WO2006112260A1 - 圧電薄膜フィルタ - Google Patents

圧電薄膜フィルタ Download PDF

Info

Publication number
WO2006112260A1
WO2006112260A1 PCT/JP2006/307147 JP2006307147W WO2006112260A1 WO 2006112260 A1 WO2006112260 A1 WO 2006112260A1 JP 2006307147 W JP2006307147 W JP 2006307147W WO 2006112260 A1 WO2006112260 A1 WO 2006112260A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
terminal
piezoelectric thin
unit
Prior art date
Application number
PCT/JP2006/307147
Other languages
English (en)
French (fr)
Inventor
Hideki Kawamura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE200660009384 priority Critical patent/DE602006009384D1/de
Priority to JP2007521173A priority patent/JP4513860B2/ja
Priority to EP06731095A priority patent/EP1871007B1/en
Publication of WO2006112260A1 publication Critical patent/WO2006112260A1/ja
Priority to US11/854,753 priority patent/US7843285B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques

Definitions

  • the present invention relates to a piezoelectric thin film filter, and more particularly to a piezoelectric thin film filter using a BAW (Balter elastic wave) resonator that sandwiches a piezoelectric thin film between electrodes and uses the resonance vibration of the piezoelectric thin film itself.
  • BAW Alter elastic wave
  • Patent Document 1 discloses a device in which BAW resonators are arranged in a plane direction. As shown in FIG. 1, a diaphragm 3 is supported by a support structure 2 provided on a substrate 1 through a hollow space 4, and a piezoelectric thin film 6 is disposed on the diaphragm 3. A plurality of electrode fingers 5a, 7a of the first electrode pair and a plurality of electrode fingers 5b, 7b of the second electrode pair are arranged on both main surfaces of the piezoelectric thin film 6 so as to face each other via the piezoelectric thin film 6. Are arranged alternately with a gap.
  • the electrode finger 5a, 7a of the first electrode pair is connected to the input terminal
  • the electrode finger 5b, 7b of the second electrode pair is connected to the output terminal
  • the resonance formed between the electrode fingers 5a, 7a of the first electrode pair The vibration generated in the child is propagated to the resonator formed between the electrode fingers 5b and 7b of the adjacent second electrode pair, and an electric signal is output.
  • the impedance ratio of the input and output terminals of this device is 1: 1.
  • Patent Document 1 Japanese Patent No. 3535101
  • the first problem to be solved by the present invention is to provide a piezoelectric thin film filter capable of widening the band.
  • the dual mode BAW filter is a multi-layered BAW resonator arranged side by side in the plane direction.
  • an RF filter of a mobile phone is connected between an antenna (impedance is 50 ⁇ ) and an LNA (input impedance is 100 to 200 ⁇ ). For this reason, it is required to adjust the impedance ratio of the input terminal and output terminal of the piezoelectric thin film filter used in the RF filter to 1: 2 to 1: 4.
  • the second problem to be solved by the present invention is a piezoelectric thin film filter of the type using a BAW resonator that can adjust the impedance ratio between the input terminal and the output terminal. Is to provide.
  • the present invention provides a piezoelectric thin film filter configured as follows.
  • the piezoelectric thin film filter includes: a) a substrate; b) a piezoelectric thin film including a portion supported by the substrate and acoustically separated from the substrate; and c) acoustically separated from the substrate.
  • the two or more first electrode fingers disposed on one main surface of the piezoelectric thin film for the part to be bent and the other main surface of the piezoelectric thin film in a portion acoustically separated from the substrate
  • a first electrode pair having two or more second electrode fingers respectively disposed opposite to the first electrode fingers via a piezoelectric thin film; and d) the substrate force.
  • Two or more third electrode fingers arranged alternately with the first electrode fingers on the one main surface of the thin film, and a portion of the piezoelectric thin film that is acoustically separated from the substrate
  • a fourth electrode disposed on the other main surface of the second electrode so as to face the third electrode finger through the piezoelectric thin film.
  • a second electrode pair having polar fingers.
  • a filter element is formed by the first electrode pair and the second electrode pair between a fourth terminal connected to a finger.
  • the one main surface of the piezoelectric thin film is provided with an insulating film between the first electrode fingers and the third electrode fingers alternately arranged with a space therebetween.
  • the distance between centers of the first electrode fingers and the third electrode fingers, which are alternately arranged at intervals, is the thickness of the piezoelectric thin film in the portion where the substrate force is acoustically separated. Larger than 2 times.
  • the filter can function as a dual mode filter.
  • an insulating film is provided between the adjacent first electrode finger and the third electrode finger to form between the first electrode finger and the second electrode finger facing each other with the piezoelectric thin film interposed therebetween.
  • the mechanical coupling between the resonator and the resonator formed between the third electrode finger and the fourth electrode finger facing each other across the piezoelectric thin film is strengthened, and vibration is easily propagated between adjacent resonators. can do. Therefore, even if the center-to-center distance between the first electrode finger and the third electrode finger is larger than twice the thickness of the piezoelectric thin film, it can function as a filter.
  • the width of the electrode finger can be increased by making the center-to-center distance between the first electrode finger and the third electrode finger larger than twice the thickness of the piezoelectric thin film. Thickness longitudinal vibration Resonator ⁇ ⁇ can be increased. Furthermore, the filter band can be widened by using three or more resonance peaks.
  • the present invention provides a piezoelectric thin film filter configured as follows.
  • the piezoelectric thin film filter includes: a) a substrate; b) a piezoelectric thin film including a portion supported by the substrate and acoustically separated from the substrate; and c) acoustically separated from the substrate.
  • Two or more first electrode fingers arranged on one main surface of the piezoelectric thin film for the part to be bent, and the one main surface of the piezoelectric thin film in a portion acoustically separated from the substrate
  • Two or more third electrode fingers alternately arranged with a spacing from each other, and d) arranged on the other main surface of the piezoelectric thin film in a portion acoustically separated from the substrate
  • a common electrode including a portion facing the first electrode finger and the third electrode finger through the piezoelectric thin film.
  • a first electrode pair is formed by the first electrode finger and the common electrode.
  • a second electrode pair is formed by the third electrode finger and the common electrode.
  • the one main surface of the piezoelectric thin film includes an insulating film between the first electrode fingers and the third electrode fingers that are alternately arranged at intervals. A center-to-center distance between the first electrode fingers and the third electrode fingers that are alternately arranged with a space between each other is greater than twice the thickness of the piezoelectric thin film.
  • the first terminal and the second terminal are input terminals, and the third terminal and the fourth terminal are output terminals, it can function as a dual mode filter.
  • the insulating film is provided between the adjacent first electrode finger and the third electrode finger, thereby forming the first electrode finger and the common electrode facing each other with the piezoelectric thin film interposed therebetween. It is possible to strengthen the coupling between the resonator and the resonator formed between the third electrode finger and the common electrode facing each other with the piezoelectric thin film interposed therebetween, so that vibration can be easily propagated between the adjacent resonators. Therefore, even if the center-to-center distance between the first electrode finger and the third electrode finger is larger than twice the thickness of the piezoelectric thin film, it can function as a filter.
  • the width of the electrode finger can be increased by making the center-to-center distance between the first electrode finger and the third electrode finger larger than twice the thickness of the piezoelectric thin film.
  • Thickness longitudinal vibration ⁇ ⁇ as a resonator can be increased.
  • the filter band can be widened by using three or more resonance peaks.
  • the alignment between the first electrode finger and the third electrode finger arranged on one main surface of the piezoelectric thin film and the common electrode arranged on the other main surface of the piezoelectric thin film is slightly shifted. But there is almost no effect on the characteristics of the resonator. Therefore, high-precision alignment adjustment is not required as in the case where the electrode fingers face each other across the piezoelectric thin film, and the process can be simplified.
  • the piezoelectric thin film filters having the above-described configurations can be configured in various forms as follows.
  • the width of each electrode finger is larger than twice the thickness of the piezoelectric thin film in a portion acoustically separated from the substrate.
  • the width of the electrode finger can be increased to widen the band.
  • At least two sets of the filter elements are included.
  • the first terminal and the second terminal of each filter element are connected in parallel to either the input terminal or the output terminal.
  • the third terminal and the fourth terminal of each filter element are
  • the other of the input terminal and the output terminal is connected in series.
  • the ratio between the impedance between the input terminals and the impedance between the output terminals can be adjusted such that the impedance between the input terminals is different from the impedance between the output terminals.
  • the first terminal and the second terminal are connected to an unbalanced terminal.
  • the third terminal and the fourth terminal are connected to a balanced terminal.
  • a so-called balanced (balanced) filter having a balance-unbalance conversion function can be obtained.
  • the piezoelectric thin film is acoustically separated from the substrate via a gap layer or an opening.
  • the piezoelectric thin film is capable of confining both the longitudinal wave and the transverse wave at the same time when the thickness vibration is excited, and can obtain good filter characteristics.
  • the piezoelectric thin film is acoustically separated from the substrate through the acoustic reflection layer, only the wave having the sound velocity corresponding to the thickness of the acoustic reflection layer can confine the vibration, so both the longitudinal wave and the transverse wave are used. The characteristics of the double mode filter will be disturbed.
  • the one main surface of the piezoelectric thin film is continuous from the resonance region outside the resonance region in which the first electrode finger, the third electrode finger, and the insulating film are arranged.
  • the vibration from the resonance region is not propagated in the non-resonance region, the vibration is confined in the resonance region, and the wave is not propagated to the outside to obtain a filter characteristic without spurious. be able to.
  • a first region covering the first electrode finger and the third electrode finger and the insulating film, a second region covering the second electrode finger and the fourth electrode finger, and the common electrode is further provided in at least one of the third region covering the substrate.
  • the frequency characteristics can be adjusted by appropriately processing the second insulating film.
  • the second insulating film can prevent oxidation of the electrode fingers and the common electrode.
  • the second insulating film may be made of the same material as or different from the insulating film provided between the first electrode finger and the third electrode finger.
  • a common resist pattern is used on the one main surface of the piezoelectric thin film.
  • the first electrode finger and the third electrode finger and the insulating film are formed.
  • the piezoelectric thin film is an epitaxial film.
  • the number of pairs of the first electrode finger and the second electrode finger or the common electrode in the first electrode pair, and the third electrode finger and the fourth electrode in the second electrode pair is 20 pairs or more.
  • the number of electrode fingers or pairs with the common electrode is different.
  • the impedance ratio of the input terminal and the output terminal can be adjusted to various values.
  • the present invention also provides a composite filter configured as follows.
  • the present invention provides a piezoelectric thin film filter configured as follows.
  • the filter element is a unit unit. It includes at least two unit units connected in series to either the input terminal or the output terminal. At least two of the at least two unit units are connected in parallel to the other one of the output terminal and the input terminal.
  • a BAW resonator is formed by each electrode pair. According to the above configuration, the ratio between the impedance between the input terminals and the impedance between the output terminals can be adjusted so that the impedance between the input terminals and the impedance between the output terminals are different.
  • the at least two unit units are arranged adjacent to each other,
  • the unit units in contact with each other are mechanically coupled to each other.
  • the input terminal is connected to an unbalanced terminal, and the output terminal is connected to a balanced terminal.
  • the piezoelectric thin film is acoustically separated from the substrate via a gap or an opening.
  • the piezoelectric thin film When the piezoelectric thin film is acoustically separated from the substrate via the acoustic reflection layer, the vibration can be confined only to a wave having a sound velocity corresponding to the thickness of the acoustic reflection layer. The characteristics of the dual mode filter that uses both shear waves are disturbed. On the other hand, according to the above configuration, the piezoelectric thin film can simultaneously confine both the longitudinal wave and the transverse wave in the portion where the thickness vibration is excited, and a good filter characteristic can be obtained.
  • the piezoelectric thin film filter of the first preferred embodiment includes the first and second unit units.
  • the first terminal of each unit is connected to one of the input terminals.
  • the second terminal of each unit unit is connected to the other input terminal.
  • the fourth terminal of the first unit unit and the third terminal of the second unit unit are connected.
  • the third terminal of the first unit unit is connected to one of the output terminals.
  • the fourth terminal of the second unit unit is connected to the other of the output terminals.
  • the output terminal is connected to a balanced terminal.
  • the piezoelectric thin film filter of the second preferred embodiment includes the first and second unit units.
  • the first unit unit is connected to one of the first terminal, the second unit unit, the second terminal, and the input terminal.
  • the second terminal of the first unit unit and the first terminal of the second unit unit are connected to the other input terminal.
  • Said The fourth terminals of each unit unit are connected to each other.
  • the third terminal of the first unit unit and the third terminal of the second unit unit are each connected to the output terminal.
  • the output terminal is connected to a balanced terminal.
  • a balanced piezoelectric thin film filter having an input terminal output terminal impedance ratio other than 1: 1 (eg, 1: 4) can be obtained.
  • the degree of balance can be improved as compared with the first preferred embodiment described above.
  • a third preferred aspect of the piezoelectric thin film filter includes the first and fourth unit units.
  • the first terminal of the first unit unit and the first terminal of the second unit unit are connected to one of the input terminals.
  • the second terminal of the first unit unit; the second terminal of the second unit unit; the first terminal of the third unit unit; and the first terminal of the fourth unit unit. Terminals are connected to each other.
  • the second terminal of the third unit unit and the second terminal of the fourth unit unit are connected to the other input terminal.
  • the third terminal of the first unit unit is connected to one of the output terminals.
  • the fourth terminal of the first unit unit is connected to the third terminal of the second unit unit.
  • the fourth terminal of the second unit unit is connected to the third terminal of the third unit unit.
  • the fourth terminal of the third unit unit is connected to the third terminal of the fourth unit.
  • the fourth terminal of the fourth unit unit is connected to the other of the output terminals.
  • the output terminal is connected to a balanced terminal.
  • a balanced piezoelectric thin film filter having an input terminal output terminal impedance ratio other than 1: 1 (eg, 1: 4) can be obtained.
  • the length of the electrode fingers can be doubled as compared with the first aspect described above, and the number of electrode fingers can be doubled to reduce the influence of the parasitic capacitance of the wiring.
  • At least one common electrode is disposed on the one main surface (or the other main surface) of the piezoelectric thin film in a portion acoustically separated from the substrate.
  • the first electrode finger and the third electrode finger (or the second electrode finger and the fourth electrode finger) of at least one of the unit units are included in a part of the same common electrode.
  • the first thin film disposed on one main surface (or the other main surface) of the piezoelectric thin film.
  • the electrode finger and the third electrode finger (or the second electrode finger and the fourth electrode finger) and the second electrode finger and the fourth electrode finger arranged on the other main surface (or one main surface) of the piezoelectric thin film Even if the alignment with (or 1st and 3rd electrode fingers) is slightly shifted, the characteristics of the resonator are hardly affected. Therefore, high-precision alignment adjustment is not required as in the case where the electrode fingers face each other with the piezoelectric thin film interposed therebetween, and the process can be simplified.
  • an insulating film is disposed between the adjacent electrode fingers on at least one of the main surfaces of the piezoelectric thin film in a portion acoustically separated from the substrate.
  • the piezoelectric thin film filter of the present invention can widen the band.
  • the piezoelectric thin film filter of the present invention is a type using a BAW resonator, and can adjust the impedance ratio between the input terminal and the output terminal.
  • FIG. 1 is a configuration diagram of a piezoelectric thin film filter. (Conventional example)
  • FIG. 2 is a cross-sectional view of a principal part showing a basic configuration of a piezoelectric thin film filter. (Example 1)
  • FIG. 3 is a configuration diagram of a dual mode filter.
