WO2006112178A1 - 光ディスクの情報記録層及び光ディスク - Google Patents

光ディスクの情報記録層及び光ディスク Download PDF

Info

Publication number
WO2006112178A1
WO2006112178A1 PCT/JP2006/304161 JP2006304161W WO2006112178A1 WO 2006112178 A1 WO2006112178 A1 WO 2006112178A1 JP 2006304161 W JP2006304161 W JP 2006304161W WO 2006112178 A1 WO2006112178 A1 WO 2006112178A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
light
information
optical disc
recording layer
Prior art date
Application number
PCT/JP2006/304161
Other languages
English (en)
French (fr)
Inventor
Eiji Muramatsu
Kazuo Kuroda
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US11/887,428 priority Critical patent/US7911933B2/en
Priority to JP2007521120A priority patent/JP4591790B2/ja
Publication of WO2006112178A1 publication Critical patent/WO2006112178A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Definitions

  • the present invention relates to an information recording layer of an optical disc for recording information by light and an optical disc.
  • optical discs such as CD (Compact Disc) and DVD (Digital Versatile Disc).
  • CD Compact Disc
  • DVD Digital Versatile Disc
  • an optical disc is provided with an information recording layer of a light absorption layer made of dye, and the information recording layer is irradiated with light for recording and irradiated with light.
  • Information is recorded by decomposing the dyes in the area and generating record marks.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-103611
  • the present invention solves the above-mentioned problem as an example, and provides an information recording layer and an optical disk of an optical disc that can realize high-density recording by forming minute recording marks. For the purpose.
  • the invention described in claim 1 is a recording material that absorbs recording light for recording information and generates heat, and the information is recorded by changing the refractive index of the light by the heat generation, and the recording material
  • the outer diameter of the recording material is smaller than the diffraction limit of the readout light for reading information, and the thermal conductivity is lower than that of the recording material.
  • FIG. 1 is a conceptual diagram showing a configuration of an optical disc according to this embodiment.
  • FIG. 2 is an explanatory diagram showing the relationship between the light absorption rate of the material constituting the information recording layer of the optical disc according to this embodiment and the wavelength of the recording light.
  • FIG. 3 is a conceptual diagram for explaining a heat generating material constituting the information recording layer of the optical disc according to this embodiment.
  • FIG. 4 is an explanatory diagram showing the relationship between the amount of heat generated by the heat generating material according to this embodiment and the light intensity of the irradiated recording light.
  • FIG. 5 is an explanatory view showing the relationship between the light absorption rate and the wavelength of the information recording layer according to this embodiment.
  • FIG. 6 is a plan view showing an optical disc according to this embodiment.
  • FIG. 7 is an explanatory diagram of an example of a method for forming an information recording layer of an optical disc according to this embodiment.
  • FIG. 8 is a structural diagram showing an example of an apparatus for recording and reproducing information on an optical disc according to this embodiment.
  • FIG. 9 is a flowchart showing a procedure of a method for recording and reproducing information on the optical disc according to the present embodiment.
  • FIG. 10-1 is an explanatory diagram showing a process of forming a recording mark bearing information on the optical disc according to this embodiment.
  • FIG. 10-2 is an explanatory diagram showing a process of forming a recording mark bearing information on the optical disc according to this embodiment.
  • FIG. 10-3 is an explanatory diagram showing a process of forming a recording mark bearing information on the optical disc according to this embodiment.
  • FIG. 11 is an explanatory view showing the relationship between the light absorptance of the material constituting the information recording layer of the optical disc according to this embodiment and the wavelength of the recording light.
  • the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the best mode for carrying out the invention.
  • constituent elements in the embodiments described below include those that can be easily assumed by those skilled in the art or those that are substantially the same.
  • the present invention can be applied to at least an optical disk capable of recording information, and the information recording layer may be a single layer or a multilayer.
  • the information recording layer of the optical disk generates heat by absorbing the recording light
  • the outer dimension is a heat generating material formed smaller than the diffraction limit of the reading light, and the absorptance of the wavelength of the recording light It is characterized in that it includes a recording material that is lower than the heat-generating material and that records information when the refractive index is lowered by heating and further disperses the heat-generating material.
  • FIG. 1 is a conceptual diagram showing a configuration of an optical disc according to this embodiment.
  • an information recording layer 7 is formed on the surface of a transparent resin substrate 8.
  • Information is recorded on the information recording layer 7 by light (recording light) L having a specific wavelength.
  • the information recording layer 7 is configured by, for example, a heat generating material 6 in which an organic dye is formed in the form of particles dispersed in a recording material 5 that is an organic dye, for example.
  • the detailed configuration of the information recording layer 7 will be described later.
  • a metal reflective layer 4 having a high reflectance such as aluminum is formed on the surface of the reflective layer 4.
