WO2023245372A1 - 计步方法、装置、耳机及存储介质 - Google Patents

计步方法、装置、耳机及存储介质 Download PDF

Info

Publication number
WO2023245372A1
WO2023245372A1 PCT/CN2022/099936 CN2022099936W WO2023245372A1 WO 2023245372 A1 WO2023245372 A1 WO 2023245372A1 CN 2022099936 W CN2022099936 W CN 2022099936W WO 2023245372 A1 WO2023245372 A1 WO 2023245372A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
energy
maximum value
value
energy maximum
Prior art date
Application number
PCT/CN2022/099936
Other languages
English (en)
French (fr)
Inventor
周岭松
Original Assignee
北京小米移动软件有限公司
北京小米松果电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京小米松果电子有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/099936 priority Critical patent/WO2023245372A1/zh
Priority to CN202280004487.3A priority patent/CN117716208A/zh
Publication of WO2023245372A1 publication Critical patent/WO2023245372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones

Definitions

  • the present disclosure relates to the field of pedometer technology, and in particular to pedometer methods, devices, earphones and storage media.
  • the present disclosure provides a pedometer method, device, earphones and storage medium.
  • a step counting method is provided, applied to headphones, and the method includes:
  • the first audio signal being a sound signal in the ear canal of the user wearing the headset
  • the second audio signal being a sound signal in the environment of the user wearing the headset
  • the energy maximum value is determined as the current energy maximum value, and the time corresponding to the current energy maximum value is point is the target time point;
  • the target energy value is the energy value of the audio point corresponding to the target time point in the second audio signal
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is the energy maximum value detected for the first time on the first audio signal.
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is not the energy maximum value detected for the first time on the first audio signal
  • Condition 3 The time difference between the time point corresponding to this energy maximum value and the time point corresponding to the prestored last energy maximum value satisfies the preset time difference range.
  • the method before performing energy detection on the first audio signal and the second audio signal, the method further includes:
  • audio signals above the frequency threshold among the first audio signal and the second audio signal are filtered out.
  • the preset time threshold is 120 milliseconds.
  • the difference between the current energy maximum value and the target energy value is determined through the following formula:
  • C is the energy maximum value corresponding to the target time point
  • D is the target energy value corresponding to the target time point
  • delta is the difference value
  • the difference threshold is greater than 15db.
  • the frequency threshold is 70HZ.
  • a pedometer device applied to headphones, and the device includes:
  • An acquisition module configured to acquire a first audio signal, which is the sound signal in the ear canal of the user wearing the earphone, and acquire a second audio signal, which is the sound signal in the ear canal of the user wearing the earphone. Sound signals in the environment;
  • a detection module configured to perform energy detection on the first audio signal and the second audio signal
  • a first determination module configured to determine the energy maximum value as the energy maximum value of this time if it is detected that the energy maximum value of the first audio signal occurs within the preset time threshold, and determine the energy maximum value of this time.
  • the time point corresponding to the energy maximum value is the target time point;
  • a second determination module configured to obtain a target energy value according to the target time point, where the target energy value is the energy value of the audio point in the second audio signal corresponding to the target time point;
  • the third determination module is used to determine the difference between the current energy maximum value and the target energy value
  • the step counting module is used to determine that a step counting event occurs if the following two conditions are met:
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is the energy maximum value detected for the first time on the first audio signal.
  • step counting module is also used to:
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is not the energy maximum value detected for the first time on the first audio signal
  • Condition 3 The time difference between the time point corresponding to this energy maximum value and the time point corresponding to the prestored last energy maximum value satisfies the preset time difference range.
  • the device also includes:
  • a filtering module configured to filter the first audio signal and the second audio signal according to a preset frequency threshold before performing energy detection on the first audio signal and the second audio signal. Audio signals above the frequency threshold are filtered out.
  • the preset time threshold is 80-120 milliseconds.
  • the third determination module determines the difference between the current energy maximum value and the target energy value through the following formula:
  • C is the energy maximum value corresponding to the target time point
  • D is the target energy value corresponding to the target time point
  • delta is the difference value
  • the difference threshold is 15db.
  • the frequency threshold is 70HZ.
  • an earphone includes a housing, a feedforward microphone installed on the housing, a feedback microphone, and a microphone that is communicatively connected to the feedforward microphone and the feedback microphone respectively. controller;
  • the feedforward microphone is used to collect sound signals in the environment of the user wearing the headset, and the feedback microphone is used to collect sound signals in the ear canal of the user wearing the headset;
  • the controller includes a processor and a memory for storing instructions executable by the processor, wherein the processor is configured to implement the steps of the step counting method provided in the first aspect of the present disclosure.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the steps of the step counting method provided in the first aspect of the present disclosure are implemented.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: acquiring the first audio signal in the ear canal of the user wearing the earphone, acquiring the second audio signal in the environment of the user wearing the earphone, and The first audio signal and the second audio signal are subjected to energy detection. If it is detected that the energy maximum value of the first audio signal appears within a preset time threshold, the energy maximum value is determined as the energy of this time. Maximum value, and the time point corresponding to the energy maximum value is the target time point. Obtain the energy value of the audio point corresponding to the target time point in the second audio signal according to the target time point (ie, the target energy value), and then determine the difference between the current energy maximum value and the target energy value. value.
