WO2006117972A1 - カメラ機能付携帯端末 - Google Patents

カメラ機能付携帯端末 Download PDF

Info

Publication number
WO2006117972A1
WO2006117972A1 PCT/JP2006/307352 JP2006307352W WO2006117972A1 WO 2006117972 A1 WO2006117972 A1 WO 2006117972A1 JP 2006307352 W JP2006307352 W JP 2006307352W WO 2006117972 A1 WO2006117972 A1 WO 2006117972A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
unit
notification sound
frequency
camera
Prior art date
Application number
PCT/JP2006/307352
Other languages
English (en)
French (fr)
Inventor
Makoto Chishima
Kugo Morita
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005130001A external-priority patent/JP4498972B2/ja
Priority claimed from JP2005130002A external-priority patent/JP2006311096A/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Publication of WO2006117972A1 publication Critical patent/WO2006117972A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a portable terminal having a camera function, and more particularly to a technique for controlling a notification sound for notifying photographing.
  • This application claims priority to Japanese Patent Application No. 2005-130001 filed on April 27, 2005, and Japanese Patent Application No. 2005-130002 filed on April 27, 2005. This is incorporated here.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-177404
  • Patent Document 2 JP-A-11-168646
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-307902
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-69389
  • a usage mode in which a user can freely obtain sound data for a shatter sound via the Internet or an external device and add it to an option may be assumed in the future.
  • sound data having a difficulty in identification as a shooting notification sound is added and set, and as a result, the shooting notification function may be hindered.
  • an application program that adjusts the volume of the shatter sound of mobile terminals with camera functions will be incorporated to reduce the volume or silence. In this case as well, there is a risk that the shooting notification function will be hindered.
  • an object of the present invention is to provide a technique that improves a shooting notification function in a camera-equipped mobile terminal. It is another object of the present invention to provide a technique for suppressing transmission of a notification sound that may cause discomfort to humans and animals in a control technique for a portable terminal having a camera function.
  • a camera a sound output unit that outputs a notification sound for notifying of shooting by the camera, and the notification sound is a notification sound.
  • a determination unit that determines whether or not it is appropriate, a storage unit that stores a reference value that is a determination criterion of the determination unit, and a control unit that controls the output of the notification sound based on the determination of the determination unit Provide a mobile terminal with camera function.
  • the mobile terminal with a camera function according to the first invention further includes an audio collection unit that collects external audio, and the determination unit includes at least the audio Based on the external sound collected by the collection unit, the audibility of the notification sound at the position of the subject is determined, and the control unit enhances the audibility according to the determination of the determination unit.
  • a portable terminal with a camera function for controlling the output of the notification sound in the voice output unit is provided.
  • the mobile terminal with a camera function according to the second invention further includes a measurement unit that measures a distance to the subject, and the determination unit includes the measurement A mobile phone with a camera function that determines the audibility of the notification sound at the position of the subject based on the distance to the subject measured by the unit and the external voice collected by the voice collecting unit Provide a terminal.
  • the determination unit includes the distance measured by the measurement unit and the sound output unit.
  • the control unit determines whether or not the volume of the notification sound at the position of the subject defined as a value of a function having the output volume as a variable exceeds a specified value, and the control unit is configured to determine the determination unit based on the determination by the determination unit.
  • a mobile terminal with a camera function for controlling an output volume of the notification sound in the sound output unit so that a function value exceeds a specified value.
  • the storage unit has a limit distance that the notification sound arrives audibly. Is stored as a first reference value, and when the distance to the subject measured by the measurement unit exceeds the first reference value, the output volume of the notification sound is preset.
  • a mobile terminal with a camera function that controls the default value is provided.
  • the determination unit includes a peak frequency of the notification sound obtained from a frequency characteristic of the notification sound, A frequency difference with the peak frequency of the external sound collected by the sound collecting unit is calculated as a first index for determining audibility, and the control unit is configured to calculate the notification sound based on the first index.
  • a mobile terminal with a camera function for selecting and changing the frequency.
  • the storage unit includes a peak of the notification sound obtained from the frequency characteristic of the notification sound.
  • a second reference value corresponding to the minimum allowable value of the frequency difference between the frequency and the peak frequency of the external sound collected by the sound collecting unit is stored; and the determining unit is obtained from the frequency characteristics of the notification sound.
  • the frequency difference between the peak frequency of the notification sound and the peak frequency of the external sound collected by the sound collection unit is calculated as a first index for determining audibility, and the first index is the first index.
  • the control unit in the determination unit When it is determined that the index of 1 is less than the second reference value, the notification sound may be reduced so that a phase difference between the phase of the peak frequency of the notification sound and the phase of the peak frequency of the external sound is small.
  • a portable terminal with a camera function for controlling output timing is provided.
  • the mobile terminal with a camera function includes a detection unit that detects a shield for at least one of the voice output unit and the voice collection unit.
  • the control unit provides a mobile terminal with a camera function that restricts the function of the camera when the shielding unit detects the shielding object.
  • the determination unit determines whether or not the notification sound has a factor that causes human discomfort. Therefore, the control unit provides a mobile terminal with a camera function for controlling the output of the notification sound in the audio output unit so as to reduce a factor causing the discomfort.
  • the storage unit stores a preset frequency band as an unpleasant frequency band causing unpleasant feeling. Then, the determination unit provides a mobile terminal with a camera function for determining whether the notification sound includes more of the unpleasant frequency band than a predetermined value.
  • the storage section stores in advance sound information having a small component of the unpleasant frequency band, and the control section
  • the determination unit determines that the notification sound includes more components of the unpleasant frequency band than a predetermined value
  • the sound information stored in advance in the storage unit is selected, and the selected sound information is Provided is a mobile terminal with a camera function that controls to output from the sound output unit instead of a notification sound.
  • the mobile terminal with a camera function according to the ninth invention further includes a voice collecting unit that collects external voices, and the determination unit includes the voice collecting unit
  • a mobile terminal with a camera function is provided that determines whether or not the external sound collected in step 1 and the notification sound interfere with each other to generate a beat.
  • each of the external sound and the notification sound collected by the sound collection unit is determined by the determination unit.
  • the peak frequency of the external sound and the peak frequency of the notification sound are extracted.
  • a mobile terminal with a camera function that determines whether or not a force that causes a beat due to interference with a frequency is provided.
  • the determination unit synthesizes the external sound collected by the sound collection unit and the notification sound.
  • a mobile terminal with a camera function that detects a beat component from the sound waveform, evaluates the detected beat component, and determines whether or not a force is generated.
  • control unit controls the output of the notification sound based on the determination by the determination unit that determines whether the notification sound is appropriate as the notification sound. Can be output.
  • the notification sound and the collected external sound are used to determine the audibility of the notification sound reaching the subject, and the notification sound is controlled to increase the audibility according to this determination.
  • the accuracy of the notification sound reaching the subject can be improved, and there is an advantage that the deterrence effect on the infringement of portrait rights is improved.
  • the output of the notification sound is controlled according to the judgment of audibility, if the distance to the subject is larger than a predetermined reference value (first reference value), the notification is not required and notification is made with the initial volume setting.
  • first reference value a predetermined reference value
  • the frequency characteristic power of the notification sound is calculated as a first index that determines the audibility of the frequency difference between the peak frequency of the notification sound obtained and the peak frequency of the external sound collected by the sound collection unit. If the form of selecting and changing the frequency of the notification sound based on the first index is taken, the notification sound is buried by an external sound of a close frequency component, and the audibility of the notification sound in the subject is inhibited. There are benefits that can be avoided.
  • the frequency characteristic power of the notification sound The peak frequency of the notification sound obtained and the voice collection
  • the frequency difference from the peak frequency of the external sound collected by the collecting unit is calculated as a first index that determines audibility, and it is determined whether or not the first index is less than the second reference value.
  • the notification is performed so that a phase difference between the phase of the peak frequency of the notification sound and the phase of the peak frequency of the external sound is reduced. If the form of controlling the sound output timing is taken, there is an advantage that the strength of the notification sound can be increased by superimposing the notification sound on the contrary without being canceled by the external sound.
  • the notification sound it is determined whether or not the notification sound has a factor that causes human discomfort, and the output of the notification sound in the sound output unit is controlled so as to reduce the factor causing the discomfort. If this is the case, the notification sound may not be output, for example, by avoiding outputting a sound having a factor causing the above discomfort as a notification sound, or by outputting the notification sound after alleviating the cause causing the above discomfort. It is possible to deter situations that cause discomfort to people.
  • the sound information is stored in advance, and when it is determined that the notification sound includes more of the uncomfortable frequency band component than the specified value, the pre-stored sound information is selected. If the control is performed so that the selected sound information is output from the sound output unit instead of the notification sound, there is an advantage that an appropriate notification sound can be set by a simple process.
  • the peak frequencies of the collected external sound and notification sound are extracted, and the peak frequency of the external sound interferes with the peak frequency of the notification sound. Taking the form of determining whether or not it occurs, there is an advantage that it is possible to estimate the degree of the generated beat in a quantitative manner by a simple process.
  • FIG. 1 is a block diagram showing a circuit configuration of an electronic camera built-in mobile phone according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a main procedure in the camera application program according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing a procedure of a sounder mask check process according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing a specific example of the photographing process according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a state of photographing in a train according to the first embodiment of the present invention.
  • Fig. 6 is a graph showing an audible condition of a shatter sound according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of an algorithm used in a shatter sound check process according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing a modification of the algorithm of FIG.
  • Fig. 9 shows the relationship between the transmitted sound intensity PO and the distance D when the algorithm of Fig. 8 is used. It is a graph to show.
  • FIG. 10 is a flowchart showing another example of the algorithm in the shatter sound check process according to the first embodiment of the present invention.
  • FIG. 11A is a graph showing how the transmitted sound is determined by the algorithm of FIG.
  • FIG. 11B is a graph showing how the transmitted sound is determined by the algorithm of FIG.
  • FIG. 12 is a flowchart showing a modification of the algorithm shown in FIG.
  • FIG. 13A is a graph showing a state of interference between a shatter sound and external noise according to the first embodiment of the present invention.
  • FIG. 13B is a graph showing the state of interference between the shatter sound and the external noise according to the first embodiment of the present invention.
  • FIG. 14 is a flowchart showing a main procedure in the camera application program according to the second embodiment of the present invention.
  • FIG. 15 is a flowchart showing a procedure of a sounder mask check process according to the second embodiment of the present invention.
  • FIG. 16 is a flowchart showing an example of a shatter sound frequency check process according to the second embodiment of the present invention.
  • FIG. 17 is a graph showing an example of frequency characteristics of a shatter sound according to the second embodiment of the present invention.
  • FIG. 18 is a flowchart showing a specific example of the photographing process according to the second embodiment of the present invention.
  • FIG. 19 is a flowchart showing a specific example of shatter sound check processing according to the second embodiment of the present invention.
  • FIG. 20 is a flowchart showing a specific example of beat determination according to the second embodiment of the present invention.
  • FIG. 21A is a graph showing a beat, according to the second embodiment of the present invention, and shows a waveform A.
  • FIG. 21B is a graph showing a beating state according to the second embodiment of the present invention, and shows a waveform B.
  • FIG. 21C is a graph showing a beat state according to the second embodiment of the present invention, and shows a combined wave of waveforms A and B.
  • FIG. 22 is a graph showing determination of occurrence of beat according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing a circuit configuration of an electronic camera built-in mobile phone (mobile terminal with camera function) according to an embodiment of the present invention.
  • This mobile phone has a configuration in which each functional block is connected via an internal bus 201 to a CPU (Central Processing Unit) 101 that controls the entire apparatus.
  • the memory 102 includes RAM (Random Access Memory) and ROM (Read Only Memory), and constitutes the main memory of the CPU 101.
  • the timer 103 performs processing such as timer interruption based on an instruction from the CPU 101.
  • the antenna 301 transmits and receives radio waves used for communication.
  • the wireless unit 302 performs communication using the antenna 301.
  • DSP Digital Signal
  • a processor 303 performs modulation / demodulation processing and other processing of transmission / reception signals.
  • a D / A (Digital / Analog) converter 304 converts a digital audio signal output from the DSP 303, a ring tone, or the like into an analog audio signal and supplies the analog audio signal to the speaker 305.
  • An A / ⁇ (AnalogZDigital) converter 306 converts an analog audio signal input from the microphone 307 into a digital audio signal and supplies it to the DSP 303. micro The phone 307 is used to input call voice and the like.
  • the key operation unit 401 has, for example, a numeric keypad, an on-hook key, an off-hook key, a power button, a shirt button, a function selection key (function key), etc., and takes in various key inputs in addition to dial input.
  • the processing is performed.
  • the screen display unit 402, for example, has power such as a liquid crystal display and a liquid crystal touch panel, and displays various images, messages, etc., and menu screens in addition to various displays related to communication, such as displaying captured images in camera mode. Is.
  • a speaker (sound output unit) 501 performs various notifications by generating ringtones, shattering sounds, etc., and is of a type having directivity on the same axis as the optical system of the camera unit 601. Employment is advantageous in that the reach of the shatter sound to the subject is extended.
  • An LED (Light Emitting Diode) 502 performs various notifications by lighting or blinking when an incoming call is received.
  • a microphone (sound collecting unit) 503 collects external sound (external noise).
  • An I / O (input / output) interface 504 performs input / output control between the speaker 501, the LED 502, the microphone 503, and the internal bus 201.
  • the camera unit 601 includes an imaging element such as a CCD (Charge Coupled Device) and an optical system such as a lens, and constitutes a main part of the electronic camera function.
  • the driver 602 drives the camera unit 602 based on instructions from the CPU 101.
  • the image processing processor 603 performs processing such as processing, compression, and decompression of image data.
  • the buffer memory 604 is a memory for temporarily storing image data based on the output of the CCD.
  • the camera unit 601 is usually installed on a surface opposite to the installation surface of the key operation unit 401 and the screen display unit 402.
  • the speaker 501, the LED 502, and the microphone 503 are preferably installed on the same surface as the camera unit 601. Since the microphone 503 is preferably installed on the same surface as the camera unit 601 that can be substituted with the microphone 307 for voice input, in this embodiment, the microphone 503 is installed separately from the microphone 307. Show.
  • the mobile phone according to the first embodiment of the present invention can operate in the camera mode in addition to the normal voice call mode.
  • camera mode the camera application program is launched and executed.
  • Figure 2 shows the camera application program It is a flowchart which shows the main procedure in it.
  • the CPU 101 first performs a predetermined initial setting (S101), and then performs an interrupt process (S102) by a key input or a timer to perform a camera image display process (S103).
  • a predetermined process is selectively executed.