  • the information recording layer 7 formed on the surface of the substrate 8 and the A protective layer 3 for protecting the spray layer 4 is formed on the surface of the protective layer 3 .
  • the surface of the protective layer 3 is the label surface 2, and a sticker on which characters and images are recorded is attached, or characters and images are printed directly.
  • FIG. 2 is an explanatory diagram showing the relationship between the light absorptance of the material constituting the information recording layer of the optical disc according to this embodiment and the wavelength of the recording light.
  • FIG. 3 is a conceptual diagram for explaining the heat generating material constituting the information recording layer of the optical disc according to this embodiment. Solid line S in Figure 2
  • the heat generating material 6 constituting the information recording layer 7 absorbs recording light and generates heat.
  • the recording light is light L when information is recorded on the optical disc 1, and its wavelength is, for example, 500 nm to 700 nm.
  • the outer dimension D of the heat generating material 6 is set to a value smaller than the diffraction limit of the readout light (about 20 ⁇ ! To lOOnm).
  • the heat generating material 6 is a force dispersed in the recording material 5.
  • the outer dimension D of the heat generating material 6 is the dimension of the largest portion of the heat generating material. If the heat generating material 6 has a spherical shape as shown in Fig. 3, the maximum diameter is Dmax. As a result, by making sure that the outer dimension D of the heat generating material 6 is smaller than the diffraction limit of the reading light, it is possible to more reliably suppress the influence on the information reading by dispersing the heat generating material 6 in the recording material 5. it can.
  • the exothermic material 6 can be obtained, for example, by making an organic dye that generates heat by absorbing light of a specific wavelength into particles having an outer dimension of about 20 nm to 100 nm.
  • the recording material 5 constituting the information recording layer 7 provided in the optical disc 1 according to this embodiment is a material that decomposes when heated to lower the refractive index. Accordingly, the recording material 5 has a function of recording information on the information recording layer 7.
  • the recording material 5 becomes the parent phase of the information recording layer 7 by dispersing the heat generating material 6. Further, the light absorption rate 7? Of the recording material 5 is different from that of the heat generating material 6. As shown in Fig. 2, the recording material 5 has an optical absorptance of recording light having a wavelength of ⁇ .
  • the recording material 5 When the recording light is irradiated onto the recording material 5 that does not include the heat generating material 6, the recording material 5 does not generate heat and the refractive index does not decrease, so information is not recorded.
  • the heat generating material 6 and the recording material 5 constituting the information recording layer 7 of the optical disc according to this embodiment for example, organic dyes such as cyanine organic dyes, diazo organic dyes, and phthalocyanine organic dyes are used. be able to.
  • organic dyes such as cyanine organic dyes, diazo organic dyes, and phthalocyanine organic dyes are used. be able to.
  • a material represented by Equation 1 can be used
  • the recording material 5 for example, a material represented by Equation 2 can be used.
  • the materials represented by Chemical Formulas 1 and 2 are both cyanine-based organic dyes, but the peak wavelength of light absorbed by the heat-generating material 6 is about 620 nm to 700 nm due to the difference in configuration. The peak wavelength of light absorbed by Material 5 is about 400 ⁇ m to 480 nm.
  • the information recording layer 7 of the optical disc 1 according to this embodiment can be configured by using two kinds of materials having different wavelength bands of light to be absorbed.
  • FIG. 4 is an explanatory view showing the relationship between the heat generation amount of the heat generating material according to this embodiment and the light intensity of the irradiated recording light.
  • the heat generating material 6 forming the information recording layer 7 has a light intensity W of the irradiated recording light L as shown by a solid line A in FIG. It is preferable that the calorific value Q has a characteristic that changes nonlinearly. As a result, only the heat-generating material 6 irradiated with the recording light L exceeding the light intensity threshold W generates heat, so the recording light L
  • the heat generating material forming the information recording layer 7 has a characteristic that the calorific value Q changes linearly with respect to the light intensity W of the irradiated recording light, as shown by a one-dot chain line B in FIG. Well, okay.
  • FIG. 5 is an explanatory view showing the relationship between the light absorption rate and the wavelength of the information recording layer according to this embodiment.
  • the optical absorptance of the information recording layer 7 according to the present embodiment includes the change in the optical absorptance of the heat generating material 6 (the dashed line S in FIG. 5) and the change in the optical absorptance of the recording material 5 (the dashed line in FIG. And
  • the mixing volume ratio of the heat generating material 6 and the recording material 5 is adjusted within a range in which a heat quantity necessary and sufficient for the recording material 5 to decompose at the time of recording information can be secured. From this viewpoint, it is preferable that the volume ratio of the heat generating material 6 in the information recording layer 7 of the optical disc 1 is smaller than the volume ratio of the recording material 5 in the information recording layer 7 of the optical disc 1.
