WO2006117880A1 - 磁気分離浄化装置および磁気分離浄化方法 - Google Patents

磁気分離浄化装置および磁気分離浄化方法 Download PDF

Info

Publication number
WO2006117880A1
WO2006117880A1 PCT/JP2005/008581 JP2005008581W WO2006117880A1 WO 2006117880 A1 WO2006117880 A1 WO 2006117880A1 JP 2005008581 W JP2005008581 W JP 2005008581W WO 2006117880 A1 WO2006117880 A1 WO 2006117880A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
magnetic
rotating body
treated
rotator
Prior art date
Application number
PCT/JP2005/008581
Other languages
English (en)
French (fr)
Inventor
Norihide Saho
Hisashi Isogami
Takashi Mizumori
Akira Mochizuki
Susumu Harada
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to BRPI0512666-5A priority Critical patent/BRPI0512666A/pt
Priority to CNB2005800138133A priority patent/CN100553785C/zh
Priority to US11/630,128 priority patent/US7785475B2/en
Priority to EP05738758A priority patent/EP1875967A4/en
Priority to AU2005331412A priority patent/AU2005331412B2/en
Priority to CA2567693A priority patent/CA2567693C/en
Priority to PCT/JP2005/008581 priority patent/WO2006117880A1/ja
Publication of WO2006117880A1 publication Critical patent/WO2006117880A1/ja
Priority to NO20065846A priority patent/NO20065846L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • the present invention relates to a magnetic separation and purification device for the purpose of water purification, solid-liquid separation, and the like.
  • the magnetic substance capture by the membrane and the magnetic separation of the captured substance are favorably magnetic with respect to fluctuations in the water surface of the magnetic separation unit.
  • the present invention relates to the structure of a magnetic separation and purification device capable of separating materials and discharging high-density sludge stably. Background art
  • a water separation membrane For the purpose of solid-liquid separation, etc., it is used as a water separation membrane through a fine wire mesh, a mesh knitted with polymer fibers or a membrane, and a flocculant and magnetic powder are added to raw water containing contaminated particles (sludge).
  • a magnetic separation and purification device that generates magnetic flocs, separates the magnetic flocs with a film as described above, and magnetically separates and removes the magnetic flocs collected by the film with a magnetic field generating means to recover high-concentration sludge.
  • This structure is described in, for example, Japanese Patent Application Laid-Open No. 2 00 2-2 7 3 2 61.
  • This membrane separation and hatching apparatus comprises a net made of fine stainless steel wires or polyester fibers, and has an opening with an opening of, for example, several tens of micrometers.
  • flocculants such as sulfuric acid sulfate, polyaluminum chloride, iron polysulfate, and magnetic powder are added to the raw water, and the raw water is stirred.
  • a magnetic flow is formed by combining fine solid suspensions, algae, fungi, and microorganisms with a condensing agent to a size of about several hundred microns. This magnetic floc cannot pass through an opening having an opening of several tens of micrometers, and is captured and separated at a high removal rate.
  • Water that has permeated the membrane becomes purified water with higher water quality.
  • the magnetic flocs collected on the membrane are washed away from the membrane with washing water, the magnetic flocs that remain in the vicinity of the water surface are attracted and magnetically separated by the magnetic force of a magnet placed stationary near the water surface, It is transferred to the sludge collection tank by the sludge transfer means and eliminated.
  • the sludge is usually transported to a disposal site or incinerator by truck, It becomes a strike.
  • the magnetic particles in the sewage that have flowed into the sewage treatment tank are adsorbed and separated from the sewage by a magnetic plate arranged in the sewage treatment tank.
  • the sewage treatment tank is provided with a sewage inlet at the bottom and a treatment water discharge opening at the top, and is submerged in the sewage in the sewage treatment tank, A plurality of disk-shaped magnetic bodies mounted in parallel on the rotating shaft at a predetermined interval, and magnetic poles arranged on the surface of each of the disk-shaped magnetic bodies are opposed to each other between the opposing disk-shaped magnetic bodies.
  • a sewage treatment apparatus for moving the sewage treatment apparatus The sludge is formed in communication with the sludge discharge passage that surrounds the scraping device and guides the sludge scraped by the scraper to the sludge discharge port, and the sludge discharge passage.
  • a sewage treatment apparatus is described which comprises an overflow port through which treated water in the discharge passage overflows.
  • Japanese Laid-Open Patent Publication No. 2 0 0-7 9 3 5 3 discloses a squeezing roller that has a built-in inner cylinder in which a magnet is arranged at a required position on the outer peripheral surface in a rotating drum made of a non-magnetic agent and is in contact with the rotating drum.
  • a rotary drum type magnetic separator in which the entire surface of the rotary drum or a required part is made magnetic at a required depth is described. Disclosure of the invention
  • the magnetic block that is washed away from the film and stays in the vicinity of the water surface is magnetically attracted by the stationary magnetic field distribution of the stationary magnet, so that the water surface fluctuates up and down,
  • the magnetic force of the water is weak, the removal performance of many magnetic flakes near the water surface decreases, the magnetic floc density in the water to be treated increases, the purification speed by the membrane decreases, and the purification performance decreases.
  • the water content should be about 85%, and the water content should be 75% so as to activate microorganisms that decompose organic substances during composting.
  • the moisture content of the sludge must be reduced.
  • the water to be treated having the magnetic flocs is magnetically separated using the magnetic flow adjacent to the water tank to be filtered as a high-concentration sludge.
  • the treated water overflows into the sludge collection tank to be removed and collected, and the sludge collected at a high concentration is drastically diluted with the treated water flowing in, the sludge is reduced in concentration, the volume of the sludge is greatly increased, and the moisture content There is a problem that the dehydration cost increases when the size is reduced.
  • An object of the present invention is to provide a magnetic separation and purification device capable of separating magnetic flocs containing a magnetic substance satisfactorily and stably discharging high-density sludge against fluctuations in the water surface of the magnetic separation unit. is there.
  • the present invention prevents sludge collected at a high concentration from being diluted by overflow of the water to be treated when the surface of the water to be treated rises.
  • a sewage recovery layer that collects sewage between the water tank that filters the sewage and the sludge recovery tank, the sewage that overflows when the water level of the sewage rises becomes sewage. Prevents flowing into the collection tank and flowing into the sludge collection tank.
  • This structure prevents the high-concentration sludge in the sludge recovery tank from thinning with the water to be treated, thus preventing an increase in the volume of the sludge and the dehydration required to further reduce the water content of the recovered sludge. Can solve the problem of cost increase.
  • a magnetic separation and purification device configured includes a magnetic substance and a flocculant in a fluid to be treated containing a magnetic substance to be removed, or a fluid containing a non-magnetic removed substance, Alternatively, the object to be removed and the magnetic substance for filtering the fluid to be treated containing the magnetic substance that has made the object to be removed magnetic by adding an additive that chemically reacts with the object to be removed and generates a magnetic substance.
  • a rotatable filtering means having an opening that cannot pass through; a magnetic field generating means capable of rotating the magnetic material filtered by the filtering means by a magnetic force; and the magnetic substance magnetically attracted to the magnetic material generating means.
  • a sludge recovery means capable of rotating to place and recover a magnetic floc containing the magnetic substance and sludge when moving in the direction of the magnetic field, and a magnetic field rotation means for rotating the magnetic field generation means
  • the early sludge recovery means has a structure that moves between spaces of the magnetic field intensity of the magnetic field generation means, and is provided with a scraping means for scraping off deposits on the sludge recovery means. Furthermore, it has a sludge collection means for collecting the object to be removed and the magnetic substance.
  • the magnetic separation and purification apparatus constructed according to the present invention includes a magnetic substance and a flocculant, or a subject to be treated in a fluid to be treated containing a magnetic substance to be removed, or a fluid containing a substance to be removed.
  • a magnetic substance and a flocculant or a subject to be treated in a fluid to be treated containing a magnetic substance to be removed, or a fluid containing a substance to be removed.
  • a sludge collecting means for collecting and collecting a magnetic floc on the surface when moving, wherein the sludge collecting means has a structure capable of moving in a space with a large magnetic field strength of the magnetic field generating means.
  • the above-described magnetic separation and purification apparatus has deposit transfer means for transferring the deposit on the sludge recovery means in the deposit transfer direction by the scraping means.
  • magnetic flocks (including sludge and magnetic substances) can be satisfactorily prevented against fluctuations in the surface of the magnetic separation section formed between the filtration net (net 2 1) and the sludge recovery rotating body 3 3.
  • a magnetic separation and purification device capable of stably producing and discharging high-density sludge is provided.
