示す通り、本実施形態の DCZDCコンバータ 20は、スイッチング電源 IC21のほ力 外付けのインダクタ Lex、整流ダイオード Dex (ショットキーバリアダイォ ードなど)、平滑コンデンサ Cex、及び、抵抗 Rexl〜Rex2を有して成る昇圧型スイツ チングレギユレータ(チヨッパ型レギユレータ)である。
[0023] スイッチング電源 IC21は、回路ブロック的に見ると、スィッチ駆動回路 211と、セン ス電圧生成回路 212と、センス電流生成回路 213と、スロープ電流生成回路 214と、 スロープ電圧生成回路 215と、出力帰還回路 216と、を有するほか、外部との電気的 な接続手段として、外部端子 T1〜T2を有して成る。なお、スイッチング電源 IC21〖こ は、上記した回路ブロックのほか、その他の保護回路ブロック (低入力誤動作防止回 路ゃ熱保護回路など)を適宜組み込んでも構わな ヽ。
[0024] スィッチ駆動回路 211は、スイッチング制御部 CTRLと、 Nチャネル電界効果トラン ジスタ N1と、を有して成る。センス電圧生成回路 212は、センス抵抗 Rsを有して成る 。センス電流生成回路 213は、 Nチャネル電界効果トランジスタ N2〜N4と、 Pチヤネ ル電界効果トランジスタ P1〜P4と、定電流源 IIと、抵抗 R1と、を有して成る。スロー プ電流生成回路 214は、 Nチャネル電界効果トランジスタ N5〜N6と、 Pチャネル電 界効果トランジスタ P5〜P6と、定電流源 12と、可変電流源 13と、コンデンサ C1と、抵 抗 R2と、を有して成る。スロープ電圧生成回路 215は、抵抗 R3を有して成る。出力 帰還回路 216は、誤差増幅器 ERRと、直流電圧源 E1と、コンパレータ CMPと、を有 して成る。
[0025] 上記各構成要素間の接続関係について、さらに説明する。
[0026] トランジスタ N1のドレインは、外部端子 T1 (スィッチ端子)に接続されて!、る。トラン ジスタ N1のソースは、センス抵抗 Rsを介して接地されている。トランジスタ N1のゲー トは、スイッチング制御部 CTRLの制御信号出力端に接続されて 、る。
[0027] トランジスタ P1のゲートは、トランジスタ N1のソースとセンス抵抗 Rsの一端との接続 ノードに接続されている。トランジスタお、 P2のソースは、いずれも定電流源 IIを介し て電源ライン(=Vin[V]、以下同様)に接続されている。トランジスタ P1のドレインは 、トランジスタ N2のドレインに接続されており、トランジスタ P2のドレインは、トランジス タ N3のドレインに接続されている。トランジスタ N2、 N3のゲートは互いに接続されて おり、その接続ノードは、トランジスタ N2のドレインに接続されている。トランジスタ N2 、 N3のソースは、いずれも接地されている。トランジスタ P2のゲートは、抵抗 R1を介 して接地される一方、トランジスタ N4のソースにも接続されている。トランジスタ N4の されている。トランジスタ N4のドレインは、トランジスタ P3のトランジスタ P3のドレイン に接続されている。トランジスタ!^、 P4のゲートは互いに接続されており、その接続ノ ードは、トランジスタ P3のドレインに接続されている。トランジスタ!^、 P4のソースは、 いずれも電源ラインに接続されている。トランジスタ P4のドレインは、抵抗 R3を介して 接地されている。
[0028] トランジスタ N5のドレインは、定電流源 12を介して電源ラインに接続されている。トラ ンジスタ N5のソースは、可変電流源 13を介して接地される一方、コンデンサ C1を介 しても接地されている。トランジスタ N5、 N6のゲートは互いに接続されており、その接 続ノードは、トランジスタ N5のドレインに接続されている。トランジスタ N6のドレインは 、トランジスタ P5のドレインに接続されている。トランジスタ N6のソースは、抵抗 R2を 介して接地されている。トランジスタ!^、 P6のゲートは互いに接続されており、その接 続ノードは、トランジスタ P5のドレインに接続されている。トランジスタ!^、 P6のソース は、いずれも電源ラインに接続されている。トランジスタ P6のドレインは、抵抗 R3を介 して接地されている。