  • the heating material: recording material is about 1: 5 (volume ratio).
  • the information recording layer 7 has a light absorption rate as shown in FIG. 5 that is insufficient for reflected light at the time of information reading, while securing a sufficient amount of heat necessary for the recording material 5 to decompose during information recording. Is suppressed from occurring.
  • adjust the heat generation of the heat generating material 6 adjust the mixture volume ratio of the heat generating material 6 and the recording material 5, or adjust the ratio between the surface area S and the volume V of the heat generating material. Therefore, the heat generation of the heat generating material 6 can be adjusted.
  • FIG. 6 is a plan view showing an optical disc according to this embodiment.
  • This optical disk 1 is a CAV (Constant Angular Velocity) type disk, and is composed of the heat generating material 6 occupying the information recording layer 7 from the rotation center Z toward the outer side in the radial direction (outer peripheral side: direction R in FIG. 6).
  • the heat generation distribution of the information recording layer 7 may be increased by increasing the volume ratio (increasing the distribution density of the heat generating material 6).
  • the CAV optical disc 1 rotates in the direction of arrow N in FIG.
  • the recording layer 7 increases the heat generation density of the information recording layer 7, and even when the linear velocity of the optical disk 1 is increased, the heat generating material 6 is surely heated and recorded in the information recording layer 7.
  • ZCAV Zero Constant Angular Velocity
  • ZCLV Zero Constant Linear Velocity
  • the distribution density of the heat generating material 6 can be set according to the linear velocity.
  • the heat generating material 6 may be evenly distributed.
  • FIG. 7 is an explanatory diagram of an example of a method for forming the information recording layer of the optical disc according to this embodiment.
  • FIG. 7 shows a change in the number of rotations of the substrate after the coating liquid is dropped when the information recording layer 7 of the optical disc 1 is formed by the spin coating method.
  • the information recording layer 7 of the optical disc 1 can be formed by a so-called spin coating method in which a coating solution in which the heat generating material 6 and the recording material 5 are dissolved in a solvent is dropped onto the rotating substrate 8 (FIG. 1).
  • the rotation of the substrate 8 is changed as shown by a solid line a in FIG. Decrease the number n gradually over time.
  • the density of the heat generating material 6 can be increased by directing the optical disk 1 radially outward.
  • the heat generation density of the information recording layer 7 can be increased by directing the optical disk 1 radially outward.
  • the change in the number of rotations n of the substrate 8 is not limited to the change as shown by the solid line a in FIG. 7, but may be as shown by the dotted line b and the alternate long and short dash line c shown in FIG.
  • the change in the rotation speed n of the substrate 8 can be changed as appropriate according to the concentration of the coating solution, the material of the substrate 8, and the like.
  • FIG. 8 is a structural diagram showing an example of an apparatus for recording and reproducing information on the optical disc according to this embodiment.
  • FIG. 9 is a flowchart showing a procedure of a method for recording and reproducing information on the optical disc according to this embodiment.
  • the optical disc 1 according to this embodiment records and reproduces information (hereinafter referred to as a disc device) 10 records information on the optical disc 1.
  • an optical pickup 13 for reproduction a driver 12 that controls the operation of the optical pickup 13, and a processing unit 11 that transmits a control signal of the optical pickup 13 to the driver 12 and controls recording and reproduction operations by the optical pickup 13. Including.
  • the processing unit 11 of the disc device 10 determines whether or not it is a force for recording information on the optical disc 1 (step S101).
  • the processing unit 11 uses the light source power of a laser diode provided in the optical pickup 13 as well as the light intensity W of the recording light applied to the information recording layer 7 of the optical disc 1, Set to a predetermined value W (step sl).
  • the driver 12 is controlled so that the optical pickup 13 irradiates the information recording layer 7 with the light intensity, and the information recording layer 7 of the optical disc 1 is irradiated with the recording light.
  • the heat generating material 6 of the information recording layer 7 is heated to decompose the recording material 5, thereby forming a recording mark on the information recording layer 7 and recording information on the information recording layer 7 (step S103). ).
  • step S104 determines whether or not it is a power to reproduce information recorded on the optical disk 1 (step S104). If the information recorded on the optical disc 1 is not reproduced (step S104: No), the process ends.
  • step S104: Yes the processing unit 11 uses the light source power of a laser diode or the like provided in the optical pickup 13 as well as the light intensity of the readout light applied to the information recording layer 7 of the optical disc 1. Set W to the predetermined value W (Step
  • Each value is set according to the relationship with the light intensity of the recording light L.
  • the heat generating material 6 of the information recording layer 7 generates heat and may cause the recording material 5 to decompose. Accordingly, the light intensity W of the reading light is set to be lower than at least s2 sl than the light intensity W at the time of recording. If the heat generating material 6 has a characteristic that the calorific value Q changes nonlinearly with respect to the light intensity W of the irradiated recording light as described in FIG.
