WO2006115257A1 - 産業用ロボットの旋回部構造 - Google Patents

産業用ロボットの旋回部構造 Download PDF

Info

Publication number
WO2006115257A1
WO2006115257A1 PCT/JP2006/308645 JP2006308645W WO2006115257A1 WO 2006115257 A1 WO2006115257 A1 WO 2006115257A1 JP 2006308645 W JP2006308645 W JP 2006308645W WO 2006115257 A1 WO2006115257 A1 WO 2006115257A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
cylindrical
industrial robot
idle
Prior art date
Application number
PCT/JP2006/308645
Other languages
English (en)
French (fr)
Inventor
Harumi Kobayashi
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Priority to DE602006011738T priority Critical patent/DE602006011738D1/de
Priority to EP06745673A priority patent/EP1889694B1/en
Priority to CN2006800140621A priority patent/CN101166607B/zh
Priority to JP2007514742A priority patent/JP4913045B2/ja
Priority to US11/911,740 priority patent/US7942779B2/en
Publication of WO2006115257A1 publication Critical patent/WO2006115257A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1954Eccentric driving shaft and axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements
    • Y10T74/20335Wrist

Definitions

  • the present invention relates to a turning part structure for an industrial robot using an eccentric oscillating speed reducer.
  • This is arranged between a first member that is a base of an industrial robot and a second member that is a turning portion, and between the first member and the second member, and two or more crank pins
  • An eccentric oscillating speed reducer that decelerates the rotation imparted to the crank pin and transmits it to the second member to rotate the second member at a low speed relative to the first member, and all of the crank pins
  • the first outer gear that is coaxial with the center axis of the eccentric oscillating speed reducer, passes through the eccentric oscillating speed reducer, and mates with all input gears at one end.
  • a rotating cylindrical body having a gear and a second external gear at the other end, and an idle that is rotatably supported by the second member via a pair of bearings and meshes with the second external gear. And an output gear that meshes with the idle gear on the output shaft.
  • the idle gear is supported by a pair of bearings in order to rotatably support the idle gear on the second member.
  • the pair of bearings must be assembled to the second member, and the input gear
  • a rotating cylindrical body is provided with an eccentric oscillation type in which the first external gear meshing with the input gear is provided at one end and the second external gear meshing with the idle gear is provided at the other end.
  • An object of the present invention is to provide an industrial robot swivel structure that can be easily assembled at low cost.
  • Such an object is to provide a first member and a second member of an industrial robot, between the first member and the second member, and having two or more crank pins, An eccentric oscillating speed reducer that decelerates the rotation imparted to the crank pin and transmits it to the second member to rotate the second member at a low speed relative to the first member, and the input side end of all crank pins
  • An idle gear that is rotatably supported away from the input gear in the axial direction and an output gear that meshes with the cylindrical gear and an output gear that meshes with the idle gear are provided on the output shaft.
  • Positioned radially from the center axis of the dynamic reducer Distance away by providing a driving motor which is placed, can be achieved.
  • the idle gear that transmits the rotation of the output shaft (output gear) of the drive motor to the cylindrical gear is rotatably supported at the input side end of one of the crank pins. Since the idle gear is simply supported on a specific crank pin, the idle gear and the input gear are axially separated from each other on the input side end of a specific crank pin. Therefore, the axial length of the cylindrical gear that meshes with both the idle gear and the input gear is sufficient to be slightly longer than the distance between the two gears on the separated side. It is easy and the production cost can be reduced.
  • a small-diameter gear portion axially separated from the idle gear, and a toothed circle of the cylindrical gear.
  • the reduction ratio between the output gear and the cylindrical gear can be increased while maintaining the inner diameter of the cylindrical gear at the current value.
  • cylindrical gear is provided with two gear portions, a small diameter gear portion and a large diameter gear portion separated in the axial direction,
  • the output gear can be compared with the case where the cylindrical gear has a constant diameter at any axial position.
  • the reduction ratio between the gear and the cylindrical gear can be increased.
  • the eccentric oscillating speed reducer the second member, The engagement between the output gear and the idle gear without driving the positioning pin between them can be set to the specified state.
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • reference numeral 11 denotes a main body (base) of an industrial robot 10 as a first member, and the main body 11 has a cylindrical shape with a central axis extending vertically, and the inside A space 12 for storing wiring and piping is formed.
  • a swiveling body 13 as a second member that rotates about an axis that is coaxial with the central axis of the main body 11 is installed above the main body 11, and a space 14 that extends vertically is formed in the swiveling body 13.
  • a through hole 15 located on the rotation shaft is formed at one end (lower end) thereof.
  • Reference numeral 17 denotes an eccentric oscillating speed reducer disposed between the main body 11 and the swivel body 13, and the speed reducer 17 is fixed to the upper end of the main body 11 by a plurality of bolts 18.
  • a substantially cylindrical case 19 that is coaxial with the portion 11 is provided.
  • the inner periphery of the case 19 is provided with a large number of cylindrical pin teeth 20 embedded in the center in the axial direction, and the pin teeth 20 extend in the axial direction. In addition, they are arranged equidistantly in the circumferential direction.
  • Reference numeral 21 denotes a plurality of (two) pinions that are stored in an axially arranged manner in the case 19, and each of the pinions 21 has a central hole 22 formed at the center thereof. Te! In addition, a large number of external teeth 23 having trochoidal tooth form force are formed on the outer periphery of the pions 21. These external teeth 23 are slightly smaller than the pin teeth 20 of the case 19, and here, the number of teeth is only one. The pinion 21 and the case 19 are inscribed, and the outer teeth 23 and the pin teeth 20 are meshed with each other. The deepest part) is 180 degrees out of phase. A plurality of (three) through-holes 25 penetrating in the axial direction are formed at equal distances in the circumferential direction in an intermediate portion between the outer peripheries of these pions 21.