  • the CPU 101 captures an image formed from the camera unit 601, processes it by the image processor 603, and always displays it as a camera image on the screen display unit 402 (S 103). Also, measurement data and setting data necessary for shooting are always acquired and updated (S104 to S108).
  • a shooting process S107 is started and the above image is registered as a shot image.
  • the CPU 101 controls each part in accordance with the camera application program stored in the memory 102, and realizes each function corresponding to the configuration requirements of the present invention by the overall cooperative operation.
  • the processing that should be executed by the CPU 101 in the program can also take the form of improving the overall processing efficiency by distributing the processing load by causing the DSP 303 to appropriately share the processing.
  • the camera image display process (S103) is a process of continuously displaying the image captured from the camera unit 601 on the screen display unit 402 as described above.
  • the CPU 101 drives the camera unit 601 to acquire digital image data output from the CCD and stores it in the buffer memory 604. Further, this image data is displayed on a display (not shown) of the screen display unit 402.
  • This camera image display process is continuously executed, and as a result, the latest captured image is always displayed. If a flag indicating that photographing is not permitted is set as a result of the mask check described later, a message or picture symbol indicating that photographing is not permitted is displayed superimposed on the image data.
  • the sounder mask check process (S 104) is a process for determining whether the operation of the speaker 501 or the microphone 503 is normal, and is selected periodically by a timer interrupt.
  • FIG. 3 is a flowchart showing the procedure of the sounder mask check process. Referring to FIGS. 1 and 3, the CPU 101 first acquires predetermined data defined as a sounder inspection item (S201), and uses the acquired data to determine whether the power is appropriate (S202). ). If the judgment result is “unsuitable” (S202: unsuitable), a flag indicating that shooting is not permitted. Is set (S203), and if the judgment result force is “appropriate” (S202: appropriate), the above flag is reset (S204).
  • a pressure sensor or an optical sensor is attached to the installation position of the force 501 or the microphone 503, and the pressure sensor is used to detect a pressure above a threshold value.
  • a temperature sensor or a humidity sensor (not shown) is used to detect a temperature or humidity that is equal to or higher than a threshold value, it may be determined that the mask has been masked with a hand or the like.
  • a small inspection sound wave is output from the speaker 501, and this sound wave is picked up by the microphone 503, and the picked-up sound volume is compared with a threshold value to determine whether or not it is masked. .
  • the distance measurement process (S105) is a process of measuring the distance to the subject, and is selected periodically by a timer interrupt.
  • a method for measuring the distance to the subject for example, an audio output unit that outputs sound waves, a light output unit that outputs infrared rays, and a reception unit that receives the reflected waves are provided, and the sound waves are applied to the subject.
  • a method of measuring the distance to the subject using the reflected wave can be taken.
  • the force lens unit 601 has an autofocus function
  • a method of using a focal length measured by the autofocus function can be used.
  • existing methods such as an active method that uses infrared rays, a contrast detection method that uses CCD imaging, and other passive methods can be used! ,.
  • the noise measurement process collects ambient noise using the microphone 503 and executes predetermined analysis processes such as volume and frequency characteristics, and is selected periodically by a timer interrupt. This noise collection is a motoring for estimating the noise atmosphere in the subject. If the microphone 503 is placed on the surface opposite to the camera unit 601, the noise is collected. May be absorbed by the user's body and become lower than the volume on the subject side.
  • a configuration in which the microphone 503 is disposed on the same surface as the camera unit 601 is desirable.
  • the photographing process (S107) is a process that is selected when the key operation unit 401 detects that the shot button has been pressed, performs a predetermined notification process such as sending a shot noise, and displays the camera image. This is registered as a photographed image.
  • a flag indicating that photographing is not permitted is set, even if the shot button is pressed, the process does not proceed to the registration as a photographed image and the predetermined message output process is performed. Characterized by advancing points.
  • the shatter sound is selected based on the result of the proper judgment of the shatter sound. Details will be described later.
  • the end process (S108) is a process that is selected when there is an input for instructing the end of the camera mode or an input for instructing the power off by the key operation unit 401, and the mode end or the power off. A predetermined process associated with the above is executed.
  • FIG. 4 is a flowchart showing a specific example of the photographing process. 1 and 4, in the shooting process, the CPU 101 first checks whether or not a flag indicating that the above shooting is not permitted is set (S301), and the flag is set. If it is received (S301: Yes), a message indicating that photographing is not permitted, such as sending out a buzzer sound, is output (S302). And it complete
  • step S301 If the flag indicating non-permission is not set in step S301 (S301: No), the current camera image stored in the nota memory 604 is registered as a photographed image (S303), and a shotta sound check process is performed. Proceed to (S304).
  • the memory 102 stores basic data of a shatter sound (accurately, sound data simulating a shatter sound) in a predetermined area, and one of the powerful basic data is designated by default or selected by the user. It shall be selected as specified.
  • the CPU 101 uses the selected shotta sound as a target, and captures the image by a predetermined algorithm using the distance to the subject, the magnitude of ambient noise, and the like. Judge whether the volume and frequency are appropriate for the body, and change the volume and frequency as appropriate.
  • the speaker 501 is driven via the IZO interface 504, the sound data of the shutter sound is read from the memory 102, and the speaker 501 generates a sound to notify the surroundings including the subject person of the subject that the photographing has been performed. (S 305).
  • FIG. 5 is an explanatory diagram showing the state of shooting in the train. As shown in the figure, consider a case where a user 2 takes a picture of a subject 3 with a mobile phone 4 in a train 1 where ambient noise is remarkable.
  • D is the distance from the mobile phone 4 to the subject 3 (m)
  • Pn is the intensity (dBm) of ambient noise (external noise)
  • P is the intensity (dBm) of the shatter sound (sound reaching the subject 3)
  • P0 is the intensity (dBm) of the shatter sound (transmitted sound)
  • Pd is the intensity of the shatter sound (dBm) by default setting
  • Pmin is the minimum volume setting value (dBm) that corresponds to the general minimum audible sound pressure of humans
  • Pmax is the maximum volume setting value (dBm) of the shatter sound.
  • the noise magnitude and frequency components at the positions of the user 2 and the subject 3 are considered to be approximately equal.
  • Figure 6 is a graph showing this audible condition, where the vertical axis shows the sound pressure intensity and the horizontal axis shows time.
  • the waveform drawn with a solid line shows a shatter sound (the sound that reaches subject 3), and the waveform drawn with a broken line shows external noise.
  • the sound pressure attenuates in inverse proportion to the square of the distance D, and the degree of attenuation differs depending on the frequency f.
  • FIG. 7 is a flowchart showing an example of an algorithm used in the process.
  • the CPU first reads from the memory measurement data such as the distance D measured in steps S104 and S105 (see FIG. 2) and the external noise intensity Pn for a certain period of time (S401).
  • the default shotta sound intensity Pd is set as the intensity of the transmitted sound (S402), and the intensity P of the shotta sound in the subject is calculated using the preset relational expression P (D, Pd) (S403).
  • the minimum volume setting value Pmin is compared with the effective volume intensity P—Pn in the subject (S404).
  • this comparison result is "K", that is, if the expression (1) is satisfied (S404: ⁇ ), the process is terminated assuming that the current shutter sound setting is appropriate. If the comparison result is “”, that is, if the expression (1) is not satisfied (S404: ⁇ ), the transmitted sound intensity PO has reached the maximum volume setting value Pmax! (S405: K), the transmitted sound intensity PO is increased by the set increase width ⁇ P (S406), and the process returns to step S403. Whether the expression (1) is satisfied by this procedure (S404: Ku), or the transmitted sound intensity PO is set to a value at which the transmitted sound intensity PO reaches the maximum volume (S405: ⁇ ).
  • the present invention can be configured to perform a shatter sound check process using the algorithm shown in FIG.
  • FIG. 8 is a flowchart showing a modification of the algorithm of FIG.
  • the CPU reads measurement data such as distance D and external noise intensity Pn from the memory (S501).
  • the distance D is compared with the threshold value D1 (S502).
  • the threshold value D1 is a threshold value corresponding to the distance at which the output sound should be set to the maximum volume. If the comparison result in step S502 is D ⁇ D1 (S502: ⁇ ), the process proceeds to step 403 in FIG. 7, and the same processing as described above is performed to set the transmitted sound intensity PO that satisfies the expression (1). .
  • the CPU further compares the distance D with the threshold value D2 (first threshold value of claim 3) (S503).
  • the threshold value D2 is a threshold value corresponding to a distance that should be determined to be landscape photography (or a distance that is difficult to reach even with the maximum volume of transmitted sound). If the distance D is less than the threshold value D2 in step S503 (S503: K), the transmitted sound intensity PO is set to the maximum volume Pmax and the process ends (S504). If the distance D exceeds the threshold D2 (S505: ⁇ ), it is meaningless to increase the output sound. Set the sound intensity PO to the default intensity Pd and exit.
  • FIG. 9 is a graph showing the relationship between the transmitted sound intensity PO and the distance D when the algorithm of FIG. 8 is used.
  • the vertical axis indicates the sound pressure sound intensity and the horizontal axis indicates the distance.
  • the intensity PO of the transmitted sound is set by the same method as in FIG.
  • the distance D is greater than the distance D1, and within a certain distance range (D1 ⁇ D ⁇ D2), set the output sound intensity P0 to the maximum volume Pmax without proceeding to the procedure in Fig. 7.
  • the shatter sound is transmitted at a volume that allows the shatter sound to reach even for subjects at a long distance. If the distance D is greater than D2, it is determined that the landscape is being shot, and a shatter sound is transmitted with the default volume Pd.
  • the audible condition of the shatter sound depends not only on the volume but also on the frequency characteristics.
  • the present invention can take a form in which a shatter sound check process is performed by checking frequency characteristics of a shatter sound and external noise.
  • the peak frequency measured in advance is added to each basic data of the above-mentioned shatter sound and then stored in the main memory of the CPU.
  • the external noise measurement process step S106 in Fig. 2
  • the frequency characteristics of the measured external noise are calculated.
  • the algorithm shown in Fig. 10 is used in the shatter sound check process.
  • FIG. 10 is a flowchart showing another example of the algorithm in the shatter sound check process.
  • the CPU reads the measurement data in steps S105 and S106 (see FIG. 2) from the memory (S601). Further, the peak frequency FOmax of the default shatter sound is calculated from the memory, and this value is substituted for the peak frequency Fmax of the transmitted sound (S602).
  • the CPU obtains the peak frequency Fnmax of the frequency characteristic power of the acquired external noise. If the frequency characteristic of the external noise covers a wide range at this time, the peak will be prominent near the peak frequency of the default shotta sound. Select the peak frequency to be Fnmax. Calculate the frequency difference between the peak frequency Fnmax of the external noise and the peak frequency Fmax of the transmitted sound, and compare this frequency difference with the threshold ⁇ ⁇ (second threshold value corresponding to the minimum allowable frequency difference) ( S603).
  • the threshold ⁇ ⁇ is the frequency component of the shatter sound and external noise. This is a value for ensuring a frequency difference to avoid masking the shatter sound.
  • the process ends with the default shotta sound set as the transmitted sound (S604).
  • the middle force of the basic data of the shatter sound is selected as another sound data (S605), and the peak frequency Fimax of the sound data is obtained.
  • a shatter sound having a frequency difference with the peak frequency Fnmax of the external noise having a large threshold ⁇ is selected and determined as a transmission sound (S604).
  • the default shotta sound or frequency difference is the largest, and the basic data is The selected sound is selected and sent (S608).
  • FIGS. 11A and 11B are graphs showing how the transmitted sound is determined by the algorithm of FIG. 10, where the vertical axis indicates intensity and the horizontal axis indicates frequency.
  • the waveforms with hatching indicate external noise
  • the waveforms without noise and notching indicate shatter noise.
  • the peak frequency FOmax of the default shatter sound is close to the peak frequency Fnmax of the external noise
  • the shatter sound is masked by the external noise and becomes less audible, so the frequency difference is larger by the threshold ⁇ . Change to another shatter sound. This ensures a certain level of audibility of the shatter sound in the subject.
  • FIG. 12 is a flowchart showing a modification of the algorithm shown in FIG. Of the steps shown in FIG. 12, the same steps as those in FIG. 10 are given the same reference numerals.
  • the algorithm of FIG. 10 as described above, if the basic data in which the frequency difference between the peak frequency Fimax and the peak frequency Fnmax of the external noise is larger than the threshold ⁇ is not registered (S605: No), the default shirt data is stored. There is sound! /, The frequency difference is the largest! Select and send basic data
  • the algorithm shown in Fig. 12 calculates the timing at which the shatter sound should be sent (S609), and this timing is used as the subsequent shotta sound sending process (Fig. 4: S305) is notified.
  • FIGS. 13A and 13B are graphs showing the state of interference between the shatter sound and the external noise.
  • FIG. 13A shows the timing at which the two cancel each other
  • FIG. 13B shows the timing at which the both overlap.
  • a solid line indicates a shatter sound
  • a broken line indicates external noise.
  • FIG. 13A there may be a case where the shutter sound and the external noise cancel each other out of phase and the shutter sound reaching the subject becomes very small.
  • FIG. 13B when the shutter sound and the external noise have the same phase, they overlap each other, and the intensity of the shatter sound reaching the subject is not impaired.
  • step S609 described above the timing of transmission that has the same phase as the external noise is obtained, and by sending a shotta sound at the timing that is applied, the state shown in FIG. Try to improve the accuracy of the sound reaching the subject.
  • the user selects and registers in advance the medium power of the basic data of the shatter sound stored in the memory 102.
  • the user first selects a camera mode.
  • the CPU 101 starts up the camera application program and shifts to the camera mode.
  • the CPU 101 always displays the camera image acquired by the camera unit 601 on the screen display unit 402 (S103), and checks whether the speaker 501 and the microphone 503 are in a normal state without being masked. (S 104).
  • the distance from the subject is measured by using the autofocus function of the camera unit 611, etc. (S105), and external noise is picked up by the microphone 503 and the external noise intensity Pn, frequency components, etc. are continuously displayed. (S106).
  • the user presses a key assigned to shooting at an arbitrary timing while visually recognizing the camera image.
  • the CPU 101 activates the photographing process (S107).
  • photographing process if photographing is not permitted due to the masking state of the sounder, a predetermined non-permission processing is performed without registering the camera image as a photographed image. Therefore, there is an advantage that the accuracy of the shatter sound check process described later can be ensured.
  • the camera image is registered as a photographed image (S303), and a shatter sound check process (S304) is performed.
  • the CPU 101 changes the setting appropriately to a sound volume with appropriate volume and frequency that can be heard by the object based on the distance to the object, external noise, and the like, and then sends a sound signal (S305).
  • a sound signal S305
  • a speaker 501 having a directivity coaxial with the optical system of the camera unit 601 it is advantageous in that it increases the reach of the shatter sound and makes it easier to specify the direction in which the subject made the shatter sound. .
  • the embodiment of the present invention has been described in detail, but the specific configuration is not limited to the present embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention.
  • a method of making the subject aware of the subject being photographed by emitting light toward the subject for a certain period of time after the light-emitting unit is pressed during shooting may be used.
  • the light emitting unit uses a light emitting device such as an LED.
  • the mobile phone with built-in electronic camera has been described as an example.
  • the present invention is not limited to this embodiment.
  • a camera such as a PDA (Personal Digital Assistant) with a camera function or a digital camera. It can be used for general mobile terminals with functions.
  • PDA Personal Digital Assistant
  • the CPU 101 executes the camera application program in the camera mode
  • the necessary processing is distributed not only to the CPU but also to the DSP303 (see Fig. 1) and other sub CPUs.
  • Execution is a matter that can be arbitrarily selected in the design.
  • the above-described program can be recorded and distributed on a computer-readable recording medium, and may be distributed in a form that realizes a part of the functions.
  • it may be distributed in the form of an application program that uses the basic functions provided by the OS (operation 'system).
  • it is possible to realize a predetermined function in combination with a program of an existing system already recorded in a computer system, or V, a form distributed by a so-called differential program.
  • the computer-readable recording medium includes a storage device such as a hard disk and other nonvolatile media. Including sex storage. Furthermore, other computer system capabilities may be provided via an arbitrary transmission medium such as the Internet or other networks. In this case, the “computer-readable recording medium” holds the program for a certain period of time on the transmission medium, such as the volatile memory inside the computer system that is the host or client on the network. Including.
  • the processing unit is constructed by the distributed processing method using the main CPU and sub-CPU
  • at least a part of the processor is a hardware such as FPGA (Field Programmable Gate Alley).
  • FPGA Field Programmable Gate Alley
  • a form constructed by a wear circuit is also possible.