  • the driver 12 is controlled to irradiate the information recording layer 7 with the reading light with the light intensity W set by the optical pickup 13, and the information recording layer 7 of the optical disc 1 is irradiated with the reading light.
  • the processing unit 11 discriminates the difference in refractive index between the recording mark recorded on the information recording layer 7 and the portion other than the recording mark from the signal detected by the optical pickup 13 and records the information on the information recording layer 7. The recorded information is reproduced (step S106).
  • the recording light for recording information is absorbed to generate heat
  • the outer dimension D is a heat generating material 6 formed smaller than the diffraction limit of the reading light for reading information.
  • a recording material 5 that has a recording light wavelength lower than that of the heat generating material 6 and records information when the refractive index of the light is changed by heating, and further disperses the heat generating material 6.
  • the information recording layer 7 included in the optical disc 1 according to this embodiment can form recording marks that are smaller than those of the conventional optical disc.
  • a minute recording mark can be formed without changing the wavelength of the recording light, the aperture ratio of the lens constituting the optical system, or the like.
  • high-density recording can be realized by forming minute recording marks without changing the design of the recording device.
  • the configuration of the first embodiment can also be applied as appropriate in the following embodiments.
  • the information recording layer of the optical disc records information by lowering the refractive index by heating, and further the recording material in which the heat generating material is dispersed, and the absorption rate of the recording light is lower than that of the recording material. Furthermore, the outer dimensions are formed to be smaller than the diffraction limit of the readout light, and further include a heat transfer suppression portion having a thermal conductivity lower than that of the recording material.
  • FIG. 10-1 to FIG. 10-3 are explanatory views showing a process of forming a recording mark carrying information on the optical disc according to this embodiment.
  • the substrate, the protective layer, and the label surface of the optical disc 1a are omitted.
  • the optical disc 1 has the same structure.
  • the information recording layer 7a of this optical disc la A solid dispersion material 6a in which organic pigments are formed into particles is used as a heat transfer suppression unit.
  • the dispersion material 6a is configured to be dispersed in, for example, the recording material 5a that is an organic dye.
  • the recording material 5a that constitutes the information recording layer 7a included in the optical disc la according to this embodiment is a material that decomposes when heated to lower the refractive index. Accordingly, the recording material 5 has a function of recording information on the information recording layer 7. In addition, the recording material 5 a becomes a parent phase of the information recording layer 7 by dispersing the dispersion material 6 a.
  • FIG. 11 is an explanatory diagram showing the relationship between the light absorptance of the material constituting the information recording layer of the optical disc according to this embodiment and the wavelength of the recording light.
  • the solid line S in Fig. 11 shows the recording material 5a.
  • the light absorption rate r? of a is different from that of the recording material 5a.
  • the dispersion material 6a has a recording light absorption rate r? Lower than that of the recording material 5a. That is, the dispersion material 6a does not absorb recording light having a wavelength of ⁇ .
  • the recording material 5a When irradiated, the recording material 5a absorbs the recording light and generates heat and the refractive index changes, but the dispersion material 6a does not generate heat.
  • the thermal conductivity ⁇ of the dispersion material 6a is smaller than the thermal conductivity ⁇ of the recording material 5a.
  • the recording material 5a generates heat when the recording light is irradiated to the information recording layer 7a, but the dispersion material 6a has a lower thermal conductivity than the recording material 5a, so the area force irradiated with the recording light and the heat to the surrounding area Conduction can be suppressed. As a result, the heat spread from the area irradiated with the recording light of the wavelength.
  • the information recording layer 7a included in the optical disc la can form a recording mark that is smaller than that of the conventional optical disc.
  • a process of recording information on the information recording layer 7a of the optical disc la including the recording material 5a and the dispersion material 6a will be described.
  • the information recording layer 7a when recording information, the information recording layer 7a is irradiated with the recording light L having a long wavelength shown in FIG.
  • the recording light L when the recording light L is irradiated, it is the parent phase of the information recording layer 7a.
  • the recording material 5a that absorbs the recording light L generates heat. As a result, the recording light L was irradiated.
  • the recording material in the area (area indicated by H in Figure 10-2) is decomposed and the recording light L is not irradiated.
  • the refractive index changes (decreases) with respect to the region.
  • the recording mark is the recording light L
  • the recording mark can be identified by irradiating the information recording layer 7a with reading light. In this way, information can be recorded on the information recording layer 7a of the optical disc la according to this embodiment.
  • the dispersion material when the information recording layer 7a is irradiated with the recording light L and the recording material 5a generates heat, the dispersion material
  • Examples of the dispersion material 6a and the recording material 5a constituting the information recording layer 7a of the optical disc according to this embodiment include cyanine-based organic dyes, diazo-based organic dyes, and the like described in the first embodiment.