  • the difference value is greater than the preset difference threshold, it means that the first audio signal is caused by the occlusion effect, and the energy maximum value this time is the energy maximum value detected for the first time for the first audio signal, which means that the user When you start walking or running with the earphones on, it is determined that a step counting event occurs.
  • the user does not need to carry other smart devices and can count steps in real time through the earphones, improving the comfort of the user's walking or running.
  • Figure 1 is a flow chart of a step counting method according to an exemplary embodiment
  • FIG. 2 is an example diagram of real-time energy of the first audio signal and the second audio signal using the pedometer method of the present disclosure, according to an exemplary embodiment
  • Figure 3 is a block diagram of a pedometer device according to an exemplary embodiment
  • FIG. 4 is a block diagram of a device for counting steps according to an exemplary embodiment.
  • Figure 1 is a flow chart of a step counting method according to an exemplary embodiment. As shown in Figure 1, the step counting method is used in headphones and includes the following steps.
  • step S101 a first audio signal and a second audio signal are obtained.
  • the first audio signal is the sound signal in the ear canal of the user wearing the earphones
  • the second audio signal is the sound signal in the environment where the user wearing the earphones is located.
  • the earphones involved in this disclosure are earphones including a feedforward microphone and a feedback microphone, and may be, for example, a true wireless stereo TWS Bluetooth earphone (TWS, True Wireless Stereo).
  • the acquired first audio signal may be collected through a feedback microphone in the earphone, for example, and the acquired second audio signal may be collected through a feedforward microphone in the earphone, for example.
  • the headset of the present disclosure can automatically count steps after the user wears it, or can count steps after the user turns on the step counting function of the headset.
  • step S102 energy detection is performed on the first audio signal and the second audio signal.
  • the step counting method also includes: according to the preset frequency threshold, the first audio signal and Audio signals above the frequency threshold in the second audio signal are filtered out.
  • the frequency threshold may be 40HZ, 70HZ, etc.
  • the frequency threshold may be 50HZ to remove interference from sounds such as voices and music in the earphones.
  • step S103 if it is detected that the energy maximum value of the first audio signal appears within the preset time threshold, the energy maximum value is determined as the current energy maximum value, and the time point corresponding to the current energy maximum value is as the target time point.
  • the sound of the foot colliding with the ground will be conducted to the ear canal through the bone of the earphone, and then the sound signal in the ear canal of the user wearing the earphone (the sound of the foot colliding with the ground), that is, the first
  • the audio signal will be blocked in the ear by the earphones and enhanced, resulting in an occlusion effect, and an energy maximum will appear within the preset time threshold.
  • the preset time threshold may be 80 milliseconds or 120 milliseconds. Preferably, the preset time threshold may be 100 milliseconds.
  • step S104 the target energy value is obtained according to the target time point, where the target energy value is the energy value of the audio point corresponding to the target time point in the second audio signal.
  • step S105 the difference value between the current energy maximum value and the target energy value is determined. If the following two conditions are met, it is determined that a step counting event has occurred: Condition 1: The difference value is greater than the preset difference threshold, Condition 2 : This energy maximum value is the energy maximum value detected for the first time on the first audio signal.
  • the difference between the current energy maximum value and the target energy value can be determined through the following formula: Among them, C is the energy maximum value corresponding to the target time point, D is the target energy value corresponding to the target time point, and delta is the difference between the energy maximum value and the target energy value.
  • the difference threshold can be 15db.
  • a step counting event can be determined to occur when the following three conditions are met:
  • Condition 1 The difference value is greater than the preset difference threshold.
  • Condition 2 The energy maximum value this time is not the energy maximum value detected for the first time on the first audio signal.
  • Condition 3 The energy maximum value this time is maximum. The time difference between the time point corresponding to the value and the time point corresponding to the pre-stored last energy maximum value satisfies the preset time difference range, indicating that the user is in a state of continuous walking or running, and so on, to determine each subsequent step counting event one by one. , and users do not need to carry other smart devices, they can count steps in real time through headphones, improving the user's comfort when walking or running.
  • the time difference between the time point corresponding to the current energy maximum value and the time point corresponding to the prestored last energy maximum value may be within 200 milliseconds, for example.
  • Figure 2 shows an example diagram of real-time energy of the first audio signal and the second audio signal using the step counting method of the present disclosure in a scenario where the user is continuously walking or running.
  • the upper part is the real-time energy map of the first audio signal
  • the lower part is the real-time energy map of the second audio signal
  • the sound when the foot collides with the ground will be conducted to the ear canal through the bone of the earphone, and then the sound signal in the ear canal of the user wearing the earphone (the sound of the foot colliding with the ground), that is, the third An audio signal will be blocked in the ear by headphones and strengthened, resulting in an occlusion effect.