  • the distribution of circuit program information to be incorporated into the FPGA can take various forms in the same manner as the distribution of the above program.
  • the mobile phone according to the second embodiment can operate in the camera mode in addition to the normal voice call mode.
  • camera mode the camera application program is launched and executed.
  • FIG. 14 is a flowchart showing the main procedure in the camera application program. 1 and 14, the CPU 101 first performs a predetermined initial setting (S701), then performs an interrupt process (S702) by key input, timer, etc. to display a camera image (S703) and others Then, a predetermined process is selected and executed.
  • the CPU 101 captures an image formed from the camera unit 601, processes it by the image processor 603, and always displays it as a camera image on the screen display unit 402 (S 703). Also, measurement data and setting data necessary for shooting are always acquired and updated (S704 to S708).
  • shooting processing S707 is started and the above image is registered as a shot image.
  • the CPU 101 controls each part in accordance with the camera application program stored in the memory 102, and realizes each function corresponding to the configuration requirements of the present invention by the overall cooperative operation.
  • the processing that should be executed by the CPU 101 in the program can also take the form of improving the overall processing efficiency by distributing the processing load by causing the DSP 303 to appropriately share the processing.
  • the camera image display process (S703) is a process for continuously displaying the image captured from the camera unit 601 on the screen display unit 402 as described above.
  • the CPU 101 drives the camera unit 601 to acquire digital image data output from the CCD and stores it in the buffer memory 604. Further, this image data is displayed on a display (not shown) of the screen display unit 402.
  • This camera image display process is continuously executed, and as a result, the latest captured image is always displayed. If a flag indicating that photographing is not permitted is set as a result of the mask check described later, a message or picture symbol indicating that photographing is not permitted is displayed superimposed on the image data.
  • the sounder mask check process (S704) is a process for determining whether the operation of the speaker 501 or the microphone 503 is normal, and is selected periodically by a timer interrupt. Details will be described later.
  • the shotta sound frequency check process (S705) is a process that is called when, for example, the setting of the shotta sound is changed.
  • the frequency band of the shotta sound that is set as inappropriate by examining the frequency characteristics of the set shotta sound. Is checked for suitability as a shatter sound.
  • the noise measurement process collects external noise using the microphone 503 and executes predetermined analysis processes such as volume and frequency characteristics, and is selected periodically by a timer interrupt. This noise collection is a motoring for estimating the noise atmosphere in the subject. If the microphone 503 is placed on the surface opposite to the camera unit 601, the noise is absorbed by the user's body and the subject side is exposed. Because it may become lower than the volume
  • a configuration in which the microphone 503 is disposed on the same surface as the camera unit 601 is desirable.
  • the photographing process (S707) is a process that is selected when the key operation unit 401 detects that the shot button is pressed, performs a predetermined notification process such as sending a shot noise, and displays a camera image. This is registered as a photographed image.
  • a flag indicating that photographing is not permitted is set, even if the shot button is pressed, the process does not proceed to the registration as a photographed image and the predetermined message output process is performed. Characterized by advancing points.
  • when outputting the shatter sound it is based on the result of the proper judgment of the shatter sound. It is characterized by the selection of sound. Details will be described later.
  • the end process (S708) is a process selected when there is an input for instructing the end of the camera mode or an input for instructing the power off by the key operation unit 401, and the mode end or the power off. A predetermined process associated with the above is executed.
  • FIG. 15 is a flowchart showing the procedure of the sound mask check process.
  • the CPU 101 first acquires predetermined data defined as a sounder inspection item (S801), and determines whether or not it is appropriate using the acquired data (S802). . If the judgment result is “unsuitable” (S802: unsuitable), a flag indicating that the shooting is not permitted is set (S803), and if the judgment result is “proper” (S802: suitable) The above flag is reset (S804).
  • a pressure sensor or an optical sensor (not shown) is attached to the installation position of the spin force 501 or the microphone 503, and the pressure sensor is used to detect a pressure above a threshold value.
  • a temperature sensor or a humidity sensor (not shown) is used to detect a temperature or humidity that is equal to or higher than a threshold value, it may be determined that the mask has been masked with a hand or the like.
  • a small inspection sound wave is output from the speaker 501, and this sound wave is picked up by the microphone 503, and the picked-up sound volume is compared with a threshold value to determine whether or not it is masked. .
  • FIG. 16 is a flowchart showing an example of a shatter sound frequency check process.
  • FIG. 17 is a graph showing an example of frequency characteristics of shatter sound.
  • the CPU 101 first obtains the characteristics shown in FIG. 17 by calculating the frequency characteristics of the shatter sound (S901).
  • a frequency band unsuitable for a shatter sound is set in advance for the shatter sound and stored in the memory 102. It is known that the frequency bands that people generally feel uncomfortable are around 2500Hz and 20kHz. Based on this, in the present embodiment, the inappropriate frequency band is set in the vicinity of 2500 Hz and in the vicinity of 20 kHz.
  • fl 2500- «)
  • ⁇ f2 2500+ ⁇
  • ⁇ band first band
  • f3 20k— j8)
  • ⁇ f4 20k + j8) H z band (second band )
  • an inappropriate frequency band a and
  • it can take the form of adding a frequency band that animals such as dogs and cats feel uncomfortable to an inappropriate frequency band.
  • the frequency characteristic of the shatter sound is determined to be inappropriate and the process proceeds to an inappropriate process (S906).
  • processing such as setting a flag indicating that the frequency characteristic is inadequate for the shatter sound is performed.
  • the CPU 101 can output a message indicating that the frequency is inappropriate by the screen display unit 402 or the speaker 501 and prompt the user to reset the shotta sound.
  • FIG. 18 is a flowchart showing a specific example of the photographing process.
  • the CPU 101 first checks whether or not a flag indicating that the above shooting is not permitted is set (S1 001), and if the flag is set. If so (S1001: Yes), for example, a buzzer sound is transmitted, and a message indicating that photographing is not permitted is output (S1002). And the camera image The process ends without registering as a photographed image. Alternatively, the ability to register as a photographed image It is not allowed to save the photographed image in a non-volatile memory (not shown) such as a memory card.
  • a non-volatile memory not shown
  • V can also be used to limit the handling of captured images!
  • step S 1001 ! /, And a flag indicating non-permission is set! /, N! /, (S100 1: No), the current camera image stored in the nota memory 604 is displayed. Register as a photographed image (S 1003), and proceed to the shatter sound check process (S 1004). The details of the shatter sound check process will be described later.
  • the flag indicating the result of the check in the shatter sound frequency check process (Fig. 14: S705) and the beat determination process are performed. Judgment sound is not an unpleasant sound, and if it is not suitable, the sound is changed as appropriate in the basic data.
  • memory 102 stores a plurality of basic data (basic shatter sound) of shatter sound (accurately, sound data simulating shatter sound) in a predetermined area. Is selected either by default or by user selection.
  • basic data some data that have been confirmed to be sound data suitable as shatter sounds are registered in advance. Naturally, it has been confirmed that the content ratio of the frequency component in the inappropriate band described above is sufficiently small, and a flag indicating that fact and frequency characteristic data (such as peak frequency) are added to the memory 102. Stored.
  • the speaker 501 is driven via the IZO interface 504, and the sound data of the shatter sound is read from the memory 102 to generate sound generation in the speaker 501. (S 1005).
  • FIG. 19 is a flowchart showing a specific example of a shatter sound check process. 1 and 19, the CPU 101 first reads and refers to the flag set in the shatter sound frequency check process ( Figure 14: S705) from the memory 102, and the shatter sound does not have an inappropriate frequency component. Confirm that this is the case (S1101). If the flag indicating conformity is set, the process proceeds to beat determination (S1104). On the other hand, if the flag indicating inappropriateness is set (S1101: Inappropriate), the shirt sound to be transmitted is appropriately selected from the basic shirt sounds (S 1102, S1103), and the process proceeds to beat determination (S1104). .
  • the CPU 101 detects the external noise and the shatter sound, although details will be described later. Based on the peak frequency, analyze the force that may cause a beat and determine the suitability of the sound. If it is determined that the beat is determined to be appropriate (S1105: Yes), the selected shatter sound is determined to be appropriate, and the series of processing ends. If it is determined that it is not appropriate (S1105: No), the process returns to step 502 to select another basic shirt sound and perform a beat determination (S1102 to S1104). If all the basic beat sounds produce a beat (S1102: No), the smallest beat /! Is selected and the process ends (S110 6).
  • FIG. 20 is a flowchart showing a specific example of beat determination.
  • the CPU 101 first acquires the frequency characteristics of external noise and shatter sound (S120 1, S1202).
  • the measurement 'analysis data obtained in the noise measurement process described above (Fig. 14: S706) or the additional data of the basic shatter sound is read from the memory 102, and if necessary, an operation is performed to analyze the frequency characteristics.
  • FIG. 21A, FIG. 21B, and FIG. 21C are graphs showing the state of beat
  • FIG. 21A shows waveform A
  • FIG. 21B shows waveform B
  • FIG. 21C shows a combined wave of waveforms A and B.
  • Waveform A is expressed by equation (2)
  • waveform B is expressed by equation (3).
  • the superposition component of sound waves A and B having slightly different frequencies becomes E.
  • the difference between the frequencies of the two sound waves is small!
  • the period becomes longer and the period of beat becomes shorter as it becomes larger.
  • the frequency difference exceeds a certain level, people do not recognize it as a beat but as a completely different sound.
  • the beat cycle becomes very long and it is not recognized that the beat is occurring.
  • threshold values f5 and f6 are set as appropriate to define a powerful close range. .
  • Fig. 22 is a graph showing the determination of the occurrence of beat, the vertical axis indicates the intensity, and the horizontal axis indicates the frequency.
  • the figure shows a form in which the proximity range of frequency and intensity is determined based on external noise, and fn Is the peak frequency of the external noise, fO is the peak frequency of the shatter sound, Pn is the intensity of the external noise, P0 is the intensity of the shatter sound, and P1 is the threshold value.
  • the CPU 101 determines that no beat will occur if ⁇ ⁇ 5 or f6 ⁇ ⁇ ⁇ as a result of the comparison in step S1204 (S12 04: ⁇ ). Proceed to If it is f5 ⁇ f6 (S1204: Yes), it is assumed that a beat may occur, and the intensity at the peak frequency is compared to determine the strength of the beat.
  • the CPU 101 obtains the intensity Pn of the external noise and the intensity P0 of the shatter sound, and obtains the intensity difference ⁇ (S1205). Then, the magnitude of ⁇ is determined (S1206). If the absolute value of ⁇ is larger than the threshold value P1 (S1206: No), it is determined that the beat is small and the process proceeds to step 608. If the absolute value of ⁇ is smaller than the threshold value P1 (S1206: Yes), it is determined that the beat sound is large and the shot sound is inappropriate (S 1207), and the process ends.
  • P1 is a threshold value for discriminating the magnitude difference between the intensity Pn of the external noise and the intensity P0 of the shatter sound. In other words, if the intensity difference between multiple sound waves is large, the beat component becomes small. Therefore, even if a beat occurs, the component force is acceptable, and the threshold value P1 is set to define the allowable range.
  • Another example of determining whether or not to generate beat is, for example, by synthesizing external noise and shatter sound, and passing the synthesized sound waveform through a low-noise filter to detect beat components and detecting detected beats. It can also take the form of evaluating whether a component is a significant component (which may cause discomfort).
  • the evaluation items include frequency and intensity. When evaluating the frequency, for example, if the frequency of the beat component is within a certain range, it is determined that the beat is significant. That is, a threshold value that defines the upper and lower limits of a certain frequency range is set, and when the beat component frequency is compared with the threshold value and the beat component frequency takes a value within the above frequency range, significant beat occurs.
  • a ratio of the intensity of the beat component to the intensity of the combined waveform can be obtained, and based on this ratio, it can be discriminated whether or not a beat occurs. If estimation is performed using a sound waveform synthesized in this way, there is an advantage that the estimation accuracy is improved and the accuracy of avoiding beats is improved.
  • the user selects and registers in advance the intermediate data of the basic data of the shatter sound stored in the memory 102. Users are allowed to additionally register arbitrary sound data as shatter sounds.
  • the user first selects a camera mode.
  • the CPU 101 starts up the camera application program and shifts to the camera mode.
  • the CPU 101 constantly displays the camera image acquired by the camera unit 601 on the screen display unit 402 and confirms whether the speaker 501 and the microphone 503 are in a normal state without being masked.
  • the distance to the subject is measured using the auto-focus function of the camera unit 601, etc., and external noise is picked up by the microphone 503 and the intensity Pn and frequency band of the external noise are continuously measured. .
  • the user presses a key assigned to shooting at an arbitrary timing while visually recognizing the camera image.
  • the CPU 101 starts the photographing process.
  • a predetermined non-permission process is performed without registering the camera image as a photographed image.
  • a mode for restricting the sound to be sent is taken.
  • methods such as changing to the most unpleasant shatter sound set in the basic shatter sound data section, forcibly terminating the camera application, and prompting the change of the shatter sound are taken.
  • this fact is displayed on the screen display unit before or after image acquisition to inform the user.
  • the CPU 101 first analyzes the sound data of the shatter sound stored in the memory 102 or reads the pre-analyzed result, and confirms that the shatter sound has a frequency characteristic that does not cause discomfort. Check. If it is determined that the shatter sound is unpleasant sound data, it is changed to another shatter sound registered as the basic shatter sound. As a result, for example, even if the shutter sound registered by the user is sound data containing an unpleasant frequency component, it can be sent to the basic shatter sound and sent out, giving an uncomfortable feeling to the surroundings. The situation can be avoided. In addition, by expanding the frequency band that is judged to be unsuitable as a shattering sound to a frequency band that animals such as pets feel uncomfortable, it is possible to limit the sending of sounds that give pets a feeling of discomfort.
  • the CPU 101 analyzes the frequency characteristics of the external noise and shatter sound that have been measured in advance, or reads the analysis data that has been analyzed in advance, and confirms that no beat exceeding a predetermined intensity occurs. To do. If a beat more than the specified intensity occurs, the situation can be avoided by changing to another shatter sound and causing discomfort to the surroundings.
  • the embodiment of the present invention has been described in detail above, but the specific configuration is not limited to the present embodiment, and includes design changes and the like within the scope of the present invention.
  • the light emission part is pressed during shooting, the light is emitted toward the subject for a certain period of time after pressing the button.
  • a light emitting unit having directivity may be used as the light emitting unit.
  • the light emitting part uses a light emitting part such as an LED.
  • the mobile phone with built-in electronic camera has been described as an example.
  • the present invention is not limited to this embodiment.
  • a PDA Personal Digital Assistant
  • a camera function For example, a PDA (Personal Digital Assistant) with a camera function, a digital camera, etc. It can also be used for portable terminals with camera functions and for portable audio players.
  • a sound having a certain length such as a ringing melody is transmitted, there is a risk of beating, and the present invention is considered effective.
  • the CPU 101 executes the camera application program in the camera mode
  • the necessary processing is distributed not only to the CPU but also to the DSP303 (see Fig. 1) and other sub CPUs.
  • Execution is a matter that can be arbitrarily selected in the design.
  • the above-described program can be recorded and distributed on a computer-readable recording medium, and may be distributed in a form that realizes a part of the functions.
  • it may be distributed in the form of an application program that uses the basic functions provided by the OS (operation 'system).
  • it is possible to realize a predetermined function in combination with a program of an existing system already recorded in a computer system, or V, a form distributed by a so-called differential program.
  • the computer-readable recording medium includes a storage device such as a hard disk and other nonvolatile storage devices in addition to a storage medium such as a portable magnetic disk and a magneto-optical disk. Furthermore, other computer system capabilities may be provided via an arbitrary transmission medium such as the Internet or other networks. In this case, the “computer-readable recording medium” holds the program for a certain period of time on the transmission medium, such as the volatile memory inside the computer system that is the host or client on the network. Including.
  • the configuration in which the processing unit is constructed by the distributed processing method using the main CPU and the sub CPU is mentioned, but at least a part of the processor is installed in a hardware such as an FPGA (Field Programmable Gate Alley).
  • a hardware such as an FPGA (Field Programmable Gate Alley).
  • a form constructed by a wear circuit is also possible.
  • the distribution of circuit program information to be incorporated into the FPGA can take various forms in the same manner as the distribution of the above program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)