  • Organic dyes such as phthalocyanine organic dyes can be used.
  • the wavelength of the recording light is about 500 nm
  • a material having a peak wavelength of the absorbing light of 400 nm to 480 nm as shown in Equation 2 can be used for the recording material 5a.
  • the dispersion material 6a hardly absorbs recording light having a wavelength of about 500 nm.
  • the absorbing light has a peak wavelength of 620 ⁇ !
  • a material that is ⁇ 700nm can be used.
  • the recording material 5a may include minute bubbles as the dispersion material 6a.
  • a styrene-based material is used, and bubbles smaller than the dispersion material 6a are included therein. Note that it is preferable to enclose a plurality of bubbles in the dispersion material 6a.
  • the above-described dispersion material 6a and bubbles may be mixed and dispersed in the recording material 5a. In this way, the information recording layer 7a of the optical disc la according to this embodiment can be configured using two types of materials having different wavelength bands of light to be absorbed.
  • the dispersion material 6a is a force that disperses a material smaller than the diffraction limit of the readout light in the recording material 5a.
  • the recording material 5a contains bubbles whose maximum dimension is smaller than the diffraction limit of the readout light. It is good also considering the bubble as a heat transfer suppression part. Na It is preferable that a plurality of bubbles be formed and dispersed in the recording material 5a.
  • the recording light is absorbed and heat is generated, and the external dimensions are formed to be smaller than the diffraction limit of the reading light.
  • the material 6 (see FIG. 1, FIG. 41, etc.) may be dispersed in the information recording layer 7a. In this way, the heat generation sources are scattered, the total amount of heat generation is kept smaller than before, and heat conduction from the recording light irradiation area to the outside of the irradiation area can be suppressed. It is possible to more effectively suppress outward thermal diffusion and form a minute recording mark.
  • the recording material 5a that absorbs the recording light for recording information and generates heat, and the information is recorded by changing the refractive index of the light due to the heat generation, and the recording material 5a
  • the outer diameter of the recording material is smaller than the diffraction limit of the reading light for reading information, and the thermal conductivity is lower than that of the recording material.
  • a heat transfer suppression part (dispersion material 6a).