  • FIG. 4 is a configuration diagram of a dual mode filter.
  • FIG. 5 is a graph showing the characteristics of the resonator.
  • FIG. 6 is a graph showing the characteristics of the resonator.
  • FIG. 7 is a graph showing filter characteristics.
  • FIG. 8 is a graph showing a dispersion curve.
  • FIG. 9 is a graph showing filter characteristics.
  • FIG. 10 (a) is a graph showing filter characteristics.
  • FIG. 10 (b) is a graph showing filter characteristics.
  • FIG. 10 (c) is a graph showing filter characteristics.
  • FIG. 10 (d) is a graph showing filter characteristics.
  • FIG. 11 is a plan view of a piezoelectric thin film filter. (Example 1)
  • FIG. 12 (a) is a cross-sectional view of a main part taken along line ⁇ - ⁇ in FIG. 11, and (b) is an enlarged cross-sectional view of the main part. (Example 1)
  • FIG. 13A is an enlarged plan view of a main part of a piezoelectric thin film filter
  • FIG. 13B is a sectional view of the main part.
  • FIG. 14 is a block diagram of a piezoelectric thin film filter. (Example 1)
  • FIG. 15 is an explanatory diagram of an insulating film forming step. (Example 1)
  • FIG. 16 is a cross-sectional view of a principal part of a piezoelectric thin film filter. (Example 2)
  • FIG. 17 is a cross-sectional view of a principal part of a piezoelectric thin film filter. (Example 3)
  • FIG. 18 is a configuration diagram of a composite filter. (Example 4)
  • FIG. 19 is a plan view of a piezoelectric thin film filter. (Example 5)
  • FIG. 20 is a plan view of a piezoelectric thin film filter. (Example 6)
  • FIG. 21 is a block diagram of a piezoelectric thin film filter. (Example 6)
  • FIG. 22 is a plan view of a piezoelectric thin film filter. (Example 7)
  • FIG. 23 is a block diagram of a piezoelectric thin film filter. (Example 7)
  • Example 1 The piezoelectric thin film filter 10 of the first example will be described with reference to FIGS.
  • FIG. 2 is a cross-sectional view of a principal part showing a basic configuration of the piezoelectric thin film filter 10 of the first embodiment.
  • the part including the basic unit of one cycle is shown, but in reality, it is configured to repeat multiple cycles.
  • Both main surfaces 14a, 14b of the piezoelectric thin film 14, the first electrode finger 24 and the second electrode finger 22 of the first electrode pair 20, and the third electrode finger 34 and the fourth electrode of the second electrode pair 30 The fingers 32 are alternately arranged at intervals.
  • an insulating film 16 for mass addition is disposed between the adjacent first electrode finger 24 and third electrode finger 34.
  • second insulating films 18a and 18b are disposed on the entire main surfaces 14a and 14b of the piezoelectric thin film 14. That is, on one main surface 14 a, the second insulating film 18 a covers the first electrode finger 24, the third electrode finger 34, and the insulating film 16. On the other main surface 14b, the second insulating film 18b covers the second electrode finger 22 and the fourth electrode finger 32. Only one of the second insulating films 18a and 18b may be formed. Further, the second insulating films 18a and 18b may not be formed.
  • the second insulating films 18a and 18b may be made of the same material or different materials from the insulating film 16 disposed between the first electrode finger 24 and the third electrode finger 34.
  • the second insulating films 18a and 18b can be adjusted in frequency by etching after completion of the element. Further, the second insulating films 18a and 18b also have an effect of preventing the oxidation and corrosion of the electrode fingers 22, 24, 32 and 34.
  • the center-to-center distances Wa + Wm and Wf + Wm between the electrode fingers 24 and 34 arranged alternately via the insulating film 16 are larger than twice the thickness T of the piezoelectric thin film 14.
  • the width Wm of each electrode finger 22, 24, 32, 34 is larger than twice the thickness T of the piezoelectric thin film 14.
  • the spacing between the adjacent electrode fingers 24, 34 that is, the widths Wa and Wf of the non-electrode portion, may be the same or different.
  • the first electrode finger 24 and the second electrode finger 22 are connected to the input terminal, and the third electrode finger 34 and the fourth electrode finger 32 are connected to the output terminal to constitute a dual mode filter. In this case, it can also be used as a balanced input / output filter, and any electrode finger 24, 22, 34, 32 can be grounded as an unbalanced terminal, and can also be used as a Norrance type filter.
  • FIG. 4 (a) shows a unit unit l is which is a filter element using a symmetric mode generated as a result of coupling of two resonators 11a and l ib.
  • FIG. 4 (b) shows a unit unit 1 It that is a filter element using an asymmetric mode that is generated as a result of coupling of two resonators 11a and l ib.
  • FIG. 5 schematically shows the characteristics of the unit units lis and lit which are these filter elements.
  • the solid line shows the characteristics of the unit unit l is which is a filter element of the symmetric mode.
  • the broken line indicates the characteristics of the unit unit l it which is a filter element in the asymmetric mode.
  • the piezoelectric thin film filter 10 can have wideband filter characteristics by setting the width Wm of the electrode fingers 22, 24, 32, and 34 to an appropriate value. For example, by making the width Wm of the electrode fingers 22, 24, 32, and 34 larger than twice the thickness T of the piezoelectric thin film 14, spurious vibrations are generated in the vicinity.
  • a wideband filter can be configured in multiple modes.
  • the piezoelectric thin film filter disclosed in Patent Document 1 has a small ⁇ finger of the resonator composed of one electrode pair due to the small width of the electrode finger, so that the coupling between the electrode pair is removed.
  • the width of the electrode fingers is too large, vibration energy is confined in each electrode pair, and the coupling between the electrode pairs is reduced. There is a problem that it gets smaller.
  • FIG. 6 shows a symmetric mode (resonator mode in which the first electrode finger 24 and the third electrode finger 34 are connected in common and the second electrode finger 22 and the fourth electrode finger 32 are connected in common) for the piezoelectric thin film filter 10.
  • (Vibration mode) is a solid line
  • asymmetric mode resonator vibration with first electrode finger 24 and fourth electrode finger 32 connected in common, second electrode finger 22 and third electrode finger 34 connected in common
  • the characteristics are shown by broken lines.
  • two symmetrical mode resonance peaks indicated by symbol A and one asymmetric mode resonance peak indicated by symbol B appear.
  • a filter having the characteristic indicated by the symbol C in FIG. 7 can be configured.
  • the 3dB attenuation bandwidth from the thru is about 80MHz (4.4% as a relative band), which is a wider band than about 60MHz when using one symmetric mode resonance.
  • the piezoelectric thin film filter 10 is provided with an insulating film 16 for mass addition in the non-electrode portion between the first electrode finger 24 and the third electrode finger 34 to improve the filter characteristics.
  • a conventional ceramic vibrator used in the MHz band or the like does not require an insulating film because the frequency reduction amount due to the electrode is about Sl%.
  • the frequency drop of 10% or more occurs in the thin film BAW resonator used in the GHz band. For this reason, it is difficult to apply the conventional energy confinement theory to a thin film BAW resonator as it is.
  • FIG. 8 shows a dispersion curve (a mixed wave of a fundamental mode of thickness longitudinal vibration and a double mode of thickness shear vibration) in the structure of a thin film BAW resonator.
  • the horizontal axis is the bZ ⁇ standardized by the wavelength ⁇ of the wave propagating through the piezoelectric thin film thickness b in the plane direction, and the vertical axis is the frequency (MHz).
  • indicates that there is an insulating film on the non-electrode part
  • indicates that the electrode part
  • X indicates that there is no insulating film on the non-electrode part
  • the piezoelectric thin film 14 supported by the substrate 12 is formed in the part lifted from the substrate 12 through the gap 13.
  • the first unit unit 91 which is the first filter element by the first electrode pair 20 and the second electrode pair 30, and the second filter element by the third electrode pair 40 and the fourth electrode pair 50
  • a second unit 92 (see FIG. 14) is formed.
  • forces that are intentionally shifted in order to make it easier to apply force are the first electrode pair 20 and the third electrode pair 40, one main surface of the piezoelectric thin film 14 (the upper surface 14a in FIG. 12).
  • the piezoelectric thin films 14 are opposed to each other.
  • the second electrode pair 30 and the fourth electrode pair 50 are respectively provided with five third electrode fingers 34 and 54 arranged on the upper surface 14a (see FIG. 12) of the piezoelectric thin film 14 and the lower surface of the piezoelectric thin film 14.
  • the five fourth electrode fingers 32 and 52 arranged on 14b are opposed to each other with the piezoelectric thin film 14 interposed therebetween.
  • the first electrode fingers 24 and 44 of the first electrode pair 20 and the third electrode pair 40 and the third electrode fingers 34 and 54 of the second electrode pair 30 and the fourth electrode pair 50 are , Are arranged alternately at intervals.
  • the second electrode fingers 22, 42 of the first electrode pair 20 and the third electrode pair 40 and the fourth electrode fingers 32, 52 of the second electrode pair 30 and the fourth electrode pair 50 are They are arranged alternately with a gap.
  • the two unit units 91 and 92 are formed adjacent to each other on the part floating from the substrate 12 through the gap 13 of the piezoelectric thin film 14, and the electrode fingers 32 of the adjacent first unit unit 91, Three 4 and the electrode length 42, 44 of the second unit unit 92, and the electrode fingers 22, 32; 24, 34; 52, 42; 54, 44 adjacent to each unit unit 91, 92! The interval between them is substantially the same. As a result, since the adjacent unit units 91 and 92 are mechanically coupled to each other, the entire unit units 91 and 92 operate integrally, and the ripples with a fine period can be reduced.
  • a void may be formed by disposing a piezoelectric film on the concave portion of the substrate. Further, acoustic separation may be performed by forming a piezoelectric film at the opening of the substrate.
  • the insulating film 16 is disposed on the upper surface 14a of the piezoelectric thin film 14 at intervals between the adjacent electrode fingers 24, 34, 44, 54.
  • the insulating film 16 is a region inside the electrode fingers 24, 54 on both outer sides of the arrangement of the electrode fingers 24, 34, 44, 54 (hereinafter referred to as "resonance"). It is only arranged in the area.
  • a filter by forming an insulating film on the upper surface 14a of the piezoelectric thin film 14 extending continuously outward from the resonance region, if there is no insulation film outside the resonance region, the resonance region Since the frequency outside is higher than that of the resonance region, vibration energy is confined in the resonance region, and a low-loss filter without spuriousness can be configured without leaking from the resonance region.
  • the wiring (bus bar) 25 and 45 connecting the first electrode fingers 24 and 44 of the first electrode pair 20 and the third electrode pair 40 are both connected to the port 1 terminal 16b. It is connected.
  • Wirings (bus bars) 23 and 43 for connecting the second electrode fingers 22 and 42 of the first electrode pair 20 and the third electrode pair 40 are connected to the GND terminals 16a and 16c, respectively, and are also connected to each other.
  • a wiring (bus bar) 35 for connecting the third electrode fingers 34 of the second electrode pair 30 is connected to the port 2 terminal 16 d.
  • the wiring (bus bar) 53 connecting each fourth electrode finger 52 of the fourth electrode pair 50 is connected to the port 3 terminal 16e.
  • FIG. 13 (b) is the same as Figure 13 (a). It is sectional drawing cut
  • the wirings 33 and 55 are electrical neutral points between the terminals 16d and 16e, and should be grounded even if they are electrically floating.
  • the piezoelectric thin film filter 10 includes an input terminal 16b; 16a and 16c are connected in parallel to the first electrode pair 20 and the third electrode pair 40, and the output terminals 16d and 16e are connected to the second electrode pair. 30 and the fourth electrode pair 50 are connected in series.
  • the input terminals 16b; 16a, 16c are connected to an unbalanced terminal, an unbalanced signal is input, and the output terminals 16d, 16e are connected to the balanced terminal to output a balanced signal. Input and output may be reversed.
  • (1) is the first electrode fingers 24, 44, (2) is the second electrode fingers 22, 42, (3) is the third electrode fingers 34, 54, and (4) is the fourth electrode. Fingers 32 and 52 are shown respectively.
  • the solid line indicates the wiring on the upper surface 14a side of the piezoelectric thin film 14, and the broken line indicates the wiring on the lower surface 14b side of the piezoelectric thin film 14.
  • the input / output impedance of each unit 91, 92 is the impedance of each electrode pair 20, 30, 40, 50, respectively.
  • an RF filter of a mobile phone is connected between an antenna (impedance is 50 ⁇ ) and an LNA (input impedance is 100 to 200 ⁇ ). For this reason, it is required to adjust the impedance ratio of the input terminal and output terminal of the piezoelectric thin film filter used in the RF filter to 1: 2 to 1: 4.
  • the piezoelectric thin film filter 10 can meet such a demand.
  • a sacrificial layer (not shown) for forming the air gap 13 and a second insulating film 18b are sequentially formed on the substrate 12, and a conductive film is formed on the sacrificial layer. Then, a resist is applied on the conductive film, and the resist pattern formed by exposure and development is used to remove unnecessary portions of the conductive film by etching to form lower electrode patterns such as electrode fingers 22 and 32. After that, the resist pattern is removed.
  • the lower electrode pattern 100 made of a conductive film and exposed A piezoelectric thin film 14 and an insulating film 102 are sequentially formed on the second insulating film 18b (see FIG. 2).
  • a resist is applied on the insulating film 102, and exposure and development are performed to form a common resist pattern 104.
  • the conductive films 106, 1 are formed on the exposed upper surface 14 a of the piezoelectric thin film 14 and the common resist pattern 104 with the common resist pattern 104 left.
  • the conductive film 107 on the common resist pattern 104 is removed together with the common resist pattern 104, and the upper portions of the electrode fingers 24, 34, etc. are removed by the remaining conductive film 106.
  • An electrode pattern is formed.
  • the sacrificial layer is removed to form the gap 13.
  • the piezoelectric thin film 14 has a thickness of 2.7 ⁇ m (AlN, electrode pair 20, 30, 40, 50) 22, 24; 32, 34; 42, 44; 52, 54 Snoichi;) 23, 25; 33, 35; 43, 45; 53, 55 etc. electrode pattern is 0.7 m thick Al, insulating film 16 is 0.34 m thick SiO film A1
  • the N film is preferably a uniaxially oriented film.
  • An epitaxy A1N film is more preferable.
  • the dual mode filter uses waves propagating in the plane direction of the piezoelectric thin film, so it is easily affected by crystal grain boundaries, but the epitaxial film is less affected by grain boundaries, so resonance between adjacent resonators The mechanical coupling between the children is stable and the filter characteristics are good.
  • the width of the electrode fingers 22, 24; 32, 34; 42, 44; 52, 54 is 12 m, and the distance between the adjacent first electrode fingers 24, 44 and the third electrode fingers 34, 54
  • the width of the insulating film 16 provided between the electrode fingers 22, 24; 32, 34; 42, 44; 52, 54) is 11 m.
  • the length of electrodes 22, 24; 32,34; 42, 44; 5 2, 54 is the desired impedance (impedance of each electrode pair 20, 30, 40, 50 Force S 100 ⁇ ).
  • the impedance of each electrode pair 20, 30, 40, 50 is inversely proportional to the product LXN of the length L of the electrode fingers 22, 24; 32, 34; 42, 44; 52, 54 and the number of pairs.
  • FIG. 9 is a graph showing the relationship between the number of electrode pairs and the filter characteristics.
  • the sum of the number of electrode finger pairs of the first electrode pair on the input side and the number of electrode finger pairs of the second electrode pair on the output side (hereinafter referred to as “total logarithm”) is 2.
  • Fig. 9 (b) shows the case where the total logarithm is 12
  • Fig. 9 (c) shows the case where the total logarithm is 20.
  • the horizontal axis is frequency (MHz)
  • the vertical axis is transfer coefficient S21 (dB).
  • Fig. 9 (a) to (c) by setting the total logarithm to 20 pairs or more, it is possible to reduce the ripples of fine cycles and to obtain good filter characteristics with less spurious. .
  • Figs. 10 (a) to 10 (d) show the case where the total number of logs is 20 and only the thickness of the SiO insulating film 16 is changed.
  • Fig. 10 (a) shows no SiO insulating film
  • Fig. 10 (b) shows the thickness of SiO insulating film 16.
  • Fig. 10 (c) shows the thickness of SiO insulating film 16 is 0.34 ⁇ m
  • Fig. 10 (d) shows SiO insulating layer
  • the thickness of film 16 is 0.45 m is shown.
  • the horizontal axis is frequency (MHz), and the vertical axis is transfer coefficient S 21 (dB). From FIGS. 10A to 10D, it is understood that the thickness of the SiO 2 insulating film 16 is preferably about 0.34 m in order to obtain a broadband and low ripple characteristic.
  • the piezoelectric thin film filter 10 is provided with the insulating film 16 at the non-electrode portion between the electrode pairs, the coupling between the electrode pairs can be strengthened, and a broadband filter can be configured. Since the electrode width (electrode pair width Wm) and non-electrode width (Wa, Wf) can be increased, filter elements can be formed without using high-precision microfabrication technology, and manufacturing costs can be reduced. Is possible. Since the electrode width is large, a plurality of vibration modes can be used, and a broadband filter can be configured. Moreover, since the electrode width is large, the parasitic resistance can be reduced.
  • FIG. 16 is a cross-sectional view of the main part of the piezoelectric thin film filter 60.
  • the first electrode finger 61 of the first electrode pair 61 and the third electrode finger 63 of the second electrode pair are spaced from each other on one main surface 66a of the piezoelectric thin film 66.
  • the insulating films 65 are disposed between the adjacent electrode fingers 61 and 63.
  • the second electrode finger 62 of the first electrode pair and the fourth electrode finger 6 of the second electrode pair 6 are opposed to the electrode fingers 61, 63. Alternating with 4 and force intervals.
  • the electrode fingers 61 and 62 of the first electrode pair are connected to the unbalanced terminal, and the electrode fingers 63 and 64 of the second electrode pair are connected to the balanced terminal.
  • the widths of the third electrode finger 63 and the fourth electrode finger 64 are different. Alternatively, the positions of the third electrode finger 63 and the fourth electrode finger 64 are shifted.
  • the third electrode finger 63 of the second electrode pair is closer to the ground potential than the fourth electrode finger 64 of the second electrode pair.