  • the overflow water collecting device 60 is provided in the water tank 22 even when the surface of the water to be treated rises, the sludge collected at a high concentration can be collected from the water to be treated. There is no thinning due to overflow.
  • FIG. 1 is a configuration diagram of a magnetic separation and purification system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the magnetic separation and purification device of one embodiment of the present invention.
  • Fig. 3 is a cross-sectional view taken along the line AA in Fig. 2.
  • FIG. 4 is a sectional view of a magnetic separation and purification device according to another embodiment of the present invention.
  • Fig. 5 is a cross-sectional view taken along the line AA in Fig. 4.
  • FIG. 6 is a sectional view of a magnetic separation and purification device according to another embodiment of the present invention.
  • a magnetic separation and purification device that separates sludge contained in a fluid to be treated using magnetic force and purifies the fluid to be treated is disposed in a water tank, has a cylindrical filtration net, and contains a magnetic substance.
  • a rotary filter that filters sludge and magnetic substances from the fluid to be treated, and a rotary filter that is close to the rotary filter in the horizontal direction, and carries sludge and magnetic substances on the surface as it rotates.
  • the sludge is rotated in the sludge collection rotation by magnetically attracting the magnetic material filtered by the rotary filter on the surface of the sludge collection rotator.
  • a magnetic rotating body to be transferred onto the surface of the body, And a contact device that scoops up the sludge and magnetic material transported on the surface of the sludge recovery rotating body.
  • the magnetic rotating body is arranged eccentrically with respect to the sludge collecting rotating body. Further, the magnetic rotating body may be disposed concentrically with the sludge recovery rotating body. In this case, a rotor blade that is rotationally driven by a drive source is disposed on the surface of the sludge recovery rotating body. It is provided on the upper side close to the surface.
  • the sludge recovery rotating body and the magnetic rotating body can be integrated to share a rotational drive source.
  • a magnetic separation and purification method for separating sludge contained in a fluid to be treated using magnetic force and purifying the fluid to be treated is a rotary filter having a cylindrical filtration net disposed in a water tank.
  • the sludge and the magnetic substance are filtered from the object to be treated containing the magnetic substance, the cylindrical sludge collection rotating body has an axis, and at least the side located on the rotary filtration body is disposed on the sludge collection rotating body.
  • the magnetic material containing the sludge and the magnetic substance is magnetically attracted onto the surface of the sludge recovery rotator to transfer the sludge onto the surface of the sludge recovery rotator, and is transported on the surface of the sludge recovery rotator. Scatter the block. Further, the sludge recovery rotating body rotates in a space having a large and small magnetic strength by arranging the magnetic rotating body eccentrically with respect to the sludge recovery rotating body.
  • FIG. 2 is an enlarged cross-sectional view of the membrane separator 14 of FIG. 1
  • FIG. 3 is a cross-sectional view of FIG.
  • Raw water 2 which is treated water containing sludge from which several millimeters of large debris has been removed is stored in the raw water storage tank 1, and a predetermined amount of raw water 2 is sent to the pipe 4 by the pump 3.
  • Seeding agent adjuster 5 From magnetic powder such as iron tetroxide and pH adjuster, aluminum chloride such as aqueous solution such as polyvinyl chloride, ferric chloride and ferric sulfate. Add the flocculant and polymer reinforcing agent to be provided to the inside of the pipe 4 through the conduit 6, and in the stirring tank 7, it is stirred at a high speed by the stirring blade 9 that is rotated and driven by the motor 8 and is several hundred microns. Produces a metric magnetic micro flow (magnetic flow).
  • a polymer reinforcing agent or the like is added from the polymer agent adjusting device 1 1 into the pipe 10 through the conduit 1 2.
  • Stirring tank 1 3 Moment 1 4 Stirring blades driven by rotation 1 5 Stirring slowly at a low speed 1 5 and a magnetic flow of about several millimeters 1 6 (shown in Figure 1)
  • the fluid to be treated contains a magnetic substance to be removed that is magnetic from the beginning without being added.
  • the treated water 17 generated in this manner is passed through the conduit 18 to the magnetic separation and purification device 19.
  • the structure of the membrane magnetic separation and purification device 19 will be described with reference to FIGS.
  • the outer periphery of the rotating drum 20 that is rotated by a drive source has an opening with openings of several micrometers to several tens of micrometers made of stainless steel fine wire, copper fine wire, or polyester fiber.
  • a net 2 1 that will serve as a filter fill.
  • a cylindrical filter screen is provided.
  • a rotating filter is formed by the rotating drum 20 and the net 21.
  • the treated water 17 flowing into the water tank 22 passes through the net 21 and flows into the drum 20.
  • the magnetic flocs 16 containing sludge and magnetic substances in the water to be treated are trapped on the inner surface of the net 2 1, and the water that has passed the net 2 1 and separated from the magnetic flocs 16 becomes purified water. It is discharged from 3 and accumulated in the purified water tank 25 through the pipe 24 and discharged outside the system.
  • the power that the treated water 17 passes through the net 21 is the liquid level difference between the treated water 17 and the purified water in the drum 20.
  • the magnetic flow 16 is filtered and attached to the outer surface of the mesh 21 rotating counterclockwise, and becomes a deposit and is exposed to the atmosphere above the liquid surface.
  • Purified water tank (referred to as a water tank) 2
  • Purified water in 5 is pressurized by pump 2 6 and sent from pipe 2 7 to shower pipe 2 8, and shower water is sprayed from the hole to the outer surface side from the inner surface of net 2 1 .
  • the magnetic flow 16 accumulated on the outer surface of the mesh 21 is peeled off by shower water, and the surface of the mesh 21 is regenerated.
  • the washed-out magnetic floc 16 is retained on the surface of the treated water 17 in the water tank 22 between the sludge collection body described later.
  • a rotary magnet rotor 29 used as a magnetic field generating means for magnetic separation is formed by arranging permanent magnets 31 in a plurality of grooves on the outer surface of a rotor 30 made of a non-magnetic material, for example.
  • the rotating body 30 is fixed with an adhesive or the like, and the rotational speed is controlled by the motor 32. It has a rotating structure.
  • the permanent magnets 31 are regularly arranged with minute gaps in the circumferential direction and the cylindrical surface direction, and are firmly fixed to the rotating body 30.
  • the rotating body 33 for sludge transfer made of non-magnetic material used to transfer magnetically separated magnetic floc is controlled by the motor 35 via the shaft 3 4.
  • Rotate At the end, the shaft 3 4 is supported on the wall of the water tank 22 by a rotating support 3 6 having watertightness, and at the other end, the outer periphery of the rotating body 3 3 is supported by a rotating support 3 having watertightness 3. It is supported by the wall of the aquarium 22 through 7 and the inside of the rotating support 3 6 is open to the atmosphere.
  • the sludge collection body 33 is disposed close to the rotation path in the horizontal direction.
  • the horizontal direction includes being horizontal.
  • the magnet rotating body 29 is inserted into the sludge collecting rotating body 33 from the air release surface of the sludge collecting rotating body 33, and the magnetic flocs 16 group washed away with washing water stops. It is installed so as to approach the position on the rotating drum side.
  • the axis of the sludge collecting rotating body 33 and the axis of the rotating body 30 of the magnet rotating body 29 are shifted from each other.
  • the axis and axis of the sludge recovery body and the axis of the magnet rotating body 29 are eccentric.
  • the magnet rotating body 29 is fixed to a part of the water tank 22 with a bolt or the like so as to be positioned at a predetermined place.
  • the rotation direction of the sludge collection rotating body 3 3 and the rotating body 30 is the same direction, and rotates in the direction in which the magnetically attracted magnetic flocs 16 are moved to the atmosphere side. Both rotation speeds may be the same or different. In the case of the present embodiment, the number of rotations on the magnet-side rotating body 30 side is higher than the number of rotations of the sludge collecting rotating body 33. That is, the rotation speed is fast.
  • the magnet rotating body 2 disposed close to the sludge collecting rotating body 33 is a rotary type, the magnetic force at the surface of the water is periodically strong even if the surface of the water to be treated fluctuates up and down. As a result, many magnetic fluxes existing near the water surface are attracted magnetically.
  • the magnetic flocs that are washed away and remain near the water surface are moved by being attracted to the magnet side by the magnetic field of the magnet rotating body 29, and rotated outside the magnet rotating body 29. After adhering to the outer surface of the rolling element 3 3, it is exposed to the atmosphere as the sludge collection rotating object 3 3 rotates. In the atmosphere, excess water in the magnetic flocs 16 group flows down on the surface of the rotating body 33 due to gravity, and the magnetic flocs 16 group is further concentrated. Here, the moisture content of the magnetic floc decreases to about 97%.
  • the concentrated magnetic flocs on the surface of the sludge collection rotating body 3 3 are moved by the rotation of the sludge collection rotation body 3 3.