  • the recording light is irradiated from the region irradiated with the recording light, the thermal diffusion to the region can be suppressed, so that a recording mark smaller than that of the conventional optical disc can be formed. it can.
  • a minute recording mark can be formed without changing the wavelength of the recording light, the aperture ratio of the lens constituting the optical system, or the like. As a result, there is no need to change the light source or the device configuration, and high-density recording can be realized by forming minute recording marks without changing the design of the recording device.
  • the information recording layer of the optical disc, the optical disc, and the disc apparatus according to the present invention are useful for high-density recording, and in particular, by forming minute recording marks, high-density recording is possible. Suitable for realization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 微小な記録マークを形成して、高密度記録を実現することを課題とする。この光ディスク1aは、基板上に情報記録層7aが形成される。情報記録層7aは、分散材料6aを、記録材料5aに分散させて構成される。記録材料5aは、情報を記録する記録光を吸収して発熱し、かつその発熱によって光の屈折率が変化することにより情報を記録する。分散材料6aは、記録光の吸収率が記録材料5aよりも低く、また、外形寸法は、情報を読み出す読み出し光の回折限界よりも小さく、さらに記録材料5aよりも熱伝導率が低い。

Description

明 細 書
光ディスクの情報記録層及び光ディスク
技術分野
[0001] 本発明は、光によって情報を記録する光ディスクの情報記録層及び光ディスクに関 する。
背景技術
[0002] 近年、 CD (Compact Disc)や DVD (Digital Versatile Disc)等の光ディスクにお いては、ユーザー自身で情報を記録できる、いわゆる追記型の光ディスクが広く用い られている。このような光ディスクは、例えば、特許文献 1に開示されているように、色 素からなる光吸収層の情報記録層を設け、この情報記録層に記録用の光を照射して 、光が照射された領域の色素を分解して記録マークを生成することにより情報を記録 する。
[0003] 特許文献 1 :特開平 6— 103611号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、特許文献 1に開示されて!、るような従来の光ディスクでは、単一の情報記録 層が光を吸収して発熱するため、光を照射したときにおける情報記録層の発熱分布 を制御することが困難で、微小な記録マークを形成することが困難であった。
[0005] そこで、本発明は、上述した課題をその一例として解決するものであって、微小な 記録マークを形成して、高密度記録を実現できる光ディスクの情報記録層及び光デ イスクを提供することを目的とする。
課題を解決するための手段
[0006] 請求項 1に記載の発明は、情報を記録する記録光を吸収して発熱し、かつその発 熱によって光の屈折率が変化することにより情報を記録する記録材料と、前記記録 材料に分散され、かつ前記記録光の吸収率が前記記録材料よりも低ぐまた、外形 寸法は、情報を読み出す読み出し光の回折限界よりも小さぐさらに前記記録材料よ りも熱伝導率が低 ヽ伝熱抑制部と、を含むことを特徴とする。 図面の簡単な説明
[0007] [図 1]図 1は、この実施の形態に係る光ディスクの構成を示す概念図である。
[図 2]図 2は、この実施の形態に係る光ディスクの情報記録層を構成する材料の光吸 収率と記録光の波長との関係を示す説明図である。
[図 3]図 3は、この実施の形態に係る光ディスクの情報記録層を構成する発熱材料を 説明する概念図である。
[図 4]図 4は、この実施の形態に係る発熱材料の発熱量と照射される記録光の光強度 との関係を示す説明図である。
[図 5]図 5は、この実施の形態に係る情報記録層の光吸収率と波長との関係を示す 説明図である。
[図 6]図 6は、この実施の形態に係る光ディスクを示す平面図である。
[図 7]図 7は、この実施の形態に係る光ディスクの情報記録層を形成する方法例の説 明図である。
[図 8]図 8は、この実施の形態に係る光ディスクへ情報を記録し、再生する装置の一 例を示す構造図である。
[図 9]図 9は、この実施の形態に係る光ディスクに情報を記録し、再生する方法の手 順を示すフローチャートである。
[図 10-1]図 10— 1は、この実施の形態に係る光ディスクに情報を担う記録マークを形 成する過程を示す説明図である。
[図 10-2]図 10— 2は、この実施の形態に係る光ディスクに情報を担う記録マークを形 成する過程を示す説明図である。
[図 10-3]図 10— 3は、この実施の形態に係る光ディスクに情報を担う記録マークを形 成する過程を示す説明図である。
[図 11]図 11は、この実施の形態に係る光ディスクの情報記録層を構成する材料の光 吸収率と記録光の波長との関係を示す説明図である。