Abstract

 カメラ(601)と、該カメラ(601)による撮影を報知する報知音を発生する音声出力部(501)と、外部の音声を収集する音声収集部(503)と、少なくとも前記報知音および収集された外部の音声を用いて、被写体に到達する報知音の可聴性を判断する判断部と、前記判断に基づいて前記可聴性を高めるように報知音を制御する制御部(101)と、を備えた、カメラ機能付携帯端末である。

Description

明 細 書
カメラ機能付携帯端末
技術分野
[0001] 本発明は、カメラ機能を有する携帯端末に関するものであり、特に撮影を報知する 報知音を制御する技術に関するものである。 本願は、 2005年 4月 27日に出願され た特願 2005— 130001号、 2005年 4月 27日〖こ出願された特願 2005— 130002号 及び、に対し優先権を主張し、その内容をここに援用する。
背景技術
[0002] 現在、デジタルカメラ等の撮影機を内蔵した携帯電話機が普及して 、るが、この種 の機器は撮影の利便性が優れている反面、被写体の肖像権を保護する措置をとる べき要請がある。その為、撮影行為を周囲、特に被写体本人に報知する目的で、マ ナーモード (無音モード)等の設定に関わらずシャツタ音を模擬した報知音を撮影時 に十分な音量で鳴らすことが一般的となっており、カメラ内蔵型の携帯電話機のキヤ リア仕様にもなつている。このことは国際的な傾向にもなつており、法律で報知音の発 生が義務付けられている国もある。
[0003] また、上記のシャツタ音を模擬した報知音に用いられるサウンドデータは事前の設 定により選択可能であるが、現状では選択肢が固定されており、ユーザは予め用意 された選択肢力もし力設定できない仕様となっている。従って、ユーザがどのサウンド データを設定していても撮影時には十分な音量のシャツタ音を必ず鳴らして、周囲に 撮影行為を報知する事ができる。
[0004] 一方、各種アプリケーションプログラムを組み込んで実行できる基本ソフトであるプ ラットホームを搭載する携帯端末も普及しており、ユーザの好みに応じて様々なアブ リケーシヨンプログラムを追加可能となっている。これにより、カメラ機能を制御可能な アプリケーションプログラムをユーザの判断で追カ卩して使用可能となってきて 、る。ま た携帯端末力 送出される音は、年々携帯用スピーカーやオーディオ技術の発展に 臨場感あふれる音声を送出できるようになっており、今後もこの動きは続くものと考え られる。 [0005] 従来技術として特許文献 1〜3等に記載されるものがある。これは、静止画撮影に 連動してシャツタ相当音を鳴らす技術である。また、特許文献 4に記載される従来技 術もある。これは、複数のシャツタ音を選択的に使用可能とする技術である。
特許文献 1:特開平 7— 177404号公報
特許文献 2:特開平 11― 168646公報
特許文献 3:特開 2000 - 307902号公報
特許文献 4:特開 2001— 69389公報
発明の開示
発明が解決しょうとする課題
[0006] 上記の従来技術では、周囲の雑音の比較的穏やかな場所で撮影を行えばシャツタ 音が鳴って被写体本人に撮影が行われたことを報知することができるが、たとえば電 車内等、周囲の雑音が大きい場所で撮影を行うと、周囲の雑音に邪魔されてシャツタ 音が被写体に聞こえない可能性がある。また、十分大きなシャツタ音を出したとしても 逆位相の音波があった場合、シャツタ音が力き消される可能性がある。
[0007] また、インターネットや外部装置を介してシャツタ音用のサウンドデータをユーザが 自由に入手して選択肢に追加する使用形態も将来想定し得る。この場合、撮影の報 知音としての識別性に難点のあるサウンドデータを追加して設定してしま 、、結果とし て撮影の報知機能が阻害されてしまうおそれがある。また、上述したプラットホームを 搭載した携帯端末の普及を考慮すると、カメラ機能付き携帯端末のシャツタ音の音量 を調節するアプリケーションプログラムを組み込んで音量を小さくあるいは無音にする 使用形態がとられる可能性もあり、この場合も撮影の報知機能が阻害されてしまうお それがある。
[0008] また、一般に二つ以上の振動数の異なる音波が重なると、振幅が時間的にも空間 的にも周期的に変化して、 "うなり"が生じる。このうなりは、複数の音波の振動数がわ ずかに異なる場合に顕著になる。携帯電話機が使用される環境、すなわち外部雑音 の周波数によっては、シャツタ音と外部雑音が干渉してうなり現象が発生し、周囲に 不快な音として認識される可能性がある。
[0009] また人が不快と感じる音として、たとえば黒板やガラスを引つ力べ音がある。この音は 90%以上の人が不快感を示すと言われている。これは可聴周波数である 20kHzに 近い高周波の音を聞くことで危険を感じ、いわゆる防衛反応をしめす力もである。こ の他、 2500Hz近傍の音も人に不快感を与えることが知られている。つまり音が人に 不快感を与えるかどうかは、音の周波数自体も関わってくる。
[0010] 携帯電話機に出荷時に登録する基本シャツタ音については、上記の不快感を与え る周波数帯域の音を予め除外しておけば、シャツタ音が周波数帯域に起因する不快 感の原因になる事態を避けることは可能であるが、携帯電話機の使用形態の自由度 が高くなりつつある昨今の状況力 考えると、将来、シャツタ音をユーザが任意に設 定登録し得る機能が提供される可能性もある。すなわち、ユーザが自由に登録したシ ャッタ音が不快感を与える周波数成分を含む音である可能性がある。また、犬猫に代 表されるようなペットに不快感を与える音を送出した場合、動物が萎縮する、あるいは 逆に暴れだすといった事態を引き起こす可能性が考えられる。
[0011] 本発明は、このような事情に鑑み、カメラ付き携帯端末における撮影の報知機能を 向上した技術を提供することを課題とする。また、本発明は、カメラ機能を有する携帯 端末の制御技術において、人や動物に不快感を与えるおそれがある報知音の送出 を抑える技術を提供することを課題とする。
課題を解決するための手段
[0012] 上記の課題を解決するために、第 1の発明にあっては、カメラと、該カメラによる撮 影を報知するための報知音を出力する音声出力部と、前記報知音が報知音として適 切か否かを判断する判断部と、前記判断部の判断基準となる基準値を記憶する記憶 部と、前記判断部の判断に基づき、前記報知音の出力を制御する制御部とを備える カメラ機能付携帯端末を提供する。
[0013] また、第 2の発明にあっては、第 1の発明に係るカメラ機能付携帯端末において、外 部の音声を収集する音声収集部、をさらに備え、前記判断部は、少なくとも前記音声 収集部で収集された外部の音声に基づ 、て、前記報知音の被写体の位置における 可聴性を判断し、前記制御部は、前記判断部の判断に応じて、前記可聴性を高める よう、前記音声出力部における前記報知音の出力を制御するカメラ機能付携帯端末 を提供する。 [0014] また、第 3の発明にあっては、第 2の発明に係るカメラ機能付携帯端末において、被 写体までの距離を測定する測定部、をさらに備え、前記判断部は、前記測定部にお いて測定される被写体までの距離と、前記音声収集部で収集される外部の音声と〖こ 基づ ヽて、前記被写体の位置における前記報知音の可聴性を判断するカメラ機能 付携帯端末を提供する。
[0015] また、第 4の発明にあっては、第 3の発明に係るカメラ機能付携帯端末にぉ 、て、前 記判断部は、前記測定部により測定される距離および前記音声出力部における出 力音量を変数とする関数の値として定義される前記被写体の位置における前記報知 音の音量が規定値を上回るか否かを判断し、前記制御部は、前記判断部の判断に 基づき、前記関数の値が規定値を上回るように、前記音声出力部における前記報知 音の出力音量を制御するカメラ機能付携帯端末を提供する。
[0016] また、第 5の発明にあっては、第 3の発明に係るカメラ機能付携帯端末にぉ 、て、前 記記憶部は、前記報知音が可聴性を持って到着する限界の距離を第 1の基準値とし て記憶し、前記制御部は、前記測定部で測定された被写体までの距離が前記第 1の 基準値を上回るときは、前記報知音の出力音量を予め設定されたデフォルト値に制 御するカメラ機能付携帯端末を提供する。
[0017] また、第 6の発明にあっては、第 2の発明に係るカメラ機能付携帯端末において、前 記判断部は、報知音の周波数特性から求められた該報知音のピーク周波数と、前記 音声収集部で収集された外部の音声のピーク周波数との周波数差を、可聴性を決 める第 1の指標として算出し、前記制御部は、前記第 1の指標に基づいて前記報知 音の周波数を選択変更するカメラ機能付携帯端末を提供する。
[0018] また、第 7の発明にあっては、第 2の発明に係るカメラ機能付携帯端末にぉ 、て、前 記記憶部は、報知音の周波数特性から求められた該報知音のピーク周波数と、前記 音声収集部で収集された外部の音声のピーク周波数との周波数差の最小許容値に 相当する第 2の基準値を記憶し、前記判断部は、報知音の周波数特性から求められ た該報知音のピーク周波数と、前記音声収集部で収集された外部の音声のピーク周 波数との周波数差を、可聴性を決める第 1の指標として算出し、該第 1の指標が前記 第 2の基準値を下回るか否かを判断し、前記制御部は、前記判断部において前記第 1の指標が前記第 2の基準値を下回ると判断された場合、前記報知音のピーク周波 数の位相と前記外部の音声のピーク周波数の位相との位相差が小さくなるよう、前記 報知音の出力タイミングを制御するカメラ機能付携帯端末を提供する。
[0019] また、第 8の発明にあっては、第 1の発明に係るカメラ機能付携帯端末において、前 記音声出力部および前記音声収集部の少なくとも一方について遮蔽物を検出する 検出部を備え、前記制御部は、前記検出部において前記遮蔽物が検出されると、前 記カメラの機能を制限するカメラ機能付携帯端末を提供する。
[0020] また、第 9の発明にあっては、第 1の発明に係るカメラ機能付携帯端末において、前 記判断部は、前記報知音が人間に不快感を生じさせる要因を有するか否かを判断し 、前記制御部は、前記不快感を生じさせる要因を低減するよう、前記音声出力部に おける前記報知音の出力を制御するカメラ機能付携帯端末を提供する。
[0021] また、第 10の発明にあっては、第 9の発明に係るカメラ機能付携帯端末において、 前記記憶部は、予め設定された周波数帯域を、不快感を生じさせる不快周波数帯域 として記憶し、前記判断部は、前記報知音が前記不快周波数帯域を規定値より多く 含むか否かを判断するカメラ機能付携帯端末を提供する。
[0022] また、第 11の発明にあっては、第 10の発明に係るカメラ機能付携帯端末において 、前記記憶部は、前記不快周波数帯域の成分が少ない音情報を予め記憶し、前記 制御部は、前記判断部において、前記報知音が前記不快周波数帯域の成分を規定 値より多く含むと判断された場合、前記記憶部に予め記憶された音情報を選択し、該 選択した音情報を前記報知音の代わりに前記音声出力部より出力するよう制御する カメラ機能付携帯端末を提供する。
[0023] また、第 12の発明にあっては、第 9の発明に係るカメラ機能付携帯端末において、 外部の音声を収集する音声収集部、をさらに備え、前記判断部は、前記音声収集部 で収集された外部の音声と前記報知音とが干渉してうなりを生じるか否かを判断する カメラ機能付携帯端末を提供する。
[0024] また、第 13の発明にあっては、第 12の発明に係るカメラ機能付携帯端末において 、前記判断部は、前記音声収集部で収集された外部の音声および前記報知音それ ぞれのピーク周波数を抽出し、前記外部の音声のピーク周波数と前記報知音のピー ク周波数とが干渉してうなりを生じる力否かを判断するカメラ機能付携帯端末を提供 する。
[0025] また、第 14の発明にあっては、第 12の発明に係るカメラ機能付携帯端末において 、前記判断部は、前記音声収集部で収集された外部の音声と前記報知音とを合成し た音波形からうなり成分を検出し、該検出したうなり成分を評価し、うなりが生じる力否 かを判断するカメラ機能付携帯端末を提供する。
発明の効果
[0026] 本発明によれば、報知音が報知音として適切か否かを判断する判断部の判断に基 づき、制御部が報知音の出力を制御するので、音声出力部により適切な報知音を出 力することができる。
[0027] また報知音や収集された外部の音声を用いて、被写体に到達する報知音の可聴 性を判断し、この判断に応じて前記可聴性を高めるように報知音を制御する形態をと れば、被写体に報知音が到達する確度を向上することができ、肖像権の侵害に対す る抑止効果が向上する利点がある。
[0028] また被写体の位置における報知音の可聴性を判断する形態、または、被写体の位 置における報知音の音量が規定値を上回るか否かを判断し、この判断に応じて報知 音の出力を制御する形態をとれば、被写体に到達する報知音が可聴な音量となるよ うに制御することができる利点がある。
[0029] さらに報知音の出力を可聴性の判断に応じて制御する一方、被写体までの距離が 所定の基準値 (第 1の基準値)より大きければ、報知制御不要として当初の音量設定 をもって報知音の出力を行う形態をとることにより、風景等を撮影する際に無意味に 大音量の報知音を出力することを回避できる利点がある。
[0030] さらに報知音の周波数特性力 求められた該報知音のピーク周波数と、音声収集 部で収集された外部の音声のピーク周波数との周波数差を、可聴性を決める第 1の 指標として算出し、前記第 1の指標に基づいて前記報知音の周波数を選択変更する 形態をとれば、近しい周波数成分の外部の音声によって報知音が埋もれて被写体に おける報知音の可聴性を阻害することを回避できる利点がある。
[0031] さらに報知音の周波数特性力 求められた該報知音のピーク周波数と、音声収集 部で収集された外部の音声のピーク周波数との周波数差の最小許容値に相当する 第 2の基準値を記憶し、報知音の周波数特性から求められた該報知音のピーク周波 数と、音声収集部で収集された外部の音声のピーク周波数との周波数差を、可聴性 を決める第 1の指標として算出し、該第 1の指標が前記第 2の基準値を下回る力否か を判断し、前記第 1の指標が前記第 2の基準値を下回ると判断された場合、前記報 知音のピーク周波数の位相と前記外部の音声のピーク周波数の位相との位相差が 小さくなるよう、前記報知音の出力タイミングを制御する形態をとれば、外部の音声に より報知音が打ち消されずに逆に重畳して報知音の強度を高めることができる利点 がある。
[0032] また音声出力部および音声収集部の少なくとも一方について遮蔽物を検出し、前 記遮蔽物が検出されると、カメラの機能を制限する形態をとれば、遮蔽物による報知 音の出力機能や外部の音声の収集機能が邪魔されて上述の各種の報知音の制御 機能が適切に発揮されずに報知機能が阻害されることを回避できる利点がある。
[0033] また報知音が人間に不快感を生じさせる要因を有するか否かを判断し、前記不快 感を生じさせる要因を低減するよう、音声出力部における前記報知音の出力を制御 する形態をとれば、上記の不快感を生じさせる要因を有する音を報知音として出力 することを回避する、あるいは上記の不快感を生じさせる要因を和らげたうえで報知 音を出力する等、報知音が周囲に不快感を与える事態を抑止することが可能となる 禾 IJ点がある。
[0034] また予め設定された周波数帯域を、不快感を生じさせる不快周波数帯域として記 憶し、報知音が前記不快周波数帯域を規定値より多く含むか否かを判断する形態を とれば、不快感を引き起こすとされる周波数成分を含む報知音の出力を抑止できる 禾 IJ点がある。
[0035] また不快周波数帯域の成分が少な 、音情報を予め記憶し、報知音が前記不快周 波数帯域の成分を規定値より多く含むと判断された場合、予め記憶された音情報を 選択し、該選択した音情報を前記報知音の代わりに音声出力部より出力するよう制 御する形態をとれば、簡素な処理により適切な報知音を設定できる利点がある。
[0036] また報知音そのものが不快感を生じる性質を有さなくても、外部の音声と報知音が 干渉してうなりを発生する現象を起こし、周囲に不快感を与える可能性がある力 外 部の音声を収集し、収集された外部の音声と報知音とが干渉してうなりを生じるか否 かを判断する形態をとれば、上記の現象の発生を抑止することが可能となる利点が ある。
[0037] また上記の判断を行うにあたって、収集された外部の音声および報知音それぞれ のピーク周波数を抽出し、前記外部の音声のピーク周波数と前記報知音のピーク周 波数とが干渉してうなりを生じるか否かを判断する形態をとれば、発生するうなりの程 度を簡素な処理により定量ィ匕した形で推定することが可能となる利点がある。
[0038] また収集された外部の音声と報知音とを合成した音波形からうなり成分を検出し、 該検出したうなり成分を評価し、うなりが生じるか否かを判断する形態をとれば、発生 するうなりを精度良く推定することが可能となる利点がある。
図面の簡単な説明
[0039] [図 1]図 1は、本発明の一実施形態である電子カメラ内蔵型の携帯電話機の回路構 成を示すブロック図である。
[図 2]図 2は、本発明の第 1実施形態による、カメラアプリケーションプログラムにおけ る主手順を示すフローチャートである。
[図 3]図 3は、本発明の第 1実施形態による、サゥンダマスクチェック処理の手順を示 すフローチャートである。
[図 4]図 4は、本発明の第 1実施形態による、撮影処理の一具体例を示すフローチヤ ートである。
[図 5]図 5は、本発明の第 1実施形態による、電車内における撮影の様子を示す説明 図である。
[図 6]図 6は、本発明の第 1実施形態による、シャツタ音の可聴条件を示すグラフであ る。
[図 7]図 7は、本発明の第 1実施形態による、シャツタ音チェック処理で用いられるアル ゴリズムの一例を示すフローチャートである。
[図 8]図 8は、図 7のアルゴリズムの変形例を示すフローチャートである。
[図 9]図 9は、図 8のアルゴリズムを用いた場合の送出音の強度 POと距離 Dの関係を 示すグラフである。