  • the balance between the electrode fingers 63 and 64 of the second electrode pair is reduced. Therefore, the width of the third electrode finger 63 closer to the grounded first electrode finger 61 is relatively narrowed, and the width of the farther fourth electrode finger 64 is relatively widened so that the fourth electrode finger 64 is The degree of balance can be maintained by moving closer to the first electrode finger 61 side.
  • FIG. 17 is a cross-sectional view of the main part of the piezoelectric thin film filter 70.
  • the first electrode finger 71 of the first electrode pair 71 and the third electrode finger 73 of the second electrode pair are spaced apart on one main surface 76a of the piezoelectric thin film 76.
  • the insulating films 75 are arranged between the adjacent electrode fingers 71 and 73.
  • a force interval is provided between the second electrode finger 72 of the first electrode pair and the fourth electrode finger 74 of the second electrode pair so as to face the electrode fingers 71 and 73. Alternatingly arranged.
  • the difference from the first embodiment is that the width of the electrode fingers 71 and 72 of the first electrode pair is different from the width of the electrode fingers 7 3 and 74 of the second electrode pair.
  • the impedance of the first electrode pair and the second electrode pair It is possible to change the impedance between the input and output terminals, that is, to change the impedance between the input and output terminals.
  • Impedance can be changed between input and output by making the number of electrode finger pairs in the electrode pair different between the input terminal and the output terminal.
  • the composite filter 90 is a filter in which the piezoelectric thin film filter 80 and the lattice filter 88 are combined.
  • Piezoelectric thin film filter 80 has insulating film 8 between adjacent electrode fingers 81, 82, 83, 84. 5 is provided.
  • the insulating film 85 may be provided only on one main surface of the piezoelectric thin film 86 as in the first to third embodiments.
  • another filter such as a ladder filter may be combined.
  • the piezoelectric thin film filter 80 By combining the piezoelectric thin film filter 80 with a lattice filter or a ladder filter, a filter having excellent out-of-band attenuation characteristics can be obtained.
  • the lattice filter 88 and the ladder filter can be simultaneously formed in substantially the same process as the piezoelectric thin film filter 80.
  • Example 5 A piezoelectric thin film filter of Example 5 will be described with reference to the plan view of FIG.
  • the piezoelectric thin film filter is configured in substantially the same manner as in the first embodiment, and includes a plurality of unit units 10x that are filter elements. In FIG. 19, only one unit 10x is shown.
  • the unit unit 10x of the piezoelectric thin film filter of Example 5 includes the first electrode pair 20x and the second electrode pair at the portion where the piezoelectric thin film 14x supported by the substrate 12x floats from the substrate 12x via the gap 13x. 30x is formed!
  • One main surface of the piezoelectric thin film 14x (the main surface opposite to the substrate 12x) has ten first electrode fingers 26 of the first electrode pair 20x and ten third electrodes of the second electrode pair.
  • the electrode fingers 36 are alternately arranged at intervals.
  • a wiring (bus bar) 27 connecting each first electrode finger 26 is connected to the port 1 terminal 17 b.
  • a wiring (bus bar) 37 for connecting each third electrode finger 36 is connected to the port 2 terminal 17e.
  • an insulating film is provided in the gap as in the first embodiment.
  • a second insulating film may be provided so as to entirely cover the first electrode finger 26 and the insulating film between the third electrode finger and the adjacent electrode fingers 26, 36.
  • a rectangular common electrode 46 is disposed on the other main surface of the piezoelectric thin film 14x (the main surface on the substrate 12x side).
  • the common electrode 46 is connected to the GND terminals 17a, 17c, 17d, and 17f.
  • the common electrode 46 is a portion corresponding to the second electrode finger facing the first electrode finger 26 of the first electrode pair, or a portion corresponding to the fourth electrode finger facing the third electrode finger 36 of the second electrode pair.
  • a resonator is constituted by a portion where the first electrode finger 26 and the common electrode 46 face each other and a portion where the third electrode finger 36 and the common electrode 46 face each other. Note that a second insulating film covering the common electrode 46 as a whole may be provided.
  • the common electrode 46 is a region facing the first electrode finger 26 and the third electrode finger 36 (second electrode finger, second electrode finger It covers the wide area more than the part corresponding to the four electrode fingers). Therefore, even if the alignment between the common electrode 46 and the electrode fingers 26 and 36 is slightly shifted, there is almost no effect on the characteristics of the resonator. Therefore, when the electrode fingers are opposed to each other with the piezoelectric thin film interposed therebetween as in Example 1. Such high-precision alignment adjustment is unnecessary, and the process can be simplified.
  • a common electrode may be provided on one main surface (main surface opposite to the substrate) of the piezoelectric thin film, and electrode fingers may be provided on the other main surface (main surface on the substrate side).
  • the common electrode is provided for at least one of the plurality of unit units of the piezoelectric thin film filter.
  • the electrode fingers on the outer sides of the arrangement of the electrode fingers 26 and 36 are the first electrode finger 26 and the third electrode finger 36.
  • one third electrode finger 36 is provided. It is possible to increase it so that both outer sides are the third electrode fingers 36. In this case, there are 10 first electrode fingers 24 and 11 third electrode fingers 36. Since the impedance on the side where the number of electrode fingers is large becomes low, the number of electrode fingers can be selected appropriately, and the impedance ratio of the input terminal and output terminal can be adjusted to various values.
  • the impedance ratio of the input terminal and the output terminal can be set to 3: 2.
  • the input side is connected in parallel and the output side is connected in series.
  • 3: 8 can be set.
  • FIG. 20 is a plan view of the piezoelectric thin film filter 110
  • FIG. 21 is a block diagram.
  • the piezoelectric thin film filter 110 is configured in substantially the same manner as in the first embodiment.
  • the piezoelectric thin film 114 supported by the substrate 112 has the first unit unit 160 of the first electrode pair 120 and the second electrode pair 130, and the first unit unit 160 in the portion that is lifted from the substrate 112 via the gaps 113a and 113b.
  • the third unit pair 140 and the second unit unit 170 of the fourth electrode pair 150 are formed adjacent to each other.
  • the five first electrode fingers of the first electrode pair 120 are formed on one main surface (main surface opposite to the substrate 112) of the portion lifted from the substrate 112 via the gap 113a of the piezoelectric thin film 114. 124 and the five third electrode fingers 134 of the second electrode pair 130 are alternately arranged with a force interval. Further, the five first electrode fingers 144 of the third electrode pair 140 are formed on one main surface (main surface opposite to the substrate 112) of the portion that is lifted from the substrate 112 through the gap 113b of the piezoelectric thin film 114. And five third electrode fingers 154 of the fourth electrode pair are alternately arranged at intervals. An insulating film may be provided in the space between the electrode fingers 124, 134; 144, 154. Furthermore, the first electrode fingers 124, 144, the third electrode members 134, 154 and their electrode members 124, 134; A second insulating film that entirely covers the insulating film between 144 and 154 may be provided.
  • the other main surface (the main surface on the substrate 112 side) of the portion lifted from the substrate 112 through the gap 113a of the piezoelectric thin film 114 is opposed to the first electrode finger 124 of the first electrode pair 120.
  • Two second electrode fingers 122 and five fourth electrode fingers 132 respectively opposed to the third electrode fingers 134 of the second electrode pair 130 are alternately arranged at intervals.
  • the other main surface (main surface on the substrate 112 side) of the portion lifted from the substrate 112 through the gap 113b of the piezoelectric thin film 114 is opposed to the first electrode finger 144 of the third electrode pair 140.
  • the two second electrode fingers 142 and the five fourth electrode fingers 152 respectively facing the third electrode fingers 154 of the fourth electrode pair 150 are alternately arranged at intervals.
  • the wiring (bus bar) 125 connecting the first electrode fingers 124 of the first electrode pair 120 is connected to each of the third electrode pair 140 in the through-hole 115 formed in the piezoelectric thin film 114.
  • the wiring (bus bar) 143 for connecting the second electrode finger 142 is connected to the end of the wiring 143 and further connected to the port 1 terminal 116b.
  • a wiring (bus bar) 123 connecting the second electrode fingers 122 of the first electrode pair 120 is connected to the GND terminal 116a.
  • a wiring (bus bar) 145 for connecting the first electrode fingers 144 of the third electrode pair 140 is connected to the GND terminal 116c.
  • the wiring (bus bar) 135 that connects each third electrode finger 134 of the second electrode pair 130 is a port 2 terminal 1 Connected to 16d.
  • a wiring (bus bar) 155 connecting each third electrode finger 154 of the fourth electrode pair 150 is connected to the port 3 terminal 116e.
  • the wiring (bus bar) 133 connecting each fourth electrode finger 132 of the second electrode pair 130 and the wiring (bus bar) 153 connecting each fourth electrode finger 152 of the fourth electrode pair 150 are connected to each other. Yes.
  • the wirings 133 and 153 connected to each other are electrical neutral points between the terminals 116d and 116e, and may be electrically buoyant or grounded.
  • the piezoelectric thin film filter 110 is connected in parallel to the input terminal 116b; 116a, 116c force first and second unit units 160, 170 by switching the first and second electrode fingers; Output terminals 116d and 116e are connected in series to the first and second unit units 160 and 170, respectively.
  • (1) shows the first electrode fingers 124 and 144
  • (2) shows the second electrode fingers 122 and 142
  • (3) shows the third electrode fingers 134 and 154
  • Fingers 132 and 152 are shown respectively.
  • the solid line indicates the wiring on the main surface opposite to the substrate 112 of the piezoelectric thin film 114, and the broken line indicates the wiring on the main surface on the substrate 112 side of the piezoelectric thin film 14.
  • Input terminals 116b; 116a and 116c are connected to unbalanced terminals, and output terminals 116d and 116e are connected to balanced terminals. The input / output may be reversed.
  • Embodiment 6 With the configuration of Embodiment 6, a balanced filter having an input-side impedance of 50 ⁇ and an output-side impedance of 200 ⁇ can be obtained.
  • Example 7 A piezoelectric thin film filter 210 of Example 7 will be described with reference to FIGS. 22 is a plan view of the piezoelectric thin film filter 210, and FIG. 23 is a block diagram.
  • the piezoelectric thin film filter 210 is configured in substantially the same manner as in the first embodiment.
  • the piezoelectric thin film 214 supported by the substrate 212 is provided with a first unit of the first electrode pair 220 and the second electrode pair 230 in each of the portions lifted from the substrate 212 through the two gaps 213a and 213b.
  • the pair 280 and the fourth unit unit 340 of the eighth electrode pair 290 are formed adjacently in order.
  • the electrode fingers included in each of the unit units 310, 320, 330, and 340 are twice as long as the electrode fingers included in the unit units 91 and 92 of the first embodiment. If you make the electrode fingers twice as long
  • Each unit unit 310, 320, 330, 340 ⁇ has an input impedance of 50 ⁇ and an output impedance of 50 ⁇ .
  • the five firsts of the first electrode pair 220 are formed on one main surface of the piezoelectric thin film 214 that floats from the substrate 212 via one air gap 213a (the main surface opposite to the substrate 212).
  • the five first electrodes of the fifth electrode pair 260 are formed on one main surface (the main surface opposite to the substrate 212) of the portion lifted from the substrate 212 through the other gap 213b of the piezoelectric thin film 214.
  • the five first electrode fingers 284 of the finger 264 and the seventh electrode pair 280 and the five third electrode fingers 274 of the sixth electrode pair 270 and the five third electrode fingers 294 of the eighth electrode pair 290 They are alternately placed at intervals.
  • 224, 234, 244, 254; 264, 274, 284, 294 may be provided with an insulating film in the interval between them, and further, the electrode objects 224, 234, 244, 254; 264, 27 4, A second insulating film that entirely covers 284, 294 and the insulating film may be provided.
  • the other main surface (main surface on the substrate 212 side) of the portion of the piezoelectric thin film 214 that is lifted from the substrate 212 via one gap 213a is paired with the first electrode finger 224 of the first electrode pair 220, respectively.
  • the five fourth electrode fingers 232 and the five fourth electrode fingers 252 respectively facing the third electrode fingers 254 of the fourth electrode pair 250 are alternately arranged at intervals.
  • the other main surface (main surface on the substrate 212 side) of the portion lifted from the substrate 212 via the other gap 213b of the piezoelectric thin film 214 faces the first electrode finger 264 of the fifth electrode pair 260, respectively.
  • the five fourth electrode fingers 272 and the five fourth electrode fingers 292 facing the third electrode fingers 294 of the eighth electrode pair 290 are arranged alternately with a force interval.
  • the first unit unit 310 and the second unit unit 320 are formed adjacent to each other in a portion lifted from the substrate 212 via the gap 213a of the piezoelectric thin film 214, and are adjacent to the electrodes of the first unit unit 310.
  • the distance between the fingers 232, 23 4 and the electrode unit 242, 244 of the second unit unit 320 and the unit units 310, 320 In this case, the distance between the adjacent electrodes 222, 232; 224, 234; 242, 252; 244, 254 is substantially the same.
  • the adjacent first unit unit 310 and second unit unit 320 are mechanically coupled, the unit units 310 and 320 operate as a whole, and fine! /, Ripple of the period Can be reduced.
  • the third unit unit 330 and the fourth unit unit 340 are formed adjacent to each other and adjacent to the portion that is lifted from the substrate 212 via the gap 213b of the piezoelectric thin film 214. 26
  • the distance between the electrode fingers 272, 274 of the unit unit 330 and the electrode fingers 282, 284 of the fourth unit unit 340 and the electrode units adjacent to the unit units 330, 340! 26, 272; 26 4, 274; 282, 292; 284, 294 spacing and force S are almost the same.
  • the adjacent third unit unit 330 and fourth unit unit 340 are mechanically coupled, the unit units 330 and 340 operate as a whole, and the ripples with a fine cycle are reduced. be able to.
  • the wiring (bus bar) 225 connected to each first electrode finger 224 of the first electrode pair 220 is connected to the port 1 terminal 216a.
  • the wiring (bus bar) 263 connected to each second electrode finger 262 of the fifth electrode pair 260 is connected to the GND terminal 216b.
  • a wiring (bus bar) 223 connecting each second electrode finger 222 of the first electrode pair 220 and a wiring (bus bar) 243 connecting each second electrode finger 242 of the third electrode pair 240 are connected.
  • a wiring (bus bar) 265 that connects each first electrode finger 264 of the fifth electrode pair 260 and a wiring (bus bar) 285 that connects each first electrode finger 284 of the seventh electrode pair 280 are connected.
  • the end of the wiring 243 of the third electrode pair 240 and the end of the wiring 275 of the fifth electrode pair 260 are connected.
  • the wiring (bus bar) 235 connected to each third electrode finger 234 of the second electrode pair 230 is connected to the port 2 terminal 216c.
  • the wiring (bus bar) 293 connected to each fourth electrode finger 292 of the eighth electrode pair 290 is connected to the port 3 terminal 216d.
  • the end of the wiring (bus bar) 233 connected to each fourth electrode finger 232 of the second electrode pair 230 and each third electrode finger of the fourth electrode pair 250 254 wires (bus bar) 255 ends are connected.
  • the end of the wiring (bus bar) 253 of each fourth electrode finger 252 of the fourth electrode pair 250 and the sixth electrode The ends of wires (bus bars) 275 connected to the third electrode fingers 274 of the pole pair 270 are connected.
  • the through hole 215d formed in the piezoelectric thin film 214 it is connected to the end of the wiring (bus bar) 273 of each fourth electrode finger 272 of the sixth electrode pair 270 and to each third electrode finger 294 of the eighth electrode pair 290.
  • Wiring (bus bar) is connected to the end of 295.
  • the input terminals 216a and 216b are respectively connected in parallel to the two unit units 310, 320; 330, 340, and the output terminals 216c, 216d are
  • the unit units 310, 320, 330, and 340 are connected in series.
  • (1) shows the first electrode fingers 224, 244, 264, 284, (2) shows the second electrode fingers 222, 242, 262, 282, (3) shows the third electrode fingers 234, 254, 274 , 294, and (4) show the fourth electrode fingers 232, 252, 272, and 292, respectively.
  • a solid line indicates wiring on the main surface opposite to the substrate 212 of the piezoelectric thin film 214, and a broken line indicates wiring on the main surface on the substrate 212 side of the piezoelectric thin film 214.
  • Input terminals 216a and 216b are connected to an unbalanced terminal, and output terminals 216c and 216d are connected to a balanced terminal. Input / output may be reversed.
  • Embodiment 7 With the configuration of Embodiment 7, a balanced filter having an input-side impedance of 50 ⁇ and an output-side impedance of 200 ⁇ can be obtained.
  • Each piezoelectric thin film filter described above can adjust the impedance ratio between the input terminal and the output terminal.
  • the piezoelectric thin film filter of the present invention is not limited to the above-described embodiment, and can be implemented in various modes.
  • the first electrode finger, the third electrode finger, and the insulating film may be provided on the main surface of the piezoelectric thin film on the substrate side.
  • the piezoelectric thin film may be supported in a state of being floated via the substrate force gap layer by at least two film-like support portions each partially supported on the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 帯域を広くすることができる圧電薄膜フィルタを提供する。  第1電極対20は、圧電薄膜14の一方の主面14aに配置された2以上の第1電極指24と、圧電薄膜14の他方の主面14bに第1電極指24に対向して配置された第2電極指22とを有する。第2電極対30は、圧電薄膜14の一方の主面14aに第1電極指24と互いに間隔を設けて交互に配置された2以上の第3電極指34と、圧電薄膜14の他方の主面14bに圧電薄膜14を介してそれぞれ第3電極指34に対向して配置された第4電極指32とを有する。圧電薄膜14の一方の主面14aには、互いに間隔を設けて交互に配置された第1電極指24と第3電極指34との間に、絶縁膜16を備える。交互に配置された第1電極指24と第3電極指36との間の中心間距離Wa+Wm、Wf+Wmが、圧電薄膜14の厚さTの2倍よりも大きい。