  • the axis of the sludge collecting rotating body 33 and the axis of the rotating body 30 are shifted from each other, i.e., moved in a space with a large and small magnetic field strength,
  • the magnetic flocs are strongly attracted in the space, and when gradually moving away from the magnet rotating body 29, the magnetic attraction force decreases rapidly as the distance from the magnet rotating body 29 increases.
  • the magnetic flocs 1 6 are separated from the sludge collection rotating body 3 3 by the spatula 3 8 partially supported by the water tank 2 2 so as to come into contact with them, and fall into the sludge collection tank 3 9 by gravity. Separated and collected as sludge.
  • the discharged sludge is introduced into a dewatering device 41 such as a centrifuge or a belt press through a pipe 40, and the water content is reduced to about 85% or less so that water does not leak from the sludge during transportation.
  • a dewatering device 41 such as a centrifuge or a belt press
  • High-concentration sludge concentrated to about 75% by activating microorganisms that decompose organic matter is stored in the sludge tank 43 through the pipe 42.
  • the sludge is transported to a disposal site, incineration site, and composting plant by truck, and the treated sewage dehydrated by the dehydrator enters the treated sewage tank 4 5 through the piping 4 4 and is pressurized by the pump 4 6 and then the piping 4 Return to raw water tank 1 through 7 and re-introduced into the process.
  • Etc. are measured by sensor 4 9 and the information is sent to operation controller 4 8 via signal line 50.
  • the level of the water 17 to be treated in the water tank 2 2 is measured by the sensor 56 and the information is transmitted to the operation control device 48 by the signal line 5 7. Based on this information, the liquid level of the water to be treated is at the center of the ground at the position where the magnet rotating body 29 is installed, that is, the average value of the magnetic field generated by the magnet rotating body 29 is the maximum.
  • the optimal rotation speed of the rotating drum 20 and the appropriate speed of the collection speed of the magnetic floc 1 6 group are calculated by the optimal amount calculation program input in advance, and the control signal of the rotating drum rotation motor ( (Not shown) via the signal line 58, and via the signal line 59, it is sent to the motor 35, where it is controlled to the optimum speed.
  • the surface of the water to be treated in the water tank 2 2 is almost the center of the magnetic field of the magnet rotating body 29. It is desirable to be at the position of the A—A cross section in Figure 2.
  • the water surface is marked A—A
  • the magnetic floc 16 can be attached to the surface of the sludge collection rotating body 33 only at a position lower than the water surface.
  • the magnet rotating body 29 is stationary, the magnetic field distribution generated by the magnet rotating body 29 is not uniform on the magnet surface because each of the arranged permanent magnets has a non-uniform magnetic field distribution on the magnet surface.
  • the distribution of the magnetic field generated by the attached magnet group is also non-uniform, resulting in non-uniform magnetic attraction.
  • the magnetic flocs 1 Since the six groups can be transferred by the rotating body 30, it is possible to prevent the magnetic floc collection processing performance from deteriorating.
  • the water surface is higher than the position of the A-A cross section, a large number of magnetic flocs 16 stay at a position higher than the water surface, but sludge recovery rotation due to the weak magnetic field. It is difficult to adhere to the surface of body 3 3.
  • the magnet rotator 29 when the magnet rotator 29 is stationary, the magnetic field distribution generated by the magnet rotator 29 is non-uniform and the magnetic attraction force is non-uniform as in the case described above. Therefore, when the water surface is in a portion where the magnetic attractive force is weak, the recovery performance of the magnetic floc 16 group is lowered.
  • the magnet 29 rotates, the magnetic surface portion having a strong magnetic field distribution is always passed through the water surface portion in a short period corresponding to the shape of the magnet.
  • the group is magnetically attracted to adhere to the outer surface of the sludge recovery rotating body 3 3 and its magnetic field is made approximately the same as the moving speed of the sludge recovery rotating body 3 3, thereby maintaining the magnetic attraction force in the moving method. Since the group of flocs 16 can be transferred by the rotating body 30, it is possible to prevent the recovery processing performance of the magnetic flux from deteriorating.
  • the level of the water to be treated in the tank 2 2 is generated when the amount of filtration in the mesh 21 is lower than the inflow due to insufficient rotation of the mesh 21.
  • Water level In order to prevent the treated water from overflowing the wall 60 from the treated water side in the water tank 2 2, the overflow water collection tank 6 1 is installed. After passing through pipe 6 2, it enters treatment sewage tank 4 5, is pressurized by pump 4 6, and then returns to raw water tank 1 through pipe 4 7.
  • the level of the water to be treated in the water tank 22 rising and exceeding the wall 60 does not flow into the sludge tank 39 but flows into the overflow water collecting tank 61. Therefore, the high-concentration sludge recovered in the sludge tank 39 is increased in water content due to the inflow of treated water, becomes low in concentration, increases the volume of the sludge, and prevents an increase in the sludge treatment cost. .
  • the magnetic body made of magnets can be rotated inside the sludge collection rotating body 33 for sludge collection, so that the magnetic attraction force is uneven. It is possible to eliminate the non-uniformity of the recovery ability of the magnetic floc group and make it uniform, and to maintain the recovery performance and improve the purification performance. In particular, according to this configuration, it is effective in avoiding a phenomenon that is likely to occur between the rotary filter body and the sludge recovery rotary body 33.
  • FIG. 4 and 5 show another embodiment according to the present invention.
  • the same components as those in the previous embodiment are given the same numbers so that the description will not be duplicated.
  • the same applies to the other embodiments. 2 and 3 are different from those in Fig. 2 and Fig. 3.
  • Magnet rotating body (corresponding to 29 in Example 1) 6 8 Rotating body 6 6
  • the outer surface of 6 6 is enlarged to the inside of the sludge collection rotating body 3 3 3
  • the axis of the magnet rotating body 6 8 and sludge recovery rotating body 3 3 are almost aligned, and further, the magnetic flocs on the sludge recovery rotating body 3 3 using the spatula 3 8 are connected to the sludge recovery tank 3 9 It is in the point which provided the rotary blade 63 which is a mechanical discharge means on the side.
  • the rotation direction of the sludge collection rotating body 3 3 and the magnet rotating body 6 8 is the same direction, and rotates in the direction to move the magnetically attracted magnetic flocs 1 6 group to the atmosphere side. Both rotation speeds may be the same or different.
  • the rotational speed of the magnet rotating body 68 on the magnet side is slightly higher than the rotational speed of the sludge recovery rotating body 33. That is, the rotation speed is slightly increased.
  • the magnet 6 7 constituting the magnet rotating body 68 can be disposed close to the entire circumference of the sludge collecting rotating body 3 3, so that the water surface described in the embodiment 1 has the A ⁇
  • the magnet 67 is located near the water surface in contact with the outer surface of the sludge recovery rotating body 33, and the magnet 67 is further rotated. Act on. Therefore, even when the water surface fluctuates up and down, a magnetic field portion having a strong magnetic field distribution is always passed through the water surface in a short cycle. Therefore, a large number of magnetic flocks 16 on the water surface portion are magnetically attracted to collect the sludge collection rotating body 3.
  • the magnetic flocs 16 group can be moved well.
  • FIG. 6 shows another embodiment according to the present invention. These figures differ from Figs. 4 and 5 in that the cylindrical magnet rotating body 69 is enlarged to the inside of the sludge collection rotating body 33, The sludge recovery rotating body 33 and the cylindrical magnet rotating body 69 are integrally formed with a bolt ⁇ 0.
  • the cylindrical magnet rotating body 69 can be rotated by being integrated with the sludge collecting rotating body 33, so that the motor for rotating the cylindrical magnet rotating body 69 can be omitted. There exists an effect which can reduce apparatus cost.
  • Example 1-3 a rotary filter was used, but without using a rotary filter, magnetic slug, that is, sludge was sucked magnetically onto the surface of the sludge recovery rotary body 33. However, it is also possible to place it.
  • a magnetic separation and purification device that separates sludge contained in a fluid to be treated using magnetic force and purifies the fluid to be treated is disposed in a water tank, horizontally disposed, and rotated.
  • a sludge collecting rotating body that sucks, places, and conveys sludge and magnetic substances on the surface, and has a shaft center in the sludge collecting rotating body, and the rotating body and the rotating body
  • a magnetic material comprising a plurality of magnets attached on a circumference, wherein at least a side positioned on the rotary filter is disposed close to an inner peripheral surface of the sludge collecting rotary body, and is filtered by the rotary filter
  • the sludge recovery rotating body 33 and the rotating magnetic body disposed therein are not integrated with each other, but are configured separately, so that the magnetic force acting on the magnetic material is made uniform. Therefore, the suction control becomes easier.
  • this configuration If this is the case, the rotational phase between the sludge collection rotating body 33 and the magnetic body can be easily changed, which is convenient for sucking and scraping magnetic sludge.