[0029] 誤差増幅器 ERRの反転入力端(-)は、外部端子 T2 (出力帰還端子)に接続され ている。誤差増幅器 ERRの非反転入力端(+ )は、直流電圧源 E1の正極端に接続 されている。直流電圧源 E1の負極端は、接地されている。コンパレータ CMPの非反 転入力端(+ )は、誤差増幅器 ERRの出力端に接続されている。コンパレータ CMP の反転入力端(一)は、トランジスタ P4、 P6の各ドレインと抵抗 R3の一端との接続ノ ードに接続されている。コンパレータ CMPの出力端は、スイッチング制御部 CTRLの PWM信号入力端に接続されて 、る。
[0030] 外部端子 T1は、スイッチング電源 IC21の外部において、インダクタ Lexの一端に 接続される一方、整流ダイオード Dexのアノードにも接続されている。インダクタ Lex の他端は、バッテリ 10から与えられる入力電圧 Vinの印加端に接続されている。整流 ダイオード Dexの力ソードは、平滑コンデンサ Cexを介して接地される一方、抵抗 Re xl、 Rex2を介しても接地されている。また、整流ダイオード Dexの力ソードは、出力 電圧 Voutの引出端 (負荷である TFT液晶パネル 30の電源入力端)にも接続されて いる。
[0031] まず、上記構成力も成るスイッチング電源 IC21の基本動作 (直流 Z直流変換動作 )について説明する。
[0032] トランジスタ N1は、スイッチング制御部 CTRLによってオン Zオフ制御される出力ト ランジスタである。トランジスタ N1がオン状態にされると、インダクタ Lexには、トランジ スタ N1を介して接地端に向けたスィッチ電流 Iswが流れ、その電気工ネルギが蓄え られる。なお、トランジスタ N1のオン期間において、すでに平滑コンデンサ Cexに電 荷が蓄積されていた場合、負荷 (本図には示していない TFT液晶パネル 30)には、 平滑コンデンサ Cexからの電流が流れることになる。また、このとき、外部端子 T1の 電位は、トランジスタ N1を介して、ほぼ接地電位まで低下しているため、整流ダイ オード Dexは逆バイアス状態となり、平滑コンデンサ Cexからトランジスタ N1に向けて 電流が流れ込むことはな 、。
[0033] 一方、トランジスタ N1がオフ状態にされると、インダクタ Lexに生じた逆起電圧によ つて、そこに蓄積されていた電気工ネルギが放出される。このとき、整流ダイオード D exは順バイアス状態となるため、当該整流ダイオード Dexを介して流れる電流は、負 荷に流れ込むとともに、平滑コンデンサ Cexを介して接地端にも流れ込み、該平滑コ ンデンサ Cexを充電することになる。上記の動作が繰り返されることで、負荷である T FT液晶パネル 30には、平滑コンデンサ Cexにより平滑された直流出力が供給される
[0034] このように、本実施形態のスイッチング電源 IC21は、トランジスタ N1のオン Zオフ 制御によってエネルギ貯蔵素子であるインダクタ Lexの一端を駆動することで、入力 電圧 Vinを昇圧して出力電圧 Voutを生成するチヨツバ型昇圧回路の一構成要素とし て機能するものである。
[0035] 次に、上記構成力も成るスイッチング電源 IC21の電圧帰還制御及び電流モード制 御について説明する。
[0036] センス電圧生成回路 212では、トランジスタ N1に流れるスィッチ電流 Iswがセンス 抵抗 Rsに直接的に流され、その一端力もセンス電圧 Vsenseが弓 |き出される。
[0037] センス電流生成回路 213では、センス抵抗 Rsの一端からトランジスタ P1のゲートに 印加されるセンス電圧 Vsenseに応じて、トランジスタ N2のドレイン電流、延いては、ト ランジスタ N3のドレイン電流が変動され、もってトランジスタ N4の開閉制御が行われ る。その結果、抵抗 R1には、センス電圧 Vsenseに応じた電流が流され、トランジスタ P3、 P4から成るカレントミラー回路では、抵抗 R1に流れる電流をミラーすることでセ ンス電流 Isenseが生成される。