符号の説明
[0008] 1、 la 光ディスク 5、 5a 記録材料
6 発熱材料
6a 分散材料
7、 7a 情報記録層
8 基板
10 ディスク装置
11 処理部
12 ドライバ
13 光ピックアップ
発明を実施するための最良の形態
[0009] 以下、この発明につき、図面を参照しつつ詳細に説明する。なお、この発明を実施 するための最良の形態によりこの発明が限定されるものではない。また、以下に説明 する実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは 実質的に同一のものが含まれる。また、本発明は、少なくとも情報を記録可能な光デ イスクに対して適用でき、情報記録層は単層であっても多層であってもよい。
[0010] (実施の形態 1)
実施の形態 1は、光ディスクの情報記録層が、記録光を吸収して発熱し、また、外 形寸法は読み出し光の回折限界よりも小さく形成される発熱材料と、記録光の波長 の吸収率が発熱材料よりも低ぐかつ加熱によって屈折率が低下することにより情報 を記録し、さらに発熱材料を分散させる記録材料とを含む点に特徴がある。
[0011] 図 1は、この実施の形態に係る光ディスクの構成を示す概念図である。この光デイス ク 1は、透明な榭脂の基板 8の表面に、情報記録層 7が形成される。情報記録層 7は 、特定の波長を持つ光 (記録光) Lによって、情報が記録される。情報記録層 7は、例 えば有機色素を粒子状に形成した発熱材料 6が、例えば有機色素である記録材料 5 に分散されて構成されている。情報記録層 7の詳細な構成については後述する。
[0012] 情報記録層 7の表面には、例えばアルミニウム等のように反射率の高い金属の反射 層 4が形成される。反射層 4の表面には、基板 8の表面に形成した情報記録層 7や反 射層 4を保護するための保護層 3が形成される。保護層 3の表面はラベル面 2であり、 文字や画像を記録したシールが貼り付けられたり、文字や画像が直接印刷されたり する。
[0013] 図 2は、この実施の形態に係る光ディスクの情報記録層を構成する材料の光吸収 率と記録光の波長との関係を示す説明図である。図 3は、この実施の形態に係る光 ディスクの情報記録層を構成する発熱材料を説明する概念図である。図 2の実線 S
5 は、記録材料 5の光吸収率と波長との関係を表し、実線 Sは、発熱材料 6の光吸収
6
率と波長との関係を表す。
[0014] 情報記録層 7を構成する発熱材料 6は、記録光を吸収して発熱する。記録光は、光 ディスク 1に情報を記録するときの光 Lであり、その波長え は、例えば 500nm〜700
1
nm程度である。また、発熱材料 6の外形寸法 Dは、読み出し光の回折限界よりも小さ い値(20ηπ!〜 lOOnm程度)に設定される。発熱材料 6は、記録材料 5中に分散され る力 発熱材料 6の外形寸法 Dをこのように設定することにより、光ディスク 1に記録し た情報を読み出す際には、発熱材料 6そのものの影を読み出し光によって読み出す ことはできない。
[0015] なお、通常、記録光と読み出し光との波長は共通である。ここで、発熱材料 6の外形 寸法 Dは、発熱材料の最も大きい部分の寸法である。発熱材料 6が図 3に示すような 球形である場合には、その最大直径 Dmaxである。これにより、確実に発熱材料 6の 外形寸法 Dを読み出し光の回折限界よりも小さくすることで、発熱材料 6を記録材料 5 中に分散させることによる、情報読み出しに対する影響をより確実に抑えることができ る。発熱材料 6は、例えば、特定の波長の光を吸収して発熱する有機色素を、外形 寸法が 20nm〜100nm程度の粒子にすることによって得ることができる。
[0016] この実施の形態に係る光ディスク 1が備える情報記録層 7を構成する記録材料 5は 、加熱されることによって分解し、屈折率が低下する材料である。これによつて、記録 材料 5は、情報記録層 7へ情報を記録する機能を有する。記録材料 5は、発熱材料 6 を分散させて、情報記録層 7の母相となる。また、記録材料 5の光吸収率 7?は、発熱 材料 6とは異なる。図 2に示すように、記録材料 5は、波長が λの記録光の光吸収率
1
ηが発熱材料 6よりも低ぐ波長が λである記録光は吸収しない。あるいは、記録材 料 5が波長え の記録光を吸収するとしても、その程度は極めて小さい。したがって、
1
記録光が発熱材料 6を含まない記録材料 5に照射されたときは、記録材料 5は発熱 せず屈折率は低下しな 、ので、情報は記録されな 、ことになる。
[0017] この実施の形態に係る光ディスクの情報記録層 7を構成する発熱材料 6、記録材料 5としては、例えば、シァニン系有機色素、ジァゾ系有機色素、フタロシアニン系有機 色素等の有機色素を用いることができる。発熱材料 6としては、例えばィ匕学式 1で示 すようなものを用いることができ、また、記録材料 5としては、例えばィ匕学式 2で示すよ うなものを用いることができる。化学式 1、 2で表される材料は、いずれもシァニン系の 有機色素であるが、構成の違いにより、発熱材料 6が吸収する光のピーク波長は 620 nm〜700nm程度であるのに対し、記録材料 5が吸収する光のピーク波長は 400η m〜480nm程度である。このように、吸収する光の波長帯が異なる 2種類の材料を 用いて、この実施の形態に係る光ディスク 1の情報記録層 7を構成することができる。
[0018] [化 1]
[0019] [化 2]
Figure imgf000007_0001
[0020] 図 4は、この実施の形態に係る発熱材料の発熱量と照射される記録光の光強度と の関係を示す説明図である。この実施の形態においては、情報記録層 7を形成する 発熱材料 6は、図 4の実線 Aで示すように、照射される記録光 Lの光強度 Wに対して 、発熱量 Qが非線形に変化する特性を持つことが好ましい。これによつて、光強度の 閾値 Wを超えて記録光 Lが照射された発熱材料 6のみが発熱するので、記録光 L