[図 10]図 10は、本発明の第 1実施形態による、シャツタ音チェック処理におけるアル ゴリズムの他の例を示すフローチャートである。
[図 11A]図 11 Aは、図 10のアルゴリズムによる送出音の決定の様子を示すグラフであ る。
[図 11B]図 11Bは、図 10のアルゴリズムによる送出音の決定の様子を示すグラフであ る。
[図 12]図 12は、図 10に示すアルゴリズムの変形を示すフローチャートである。
圆 13A]図 13Aは、本発明の第 1実施形態による、シャツタ音と外部雑音との干渉の 様子を示すグラフである。
圆 13B]図 13Bは、本発明の第 1実施形態による、シャツタ音と外部雑音との干渉の 様子を示すグラフである。
[図 14]図 14は、本発明の第 2実施形態による、カメラアプリケーションプログラムにお ける主手順を示すフローチャートである。
[図 15]図 15は、本発明の第 2実施形態による、サゥンダマスクチェック処理の手順を 示すフローチャートである。
[図 16]図 16は、本発明の第 2実施形態による、シャツタ音周波数チェック処理の一具 体例を示すフローチャートである。
[図 17]図 17は、本発明の第 2実施形態による、シャツタ音の周波数特性の一例を示 すグラフである。
[図 18]図 18は、本発明の第 2実施形態による、撮影処理の一具体例を示すフローチ ヤートである。
[図 19]図 19は、本発明の第 2実施形態による、シャツタ音チェック処理の一具体例を 示すフローチャートである。
[図 20]図 20は、本発明の第 2実施形態による、うなり判定の一具体例を示すフローチ ヤートである。
圆 21A]図 21Aは、本発明の第 2実施形態による、うなりの様子を示すグラフであり、 波形 Aを示す。 [図 21B]図 21Bは、本発明の第 2実施形態による、うなりの様子を示すグラフであり、 波形 Bを示す。
[図 21C]図 21Cは、本発明の第 2実施形態による、うなりの様子を示すグラフであり、 波形 A, Bの合成波を示す。
[図 22]図 22は、本発明の第 2実施形態による、うなり発生の判定を示すグラフである 符号の説明
[0040] 101---CPU, 102···メモリ、 103···タイマ、 201···内部ノス、 301···アンテ ナ、 302···無線部、 303---DSP, 304· "DZ Aコンバータ、 305···スピーカ、 306· "AZDコンバータ、 307···マイクロホン、 401···キー操作部、 402· "画面 表示部、 501…スピーカ、 502---LED, 503···マイクロホン、 601···カメラ部、 602···ドライノく、 603···画像処理プロセッサ、 604···ノッファメモリ
発明を実施するための最良の形態
[0041] 以下、図面を用いてこの発明の実施形態を説明する。
図 1は本発明の一実施形態である電子カメラ内蔵型の携帯電話機 (カメラ機能付携 帯端末)の回路構成を示すブロック図である。この携帯電話機は、装置全体の制御を 司る CPU (Central Processing Unit) 101に内部バス 201を介して各機能ブロッ クが接続された構成を有する。メモリ 102は、 RAM (RandomAccess Memory)お よび ROM (Read Only Memory)からなり、 CPU101のメインメモリを構成するも のである。タイマ 103は CPU101の指示に基づいてタイマ割込等の処理を行うもの である。
[0042] アンテナ 301は、通信に使用する電波の送受信を行うものである。無線部 302は、 アンテナ 301を用いて通信を行うものである。 DSP (Digital Signal
Processor) 303は、送受信信号の変復調処理その他の処理を行うものである。 D /A (Digital/ Analog)コンバータ 304は、 DSP303の出力するデジタル音声信号 や着信音等をアナログ音声信号に変換して、スピーカ 305に供給するものである。 A /Ό (AnalogZDigital)コンバータ 306はマイクロホン 307から入力されるアナログ 音声信号をデジタル音声信号に変換して DSP303に供給するものである。マイクロ ホン 307は、通話音声等を入力するものである。
[0043] キー操作部 401は、例えばテンキーやオンフックキー、オフフックキー、電源ボタン 、シャツタボタン、機能選択キー(ファンクションキー)等を有し、ダイアル入力の他、各 種のキー入力の取込処理を行うものである。画面表示部 402は、たとえば液晶ディス プレイや液晶タツチパネルなど力 なり、通信に関する各種表示の他、カメラモード時 に撮影画像を表示するなど各種画像やメッセージ等の表示やメニュー画面などの表 示を行うものである。
[0044] スピーカ(音声出力部) 501は、着信音やシャツタ音等を発生することにより各種の 報知を行うものであり、カメラ部 601の光学系と同軸上に指向性を有する型のものを 採用すると、被写体へのシャツタ音の到達距離が延びる点で有利である。 LED (Lig ht Emitting Diode) 502は、着信時等に点灯あるいは点滅するなどして各種の 報知を行うものである。マイクロホン (音声収集部) 503は、外部の音声 (外部雑音)を 収集するものである。 I/O (入出力)インタフェース 504は、スピーカ 501や LED502 、マイクロホン 503と内部バス 201との間の入出力制御を行うものである。
[0045] カメラ部 601は、たとえば CCD (Charge Coupled Device)等の撮像素子とレン ズ等の光学系とを有し、電子カメラ機能の主要部を構成するものである。ドライバ 602 は、 CPU101の指示に基づいてカメラ部 602を駆動するものである。画像処理プロ セッサ 603は、画像データの加工や圧縮、伸長などの処理を行うものである。バッフ ァメモリ 604は CCDの出力に基づく画像データ等を一時的に格納するメモリである。 カメラ部 601は、キー操作部 401や画面表示部 402の設置面と反対の面に設置され るのが通常である。またスピーカ 501や LED502、マイクロホン 503は、カメラ部 601 と同じ面に設置される形態が望ましい。マイクロホン 503は、通話音声入力用のマイ クロホン 307をもって代用する形態も可能である力 カメラ部 601と同じ面に設置され るのが望ましいことから、この実施形態ではマイクロホン 307とは別に設置する例を示 す。
[0046] 本発明の第 1実施形態による携帯電話機は、通常の音声通話モードの他にカメラ モードをとつて動作することが可能となっている。カメラモードでは、カメラアプリケー シヨンプログラムを立ち上げて実行する。図 2は、カメラアプリケーションプログラムに おける主手順を示すフローチャートである。図 1, 2を用いて説明すると、 CPU101は まず、所定の初期設定 (S101)を行った後、キー入力やタイマなどによる割込処理( S 102)を行ってカメラ画像表示処理 (S 103)その他、所定の処理を選択実行する。
[0047] この概略を説明すると CPU101は、カメラ部 601からの結像を取り込み、画像処理 プロセッサ 603で処理したうえでカメラ画像として画面表示部 402に常時表示する(S 103)。また常時、撮影時に必要となる測定データや設定データの取得更新を行う(S 104〜S108)。キー操作部 401によりシャツタボタンの押下が検出されると撮影処理 (S107)が立ち上がって上記の画像を撮影画像として登録する。なお、このカメラモ ードでは、メモリ 102に格納されたカメラアプリケーションプログラムに従って CPU10 1が各部を制御し、全体の協調動作によって本発明の構成要件に相当する各機能を 実現するものであり、カメラアプリケーションプログラムにおいて CPU101が実行すベ き処理は、 DSP303に適宜分担処理させることにより処理負荷を分散して全体の処 理効率を向上させる形態をとることもできる。
[0048] 次に各処理について説明する。
カメラ画像表示処理 (S 103)は、上述したようにカメラ部 601から取り込んだ画像を 継続して画面表示部 402に表示させる処理である。この処理において CPU101は、 カメラ部 601を駆動することにより CCDが出力するデジタルの画像データを取得して バッファメモリ 604に格納する。さらに画面表示部 402のディスプレイ(図示せず)によ りこの画像データを表示する。このカメラ画像表示処理は常時継続して実行され、こ の結果、取り込んだ最新の画像が常時表示される。また後述するマスクチェックの結 果、撮影が不許可である旨を示すフラグがセットされると、撮影が不許可である旨のメ ッセージあるいは絵記号等が画像データに重ねて表示される。
[0049] サゥンダマスクチェック処理(S 104)は、スピーカ 501やマイクロホン 503の動作が 正常であるかどうかを判定する処理であり、タイマ割込により定期的に選択される。図 3は、サゥンダマスクチェック処理の手順を示すフローチャートである。図 1, 3を用い て説明すると CPU101はまず、サゥンダの検査項目として定められている所定のデ ータを取得し(S201)、取得したデータを用いて適正力否かの判定を行う(S202)。 判定結果が「不適」である場合は (S202:不適)、撮影が不許可である旨を示すフラ グをセットし (S203)、判定結果力 ^適正」である場合は(S202 :適正)、上記のフラグ をリセットする(S204)。
[0050] たとえばスピーカ 501が手やその他の物体で遮蔽された場合、適正なシャツタ音を 送出できない可能性がある。またマイクロホン 503が同様に遮蔽された場合、シャツタ 音の音量等を適正に調節できない可能性がある。このため、 CPU101は、定期的に サゥンダマスクチェック処理を立ち上げて監視を行う。
[0051] 判定の具体的な手法としては、たとえば圧力センサや光センサ(図示せず)をスピ 一力 501やマイクロホン 503の設置位置に取り付けておき、圧力センサを用いて閾値 以上の圧力を感知した場合ある!/、は光センサを用いて閾値以上光があたって 、なか つた場合に、マスクされたと判断する手法をとることができる。また、温度センサや湿 度センサ(図示せず)を用いて閾値以上の温度または湿度を感知した場合、手など でマスクされたと判断する手法をとることもできる。またスピーカ 501から検査用の微 少な検査用の音波を出力すると共に、この音波をマイクロホン 503でピックアップし、 ピックアップした音量を閾値と突き合わせてマスクされているかどうかを判定する手法 をとることちでさる。
[0052] 図 1, 2に戻って説明を続けると、距離測定処理 (S105)は、被写体までの距離を測 定する処理であり、タイマ割込により定期的に選択される。被写体との距離を測定す る手法としては、たとえば音波を出力する音声出力部や赤外線を出力する光出力部 等と、その反射波を受信する受信部とを設けておき、音波等を被写体に向けて射出 し、その反射波を用いて被写体までの距離を測定する手法をとることができる。また力 メラ部 601がオートフォーカス機能を有している場合、オートフォーカス機能により測 定された焦点距離を利用する手法をとることもできる。オートフォーカス機能は、赤外 線等を用いるアクティブ方式や、 CCDによる結像を用いたコントラスト検出方式その 他のパッシブ方式など、既存の方式を採用すれば良!、。
[0053] 雑音測定処理(S106)は、マイクロホン 503を用いて周囲の雑音を収集し、音量や 周波数特性など所定の解析処理を実行するものであり、タイマ割込により定期的に 選択される。この雑音の収集は、被写体における雑音雰囲気を推定するためのモ- タリングであり、マイクロホン 503がカメラ部 601と反対の面に配置されていると、雑音 がユーザの体に吸収されて被写体側の音量より小さくなつてしまう可能性があるため
、カメラ部 601と同じ面にマイクロホン 503を配置する形態が望ましい。
[0054] 撮影処理 (S107)は、キー操作部 401によりシャツタボタンの押下が検出されると選 択される処理であり、シャツタ音の送出等、所定の報知処理を行うと共に、カメラ画像 を撮影画像として登録するものである。本実施形態では、撮影の不許可を示すフラグ がセットされて 、る場合は、シャツタボタンの押下があっても上記の撮影画像としての 登録などの処理に進まずに所定のメッセージ出力処理に進む点を特徴とする。また シャツタ音を出力するにあたって、シャツタ音の適正判定の結果に基づいてシャツタ 音を選択する点を特徴とする。詳しくは後述する。
[0055] 終了処理 (S108)は、キー操作部 401によりカメラモードの終了を指示する入力や 電源切断を指示する入力などがあった場合に選択される処理であり、モード終了ある いは電源切断などに伴う所定の処理を実行するものである。
[0056] 図 4は、撮影処理の一具体例を示すフローチャートである。図 1, 4を用いて説明を すると、撮影処理において CPU101はまず、前述の撮影が不許可である旨を示すフ ラグがセットされて 、るかどうかを確認し(S301)、もしフラグがセットされて ヽれば(S 301 : Yes)、たとえばブザー音を送出する等、撮影が不許可である旨のメッセージを 出力する(S302)。そしてカメラ画像を撮影画像として登録することなく終了する。あ るいは撮影画像として登録はする力 メモリカード等の不揮発性メモリ(図示せず)に 当該撮影画像を保存することを許容しな ヽ等、撮影画像の取り扱いにつ ヽて制限を 付ける形態をとることちできる。
[0057] またステップ S301において不許可を示すフラグがセットされていない場合(S301: No)、ノ ッファメモリ 604に格納されている現在のカメラ画像を撮影画像として登録し (S303)、シャツタ音チェック処理(S304)に進む。ここでメモリ 102は、シャツタ音(正 確にはシャツタ音を模擬した音データ)の基本データを複数所定の領域に記憶して おり、力かる基本データの中の 1つがデフォルト指定あるいはユーザの選択指定によ り選択されて ヽるものとする。
[0058] シャツタ音チェック処理において CPU101は、選択されているシャツタ音を対象とし 、被写体までの距離、周囲の雑音の大きさ等を用いて所定のアルゴリズムにより被写 体に聞こえる適切な音量や周波数であるかを判断し、不適であれば音量や周波数を 適宜変更する。この後、 IZOインタフェース 504を介してスピーカ 501を駆動し、シャ ッタ音の音データをメモリ 102から読み出してスピーカ 501に発音形成させ、撮影が 行われた旨を被写体本人を含む周囲に対し報知する(S 305)。
[0059] シャツタ音チェック処理におけるアルゴリズムの詳細を説明する前にまず、送出する シャツタ音の被写体本人への到達の様子を説明する。図 5は、電車内における撮影 の様子を示す説明図である。同図に示すように、周囲の雑音が顕著な電車内 1にお いて、ユーザ 2が被写体 3を携帯電話機 4で撮影する場合を考える。ここで Dは携帯 電話機 4から被写体 3までの距離 (m)、 Pnは周囲の雑音 (外部雑音)の強度 (dBm) 、 Pはシャツタ音 (被写体 3に到達する音)の強度 (dBm)、 P0はシャツタ音 (送出音) の強度(dBm)、 Pdはデフォルトの設定によるシャツタ音の強度(dBm)、 Pminは人 間の一般的な最小可聴音圧に相当する最小音量設定値 (dBm)、 Pmaxはシャツタ 音の最大音量設定値 (dBm)である。同図に示すような限られた空間の場合、ユーザ 2と被写体 3の位置における雑音の大きさおよび周波数成分はほぼ等しいと考えられ る。
[0060] このとき被写体 3に到達するシャツタ音の強度が(1)式を満足すれば、被写体 3はシ ャッタ音を可聴であるとする。図 6は、この可聴条件を示すグラフであり、縦軸は音圧 の強度、横軸は時間を示す。実線で描いた波形はシャツタ音 (被写体 3に到達する音 )、破線で描いた波形は外部雑音を示す。
[0061] [数 1]
P く P- ΡΠ - (1 )
[0062] 一般に音圧は距離 Dの 2乗に反比例して減衰して 、き、減衰の度合いは周波数 fに よって異なる。
[0063] 以上を踏まえて、シャツタ音チェック処理で用いられるアルゴリズムの一例を説明す る。図 7は、同処理で用いられるアルゴリズムの一例を示すフローチャートである。同 図に示すように、 CPUはまずステップ S 104, S105 (図 2参照)で測定した距離 Dや 一定時間の外部の雑音の強度 Pnなどの測定データをメモリから読み出す (S401)。 次にデフォルトのシャツタ音の強度 Pdを送出音の強度に設定し (S402)、予め設定 された関係式 P (D, Pd)を用いて被写体におけるシャツタ音の強度 Pを算出する(S4 03)。この後、最小音量設定値 Pminと被写体における有効音量強度 P— Pnとを比 較する(S404)。
[0064] この比較結果が「く」、すなわち(1)式を満足していれば(S404 : < )現在のシャツ タ音の設定が適正であるとして終了する。また比較結果が「 」、すなわち(1)式を満 たしていないならば (S404 :≥)、送出音の強度 POが最大音量設定値 Pmaxに達し て!、な 、ことを確認したうえで (S405:く)、設定増大幅 Δ Pだけ送出音の強度 POを 上げ(S406)、ステップ S403に戻る。この手順により(1)式を満足するか(S404 :く) あるいは送出音の強度 POが最大音量に達する(S405 :≥)値に送出音の強度 POを 設定する。
[0065] また風景写真などを撮影する場合等、あまり大きな音量のシャツタ音は必要な!/、と きがある。また、ある一定以上離れた距離にある被写体にはどんなに大きな音を出し ても雑音として御認識してしまい、効果が発揮できないことがある。このことを踏まえて 本発明では、図 8に示すアルゴリズムを用いてシャツタ音チェック処理を行う形態をと ることちでさる。