[0038] スロープ電流生成回路 214では、可変電流源 13が所定の周期でオン Zオフされて 、コンデンサ C1の充放電が繰り返され、ランプ波形(のこぎり波形)の発振電圧 Vosc が生成される。その結果、抵抗 R2には、発振電圧 Voscに応じた電流が流され、トラ ンジスタ P5、 P6から成るカレントミラー回路では、抵抗 R2に流れる電流をミラーする ことでスロープ電流 Islopeが生成される。なお、スロープ電流 Islopeは、三角波形の 電流信号としても構わない。 [0039] スロープ電圧生成回路 215では、センス電流 Isenseとスロープ電流 Islopeとの加 算電流(Isense+Islope)が抵抗 R3に流され、その一端からスロープ電圧 Vslopeが 引き出される。
[0040] 上記構成により、スロープ電圧 Vslopeの電圧レベルは、以下の(1)式で表されるこ とになる。
[0041] [数 1]
Vslope = R3 x (lsense+ Islope)
Isw - Rs Vosc、
Rl R2
上記(1)式からも分かるように、スロープ電圧信号 Vslopeの電圧レベルは、センス 電流 Isense (延いてはスィッチ電流 Isw)が大きいほど、高レベル側にオフセットされ ることになる。
[0042] また、上記(1)式からも分力るように、本実施形態の DCZDCコンバータ 20であれ ば、抵抗 R3の抵抗値を大きく設定することで、センス抵抗 Rsの抵抗値を小さく設定し たまま、最終的なスロープ電圧 Vslopeの電圧レベルを所望のレベルにまで高めるこ とが可能となる。従って、変換効率の低下を招くことなぐノイズの影響を受けにくい電 流モード制御を実現し、ノイズ環境下での出力精度を向上することが可能となる。
[0043] なお、センス電流 Isenseとスロープ電流 Islopeとの相対的な大きさにつ!/、ては、 D CZDCコンバータ 20の仕様 (例えばインダクタ Lexの大きさ)に応じて、適宜調整す ればよい。その際、本実施形態の DCZDCコンバータ 20であれば、抵抗 Rl、 R2の 抵抗値を適宜選択することで、容易に上記調整を行うことが可能となる。
[0044] 出力帰還回路 216において、誤差増幅器 ERRは、外付けの抵抗 Rexl、 Rex2の 接続ノードから引き出される出力帰還電圧 Vfb (出力電圧 Voutの実際値に相当)と、 直流電圧源 E1で生成される参照電圧 Vref (出力電圧 Voutの目標設定値 Vtarget に相当)との差分を増幅して誤差電圧 Verrを生成する。すなわち、誤差電圧 Verrの 電圧レベルは、出力電圧 Voutがその目標設定値 Vtarge りも低いほど、高レベル となる。
[0045] コンパレータ CMPは、誤差電圧 Verrとスロープ電圧 Vslopeを比較して PWM[Pul se Width Modulation]信号を生成する PWMコンパレータである。すなわち、 PWM 信号のオンデューティ(単位期間に占めるトランジスタ N1のオン期間の比)は、誤差 電圧 Verrとスロープ電圧 Vslopeの相対的な高低に応じて逐次変動する。具体的に 述べると、出力電圧 Voutがその目標設定値 Vtarge りも低いほど、 PWM信号の オンデューティは大きくなり、出力電圧 Voutがその目標設定値 Vtargetに近付く〖こ つれて、 PWM信号のオンデューティは小さくなる。また、スィッチ電流 Iswが大きい ほど、 PWM信号のオンデューティは小さくなる。
[0046] スイッチング制御部 CTRLは、入力電圧 Vinを昇圧して出力電圧 Voutを得るに際 し、上記の PWM信号に応じてトランジスタ N1のスイッチング制御を行う。より具体的 に述べると、スイッチング制御部 CTRLは、 PWM信号のオン期間にトランジスタ N1 をオン状態とし、 PWM信号のオフ期間にトランジスタ N1をオフ状態とする。
[0047] このように、本実施形態のスイッチング電源 IC21は、誤差電圧 Verrに基づく電圧 帰還制御により、出力電圧 Voutをその目標設定値 Vtargetに合わせ込むことができ る。また、スィッチ電流 Iswに基づく電流モード制御により、入出力変動や負荷変動 に対する応答性を向上することが可能となる。