  • An instantaneous energy maximum will appear within a preset time threshold (for example, 100 milliseconds), and an instantaneous energy minimum will appear at the same time.
  • a collision between the foot and the ground will result in an instantaneous energy maximum within a preset time threshold (for example, 100 milliseconds) and an instantaneous energy minimum at the same time.
  • a real-time energy map of the first audio signal will be formed in the time domain. .
  • the second audio signal is a sound signal in the environment where the user wearing the earphone is located.
  • the collision sound is transmitted to the earphones through the air, it has almost completely attenuated and can be ignored. Therefore, the real-time energy of the second audio signal in Figure 2 is always negative infinity in the time domain.
  • the target time point in which the energy maximum occurs can be obtained in the second audio signal corresponding to the target time.
  • the difference value between the current energy maximum value and the target energy value is determined: using Determine the difference value.
  • a first audio signal in the ear canal of the user wearing the earphone is acquired, a second audio signal in the environment of the user wearing the earphone is acquired, and the first audio signal is Perform energy detection with the second audio signal. If it is detected that the energy maximum value of the first audio signal appears within the preset time threshold, then the energy maximum value is determined as the current energy maximum value, and The time point corresponding to the current energy maximum value is the target time point. Obtain the energy value of the audio point corresponding to the target time point in the second audio signal according to the target time point (ie, the target energy value), and then determine the difference between the current energy maximum value and the target energy value. value.
  • the difference value is greater than the preset difference threshold, it means that the first audio signal is caused by the occlusion effect, and the energy maximum value this time is the energy maximum value detected for the first time for the first audio signal, which means that the user When you start walking or running with the earphones on, it is determined that a step counting event occurs.
  • the user does not need to carry other smart devices and can count steps in real time through the earphones, improving the comfort of the user's walking or running.
  • FIG. 3 is a block diagram of a pedometer device 300 according to an exemplary embodiment.
  • a pedometer device is applied to headphones, and the device includes:
  • the acquisition module 301 is used to acquire a first audio signal, which is the sound signal in the ear canal of the user wearing the earphone, and acquire a second audio signal, which is the sound signal in the ear canal of the user wearing the earphone. Sound signals within the user’s environment;
  • Detection module 302 configured to perform energy detection on the first audio signal and the second audio signal
  • the first determination module 303 is configured to determine the energy maximum value as the current energy maximum value if it is detected that the first audio signal has an energy maximum value within a preset time threshold.
  • the time point corresponding to the sub-energy maximum value is the target time point;
  • the second determination module 304 is configured to obtain a target energy value according to the target time point, where the target energy value is the energy value of the audio point in the second audio signal corresponding to the target time point;
  • the third determination module 305 is used to determine the difference value between the current energy maximum value and the target energy value
  • the step counting module 306 is used to determine that a step counting event occurs if the following two conditions are met:
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is the energy maximum value detected for the first time on the first audio signal.
  • step counting module 306 is also used to:
  • Condition 1 The difference value is greater than the preset difference threshold
  • Condition 2 The energy maximum value this time is not the energy maximum value detected for the first time on the first audio signal
  • Condition 3 The time difference between the time point corresponding to this energy maximum value and the time point corresponding to the prestored last energy maximum value satisfies the preset time difference range.
  • the device also includes:
  • a filtering module configured to filter the first audio signal and the second audio signal according to a preset frequency threshold before performing energy detection on the first audio signal and the second audio signal. Audio signals above the frequency threshold are filtered out.
  • the preset time threshold is 120 milliseconds.
  • the third determination module determines the difference between the current energy maximum value and the target energy value through the following formula:
  • C is the energy maximum value corresponding to the target time point
  • D is the target energy value corresponding to the target time point
  • delta is the difference value
  • the difference threshold is 15db.
  • the frequency threshold is 70HZ.
  • FIG. 4 is a block diagram of a device 800 for counting steps according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • apparatus 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output interface 812, sensor component 814, and communication component 816.
  • Processing component 802 generally controls the overall operations of device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above step counting method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to the various components of device 800.
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when device 800 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the input/output interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, and the sensor component 814 can also detect a change in position of the device 800 or a component of the device 800. , the presence or absence of user contact with the device 800 , device 800 orientation or acceleration/deceleration and temperature changes of the device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between apparatus 800 and other devices.
  • Device 800 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 816 receives broadcast signals or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above step counting method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above step counting method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, which can be executed by the processor 820 of the device 800 to complete the above step counting method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the step counting method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Telephone Function (AREA)