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

 磁気分離部の水面の変動に対して、良好に磁気物質を分離し、以って高密度のスラッジを安定的に排出可能な、磁気分離浄化装置を提供する。 円筒状の濾過網を有し、磁気物質を含む被処理流体から汚泥および磁気物質を濾過する回転濾過体と、該回転濾過体に対して水平方向において近接対峙し、回転に伴なって表面上に汚泥および磁気物質を載置して搬送する円筒状の汚泥回収回転体と、該汚泥回収回転体内に軸心を有し、回転体と該回転体の円周上に取り付けた複数の磁石とからなり、少なくとも前記回転濾過体に位置する側を前記汚泥回収回転体の内周面に近接配設され、前記回転濾過体によって濾過された磁気物質を前記汚泥回収回転体の表面上に磁気吸引することによって汚泥を前記汚泥回収回転体の表面上に移送させる磁気回転体と、前記汚泥回収回転体の表面上を搬送される汚泥および磁気物質を掻き取る掻き取り装置とを含んで構成される。

Description

明 細 書
磁気分離浄化装置および磁気分離浄化方法 技術分野
本発明は、 水質浄化や固液分離等を目的とした磁気分離浄化装置に関し、 特に 膜による磁性物質の捕捉および捕捉物の磁気分離を、 磁気分離部の水面の変動に 対して、 良好に磁性物を分離し、 高密度のスラッジを安定的に排出可能な、 磁気 分離浄化装置の構造に関する。 背景技術
固液分離等を目的として、 細めの金網や高分子繊維で編んだ網や膜を通水分離 膜として使用し、汚濁粒子(汚泥という。) を有する原水に凝集剤と磁性粉を添加 して磁性フロックを生成し、 前記で磁性フロックを膜で分離し、 膜で捕集した磁 性フロックを磁場発生手段で磁気分離、 除去して高濃度スラッジを回収する磁気 分離浄化装置がある。 本構造は、 例えば特開 2 0 0 2 - 2 7 3 2 6 1号公報に記 載されている。 本膜分離净化装置はステンレス鋼の細線やポリエステル繊維等で 網を構成し、 例えばその数十ミクロンメートルの目開きの開口部を有する。 開口 部の投影面積や投影直径よりも小さい微細な汚濁物質を分離するため、 予め原水 に例えば凝集剤の硫酸バン土やポリ塩化アルミニウムやポリ硫酸鉄と磁性粉を加 えて撹紳し、 原水中の微細な固形浮遊物や藻類、 菌類、 微生物を、 凝縮剤によつ て数百ミクロンメートル程度の大きさに結合させた磁性フロヅクを形成させる。 この磁性フロックは数十ミクロンメートルの目開きを有した開口部を通過できず 高い除去率で捕捉分離され、 膜を透過した水はさらに水質が高い浄化水となる。 膜上に捕集された磁性フロックは、 洗浄水で膜から洗い流された後、 水面近傍 に停留する磁性フロックは、 前記水面近傍に静止配置された磁石の磁気力で吸引 して磁気分離され、 スラッジ移送手段でスラッジ回収槽に移送され排除される。 スラヅジは最終的には、 通常トラックで処分場や焼却場に運搬したり、 コンポ スト化する。
特許第 3 2 2 8 4 3 0号公報には、 汚水処理槽に流入した汚水中の磁性粒子を 汚水処理槽内に配置された磁気板で前記汚水中から吸着分離して前記汚水処理槽 外に排出する汚水処理装置において、 下部に汚水の流入口が設けられると共に上 部に処理水の排出口が配設された汚水処理槽と、 前記汚水処理槽の汚水中に水没 配置されると共に、 回転軸に所定の間隔をもって並列装架された複数の円盤状磁 性体と、 前記各円盤状磁性体の表面に配設され、 対向する円盤状磁性体間におい て対向する磁極が異極となるように配置された複数の永久磁石片と、 スクレーバ 付の無端状ベルトカら成り、 周回して前記永久磁石変の表面に吸着した汚泥を搔 取ると共に、 搔取った汚泥を前記円盤状磁性体の上方に移動させる搔取装置と、 前記汚水処理槽の汚水中に設けられると共に、 前記搔取装置を囲んで前記スクレ 一パで搔取った汚泥を汚泥排出口に案内する汚泥排出通路と、 前記汚泥排出用通 路に連通して形成され前記汚泥排出用通路中の処理水が溢流する溢流口と、 から 成る汚水処理装置が記載されている。
特開 2 0 0 2 - 7 9 3 5 3号公報には、 非磁性剤からなる回転ドラム内に磁石 を外周面の所要位置に配置した内筒を内蔵し、 回転ドラムに当接する絞りローラ —とスクレバ一を備えた構成からなる磁気分離装置において、 回転ドラム表面の 全部又は所要部が所要深さで磁性体化された回転ドラム型磁気分離装置が記載さ れている。 発明の開示
上記のように、 従来例では、 膜から洗い流されて水面近傍に停留する磁性フロ ックを、 静止した磁石の静止した磁場分布で磁気吸引するので、 前記水面が上下 に変動し、 前記水面での磁気力が弱い位置にある場合、 水面近傍に多数存在する 磁性フロヅクの除去性能が低下し、 被処理水中の磁性フロック密度が高まり、 膜 による浄化速度が低下し、 浄ィヒ性能が低減する問題が生じる。
一方、 スラッジをトラックで処分場や焼却場に運搬する場合やコンポスト化す る場合、 運搬時にスラッジから水が漏れないように含水率を約 8 5 %に、 またコ ンポスト時の有機物を分解する微生物の活性化を図るように含水率を 7 5 %にす るように運搬前、 コンポスト処理前にスラッジの含水率を小さくしなければなら ない。
ここで、 膜による浄化速度が低下して被処理水の水面が上昇すると、 磁性フロ ックを有する被処理水が、 濾過する水槽に隣接した磁性フロヅクを高濃度のスラ ッジとして磁気分離、 除去、 回収するスラッジ回収槽に被処理水が越流し、 高濃 度で回収されたスラヅジが流入した被処理水で大幅に薄まり、 スラヅジが低濃度 となり、 スラヅジ体積が大幅に増加し、 含水率を小さくする際に脱水コストが増 加する問題がある。
本発明の目的は、 磁気分離部の水面の変動に対して、 良好に磁気物質を含む磁 気フロックを分離し、 高密度のスラッジを安定的に排出可能な磁気分離浄化装置 を提供することにある。
また、 本発明は被処理水の水面が上昇した場合に、 高濃度で回収されたスラッ ジが被処理水の越流によって薄まってしまうことを防止することを行う。
磁性フロックを磁気分離するために使用する磁石を回転式にすることにより、 前記水面が上下に変動しても、 前記水面位置での磁気力が周期的に強くなる。 こ れによって、 水面近傍に多数存在する磁性フロックを良好に磁気吸引する。 この ことによって、 磁性フロックの除去性能が低下する問題を解決できる。
また、 被処理水を濾過する水槽と、 スラッジ回収槽の間に、 汚水を捕集する汚 水回収層を設けることにより、 被処理水の水面が上昇した場合に越流する被処理 水が汚水回収槽に流れ込みスラッジ回収槽に流入することを防止する。 この構造 によって、 スラヅジ回収槽内の高濃度のスラヅジが被処理水で薄まることを防止 できるので、 スラヅジ体積の増加を防止でき、 回収したスラヅジの含水率をさら に小さくする際に必要となる脱水コストの増加の問題を解決できる。
本発明によって、 構成される磁気分離浄化装置は、 磁性を持つ被除去物の磁性 物質を含む被処理流体、あるいは非磁性の除去物を含む流体に、磁性体と凝集剤、 または被除去物と化学反応し、 磁性物体を生じる添加物を添加することにより、 前記被除去物に磁性を持たせた磁性物質を含む被処理流体を濾過するための、 被 除去物や磁性物質が通過できない目開きを有する回転できる濾過手段と、 前記濾 過手段で濾過された磁性物質を、 磁気力で磁気吸引させる回転できる磁場発生手 段と、 磁気吸引した磁性物質が、 前記磁場発生手段の方向に空間を移動するとき に前記磁性物質および汚泥を含む磁気フロックを表面に載置して回収する回転で きる汚泥回収手段と、 前記磁場発生手段を回転する磁場回転手段と、 を備え、 前 期汚泥回収手段は前記磁場発生手段の磁場強度の大小の空間の間を移動する構造 であり、 前記汚泥回収手段上の堆積物を搔き取る搔き取り手段を設けている。 さ らに、 前記被除去物や磁性物質を回収する汚泥捕集手段を有する。
また、 本発明によって構成される磁気分離浄化装置は、 磁性を持つ被除去物の 磁性物質を含む被処理流体、 あるいは、 被磁性の被除去物を含む流体に、 磁性体 と凝集剤、 または被除去物と化学反応し、 磁性物体を生じる添加物を添加するこ とにより、 前記被除去物に磁性を持たせた磁性物質を含む被処理流体を濾過する ための、 被除去物や磁性物質が通過できない目開きを有する回転できる濾過手段 と、 前記濾過手段で濾過された磁性物質を、 磁気力で磁気吸引させる磁場発生手 段と、 磁気吸引した磁性物質が、 前記磁場発生手段の方向に空間を移動するとき に磁気フロックを表面に載置して回収する汚泥回収手段と、 を備え、 前記汚泥回 収手段は前記磁場発生手段の磁場強度の大きな空間を移動できる構造としてあり、 さらに前記汚泥回収手段上の堆積物を搔き取る接き取り手段を設け、 前記被除去 物や磁性物質を回収する汚泥捕集手段と、 前記濾過手段を有する水槽と前記汚泥 捕集手段との間に、 濾過手段に流入する前の前記非処理流体が越流し流れ込む越 流水捕集手段を有する。
前述の磁気分離浄化装置は、 前記汚泥回収手段上の前記堆積物を前記搔き取り 手段による前記堆積物移送方向に移送する堆積物移送手段を有する。
本発明によれば、 濾過網 (網 2 1 ) と汚泥回収回転体 3 3との間に形成される 磁気分離部の水面変動に対して、 良好に磁気フロック (汚泥と磁気物質を含む) を分離し、 高密度のスラッジを安定的に生成し、 排出可能な磁気分離浄化装置が 提供される。
また、 本発明によれば、 被処理水の水面が上昇した場合にあっても水槽 2 2に 越流水捕集装置 6 0を設けているので、 高濃度で回収されたスラッジが被処理水 の越流によって薄まってしまうということがない。 図面の簡単な説明
図 1は、 本発明の一実施例の磁気分離浄化システムの構成図。 図 2は、 本発明 の一実施例の磁気分離浄化装置の断面図。図 3は、図 2の A— A断面図。図 4は、 本発明の他の実施例の磁気分離浄化装置の断面図。図 5は、図 4の A— A断面図。 図 6は、 本発明の他の実施例の磁気分離浄化装置の断面図。 発明を実施するための最良の形態