[0048] なお、上記構成から成る DCZDCコンバータ 20において、センス抵抗 Rsの抵抗値 は、所定の温度係数をもって変動するものであり、抵抗 R1〜R3の少なくとも一は、上 記の温度係数を相殺する温度係数をもってその抵抗値が変動するように調整されて いる構成とされている。以下では、当該構成について、詳細な説明を行う。
[0049] センス抵抗 Rsは、数十 [m Ω ]の微少な抵抗値を得るために、アルミニウム配線を用 いた抵抗とされており、その抵抗値は、正の温度係数(+4000[ppmZ°C]程度)を もって変動する。なお、温度特性の単位として用いた ppmとは、 parts par millionの 略であり、 100万分の 1を表している。すなわち、 +4000[ppmZ°C]の温度係数を 持つセンス抵抗 Rsの抵抗値は、温度が 1 [°C]上昇すると、 100万分の 4000、すなわ ち、 +0. 4[%]だけ大きくなる。
[0050] 抵抗 R1は、センス抵抗 Rsの有する正の温度係数を相殺するように、その抵抗値が 同じく正の温度係数( + 3000 [ppmZ°C]程度)をもって変動するベース抵抗 (半導 体抵抗)とされている。なお、消費電力低減の観点から、抵抗 R1に流れる電流が過 大とならないように、抵抗 R1の抵抗値としては少なくとも数百 [ Ω ]が必要となる。その ため、抵抗 R1として導電性の高いアルミニウム抵抗を用いることはできず、後述する 抵抗を単独で用いていたので、センス抵抗 Rsと抵抗 R1の温度係数には、 + 1000[ ppmZ°C]程度の差違が残存する。
[0051] そのため、抵抗 R3としては、上記温度係数の差異分を相殺するように、その抵抗値 が正の温度係数( + 1000 [ppmZ°C]程度)をもって変動する抵抗素子を用いる必 要がある。また、抵抗 R3としては、スロープ電圧 Vslopeの電圧レベルを所望値まで 高めるベぐ数十 [k Ω ]の抵抗値を有する抵抗素子を用いる必要がある。
[0052] そこで、本実施形態では、抵抗 R3として、ベース抵抗やポリ抵抗 (多結晶シリコン抵 抗)を単独で用 、るのではなく、正の温度係数( + 3000 [ppmZ°C]程度)を有する ベース抵抗と、負の温度係数(一 2000 [ppmZ°C]程度)を有するポリ抵抗と、を直 列接続することで、抵抗 R3を形成する構成としている。
[0053] このような抵抗素子の選択を行うことにより、スイッチング電源 IC21のチップ温度が 変動しても、高精度に出力帰還制御を行うことが可能となる。
[0054] なお、上記では、センス電流生成回路 213についてのみ着目し、スロープ電流生 成回路 214を構成する抵抗 R2については、特段言及しなカゝつた力 抵抗 R2につい ても、上記と同様の考察に基づいて、適宜抵抗素子を選択すればよい。
[0055] また、温度調整を変更した!/ヽときは、正と負の抵抗の割合を変更して、抵抗 R3を形 成すればよい。
[0056] また、上記の実施形態では、携帯電話端末に搭載され、ノ ッテリの出力変換手段と して用いられる DCZDCコンバータに本発明を適用した場合を例に挙げて説明を行 つたが、本発明の適用対象はこれに限定されるものではなぐ本発明は、その他の電 子機器に搭載される DCZDCコンバータにも広く適用することが可能である。
[0057] また、上記の実施形態では、昇圧型の DCZDCコンバータに本発明を適用した場 合を例に挙げて説明を行ったが、本発明の適用対象はこれに限定されるものではな ぐ降圧型や昇降圧型の DCZDCコンバータにも同様に適用することが可能である。 [0058] また、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種 々の変更をカ卩えることが可能である。例えば、外付けの整流ダイオードに代えて同期 整流素子をスイッチング電源 ICに内蔵する構成としてもよいし、出力トランジスタとし てノイポーラトランジスタを用いる構成としても構わな 、。
産業上の利用可能性
[0059] 本発明は、電流モード制御方式を採用したスイッチングレギユレータの出力精度向 上を図る上で有用な技術であり、特に、高い変換効率や負荷変動に対する電源出力 の高速応答性が要求され、かつ、劣悪なノイズ環境下での使用が想定される電子機 器 (携帯電話端末など)の電源手段として好適な技術である。