  • [0013] 26 is a carrier inserted into the case 19, and this carrier 26 includes one end plate portion 27 disposed on one side (lower side) of the pinion 21 in the axial direction and the pinion 21
  • the other end plate portion 28 is disposed on the other side (upper side) in the axial direction and is connected to the revolving body 13 by a plurality of bolts 30.
  • the upper end is integrally formed with the other end plate portion 28, and the lower end is unified.
  • the side end plate portion 27 includes a plurality of axial portions 29 (the same number as the through holes 25) that are detachably connected to the side end plate portions 27 by a plurality of bolts 31. Each is loosely fitted inside.
  • center holes 32 and 33 having substantially the same diameter as the center hole 22 are respectively formed on the center axes of the carrier 26, more specifically, one side and the other end plate portions 27 and 28.
  • 36 is a pair of bearings interposed between the outer periphery of the carrier 26, specifically, one side and the other side end plate portions 27, 28 and the inner periphery of both ends in the axial direction of the case 19, and these bearings
  • the carrier 26 is supported by 36 so as to be rotatable relative to the case 19.
  • seal members 37 are interposed between the one-side and other-side end plate portions 27 and 28 and both end portions in the axial direction of the case 19.
  • crankpin holes 39 is a plurality (three) of crankpin holes extending in the axial direction formed in each pinion 21, and these crankpin holes 39 are equidistant from each other in the circumferential direction, Alternatingly arranged.
  • Reference numeral 40 denotes two or more (same as the number of crankpin holes 39) crankpins extending in the axial direction and arranged at equal distances in the circumferential direction.
  • Each crankpin 40 and the carrier 26, more specifically, one end plate on the other side A pair of bearings 41 spaced apart in the axial direction are interposed between the portions 27 and 28, whereby the crank pin 40 is rotatably supported by the carrier 26 via the pair of bearings 41.
  • each crank pin 40 has a central axial force of the crank pin 40 at an equal distance at the center in the axial direction.
  • Eccentric and has the same number (two) of eccentric portions 43 as the pions 21. These eccentric portions 43 are slightly separated in the axial direction and are out of phase with each other by 180 degrees.
  • the eccentric portion 43 of the crank pin 40 is inserted into the crank pin hole 39 of the pinion 21 via the needle roller bearing 44, respectively. As a result, the pinion 21 and the crank pin 40 are relatively rotated. Allowed.
  • [0017] 46 is a cylindrical body coaxial with the case 19 inserted in the carrier 26, and this cylindrical body 46 has one axial end (lower end) sealed in the central hole 32 of the side end plate 27. While being inserted in a state, it is fixed to the side end plate portion 27 by a plurality of bolts 47.
  • the cylindrical body 46 is loosely fitted in the through hole 22 and the center hole 33 at the axial center portion, and the other axial end portion (upper end portion) is loosely inserted in the through hole 15 of the swivel body 13. It is fitted.
  • a seal member 48 is interposed between the other axial end of the cylindrical body 46 and the through hole 15 of the swivel body 13.
  • the space 12 in the main body 11 and the space 14 in the swiveling body 13 communicate with each other through the hollow hole 49 in the cylindrical body 46 provided on the central axis of the speed reducer 17.
  • 49 is used to pass cables 50, such as wiring and piping.
  • the case 19, the pinion 21, the carrier 26, the crankpin 40, and the cylindrical body 46 as a whole decelerate the rotation applied to the crankpin 40 to reduce the rotation of the carrier 26 or the case 19, where the carrier 26 force is also applied to the rotating body 13.
  • the speed reducer 17 is configured to rotate the revolving body 13 with respect to the main body 11 at a low speed. Lubricating oil and the like inside the speed reducer 17 is formed by the cylindrical body 46 through the hollow hole 49 and the space 12. , 14 will be cut off.
  • Reference numeral 53 denotes a motor support provided at one end (lower end) of the revolving structure 13.
  • a drive motor 54 is positioned on the motor support 53 by soldering engagement with bolts (not shown). It is fixed.
  • the drive motor 54 (output shaft 55) is disposed at a predetermined distance in the radial direction of the central axial force of the speed reducer 17 for reasons such as avoiding interference with the cables 50. Is larger than the center force of the hollow hole 49 and the distance to the rotation axis of the crank pin 40.
  • the crank pin 40 is positioned between the output shaft 55 of the drive motor 54 and the cylindrical body 46.
  • An input gear 56 as an output gear is fixed to the output shaft 55 of the drive motor 54 by a key 57.
  • Reference numeral 60 denotes a plurality of external gears (same number as the crankpins 40) that are attached to the input side end portions of all the crankpins 40, in this case, the other end portion (upper end portion) in the axial direction protruding from the carrier 26 by spline coupling.
  • These input gears 60 have the same diameter and are arranged at the vertices of an equilateral triangle, respectively.
  • 61 is a single cylindrical gear fitted with a slight gap outside the other side of the cylindrical body 46.
  • the cylindrical gear 61 is coaxial with the central axis of the speed reducer 17, and
  • the pitch circle also has the same diameter at the axial position.
  • One end portion (lower end portion) of the cylindrical gear 61 in the axial direction is rotatably supported by the other end plate portion 28 of the speed reducer 17 via the bearing 62, while the other end portion in the axial direction thereof is supported.
  • the (upper end) is rotatably supported at one end of the swivel body 13 via a bearing 63.
  • the external teeth 64 formed on the outer side of the axial center portion of the cylindrical gear 61 are in mesh with all the input gears 60. As a result, the rotational driving force is applied from the cylindrical gear 61 to the input gear 60. Are equally distributed directly.
  • crank pins 40 the crank pins 40 arranged at positions separated from the drive motor 54 end at positions where the other side ends are slightly separated from the input gear 60 to the other side.
  • one particular crank pin 40a disposed at a position close to the drive motor 54 has an extended portion 40b extending from the other side end to the other side at its input side end.