被処理流体に含まれる汚泥を磁気力を利用して分離し、 被処理流体を浄化する 磁気分離浄化装置は、 水槽内に配設され、 円筒状の濾過網を有し、 磁気物質を含 む被処理流体から汚泥および磁気物質を濾過する回転濾過体と、 該回転濾過体に 対して水平方向において近接対峙し、 回転に伴なつて表面上に汚泥および磁気物 質を載置して搬送する円筒状の汚泥回収回転体と、 該汚泥回収回転体内に軸心を 有し、 回転体と該回転体の円周上に取り付けた複数の磁石とからなり、 少なくと も前記回転濾過体に位置する側を前記汚泥回収回転体の内周面に近接配設され、 前記回転濾過体によって濾過された磁気物質を前記汚泥回収回転体の表面上に磁 気吸引することによって汚泥を前記汚泥回収回転体の表面上に移送させる磁気回 転体と、 前記汚泥回収回転体の表面上を搬送される汚泥および磁気物質を搔き取 る接き取り装置とを含んで構成される。
さらに、 前記磁気回転体は、 前記汚泥回収回転体に対して偏心配設される。 さらに、前記磁気回転体は、前記汚泥回収回転体に対して同心配設してもよく、 この場合には、 駆動源によって回転駆動される回転翼を前記汚泥回収回転体の表 面に近接して上側に設けている。
さらに、 前記汚泥回収回転体と前記磁気回転体とを一体化して回転駆動源を共 通とすることができる。
さらに、 前記水槽からの被処理流体が越流し流れ込む越流水捕集装置を設ける ことができる。
また、 被処理流体に含まれる汚泥を磁気力を利用して分離し、 被処理流体を浄 化する磁気分離浄化方法は、 水槽内に配設され、 円筒状の濾過網を有する回転濾 過体によつて磁気物質を含む被処理体から汚泥および磁気物質を濾過し、 円筒状 の汚泥回収回転体内に軸心を有し、 少なくとも前記回転濾過体に位置する側を前 記汚泥回収回転体の内周面に近接配設され、 円周配設された複数の磁石とから磁 気回転体によって、 前記回転濾過体によって濾過され、 該回転濾過体との間の被 処理流体の水面上に停留する磁気物質を前記汚泥回収回転体の表面上に磁気吸引 して汚泥を前記汚泥回収回転体の表面上に移送し、 前記汚泥回収回転体の表面上 を搬送される汚泥および磁気物質を含む磁気プロックを搔き取ることを行う。 さらに、 前記磁気回転体を前記汚泥回収回転体に対して偏心配設することによ つて前記汚泥回収回転体は、 磁気強度の大小の空間を回転する。
(実施例 1 )
以下、 本発明の一実施例を図 1、 図 2および図 3により説明する。 図 2は図 1 の膜分離装置 1 4の拡大断面図、 図 3は図 2の A— A断面図である。
原水貯槽 1内に数ミリメートルの大きなゴミを取り除いた汚泥を含む被処理水 である原水 2を貯留し、ポンプ 3でこの原水 2を、配管 4に所定の量を送水する。 シーディング剤調整装置 5から四酸酸化鉄等の磁性粉と p H調整剤、 ポリ塩化ァ ルミ二ゥムゃ塩化鉄や硫酸第二鉄等の水溶液等のアルミニユウムィォンゃ鉄ィォ ンを提供する凝集剤や高分子補強剤等を、 導管 6を通じて配管 4内に加え、 撹紳 槽 7において、 モ一夕 8で回転駆動される攪拌翼 9により高速度で撹絆し、 数百 ミクロンメートルの磁性マイクロフロヅク(磁性フロヅク)を生成する。その後、 高分子剤調整装置 1 1から高分子補強剤等を、 導管 1 2を通じて配管 1 0内に加 え、 撹絆槽 1 3のモ一夕 1 4で回転駆動される攪拌翼 1 5で低速度でゆつくりと 撹絆し、 数ミリメートル程度の大きさの磁性フロヅク 1 6 (図 1には示さず) を 含む処理前の被処理水 1 7を生成する。 被処理流体は、 添加することなく、 当初 から磁性を持つ被除去物の磁性物質を含む場合もある。
このように生成した被処理水 1 7を、 導管 1 8を通じて磁気分離浄化装置 1 9 に通水する。 図 2、 図 3により膜磁気分離浄化装置 1 9の構造を説明する。 駆動 源 (図示せず) によって回転する回転ドラム 2 0の外周面にステンレス鋼の細線 や銅の細線ゃポリエステル繊維等で数ミクロンメートルから数十ミクロンメート ルの目開きを有した開口部を有する濾過フィル夕となる網 2 1を設ける。 すなわ ち、 円筒状形成の濾過網を設ける。 回転ドラム 2 0と網 2 1によって回転濾過体 が形成される。
水槽 2 2に流入した被処理水 1 7は、網 2 1を通過しドラム 2 0内に流入する。 この時、 被処理水中の汚泥および磁性物質を含む磁性フロック 1 6は網 2 1内面 に捕捉され、 網 2 1を通過し磁性フロック 1 6を分離された水は浄化水となって 開口部 2 3から排出され、 配管 2 4を通り浄化水槽 2 5に溜り、 系外に放流され る。 被処理水 1 7が網 2 1を通過する動力は、 被処理水 1 7とドラム 2 0内の浄 ィ匕水との液面位差である。
一方、 図 2において、 磁性フロヅク 1 6は反時計回りに回転する網 2 1の外面 に濾過されて付着し、 堆積物となつて液面上の大気部に露出する。
浄化水槽(水槽という。) 2 5内の浄化水をポンプ 2 6で加圧され導管 2 7から シャワー管 2 8に送り、 孔からシャワー水を、 網 2 1内表面から外面側に吹き付 ける。 網 2 1の外表面に蓄積した磁性フロヅク 1 6はシャワー水で剥がれ網 2 1 面は再生される。 洗い流された磁性フロック 1 6は、 後述する汚泥回収体との間 で水槽 2 2内の被処理水 1 7の水面上に停留する。
磁気分離の磁場発生手段として使用する回転式の磁石回転体 2 9は、 非磁性体 の材料で製作した回転体 3 0の円周上に、 例えば外面に複数条の溝に永久磁石 3 1を接着剤等で固定し、 前記回転体 3 0を、 モー夕 3 2で回転数を制御されて回 転する構造となっている。 永久磁石 3 1は、 周方向および円筒面方向において、 微小間隙がおかれて規則正しく配置され、 しっかりと回転体 3 0に固着されてい る。
一方、 磁気分離した磁性フロックを移送するために使用する非磁性体の材料で 製作した汚泥移送用の回転体 3 3は、 軸 3 4を介してモ一夕 3 5で回転数を制御 されて回転する。 端部では、 軸 3 4を水密性を有した回転支持体 3 6により水槽 2 2の壁で支持し、 他端部では、 回転体 3 3外周部を、 水密性を有した回転支持 体 3 7を介して水槽 2 2の壁で支持し、 回転支持体 3 6の内部は大気に開放され ている。汚泥回収体 3 3は回転路硬いに対して水平方向において近接配設される。 水平方向とは水平状であることを含む。
前記磁石回転体 2 9は、 前記汚泥回収回転体 3 3の大気開放面から汚泥回収回 転体 3 3の内部に挿入され、 洗浄水で洗い流された磁性フロック 1 6群が停留す る、 すなわち回転ドラム側の位置に接近するように設置される。 ここで本実施例 では、 汚泥回収回転体 3 3の軸心と磁石回転体 2 9の回転体 3 0の軸心とは、 ず れて配置されている。 すなわち、 汚泥回収体の軸心と軸心と磁石回転体 2 9の軸 心とは偏心している。 図に示していないが、 磁石回転体 2 9は所定の場所に位置 するように、 水槽 2 2の一部にボルト等で固定される。 汚泥回収回転体 3 3と回 転体 3 0の回転方向は、 同一方向で、 磁気吸引した磁性フロック 1 6群を大気側 に移動させる方向に回転する。 両者の回転数は、 同一でも、 異なっても良い。 本 実施例の場合は、 磁石側の回転体 3 0側の回転数が汚泥回収回転体 3 3の回転数 より多い。 すなわち回転速度が速い。
このように、 汚泥回収回転体 3 3に近接配置される磁石回転体 2を回転式とし ているので、 被処理水の水面が上下に変動しても水面位置での磁気力が周期的に 強くなるので、 水面近傍に多数存在する磁性フ口ヅクは良好に磁気吸引されるこ とになる。
洗い落ちて水面近傍に停留する磁性フロック 1 6群は、 磁石回転体 2 9の磁場 により磁石側に吸引されて移動し、 磁石回転体 2 9の外側を回転する汚泥回収回 転体 3 3の外表面に付着したのち、 汚泥回収回転体 3 3の回転にともなって、 大 気中に露出する。 大気中において、 磁性フロック 1 6群中の余分な水分は重力に より回転体 3 3面上を流下し、 磁性フロック 1 6群は更に濃縮される。 ここで、 磁性フロックの含水率は 9 7 %程度まで低下する。
汚泥回収回転体 3 3面上の濃縮された磁性フロック 1 6群は、 汚泥回収回転体 3 3の回転により移動する。 このとき、 汚泥回収回転体 3 3の軸心と回転体 3 0 の軸心とは、 ずれて配置されているため、 すなわち磁場強度の大小の空間を移動 するようにされているため、 小の空間で磁性フロックは強く吸引され、 磁石回転 体 2 9から次第に遠ざかると、 磁気吸引力は磁石回転体 2 9から離れるに従って 急激に低減する。 磁性フロック 1 6群は、 接き取るように水槽 2 2に一部支持さ れたへら 3 8によって、 汚泥回収回転体 3 3面上でから剥離され、 スラッジ回収 槽 3 9に重力で落下し、 スラヅジとして分離捕集される。
排出されたスラヅジは、 配管 4 0を通じて遠心分離機やベルトプレス等の脱水 装置 4 1に導入され、 運搬時にスラッジから水が漏れないように含水率を約 8 5 %以下に、 またコンポスト時の有機物を分解する微生物の活性化を図るれ含水 率を約 7 5 %に濃縮された高濃度スラヅジは、 配管 4 2の通じてスラヅジ槽地 4 3に貯められる。 スラッジはトラックで処分場や焼却場や堆肥処理場に運搬され 脱水装置で脱水された処理汚水は、 配管 4 4を通じて処理汚水槽 4 5に入り、 ポンプ 4 6で加圧された後、 配管 4 7を通つて原水槽 1に戻り、 再び被処理工程 に導入される。
運転制御装置 4 8では、 原水の
• 液面
- 濁度
· 温度
■ p
等をセンサー 4 9で計測し、 その情報を運転制御装置 4 8に信号線 5 0で送信す る。 その情報を基に、 良好な磁性フロックを生成するに最適な
• 薬剤 (P h調整剤、 磁性粉、 凝集剤) の添加量、
を、 前もって入力した最適量算出プログラムで計算し、 その制御情報を薬剤槽 5 に信号線 5 1を経由して送信し、 最適量を添加する。 また、 同時に、
· 攪拌モー夕の回転数
• 攪拌槽での停留時間
を運転制御装置 4 8内で算出し、 その制御情報をモー夕 8に信号線 5 2を経由し て送信し、 最適回転数で攪拌翼 9を回転させ、 信号線 5 3を経由して送信し、 攪 拌槽での停留時間を確定するポンプ 3の吐出量を制御する。
また、 良好な磁性フロックを生成するに最適な
• 薬剤 (高分子ポリマー) の添加量、
を、 前もって入力した最適量算出プログラムで計算し、 その制御情報を薬剤槽 1 1に信号線 5 4を経由して送信し、 最適量を添加する。 また、 同時に、
• 攪拌モー夕の回転数