Claims

請求の範囲
[1] 出力電圧の目標誤差に応じた誤差電圧と PWM制御用のスロープ電圧とを比較し て PWM信号を生成し、該 PWM信号に基づ!/、て出力トランジスタのオン Zオフ制御 を行うことによりエネルギ貯蔵素子の一端を駆動することで、入力電圧から所望の出 力電圧を生成するスイッチングレギユレータであって、前記出力トランジスタに流れる スィッチ電流に応じたセンス電流を生成するセンス電流生成部を有して成り、前記ス ロープ電圧の電圧レベルは、前記センス電流に応じてオフセットされることを特徴とす るスイッチングレギユレータ。
[2] 出力トランジスタのオン Zオフ制御によりエネルギ貯蔵素子の一端を駆動すること で、入力電圧力 所望の出力電圧を生成するスイッチングレギユレータであって、前 記出力トランジスタに流れるスィッチ電流に応じたセンス電圧を生成するセンス抵抗と 、前記センス電圧に応じたセンス電流を生成するセンス電流生成部と、ランプ波形或 いは三角波形のスロープ電流を生成するスロープ電流生成部と、前記センス電流と 前記スロープ電流との加算電流に応じたスロープ電圧を生成するスロープ電圧生成 部と、前記出力電圧に応じた帰還電圧と所定の目標設定電圧との差分を増幅して誤 差電圧を生成する誤差電圧生成部と、前記誤差電圧と前記スロープ電圧とを比較し て PWM信号を生成する PWM信号生成部と、前記 PWM信号に基づ 、て前記出力 トランジスタのオン Zオフ制御を行うスイッチング制御部と、を有して成ることを特徴と するスイッチングレギユレータ。
[3] 前記エネルギ貯蔵素子であるインダクタと、出力電流を整流またはスイッチングする 整流素子と、出力電圧を平滑化する平滑コンデンサと、を有して成ることを特徴とす る請求項 2に記載のスイッチングレギユレータ。
[4] 前記センス電流生成部は、前記センス電圧に応じた電流が流される第 1抵抗と、該 第 1抵抗に流れる電流をミラーして前記センス電流を生成する第 1カレントミラー回路 と、を有して成り、前記スロープ電流生成部は、ランプ波形或いは三角波形の発振電 圧を生成する発振回路と、前記発振電圧に応じた電流が流される第 2抵抗と、該第 2 抵抗に流れる電流をミラーして前記スロープ電流を生成する第 2カレントミラー回路と 、を有して成り、前記スロープ電圧生成部は、前記センス電流とスロープ電流との加 算電流が流されてその一端力 前記スロープ電圧が引き出される第 3抵抗を有して 成ることを特徴とする請求項 2に記載のスイッチングレギユレータ。
[5] 前記センス抵抗の抵抗値は、所定の温度係数をもって変動するものであり、第 1〜 第 3抵抗の少なくとも一は、上記の温度係数を相殺する温度係数をもってその抵抗 値が変動するように調整されて 、ることを特徴とする請求項 4に記載のスイッチングレ ギユレータ。
[6] 装置電源の出力変換手段として、スイッチングレギユレータを備えて成る電子機器 であって、前記スイッチングレギユレータは、出力電圧の目標誤差に応じた誤差電圧 と PWM制御用のスロープ電圧とを比較して PWM信号を生成し、該 PWM信号に基 づいて出力トランジスタのオン Zオフ制御を行うことによりエネルギ貯蔵素子の一端 を駆動することで、入力電圧力 所望の出力電圧を生成するスイッチングレギユレ一 タであって、前記出力トランジスタに流れるスィッチ電流に応じたセンス電流を生成す るセンス電流生成部を有して成り、前記スロープ電圧の電圧レベルは、前記センス電 流に応じてオフセットされることを特徴とする電子機器。
[7] 装置電源の出力変換手段として、スイッチングレギユレータを備えて成る電子機器 であって、前記スイッチングレギユレータは、出力トランジスタのオン Zオフ制御により エネルギ貯蔵素子の一端を駆動することで、入力電圧から所望の出力電圧を生成す るスイッチングレギユレータであって、前記出力トランジスタに流れるスィッチ電流に応 じたセンス電圧を生成するセンス抵抗と、前記センス電圧に応じたセンス電流を生成 するセンス電流生成部と、ランプ波形或いは三角波形のスロープ電流を生成するス ロープ電流生成部と、前記センス電流と前記スロープ電流との加算電流に応じたスロ ープ電圧を生成するスロープ電圧生成部と、前記出力電圧に応じた帰還電圧と所定 の目標設定電圧との差分を増幅して誤差電圧を生成する誤差電圧生成部と、前記 誤差電圧と前記スロープ電圧とを比較して PWM信号を生成する PWM信号生成部 と、前記 PWM信号に基づ 、て前記出力トランジスタのオン Zオフ制御を行うスィッチ ング制御部と、を有して成ることを特徴とする電子機器。
[8] 前記装置電源は、ノ ッテリであることを特徴とする請求項 7に記載の電子機器。
PCT/JP2006/308104 2005-04-26 2006-04-18 スイッチングレギュレータ及びこれを備えた電子機器 WO2006118021A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/910,474 US7750617B2 (en) 2005-04-26 2006-04-18 Switching regulator and electronic device therewith
CN200680007078XA CN101133543B (zh) 2005-04-26 2006-04-18 开关稳压器和具有该开关稳压器的电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-127774 2005-04-26
JP2005127774A JP4726531B2 (ja) 2005-04-26 2005-04-26 スイッチングレギュレータ及びこれを備えた電子機器