  • the extension 40b of the crank pin 40a is rotatably supported by a receiver 67 formed on the motor support 53 through a bearing 68.
  • the drive motor 54 is attached to the motor support 53, which is a part of the swing body 13, and the input side end of one specific crank pin 40a is a receiver 67 that is a part of the swing body 13.
  • the end of the extension 40b of the crank pin 40a can be supported, and when the drive motor 54 is installed, it is positioned between the speed reducer 17 (carrier 26) and the swivel body 13.
  • the distance between the shafts of the input gear 56 and the idle gear 70 described later can be set as a set value without driving the deciding pin.
  • an idle gear 70 having the same tooth shape and the same number of teeth as the input gear 60 is rotatably supported on the extension 40b of the crank pin 40a. Is supported at the input side end of the crank pin 40a so as to be able to rotate slightly away from the input gear 60 in the axial direction, here in the other axial direction. In this way, if the input gear 60 and the idle gear 70 have the same tooth profile and the same number of teeth, the machining tools for forming the tooth profile can be shared. Manufacturing costs can be reduced.
  • the idle gear 70 that transmits the rotation of the output shaft 55 (input gear 56) of the drive motor 54 to the cylindrical gear 61 is connected to one particular crank pin 40a of the crank pins 40. Since it is supported rotatably at the input side end, the idle gear 70 is simply attached to the bearing as in the conventional technology, or the bearing is not attached to the second member. Since the idle gear 70 and the input gear 60 are axially spaced apart from each other at the input side end of the specific one crank pin 40a, the idle gear 70, the input gear It is sufficient that the axial length of the cylindrical gear 61 that meshes with both of the 60 is slightly longer than the distance between the two gears 70 and 60, and the cylindrical gear 61 can be downsized. As a result, assembly work It becomes easy, it can be a low cost production costs.
  • the idle gear 70 meshes with both the input gear 56 and the external teeth 64 of the cylindrical gear 61.
  • the rotational torque from the drive motor 54 is the input gear 56, idle gear.
  • the drive motor 54 is disposed at a predetermined distance in the radial direction from the center of the hollow hole 49, and the input gear 56 is rotatably supported by one specific crank pin 40a. If only the gear 70 is engaged, the drive motor 54 can be arranged in a wide range around the idle gear 70.
  • the input gear 56, the input gear 60, the cylindrical gear 61, and the idle gear 70 described above as a whole are provided with the front stage reducer 72 that reduces the rotation of the drive motor 54 and outputs it to all the crankpins 40 of the reducer 17. Constitute.
  • the drive motor 54 When the swivel body 13 is swung relative to the main body 11, the drive motor 54 is operated to rotate the output shaft 55 and the input gear 56 integrally. At this time, since both the input gear 56 and the external teeth 64 of the cylindrical gear 61 are in mesh with the idle gear 70 rotatably supported by one specific crank pin 40a, the drive motor 54 The rotational torque is transmitted to the cylindrical gear 61 through the input gear 56 and the idle gear 70 and then the cylindrical gear. The gear 61 is transmitted to all the input gears 60 while being equally distributed, and all the crank pins 40 are rotated in the same direction at the same rotational speed.
  • FIG. 5 is a diagram showing Example 2 of the present invention.
  • the idle gear 76 is provided with a small-diameter gear portion 77 that is separated in the axial direction and a large-diameter gear portion 78 that is larger in diameter than the small-diameter gear portion 77, and the small-diameter gear portion 77 is connected to the input gear 60.
  • the diameter of the large-diameter gear portion 78 is such that the tip circle passes through the vicinity of the inner peripheral surface of the cylindrical gear 61.
  • the idle gear 76 is rotatably supported at the input side end portion of the crank pin 40 via a bearing 79.
  • such a bearing 79 between the idle gear 76 and the input side end of the crank pin 40 may be provided as in this embodiment, but it is not as in the first embodiment.
  • the large-diameter gear portion 78 is positioned on the other side (upper side) of the other end surface (upper end surface) of the cylindrical gear 61 to avoid interference between the large-diameter gear portion 78 and the cylindrical gear 61.
  • the small-diameter gear portion 77 is meshed with the external teeth 64 of the cylindrical gear 61, while meshing with the input gear 56 of the drive motor 54. In this way, while maintaining the inner diameter of the cylindrical gear 61 at the current value and securing a large-diameter hollow hole 49 through which the cables 50 are passed on the central axis of the speed reducer 17, the front speed reducer 72, that is, the reduction ratio between the input gear 56 and the cylindrical gear 61 can be easily increased.
  • Other configurations and operations are the same as those in the first embodiment.
  • FIG. 6 is a diagram showing Embodiment 3 of the present invention.
  • a small-diameter gear portion 82 that is axially separated from the cylindrical gear 81, and a large-diameter gear portion that is slightly larger in diameter than the small-diameter gear portion 82.
  • Two gear portions 83 and 83 are provided, and all the input gears 60 and the idle gear 70 are respectively fitted to the small-diameter gear portion 82 and the large-diameter gear portion 83.
  • the reduction ratio between the front stage reduction gear 72 that is, the input gear 56 and the cylindrical gear 81 can be easily increased slightly.
  • Other configurations and operations are the same as those in the first embodiment.
  • the idle gear 70 is arranged on the input end side (the axial outer end side) of the crank pin 40a from the input gear 60.
  • the input gear is conversely arranged. You may make it arrange
  • the drive motor 54 is provided on the second member (swivel body 13) on the rotating side, but in this invention, the first member (main body 11) on the fixed side is provided. You may make it provide.
  • the present invention can be applied to a turning part structure of an industrial robot using an eccentric oscillating speed reducer.
  • FIG. 1 is a front sectional view showing Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 3 is a cross-sectional view taken along arrow II in FIG.
  • FIG. 4 is a cross-sectional view taken along arrow III-III in FIG.
  • FIG. 5 is a front sectional view in the vicinity of an idle gear showing Embodiment 2 of the present invention.
  • FIG. 6 is a front sectional view of the vicinity of an idle gear showing Embodiment 3 of the present invention.