Abstract

一种计步方法、装置、耳机及存储介质。该计步方法应用于耳机,包括:获取第一音频信号和第二音频信号(步骤S101),第一音频信号为佩戴耳机的用户的耳道内的声音信号,第二音频信号为佩戴耳机的用户所处环境内的声音信号;对第一音频信号和第二音频信号进行能量检测(步骤S102);如果检测到第一音频信号在预设时间阈值内出现能量极大值,则将能量极大值确定为本次能量极大值,将本次能量极大值对应的时间点为目标时间点(步骤S103);根据目标时间点获取目标能量值,其中,目标能量值为第二音频信号中与目标时间点对应的音频点的能量值(步骤S104);确定本次能量极大值和目标能量值的差异值,如果以下两个条件均满足,则确定发生一次计步事件,条件一:差异值大于预设的差异阈值,条件二:本次能量极大值为对第一音频信号首次检测到的能量极大值(步骤S105)。

Description

计步方法、装置、耳机及存储介质 技术领域
本公开涉及计步技术领域,尤其涉及计步方法、装置、耳机及存储介质。
背景技术
现在大家越来越重视健康,所以越来越多的人加入健走或者跑步的行列。健走或者跑步时则有计步的需求。
目前的步数统计一般通过在智能设备(例如手机)等设备上加装陀螺仪、加速度计等传感器来实现。
然而,实际健走或者跑步的场景中,需要一直携带智能设备(例如手机),降低了健走或者跑步的舒适性。
发明内容
为克服相关技术中存在的问题,本公开提供一种计步方法、装置、耳机及存储介质。
根据本公开实施例的第一方面,提供一种计步方法,应用于耳机,所述方法包括:
获取第一音频信号,所述第一音频信号为佩戴所述耳机的用户的耳道内的声音信号;
获取第二音频信号,所述第二音频信号为佩戴所述耳机的用户所处环境内的声音信号;
对所述第一音频信号和所述第二音频信号进行能量检测;
如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点;
根据所述目标时间点获取目标能量值,其中,所述目标能量值为所述第二音频信号中与所述目标时间点对应的音频点的能量值;
确定所述本次能量极大值和所述目标能量值的差异值;
如果以下两个条件均满足,则确定发生一次计步事件:
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值。
可选地,如果以下三个条件均满足,则确定发生一次计步事件;
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;
条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围。
可选地,在所述对所述第一音频信号和所述第二音频信号进行能量检测之前,还包括:
根据预设的频率阈值,将所述第一音频信号和第二音频信号中在所述频率阈值以上的音频信号滤除。
可选地,所述预设时间阈值为120毫秒。
可选地,通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
Figure PCTCN2022099936-appb-000001
其中,C为所述目标时间点对应的所述本次能量极大值,D为所述目标时间点对应的所述目标能量值,delta为所述差异值。
可选地,所述差异阈值大于15db。
可选地,所述频率阈值为70HZ。
根据本公开实施例的第二方面,提供一种计步装置,应用于耳机,所述装置包括:
获取模块,用于获取第一音频信号,所述第一音频信号为佩戴所述耳机的用户的耳道内的声音信号,获取第二音频信号,所述第二音频信号为佩戴所述耳机的用户所处环境内的声音信号;
检测模块,用于对所述第一音频信号和所述第二音频信号进行能量检测;
第一确定模块,用于如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点;
第二确定模块,用于根据所述目标时间点获取目标能量值,其中,所述目标能量值为所述第二音频信号中与所述目标时间点对应的音频点的能量值;
第三确定模块,用于确定所述本次能量极大值和所述目标能量值的差异值;
计步模块,用于如果以下两个条件均满足,则确定发生一次计步事件:
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值。
可选地,所述计步模块还用于:
如果以下三个条件均满足,则确定发生一次计步事件;
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;
条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围。
可选地,所述装置还包括:
滤除模块,用于在所述对所述第一音频信号和所述第二音频信号进行能量检测之前,根据预设的频率阈值,将所述第一音频信号和第二音频信号中在所述频率阈值以上的音频信号滤除。
可选地,所述预设时间阈值为80-120毫秒。
可选地,所述第三确定模块通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
Figure PCTCN2022099936-appb-000002
其中,C为所述目标时间点对应的所述本次能量极大值,D为所述目标时间点对应的所述目标能量值,delta为所述差异值。
可选地,所述差异阈值为15db。
可选地,所述频率阈值为70HZ。
根据本公开实施例的第三方面,提供一种耳机,所述耳机包括壳体和安装于所述壳体上的前馈麦克风、反馈麦克风以及分别与所述前馈麦克风和反馈麦克风通信连接的控制器;
所述前馈麦克风,用于采集佩戴所述耳机的用户所处环境内的声音信号,所述反馈麦克风,用于采集佩戴所述耳机的用户的耳道内的声音信号;