を運転制御装置 4 8内で算出し、 その制御情報をモー夕 1 4に信号線 5 5を経由 して送信し、 最適回転数で攪拌翼 1 5を回転させる。
一方、 磁気分離浄化装置 1 9では、 水槽 2 2内の被処理水 1 7の液面をセンサ 一 5 6で計測し、 その情報を運転制御装置 4 8に信号線 5 7で送信する。 その情 報を基に、 被処理水の液面位置が、 磁石回転体 2 9の設置位置のほぽ中央部、 す なわち磁石回転体 2 9が発生する磁場の平均値が最大の位置に来るように、 回転 ドラム 2 0の最適な回転数および磁性フロック 1 6群の回収速度の適正速度を、 前もって入力した最適量算出プログラムで計算し、 その制御信号を回転ドラムの 回転モ一夕 (図示せず) に信号線 5 8を経由して送信し、 また、 信号線 5 9を経 由してモ一夕 3 5に送信し、 それそれ最適の回転数に制御する。
磁石回転体 2 9の磁界で、 洗浄した磁性フロック 1 6群を磁気吸引するために は、 水槽 2 2内の被処理水の水面がほぼ磁石回転体 2 9の磁界の中央部、 すなわ ち図 2における A— A断面の位蘆にあることが望ましい。 前記水面が記 A— A断 面の位置よりも低い場合には、 前記水面より低い位置でしか磁性フロック 1 6群 を、 汚泥回収回転体 3 3の表面に付着できない。 ここで、 磁石回転体 2 9が静止 している場合、 磁石回転体 2 9が発生する磁場分布は、 並べたそれぞれの永久磁 石が、 有する磁場分布が磁石面上で不均一であるため、 取り付けられた磁石群が 発生する磁場分布も不均一となり、 磁気吸引力の不均一が生じる。
したがって、 洗浄された磁性フロック 1 6群が多数停留する前記水面が、 磁気 吸引力の弱い部位にある場合には、 磁性フロック 1 6群を磁気分離して回収する 処理性能が低下する。 しかし、 磁石回転体 2 9が回転する本実施例では、 前記水 面部に、 必ず磁場分布の強い磁場部分が短い周期で通過させられるので、 前記水 面部の多数の磁性フロック 1 6群を磁気吸引して汚泥回収回転体 3 3の外表面に 付着させ、 その磁場を汚泥回収回転体 3 3の移動速度とほぼ同じにすることによ り、 移動方法に磁気吸引力を保持しながら磁性フロック 1 6群を回転体 3 0で移 送できるので、 磁性フロックの回収処理性能が低下することを防止できる。 また反対に、 前記水面が、 前記 A— A断面の位置よりも高い場合には、 前記水 面より高い位置に多数の磁性フロック 1 6群が停留するが、 磁場が弱いために汚 泥回収回転体 3 3の表面に付着しにくい。 ここで、 磁石回転体 2 9が静止してい る場合、 前記した場合と同様に、 磁石回転体 2 9が発生する磁場分布は不均一と なり、 磁気吸引力の不均一が生じる。 したがって、 水面が磁気吸引力の弱い部位 にある場合には、 磁性フロック 1 6群の回収性能が低下する。 しかし、 磁石 2 9 が回転する本実施例では、 前記水面部に、 磁石の形体に対応して、 必ず磁場分布 の強い磁場部分が短い周期で通過させられるので、 高い水面部分の磁性フロック 1 6群を磁気吸引して汚泥回収回転体 3 3の外表面に付着させ、 その磁場を汚泥 回収回転体 3 3の移動速度とほぼ同じにすることにより、 移動方法に磁気吸引力 を保持しながら磁性フロック 1 6群を回転体 3 0で移送できるので、 磁性フロヅ クの回収処理性能が低下することを P方止できる。
また、 水槽 2 2内の被処理水の液面が、 網 2 1の回転数の不足等により網 2 1 での濾過量が流入量より低下した場合等に生じる、 水槽 2 2内の被処理水の液面 が上昇した場合、 水槽 2 2内の被処理水側からスラヅジ回収槽 3 9内に被処理水 が壁 6 0を越えて越流しないように、 越流水回収槽 6 1を設け、 越流水は配管 6 2を通り、 処理汚水槽 4 5に入り、 ポンプ 4 6で加圧された後、 配管 4 7を通つ て原水槽 1に戻る。
本構造により、 水槽 2 2内の被処理水の液面が上昇し壁 6 0を越えた被処理水 1 7は、スラヅジ槽 3 9に流入せずに越流水回収槽 6 1に流入する。したがって、 スラヅジ槽 3 9に回収した高濃度のスラヅジが被処理水の流入により水の含水率 が上昇し、 低濃度になりスラヅジ体積が増加し、 スラヅジ処理コストの増加を防 止することができる。
以上の説明から明らかなように、 本実施例によれば、 磁石からなる磁性体は、 スラッジ回収用の汚泥回収回転体 3 3の内側で、 回転できるので磁石の不均一な 磁気吸引力をによる、 磁性フロック群の回収能力の不均一性を解消して均一化さ れ、 回収性能を維持し浄化性能を向上することができる効果がある。 特に、 この 構成によれば、 回転濾過体と汚泥回収回転体 3 3との間で生じやすかつたつまり 現象を回避するのに有効である。
また、 被処理水槽と隣接する高濃度スラッジ回収槽の間に、 越流水回収槽を設 けることにより、 被処理水槽の水位が上昇した場合に、 被処理水が越流水回収槽 に流入し、 越流水が高濃度スラッジ回収槽は流入しないので、 高濃度スラヅジ回 収槽に回収した高濃度スラヅジが被処理水で薄まり、 スラッジ体積が増加し、 ス ラヅジ処理コストの増加を防止することができる効果がある。
(実施例 2 )
図 4および図 5に本発明になる他の実施例を示す。 先の実施例と同一の構成に は同一の番号を付し、 説明が重複しないようにする。 他の実施例についても同じ である。 これらの図が図 2および図 3と異なる点は、 磁石回転体 (実施例 1の 2 9に相当) 6 8の回転体 6 6の外面を汚泥回収回転体 3 3の内側いっぱいに大き くし、 磁石回転体 6 8と汚泥回収回転体 3 3の軸心をほぼ一致させ、 さらに、 へ ら 3 8による汚泥回収回転体 3 3上の磁性フロック 1 6群をスラヅジ回収槽 3 9 側に機械的な排出手段である回転翼 6 3を設けた点にある。 フッ化化合物等の付 着しにくい材料で製作した回転翼 6 3はスラッジ排出翼 6 4を取り付けた軸 6 5 を駆動源、 すなわちモー夕 (図示せず) で回転駆動する。 汚泥回収回転体 3 3と 磁石回転体 6 8の回転方向は、 同一方向で、 磁気吸引した磁性フロック 1 6群を 大気側に移動させる方向に回転する。 両者の回転数は、 同一でも、 異なっても良 い。 本実施例の場合は、 磁石側の磁石回転体 6 8側の回転数が汚泥回収回転体 3 3の回転数より若干多い。 すなわち回転速度が若干速くなるようにしている。 本実施例によれば、 磁石回転体 6 8を構成する磁石 6 7を汚泥回収回転体 3 3 の内側に全周に渡り近づけて配置できるので、 実施例 1で述べた水面が、 前記 A —A断面の位置よりも高いもしくは低い場合においても、 磁石 6 7は汚泥回収回 転体 3 3の外面に接する水面の近くに位置し、 さらに磁石 6 7が回転するので、 磁気吸引力が強く均一に作用する。したがって、前記水面の上下変動に対しても、 水面に必ず磁場分布の強い磁場部分が短い周期で通過させられるので、 水面部分 の多数の磁性フロック 1 6群を磁気吸引して汚泥回収回転体 3 3の外表面に付着 させ、 その磁場を汚泥回収回転体 3 3の移動速度とほぼ同じ、 もしくは磁気力を 移動方向に先に進めることにより磁性フロック 1 6群を良好に移動させることが できる。
また、 搔き取り部のへら 3 8先端の部位と磁石 6 7は近い位置にあるので、 へ ら 3 8でかきとられた汚泥回収回転体 3 3上の磁性フロック 1 6には、 大きな磁 気吸引力が作用しこのままでは磁性フロック 1 6群が自重でへら 3 8上を移動で きないので、 スラヅジ排出翼 6 4でスラヅジ回収槽 3 9側に移動させ磁石 3 1か ら離し、 磁気吸引力を小さくして自重で移動できる効果が生じる。
したがって、 本実施例では、 水槽 2 2内での被処理水の水面が変動する場合に おいても、磁性フロックを良好に除去し浄化性能の低下を防止できる効果がある。 (実施例 3 )
図 6に本発明になる他の実施例を示す。 これらの図が図 4および図 5と異なる 点は、円筒状の磁石回転体 6 9を汚泥回収回転体 3 3の内側いっぱいに大きくし、 前記汚泥回収回転体 3 3と円筒状の磁石回転体 6 9をボルト Ί 0で一体ィ匕して構 成したことにある。
本実施例によれば、 円筒状の磁石回転体 6 9を汚泥回収回転体 3 3と一体化す ることで回転できるので、 円筒状の磁石回転体 6 9回転用のモー夕を省略でき、 さらに装置コストを低減することができる効果がある。
また、 磁場発生手段として永久磁石を使用した場合を示したが、 常電導電磁石 や冷凍機等で冷却した超電導電磁石を使用しても、 同様な効果が生じる。
なお、以上の実施例では網 2 1をドラム状に形成した場合について説明したが、 網 2 1をディスク状に構成して、 このディスクを縦方向に複数枚配置して装置を 構成した場合でも同様な効果が生じる。
(実施例 4 )
先の実施例 1 - 3にあっては回転濾過体を使用していたが、 回転濾過体を使用 することなく、 汚泥回収回転体 3 3の表面上に磁気スラッグ、 すなわち汚泥を磁 気力に吸引し、 載置するようにすることも可能である。
すなわち、 この実施例は、 被処理流体に含まれる汚泥を磁気力を利用して分離 し、 被処理流体を浄化する磁気分離浄化装置を、 水槽内に配設され、 水平方向に 配置され、 回転に伴なつて表面上に汚泥および磁気物質を吸引、 載置して搬送す る円筒状の汚泥回収回転体と、 該汚泥回収回転体内に軸心を有し、 回転体と該回 転体の円周上に取り付けた複数の磁石とからなり、 少なくとも前記回転濾過体に 位置する側を前記汚泥回収回転体の内周面に近接配設され、 前記回転濾過体によ つて濾過された磁気物質を前記汚泥回収回転体の表面上に磁気吸引することによ つて汚泥を前記汚泥回収回転体の表面上に移送させる磁気回転体と、 前記汚泥回 収回転体の表面上を搬送される汚泥および磁気物質を搔き取る搔き取り装置とで 構成する。
この構成にあっても、 汚泥回収回転体 3 3とこの中に配設され、 回転する磁性 体とは一体ではなく、 別個として構成されているために磁気物質に作用する磁気 力は均一化されるから吸着制御がよりやり易いものとなる。 更に、 この構成によ れば、 汚泥回収回転体 3 3と磁性体との回転位相を容易に変えることができ、 磁 性スラッジの吸引および搔き取りに便利である。