Description

明 細 書
産業用ロボットの旋回部構造
技術分野
[0001] この発明は、偏心揺動型減速機を用いた産業用ロボットの旋回部構造に関する。
背景技術
[0002] 従来の産業用ロボットの旋回部構造としては、例えば以下の特開平 7— 124883 号公報に記載されて 、るようなものが知られて 、る。
[0003] このものは、産業用ロボットのベースである第 1部材および旋回部である第 2部材と 、前記第 1部材と第 2部材との間に配置されるとともに、 2本以上のクランクピンを有し 、該クランクピンに付与された回転を減速して第 2部材に伝達し該第 2部材を第 1部 材に対して低速回転させる偏心揺動型減速機と、全てのクランクピンの入力側端部 にそれぞれ固定された入力歯車と、偏心揺動型減速機の中心軸と同軸で、該偏心 揺動型減速機内を貫通し、一端に全ての入力歯車に嚙み合う第 1外歯車が設けられ 、他端に第 2外歯車が設けられた回転円筒体と、前記第 2部材に一対の軸受を介し て回転可能に支持されるとともに、前記第 2外歯車に嚙み合うアイドル歯車と、出力 軸に前記アイドル歯車に嚙み合う出力歯車が設けられるとともに、偏心揺動型減速 機の中心軸カゝら半径方向に所定距離離れて配置された駆動モータとを備えたもので ある。
[0004] そして、このものにおいては、駆動モータ力 の回転を出力歯車、アイドル歯車、第 2外歯車を介して単一の回転円筒体に伝達した後、該回転円筒体の第 1外歯車、入 力歯車を介して全てのクランクピンに回転トルクを実質上等分配しながら伝達するよう にしている。
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、このような従来の産業用ロボットの旋回部構造にあっては、アイドル 歯車を第 2部材に回転可能に支持するために、アイドル歯車を一対の軸受に支持さ せるとともに、これら一対の軸受を第 2部材に組み付ける必要があり、また、入力歯車 とアイドル歯車との干渉を避けるために、入力歯車に嚙み合う第 1外歯車が一端に、 アイドル歯車に嚙み合う第 2外歯車が他端に設けられた回転円筒体を偏心揺動型減 速機内において貫通させる必要があり、この結果、組み立て作業が面倒になるととも に、回転円筒体が大型化して (軸方向長が長くなつて)製作費が高価になるという課 題があった。
[0006] この発明は、組み立て作業が容易でかつ安価に製作できる産業用ロボットの旋回 部構造を提供することを目的とする。
課題を解決するための手段
[0007] このような目的は、産業用ロボットの第 1部材および第 2部材と、前記第 1部材と第 2部材との間に配置されるとともに、 2本以上のクランクピンを有し、該クランクピンに 付与された回転を減速して第 2部材に伝達し該第 2部材を第 1部材に対して低速回 転させる偏心揺動型減速機と、全てのクランクピンの入力側端部にそれぞれ取付け られた入力歯車と、偏心揺動型減速機の中心軸と同軸で、前記全ての入力歯車に 嚙み合う円筒状歯車と、前記クランクピンのうち特定の 1つのクランクピンの入力側端 部に前記入力歯車から軸方向に離れて回転可能に支持されるとともに、前記円筒状 歯車に嚙み合うアイドル歯車と、出力軸に前記アイドル歯車に嚙み合う出力歯車が 設けられるとともに、偏心揺動型減速機の中心軸から半径方向に所定距離離れて配 置された駆動モータとを備えることにより、達成することができる。
発明の効果
[0008] この発明においては、駆動モータの出力軸(出力歯車)の回転を円筒状歯車に伝 達するアイドル歯車を、クランクピンのうち特定の 1つのクランクピンの入力側端部に 回転可能に支持させるようにしたので、アイドル歯車を単に特定のクランクピンに支 持させるだけでよぐし力も、特定の 1つのクランクピンの入力側端部にはアイドル歯 車および入力歯車が軸方向に離れて配置されているため、これらアイドル歯車、入 力歯車の双方に嚙み合う円筒状歯車の軸方向長はこれら両歯車の離隔側端距離よ り若干長い程度で充分であり、この結果、組み立て作業が容易となるとともに、製作 費を安価とすることもできる。
[0009] また、前記アイドル歯車に軸方向に離れた小径歯車部と、歯先円が円筒状歯車の 内周面近傍を通過する大径歯車部との 2つの歯車部を設け、大径歯車部に駆動モ ータの出力歯車を、小径歯車部に円筒状歯車をそれぞれ嚙み合わせるように構成 すれば、円筒状歯車の内径を現状の値に維持しながら、出力歯車と円筒状歯車との 間の減速比を大きくすることができる。
さらに、前記円筒状歯車に軸方向に離れた小径歯車部と大径歯車部との 2つの歯 車部を設け、
小径歯車部に全ての入力歯車を、大径歯車部にアイドル歯車をそれぞれ嚙み合わ せるように構成すれば、円筒状歯車がいずれの軸方向位置でも一定径である場合に 比較し、出力歯車と円筒状歯車との間の減速比を大きくすることができる。
また、前記駆動モータを第 2部材に取付けるとともに、特定の 1つのクランクピンの 入力側端を第 2部材に回転可能に支持させるように構成すれば、偏心揺動型減速機 と第 2部材との間に位置決めピンを打ち込むことなぐ出力歯車とアイドル歯車との嚙 み合 、を規定状態とすることができる。
発明を実施するための最良の形態
[0010] (実施例 1)
以下、この発明の実施例 1を図面に基づいて説明する。
図 1、 2、 3、 4において、 11は第 1部材としての産業用ロボット 10の本体部(基台) であり、この本体部 11は中心軸が垂直に延びる円筒状を呈し、その内部に配線、配 管が収納される空間 12が形成されている。この本体部 11の上方には前記本体部 11 の中心軸と同軸の軸線回りに回転する第 2部材としての旋回体 13が設置され、この 旋回体 13内には上下に延びる空間 14が形成されるとともに、その一端部(下端部)に は回転軸上に位置する貫通孔 15が形成されている。
[0011] 17は前記本体部 11と旋回体 13との間に配置された偏心揺動型減速機であり、この 減速機 17は本体部 11の上端に複数のボルト 18によって固定され、該本体部 11と同軸 である略円筒状のケース 19を有する。このケース 19の内周でその軸方向中央部には 円柱状をした多数の内歯としてのピン歯 20がほぼ半分だけ埋設された状態で設けら れ、これらのピン歯 20は軸方向に延びるとともに、周方向に等距離離れて配置されて いる。 [0012] 21はケース 19内に軸方向に並べられて収納された円板状を呈する複数(2個)のピ ユオンであり、これらのピニオン 21の中心部には中心孔 22がそれぞれ形成されて!、る 。また、これらピ-オン 21の外周には多数のトロコイド歯形力 なる外歯 23が形成され 、これらの外歯 23はケース 19のピン歯 20より若干、ここでは 1個だけ歯数が少ない。そ して、これらピ-オン 21とケース 19とは内接した状態で外歯 23とピン歯 20とが嚙み合 つているが、 2つのピニオン 21の最大嚙み合い部(嚙み合いが最も深い部位)は 180 度だけ位相がずれている。そして、これらピ-オン 21の内、外周間の中間部には軸方 向に貫通した貫通孔 25が周方向に等距離離れて複数 (3個)形成されて!、る。