[0066] 図 8は、図 7のアルゴリズムの変形例を示すフローチャートである。同図に示すように CPUは距離 Dや外部雑音の強度 Pnなどの測定データをメモリから読み出す (S501 )。次に距離 Dを閾値 D1と比較する(S502)。閾値 D1は、送出音を最大音量にすべ きと想定される距離に相当する閾値である。ステップ S502の比較結果が Dく D1なら ば(S502 :く)、図 7のステップ 403に進み、上記と同様の処理を行って(1)式を満足 するような送出音の強度 POを設定する。
[0067] ステップ S502において距離 Dが閾値 D1より大きければ(S502 :≥)、 CPUはさら に距離 Dを閾値 D2 (請求項 3の第 1の閾値)と比較する(S503)。閾値 D2は、風景 撮影であると判断すべき距離 (あるいは最大音量の送出音でも到達が困難な距離) に相当する閾値である。ステップ S503にお 、て距離 Dが閾値 D2を下回って 、る場 合 (S503 :く)、送出音の強度 POを最大音量 Pmaxに設定して終了する(S504)。ま た距離 Dが閾値 D2を越えている場合 (S505 :≥)、送出音を大きくしても無意味であ るとして送出音の強度 POをデフォルトの強度 Pdに設定して終了する。
[0068] 図 9は、図 8のアルゴリズムを用いた場合の送出音の強度 POと距離 Dの関係を示す グラフであり、縦軸は音圧音の強度、横軸は距離を示す。同図に示すように、送出音 を最大音量にすべきと想定される距離 D1より距離 Dが小さければ図 7と同様の手法 により送出音の強度 POを設定する。一方、距離 D1より距離 Dが大きい場合、ある一 定距離の範囲内(D1 < D< D2)にある場合、図 7の手順には進まずに送出音の強 度 P0を最大音量 Pmaxに設定し、遠距離の被写体でもシャツタ音が到達するような 音量でシャツタ音の送出を行う。また、距離 Dが D2より大きい場合、風景撮影をして いると判断し、デフォルトの音量 Pdによりシャツタ音を送出する。
[0069] またシャツタ音の可聴条件は、音量だけでなく周波数特性にも依存する。このことを 踏まえて本発明は、シャツタ音と外部雑音との周波数特性もチェック対象としてシャツ タ音チェック処理を行う形態をとることもできる。この形態では、前述したシャツタ音の 各基本データに予め測定したピーク周波数を付加したうえで、 CPUのメインメモリに 格納しておく。また外部雑音の測定処理(図 2のステップ S 106)において、測定した 外部雑音の周波数特性を演算しておくこととする。このうえで、シャツタ音チェック処 理では、図 10に示すアルゴリズムを用いる。
[0070] 図 10は、シャツタ音チェック処理におけるアルゴリズムの他の例を示すフローチヤ一 トである。同図に示すように CPUは、ステップ S105, S106 (図 2参照)における測定 データをメモリから読み出す(S601)。さらにメモリからデフォルトのシャツタ音のピー ク周波数 FOmaxを算出し、この値を送出音のピーク周波数 Fmaxに代入する(S602
) o
[0071] 次に CPUは、取得した外部雑音の周波数特性力もピーク周波数 Fnmaxを求める このとき外部雑音の周波数特性が広範囲にわたる場合、デフォルトのシャツタ音のピ ーク周波数近傍にぉ 、て顕著なピークを選んでピーク周波数 Fnmaxとすれば良 、。 求めた外部雑音のピーク周波数 Fnmaxと送出音のピーク周波数 Fmaxとの周波数 差を算出し、この周波数差を閾値 Δ ί (周波数差の最小許容値に相当する第 2の閾 値)と比較する(S603)。閾値 Δ ίは、シャツタ音と外部雑音の周波数成分が被ること によりシャツタ音がマスクされることを回避するための周波数差を確保するための値で ある。ステップ S603における比較の結果、周波数差が閾値 Δ ίを上回っていれば(S 603 :≤)、デフォルトのシャツタ音を送出音としたまま終了する(S604)。
[0072] 一方、周波数差が閾値 Δ ίを下回っていれば(S603 : >)、シャツタ音の基本データ の中力も別の音データを選択し(S605)、その音データのピーク周波数 Fimaxを取 得し(S606)、取得した値 Fimaxを送出音のピーク周波数 Fmaxに代入し(S607)、 ステップ S603に戻って外部雑音のピーク周波数 Fnmaxとの周波数差を計算する。 このような手順により、外部雑音のピーク周波数 Fnmaxとの周波数差が閾値 Δはり 大きいシャツタ音を選び出して送出音に決定する(S604)。仮にピーク周波数 Fimax と外部雑音のピーク周波数 Fnmaxとの周波数差が閾値 Δはり大きくなる基本データ が登録されてない場合 (S605 : No)、デフォルトのシャツタ音あるいは周波数差が最 も大き 、基本データを選択して送出音に決定することとなる(S608)。
[0073] 図 11A、図 11Bは、図 10のアルゴリズムによる送出音の決定の様子を示すグラフ であり、縦軸は強度、横軸は周波数を示す。図中、ハッチングを付した波形は外部雑 音、ノ、ツチングを付していない波形はシャツタ音を示す。図 11Aに示すように、デフォ ルトのシャツタ音のピーク周波数 FOmaxが外部雑音のピーク周波数 Fnmaxに近い 場合、シャツタ音は外部雑音にマスクされて可聴性が悪くなるため、周波数差が閾値 Δはり大きい他のシャツタ音に変更する。このことにより被写体におけるシャツタ音の 一定の可聴性を確保できる。
[0074] また、外部雑音の周波数分布が広ぐ登録されたシャツタ音の基本データがすべて マスクされてしまうケースもあり得る。このケースを考慮し、図 12に示すアルゴリズムに よりシャツタ音の送出タイミングを規定し、外部雑音により打ち消されないタイミングに よるシャツタ音の送出を指示する形態をとることもできる。
[0075] 図 12は、図 10に示すアルゴリズムの変形を示すフローチャートである。図 12に示 す各ステップのうち、図 10と同じものには同一の符号を付している。図 10のアルゴリ ズムでは、上述のように、ピーク周波数 Fimaxと外部雑音のピーク周波数 Fnmaxと の周波数差が閾値 Δはり大きくなる基本データが登録されてな 、場合 (S605: No) 、デフォルトのシャツタ音ある!/、は周波数差が最も大き!、基本データを選択して送出 音に決定することとなるが(S608)、図 12に示すアルゴリズムではこの場合において 、さらにシャツタ音を送出すべきタイミングを演算し (S609)、このタイミングを後段の シャツタ音送出処理(図 4: S305)に通知することとして 、る。
[0076] 図 13A、図 13Bは、シャツタ音と外部雑音との干渉の様子を示すグラフであり、図 1 3Aは両者が打ち消し合うタイミングを示し、図 13Bは両者が重畳するタイミングを示 す。また図中、実線はシャツタ音、破線は外部雑音を示す。図 13Aに示すように、シ ャッタ音と外部雑音が逆位相になると打ち消し合ってしまい、被写体に到達するシャ ッタ音は微少なものとなってしまうケースが考えられる。一方、図 13Bに示すように、シ ャッタ音と外部雑音が同位相になると両者が重畳し、被写体に到達するシャツタ音の 強度は損なわれずに済む。この実施の形態では、上記のステップ S609において、 外部雑音と同位相となる送出のタイミングを求め、力かるタイミングによりシャツタ音の 送出を実行することにより、図 13Bに示す状態を現出させてシャツタ音が被写体に到 達する確度を高めるようにする。
[0077] 次に図 1, 2, 4, 5を用いて本発明の実施の形態による携帯電話機の動作を説明 する。ユーザは、メモリ 102に格納されたシャツタ音の基本データの中力も任意のもの を選択して事前に登録しておく。撮影時ユーザはまずカメラモードを選択する。この モード選択を受けて CPU101は、カメラアプリケーションプログラムを立ち上げてカメ ラモードに移行する。このカメラモードで CPU101は、カメラ部 601により取得した力 メラ画像を画面表示部 402に常時表示する(S103)と共に、スピーカ 501やマイクロ ホン 503がマスクされずに正常な状態であるかを確認する(S 104)。さらにカメラ部 6 01の自動焦点合わせ機能等を利用するなどして被写体との距離を測定する (S105 )と共に、マイクロホン 503により外部雑音をピックアップして外部雑音の強度 Pnや周 波数成分等を連続的に計測する (S 106)。
[0078] この状態でユーザは上記のカメラ画像を視認しながら、撮影に割り当てられたキー を任意のタイミングで押下する。この操作を受けて CPU101は撮影処理 (S107)を 起動する。この処理では、サゥンダのマスク状態により撮影不許可となっている場合 はカメラ画像を撮影画像として登録することなく所定の不許可処理を行う。したがって 後述するシャツタ音チェック処理の正確性を確保できる利点がある。 [0079] 一方、撮影不許可でな!ヽ場合は、カメラ画像を撮影画像として登録 (S303)すると 共に、シャツタ音チェック処理(S304)を行う。この処理で CPU101は、被写体までの 距離や外部雑音等に基づいて被写体に聞こえる適切な音量や周波数のシャツタ音 に適宜設定変更したうえでシャツタ音を送出する(S305)。このことによって音量が不 足したり外部雑音の周波数と被ったりして被写体がシャツタ音を認識できないといつ た事態を極力回避することが可能となる。またスピーカ 501としてカメラ部 601の光学 系と同軸上に指向性を有するものを採用すれば、シャツタ音の到達距離が延びると 共に被写体がシャツタ音がした方向を特定しやすくなる点で有利である。
[0080] 以上、本発明の実施の形態を詳述してきたが、具体的な構成は本実施の形態に限 られるものではなぐ本発明の要旨を逸脱しない範囲の設計変更等も含まれる。たと えば発光部を撮影時シャツタボタン押下後、一定時間被写体に向けて発光すること により被写体に撮影されていることを気付力せる方法もある。また、発光部に指向性 を持った発光装置を用いてもよい。発光部は LED等の発光装置を用いる。また上述 の実施の形態では電子カメラ内蔵型の携帯電話機を例示して説明したが、本発明は この形態に限定されるものではなぐたとえばカメラ機能付 PDA (Personal Digital Assistant)やデジタルカメラ等、カメラ機能を有した携帯端末一般に用いることが できる。
[0081] また、たとえばカメラモードで CPU101 (図 1参照)がカメラアプリケーションプロダラ ムを実行するにあたって、必要な処理を CPUのみではなく DSP303 (図 1参照)その 他のサブ CPUに適宜分散して実行することは設計上任意に選択し得る事項である。 また上記のプログラムは、コンピュータ読み取り可能な記録媒体に記録されて頒布さ れることができ、機能の一部を実現する形態で頒布されるものであっても良い。たとえ ば OS (オペレーション 'システム)が提供する基本機能を利用したアプリケーションプ ログラムの形式で頒布されるものであっても良い。さらにコンピュータシステムにすで に記録されている既存システムのプログラムとの組み合わせで所定の機能を実現で きるもの、 V、わゆる差分プログラムで頒布される形態をとることも可能である。
[0082] また上記のコンピュータ読み取り可能な記録媒体には、可搬型の磁気ディスクや光 磁気ディスク等の記憶媒体等以外にも、ハードディスク等の記憶装置その他不揮発 性の記憶装置を含む。さらにインターネットその他のネットワーク等、任意の伝送媒体 を介して他のコンピュータシステム力も提供される形態でも良い。この場合、「コンビュ ータ読み取り可能な記録媒体」には、ネットワーク上のホストやクライアントとなるコン ピュータシステム内部の揮発性メモリのように、伝送媒体にお 、て一定時間プロダラ ムを保持して 、るものも含む。
[0083] また上記にぉ 、てメインの CPUやサブ CPUによる分散処理方式により処理部を構 築する形態に言及したが、少なくともその一部のプロセッサを FPGA (Field Progra mmable Gate Alley)等のハードウェア回路により構築する形態も可能である。 FP GAに組み込む回路プログラム情報の頒布にっ 、ては、上記のプログラムの頒布と 同様に各種の形態をとることも可能である。
[0084] 以下、図面を用いてこの発明の第 2実施形態を説明する。
[0085] 第 2実施形態による携帯電話機は、通常の音声通話モードの他にカメラモードをと つて動作することが可能となっている。カメラモードでは、カメラアプリケーションプログ ラムを立ち上げて実行する。図 14は、カメラアプリケーションプログラムにおける主手 順を示すフローチャートである。図 1, 14を用いて説明すると、 CPU101はまず、所 定の初期設定 (S701)を行った後、キー入力やタイマなどによる割込処理 (S702)を 行ってカメラ画像表示処理 (S703)その他、所定の処理を選択実行する。
[0086] この概略を説明すると CPU101は、カメラ部 601からの結像を取り込み、画像処理 プロセッサ 603で処理したうえでカメラ画像として画面表示部 402に常時表示する(S 703)。また常時、撮影時に必要となる測定データや設定データの取得更新を行う(S 704〜S708)。キー操作部 401によりシャツタボタンの押下が検出されると撮影処理 (S707)が立ち上がって上記の画像を撮影画像として登録する。なお、このカメラモ ードでは、メモリ 102に格納されたカメラアプリケーションプログラムに従って CPU10 1が各部を制御し、全体の協調動作によって本発明の構成要件に相当する各機能を 実現するものであり、カメラアプリケーションプログラムにおいて CPU101が実行すベ き処理は、 DSP303に適宜分担処理させることにより処理負荷を分散して全体の処 理効率を向上させる形態をとることもできる。
[0087] 次に各処理について説明する。 カメラ画像表示処理 (S703)は、上述したようにカメラ部 601から取り込んだ画像を 継続して画面表示部 402に表示させる処理である。この処理において CPU101は、 カメラ部 601を駆動することにより CCDが出力するデジタルの画像データを取得して バッファメモリ 604に格納する。さらに画面表示部 402のディスプレイ(図示せず)によ りこの画像データを表示する。このカメラ画像表示処理は常時継続して実行され、こ の結果、取り込んだ最新の画像が常時表示される。また後述するマスクチェックの結 果、撮影が不許可である旨を示すフラグがセットされると、撮影が不許可である旨のメ ッセージあるいは絵記号等が画像データに重ねて表示される。
[0088] サゥンダマスクチェック処理(S704)は、スピーカ 501やマイクロホン 503の動作が 正常であるかどうかを判定する処理であり、タイマ割込により定期的に選択される。詳 細は後述する。
[0089] シャツタ音周波数チェック処理(S705)は、たとえばシャツタ音の設定変更があった 場合に呼び出される処理であり、設定されたシャツタ音の周波数特性を調べて不適と 設定されて 、る周波数帯域と照合し、シャツタ音としての適否をチェックするものであ る。
詳細は後述する。
[0090] 雑音測定処理(S706)は、マイクロホン 503を用いて外部の雑音を収集し、音量や 周波数特性など所定の解析処理を実行するものであり、タイマ割込により定期的に 選択される。この雑音の収集は、被写体における雑音雰囲気を推定するためのモ- タリングであり、マイクロホン 503がカメラ部 601と反対の面に配置されていると、雑音 がユーザの体に吸収されて被写体側の音量より小さくなつてしまう可能性があるため
、カメラ部 601と同じ面にマイクロホン 503を配置する形態が望ましい。
[0091] 撮影処理 (S707)は、キー操作部 401によりシャツタボタンの押下が検出されると選 択される処理であり、シャツタ音の送出等、所定の報知処理を行うと共に、カメラ画像 を撮影画像として登録するものである。本実施形態では、撮影の不許可を示すフラグ がセットされて 、る場合は、シャツタボタンの押下があっても上記の撮影画像としての 登録などの処理に進まずに所定のメッセージ出力処理に進む点を特徴とする。また シャツタ音を出力するにあたって、シャツタ音の適正判定の結果に基づいてシャツタ 音を選択する点を特徴とする。詳細は後述する。
[0092] 終了処理 (S708)は、キー操作部 401によりカメラモードの終了を指示する入力や 電源切断を指示する入力などがあった場合に選択される処理であり、モード終了ある いは電源切断などに伴う所定の処理を実行するものである。
[0093] 次に、サゥンダマスクチェック処理の具体例を説明する。図 15は、サゥンダマスクチ エック処理の手順を示すフローチャートである。図 1, 15を用いて説明すると CPU10 1はまず、サゥンダの検査項目として定められている所定のデータを取得し(S801)、 取得したデータを用いて適正か否かの判定を行う(S802)。判定結果が「不適」であ る場合は(S802:不適)、撮影が不許可である旨を示すフラグをセットし (S803)、判 定結果が「適正」である場合は(S802:適正)、上記のフラグをリセットする(S804)。
[0094] たとえばスピーカ 501が手やその他の物体で遮蔽された場合、適正なシャツタ音を 送出できない可能性がある。またマイクロホン 503が同様に遮蔽された場合、シャツタ 音の音量等を適正に調節できない可能性がある。このため、 CPU101は、定期的に サゥンダマスクチェック処理を立ち上げて監視を行う。
[0095] 判定の具体的な手法としては、たとえば圧力センサや光センサ(図示せず)をスピ 一力 501やマイクロホン 503の設置位置に取り付けておき、圧力センサを用いて閾値 以上の圧力を感知した場合ある!/、は光センサを用いて閾値以上光があたって 、なか つた場合に、マスクされたと判断する手法をとることができる。また、温度センサや湿 度センサ(図示せず)を用いて閾値以上の温度または湿度を感知した場合、手など でマスクされたと判断する手法をとることもできる。またスピーカ 501から検査用の微 少な検査用の音波を出力すると共に、この音波をマイクロホン 503でピックアップし、 ピックアップした音量を閾値と突き合わせてマスクされているかどうかを判定する手法 をとることちでさる。