Claims

請 求 の 範 囲
1 . 被処理流体に含まれる汚泥を磁気力を利用して分離し、 被処理流体を浄化 する磁気分離浄化装置において、
水槽内に配設され、 円筒状の濾過網を有し、 磁気物質を含む被処理流体から汚 泥および磁気物質を濾過する回転濾過体と、
該回転濾過体に対して水平方向において近接対峙し、 回転に伴なつて表面上に 汚泥および磁気物質を載置して搬送する円筒状の汚泥回収回転体と、
該汚泥回収回転体内に軸心を有し、 回転体と該回転体の円周上に取り付けた複 数の磁石とからなり、 少なくとも前記回転濾過体に位置する側を前記汚泥回収回 転体の内周面に近接配設され、 前記回転濾過体によって濾過された磁気物質を前 記汚泥回収回転体の表面上に磁気吸引することによって汚泥を前記汚泥回収回転 体の表面上に移送させる磁気回転体と、
前記汚泥回収回転体の表面上を搬送される汚泥および磁気物質を接き取る搔き 取り装置と
を含んで構成されることを特徴とする磁気分離浄ィヒ装置。
2 . 請求項 1において、 前記磁気回転体は、 前記汚泥回収回転体に対して偏心 配設されることを特徴とする磁気分離浄化装置。
3 . 請求項 1において、 前記磁気回転体は、 前記汚泥回収回転体に対して同心 配設され、 駆動源によって回転駆動される回転翼を前記汚泥回収回転体の表面に 近接して上側に設けたことを特徴とする磁気分離浄化装置。
4 . 請求項 3において、 前記汚泥回収回転体と前記磁気回転体とを一体化して 回転駆動源を共通としたことを特徴とする磁気分離浄化装置。
5 . 請求項 1から 4のいずれかにおいて、 前記水槽からの被処理流体が越流し 流れ込む越流水捕集装置を設けたことを特徴とする磁気分離浄化装置。
6 . 被処理流体に含まれる汚泥を磁気力を利用して分離し、 被処理流体を浄化 する磁気分離浄ィヒ装置において、 ' 水槽内に配設され、 水平方向に配置され、 回転に伴なつて表面上に汚泥および 磁気物質を吸引、 載置して搬送する円筒状の汚泥回収回転体と、
該汚泥回収回転体内に軸心を有し、 回転体と該回転体の円周上に取り付けた複 数の磁石とからなり、 少なくとも前記回転濾過体に位置する側を前記汚泥回収回 転体の内周面に近接配設され、 前記回転濾過体によって濾過された磁気物質を前 記汚泥回収回 体の表面上に磁気吸引することによって汚泥を前記汚泥回収回転 体の表面上に移送させる磁気回転体と、
前記汚泥回収回転体の表面上を搬送される汚泥および磁気物質を搔き取る搔き 取り装置と
を含んで構成されることを特徴とする磁気分離浄化装置。
7 . 被処理流体に含まれる汚泥を磁気力を利用して分離し、 被処理流体を浄ィ匕 する磁気分離净化方法において、
水槽内に配設され、 円筒状の濾過網を有する回転濾過体によつて磁気物質を含 む被処理体から汚泥および磁気物質を濾過し、
円筒状の汚泥回収回転体内に軸心を有し、 少なくとも前記回転濾過体に位置す る側を前記汚泥回収回転体の内周面に近接配設され、 円周配設された複数の磁石 とから磁気回転体によって、 前記回転濾過体によって濾過され、 該回転濾過体と の間の被処理流体の水面上に停留する磁気物質を前記汚泥回収回転体の表面上に 磁気吸引して汚泥を前記汚泥回収回転体の表面上に移送し、
前記汚泥回収回転体の表面上を搬送される汚泥および磁気物質を含む磁気プロ ックを搔き取ること を特徴とする磁気分離浄化方法。
8 . 請求項 7において、 前記磁気回転体を前記汚泥回収回転体に対して偏心配 設することによって前記汚泥回収回転体は、 磁気強度の大小の空間を回転するこ とを特徴とする磁気分離浄化方法。
PCT/JP2005/008581 2005-04-28 2005-04-28 磁気分離浄化装置および磁気分離浄化方法 WO2006117880A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0512666-5A BRPI0512666A (pt) 2005-04-28 2005-04-28 aparelho e método de purificação por separação magnética
CNB2005800138133A CN100553785C (zh) 2005-04-28 2005-04-28 磁力分离净化装置及磁力分离净化方法
US11/630,128 US7785475B2 (en) 2005-04-28 2005-04-28 Magnetic separation purifying apparatus and magnetic separation purifying method
EP05738758A EP1875967A4 (en) 2005-04-28 2005-04-28 MAGNETIC SEPARATION CLEANING DEVICE AND MAGNETIC SEPARATION PURIFICATION METHOD
AU2005331412A AU2005331412B2 (en) 2005-04-28 2005-04-28 Magnetic separation cleaning apparatus and magnetic separation cleaning method
CA2567693A CA2567693C (en) 2005-04-28 2005-04-28 Magnetic separation purifying apparatus and magnetic separation purifying method
PCT/JP2005/008581 WO2006117880A1 (ja) 2005-04-28 2005-04-28 磁気分離浄化装置および磁気分離浄化方法
NO20065846A NO20065846L (no) 2005-04-28 2006-12-18 Magnetisk separasjonsrengjoringsapparat g magnetisk separasjonsrengjoringsfremgangsmate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008581 WO2006117880A1 (ja) 2005-04-28 2005-04-28 磁気分離浄化装置および磁気分離浄化方法

Publications (1)

Publication Number Publication Date
WO2006117880A1 true WO2006117880A1 (ja) 2006-11-09

Family

ID=37307687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008581 WO2006117880A1 (ja) 2005-04-28 2005-04-28 磁気分離浄化装置および磁気分離浄化方法

Country Status (6)