[0013] 26はケース 19内に挿入されたキャリアであり、このキャリア 26は、ピ-オン 21の軸方 向一側(下側)に配置された一側端板部 27と、ピニオン 21の軸方向他側(上側)に配 置されるとともに前記旋回体 13に複数のボルト 30によって連結された他側端板部 28と 、上端が他側端板部 28に一体形成され、下端が一側端板部 27に複数のボルト 31に よって着脱可能に連結された軸方向に延びる複数本 (貫通孔 25と同数)の柱部 29と から構成され、これらの柱部 29は前記貫通孔 25内にそれぞれ遊嵌されている。また、 前記キャリア 26、詳しくは一側、他側端板部 27、 28の中心軸上には前記中心孔 22と ほぼ同径の中心孔 32、 33がそれぞれ形成されている。
[0014] 36は前記キャリア 26、詳しくは一側、他側端板部 27、 28の外周とケース 19の軸方向 両端部内周との間に介装された一対の軸受であり、これらの軸受 36によりキャリア 26 はケース 19に対し相対回転可能に支持される。また、前記一側、他側端板部 27、 28 とケース 19の軸方向両端部との間にはシール部材 37が介装されている。
[0015] 39は各ピ-オン 21に形成された軸方向に延びる複数(3個)のクランクピン孔であり 、これらのクランクピン孔 39は周方向に等距離離れるとともに、前記貫通孔 25と交互 に配置されて 、る。 40は周方向に等距離離れて配置された軸方向に延びる 2本以上 (クランクピン孔 39と同数)のクランクピンであり、各クランクピン 40とキャリア 26、詳しく は一側、他側端板部 27、 28との間には軸方向に離れた一対の軸受 41が介装され、こ れにより、前記クランクピン 40はこれら一対の軸受 41を介してキャリア 26に回転可能に 支持される。
[0016] また、各クランクピン 40は軸方向中央部にクランクピン 40の中心軸力も等距離だけ 偏心し、ピ-オン 21と同数(2個)の偏心部 43を有し、これら偏心部 43は軸方向に若 干距離だけ離れるとともに、互いに 180度だけ位相がずれている。そして、前記クラン クピン 40の偏心部 43はピニオン 21のクランクピン孔 39にそれぞれ針状ころ軸受 44を 介して挿入されており、この結果、前記ピ-オン 21とクランクピン 40とは相対回転が許 容されている。
[0017] 46はキャリア 26内に挿入されたケース 19と同軸の円筒体であり、この円筒体 46は、 その軸方向一端部(下端部)がー側端板部 27の中心孔 32に密封状態で挿入されると ともに、複数のボルト 47によって該ー側端板部 27に固定されている。また、前記円筒 体 46はその軸方向中央部が前記貫通孔 22、中心孔 33内に遊嵌され、さらに、その軸 方向他端部(上端部)が旋回体 13の貫通孔 15内に遊嵌されている。そして、前記円 筒体 46の軸方向他端と旋回体 13の貫通孔 15との間にはシール部材 48が介装されて いる。
[0018] これにより、前記本体部 11内の空間 12と旋回体 13内の空間 14とは減速機 17の中心 軸上に設けられた円筒体 46内の中空孔 49を通じて連通する力 この中空孔 49は配 線、配管等、ここではケーブル類 50を通すために用いられている。前述したケース 19 、ピ-オン 21、キャリア 26、クランクピン 40、円筒体 46は全体として、クランクピン 40に 付与された回転を減速してキャリア 26またはケース 19、ここではキャリア 26力も旋回体 13に伝達し、該旋回体 13を本体部 11に対して低速で回転させる前記減速機 17を構 成し、この減速機 17の内部の潤滑油等は円筒体 46によって前記中空孔 49、空間 12、 14から遮断される。
[0019] 53は旋回体 13の一端部(下端部)に設けられたモータ支持部であり、このモータ支 持部 53には駆動モータ 54がいんろう嵌め合いにより位置決めされボルト(図示なし) で固定されている。ここで、この駆動モータ 54 (出力軸 55)は前記ケーブル類 50との干 渉を避ける等の理由から、減速機 17の中心軸力 半径方向に所定距離離れて配置 されており、この所定距離は中空孔 49の中心力 クランクピン 40の回転軸までの距離 より大きい。この結果、駆動モータ 54の出力軸 55と円筒体 46との間にクランクピン 40が 位置することになる。そして、この駆動モータ 54の出力軸 55には出力歯車としてのィ ンプットギア 56がキー 57によって固定されている。 [0020] 60は全てのクランクピン 40の入力側端部、ここではキャリア 26力 突出した軸方向他 端部(上端部)にスプライン結合により取付けられた外歯車からなる複数 (クランクピン 40と同数)の入力歯車であり、これらの入力歯車 60は同一径で正三角形の頂点にそ れぞれ配置されている。 61は円筒体 46の他側部外側に僅かの間隙を設けながら嵌 合された 1個の円筒状歯車であり、この円筒状歯車 61は減速機 17の中心軸と同軸で あるとともに、いずれの軸方向位置においてもピッチ円が同径である。
[0021] また、この円筒状歯車 61の軸方向一端部(下端部)は軸受 62を介して減速機 17の 他側端板部 28に回転可能に支持され、一方、その軸方向他端部(上端部)は軸受 63 を介して旋回体 13の一端部に回転可能に支持されている。そして、この円筒状歯車 6 1の軸方向中央部外側に形成された外歯 64は全ての入力歯車 60に嚙み合っており、 この結果、該円筒状歯車 61から入力歯車 60に回転駆動力が直接等分配される。
[0022] ここで、前記クランクピン 40のうち、駆動モータ 54から離隔した位置に配置されてい るクランクピン 40は、その他側端が入力歯車 60から若干他側に離れた位置で終了し ているが、駆動モータ 54に近接した位置に配置されて 、る特定の 1つのクランクピン 4 0aはその入力側端部に他側端からさらに他側に延長した延長部 40bを有する。そし て、このクランクピン 40aの延長部 40bは前記モータ支持部 53に形成された受け 67に 軸受 68を介して回転可能に支持されて 、る。
[0023] このように駆動モータ 54を旋回体 13の一部であるモータ支持部 53に取付けるととも に、特定の 1つのクランクピン 40aの入力側端を旋回体 13の一部である受け 67に回転 可能に支持させるようにすれば、クランクピン 40aの延長部 40bの端部を支持できると ともに、駆動モータ 54を取付ける際、減速機 17 (キャリア 26)と旋回体 13との間に位置 決めピンを打ち込むことなぐインプットギア 56と後述のアイドル歯車 70との間の軸間 距離を設定値とし、これらの嚙み合 、を容易に規定状態とすることができる。
[0024] また、前記クランクピン 40aの延長部 40bには前記入力歯車 60と同一歯形、同一歯 数である 1個のアイドル歯車 70が回転可能に支持されており、この結果、このアイドル 歯車 70はクランクピン 40aの入力側端部に前記入力歯車 60から軸方向、ここでは軸 方向他側に若干離れて回転可能に支持されることになる。このように入力歯車 60、ァ ィドル歯車 70を同一歯形、同一歯数とすれば、歯形を成形する加工工具を共通化す ることができ、製作費を安価とすることができる。