Publications (1)

Publication Number Publication Date
WO2006118021A1 true WO2006118021A1 (ja) 2006-11-09

Family

ID=37307823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308104 WO2006118021A1 (ja) 2005-04-26 2006-04-18 スイッチングレギュレータ及びこれを備えた電子機器

Country Status (6)

Country Link
US (1) US7750617B2 (ja)
JP (1) JP4726531B2 (ja)
KR (1) KR100967474B1 (ja)
CN (1) CN101133543B (ja)
TW (1) TW200703869A (ja)
WO (1) WO2006118021A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960954B2 (en) * 2008-03-11 2011-06-14 Asustek Computer Inc. Voltage adjusting apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781744B2 (ja) * 2005-08-05 2011-09-28 ローム株式会社 電源装置及びこれを用いた電気機器
US8058861B2 (en) * 2007-06-05 2011-11-15 Bayer Materialscience Ag Miniature high-voltage power supplies
WO2009006318A1 (en) 2007-06-29 2009-01-08 Artificial Muscle, Inc. Electroactive polymer transducers for sensory feedback applications
JP5169333B2 (ja) * 2008-03-07 2013-03-27 株式会社リコー 電流モード制御型スイッチングレギュレータ
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
KR101593605B1 (ko) * 2009-11-17 2016-02-12 삼성전자주식회사 전원 공급 장치 및 이를 포함한 디스플레이 장치
US9001098B2 (en) * 2009-11-17 2015-04-07 Samsung Electronics Co., Ltd. Power supply and display apparatus having the same
CN101764520B (zh) * 2010-01-25 2012-03-21 无锡芯朋微电子有限公司 一种大负载电流范围的dc-dc控制电路
CN102455732B (zh) * 2010-11-03 2015-09-16 华润矽威科技(上海)有限公司 提高多路大电流匹配度的电路
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
EP2689284A4 (en) 2011-03-22 2014-08-20 Bayer Ip Gmbh ELECTROACTIVE POLYMER ACTUATOR LENS SYSTEM
US8823352B2 (en) * 2011-07-11 2014-09-02 Linear Technology Corporation Switching power supply having separate AC and DC current sensing paths
JP5695207B2 (ja) * 2012-03-01 2015-04-01 旭化成エレクトロニクス株式会社 電源接続回路
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
KR20150031285A (ko) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 연신 공정을 위한 연신 프레임
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US20140266110A1 (en) * 2013-03-15 2014-09-18 Henry H. Yuan Duty-Cycle Dependent Slope Compensation for a Current Mode Switching Regulator
KR102290399B1 (ko) * 2015-03-04 2021-08-24 주식회사 디비하이텍 발광 소자 구동 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222448A (ja) * 1994-01-28 1995-08-18 Matsushita Electric Ind Co Ltd Ac−dcコンバータ
JPH11313479A (ja) * 1998-04-28 1999-11-09 Nagano Japan Radio Co スイッチング電源装置
JP2000092833A (ja) * 1998-09-18 2000-03-31 Oki Electric Ind Co Ltd 直流電源装置
JP2005033862A (ja) * 2003-07-08 2005-02-03 Rohm Co Ltd 昇降圧dc−dcコンバータ及びこれを用いたポータブル機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837495A (en) * 1987-10-13 1989-06-06 Astec U.S.A. (Hk) Limited Current mode converter with controlled slope compensation
US4975820A (en) * 1989-09-01 1990-12-04 National Semiconductor Corporation Adaptive compensating ramp generator for current-mode DC/DC converters
DE69531518T2 (de) 1994-01-28 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Wechselstrom-Gleichstrom-Umwandler
JP3963794B2 (ja) * 2002-07-09 2007-08-22 ローム株式会社 Dc/dcコンバータ
US7126314B2 (en) * 2005-02-04 2006-10-24 Micrel, Incorporated Non-synchronous boost converter including switched schottky diode for true disconnect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222448A (ja) * 1994-01-28 1995-08-18 Matsushita Electric Ind Co Ltd Ac−dcコンバータ
JPH11313479A (ja) * 1998-04-28 1999-11-09 Nagano Japan Radio Co スイッチング電源装置
JP2000092833A (ja) * 1998-09-18 2000-03-31 Oki Electric Ind Co Ltd 直流電源装置
JP2005033862A (ja) * 2003-07-08 2005-02-03 Rohm Co Ltd 昇降圧dc−dcコンバータ及びこれを用いたポータブル機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960954B2 (en) * 2008-03-11 2011-06-14 Asustek Computer Inc. Voltage adjusting apparatus