所述控制器,包括处理器和用于存储处理器可执行指令的存储器,其中,所述处理器被配置为实现本公开第一方面所提供的计步方法的步骤。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面所提供的计步方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:获取佩戴所述耳机的用户的耳道内的第一音频信号,获取佩戴所述耳机的用户所处环境内的第二音频信号,对所述第一音频信号和所述第二音频信号进行能量检测,如果检测到所述第一音频信号在预 设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点。根据所述目标时间点获取第二音频信号中与所述目标时间点对应的音频点的能量值(即目标能量值),之后确定所述本次能量极大值和所述目标能量值的差异值,如果差异值大于预设的差异阈值,说明第一音频信号基于闭塞效应引起,并且所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值,说明用户开始戴着耳机走路或者跑步,此时确定发生一次计步事件,进而用户无需携带其他智能设备,通过耳机便能实时计步,提高用户走路或者跑步的舒适性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一示例性实施例示出的一种计步方法的流程图;
图2是根据一示例性实施例示出的应用本公开的计步方法的第一音频信号和第二音频信号的实时能量的示例图;
图3是根据一示例性实施例示出的一种计步装置的框图;
图4是根据一示例性实施例示出的一种用于计步的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本申请中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
图1是根据一示例性实施例示出的一种计步方法的流程图,如图1所示,计步方法用于耳机中,包括以下步骤。
在步骤S101中,获取第一音频信号和第二音频信号。
其中,第一音频信号为佩戴耳机的用户的耳道内的声音信号,第二音频信号为佩戴 耳机的用户所处环境内的声音信号。
本公开中涉及的耳机为包括前馈麦克风和反馈麦克风的耳机,例如可以是真正无线立体声TWS蓝牙耳机(TWS,True Wireless Stereo)。获取的第一音频信号例如可通过耳机中的反馈麦克风采集,获取的第二音频信号例如可通过耳机中的前馈麦克风采集。
一种实施方式中,本公开的耳机可以在用户佩戴之后,自动进行计步,也可以在用户开启耳机的计步统计功能后,进行计步。
在步骤S102中,对第一音频信号和第二音频信号进行能量检测。
此外,为了去除耳机中说话声和音乐等声音的干扰,在对第一音频信号和第二音频信号进行能量检测之前,计步方法还包括:根据预设的频率阈值,将第一音频信号和第二音频信号中在频率阈值以上的音频信号滤除。
其中,频率阈值可以是40HZ、70HZ等,优选地,频率阈值可以是50HZ,以去除耳机中说话声和音乐声等声音的干扰。
在步骤S103中,如果检测到第一音频信号在预设时间阈值内出现能量极大值,则将能量极大值确定为本次能量极大值,将本次能量极大值对应的时间点为目标时间点。
由于当用户佩戴TWS耳机跑步或者走路时,脚和地面碰撞的声音会经过耳机的骨传导至耳道内,进而佩戴耳机的用户的耳道内的声音信号(脚和地面碰撞的声音),即第一音频信号,会被耳机堵在耳朵内并得到加强,产生闭塞效应,也就会在预设时间阈值内出现能量极大值。
其中,预设时间阈值可以是80毫秒、120毫秒。优选地,预设时间阈值可以是100毫秒。
在步骤S104中,根据目标时间点获取目标能量值,其中,目标能量值为第二音频信号中与目标时间点对应的音频点的能量值。
在步骤S105中,确定本次能量极大值和目标能量值的差异值,如果以下两个条件均满足,则确定发生一次计步事件:条件一:差异值大于预设的差异阈值,条件二:本次能量极大值为对第一音频信号首次检测到的能量极大值。
一种实施方式中,例如可通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
Figure PCTCN2022099936-appb-000003
其中,C为目标时间点对应的本次能量极大值,D为目标时间点对应的目标能量值,delta为本次能量极大值和目标能量值的差异值。
其中,差异阈值可以是15db。
此外,由于用户跑步或走路的碰撞信号具有周期性,当用户连续跑步或者连续走路时,可在满足如下三个条件时,确定发生一次计步事件:
条件一:所述差异值大于预设的差异阈值,条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围,说明用户处于持续走路或者跑步的状态,以此类推,逐一确定后续的每一次计步事件,进而用户无需携带其他智能设备,通过耳机便能实时计步,提高用户走路或者跑步的舒适性。
其中,本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差例如可以是处于200毫秒内。
图2示出了在用户处于连续行走或者跑步的场景中,应用本公开的计步方法的第一音频信号和第二音频信号的实时能量的示例图。
其中,上部分为第一音频信号的实时能量图,下部分为第二音频信号的实时能量图。
由于当用户佩戴TWS耳机跑步或者走路时,脚和地面碰撞时的声音会经过耳机的骨传导至耳道内,进而佩戴耳机的用户的耳道内的声音信号(脚和地面碰撞的声音),即第一音频信号,会被耳机堵在耳朵内并得到加强,产生闭塞效应,也就会在预设时间阈值(例如100毫秒)内出现瞬间能量极大值,同时出现瞬间能量极小值,进而每一次的脚和地面的碰撞,都会在预设时间阈值(例如100毫秒)内出现瞬间能量极大值,同时出现瞬间能量极小值,在时域上就会形成第一音频信号的实时能量图。