[0025] さらに、前述のように駆動モータ 54の出力軸 55 (インプットギア 56)の回転を円筒状 歯車 61に伝達するアイドル歯車 70を、クランクピン 40のうち特定の 1つのクランクピン 4 0aの入力側端部に回転可能に支持させるようにしたので、アイドル歯車 70を、従来技 術のように軸受に装着したり、該軸受を第 2部材に組み付けることなぐ単に特定の 1 つのクランクピン 40aに支持させるだけでよぐし力も、特定の 1つのクランクピン 40aの 入力側端部にはアイドル歯車 70および入力歯車 60が軸方向に離れて配置されて 、 るため、これらアイドル歯車 70、入力歯車 60の双方に嚙み合う円筒状歯車 61の軸方 向長はこれら両歯車 70、 60の離隔側端距離より若干長い程度で充分であって該円 筒状歯車 61を小型化することができ、この結果、組み立て作業が容易となるとともに、 製作費を安価とすることができる。
[0026] そして、このアイドル歯車 70は前記インプットギア 56および円筒状歯車 61の外歯 64 の双方に嚙み合っており、この結果、前記駆動モータ 54からの回転トルクはインプット ギア 56、アイドル歯車 70を通じて円筒状歯車 61に伝達された後、該円筒状歯車 61か ら全ての入力歯車 60に等分配されながら伝達され、全てのクランクピン 40を同一方向 に同一回転速度で回転させることができる。
[0027] また、前述のように駆動モータ 54を中空孔 49の中心から半径方向に所定距離離し て配置するとともに、インプットギア 56を特定の 1つのクランクピン 40aに回転可能に支 持されたアイドル歯車 70にのみ嚙み合わせるようにすれば、駆動モータ 54を前記アイ ドル歯車 70の周囲の広い範囲に配置することができる。前述したインプットギア 56、入 力歯車 60、円筒状歯車 61、アイドル歯車 70は全体として、駆動モータ 54の回転を減 速して減速機 17の全てのクランクピン 40に出力する前段減速機 72を構成する。
[0028] 次に、この発明の一実施例の作用について説明する。
旋回体 13を本体部 11に対して旋回させる場合には、駆動モータ 54を作動して出 力軸 55、インプットギア 56を一体的に回転させる。このとき、特定の 1つのクランクピン 40aに回転可能に支持されたアイドル歯車 70には前記インプットギア 56および円筒状 歯車 61の外歯 64の双方が嚙み合っているため、前記駆動モータ 54の回転トルクは、 インプットギア 56、アイドル歯車 70を通じて円筒状歯車 61に伝達された後、該円筒状 歯車 61から全ての入力歯車 60に等配分されながら伝達され、全てのクランクピン 40を 同一方向に同一回転速度で回転させる。
[0029] これにより、ピ-オン 21がクランクピン 40と同一回転速度で偏心回転 (公転)する力 このとき、ピン歯 20に嚙み合つて!、るピ-オン 21の外歯 23は歯数が該ピン歯 20より 1 個だけ少なぐし力も、ケース 19は回転できないよう本体部 11に固定されているため、 前記クランクピン 40に付与された回転駆動力はケース 19、ピ-オン 21によって高比で 減速され、キャリア 26力 旋回体 13に伝達される。これにより、旋回体 13は垂直軸線 回りに低速大トルクで回転する。
(実施例 2)
[0030] 図 5はこの発明の実施例 2を示す図である。この実施例においては、アイドル歯車 76に、軸方向に離れた小径歯車部 77と、該小径歯車部 77より大径の大径歯車部 78 を設けるとともに、前記小径歯車部 77を入力歯車 60と同径とし、一方、大径歯車部 78 をその歯先円が円筒状歯車 61の内周面近傍を通過する径としている。また、この実 施例にお 、ては、前記アイドル歯車 76をクランクピン 40の入力側端部に軸受 79を介 して回転可能に支持させている。なお、このようなアイドル歯車 76とクランクピン 40の 入力側端部との間の軸受 79は、この実施例のように設けてもよいが、実施例 1のよう に無くとちょ 、。
[0031] そして、前記大径歯車部 78を、円筒状歯車 61の他端面 (上端面)より他側(上側)に 位置させて大径歯車部 78と円筒状歯車 61との干渉を避けながら、駆動モータ 54のィ ンプットギア 56に嚙み合わせ、一方、前記小径歯車部 77を円筒状歯車 61の外歯 64に それぞれ嚙み合わせるようにしている。このようにすれば、円筒状歯車 61の内径を現 状の値に維持して減速機 17の中心軸上にケーブル類 50を通すための大径の中空孔 49を確保しながら、前段減速機 72、即ち、インプットギア 56と円筒状歯車 61との間の 減速比を容易に大きくすることができる。なお、他の構成、作用は前記実施例 1と同 様である。
(実施例 3)
[0032] 図 6はこの発明の実施例 3を示す図である。この実施例においては、円筒状歯車 81に軸方向に離れた小径歯車部 82と、該小径歯車部 82より若干大径の大径歯車部 83との 2つの歯車部を設け、小径歯車部 82に全ての入力歯車 60を、大径歯車部 83に アイドル歯車 70をそれぞれ嚙み合わせるようにしている。このようにすれば、前段減速 機 72、即ち、インプットギア 56と円筒状歯車 81との間の減速比を容易に若干大きくす ることができる。なお、他の構成、作用は前記実施例 1と同様である。
[0033] なお、前述の実施例においては、アイドル歯車 70を入力歯車 60よりクランクピン 40 aの入力端側 (軸方向外端側)に配置したが、この発明においては、逆に入力歯車を アイドル歯車よりクランクピンの入力端側に配置するようにしてもよい。また、前述の実 施例においては、駆動モータ 54を回転側である第 2部材 (旋回体 13)に設けたが、こ の発明においては、固定側である第 1部材 (本体部 11)に設けるようにしてもよい。 産業上の利用可能性
[0034] この発明は、偏心揺動型減速機を用いた産業用ロボットの旋回部構造に適用でき る。
図面の簡単な説明
[0035] [図 1]この発明の実施例 1を示す正面断面図である。
[図 2]図 1の I-I矢視断面図である。
[図 3]図 1の II II矢視断面図である。
[図 4]図 1の III III矢視断面図である。
[図 5]この発明の実施例 2を示すアイドル歯車近傍の正面断面図である。
[図 6]この発明の実施例 3を示すアイドル歯車近傍の正面断面図である。
符号の説明
10· '·産 用口ホット 11· ··第 1部材
13· ··第 2部材 17· · •偏心揺動型減速機
40· '·クランクピン 54· ··駆動モータ
55· ' ··出力軸 56· · -出力歯車
60· ··入力 ¾車 61· ··円筒状歯車
70· '·アイドル歯車 76· ··アイドル歯車
77· ' ··小径歯車部 78 …大径歯車部
81· ' ··円筒状歯車 82 …小径歯車部 83…大径歯車部