Description

明 細 書
圧電薄膜フィルタ
技術分野
[0001] 本発明は圧電薄膜フィルタに関し、詳しくは、圧電薄膜を電極で挟み込み、圧電薄 膜自体の共振振動を利用する BAW (バルタ弾性波)共振子を用いた圧電薄膜フィ ルタに関する。
背景技術
[0002] 近年、携帯電話の RFフィルタ用に 2重モード型の圧電薄膜フィルタが開発されて おり、例えば特許文献 1には、 BAW共振子を平面方向に配置したデバイスが開示さ れている。図 1に示すように、基板 1上に設けた支持構造部 2により、中空空間 4を介 してダイヤフラム 3が支持され、ダイヤフラム 3上に圧電薄膜 6が配置されている。圧 電薄膜 6の両主面には、それぞれ圧電薄膜 6を介して対向するように、第 1電極対の 複数の電極指 5a, 7aと、第 2の電極対の複数の電極指 5b, 7bとが、間隔を設けて交 互に配置されている。第 1電極対の電極指 5a, 7aは入力端子に接続され、第 2電極 対の電極指 5b, 7bは出力端子に接続され、第 1電極対の電極指 5a, 7a間で形成さ れる共振子で発生した振動が、隣接する第 2電極対の電極指 5b, 7b間で形成される 共振子に伝搬され、電気信号を出力するようになっている。このデバイスの入力端子 出力端子のインピーダンス比は 1: 1である。
特許文献 1 :特許第 3535101号公報
発明の開示
発明が解決しょうとする課題
[0003] このような圧電薄膜フィルタにおいて、共振子間の機械的結合を実現するためには 、隣接する第 1電極対の電極指 5a, 7aと第 2電極対の電極指との間のピッチ(中心間 距離 P)を小さくしなければならない。例えば特許文献 1の第 14段落には、第 1電極 対の電極指 5a, 7aと第 2電極対の電極指 5b, 7bとの間のピッチ(中心間距離 P)を小 さくするために電極指 5a, 7a, 5b, 7bの幅 Wを、圧電薄膜 6の厚さ Tの 2倍よりも小さ くする、すなわち、 Wく 2Τとすることが有利である旨が開示されている。 [0004] しかし、電極指 5a, 5b, 7a, 7bの幅が小さくなると、圧電薄膜フィルタの帯域幅が 狭くなつてしまう。
[0005] 力かる実情に鑑み、本発明が解決しょうとする第 1の課題は、帯域を広くすることが できる圧電薄膜フィルタを提供することである。
[0006] また、 BAWフィルタにお!/、て、モノリシッククリスタルフィルタ(MCF)に代用されるよ うな構成で 2重モードを利用することが考えられる。 2重モード型 BAWフィルタは、複 数の BAW共振子を、平面方向に並べて配置したものである。
[0007] 例えば、携帯電話の RFフィルタは、アンテナ (インピーダンスは 50 Ω )と LNA (入力 インピーダンスは 100〜200 Ω )との間に接続される。このため、 RFフィルタに用いる 圧電薄膜フィルタの入力端子 出力端子のインピーダンス比を 1: 2〜1 :4に調整す ることが求められる。
[0008] しかし、従来の BAW共振子を用いた圧電薄膜フィルタは、このような要求に対応す ることができない。
[0009] 力かる実情に鑑み、本発明が解決しょうとする第 2の課題は、入力端子—出力端子 間のインピーダンス比を調整することができる、 BAW共振子を用いるタイプの圧電薄 膜フィルタを提供することである。
課題を解決するための手段
[0010] 本発明は、上記第 1の課題を解決するために、以下のように構成した圧電薄膜フィ ルタを提供する。
[0011] 圧電薄膜フィルタは、 a)基板と、 b)前記基板に支持され、前記基板から音響的に 分離されて!ヽる部分を含む圧電薄膜と、 c)前記基板から音響的に分離されて!ヽる部 分の前記圧電薄膜の一方の主面に配置された 2以上の第 1電極指と、前記基板から 音響的に分離されている部分の前記圧電薄膜の他方の主面に前記圧電薄膜を介し てそれぞれ前記第 1電極指に対向して配置された 2以上の第 2電極指とを有する第 1 電極対と、 d)前記基板力 音響的に分離されている部分の前記圧電薄膜の前記一 方の主面に前記第 1電極指と互いに間隔を設けて交互に配置された 2以上の第 3電 極指と、前記基板から音響的に分離されている部分の前記圧電薄膜の前記他方の 主面に前記圧電薄膜を介してそれぞれ前記第 3電極指に対向して配置された第 4電 極指とを有する第 2電極対と備える。前記各第 1電極指に接続される第 1端子及び前 記各第 2電極指に接続される第 2端子と、前記各第 3電極指に接続される第 3端子及 び前記各第 4電極指に接続される第 4端子との間に、前記第 1電極対及び前記第 2 電極対によりフィルタ要素が形成される。前記圧電薄膜の前記一方の主面には、互 いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電極指との間に、絶 縁膜を備える。互いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電 極指との間の中心間距離が、前記基板力 音響的に分離されている部分の前記圧 電薄膜の厚さの 2倍よりも大き 、。
[0012] 上記構成において、例えば、第 1端子と第 2端子を入力端子とし、第 3端子および 第 4端子を出力端子とすれば、 2重モード型のフィルタとして機能させることができる。
[0013] 上記構成において、隣接する第 1電極指と第 3電極指との間に絶縁膜を設けること によって、圧電薄膜を挟んで対向する第 1電極指と第 2電極指との間に形成される共 振子と、圧電薄膜を挟んで対向する第 3電極指と第 4電極指との間に形成される共 振子との機械的結合を強め、隣接する共振子間で振動が伝搬されやすくすることが できる。そのため、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚さの 2倍よりも大きくしても、フィルタとして機能させることができる。
[0014] 上記構成において、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚 さの 2倍よりも大きくすることで、電極指の幅を広くすることができるので、厚み縦振動 共振子としての Δ ίを大きくすることができる。さらに、 3以上の共振ピークを用いて、フ ィルタの帯域を広くすることができる。
[0015] 単に電極幅を広げただけでは、圧電薄膜を挟んで対向する電極指で構成される個 々の共振子内に振動のエネルギーが閉じ込められやすくなるため、通過帯域内で略 一定のフィルタ特性を得ることができない。第 1電極指と第 3電極指との間に絶縁膜を 設けることにより、個々の共振子内における振動のエネルギーの閉じ込めが弱まり、 共振子間で振動が伝搬しやすくなり、フィルタ特性も良好となる。
[0016] さらに、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚さの 2倍よりも 大きくすることで、入出間容量を小さくでき、帯域外減衰を低減することができる。
[0017] なお、圧電薄膜の他方の主面において、隣接する第 2電極指と第 4電極指との間に 絶縁膜を設けるようにしてもょ 、。
[0018] また、本発明は、上記第 1の課題を解決するために、以下のように構成した圧電薄 膜フィルタを提供する。
[0019] 圧電薄膜フィルタは、 a)基板と、 b)前記基板に支持され、前記基板から音響的に 分離されて!ヽる部分を含む圧電薄膜と、 c)前記基板から音響的に分離されて!ヽる部 分の前記圧電薄膜の一方の主面に配置された 2以上の第 1電極指と、前記基板から 音響的に分離されている部分の前記圧電薄膜の前記一方の主面に前記第 1電極指 と互いに間隔を設けて交互に配置された 2以上の第 3電極指と、 d)前記基板から音 響的に分離されている部分の前記圧電薄膜の他方の主面に配置され前記圧電薄膜 を介して前記第 1電極指及び前記第 3電極指に対向する部分を含む共通電極とを備 える。前記第 1電極指と前記共通電極とにより第 1電極対を形成する。前記第 3電極 指と前記共通電極とにより第 2電極対を形成する。前記各第 1電極指に接続される第 1端子及び前記共通電極に接続される第 2端子と、前記各第 3電極指に接続される 前記第 3端子及び前記共通電極に接続される第 4端子の間に、前記第 1電極対及び 前記第 2電極対によりフィルタ要素を形成する。前記圧電薄膜の前記一方の主面は 、互いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電極指との間に 、絶縁膜を備える。互いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電極指との間の中心間距離が、前記圧電薄膜の厚さの 2倍よりも大きい。
[0020] 上記構成において、例えば、第 1端子と第 2端子を入力端子とし、第 3端子および 第 4端子を出力端子とすれば、 2重モード型のフィルタとして機能させることができる。
[0021] 上記構成において、隣接する第 1電極指と第 3電極指との間に絶縁膜を設けること によって、圧電薄膜を挟んで対向する第 1電極指と共通電極との間に形成される共 振子と、圧電薄膜を挟んで対向する第 3電極指と共通電極との間に形成される共振 子との結合を強め、隣接する共振子間で振動が伝搬されやすくすることができる。そ のため、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚さの 2倍よりも 大きくしても、フィルタとして機能させることができる。
[0022] 上記構成において、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚 さの 2倍よりも大きくすることで、電極指の幅を広くすることができるので、厚み縦振動 共振子としての Δ ίを大きくすることができる。さらに、 3以上の共振ピークを用いて、フ ィルタの帯域を広くすることができる。
[0023] 単に電極幅を広げただけでは、圧電薄膜を挟んで対向する電極指で構成される個 々の共振子内に振動のエネルギーが閉じ込められやすくなるため、通過帯域内で略 一定のフィルタ特性を得ることができない。第 1電極指と第 3電極指との間に絶縁膜を 設けることにより、個々の共振子内における振動のエネルギーの閉じ込めが弱まり、 共振子間で振動が伝搬しやすくなり、フィルタ特性も良好となる。
[0024] さらに、第 1電極指と第 3電極指との間の中心間距離を圧電薄膜の厚さの 2倍よりも 大きくすることで、入出間容量を小さくでき、帯域外減衰を低減することができる。
[0025] 上記構成によれば、圧電薄膜の一方の主面に配置された第 1電極指及び第 3電極 指と、圧電薄膜の他方の主面に配置された共通電極とのァライメントが多少ずれても 共振子の特性に影響がほとんどない。そのため、圧電薄膜を挟んで電極指同士が対 向する場合のような高精度なァライメント調整が不要であり、工程を簡素化することが できる。
[0026] 上記各構成の圧電薄膜フィルタは、具体的には、以下のように種々の態様の構成 とすることができる。
[0027] 好ましくは、前記各電極指の幅が、前記基板から音響的に分離されている部分の 前記圧電薄膜の厚さの 2倍よりも大き 、。
[0028] 上記構成によれば、電極指の幅を大きくして、帯域を広げることができる。
[0029] 好ましくは、少なくとも 2組の前記フィルタ要素を含む。それぞれの前記フィルタ要 素の前記第 1端子及び前記第 2端子が、入力端子又は出力端子のいずれか一方に 並列接続される。それぞれの前記フィルタ要素の前記第 3端子及び前記第 4端子が
、前記入力端子又は前記出力端子の他方の間に直列接続される。
[0030] 上記構成によれば、入力端子間のインピーダンスと、出力端子間のインピーダンス とが異なるようにして、入力端子間のインピーダンスと出力端子間のインピーダンスと の比を調整することができる。
[0031] 好ましくは、前記第 1端子及び前記第 2端子が不平衡端子に接続される。前記第 3 端子及び前記第 4端子が平衡端子に接続される。 [0032] 上記構成によれば、平衡ー不平衡変換機能を有する、いわゆるバランス型(平衡型 )フィルタが得られる。
[0033] 好ましくは、前記圧電薄膜は、空隙層または開口を介して、前記基板から音響的に 分離されている。
[0034] 上記構成によれば、圧電薄膜は、厚み振動の励振されて 、る部分にぉ 、て縦波と 横波を両方同時に閉じ込めることができ、良好なフィルタ特性を得ることができる。音 響反射層を介して圧電薄膜を基板から音響的に分離する場合には、音響反射層の 厚みに対応した音速を持つ波しか振動を閉じ込めることができないため、縦波と横波 の両方を用いる 2重モードフィルタの特性が乱れてしまう。
[0035] 好ましくは、前記圧電薄膜の前記一方の主面は、前記第 1電極指及び前記第 3電 極指と前記絶縁膜とが配置された共振領域の外側に、該共振領域から連続して延在 する非共振領域を含む。
[0036] 上記構成によれば、非共振領域では共振領域からの振動が伝搬されず、共振領 域内に振動が閉じ込められ、波が外側に伝搬されないようにして、スプリアスのないフ ィルタ特性を得ることができる。
[0037] 好ましくは、前記第 1電極指及び前記第 3電極指と前記絶縁膜とを覆う第 1領域と、 前記第 2電極指及び前記第 4電極指を覆う第 2領域と、前記共通電極を覆う第 3領域 とのうち、少なくとも一つに、第 2の絶縁膜をさらに備える。
[0038] 上記構成によれば、第 2の絶縁膜を適宜に加工することにより、周波数特性を調整 することができる。また、第 2の絶縁膜により、電極指や共通電極の酸化を防止するこ とができる。なお、第 2の絶縁膜は、第 1電極指と第 3電極指との間に備える絶縁膜と 同一材質であっても異なる材質であってもよ 、。
[0039] 好ましくは、前記圧電薄膜の前記一方の主面に、共通のレジストパターンを用いて
、前記第 1電極指及び前記第 3電極指と前記絶縁膜とを形成する。
[0040] 上記構成によれば、共通のレジストパターンを用いることにより、絶縁膜と第 1電極 指及び第 3電極指とのァライメントのずれをなくし、製造工程を簡略化できる。
[0041] 好ましくは、前記圧電薄膜がェピタキシャル膜である。
[0042] 上記構成によれば、隣接する共振子間の機械的結合が安定する。すなわち、 2重 モードフィルタは、圧電薄膜の平面方向に伝搬する波を用いているため、結晶粒界 の影響を受けやすいが、ェピタキシャル膜では粒界の影響が少ないため、共振子間 の機械的結合が安定する。
[0043] 好ましくは、前記第 1電極対における前記第 1電極指と前記第 2電極指又は前記共 通電極との対の数と、前記第 2電極対における前記第 3電極指と前記第 4電極指又 は前記共通電極との対の数との合計である総対数力 20対以上である。
[0044] 総対数を 20対以上とすると、細か 、周期のリップルを小さくすることができ、スプリア スの少な ヽフィルタ特性を得ることができる。
[0045] 好ましくは、前記第 1電極対における前記第 1電極指と前記第 2電極指又は前記共 通電極との対の数と、前記第 2電極対における前記第 3電極指と前記第 4電極指又 は前記共通電極との対の数とが異なる。
[0046] 上記構成によれば、入力端子 出力端子のインピーダンス比を、種々の値に調整 することができる。
[0047] また、本発明は、以下のように構成した複合フィルタを提供する。
[0048] 複合フィルタは、ラダー型フィルタ又はラテイス型フィルタの!/、ずれかと、前述した各 構成の 、ずれか一つの圧電薄膜フィルタとがカスケード接続されて!、る。
[0049] 上記構成によれば、帯域外減衰特性の優れた複合フィルタを得ることができる。
[0050] さらに、本発明は、上記第 2の課題を解決するために、以下のように構成した圧電 薄膜フィルタを提供する。
[0051] 圧電薄膜フィルタは、前記フィルタ要素を単位ユニットとする。入力端子又は出力 端子のいずれか一方に直列接続される少なくとも 2つの前記単位ユニットを含む。前 記少なくとも 2つの単位ユニットの少なくとも 2つは、前記出力端子又は前記入力端子 の他方に並列接続されて 、る。
[0052] 上記構成において、各電極対によって BAW共振子が構成される。上記構成によ れば、入力端子間のインピーダンスと、出力端子間のインピーダンスとが異なるように して、入力端子間のインピーダンスと出力端子間のインピーダンスとの比を調整する ことができる。
[0053] 好ましくは、前記少なくとも 2つの前記単位ユニットが互いに隣接して配置され、隣 接する前記単位ユニット同士が機械的に結合されて 、る。
[0054] 上記構成によれば、複数の単位ユニット全体が一体に動作し、細かい周期のリップ ルを小さくすることができる。
[0055] 好ましくは、前記入力端子が不平衡端子に接続され、前記出力端子が平衡端子に 接続されている。
[0056] 上記構成によれば、平衡ー不平衡変換機能を有する、いわゆるバランス型(平衡型 )フィルタが得られる。
[0057] 好ましくは、前記圧電薄膜は、空隙または開口を介して、前記基板から音響的に分 離されている。
[0058] 音響反射層を介して圧電薄膜を基板から音響的に分離する場合には、音響反射 層の層の厚みに対応した音速を持つ波にしか振動を閉じ込めることができないため、 縦波と横波の両方を用いる 2重モードフィルタの特性が乱れてしまう。これに対し、上 記構成によれば、圧電薄膜は、厚み振動の励振されている部分において縦波と横波 を両方同時に閉じ込めることができ、良好なフィルタ特性を得ることができる。