Also Published As

Publication number Publication date
US20090268492A1 (en) 2009-10-29
JP4726531B2 (ja) 2011-07-20
KR20070100389A (ko) 2007-10-10
TW200703869A (en) 2007-01-16
JP2006311634A (ja) 2006-11-09
CN101133543A (zh) 2008-02-27
US7750617B2 (en) 2010-07-06
KR100967474B1 (ko) 2010-07-07
CN101133543B (zh) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4726531B2 (ja) スイッチングレギュレータ及びこれを備えた電子機器
JP4573697B2 (ja) スイッチングレギュレータ及びこれを備えた電子機器
JP5332248B2 (ja) 電源装置
US8193793B2 (en) DC-DC converter
US7560911B2 (en) Step-up/step-down switching regulator
JP4781744B2 (ja) 電源装置及びこれを用いた電気機器
JP4823604B2 (ja) ソフトスタート回路、電源装置、電気機器
JP4658623B2 (ja) 定電流回路、それを用いた電源装置および発光装置
US8502516B2 (en) Voltage adjustment module and power supply device
US7777468B2 (en) Semiconductor apparatus
JP5330084B2 (ja) 電流検出回路及びこれを用いたスイッチングレギュレータ
TW201346479A (zh) 全週期偵測電流之電流式轉換器
WO2007007539A1 (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
TW201325053A (zh) 開關模式電源及其斜率補償信號產生電路和控制方法
JP2007323376A (ja) 電源装置及びこれを備えた電気機器
WO2006090507A1 (ja) 昇降圧レギュレータ回路及びこれを用いた液晶表示装置
JP2007185065A (ja) 電源装置及びこれを備えた電子機器
US20100026259A1 (en) Dc-dc converter integrated circuit and dc-dc converter
CN108432112B (zh) Dc-dc变换器以及负载驱动用半导体集成电路
JP2010154655A (ja) 電源システム
JP2009225642A (ja) 電源装置および半導体集積回路装置
JP6993867B2 (ja) スイッチングレギュレータ及びその制御装置
US12062980B2 (en) DC-DC converter circuit
JP2002051541A (ja) スイッチング電源装置及びスイッチング電源用半導体装置
JP4688559B2 (ja) Dc/dcコンバータ及びこれを備えた電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007078.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077019752

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11910474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732033

Country of ref document: EP

Kind code of ref document: A1