Claims

請求の範囲
[1] 産業用ロボットの第 1部材および第 2部材と、前記第 1部材と第 2部材との間に配 置されるとともに、 2本以上のクランクピンを有し、該クランクピンに付与された回転を 減速して第 2部材に伝達し該第 2部材を第 1部材に対して低速回転させる偏心揺動 型減速機と、全てのクランクピンの入力側端部にそれぞれ取付けられた入力歯車と、 偏心揺動型減速機の中心軸と同軸で、前記全ての入力歯車に嚙み合う円筒状歯車 と、前記クランクピンのうち特定の 1つのクランクピンの入力側端部に前記入力歯車か ら軸方向に離れて回転可能に支持されるとともに、前記円筒状歯車に嚙み合うアイド ル歯車と、出力軸に前記アイドル歯車に嚙み合う出力歯車が設けられるとともに、偏 心揺動型減速機の中心軸力 半径方向に所定距離離れて配置された駆動モータと を備えたことを特徴とする産業用ロボットの旋回部構造。
[2] 前記アイドル歯車に軸方向に離れた小径歯車部と、歯先円が円筒状歯車の内周 面近傍を通過する大径歯車部との 2つの歯車部を設け、大径歯車部に駆動モータの 出力歯車を、小径歯車部に円筒状歯車をそれぞれ嚙み合わせるようにした請求項 1 記載の産業用ロボットの旋回部構造。
[3] 前記円筒状歯車に軸方向に離れた小径歯車部と大径歯車部との 2つの歯車部を 設け、
小径歯車部に全ての入力歯車を、大径歯車部にアイドル歯車をそれぞれ嚙み合わ せるようにした請求項 1記載の産業用ロボットの旋回部構造。
[4] 前記駆動モータを第 2部材に取付けるとともに、特定の 1つのクランクピンの入力 側端を第 2部材に回転可能に支持させた請求項 1に記載の産業用ロボットの旋回部 構造。
PCT/JP2006/308645 2005-04-25 2006-04-25 産業用ロボットの旋回部構造 WO2006115257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602006011738T DE602006011738D1 (de) 2005-04-25 2006-04-25 Drehteilstruktur eines industrieroboters
EP06745673A EP1889694B1 (en) 2005-04-25 2006-04-25 Turning portion structure of industrial robot
CN2006800140621A CN101166607B (zh) 2005-04-25 2006-04-25 工业机器人的摆动部分的结构
JP2007514742A JP4913045B2 (ja) 2005-04-25 2006-04-25 偏心揺動型減速機および偏心揺動型減速機を用いた産業用ロボットの旋回部構造
US11/911,740 US7942779B2 (en) 2005-04-25 2006-04-25 Turning portion structure of industrial robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-126070 2005-04-25
JP2005126070 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006115257A1 true WO2006115257A1 (ja) 2006-11-02

Family

ID=37214871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308645 WO2006115257A1 (ja) 2005-04-25 2006-04-25 産業用ロボットの旋回部構造

Country Status (7)

Country Link
US (1) US7942779B2 (ja)
EP (2) EP2052818B1 (ja)
JP (2) JP4913045B2 (ja)
KR (1) KR101030276B1 (ja)
CN (1) CN101166607B (ja)
DE (2) DE602006011738D1 (ja)
WO (1) WO2006115257A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192369A (zh) * 2013-04-18 2013-07-10 岳强 一种新型码垛机器人腰部旋转装置
JP2016198848A (ja) * 2015-04-09 2016-12-01 ファナック株式会社 モータと減速機とを備えたロボットの関節構造
CN109424728A (zh) * 2017-08-18 2019-03-05 株式会社安川电机 机器人以及机器人系统
WO2020217834A1 (ja) * 2019-04-26 2020-10-29 ナブテスコ株式会社 減速機、および、減速機を用いる駆動装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879760B2 (en) 2002-11-25 2018-01-30 Delbert Tesar Rotary actuator with shortest force path configuration
US9862263B2 (en) 2013-03-01 2018-01-09 Delbert Tesar Multi-speed hub drive wheels
US10414271B2 (en) 2013-03-01 2019-09-17 Delbert Tesar Multi-speed hub drive wheels
JP5918719B2 (ja) * 2013-03-29 2016-05-18 住友重機械工業株式会社 モータと減速機とを有する回動装置
US9365105B2 (en) 2013-10-11 2016-06-14 Delbert Tesar Gear train and clutch designs for multi-speed hub drives
US10422387B2 (en) 2014-05-16 2019-09-24 Delbert Tesar Quick change interface for low complexity rotary actuator
US9915319B2 (en) 2014-09-29 2018-03-13 Delbert Tesar Compact parallel eccentric rotary actuator
US9657813B2 (en) 2014-06-06 2017-05-23 Delbert Tesar Modified parallel eccentric rotary actuator
US11014658B1 (en) 2015-01-02 2021-05-25 Delbert Tesar Driveline architecture for rotorcraft featuring active response actuators
JP6604221B2 (ja) * 2016-02-03 2019-11-13 コニカミノルタ株式会社 駆動装置、定着装置および画像形成装置
US10464413B2 (en) 2016-06-24 2019-11-05 Delbert Tesar Electric multi-speed hub drive wheels
CN106828652B (zh) * 2016-12-30 2023-10-10 深圳市优必选科技有限公司 腰部旋转结构以及机器人
JP7220553B2 (ja) 2018-11-30 2023-02-10 ナブテスコ株式会社 産業機械の回転機構、減速機、産業機械および駆動装置
JP6867421B2 (ja) * 2019-01-23 2021-04-28 ファナック株式会社 ロボットのシール構造およびロボット
JP7060529B2 (ja) * 2019-01-23 2022-04-26 ファナック株式会社 バックラッシ削減機構を備えたロボット関節構造及びロボット
JP7440240B2 (ja) * 2019-10-23 2024-02-28 ファナック株式会社 ロボット
CN117704197A (zh) * 2024-02-05 2024-03-15 沈阳仪表科学研究院有限公司 管道机器人