[0059] 具体的には、以下のように種々の好ましい態様で構成することができる。
[0060] 第 1の好ましい態様の圧電薄膜フィルタは、第 1及び第 2の前記単位ユニットを含む 。前記各単位ユニットの前記第 1端子が、前記入力端子の一方に接続される。前記 各単位ユニットの前記第 2端子が、前記入力端子の他方に接続される。前記第 1の 単位ユニットの前記第 4端子と前記第 2の単位ユニットの前記第 3端子とが接続される 。前記第 1の単位ユニットの前記第 3端子が、前記出力端子の一方に接続される。前 記第 2の単位ユニットの前記第 4端子が、前記出力端子の他方に接続される。前記 出力端子が平衡端子に接続される。
[0061] 上記構成によれば、入力端子—出力端子のインピーダンス比が 1 : 1以外 (例えば、 1 :4)のバランス型圧電薄膜フィルタが得られる。
[0062] 第 2の好ましい態様の圧電薄膜フィルタは、第 1及び第 2の前記単位ユニットを含む 。前記第 1の単位ユニットの前記第 1端子と前記第 2の単位ユニットの前記第 2端子と 力 前記入力端子の一方に接続される。前記第 1の単位ユニットの前記第 2端子と前 記第 2の単位ユニットの前記第 1端子とが、前記入力端子の他方に接続される。前記 各単位ユニットの前記第 4端子同士が接続される。前記第 1の単位ユニットの前記第 3端子と前記第 2の単位ユニットの前記第 3端子とが、それぞれ前記出力端子に接続 される。前記出力端子が平衡端子に接続される。
[0063] 上記構成によれば、入力端子 出力端子のインピーダンス比が 1: 1以外 (例えば、 1 :4)のバランス型圧電薄膜フィルタが得られる。上記構成によれば、前述の第 1の好 ま 、態様よりも平衡度を改善することができる。
[0064] 第 3の好ま 、態様の圧電薄膜フィルタは、第 1な 、し第 4の前記単位ユニットを含 む。前記第 1の単位ユニットの前記第 1端子と前記第 2の単位ユニットの前記第 1端 子とが、前記入力端子の一方に接続される。前記第 1の単位ユニットの前記第 2端子 と、前記第 2の単位ユニットの前記第 2端子と、前記第 3の単位ユニットの前記第 1端 子と、前記第 4の単位ユニットの前記第 1端子とが互いに接続される。前記第 3の単 位ユニットの前記第 2端子と前記第 4の単位ユニットの前記第 2端子とが、前記入力 端子の他方に接続される。前記第 1の単位ユニットの前記第 3端子が、前記出力端 子の一方に接続される。前記第 1の単位ユニットの前記第 4端子と、前記第 2の単位 ユニットの前記第 3端子とが接続される。前記第 2の単位ユニットの前記第 4端子と、 前記第 3の単位ユニットの前記第 3端子とが接続される。前記第 3の単位ユニットの前 記第 4端子と、前記第 4の単位ユニットの前記第 3端子とが接続される。前記第 4の単 位ユニットの前記第 4端子が、前記出力端子の他方に接続される。前記出力端子が 平衡端子に接続される。
[0065] 上記構成によれば、入力端子 出力端子のインピーダンス比が 1: 1以外 (例えば、 1 :4)のバランス型圧電薄膜フィルタが得られる。上記構成によれば、例えば、電極 指の長さを前述の第 1の態様の 2倍にし、電極指の本数を 2倍にして、配線の寄生容 量の影響を低減することができる。
[0066] 好ましくは、前記基板から音響的に分離されている部分の前記圧電薄膜の前記一 方の主面 (又は、前記他方の主面)に、少なくとも一つの共通電極が配置される。少 なくとも一つの前記単位ユニットの前記第 1電極指及び前記第 3電極指 (又は、前記 第 2電極指及び前記第 4電極指)が、同一の前記共通電極の一部分に含まれる。
[0067] 上記構成によれば、圧電薄膜の一方の主面 (又は、他方の主面)に配置された第 1 電極指及び第 3電極指 (又は、第 2電極指及び第 4電極指)と、圧電薄膜の他方の主 面 (又は、一方の主面)に配置された第 2電極指及び第 4電極指 (又は、第 1電極指 及び第 3電極指)とのァライメントが多少ずれても、共振子の特性に影響がほとんどな い。そのため、圧電薄膜を挟んで電極指同士が対向する場合のような高精度なァラ ィメント調整が不要であり、工程を簡素化することができる。
[0068] 好ましくは、前記基板から音響的に分離されている部分の前記圧電薄膜の主面の 少なくとも一方において、隣接する前記電極指の間に絶縁膜が配置される。
[0069] 上記構成において、隣接する電極指間に絶縁膜を設けることによって、圧電薄膜を 挟んで対向する電極指間に形成される共振子と、その隣の電極指間に形成される共 振子との機械的結合を強め、隣接する共振子間で振動が伝搬されやすくすることが できる。これによつて、フィルタ特性の改善を図ることができる。
発明の効果
[0070] 本発明の圧電薄膜フィルタは、帯域を広くすることができる。また、本発明の圧電薄 膜フィルタは、 BAW共振子を用いるタイプであり、入力端子 出力端子間のインピ 一ダンス比を調整することができる。
図面の簡単な説明
[0071] [図 1]圧電薄膜フィルタの構成図である。(従来例)
[図 2]圧電薄膜フィルタの基本構成を示す要部断面図である。(実施例 1)
[図 3]2重モードフィルタの構成図である。
[図 4]2重モードフィルタの構成図である。
[図 5]共振子の特性を示すグラフである。
[図 6]共振子の特性を示すグラフである。
[図 7]フィルタ特性を示すグラフである。
[図 8]分散曲線を示すグラフである。
[図 9]フィルタ特性を示すグラフである。
[図 10(a)]フィルタ特性を示すグラフである。
[図 10(b)]フィルタ特性を示すグラフである。
[図 10(c)]フィルタ特性を示すグラフである。 [図 10(d)]フィルタ特性を示すグラフである。
[図 11]圧電薄膜フィルタの平面図である。(実施例 1)
[図 12] (a)図 11の線 ΧΠ-ΧΠに沿って切断した要部断面図、(b)要部拡大断面図で ある。(実施例 1)
[図 13]圧電薄膜フィルタの (a)要部拡大平面図、(b)要部断面図である。(実施例 1)
[図 14]圧電薄膜フィルタのブロック図である。(実施例 1)
[図 15]絶縁膜形成工程の説明図である。(実施例 1)
[図 16]圧電薄膜フィルタの要部断面図である。(実施例 2)
[図 17]圧電薄膜フィルタの要部断面図である。(実施例 3)
[図 18]複合フィルタの構成図である。(実施例 4)
[図 19]圧電薄膜フィルタの平面図である。(実施例 5)
[図 20]圧電薄膜フィルタの平面図である。(実施例 6)
[図 21]圧電薄膜フィルタのブロック図である。(実施例 6)
[図 22]圧電薄膜フィルタの平面図である。(実施例 7)
[図 23]圧電薄膜フィルタのブロック図である。(実施例 7)
符号の説明
10 圧電薄膜フィルタ
ΙΟχ 単位ユニット
12, 12x 基板
13, 13x 空隙
14, 14x 圧電薄膜
14a 上面(一方の主面)
14b 下面(他方の主面)
16 絶縁膜
16a GND端子 (第 2端子)
16b ポート 1端子 (第 1端子)
16c GND端子 (第 2端子)
16d ポート 2端子 (第 3端子) e ポート 3端子 (第 4端子)a GND端子 (第 2端子)b ポート 1端子 (第 1端子)c GND端子 (第 2端子)d GND端子 (第 4端子)e ポート 2端子 (第 3端子)f GND端子 (第 4端子)a, 18b 第 2の絶縁膜, 20x 第 1電極対
第 2電極指
第 1電極指
第 1電極指
, 30x 第 2電極対
第 4電極指
第 3電極指
第 3電極指
第 3電極対
第 2電極指
第 1電極指
第 4電極対
第 4電極指
第 3電極指
圧電薄膜フィルタ 第 1電極指
第 2電極指
第 3電極指
第 4電極指
絶縁膜 圧電薄膜
a, 66b 主面
圧電薄膜フィルタ 第 1電極指
第 2電極指
第 3電極指
第 4電極指
絶縁膜
圧電薄膜
a, 76b 主面
圧電薄膜フィルタ 第 1電極指
第 2電極指
第 3電極指
第 4電極指
絶縁膜
圧電薄膜
ラテイスフィルタ 複合フィルタ
, 92 単位ユニット, 102 単位ユニット 圧電薄膜フィルタ 基板
空隙
圧電薄膜
a GND端子 (第 1端子)b ポート 1端子 (第 2端子)c GND端子 (第 2端子) 116d ポート 2端子 (第 3端子)
116e ポート 3端子 (第 4端子)
120 第 1電極対
122 第 2電極指
124 第 1電極指
130 第 2電極対
132 第 4電極指
134 第 3電極指
140 第 3電極対
142 第 2電極指
144 第 1電極指
150 第 4電極対
152 第 4電極指
154 第 3電極指
160, 170 単位ユニット
210 圧電薄膜フィルタ
212 基板
213 空隙
214 圧電薄膜
216a ポート 1端子 (第 1端子)
216b GND端子 (第 2端子)
216c ポート 2端子 (第 3端子)
216d ポート 3端子 (第 4端子)
220 第 1電極対
222 第 2電極指
224 第 1電極指
230 第 2電極対
232 第 4電極指 234 第 3電極指
240 第 3電極対
242 第 2電極指
244 第 1電極指
250 第 4電極対
252 第 4電極指
254 第 3電極指
260 第 5電極対
262 第 2電極指
264 第 1電極指
270 第 6電極対
272 第 4電極指
274 第 3電極指
280 第 7電極対
282 第 2電極指
284 第 1電極指
290 第 8電極対
292 第 4電極指
294 第 3電極指
310, 320, 330, 340 単位ユニット
発明を実施するための最良の形態
[0073] 以下、本発明の実施の形態として実施例について図 2〜図 23を参照しながら説明 する。
[0074] く実施例 1 > 第 1実施例の圧電薄膜フィルタ 10について、図 2〜図 15を参照しな がら説明する。
[0075] 図 2は、実施例 1の圧電薄膜フィルタ 10の基本構成を示す要部断面図である。図 2 では、 1周期の基本単位を含む部分を図示しているが、実際には、複数周期を繰り 返す構成になっている。 [0076] 圧電薄膜 14の両主面 14a, 14b〖こ、第 1電極対 20の第 1電極指 24及び第 2電極 指 22と、第 2電極対 30の第 3電極指 34及び第 4電極指 32とが、間隔を設けて交互 に配置されている。
[0077] 圧電薄膜 14の一方の主面 (上面) 14a上には、隣接する第 1電極指 24と第 3電極 指 34との間に、質量付加のための絶縁膜 16が配置されている。
[0078] また、圧電薄膜 14の両方の主面 14a, 14b全体に、第 2の絶縁膜 18a, 18bが配置 されている。すなわち、一方の主面 14aにおいて、第 2の絶縁膜 18aは、第 1電極指 2 4及び第 3電極指 34と絶縁膜 16とを覆う。他方の主面 14bにおいて、第 2の絶縁膜 1 8bは、第 2電極指 22及び第 4電極指 32を覆う。第 2の絶縁膜 18a, 18bは、いずれ か一方のみを形成してもよい。また、第 2の絶縁膜 18a, 18bの両方を形成しない構 成としてもよい。第 2の絶縁膜 18a, 18bは、第 1電極指 24と第 3電極指 34との間に 配置される絶縁膜 16と同一材質であっても異なる材質であってもよい。
[0079] 第 2の絶縁膜 18a, 18bは、素子完成後にエッチングすることにより、素子の周波数 調整を行うことが可能である。また、第 2の絶縁膜 18a, 18bは、電極指 22, 24, 32, 34の酸化や腐食を防ぐ効果もある。
[0080] 絶縁膜 16を介して交互に配置された電極指 24, 34間の中心間距離 Wa+Wm、 Wf +Wmは、圧電薄膜 14の厚さ Tの 2倍よりも大きい。好ましくは、各電極指 22, 24 , 32, 34の幅 Wmは、圧電薄膜 14の厚さ Tの 2倍よりも大きい。これにより、後述する 図 6に示すように、複数の振動モードが発生するようにする。電極指の幅が細い場合 には、後述する図 5に模式的に示すように、所望の周波数付近で、 1の共振ピークし か現れない。
[0081] なお、隣接する電極指 24, 34間の間隔、すなわち無電極部の幅 Wa, Wfは、同じ であっても、異なってもよい。
[0082] 第 1電極指 24及び第 2電極指 22を入力端子に接続し、第 3電極指 34及び第 4電 極指 32を出力端子に接続し、 2重モードフィルタを構成する。この場合、平衡入出力 フィルタとしても使用でき、いずれかの電極指 24, 22, 34, 32を接地して不平衡端 子として、ノランス型フィルタとしても使用できる。
[0083] ここで、従来の 2重モード BAWフィルタについて説明する。基本的な原理は、モノリ シック ·クリスタル 'フィルタ(MCF)や 2重モード SAWフィルタにつ!/、ても、同じである
[0084] 図 3に示すように、 2つの共振子 11a, l ibが同一の圧電薄膜 11上に形成されてい る場合、共振子 11a, l ibが十分に離れて形成されていると、それらは独立の共振子 として動作する。 2つの共振子 11a, l ibを互いに近づけて配置すると、隣接する共 振子 11a, l ib同士が互いに結合し、対称モードと非対称モードの振動が発生する。
[0085] 図 4 (a)には、 2つの共振子 11a, l ibが結合した結果生じる対称モードを利用した フィルタ要素である単位ユニット l isを示している。図 4 (b)には、 2つの共振子 11a, l ibが結合した結果生じる非対称モードを利用したフィルタ要素である単位ユニット 1 Itを示している。
[0086] 図 5は、これらのフィルタ要素である単位ユニット l is, l itの特性を模式的に示した ものである。実線は、対称モードのフィルタ要素である単位ユニット l isの特性を示す 。破線は、非対称モードのフィルタ要素である単位ユニット l itの特性を示す。 2つの 共振子 11a, l ibを適度に結合させることによって、周波数の異なる 2つのモードを励 振することができる。この周波数差を利用して 2重モードフィルタが構成される。
[0087] 圧電薄膜フィルタ 10は、電極指 22, 24, 32, 34の幅 Wmを適切な値に設定するこ とにより、広帯域のフィルタ特性とすることができる。例えば、電極指 22, 24, 32, 34 の幅 Wmを、圧電薄膜 14の厚さ Tの 2倍よりも大きくすることで、スプリアス振動が近 傍に発生するが、これを有効に利用し、複数モードで広帯域なフィルタを構成するこ とがでさる。
[0088] 古くには、厚み振動を利用した共振子は、平面方向の電極寸法を大きくすると、主 振動に対してスプリアス振動が近接してくるため十分小さい電極寸法を採用していた 。しかし、このように小さい電極寸法の場合、 Δ ί (反共振周波数と共振周波数の差) 力 、さな共振子し力得られて 、なかった。
[0089] 特許文献 1に開示された圧電薄膜フィルタは、電極指の幅が小さいために 1つの電 極対で構成される共振子の Δ ίが小さいことから、電極対間の結合はとれたとしても、 帯域の小さいフィルタし力構成することができない。一方、電極指の幅を大きくしすぎ ると、振動エネルギーがそれぞれの電極対の中に閉じ込められ、電極対間の結合が 小さくなつてしまうという問題がある。
[0090] 図 6は、圧電薄膜フィルタ 10について、対称モード (第 1電極指 24と第 3電極指 34 を共通接続し、第 2電極指 22と第 4電極指 32を共通接続した共振子の振動モード) とした場合の特性を実線で、非対称モード (第 1電極指 24及び第 4電極指 32を共通 接続し、第 2電極指 22及び第 3電極指 34を共通接続した共振子の振動モード)とし た場合の特性を破線で、それぞれ示している。およそ、 1790MHz〜 1900MHzに おいて、符号 Aで示す 2つの対称モードの共振ピークと、符号 Bで示す 1つの非対称 モードの共振ピークが現れて 、る。
[0091] このような複数の共振を利用することで、図 7において符号 Cで示した特性のフィル タを構成することができる。図 7において、スルーから 3dB減衰帯域幅は約 80MHz ( 比帯域にして 4. 4%)であり、 1つの対称モードの共振を用いた場合の約 60MHzに 比べて、広帯域になる。
[0092] また、圧電薄膜フィルタ 10は、第 1電極指 24と第 3電極指 34の間の無電極部に質 量付加用の絶縁膜 16を設け、フィルタ特性の改善を図っている。
[0093] 従来の MHz帯で用いられるセラミック振動子などでは、電極による周波数低下量 力 Sl%程度であるので、絶縁膜を必要としない。
[0094] これに対して、 GHz帯で用いられる薄膜 BAW共振子では 10%以上の周波数低下 が生じる。このため、従来のエネルギー閉じ込めの理論をそのまま薄膜 BAW共振子 に適用することは困難となる。
[0095] 例えば、図 8に薄膜 BAW共振子の構造での分散曲線 (厚み縦振動の基本モードと 厚みすベり振動の 2倍モードの混成波)を示す。横軸は、圧電薄膜厚 bを平面方向に 伝搬する波の波長 λで規格ィ匕した bZ λ、縦軸は周波数 (MHz)である。△は無電 極部に絶縁膜がある場合、♦は電極部、 Xは無電極部に絶縁膜がない場合を示す
[0096] 波数ゼロにおける傾きが右下がりである場合、エネルギー閉じ込め理論では周波 数低下型のエネルギー閉じ込めができないとされていた。しかし、無電極部に絶縁膜 がない薄膜 BAW共振子では、電極部と無電極部の周波数差が大きいため、電極部 力 無電極部に漏洩する振動モードがなくなり、実質的に全ての振動エネルギーが 電極部に閉じ込められる。