[0096] 次に、シャツタ音周波数チェック処理の具体例を説明する。図 16は、シャツタ音周 波数チェック処理の一例を示すフローチャートである。また図 17は、シャツタ音の周 波数特性の一例を示すグラフである。図 1, 16, 17を用いて説明すると CPU101は まず、シャツタ音の周波数特性を演算するなどして図 17に示すような特性を取得する (S901)。 [0097] ここでシャツタ音には、シャツタ音として不適な周波数帯域が予め設定され、メモリ 1 02に格納されている。一般的に人が不快と感じる周波数帯域として、 2500Hz付近と 20kHzとにあることが知られている。このことに基づいて本実施の形態では、不適な 周波数帯域を 2500Hz近傍と 20kHz近傍に設定する。すなわち、 fl ( = 2500- « ) 〜f2 ( = 2500+ α ) Ηζの帯域(第 1の帯域)と f3 ( = 20k— j8 )〜f4 ( = 20k+ j8 ) H zの帯域 (第 2の帯域)とを不適な周波数帯域として設定する。 a , |8は帯域幅を定め るための定数であり、不快な帯域を有効に弁別し得る観点力 適宜設定すれば良い 。また犬や猫などの動物が不快と感じる周波数帯域を不適な周波数帯域に追加する 形態をとることちできる。
[0098] 次に CPU101は、第 1,第 2の帯域におけるパワー PI, P2 (図 17中ハッチングした 部分の面積に相当)を求め、求めた PI, P2の全体 Pに占める割合 R1 ( = P1ZP) , R2 ( = P2ZP)を算出する(S902)。この後、求めた第 1の割合 Rl、第 2の割合 R2を それぞれ所定の閾値 Rshdl, Rshd2と比較する(S903, S904)。この結果、割合 R 1, R2が共に閾値 Rshdl, Rshd2を下回っていれば(S903 :くおよび S904 :く)、 シャツタ音の周波数特性は適合したものとして適合処理 (S905)に進む。この適合処 理では、周波数特性が適合して 、る旨を示すフラグをシャツタ音に対しセットするなど の処理を行う。
[0099] 一方、割合 Rl, R2のいずれかが閾値 Rshdl, Rshd2を上回っていれば(S903: ≥または S904 :≥)、シャツタ音の周波数特性は不適であるとして不適処理(S906) に進む。この不適処理では、周波数特性が不適である旨を示すフラグをシャツタ音に 対しセットするなどの処理を行う。さらにこの不適処理において CPU101は、周波数 が不適である旨のメッセージを画面表示部 402やスピーカ 501により出力し、ユーザ にシャツタ音の再設定を促す形態をとることもできる。
[0100] 次に撮影処理の具体例を説明する。図 18は、撮影処理の一具体例を示すフロー チャートである。図 1, 18を用いて説明をすると、撮影処理において CPU101はまず 、前述の撮影が不許可である旨を示すフラグがセットされて 、るかどうかを確認し (S1 001)、もしフラグがセットされていれば(S 1001: Yes)、たとえばブザー音を送出す る等、撮影が不許可である旨のメッセージを出力する(S1002)。そしてカメラ画像を 撮影画像として登録することなく終了する。あるいは撮影画像として登録はする力 メ モリカード等の不揮発性メモリ(図示せず)に当該撮影画像を保存することを許容しな
V、等、撮影画像の取り扱いにつ!/、て制限を付ける形態をとることもできる。
[0101] またステップ S 1001にお!/、て不許可を示すフラグがセットされて!/、な!/、場合(S100 1 :No)、ノ ッファメモリ 604に格納されている現在のカメラ画像を撮影画像として登録 し(S 1003)、シャツタ音チェック処理(S 1004)に進む。シャツタ音チェック処理では、 詳細は後述するが、選択されているシャツタ音を対象とし、シャツタ音周波数チェック 処理(図 14 : S705)におけるチェックの結果を示すフラグの判定やうなり判定処理を 行うなどして、シャツタ音が不快な音でないことを判断し、不適であればシャツタ音を 基本データの 、ずれか〖こ適宜変更する。
[0102] ここでメモリ 102は、シャツタ音 (正確にはシャツタ音を模擬した音データ)の基本デ ータ (基本シャツタ音)を複数所定の領域に記憶しており、力かる基本データの中の 1 つがデフォルト指定あるいはユーザの選択指定により選択されているものとする。基 本データとしては、シャツタ音として好適なサウンドデータであることを確認したものが いくつか予め登録されている。この基本データは当然、前述の不適な帯域の周波数 成分の含有率が十分に小さいことが確認されており、その旨を示すフラグや周波数 特性データ(ピーク周波数等)などが付加されてメモリ 102に格納されている。
[0103] この後、 IZOインタフェース 504を介してスピーカ 501を駆動し、シャツタ音の音デ ータをメモリ 102から読み出してスピーカ 501に発音形成させ、撮影が行われた旨を 被写体本人を含む周囲に対し報知する(S 1005)。
[0104] 図 19は、シャツタ音チェック処理の一具体例を示すフローチャートである。図 1, 19 を用いて説明をすると CPU101はまず、シャツタ音周波数チェック処理(図 14 : S705 )でセットされたフラグをメモリ 102から読み出して参照し、シャツタ音が不適な周波数 成分を有さないことを確認する(S1101)。適合を示すフラグがセットされていれば、う なり判定(S1104)に進む。一方、不適を示すフラグがセットされていれば(S 1101 : 不適)、送出すべきシャツタ音を基本シャツタ音の中から適宜選択したうえで (S 1102 , S1103)、うなり判定(S1104)に進む。
[0105] うなり判定 (S1104)では、詳細は後述するが CPU101は、外部雑音とシャツタ音の ピーク周波数に基づいて、うなりが生じる可能性がある力解析し、シャツタ音としての 適否を判定する。このうなり判定の結果、適正であると判定された場合 (S1105 :Yes )、選択されているシャツタ音は適正であるとして一連の処理を終了する。また適正で ないと判定された場合(S1105 :No)、ステップ 502に戻って他の基本シャツタ音を選 択してうなり判定を行う(S1102〜S1104)。もし、すべての基本シャツタ音がうなりを 生じる場合 (S1102: No)、うなりの最も小さ!/、シャツタ音を選択して終了する(S110 6)。
[0106] 図 20は、うなり判定の一具体例を示すフローチャートである。図 1, 20を用いて説 明をすると CPU101はまず、外部雑音やシャツタ音の周波数特性を取得する(S120 1, S1202)。これらのステップでは、メモリ 102から前述の雑音測定処理(図 14 : S7 06)で得られた測定'解析データあるいは基本シャツタ音の付加データを読み出し、 さらに必要なら周波数特性を解析する演算を実行し、外部雑音やシャツタ音のピーク 周波数 (顕著なピークが複数ある場合は複数のピーク周波数)を取得する。
[0107] 外部雑音とシャツタ音のピーク周波数がそれぞれ i, j個あるとすると、ピーク同士の 組み合わせは iXj個となる力 そのすベての組み合わせについて以下の手順に従つ てうなりが発生するおそれがあるかのチェックを行う。すなわちまず外部雑音とシャツ タ音について最も顕著なピーク周波数をそれぞれ選択する(S1203)。選択したピー ク周波数の周波数差 Δ ίをとり、閾値 f5, f 6と比較する(SI 204)。
[0108] ここで閾値 f 5, f 6の技術的意味合いを説明するにあたって、うなりの現象に言及す る。図 21A、図 21B、図 21Cはうなりの様子を示すグラフであり、図 21Aは波形 A、図 21Bは波形 B、図 21Cは波形 A, Bの合成波を示す。波形 Aは(2)式、波形 Bは(3) 式によって表される。
[0109] [数 2]
ヌ = 4 sin 52 z …(2)
[0110] [数 3]
_y = 5sin 48 …(3)
[0111] 図 21A、図 21B、図 21Cに示すように、振動数がわずかに異なる音波 Aと音波 Bの 重ね合わせ成分は Eのようになる。二つの音波の周波数の差が小さ!/、ほどうなりの周 期は長くなり、大きくなるとうなりの周期は短くなる。周波数の違いがある程度以上に なると、人はうなりとして認識せず、全く別の音として認識される。また、周波数の差が 僅少であるとうなりの周期が非常に長くなり、うなりが起きていると認識しない。このよう に複数の音波の周波数が近接した範囲にある場合にうなりが発生することに鑑み、 本実施の形態では閾値 f 5, f6を適宜設定し、力かる近接範囲を規定することとしてい る。
[0112] 図 22は、うなり発生の判定を示すグラフであり、縦軸は強度、横軸は周波数を示す 同図は外部雑音を基準に周波数や強度の近接範囲を判定する形態を示し、 fnは外 部雑音のピーク周波数、 fOはシャツタ音のピーク周波数、 Pnは外部雑音の強度、 P0 はシャツタ音の強度、 P1は閾値である。図 1, 20, 22を用いて説明をすると CPU10 1は、ステップ S1204における比較の結果、 Δ ί≤ί5あるいは f6≤ Δ ίであれば(S12 04 :Νο)、うなりは生じないものとしてステップ S1208に進む。また f5く Δ ίく f6であ れば (S1204 : Yes)、うなりが生じる可能性があるとして、うなりの強さを判定するため にピーク周波数における強度の比較を行う。
[0113] すなわちまず CPU101は、外部雑音の強度 Pnとシャツタ音の強度 P0を取得し、そ の強度差 Δ Ρを求める(S1205)。そして Δ Ρの大きさを判定し(S1206)、 Δ Ρの絶対 値が閾値 P1より大きい場合(S1206 :No)、うなりは小さいとしてステップ 608に進む 。また Δ Ρの絶対値が閾値 P1より小さい場合(S1206 : Yes)、うなりが大きいとして当 該シャツタ音を不適と判定し (S 1207)、処理を終了する。ここで P1は外部雑音の強 度 Pnとシャツタ音の強度 P0の強度差の大小を弁別するための閾値である。すなわち 複数の音波の強度差が大きいとうなりの成分は小さくなるため、うなりが生じるとしても その成分力 、さければ許容できるとして、その許容範囲を規定するために閾値 P1を 設定している。
[0114] うなりが生じな!/ヽ(S 1204: No)ある!/、はうなりが小さ!/ヽ(S 1206: No)と判定された 場合、 CPU101は、外部雑音とシャツタ音のピーク周波数の他の組み合わせがある かを確認し (S 1208)、第 2,第 3のピーク周波数との組み合わせ等、他の組み合わ せがあれば(S1208 :No)、ステップ 603に戻って判定を繰り返す。すべての顕著な ピーク周波数同士の組み合わせで判定が終了すると(S1208 : Yes)、当該シャツタ 音は大きいうなりを生じないとして適正の判定を行ったうえで (S1209)、処理を終了 する。
[0115] うなりを発生するかどうかを判別する他の例としては、たとえば外部雑音とシャツタ音 とを合成し、合成した音波形をローノ スフィルタに通してうなり成分を検出し、検出し たうなり成分が有意な (不快感を与えるおそれがある)成分であるかを評価する形態 をとることもできる。この評価項目としては、周波数や強度があげられる。周波数を評 価する場合、たとえばうなり成分の周波数が一定の範囲にあれば有意なうなりと判定 する。すなわち一定の周波数範囲の上限および下限を規定する閾値を設定し、うな り成分の周波数と閾値を比較してうなり成分の周波数が上記の周波数範囲内の値を とるときに、有意なうなりが発生すると判定する形態をとることもできる。また強度を評 価する場合、たとえばうなり成分の強度の合成波形の強度に対する比率を求め、この 比率を元にうなりが発生するかどうかを弁別する形態をとることもできる。このように合 成した音波形を用いて推定を行えば、推定精度が上がってうなり発生を回避する確 度が向上する利点がある。
[0116] 次に図 1, 14を用いて本発明の第 2実施の形態による携帯電話機の動作を説明す る。ユーザは、メモリ 102に格納されたシャツタ音の基本データの中力も任意のものを 選択して事前に登録しておく。ユーザが任意のサウンドデータをシャツタ音として追 加登録することも許容される。撮影時ユーザはまずカメラモードを選択する。このモー ド選択を受けて CPU101は、カメラアプリケーションプログラムを立ち上げてカメラモ ードに移行する。このカメラモードで CPU101は、カメラ部 601により取得したカメラ 画像を画面表示部 402に常時表示すると共に、スピーカ 501やマイクロホン 503がマ スクされずに正常な状態であるかを確認する。さらにカメラ部 601の自動焦点合わせ 機能等を利用するなどして被写体との距離を測定すると共に、マイクロホン 503により 外部雑音をピックアップして外部雑音の強度 Pnや周波数帯域等を連続的に計測す る。
[0117] この状態でユーザは上記のカメラ画像を視認しながら、撮影に割り当てられたキー を任意のタイミングで押下する。この操作を受けて CPU101は撮影処理を起動する。 この処理では、サゥンダのマスク状態により撮影不許可となっている場合はカメラ画 像を撮影画像として登録することなく所定の不許可処理を行う。この不許可処理では 、送出音を制限するモードがとられる。このモードでは、基本シャツタ音データ部に設 定されているもっとも不快感を与えにくいシャツタ音に変更する、カメラアプリケーショ ンを強制終了する、シャツタ音の変更を促す等の方法をとる。また、シャツタ音の送出 を制限する場合、その旨を画像取得前あるいは後に画面表示部に表示しユーザに 知らせる。このようにサゥンダがマスク状態とされている状態で送出音の制限を行うこ とにより、外部雑音やシャツタ音を対象とする各種のチェックの正確性を確保できる利 点がある。
[0118] 一方、撮影不許可でない場合は、カメラ画像を撮影画像として登録すると共に、シ ャッタ音チェック処理を行う。この処理で CPU101はまず、メモリ 102に格納されてい るシャツタ音のサウンドデータを解析し、あるいは予め解析しておいた結果を読み出 し、シャツタ音が不快感を与えない周波数特性であることを確認する。もしシャツタ音 が不快感を与えるサウンドデータであると判断されたとき、基本シャツタ音として登録 されている他のシャツタ音に変更する。このことによりたとえばユーザが登録したシャツ タ音が不快な周波数成分を含むサウンドデータであった場合であっても、基本シャツ タ音に変更して送出を行うことができ、周囲に不快感を与える事態を回避できる。また 、シャツタ音として不適と判定する周波数帯域をペット等の動物が不快と感じる周波 数帯域へ広げることにより、ペット等に不快感を与えるような音の送出も併せて制限 することができる。
[0119] さらに CPU101は、予め測定していた外部雑音とシャツタ音の周波数特性を解析し 、あるいは予め解析しておいた解析データを読み出し、所定の強さ以上のうなりが発 生しないことを確認する。もし所定の強さ以上のうなりが発生する場合、他のシャツタ 音に変更して送出することにより、うなり発生により周囲に不快感を与える事態を回避 できる。
[0120] 以上、本発明の実施の形態を詳述してきたが、具体的な構成は本実施の形態に限 られるものではなぐ本発明の要旨を逸脱しない範囲の設計変更等も含まれる。たと えば発光部を撮影時シャツタボタン押下後、一定時間被写体に向けて発光すること により被写体に撮影されていることを気付力せる方法もある。また、発光部に指向性 を持った発光部を用いてもよい。発光部は LED等の発光部を用いる。また上述の実 施の形態では電子カメラ内蔵型の携帯電話機を例示して説明したが、本発明はこの 形態に限定されるものではなぐたとえばカメラ機能付 PDA (Personal Digital As sistant)やデジタルカメラ等、カメラ機能を有した携帯端末一般、さらにはポータブル 音声再生器にも用いることができる。特に着信メロディーなどある程度の長さを持った 音を送出する場合、うなりを起こすおそれがあり本発明は有効であると考えられる。
[0121] また、たとえばカメラモードで CPU101 (図 1参照)がカメラアプリケーションプロダラ ムを実行するにあたって、必要な処理を CPUのみではなく DSP303 (図 1参照)その 他のサブ CPUに適宜分散して実行することは設計上任意に選択し得る事項である。 また上記のプログラムは、コンピュータ読み取り可能な記録媒体に記録されて頒布さ れることができ、機能の一部を実現する形態で頒布されるものであっても良い。たとえ ば OS (オペレーション 'システム)が提供する基本機能を利用したアプリケーションプ ログラムの形式で頒布されるものであっても良い。さらにコンピュータシステムにすで に記録されている既存システムのプログラムとの組み合わせで所定の機能を実現で きるもの、 V、わゆる差分プログラムで頒布される形態をとることも可能である。
[0122] また上記のコンピュータ読み取り可能な記録媒体には、可搬型の磁気ディスクや光 磁気ディスク等の記憶媒体等以外にも、ハードディスク等の記憶装置その他不揮発 性の記憶装置を含む。さらにインターネットその他のネットワーク等、任意の伝送媒体 を介して他のコンピュータシステム力も提供される形態でも良い。この場合、「コンビュ ータ読み取り可能な記録媒体」には、ネットワーク上のホストやクライアントとなるコン ピュータシステム内部の揮発性メモリのように、伝送媒体にお 、て一定時間プロダラ ムを保持して 、るものも含む。
[0123] また上記にぉ 、てメインの CPUやサブ CPUによる分散処理方式により処理部を構 築する形態に言及したが、少なくともその一部のプロセッサを FPGA (Field Progra mmable Gate Alley)等のハードウェア回路により構築する形態も可能である。 FP GAに組み込む回路プログラム情報の頒布にっ 、ては、上記のプログラムの頒布と 同様に各種の形態をとることも可能である。