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124883A (ja) 1993-10-27 1995-05-16 Yaskawa Electric Corp 産業用ロボットの旋回部駆動構造
JPH0957678A (ja) * 1995-08-24 1997-03-04 Teijin Seiki Co Ltd ロボット等の旋回部構造
JP2001353684A (ja) * 2000-06-12 2001-12-25 Fanuc Ltd ロボットの関節構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241384A (en) * 1963-10-30 1966-03-22 Gen Mills Inc Variable speed drive
CA1244855A (en) * 1985-01-18 1988-11-15 Kazuyuki Matsumoto Robot arm drive apparatus of industrial robot
JP2788069B2 (ja) 1989-08-15 1998-08-20 本田技研工業株式会社 アルミニウム基合金
JPH0375345U (ja) * 1989-11-25 1991-07-29
CN1178495A (zh) * 1995-11-17 1998-04-08 株式会社安川电机 多关节机器人的手腕机构
JP4020560B2 (ja) 2000-02-07 2007-12-12 ナブテスコ株式会社 偏心揺動型減速機
JP4236023B2 (ja) 2000-09-29 2009-03-11 ナブテスコ株式会社 モータ付き減速機
JP4755357B2 (ja) * 2001-04-18 2011-08-24 ナブテスコ株式会社 減速機
JP3883939B2 (ja) * 2002-09-04 2007-02-21 ファナック株式会社 ロボットシステムにおけるカメラ用ケーブル及び力センサ用ケーブルの配線処理構造
JP4312484B2 (ja) 2003-03-26 2009-08-12 住友重機械工業株式会社 揺動内接噛合型遊星歯車装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124883A (ja) 1993-10-27 1995-05-16 Yaskawa Electric Corp 産業用ロボットの旋回部駆動構造
JPH0957678A (ja) * 1995-08-24 1997-03-04 Teijin Seiki Co Ltd ロボット等の旋回部構造
JP2001353684A (ja) * 2000-06-12 2001-12-25 Fanuc Ltd ロボットの関節構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1889694A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192369A (zh) * 2013-04-18 2013-07-10 岳强 一种新型码垛机器人腰部旋转装置
JP2016198848A (ja) * 2015-04-09 2016-12-01 ファナック株式会社 モータと減速機とを備えたロボットの関節構造
US10773379B2 (en) 2015-04-09 2020-09-15 Fanuc Corporation Joint structure for robot including motor and speed reducer
CN109424728A (zh) * 2017-08-18 2019-03-05 株式会社安川电机 机器人以及机器人系统
WO2020217834A1 (ja) * 2019-04-26 2020-10-29 ナブテスコ株式会社 減速機、および、減速機を用いる駆動装置
JP2020183763A (ja) * 2019-04-26 2020-11-12 ナブテスコ株式会社 減速機、および、その減速機を用いる駆動装置
US11852217B2 (en) 2019-04-26 2023-12-26 Nabtesco Corporation Speed reducer and drive device using the same

Also Published As

Publication number Publication date
JP4913045B2 (ja) 2012-04-11
CN101166607B (zh) 2011-03-09
EP1889694B1 (en) 2010-01-13
CN101166607A (zh) 2008-04-23
EP1889694A4 (en) 2008-10-08
DE602006011738D1 (de) 2010-03-04
DE602006021350D1 (de) 2011-05-26
JP2011212839A (ja) 2011-10-27
JP5356462B2 (ja) 2013-12-04
US7942779B2 (en) 2011-05-17
KR101030276B1 (ko) 2011-04-19
KR20080002876A (ko) 2008-01-04
US20090019961A1 (en) 2009-01-22
EP1889694A1 (en) 2008-02-20
EP2052818A1 (en) 2009-04-29
EP2052818B1 (en) 2011-04-13
JPWO2006115257A1 (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4913045B2 (ja) 偏心揺動型減速機および偏心揺動型減速機を用いた産業用ロボットの旋回部構造
KR101344202B1 (ko) 기어장치 및 기어장치를 이용한 산업용 로봇의 선회부구조
KR101066233B1 (ko) 감속 장치
JP2011202806A (ja) 揺動型遊星歯車装置
JP2007078010A (ja) 産業用ロボットの旋回部構造
JP2004286044A (ja) 内歯揺動型内接噛合遊星歯車装置
JP3688230B2 (ja) 偏心差動型減速機
JP4925992B2 (ja) 偏心差動型減速機および該偏心差動型減速機を用いた旋回部構造
JP4804439B2 (ja) 減速装置
JP4632852B2 (ja) 産業用ロボットの旋回部構造
JP4219320B2 (ja) ロボットの旋回部構造
JP2008025846A5 (ja)
JP2008014500A5 (ja)
JP4999978B2 (ja) 偏心差動型減速機
JP2008062377A (ja) ロボット等の旋回部構造
JP2007075913A (ja) 産業用ロボットの旋回部構造
JP4190484B2 (ja) 偏心差動型減速機
JP4437457B2 (ja) 産業用ロボットの旋回部構造
JP2008023711A (ja) ロボット等の旋回部構造
JP2005052969A (ja) ロボット等の旋回部構造
JP4707499B2 (ja) 回転駆動機構
JP2013221570A (ja) 変速歯車装置およびアクチュエータ
JP2006234178A (ja) 減速機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014062.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514742

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006745673

Country of ref document: EP

Ref document number: 11911740

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077024604

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745673

Country of ref document: EP