[0097] このような薄膜 BAW共振子特有の効果により、エネルギーが電極部内に閉じ込め られやすくなつたので、電極対間の結合が弱くなる。そこで、無電極部に質量付加の ための絶縁膜 16を設ける。これにより、図 8に示されるように、電極部と無電極部の周 波数を近づける。このようにすると、隣接する電極対間の無電極部を波が伝搬できる 。隣接する電極対間の結合を強めて周波数の異なる 2つのモード (対称モードと非対 称モード)を励振できる。
[0098] 次に、圧電薄膜フィルタ 10の構成について、さらに説明する。
[0099] 図 11の平面図及び図 12 (a)の要部断面図に示すように、基板 12に支持された圧 電薄膜 14は、空隙 13を介して基板 12から浮き上がった部分に、第 1電極対 20及び 第 2電極対 30による第 1のフィルタ要素である第 1の単位ユニット 91 (図 14参照)と、 第 3電極対 40及び第 4電極対 50による第 2のフィルタ要素である第 2の単位ユニット 92 (図 14参照)とが形成されている。
[0100] 図 11では分力りやすくするため意図的にずらして図示している力 第 1電極対 20 及び第 3電極対 40は、圧電薄膜 14の一方の主面(図 12において上面 14a)に配置 された各 5本の第 1電極指 24, 44と、圧電薄膜 14の他方の主面(図 12において下 面 14b)に配置された各 5本の第 2電極指 22, 42とが、圧電薄膜 14を介して互いに 対向するようになっている。同様に、第 2電極対 30及び第 4電極対 50は、圧電薄膜 1 4の上面 14a (図 12参照)に配置された各 5本の第 3電極指 34, 54と、圧電薄膜 14 の下面 14b (図 12参照)に配置された各 5本の第 4電極指 32, 52とが、圧電薄膜 14 を介して互いに対向するようになっている。圧電薄膜 14の上面 14aにおいて、第 1電 極対 20及び第 3電極対 40の第 1電極指 24, 44と第 2電極対 30及び第 4電極対 50 の第 3電極指 34, 54とは、間隔を設けて交互に配置されている。圧電薄膜 14の下面 14bにおいて、第 1電極対 20及び第 3電極対 40の第 2電極指 22, 42と、第 2電極対 30及び第 4電極対 50の第 4電極指 32, 52とは、間隔を設けて交互に配置されてい る。
[0101] 2つの単位ユニット 91, 92は、圧電薄膜 14の空隙 13を介して基板 12から浮き上が つた部分に互いに隣接して形成され、隣り合う第 1の単位ユニット 91の電極指 32, 3 4と第 2の単位ユニット 92の電極旨 42, 44との間隔と、各単位ユニット 91, 92にお!/ヽ て隣接する電極指 22, 32 ; 24, 34 ; 52, 42 ; 54, 44間の間隔とが略同じである。こ れによって、隣接する単位ユニット 91, 92同士が機械的に結合されているため、単 位ユニット 91, 92全体が一体に動作し、細かい周期のリップルを小さくすることができ る。
[0102] なお、基板の凹部の上に圧電膜を配置して空隙を形成してもよい。また、基板の開 口に圧電膜を形成して音響的分離を行ってもよい。
[0103] 図 12 (a)及び (b)に示すように、圧電薄膜 14の上面 14aにおいて、隣接する電極 指 24, 34, 44, 54間の間隔に、絶縁膜 16が配置されている。
[0104] 図 12 (a)〖こ示すよう〖こ、絶縁膜 16は、電極指 24, 34, 44, 54の配列の両外側の 電極指 24, 54よりも内側の領域 (以下、「共振領域」という。)にのみ配置されている。 共振領域から外側に連続して延在する圧電薄膜 14の上面 14aにも絶縁膜を設け、 フィルタを構成することは可能ではあるが、共振領域の外側に絶縁膜がない場合に は、共振領域の外側は共振領域よりも周波数が高くなるため、振動のエネルギーが 共振領域に閉じ込められ、共振領域から漏れず、スプリアスのない低損失のフィルタ を構成することができる。
[0105] 図 11に示すように、第 1電極対 20及び第 3電極対 40の各第 1電極指 24, 44を接 続する配線 (バスバー) 25, 45は、ともに、ポート 1端子 16bに接続されている。第 1 電極対 20及び第 3電極対 40の各第 2電極指 22, 42を接続する配線 (バスバー) 23 , 43は、 GND端子 16a, 16cにそれぞれ接続され、また、互いに接続されている。
[0106] 第 2電極対 30の各第 3電極指 34を接続する配線 (バスバー) 35は、ポート 2端子 1 6dに接続されている。第 4電極対 50の各第 4電極指 52を接続する配線 (バスバー) 5 3は、ポート 3端子 16eに接続されている。
[0107] 第 2電極対 30の各第 4電極指 32を接続する配線 (バスバー) 33と、第 4電極対 50 の各第 3電極指 54を接続する配線 (バスバー) 55とは、図 13 (a)の要部拡大平面図 及び (b)要部拡大断面図に示すように、圧電薄膜 14に形成された貫通孔 (以下、「ス ルーホール」という。) 15において、それぞれの配線(バスバー) 33, 55の端部 33s, 55s同士が重なり合い、接続されるようになっている。なお、図 13 (b)は、図 13 (a)に おける線 b— bに沿って切断した断面図である。
[0108] 配線 33, 55は、端子 16d, 16e間の電気的中性点であり、電気的に浮かせても、 接地してちょい。
[0109] 図 14に示すように、圧電薄膜フィルタ 10は、入力端子 16b ; 16a, 16cは第 1電極 対 20及び第 3電極対 40に並列接続され、出力端子 16d, 16eは第 2電極対 30及び 第 4電極対 50に直列接続されている。例えば、入力端子 16b ; 16a, 16cは不平衡端 子に接続され、不平衡信号が入力され、出力端子 16d, 16eは平衡端子に接続され 、平衡信号を出力する。入出力は逆にしてもよい。図 14において、(1)は第 1電極指 24, 44を、 (2)は第 2電極指 22, 42を、 (3)は第 3電極指 34, 54を、(4)は第 4電極 指 32, 52を、それぞれ示している。また、実線は圧電薄膜 14の上面 14a側の配線を 示し、破線は圧電薄膜 14の下面 14b側の配線を示している。各単位ユニット 91, 92 の入出力インピーダンスは、それぞれ、各電極対 20, 30, 40, 50のインピーダンス である。
[0110] 各電極対 20, 30, 40, 50のインピーダンスがそれぞれ 100 Ωの場合、並列接続さ れた入力側のインピーダンスは 50 Ω、直列接続された出力側のインピーダンスは 20 0 Ωとなり、入力端子 出力端子のインピーダンス比 1 :4が得られる。この場合、 50 Ω— 200 Ω終端したときに低挿入損失、広帯域にすることができる。
[0111] 例えば、携帯電話の RFフィルタは、アンテナ (インピーダンスは 50 Ω )と LNA (入力 インピーダンスは 100〜200 Ω )との間に接続される。このため、 RFフィルタに用いる 圧電薄膜フィルタの入力端子 出力端子のインピーダンス比を 1: 2〜1 :4に調整す ることが求められる。圧電薄膜フィルタ 10は、このような要求に対応することができる。
[0112] 次に、絶縁膜 16の形成方法について、図 15を参照しながら説明する。
[0113] まず、基板 12上に、空隙 13を形成するための犠牲層(図示せず)、第 2の絶縁膜 1 8bを順に形成し、犠牲層上に導電膜を形成する。そして、導電膜上にレジストを塗布 し、露光、現像を行って形成したレジストパターンを用いて、導電膜の不要部分をェ ツチングにより除去して、電極指 22, 32などの下部電極パターンを形成した後、レジ ストパターンを除去する。
[0114] 次いで、図 15 (a)に示すように、導電膜による下部電極パターン 100及び露出した 第 2の絶縁膜 18b (図 2参照)の上に、圧電薄膜 14、絶縁膜 102を順に成膜する。
[0115] 次いで、図 15 (b)に示すように、絶縁膜 102の上に、レジストを塗布し、露光、現像 を行い、共通のレジストパターン 104を形成する。
[0116] 次いで、図 15 (c)に示すように、共通のレジストパターン 104を介して、絶縁膜 102 の不要部分をエッチングなどにより除去し、圧電薄膜 14の上面 14aを露出させる。
[0117] 次いで、図 15 (d)に示すように、共通のレジストパターン 104を残した状態で、露出 した圧電薄膜 14の上面 14a及び共通のレジストパターン 104の上に、導電膜 106, 1
07を成膜する。
[0118] 次いで、図 15 (e)に示すように、共通のレジストパターン 104とともに共通のレジスト パターン 104上の導電膜 107を除去し、残った導電膜 106によって、電極指 24, 34 などの上部電極パターンを形成する。
[0119] 共通のレジストパターンを用いることにより、製造工程を簡略ィ匕できる上、絶縁膜 16 と電極指 24, 34とのァライメントのずれをなくすことができる。
[0120] 次いで、絶縁膜 102及び導電膜 106の上に第 2の絶縁膜 18b (図 2参照)を形成し た後、犠牲層を除去して空隙 13を形成する。
[0121] 次に、圧電薄膜フィルタ 10の具体的な構成例について説明する。
[0122] 圧電薄膜 14は厚さ 2. 7 μ m( AlN,電極対 20, 30, 40, 50の電極旨 22, 24 ; 32 ,34 ;42, 44 ; 52, 54や酉己線(ノ スノ一;) 23, 25 ; 33,35 ;43, 45 ; 53, 55などの電 極パターンは厚さ 0. 7 mの Al、絶縁膜 16は厚さ 0. 34 mの SiOの膜である。 A1
2
N膜は一軸配向膜であることが好ましい。ェピタキシャル膜の A1N膜であれば、より好 ましい。 2重モードフィルタは、圧電薄膜の平面方向に伝搬する波を用いているため 、結晶粒界の影響を受けやすいが、ェピタキシャル膜では粒界の影響が少ないため 、隣接する共振子間の共振子間の機械的結合が安定し、良好なフィルタ特性となる
[0123] 電極指 22, 24 ; 32,34 ;42, 44 ; 52, 54の幅は 12 m、隣接する第 1電極指 24,4 4と第 3電極指 34, 54間の間隔けなわち、電極指 22, 24 ; 32,34 ;42, 44 ; 52, 54 間に設けられる絶縁膜 16の幅)は 11 mである。電極旨 22, 24 ; 32,34 ;42, 44 ; 5 2, 54の長さは、所望のインピーダンス(各電極対 20, 30, 40, 50のインピーダンス 力 S 100 Ω )を満足するように決定する。各電極対 20, 30, 40, 50のインピーダンスは 、電極指 22, 24 ; 32,34 ;42, 44 ; 52, 54の長さ Lと対の数 Νの積 L X Nに、反比例 する。
[0124] 図 9は、電極対の本数とフィルタ特性の関係を示すグラフである。図 9 (a)は、入力 側の第 1電極対の電極指の対の数と出力側の第 2電極対の電極指の対の数の和( 以下、「総対数」という。)が 2対の場合、図 9 (b)は総対数が 12対の場合、図 9 (c)は 総対数が 20対の場合を示す。横軸は周波数 (MHz)、縦軸は伝達係数 S21 (dB)で ある。図 9 (a)〜(c)から分力るように、総対数を 20対以上とすることで、細かい周期 のリップルを少なくすることができ、スプリアスの少ない良好なフィルタ特性を得ること ができる。
[0125] 図 10 (a)〜(d)は、総対数を 20対とし、 SiO絶縁膜 16の厚さのみを変えた場合の
2
フィルタ特性を示す。図 10 (a)は SiO絶縁膜なし、図 10 (b)は SiO絶縁膜 16の厚さ
2 2
が 0· 3 ;z m、図 10 (c)は SiO絶縁膜 16の厚さが 0. 34 ^ m,図 10 (d)は SiO絶縁
2 2 膜 16の厚さが 0. 45 mの場合を示す。横軸は周波数 (MHz)、縦軸は伝達係数 S 21 (dB)である。図 10 (a)〜(d)から、広帯域でリップルの少ない特性を得るには、 Si O絶縁膜 16の厚さは 0. 34 m程度が好ましいことが分かる。
2
[0126] 圧電薄膜フィルタ 10は、電極対間の無電極部に絶縁膜 16を設けているので、電極 対間の結合を強くすることができ、広帯域なフィルタを構成することができる。電極幅 ( 電極対の幅 Wm)と無電極部の幅 (Wa, Wf)を大きくすることができるため、高精度な 微細加工技術を用いることなくフィルタ素子を形成でき、製造コストを低減することが できる。電極幅が大きいので、複数の振動モードを利用でき、広帯域なフィルタを構 成することができる。また、電極幅が大きいので、寄生抵抗を小さくすることができる。
[0127] く実施例 2> 実施例 2の圧電薄膜フィルタ 60について、図 16を参照しながら説 明する。図 16は、圧電薄膜フィルタ 60の要部断面図である。
[0128] 実施例 1と同様に、圧電薄膜 66の一方の主面 66aには、第 1電極対の第 1電極指 6 1と第 2電極対の第 3電極指 63とが、間隔を設けて交互に配置され、隣接する電極指 61, 63の間には絶縁膜 65が配置されている。圧電薄膜 66の他方の主面 66bには、 電極指 61, 63に対向して、第 1電極対の第 2電極指 62と第 2電極対の第 4電極指 6 4と力 間隔を設けて交互に配置されている。第 1電極対の電極指 61, 62は不平衡 端子に接続され、第 2電極対の電極指 63, 64は平衡端子に接続される。
[0129] 実施例 1と異なり、第 2電極対において、第 3電極指 63と第 4電極指 64の幅が異な る。または、第 3電極指 63と第 4電極指 64の位置がずれている。
[0130] 例えば、第 1電極対の第 1電極指 61が接地された場合、第 2電極対の第 3電極指 6 3は第 2電極対の第 4電極指 64よりも接地電位に近くなり、第 2電極対の電極指 63, 64間の平衡度が低下する。そこで、接地される第 1電極指 61に近い方の第 3電極指 63の幅を相対的に狭ぐ遠い方の第 4電極指 64の幅を相対的に広くし、第 4電極指 64を第 1電極指 61側に近づけることで、平衡度を保つことができる。
[0131] く実施例 3 > 第 3実施例の圧電薄膜フィルタ 70について、図 17を参照しながら 説明する。図 17は、圧電薄膜フィルタ 70の要部断面図である。
[0132] 実施例 1と同様に、圧電薄膜 76の一方の主面 76aには、第 1電極対の第 1電極指 7 1と第 2電極対の第 3電極指 73とが、間隔を設けて交互に配置され、隣接する電極指 71, 73の間には絶縁膜 75が配置されている。圧電薄膜 76の他方の主面 76bには、 電極指 71, 73に対向して、第 1電極対の第 2電極指 72と第 2電極対の第 4電極指 7 4と力 間隔を設けて交互に配置されている。
[0133] 実施例 1との相違点は、第 1電極対の電極指 71, 72の幅と、第 2電極対の電極指 7 3, 74の幅とが異なることである。これにより、第 1電極対の電極指 71, 72が対向する 面積と、第 2電極対の電極指 73, 74が対向する面積が異なるため、第 1電極対のィ ンピーダンスと、第 2電極対のインピーダンスが異なり、入力端子と出力端子とでイン ピーダンスが異なるようにする、すなわち、入出力間でインピーダンスを変更すること ができる。
[0134] 電極対における電極指の対の数が、入力端子と出力端子とで異なるようにして、入 出力間でインピーダンスを変更することができる。
[0135] く実施例 4> 実施例 4の複合フィルタ 90について、図 18の模式構成図を参照し ながら説明する。
[0136] 複合フィルタ 90は、圧電薄膜フィルタ 80とラテイスフィルタ 88とを組み合わせたフィ ルタである。圧電薄膜フィルタ 80は、隣接する電極指 81, 82, 83, 84間に絶縁膜 8 5を備える。絶縁膜 85は、実施例 1〜3のように、圧電薄膜 86の一方の主面にのみ備 えるようにしてもよい。ラテイスフィルタ 88の代わりに、ラダーフィルタなどの他のフィル タと組み合わせてもよい。
[0137] 圧電薄膜フィルタ 80をラテイスフィルタやラダーフィルタなどと組み合わせることで、 帯域外減衰特性の優れたフィルタを得ることができる。ラテイスフィルタ 88やラダーフ ィルタは、圧電薄膜フィルタ 80とほぼ同一工程で同時に形成することができる。
[0138] <実施例 5 > 実施例 5の圧電薄膜フィルタについて、図 19の平面図を参照しなが ら説明する。
[0139] 圧電薄膜フィルタは、実施例 1と略同様に構成され、フィルタ要素である単位ュ-ッ ト 10xを複数有する。図 19では、一つの単位ユニット 10xのみを図示している
[0140] 実施例 5の圧電薄膜フィルタの単位ユニット 10xは、基板 12xに支持された圧電薄 膜 14xが空隙 13xを介して基板 12xから浮き上がった部分に、第 1電極対 20xと第 2 電極対 30xが形成されて!、る。