由于第二音频信号是佩戴所述耳机的用户所处环境内的声音信号。而碰撞声通过空气传递到耳机时,已经几乎全部衰减,可忽略不计,故,图2中的第二音频信号的实时能量,在时域上实时能量始终为负无穷。
进而在确定第一音频信号是基于闭塞效应引起,而非耳朵外的声音泄露的误检测时,可针对本次能量极大值出现的目标时间点,获取第二音频信号中与所述目标时间点对应的音频点的能量值,即目标能量值之后,确定所述本次能量极大值和所述目标能量值的差异值即:利用
Figure PCTCN2022099936-appb-000004
确定差异值。
在本公开的示例性实施例中,获取佩戴所述耳机的用户的耳道内的第一音频信号,获取佩戴所述耳机的用户所处环境内的第二音频信号,对所述第一音频信号和所述第二音频信号进行能量检测,如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点 为目标时间点。根据所述目标时间点获取第二音频信号中与所述目标时间点对应的音频点的能量值(即目标能量值),之后确定所述本次能量极大值和所述目标能量值的差异值,如果差异值大于预设的差异阈值,说明第一音频信号基于闭塞效应引起,并且所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值,说明用户开始戴着耳机走路或者跑步,此时确定发生一次计步事件,进而用户无需携带其他智能设备,通过耳机便能实时计步,提高用户走路或者跑步的舒适性。
图3是根据一示例性实施例示出的一种计步装置300的框图。参照图3,计步装置应用于耳机,所述装置包括:
获取模块301,用于获取第一音频信号,所述第一音频信号为佩戴所述耳机的用户的耳道内的声音信号,获取第二音频信号,所述第二音频信号为佩戴所述耳机的用户所处环境内的声音信号;
检测模块302,用于对所述第一音频信号和所述第二音频信号进行能量检测;
第一确定模块303,用于如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点;
第二确定模块304,用于根据所述目标时间点获取目标能量值,其中,所述目标能量值为所述第二音频信号中与所述目标时间点对应的音频点的能量值;
第三确定模块305,用于确定所述本次能量极大值和所述目标能量值的差异值;
计步模块306,用于如果以下两个条件均满足,则确定发生一次计步事件:
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值。
可选地,所述计步模块306还用于:
如果以下三个条件均满足,则确定发生一次计步事件;
条件一:所述差异值大于预设的差异阈值;
条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;
条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围。
可选地,所述装置还包括:
滤除模块,用于在所述对所述第一音频信号和所述第二音频信号进行能量检测之前, 根据预设的频率阈值,将所述第一音频信号和第二音频信号中在所述频率阈值以上的音频信号滤除。
可选地,所述预设时间阈值为120毫秒。
可选地,所述第三确定模块通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
Figure PCTCN2022099936-appb-000005
其中,C为所述目标时间点对应的所述本次能量极大值,D为所述目标时间点对应的所述目标能量值,delta为所述差异值。
可选地,所述差异阈值为15db。
可选地,所述频率阈值为70HZ。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图4是根据一示例性实施例示出的一种用于计步的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图4,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的计步方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
输入/输出接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例 性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述计步方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述计步方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的计步方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种计步方法,其特征在于,应用于耳机,包括:
    获取第一音频信号,所述第一音频信号为佩戴所述耳机的用户的耳道内的声音信号;
    获取第二音频信号,所述第二音频信号为佩戴所述耳机的用户所处环境内的声音信号;
    对所述第一音频信号和所述第二音频信号进行能量检测;
    如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点;
    根据所述目标时间点获取目标能量值,其中,所述目标能量值为所述第二音频信号中与所述目标时间点对应的音频点的能量值;
    确定所述本次能量极大值和所述目标能量值的差异值;