Country Link
US (1) US7785475B2 (ja)
EP (1) EP1875967A4 (ja)
CN (1) CN100553785C (ja)
BR (1) BRPI0512666A (ja)
CA (1) CA2567693C (ja)
WO (1) WO2006117880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448015A (en) * 2007-03-27 2008-10-01 Hitachi Ltd Magnetic separation filtering and cleaning apparatus
WO2023210211A1 (ja) * 2022-04-28 2023-11-02 株式会社ジェイピーシー 液体の濾過再生装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006283345B2 (en) * 2005-08-24 2010-12-02 Romar International Limited Removal of magnetic particles from a fluid
CN101377456B (zh) * 2007-08-27 2010-12-08 财团法人工业技术研究院 磁性转换分离装置
US8292084B2 (en) 2009-10-28 2012-10-23 Magnetation, Inc. Magnetic separator
WO2012093389A1 (en) * 2010-12-08 2012-07-12 P.M.S.R. Technologies Ltd. Apparatus and method for magnetic separation
CN102179294A (zh) * 2011-01-14 2011-09-14 李泽 一种流体除铁方法及装置
US8708152B2 (en) 2011-04-20 2014-04-29 Magnetation, Inc. Iron ore separation device
CN102329039A (zh) * 2011-08-25 2012-01-25 杭州银江环保科技有限公司 泥水分离系统
JP5730421B2 (ja) * 2014-02-18 2015-06-10 株式会社日立製作所 磁気分離装置及び廃水処理装置
US9694303B2 (en) 2014-04-25 2017-07-04 Saudi Arabian Oil Company Method for killing and removing microorganisms and scale using separation unit equipped with rotating magnets
CN106241927A (zh) * 2015-09-09 2016-12-21 无锡亮慧环保机械有限公司 带气泡辅助分离的污泥水处理装置
CN105195311B (zh) * 2015-10-10 2017-05-03 魏振平 多辊磁选机
CN106007158A (zh) * 2016-07-15 2016-10-12 无锡市昂益达机械有限公司 一种磁力分离的污水处理系统
CN106186217A (zh) * 2016-08-24 2016-12-07 安徽清普环保装备有限公司 一种转筒式磁微滤设备
US10675638B2 (en) * 2016-09-21 2020-06-09 Magnetic Systems International Non contact magnetic separator system
CN106269244A (zh) * 2016-10-13 2017-01-04 无锡市金武助剂厂有限公司 一种高纯度的清洗剂过滤器
CN107758813A (zh) * 2017-09-01 2018-03-06 北京航天斯达科技有限公司 一种用于污水处理的刮渣机构
CN108483594A (zh) * 2018-06-08 2018-09-04 安徽航天环境工程有限公司 磁力净水装置
JP6488050B1 (ja) * 2018-06-12 2019-03-20 株式会社ノリタケカンパニーリミテド マグネットセパレータ
CN109574162B (zh) * 2019-01-09 2021-02-19 吉林省农业科学院 一种磁絮凝污水处理用磁粉回收利用装置
CN109851146A (zh) * 2019-04-04 2019-06-07 广东省资源综合利用研究所 一种磁分离-过滤一体机
CN110117051B (zh) * 2019-06-04 2021-09-07 中节能兆盛环保有限公司 一种用于生物磁沉淀技术的磁粉高速分离装置
CN111333159A (zh) * 2020-04-20 2020-06-26 北京沃尔德斯水务科技有限公司 磁介质沉淀分离机
CN111715403A (zh) * 2020-05-05 2020-09-29 嘉兴学院 一种水质结垢自清理装置
CN113281219B (zh) * 2021-06-10 2022-06-28 深圳市华中航技术检测有限公司 一种用于实验室淤泥密度指数实验室测量装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091176A (ja) * 1995-06-26 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd 活性汚泥の磁気分離装置
JP2000246137A (ja) * 1999-03-04 2000-09-12 Toyota Motor Corp 金属粉除去装置
JP2002273261A (ja) * 2001-03-19 2002-09-24 Hitachi Ltd 膜磁気分離装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2466839A (en) * 1944-06-17 1949-04-12 Barnes Drill Co Magnetic separator
NL91703C (ja) * 1952-06-28
US2698685A (en) * 1953-11-30 1955-01-04 Jeffrey Mfg Co Magnetic separator
DE1273452B (de) * 1965-05-17 1968-07-25 Allis Chalmers Mfg Co Wechselstrom-Magnetscheider
DE2551030C3 (de) * 1974-11-15 1979-11-15 Miura Engineering International Co. Ltd., Osaka (Japan) Abwasserreinigungsvorrichtung mit einer um eine liegende Welle rotierenden Vorrichtung mit Magneten
JPS63103936A (ja) 1986-10-21 1988-05-09 Nissan Motor Co Ltd 車両用故障診断装置
JPH052271Y2 (ja) * 1986-12-25 1993-01-20
FR2657544B1 (fr) * 1990-01-29 1992-04-17 Andrin G Separateur magnetique de particules et morceaux en metal non-ferreux.
JP3228430B2 (ja) 1992-04-30 2001-11-12 日立プラント建設株式会社 汚水処理装置
US5494172A (en) * 1994-05-12 1996-02-27 Miller Compressing Company Magnetic pulley assembly
US5685993A (en) * 1995-06-30 1997-11-11 Pitts-Mont Environmental Reclamation Corporation Apparatus and method for ferrite formation and removal of heavy metal ions by ferrite co-precipitation from aqueous solutions
JP2756097B2 (ja) 1995-07-14 1998-05-25 株式会社ブンリ 濾過装置
EP0898496B1 (de) * 1996-05-17 2002-05-02 Hubertus Exner Vorrichtung und verfahren zur teilchenseparation mit einem rotierenden magnetsystem
DE19649154C1 (de) 1996-11-27 1998-03-26 Meier Staude Robert Dipl Ing Verfahren und Vorrichtung zur Steigerung der Trennschärfe von Wirbelstromscheidern
JP4289517B2 (ja) 1998-09-04 2009-07-01 住友重機械ファインテック株式会社 回転ドラム型磁気分離装置
JP4366513B2 (ja) * 1999-11-11 2009-11-18 Dowaエコシステム株式会社 金属複合廃材からの有価金属の回収方法および装置
JP2002066375A (ja) 2000-08-31 2002-03-05 Hitachi Ltd 被除去物の磁気分離装置
DE10057535C1 (de) * 2000-11-20 2002-08-22 Steinert Gmbh Elektromagnetbau Vorrichtung zum Abtrennen von nichtmagnetisierbaren Metallen und Fe-Anteilen aus einer Feststoffmischung
NL1025050C1 (nl) * 2003-03-17 2004-09-21 Univ Delft Tech Werkwijze voor het winnen van non-ferrometaal-houdende deeltjes uit een deeltjesstroom.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091176A (ja) * 1995-06-26 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd 活性汚泥の磁気分離装置
JP2000246137A (ja) * 1999-03-04 2000-09-12 Toyota Motor Corp 金属粉除去装置
JP2002273261A (ja) * 2001-03-19 2002-09-24 Hitachi Ltd 膜磁気分離装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448015A (en) * 2007-03-27 2008-10-01 Hitachi Ltd Magnetic separation filtering and cleaning apparatus
GB2448015B (en) * 2007-03-27 2010-03-31 Hitachi Ltd Magnetic separation filtering and cleaning apparatus
US8002976B2 (en) 2007-03-27 2011-08-23 Hitachi, Ltd. Magnetic separation filtering and cleaning apparatus
WO2023210211A1 (ja) * 2022-04-28 2023-11-02 株式会社ジェイピーシー 液体の濾過再生装置

Also Published As

Publication number Publication date
US20080029457A1 (en) 2008-02-07
EP1875967A4 (en) 2010-04-14
CN1950153A (zh) 2007-04-18
BRPI0512666A (pt) 2008-04-01
CA2567693C (en) 2010-12-07
EP1875967A1 (en) 2008-01-09
US7785475B2 (en) 2010-08-31
CN100553785C (zh) 2009-10-28
CA2567693A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
WO2006117880A1 (ja) 磁気分離浄化装置および磁気分離浄化方法
JP4648917B2 (ja) 磁気分離ろ過浄化装置
JP4317668B2 (ja) 膜磁気分離装置
JP5115219B2 (ja) 磁気分離装置
US20070039894A1 (en) Water treatment using magnetic and other field separation technologies
US20080073284A1 (en) Device and method for utilizing magnetic seeding and separation in a water treatment system
US20160221845A1 (en) Magnetic ballast clarification designs and applications
JP5115220B2 (ja) 磁気分離装置
WO2006112007A1 (ja) 水濾過浄化装置及びその方法
JP2011016104A (ja) 磁気分離装置
KR100852312B1 (ko) 자기 분리 정화 장치 및 자기 분리 정화 방법
JP4821085B2 (ja) 磁気分離浄化装置および磁気分離浄化方法
JP2005111424A (ja) 流体内からの被除去物除去処理方法及び装置と汚泥分離回収装置
JP2009285653A (ja) 濾過浄化装置
AU2005331412B2 (en) Magnetic separation cleaning apparatus and magnetic separation cleaning method
JP4655466B2 (ja) 濾過浄化装置
CN108706809A (zh) 一种污水膜分离处理设备
JP2005230666A (ja) 膜磁気分離装置
JP2003112180A (ja) 水浄化装置
JP2005111391A (ja) 洗浄型濾過浄化装置
JP2012148226A (ja) 磁気分離装置
CN118221312A (zh) 一种油田采出水的处理设备及其方法
KR20070120144A (ko) 물 여과 정화 장치 및 그 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580013813.3

Country of ref document: CN

Ref document number: 1020067022622

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2567693

Country of ref document: CA

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005738758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3796/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005331412

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11630128

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2005331412

Country of ref document: AU

Date of ref document: 20050428

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005331412

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005738758

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630128

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0512666

Country of ref document: BR