[0141] 圧電薄膜 14xの一方の主面 (基板 12xとは反対側の主面)には、第 1電極対 20xの 10本の第 1電極指 26と第 2電極対の 10本の第 3電極指 36が、間隔を設けて交互に 配置されている。各第 1電極指 26を接続する配線 (バスバー) 27は、ポート 1端子 17 bに接続されている。各第 3電極指 36を接続する配線 (バスバー) 37は、ポート 2端子 17eに接続されている。図示していないが、実施例 1と同様に、間隔には、絶縁膜が 設けられている。なお、第 1電極指 26及び第 3電極指と隣接する電極指 26, 36間の 絶縁膜とを全体的に覆うように、第 2の絶縁膜を設けてもょ ヽ。
[0142] 実施例 1と異なり、圧電薄膜 14xの他方の主面 (基板 12x側の主面)には、矩形の 共通電極 46が配置されている。共通電極 46は、 GND端子 17a, 17c, 17d, 17fに 接続されている。共通電極 46は、第 1電極対の第 1電極指 26に対向する第 2電極指 に相当する部分や、第 2電極対の第 3電極指 36に対向する第 4電極指に相当する部 分を含む。第 1電極指 26と共通電極 46とが対向する部分や、第 3電極指 36と共通 電極 46とが対向する部分によって、共振子が構成される。なお、共通電極 46を全体 的に覆う第 2の絶縁膜を設けてもよい。
[0143] 共通電極 46は、第 1電極指 26及び第 3電極指 36に対向する領域 (第 2電極指、第 4電極指に相当する部分)よりも広 ヽ領域を全体的に覆うようになって ヽる。そのため 、共通電極 46と電極指 26, 36とのァライメントが多少ずれても共振子の特性に影響 がほとんどないので、実施例 1のように圧電薄膜を挟んで電極指同士が対向する場 合のような高精度なァライメント調整が不要であり、工程を簡素化することができる。
[0144] なお、圧電薄膜の一方の主面 (基板と反対側の主面)に共通電極を設け、他方の 主面 (基板側の主面)に電極指を設けるようにしてもよい。共通電極は、圧電薄膜フィ ルタの複数の単位ユニットのうち、少なくとも一つについて設ける。
[0145] 隣接する第 1電極指 26と第 3電極指 36との間に絶縁膜を設けることによって、圧電 薄膜 14xを挟んで対向する第 1電極指 26と共通電極 46との間に形成される共振子 と、圧電薄膜 14xを挟んで対向する第 3電極指 36と共通電極 46との間に形成される 共振子との結合を強め、隣接する共振子間で振動が伝搬されやすくすることができる 。そのため、第 1電極指 26と第 3電極指 36との間の中心間距離を圧電薄膜 14xの厚 さの 2倍よりも大きくしても、実施例 1と同様に、良好なフィルタ特性が得られる。
[0146] 図 19の例では、電極指 26, 36の配列の両外側の電極指は、第 1電極指 26と第 3 電極指 36とであるが、例えば、第 3電極指 36を 1本増やして、両外側がともに第 3電 極指 36であるようにすることも可能である。この場合、第 1電極指 24は 10本、第 3電 極指 36は 11本となる。電極指の本数が多い側のインピーダンスが低くなるので、電 極指の本数を適宜に選択し、入力端子 出力端子のインピーダンス比を種々の値 に調整することができる。
[0147] 例えば、入力側の電極指が 2本、出力側の電極指が 3本の場合、入力端子 出力 端子のインピーダンス比を 3 : 2にすることができる。入力側の電極指が 2本、出力側 の電極指が 3本のフィルタ要素を単位ユニットとして 2組備え、入力側を並列接続、出 力側を直列接続すると、入力端子 出力端子のインピーダンス比を 3: 8にすることが できる。
[0148] く実施例 6 > 実施例 6の圧電薄膜フィルタ 110について、図 20及び図 21を参照 しながら説明する。図 20は圧電薄膜フィルタ 110の平面図、図 21はブロック図である
[0149] 図 20に示すように、圧電薄膜フィルタ 110は、実施例 1と略同様に構成される。 [0150] 基板 112に支持された圧電薄膜 114は、空隙 113a, 113bを介して基板 112から 浮き上がった部分に、第 1電極対 120及び第 2電極対 130の第 1の単位ユニット 160 と、第 3電極対 140及び第 4電極対 150の第 2の単位ユニット 170とが、隣接して形成 されている。
[0151] 圧電薄膜 114の空隙 113aを介して基板 112から浮き上がった部分の一方の主面( 基板 112とは反対側の主面)には、第 1電極対 120の 5本の第 1電極指 124と第 2電 極対 130の 5本の第 3電極指 134と力 間隔を設けて交互に配置されている。また、 圧電薄膜 114の空隙 113bを介して基板 112から浮き上がった部分の一方の主面( 基板 112とは反対側の主面)には、第 3電極対 140の 5本の第 1電極指 144と第 4電 極対の 5本の第 3電極指 154とが、間隔を設けて交互に配置されている。電極指 124 , 134 ; 144, 154間の間隔には、絶縁膜を設けてもよぐさらに、第 1電極指 124, 1 44及び第 3電極旨 134, 154とそれらの電極旨 124, 134 ; 144, 154間の絶縁膜と を全体的に覆う第 2の絶縁膜を設けてもよい。
[0152] 圧電薄膜 114の空隙 113aを介して基板 112から浮き上がった部分の他方の主面( 基板 112側の主面)には、第 1電極対 120の第 1電極指 124にそれぞれ対向する 5 本の第 2電極指 122と、第 2電極対 130の第 3電極指 134にそれぞれ対向する 5本の 第 4電極指 132が、間隔を設けて交互に配置されている。また、圧電薄膜 114の空 隙 113bを介して基板 112から浮き上がった部分の他方の主面 (基板 112側の主面) には、第 3電極対 140の第 1電極指 144にそれぞれ対向する 5本の第 2電極指 142と 、第 4電極対 150の第 3電極指 154にそれぞれ対向する 5本の第 4電極指 152とが、 間隔を設けて交互に配置されている。
[0153] 実施例 1と異なり、第 1電極対 120の各第 1電極指 124を接続する配線 (バスバー) 125は、圧電薄膜 114に形成されたスルーホール 115において、第 3電極対 140の 各第 2電極指 142を接続する配線 (バスバー) 143の端部と接続され、さらに、ポート 1端子 116bに接続されている。第 1電極対 120の各第 2電極指 122を接続する配線 (バスバー) 123は、 GND端子 116aに接続されている。第 3電極対 140の各第 1電 極指 144を接続する配線 (バスバー) 145は、 GND端子 116cに接続されている。第 2電極対 130の各第 3電極指 134を接続する配線 (バスバー) 135は、ポート 2端子 1 16dに接続されている。第 4電極対 150の各第 3電極指 154を接続する配線 (バスバ 一) 155は、ポート 3端子 116eに接続されている。第 2電極対 130の各第 4電極指 13 2を接続する配線 (バスバー) 133と、第 4電極対 150の各第 4電極指 152を接続する 配線 (バスバー) 153とは、互いに接続されている。互いに接続されている配線 133, 153は、端子 116d, 116e間の電気的中性点であり、電気的に浮力ゝせても、接地し てもよい。
[0154] 図 21に示すように、圧電薄膜フィルタ 110は、入力端子 116b ; 116a, 116c力第 1 及び第 2の単位ユニット 160, 170に第 1及び第 2電極指を入れ替えて並列接続され 、出力端子 116d, 116eが第 1及び第 2の単位ユニット 160, 170に直列接続されて いる。図 21において、(1)は第 1電極指 124, 144を、(2)は第 2電極指 122, 142を 、(3)は第 3電極指 134, 154を、(4)は第 4電極指 132, 152を、それぞれ示してい る。また、実線は圧電薄膜 114の基板 112とは反対側主面の配線を示し、破線は圧 電薄膜 14の基板 112側主面の配線を示している。入力端子 116b ; 116a, 116cは 不平衡端子に接続され、出力端子 116d, 116eは平衡端子に接続される。なお、入 出力は逆にしてもよい。
[0155] 実施例 6の構成によって、入力側のインピーダンスが 50 Ω、出力側のインピーダン スが 200 Ωの平衡型フィルタが得られる。
[0156] く実施例 7 > 実施例 7の圧電薄膜フィルタ 210について、図 22及び図 23を参照 しながら説明する。図 22は圧電薄膜フィルタ 210の平面図、図 23はブロック図である
[0157] 図 22に示すように、圧電薄膜フィルタ 210は、実施例 1と略同様に構成される。
[0158] 基板 212に支持された圧電薄膜 214は、 2つの空隙 213a, 213bを介して基板 21 2から浮き上がったそれぞれの部分に、第 1電極対 220及び第 2電極対 230の第 1の 単位ユニット 310と、第 3電極対 240及び第 4電極対 250の第 2の単位ユニット 320と 、第 5電極対 260及び第 6電極対 270の第 3の単位ュ-ッ卜 330と、第 7電極対 280 及び第 8電極対 290の第 4の単位ユニット 340とが、順に隣接して形成されている。
[0159] 各単位ユニット 310, 320, 330, 340に含まれる電極指は、実施例 1の各単位ュ- ット 91, 92に含まれる電極指の 2倍の長さにされている。電極指を 2倍の長さにすると 、各単位ユニット 310, 320, 330, 340ίま、それぞれ、入力佃 Jのインピーダンス力 50 Ω、出力側のインピーダンスが 50 Ωになる。
[0160] 圧電薄膜 214の一方の空隙 213aを介して基板 212から浮き上がった部分の一方 の主面 (基板 212とは反対側の主面)には、第 1電極対 220の 5本の第 1電極指 224 及び第 3電極対 240の 5本の第 1電極指 244と、第 2電極対 230の 5本の第 3電極指 234及び第 4電極対 250の 5本の第 3電極指 254とが、間隔を設けて交互に配置さ れている。圧電薄膜 214の他方の空隙 213bを介して基板 212から浮き上がった部 分の一方の主面 (基板 212とは反対側の主面)には、第 5電極対 260の 5本の第 1電 極指 264及び第 7電極対 280の 5本の第 1電極指 284と、第 6電極対 270の 5本の第 3電極指 274及び第 8電極対 290の 5本の第 3電極指 294とが、間隔を設けて交互に 酉己置されている。電極旨 224, 234, 244, 254 ; 264, 274, 284, 294間の間隔に は、絶縁膜を設けてもよく、さらに、それらの電極旨 224, 234, 244, 254 ; 264, 27 4, 284, 294及び絶縁膜とを全体的に覆う第 2の絶縁膜を設けてもよい。
[0161] 圧電薄膜 214の一方の空隙 213aを介して基板 212から浮き上がった部分の他方 の主面 (基板 212側の主面)には、第 1電極対 220の第 1電極指 224にそれぞれ対 向する 5本の第 2電極指 222及び第 3電極対 240の第 1電極指 244にそれぞれ対向 する 5本の第 2電極指 242と、第 2電極対 230の第 3電極指 234にそれぞれ対向する 5本の第 4電極指 232及び第 4電極対 250の第 3電極指 254にそれぞれ対向する 5 本の第 4電極指 252とが、間隔を設けて交互に配置されている。また、圧電薄膜 214 の他方の空隙 213bを介して基板 212から浮き上がった部分の他方の主面 (基板 21 2側の主面)には、第 5電極対 260の第 1電極指 264にそれぞれ対向する 5本の第 2 電極指 262及びと第 7電極対 280の第 1電極指 284にそれぞれ対向する 5本の第 2 電極指 282と、第 6電極対 270の第 3電極指 274にそれぞれ対向する 5本の第 4電極 指 272及び第 8電極対 290の第 3電極指 294にそれぞれ対向する 5本の第 4電極指 292と力 間隔を設けて交互に配置されている。 第 1の単位ユニット 310と第 2の単 位ユニット 320とは、圧電薄膜 214の空隙 213aを介して基板 212から浮き上がった 部分に互いに隣接して形成され、隣り合う第 1の単位ユニット 310の電極指 232, 23 4と第 2の単位ユニット 320の電極旨 242, 244との間隔と、各単位ユニット 310, 320 にお ヽて隣接する電極旨 222, 232 ; 224, 234 ; 242, 252 ; 244, 254間の間隔と が略同じである。これによつて、隣接する第 1の単位ユニット 310と第 2の単位ユニット 320とが機械的に結合されているため、単位ユニット 310, 320全体が一体に動作し 、細か!/、周期のリップルを小さくすることができる。
[0162] 同様に、第 3の単位ユニット 330と第 4の単位ユニット 340とは、圧電薄膜 214の空 隙 213bを介して基板 212から浮き上がった部分に互いに隣接して形成され、隣り合 う第 3の単位ユニット 330の電極指 272, 274と第 4の単位ユニット 340の電極指 282 , 284との間隔と、各単位ユニット 330, 340にお!/、て隣接する電極旨 262, 272 ; 26 4, 274 ; 282, 292 ; 284, 294間の間隔と力 S略同じである。これによつて、隣接する 第 3の単位ユニット 330と第 4の単位ユニット 340とが機械的に結合されているため、 単位ユニット 330, 340全体が一体に動作し、細かい周期のリップルを小さくすること ができる。
[0163] 実施例 1と異なり、第 1電極対 220の各第 1電極指 224に接続された配線 (バスバ 一) 225は、ポート 1端子 216aに接続されている。第 5電極対 260の各第 2電極指 26 2に接続された配線 (バスバー) 263は、 GND端子 216bに接続されている。第 1電 極対 220の各第 2電極指 222を接続する配線 (バスバー) 223と、第 3電極対 240の 各第 2電極指 242を接続する配線 (バスバー) 243とが接続されている。第 5電極対 2 60の各第 1電極指 264を接続する配線 (バスバー) 265と、第 7電極対 280の各第 1 電極指 284を接続する配線 (バスバー) 285とが接続されている。圧電薄膜 214に形 成されたスルーホール 215bにおいて、第 3電極対 240の配線 243の端部と、第 5電 極対 260の配線 275の端部とが接続されて 、る。
[0164] 第 2電極対 230の各第 3電極指 234に接続された配線 (バスバー) 235は、ポート 2 端子 216cに接続されている。第 8電極対 290の各第 4電極指 292に接続された配線 (バスバー) 293は、ポート 3端子 216dに接続されている。圧電薄膜 214に形成され たスルーホール 215aにおいて、第 2電極対 230の各第 4電極指 232に接続された配 線 (バスバー) 233の端部と、第 4電極対 250の各第 3電極指 254の配線 (バスバー) 255の端部とが接続されている。圧電薄膜 214に形成されたスルーホール 215cに おいて、第 4電極対 250の各第 4電極指 252の配線 (バスバー) 253の端部と、第 6電 極対 270の各第 3電極指 274に接続された配線 (バスバー) 275の端部とが接続され ている。圧電薄膜 214に形成されたスルーホール 215dにおいて、第 6電極対 270の 各第 4電極指 272の配線 (バスバー) 273の端部と、第 8電極対 290の各第 3電極指 294に接続された配線 (バスバー) 295の端部とが接続されて 、る。
[0165] 図 23に示すように、圧電薄膜フィルタ 210は、入力端子 216a, 216bは、それぞれ 、 2つずつの単位ユニット 310, 320 ; 330, 340に並列接続され、出力端子 216c, 2 16dは、単位ユニット 310, 320, 330, 340に直列接続されている。図 23において、 (1)は第 1電極指 224, 244, 264, 284を、(2)は第 2電極指 222, 242, 262, 282 、 (3)は第 3電極指 234, 254, 274, 294を、 (4)は第 4電極指 232, 252, 272, 29 2を、それぞれ示している。また、実線は圧電薄膜 214の基板 212とは反対側主面の 配線を示し、破線は圧電薄膜 214の基板 212側主面の配線を示している。入力端子 216a, 216bは不平衡端子に接続され、出力端子 216c, 216dは平衡端子に接続 される。なお、入出力は逆にしてもよい。
[0166] 実施例 7の構成によって、入力側のインピーダンスが 50 Ω、出力側のインピーダン スが 200 Ωの平衡型フィルタが得られる。
[0167] インピーダンス 50 Ωの単位ユニットを用いる場合には、インピーダンス 100 Ωの単 位ユニットを用いる場合に比べて浮遊容量の影響を低減することができる。
[0168] <まとめ > 以上に説明した各圧電薄膜フィルタは、入力端子 出力端子間のイン ピーダンス比を調整することができる。
[0169] なお、本発明の圧電薄膜フィルタは、上記した実施の形態に限定されるものではな ぐ種々の態様で実施することができる。
[0170] 例えば、圧電薄膜の基板側の主面に、第 1電極指及び第 3電極指と絶縁膜とを設 けるようにしてもよい。また、圧電薄膜が基板上にその一部が支持された少なくとも 2 つの膜状の支持部によって基板力 空隙層を介して浮いた状態で支持されてもよい