    如果以下两个条件均满足,则确定发生一次计步事件:
    条件一:所述差异值大于预设的差异阈值,
    条件二:所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值。
  2. 根据权利要求1所述的方法,其特征在于,如果以下三个条件均满足,则确定发生一次计步事件;
    条件一:所述差异值大于预设的差异阈值,
    条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;
    条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围。
  3. 根据权利要求1所述的方法,其特征在于,在所述对所述第一音频信号和所述第二音频信号进行能量检测之前,还包括:
    根据预设的频率阈值,将所述第一音频信号和第二音频信号中在所述频率阈值以上的音频信号滤除。
  4. 根据权利要求1所述的方法,其特征在于,所述预设时间阈值为120毫秒。
  5. 根据权利要求1所述的方法,其特征在于,通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
    Figure PCTCN2022099936-appb-100001
    其中,C为所述目标时间点对应的所述本次能量极大值,D为所述目标时间点对应的所述目标能量值,delta为所述差异值。
  6. 根据权利要求1或2所述的方法,其特征在于,所述差异阈值为15db。
  7. 根据权利要求3所述的方法,其特征在于,所述频率阈值为70HZ。
  8. 一种计步装置,其特征在于,应用于耳机,所述装置包括:
    获取模块,用于获取第一音频信号,所述第一音频信号为佩戴所述耳机的用户的耳道内的声音信号,获取第二音频信号,所述第二音频信号为佩戴所述耳机的用户所处环境内的声音信号;
    检测模块,用于对所述第一音频信号和所述第二音频信号进行能量检测;
    第一确定模块,用于如果检测到所述第一音频信号在预设时间阈值内出现能量极大值,则将所述能量极大值确定为本次能量极大值,将所述本次能量极大值对应的时间点为目标时间点;
    第二确定模块,用于根据所述目标时间点获取目标能量值,其中,所述目标能量值为所述第二音频信号中与所述目标时间点对应的音频点的能量值;
    第三确定模块,用于确定所述本次能量极大值和所述目标能量值的差异值;
    计步模块,用于如果以下两个条件均满足,则确定发生一次计步事件:
    条件一:所述差异值大于预设的差异阈值;
    条件二:所述本次能量极大值为对所述第一音频信号首次检测到的能量极大值。
  9. 根据权利要求8所述的装置,其特征在于,所述计步模块还用于:
    如果以下三个条件均满足,则确定发生一次计步事件;
    条件一:所述差异值大于预设的差异阈值;
    条件二:所述本次能量极大值不是对所述第一音频信号首次检测到的能量极大值;
    条件三:本次能量极大值对应的时间点与预存的上次能量极大值对应的时间点的时间差满足预设的时间差范围。
  10. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    滤除模块,用于在所述对所述第一音频信号和所述第二音频信号进行能量检测之前,根据预设的频率阈值,将所述第一音频信号和第二音频信号中在所述频率阈值以上的音频信号滤除。
  11. 根据权利要求8所述的装置,其特征在于,所述预设时间阈值为120毫秒。
  12. 根据权利要求8所述的装置,其特征在于,所述第三确定模块通过如下算式确定所述本次能量极大值和所述目标能量值的差异值:
    Figure PCTCN2022099936-appb-100002
    其中,C为所述目标时间点对应的所述本次能量极大值,D为所述目标时间点对应的所述目标能量值,delta为所述差异值。
  13. 根据权利要求8或9所述的装置,其特征在于,所述差异阈值为15db。
  14. 根据权利要求10所述的装置,其特征在于,所述频率阈值为70HZ。
  15. 一种耳机,其特征在于,
    所述耳机包括壳体和安装于所述壳体上的前馈麦克风、反馈麦克风以及分别与所述前馈麦克风和反馈麦克风通信连接的控制器;
    所述前馈麦克风,用于采集佩戴所述耳机的用户所处环境内的声音信号,所述反馈麦克风,用于采集佩戴所述耳机的用户的耳道内的声音信号;
    所述控制器,包括处理器和用于存储处理器可执行指令的存储器,其中,所述处理器被配置为实现权利要求1~7中任一项所述方法的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序 指令被处理器执行时实现权利要求1~7中任一项所述方法的步骤。
PCT/CN2022/099936 2022-06-20 2022-06-20 计步方法、装置、耳机及存储介质 WO2023245372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099936 WO2023245372A1 (zh) 2022-06-20 2022-06-20 计步方法、装置、耳机及存储介质
CN202280004487.3A CN117716208A (zh) 2022-06-20 2022-06-20 计步方法、装置、耳机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099936 WO2023245372A1 (zh) 2022-06-20 2022-06-20 计步方法、装置、耳机及存储介质