Claims

請求の範囲
[1] カメラと、
該カメラによる撮影を報知するための報知音を出力する音声出力部と、 前記報知音が報知音として適切か否かを判断する判断部と、
前記判断部の判断基準となる基準値を記憶する記憶部と、
前記判断部の判断に基づき、前記報知音の出力を制御する制御部と
を備えるカメラ機能付携帯端末。
[2] 外部の音声を収集する音声収集部、をさらに備え、
前記判断部は、少なくとも前記音声収集部で収集された外部の音声に基づいて、 前記報知音の被写体の位置における可聴性を判断し、
前記制御部は、前記判断部の判断に応じて、前記可聴性を高めるよう、前記音声 出力部における前記報知音の出力を制御する
請求項 1のカメラ機能付携帯端末。
[3] 被写体までの距離を測定する測定部、をさらに備え、
前記判断部は、前記測定部において測定される被写体までの距離と、前記音声収 集部で収集される外部の音声とに基づ 、て、前記被写体の位置における前記報知 音の可聴性を判断する
請求項 2のカメラ機能付携帯端末。
[4] 前記判断部は、
前記測定部により測定される距離および前記音声出力部における出力音量を変数 とする関数の値として定義される前記被写体の位置における前記報知音の音量が規 定値を上回るカゝ否かを判断し、
前記制御部は、
前記判断部の判断に基づき、前記関数の値が規定値を上回るように、前記音声出 力部における前記報知音の出力音量を制御する
請求項 3のカメラ機能付携帯端末。
[5] 前記記憶部は、
前記報知音が可聴性を持って到着する限界の距離を第 1の基準値として記憶し、 前記制御部は、
前記測定部で測定された被写体までの距離が前記第 1の基準値を上回るときは、 前記報知音の出力音量を予め設定されたデフォルト値に制御する
請求項 3のカメラ機能付携帯端末。
[6] 前記判断部は、
報知音の周波数特性から求められた該報知音のピーク周波数と、前記音声収集部 で収集された外部の音声のピーク周波数との周波数差を、可聴性を決める第 1の指 標として算出し、
前記制御部は、
前記第 1の指標に基づいて前記報知音の周波数を選択変更する
請求項 2のカメラ機能付携帯端末。
[7] 前記記憶部は、
報知音の周波数特性から求められた該報知音のピーク周波数と、前記音声収集部 で収集された外部の音声のピーク周波数との周波数差の最小許容値に相当する第 2の基準値を記憶し、
前記判断部は、
報知音の周波数特性から求められた該報知音のピーク周波数と、前記音声収集部 で収集された外部の音声のピーク周波数との周波数差を、可聴性を決める第 1の指 標として算出し、該第 1の指標が前記第 2の基準値を下回る力否かを判断し、 前記制御部は、
前記判断部において前記第 1の指標が前記第 2の基準値を下回ると判断された場 合、前記報知音のピーク周波数の位相と前記外部の音声のピーク周波数の位相との 位相差が小さくなるよう、前記報知音の出力タイミングを制御する
請求項 2のカメラ機能付携帯端末。
[8] 前記音声出力部および前記音声収集部の少なくとも一方について遮蔽物を検出 する検出部を備え、
前記制御部は、前記検出部において前記遮蔽物が検出されると、前記カメラの機 能を制限する 請求項 1のカメラ機能付携帯端末。
[9] 前記判断部は、
前記報知音が人間に不快感を生じさせる要因を有するか否かを判断し、 前記制御部は、
前記不快感を生じさせる要因を低減するよう、前記音声出力部における前記報知 音の出力を制御する
請求項 1のカメラ機能付携帯端末。
[10] 前記記憶部は、
予め設定された周波数帯域を、不快感を生じさせる不快周波数帯域として記憶し、 前記判断部は、
前記報知音が前記不快周波数帯域を規定値より多く含むか否かを判断する 請求項 9のカメラ機能付携帯端末。
[11] 前記記憶部は、
前記不快周波数帯域の成分が少ない音情報を予め記憶し、
前記制御部は、
前記判断部において、前記報知音が前記不快周波数帯域の成分を規定値より多く 含むと判断された場合、前記記憶部に予め記憶された音情報を選択し、該選択した 音情報を前記報知音の代わりに前記音声出力部より出力するよう制御する
請求項 10のカメラ機能付携帯端末。
[12] 外部の音声を収集する音声収集部、をさらに備え、
前記判断部は、
前記音声収集部で収集された外部の音声と前記報知音とが干渉してうなりを生じる か否かを判断する
請求項 9のカメラ機能付携帯端末。
[13] 前記判断部は、
前記音声収集部で収集された外部の音声および前記報知音それぞれのピーク周 波数を抽出し、前記外部の音声のピーク周波数と前記報知音のピーク周波数とが干 渉してうなりを生じるカゝ否かを判断する 請求項 12のカメラ機能付携帯端末。
前記判断部は、
前記音声収集部で収集された外部の音声と前記報知音とを合成した音波形からう なり成分を検出し、該検出したうなり成分を評価し、うなりが生じるか否かを判断する 請求項 12のカメラ機能付携帯端末。
PCT/JP2006/307352 2005-04-27 2006-04-06 カメラ機能付携帯端末 WO2006117972A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005130001A JP4498972B2 (ja) 2005-04-27 2005-04-27 カメラ機能付携帯端末
JP2005-130001 2005-04-27
JP2005-130002 2005-04-27
JP2005130002A JP2006311096A (ja) 2005-04-27 2005-04-27 カメラ機能付携帯端末

Publications (1)

Publication Number Publication Date
WO2006117972A1 true WO2006117972A1 (ja) 2006-11-09

Family

ID=37307776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307352 WO2006117972A1 (ja) 2005-04-27 2006-04-06 カメラ機能付携帯端末

Country Status (1)

Country Link
WO (1) WO2006117972A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093531A (ja) * 2010-10-27 2012-05-17 Pentax Ricoh Imaging Co Ltd 撮影装置
WO2019244695A1 (ja) * 2018-06-19 2019-12-26 パナソニックIpマネジメント株式会社 撮像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105135A (ja) * 1981-12-17 1983-06-22 Canon Inc カメラのセルフタイマ−装置
JPS58105134A (ja) * 1981-12-17 1983-06-22 Canon Inc カメラのセルフタイマ−装置
JPH0258952A (ja) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd 携帯無線電話機
JPH05204388A (ja) * 1992-01-24 1993-08-13 Mitsubishi Electric Corp メッセージ出力装置
JPH077783A (ja) * 1993-06-14 1995-01-10 Casio Comput Co Ltd 報知音発生装置
JP2001169175A (ja) * 1999-12-09 2001-06-22 Sharp Corp 撮像装置、画像受信装置及び回線交換機
JP2002230669A (ja) * 2001-02-05 2002-08-16 Nippon Hoso Kyokai <Nhk> 報知音呈示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105135A (ja) * 1981-12-17 1983-06-22 Canon Inc カメラのセルフタイマ−装置
JPS58105134A (ja) * 1981-12-17 1983-06-22 Canon Inc カメラのセルフタイマ−装置
JPH0258952A (ja) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd 携帯無線電話機
JPH05204388A (ja) * 1992-01-24 1993-08-13 Mitsubishi Electric Corp メッセージ出力装置
JPH077783A (ja) * 1993-06-14 1995-01-10 Casio Comput Co Ltd 報知音発生装置
JP2001169175A (ja) * 1999-12-09 2001-06-22 Sharp Corp 撮像装置、画像受信装置及び回線交換機
JP2002230669A (ja) * 2001-02-05 2002-08-16 Nippon Hoso Kyokai <Nhk> 報知音呈示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093531A (ja) * 2010-10-27 2012-05-17 Pentax Ricoh Imaging Co Ltd 撮影装置
WO2019244695A1 (ja) * 2018-06-19 2019-12-26 パナソニックIpマネジメント株式会社 撮像装置
JPWO2019244695A1 (ja) * 2018-06-19 2021-05-13 パナソニックIpマネジメント株式会社 撮像装置
JP7209358B2 (ja) 2018-06-19 2023-01-20 パナソニックIpマネジメント株式会社 撮像装置

Similar Documents

Publication Publication Date Title
US7110666B2 (en) Electronic device, photographing control method, photographing control program, and processor
KR20060019715A (ko) 적외선 카메라를 구비하는 이동통신단말기 및 그를 이용한위험 알람 방법
CN110290262B (zh) 一种通话方法及终端设备
JP2018500859A (ja) 音量調整方法、装置および端末
US9706321B2 (en) Electronic device including modifiable output parameter
US20090205582A1 (en) Mobile device dog whistle
CN110336910A (zh) 一种隐私数据保护方法及终端
WO2022100219A1 (zh) 数据转移方法及相关装置
WO2006117972A1 (ja) カメラ機能付携帯端末
CN112817554A (zh) 提示音控制方法、提示音控制装置及存储介质
KR20110046909A (ko) 휴대용 단말기에서 통화 품질을 개선하기 위한 장치 및 방법
CN107677363B (zh) 噪音提示的方法及智能终端
JP2010011079A (ja) 携帯電子機器及び通信システム
JP2006311096A (ja) カメラ機能付携帯端末
JP4498972B2 (ja) カメラ機能付携帯端末
JP2006246404A (ja) 受信装置
CA2799048C (en) Electronic device including modifiable output parameter
JP4794660B2 (ja) 通信装置及びプログラム
JP2010044277A (ja) 撮像装置および撮像方法
JP2010185974A (ja) 雑音抑圧装置および雑音抑圧方法
WO2023245372A1 (zh) 计步方法、装置、耳机及存储介质
CN116233696B (zh) 气流杂音抑制方法、音频模组、发声设备和存储介质
CN113450537B (zh) 跌倒检测方法、装置、电子设备和存储介质
CN113766402B (zh) 一种提高环境适应性的助听方法及装置
KR100994284B1 (ko) 카메라를 구비한 이동통신 단말기 및 그의 촬영 알림 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731300

Country of ref document: EP

Kind code of ref document: A1