Claims

請求の範囲
[1] 基板と、
前記基板に支持され、前記基板から音響的に分離されている部分を含む圧電薄膜 と、
前記基板から音響的に分離されている部分の前記圧電薄膜の一方の主面に配置 された 2以上の第 1電極指と、前記基板力 音響的に分離されている部分の前記圧 電薄膜の他方の主面に前記圧電薄膜を介してそれぞれ前記第 1電極指に対向して 配置された 2以上の第 2電極指とを有する第 1電極対と、
前記基板から音響的に分離されている部分の前記圧電薄膜の前記一方の主面に 前記第 1電極指と互いに間隔を設けて交互に配置された 2以上の第 3電極指と、前 記基板から音響的に分離されている部分の前記圧電薄膜の前記他方の主面に前記 圧電薄膜を介してそれぞれ前記第 3電極指に対向して配置された第 4電極指とを有 する第 2電極対とを備え、
前記各第 1電極指に接続される第 1端子及び前記各第 2電極指に接続される第 2 端子と、前記各第 3電極指に接続される第 3端子及び前記各第 4電極指に接続され る第 4端子との間に、前記第 1電極対及び前記第 2電極対によりフィルタ要素が形成 される圧電薄膜フィルタにお 、て、
前記圧電薄膜の前記一方の主面には、互いに間隔を設けて交互に配置された前 記第 1電極指と前記第 3電極指との間に、絶縁膜を備え、
互いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電極指との間の 中心間距離が、前記基板力 音響的に分離されている部分の前記圧電薄膜の厚さ の 2倍よりも大きいことを特徴とする、圧電薄膜フィルタ。
[2] 基板と、
前記基板に支持され、前記基板から音響的に分離されている部分を含む圧電薄膜 と、
前記基板から音響的に分離されている部分の前記圧電薄膜の一方の主面に配置 された 2以上の第 1電極指と、前記基板力 音響的に分離されている部分の前記圧 電薄膜の前記一方の主面に前記第 1電極指と互いに間隔を設けて交互に配置され た 2以上の第 3電極指と、
前記基板力 音響的に分離されている部分の前記圧電薄膜の他方の主面に配置 され前記圧電薄膜を介して前記第 1電極指及び前記第 3電極指に対向する部分を 含む共通電極とを備え、
前記第 1電極指と前記共通電極とにより第 1電極対を形成し、
前記第 3電極指と前記共通電極とにより第 2電極対を形成し、
前記各第 1電極指に接続される第 1端子及び前記共通電極に接続される第 2端子 と、前記各第 3電極指に接続される前記第 3端子及び前記共通電極に接続される第
4端子の間に、前記第 1電極対及び前記第 2電極対によりフィルタ要素を形成し、 前記圧電薄膜の前記一方の主面は、互いに間隔を設けて交互に配置された前記 第 1電極指と前記第 3電極指との間に、絶縁膜を備え、
互いに間隔を設けて交互に配置された前記第 1電極指と前記第 3電極指との間の 中心間距離が、前記圧電薄膜の厚さの 2倍よりも大きいことを特徴とする、圧電薄膜 フイノレタ。
[3] 前記各電極指の幅が、前記基板から音響的に分離されている部分の前記圧電薄 膜の厚さの 2倍よりも大きいことを特徴とする、請求項 1又は 2に圧電薄膜フィルタ。
[4] 少なくとも 2組の前記フィルタ要素を含み、
それぞれの前記フィルタ要素の前記第 1端子及び前記第 2端子が、入力端子又は 出力端子のいずれか一方に並列接続され、
それぞれの前記フィルタ要素の前記第 3端子及び前記第 4端子が、前記入力端子 又は前記出力端子の他方の間に直列接続されたことを特徴とする、請求項 1、 2又は 3に記載の圧電薄膜フィルタ。
[5] 前記第 1端子及び前記第 2端子が不平衡端子に接続され、
前記第 3端子及び前記第 4端子が平衡端子に接続されることを特徴とする、請求項 1な!、し 4に記載の圧電薄膜フィルタ。
[6] 前記圧電薄膜は、空隙層または開口を介して、前記基板から音響的に分離されて V、ることを特徴とする、請求項 1な!、し 5の 、ずれか一つに記載の圧電薄膜フィルタ。
[7] 前記圧電薄膜の前記一方の主面は、前記第 1電極指及び前記第 3電極指と前記 絶縁膜とが配置された共振領域の外側に、該共振領域から連続して延在する非共 振領域を含むことを特徴とする、請求項 1ないし 7のいずれか一つに記載の圧電薄膜 フイノレタ。
[8] 前記第 1電極指及び前記第 3電極指と前記絶縁膜とを覆う第 1領域と、前記第 2電 極指及び前記第 4電極指を覆う第 2領域と、前記共通電極を覆う第 3領域とのうち、 少なくとも一つに、第 2の絶縁膜をさらに備えたことを特徴とする、請求項 1ないし 7の
V、ずれか一つに記載の圧電薄膜フィルタ。
[9] 前記圧電薄膜の前記一方の主面に、共通のレジストパターンを用いて、前記第 1電 極指及び前記第 3電極指と前記絶縁膜とを形成することを特徴とする、請求項 1な!、 し 8の!、ずれか一つに記載の圧電薄膜フィルタ。
[10] 前記圧電薄膜がェピタキシャル膜であることを特徴とする、請求項 1ないし 9のいず れか一つに記載の圧電薄膜フィルタ。
[11] 前記第 1電極対における前記第 1電極指と前記第 2電極指又は前記共通電極との 対の数と、前記第 2電極対における前記第 3電極指と前記第 4電極指又は前記共通 電極との対の数との合計である総対数が、 20対以上であることを特徴とする、請求項
1な!、し 10の!、ずれか一つに記載の圧電薄膜フィルタ。
[12] 前記第 1電極対における前記第 1電極指と前記第 2電極指又は前記共通電極との 対の数と、前記第 2電極対における前記第 3電極指と前記第 4電極指又は前記共通 電極との対の数とが異なることを特徴とする、請求項 1な 、し 11の 、ずれか一つに記 載の圧電薄膜フィルタ。
[13] ラダー型フィルタ又はラテイス型フィルタの!/、ずれかと、
請求項 1ないし 12のいずれか一つに記載の圧電薄膜フィルタとがカスケード接続さ れていることを特徴とする、複合フィルタ。
[14] 前記フィルタ要素を単位ユニットとし、
入力端子又は出力端子のいずれか一方に直列接続される少なくとも 2つの前記単 位ユニットを含み、
前記少なくとも 2つの単位ユニットの少なくとも 2つは、前記出力端子又は前記入力 端子の他方に並列接続されていることを特徴とする、請求項 1に記載の圧電薄膜フィ ルタ。
[15] 前記少なくとも 2つの前記単位ユニットが互いに隣接して配置され、隣接する前記 単位ユニット同士が機械的に結合されていることを特徴とする、請求項 14に記載の 圧電薄膜フィルタ。
[16] 前記入力端子が不平衡端子に接続され、
前記出力端子が平衡端子に接続されていることを特徴とする、請求項 14又は 15に 記載の圧電薄膜フィルタ。
[17] 前記圧電薄膜は、空隙または開口を介して、前記基板から音響的に分離されてい ることを特徴とする、請求項 14、 15又は 16に記載の圧電薄膜フィルタ。
[18] 第 1及び第 2の前記単位ユニットを含み、
前記各単位ユニットの前記第 1端子が、前記入力端子の一方に接続され、 前記各単位ユニットの前記第 2端子が、前記入力端子の他方に接続され、 前記第 1の単位ユニットの前記第 4端子と前記第 2の単位ユニットの前記第 3端子と が接続され、
前記第 1の単位ユニットの前記第 3端子が、前記出力端子の一方に接続され、 前記第 2の単位ユニットの前記第 4端子が、前記出力端子の他方に接続され、 前記出力端子が平衡端子に接続されることを特徴とする、請求項 14ないし 17のい ずれか一つに記載の圧電薄膜フィルタ。
[19] 第 1及び第 2の前記単位ユニットを含み、
前記第 1の単位ユニットの前記第 1端子と前記第 2の単位ユニットの前記第 2端子と 力 前記入力端子の一方に接続され、
前記第 1の単位ユニットの前記第 2端子と前記第 2の単位ユニットの前記第 1端子と 力 前記入力端子の他方に接続され、
前記各単位ユニットの前記第 4端子同士が接続され、
前記第 1の単位ユニットの前記第 3端子と前記第 2の単位ユニットの前記第 3端子と 力 それぞれ前記出力端子に接続され、
前記出力端子が平衡端子に接続されることを特徴とする、請求項 14ないし 17のい ずれか一つに記載の圧電薄膜フィルタ。
[20] 第 1ないし第 4の前記単位ユニットを含み、
前記第 1の単位ユニットの前記第 1端子と前記第 2の単位ユニットの前記第 1端子と 力 前記入力端子の一方に接続され、
前記第 1の単位ユニットの前記第 2端子と、前記第 2の単位ユニットの前記第 2端子 と、前記第 3の単位ユニットの前記第 1端子と、前記第 4の単位ユニットの前記第 1端 子とが互いに接続され、
前記第 3の単位ユニットの前記第 2端子と前記第 4の単位ユニットの前記第 2端子と 力 前記入力端子の他方に接続され、
前記第 1の単位ユニットの前記第 3端子が、前記出力端子の一方に接続され、 前記第 1の単位ユニットの前記第 4端子と、前記第 2の単位ユニットの前記第 3端子 とが接続され、
前記第 2の単位ユニットの前記第 4端子と、前記第 3の単位ユニットの前記第 3端子 とが接続され、
前記第 3の単位ユニットの前記第 4端子と、前記第 4の単位ユニットの前記第 3端子 とが接続され、
前記第 4の単位ユニットの前記第 4端子が、前記出力端子の他方に接続され、 前記出力端子が平衡端子に接続されることを特徴とする、請求項 14ないし 17のい ずれか一つに記載の圧電薄膜フィルタ。
[21] 前記基板から音響的に分離されている部分の前記圧電薄膜の前記一方の主面( 又は、前記他方の主面)に、少なくとも一つの共通電極が配置され、
少なくとも一つの前記単位ユニットの前記第 1電極指及び前記第 3電極指 (又は、 前記第 2電極指及び前記第 4電極指)が、同一の前記共通電極の一部分に含まれる ことを特徴とする、請求項 14ないし 20のいずれか一つに記載の圧電薄膜フィルタ。
[22] 前記基板から音響的に分離されている部分の前記圧電薄膜の主面の少なくとも一 方において、隣接する前記電極指の間に絶縁膜が配置されたことを特徴とする、請 求項 14な!、し 20の!、ずれか一つに記載の圧電薄膜フィルタ。
PCT/JP2006/307147 2005-04-13 2006-04-04 圧電薄膜フィルタ WO2006112260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE200660009384 DE602006009384D1 (de) 2005-04-13 2006-04-04 Piezoelektrisches dünnschichtfilter
JP2007521173A JP4513860B2 (ja) 2005-04-13 2006-04-04 圧電薄膜フィルタ
EP06731095A EP1871007B1 (en) 2005-04-13 2006-04-04 Piezoelectric thin film filter
US11/854,753 US7843285B2 (en) 2005-04-13 2007-09-13 Piezoelectric thin-film filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005116319 2005-04-13
JP2005-116319 2005-04-13
JP2005122709 2005-04-20
JP2005-122709 2005-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/854,753 Continuation US7843285B2 (en) 2005-04-13 2007-09-13 Piezoelectric thin-film filter

Publications (1)

Publication Number Publication Date
WO2006112260A1 true WO2006112260A1 (ja) 2006-10-26

Family

ID=37114987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307147 WO2006112260A1 (ja) 2005-04-13 2006-04-04 圧電薄膜フィルタ

Country Status (5)

Country Link
US (1) US7843285B2 (ja)
EP (1) EP1871007B1 (ja)
JP (1) JP4513860B2 (ja)
DE (1) DE602006009384D1 (ja)
WO (1) WO2006112260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148630A1 (ja) * 2010-05-26 2011-12-01 パナソニック株式会社 Mems共振器
JP2012015936A (ja) * 2010-07-05 2012-01-19 Murata Mfg Co Ltd 弾性波素子
JP2016115981A (ja) * 2014-12-11 2016-06-23 太陽誘電株式会社 横結合型多重モードモノリシックフィルタ
JP2020014202A (ja) * 2018-07-17 2020-01-23 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定共振器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096020A1 (en) * 2009-02-17 2010-08-26 Agency For Science, Technology And Research Miniaturized piezoelectric accelerometers
FI123640B (fi) 2010-04-23 2013-08-30 Teknologian Tutkimuskeskus Vtt Laajakaistainen akustisesti kytketty ohutkalvo-BAW-suodin
US9083300B2 (en) * 2010-09-01 2015-07-14 Qualcomm Mems Technologies, Inc. Electromechanical systems piezoelectric contour mode differential resonators and filters
US9093979B2 (en) * 2012-06-05 2015-07-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Laterally-coupled acoustic resonators
US9379686B2 (en) * 2014-03-04 2016-06-28 Qualcomm Incorporated Resonator with a staggered electrode configuration
US10952642B2 (en) * 2017-11-09 2021-03-23 Amorepacific Corporation Strain sensor unit and skin sensor module comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418806A (ja) 1990-05-14 1992-01-23 Toshiba Corp 圧電薄膜デバイス
EP0952618A1 (en) 1997-04-24 1999-10-27 Mitsubishi Denki Kabushiki Kaisha Thin film piezoelectric element, method for manufacturing the same, and circuit element
JP2002541704A (ja) * 1999-03-30 2002-12-03 インフィネオン テクノロジース アクチエンゲゼルシャフト 構成素子
JP2002368576A (ja) * 2001-06-05 2002-12-20 Fujitsu Media Device Kk 弾性波素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271870A (en) * 1939-11-10 1942-02-03 Bell Telephone Labor Inc Wave transmission network
JP3068140B2 (ja) * 1989-09-07 2000-07-24 株式会社東芝 圧電薄膜共振子
US6349454B1 (en) 1999-07-29 2002-02-26 Agere Systems Guardian Corp. Method of making thin film resonator apparatus
US6342753B1 (en) * 2000-09-25 2002-01-29 Rockwell Technologies, Llc Piezoelectric transformer and operating method
JP4147817B2 (ja) * 2002-05-23 2008-09-10 株式会社村田製作所 圧電フィルタ、およびそれを有する電子部品
US7098758B2 (en) * 2004-11-03 2006-08-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustically coupled thin-film resonators having an electrode with a tapered edge
WO2006134959A1 (ja) * 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. 多重モード薄膜弾性波共振器フィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418806A (ja) 1990-05-14 1992-01-23 Toshiba Corp 圧電薄膜デバイス
EP0952618A1 (en) 1997-04-24 1999-10-27 Mitsubishi Denki Kabushiki Kaisha Thin film piezoelectric element, method for manufacturing the same, and circuit element
JP2002541704A (ja) * 1999-03-30 2002-12-03 インフィネオン テクノロジース アクチエンゲゼルシャフト 構成素子
JP2002368576A (ja) * 2001-06-05 2002-12-20 Fujitsu Media Device Kk 弾性波素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1871007A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148630A1 (ja) * 2010-05-26 2011-12-01 パナソニック株式会社 Mems共振器
JP5277322B2 (ja) * 2010-05-26 2013-08-28 パナソニック株式会社 Mems共振器
US8542074B2 (en) 2010-05-26 2013-09-24 Panasonic Corporation MEMS resonator
JP2012015936A (ja) * 2010-07-05 2012-01-19 Murata Mfg Co Ltd 弾性波素子
US9197189B2 (en) 2010-07-05 2015-11-24 Murata Manufacturing Co., Ltd. Acoustic wave device
JP2016115981A (ja) * 2014-12-11 2016-06-23 太陽誘電株式会社 横結合型多重モードモノリシックフィルタ
JP2020014202A (ja) * 2018-07-17 2020-01-23 ツー−シックス デラウェア インコーポレイテッドII−VI Delaware,Inc. 電極画定共振器

Also Published As

Publication number Publication date
JP4513860B2 (ja) 2010-07-28
EP1871007B1 (en) 2009-09-23
JPWO2006112260A1 (ja) 2008-12-11
EP1871007A1 (en) 2007-12-26
US7843285B2 (en) 2010-11-30
EP1871007A4 (en) 2008-07-09
US20080007139A1 (en) 2008-01-10
DE602006009384D1 (de) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4513860B2 (ja) 圧電薄膜フィルタ
US7098758B2 (en) Acoustically coupled thin-film resonators having an electrode with a tapered edge
EP1892832B1 (en) Multi-mode thin film elastic wave resonator filter
KR101024189B1 (ko) 탄성파 필터장치
JP4274246B2 (ja) バランス型弾性波フィルタ装置
KR19980069740A (ko) 탄성 표면파 다중모드 필터
JPWO2018235433A1 (ja) 弾性波装置
JP3587354B2 (ja) 横結合共振子型表面波フィルタ及び縦結合共振子型表面波フィルタ
CN114270707A (zh) 弹性波装置
CN114424458A (zh) 弹性波装置
JP4480490B2 (ja) 弾性表面波装置およびそれを用いた通信装置
JPWO2008068951A1 (ja) 弾性表面波フィルタ装置
WO2010007805A1 (ja) 分波器
CN115664370A (zh) 一种多传输零点的板波滤波器及信号处理电路
JP4569314B2 (ja) バランス型弾性波フィルタ装置
KR102374795B1 (ko) 탄성파 장치 및 탄성파 장치의 제조 방법
JPH1117493A (ja) 弾性表面波装置
JP4936102B2 (ja) 弾性表面波デバイス
JPH08204502A (ja) 縦型複合4重モードsawフィルタ
US20210044273A1 (en) Transducer structure for source suppression in saw filter devices
WO2022107681A1 (ja) フィルタおよびマルチプレクサ
US20240235520A9 (en) Filter device and multiplexer
WO2024004862A1 (ja) フィルタ装置および通信装置
CN113474996B (zh) 滤波器和多滤波器
JPH09289435A (ja) 弾性表面波フィルタおよび通過周波数帯域の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521173

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006731095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11854753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731095

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11854753

Country of ref document: US