Publications (1)

Publication Number Publication Date
WO2023245372A1 true WO2023245372A1 (zh) 2023-12-28

Family

ID=89378960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099936 WO2023245372A1 (zh) 2022-06-20 2022-06-20 计步方法、装置、耳机及存储介质

Country Status (2)

Country Link
CN (1) CN117716208A (zh)
WO (1) WO2023245372A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101907A (zh) * 2016-08-22 2016-11-09 苏州倍声声学技术有限公司 一种具有计步功能的骨传导耳机
CN208850010U (zh) * 2018-11-21 2019-05-10 深圳市芯音科技有限公司 一种运动型蓝牙耳机
CN110187859A (zh) * 2019-04-12 2019-08-30 华为技术有限公司 一种去噪方法及电子设备
CN111372158A (zh) * 2020-02-28 2020-07-03 歌尔股份有限公司 运动检测方法、无线耳机及计算机可读存储介质
US10972834B1 (en) * 2019-10-28 2021-04-06 Amazon Technologies, Inc. Voice detection using ear-based devices
CN112822600A (zh) * 2021-01-27 2021-05-18 歌尔科技有限公司 耳机计步方法、耳机及存储介质
CN114630239A (zh) * 2022-02-23 2022-06-14 北京小米移动软件有限公司 降低耳机闭塞效应方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101907A (zh) * 2016-08-22 2016-11-09 苏州倍声声学技术有限公司 一种具有计步功能的骨传导耳机
CN208850010U (zh) * 2018-11-21 2019-05-10 深圳市芯音科技有限公司 一种运动型蓝牙耳机
CN110187859A (zh) * 2019-04-12 2019-08-30 华为技术有限公司 一种去噪方法及电子设备
US10972834B1 (en) * 2019-10-28 2021-04-06 Amazon Technologies, Inc. Voice detection using ear-based devices
CN111372158A (zh) * 2020-02-28 2020-07-03 歌尔股份有限公司 运动检测方法、无线耳机及计算机可读存储介质
CN112822600A (zh) * 2021-01-27 2021-05-18 歌尔科技有限公司 耳机计步方法、耳机及存储介质
CN114630239A (zh) * 2022-02-23 2022-06-14 北京小米移动软件有限公司 降低耳机闭塞效应方法、装置及存储介质

Also Published As

Publication number Publication date
CN117716208A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US10375296B2 (en) Methods apparatuses, and storage mediums for adjusting camera shooting angle
EP3163748A2 (en) Method, device and terminal for adjusting volume
CN107493500B (zh) 多媒体资源播放方法及装置
EP3024211B1 (en) Method and device for announcing voice call
EP3125512A1 (en) Silent ring indication while listening music over a headset
CN106454644B (zh) 音频播放方法及装置
EP3176984B1 (en) Method and device for processing information
CN105708609A (zh) 用户打鼾的提示方法、装置及系统
CN112817554A (zh) 提示音控制方法、提示音控制装置及存储介质
JP6408032B2 (ja) 中心に位置するイヤピースを含むモバイルデバイス
CN109769191B (zh) 音频输出检测方法及装置、电子设备
CN105208378B (zh) 摄像头保护方法、装置和终端
EP3125514A1 (en) Method and device for state notification
CN105204841B (zh) 量程调整方法及装置
CN107677363B (zh) 噪音提示的方法及智能终端
WO2023245372A1 (zh) 计步方法、装置、耳机及存储介质
CN113596662B (zh) 啸叫声的抑制方法、啸叫声的抑制装置、耳机及存储介质
CN115278441A (zh) 语音检测方法、装置、耳机及存储介质
US11388281B2 (en) Adaptive method and apparatus for intelligent terminal, and terminal
CN113825081B (zh) 一种基于掩蔽治疗系统的助听方法及装置
CN111986688B (zh) 一种提高语音清晰度的方法、装置及介质
WO2023240512A1 (zh) 跌倒检测方法、装置、耳机及存储介质
CN112019677B (zh) 电子设备控制方法及装置
CN115705179A (zh) 模式切换方法及装置
CN117636893A (zh) 风噪检测方法、装置、可穿戴设备及可读储存介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004487.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947153

Country of ref document: EP

Kind code of ref document: A1