1 R R 以外が照射されることによる不要な発熱が抑制される。なお、情報記録層 7を形成す る発熱材料は、図 4の一点鎖線 Bで示すように、照射される記録光の光強度 Wに対し て、発熱量 Qが線形に変化する特性を有して 、てもよ 、。
[0021] 図 5は、この実施の形態に係る情報記録層の光吸収率と波長との関係を示す説明 図である。この実施の形態に係る情報記録層 7の光吸収率は、発熱材料 6の光吸収 率変化(図 5の一点鎖線 S )と、記録材料 5の光吸収率変化(図 5の一点鎖線 S )とを
6 5 合成したように変化する(図 5の実線 S )。ここで、情報記録層 7の光吸収率は、発熱
7
材料 6と記録材料 5との混合体積比を変更することによって、変更することができる。 発熱材料 6の割合を高くすると、記録光の波長え近傍の光吸収率 r?が大きくなるの
1
で、情報記録層 7の情報を読み出すときには、情報記録層 7の反射が少なくなり、情 報の読み取りに影響を及ぼすことがある。
[0022] そこで、情報の記録時において記録材料 5が分解するのに必要十分な熱量を確保 できる範囲内で、発熱材料 6と記録材料 5との混合体積比を調整する。かかる観点か ら、光ディスク 1の情報記録層 7に占める発熱材料 6の体積比率は、光ディスク 1の情 報記録層 7に占める記録材料 5の体積比率よりも小さくすることが好ましい。図 5に示 す例では、発熱材料:記録材料 = 1: 5 (体積比)程度である。
[0023] これによつて、記録光の波長 λ近傍の光吸収率 7?を小さくし、記録光の波長 λ以
1 1 外の光吸収率 7?を大きくする。その結果、情報の記録時において、記録材料 5が分 解するのに必要十分な熱量を確保しつつ、図 5に示すような情報記録層 7の光吸収 率として、情報読み取り時において反射光不足が発生することを抑制する。なお、発 熱材料 6の発熱を調整する必要があるときには、発熱材料 6と記録材料 5との混合体 積比を調整したり、発熱材料の表面積 Sと体積 Vとの比を調整したりすることにより、 発熱材料 6の発熱を調整できる。
[0024] 図 6は、この実施の形態に係る光ディスクを示す平面図である。この光ディスク 1は、 CAV (Constant Angular Velocity)方式のディスクであり、回転中心 Zから半径方向 外側(外周側:図 6中矢印 R方向)に向かって、情報記録層 7に占める発熱材料 6の 体積比率を高く (発熱材料 6の分布密度を高く)することで情報記録層 7の発熱分布 を高くしてもよい。 CAV方式の光ディスク 1は、図 6の矢印 N方向に回転し、記録光 L
R
の照射位置 (記録位置)における半径 rが大きくなるにしたがって、線速度も速くなり、 必然的に記録光 Lの照射時間も短くなる。このため、反径方向外側における情報記
R
録層 7は、情報記録層 7の発熱密度を高くして、光ディスク 1の線速度が速くなつた場 合でも、確実に発熱材料 6に発熱させて、情報記録層 7へ記録する。 ZCAV(Zone constant Angular Velocity)方式" ZCLV (Zone Constant Linear Velocity)力式 のディスクについても同様に、線速度に応じて、発熱材料 6の分布密度を設定すれ ばよい。また、光ディスク 1が CLV (Constant Linear Velocity)方式のディスクである 場合には、発熱材料 6を均一に分布させればよい。
[0025] 図 7は、この実施の形態に係る光ディスクの情報記録層を形成する方法例の説明 図である。図 7は、スピンコート法によって光ディスク 1の情報記録層 7を形成する際に おいて、塗布液の滴下後における基板の回転数変化を示している。光ディスク 1の情 報記録層 7は、発熱材料 6と記録材料 5とを溶剤に溶かした塗布液を、回転する基板 8 (図1)に滴下する、いわゆるスピンコート法によって形成することができる。
[0026] この実施の形態に係る光ディスク 1にお 、ては、塗布液を基板 8に滴下したら、図 7 に示すように、例えば図 7の実線 aに示すような変化で、基板 8の回転数 nを時間経過 に従って徐々に低下させる。これによつて、光ディスク 1の半径方向外側に向力つて、 発熱材料 6の密度を高くすることができる。これによつて、光ディスク 1の半径方向外 側に向力つて情報記録層 7の発熱密度を大きくすることができる。なお、基板 8の回 転数 nの変化は、図 7の実線 aのような変化に限られず、図 7に示す点線 bや一点鎖 線 cのような変化としてもよい。基板 8の回転数 nの変化は、塗布液の濃度や基板 8の 材質等に応じて、適宜変更できる。次に、この実施の形態に係る光ディスク 1に記録、 再生する装置及び方法につ!、て説明する。
[0027] 図 8は、この実施の形態に係る光ディスクへ情報を記録し、再生する装置の一例を 示す構造図である。図 9は、この実施の形態に係る光ディスクに情報を記録し、再生 する方法の手順を示すフローチャートである。この実施の形態に係る光ディスク 1〖こ 情報を記録し、再生する装置 (以下、ディスク装置) 10は、光ディスク 1に情報を記録 し、再生するための光ピックアップ 13と、光ピックアップ 13の動作を制御するドライバ 12と、ドライバ 12へ光ピックアップ 13の制御信号を送信し、光ピックアップ 13による 記録、再生動作を制御する処理部 11とを含む。
[0028] 実施の形態に係る光ディスク 1に情報を記録、あるいは再生するにあたり、ディスク 装置 10の処理部 11は、光ディスク 1へ情報を記録する場合である力否かを判定する (ステップ S101)。光ディスク 1へ情報を記録する場合 (ステップ S101 : Yes)、処理 部 11は、光ピックアップ 13が備えるレーザーダイオード等の光源力も光ディスク 1の 情報記録層 7へ照射される記録光の光強度 Wを、所定の値 W に設定する (ステップ sl
S102)。そして、光ピックアップ 13がこの光強度で記録光を情報記録層 7へ照射す るようにドライバ 12を制御し、光ディスク 1の情報記録層 7へ記録光を照射する。これ によって、情報記録層 7の発熱材料 6に発熱させて記録材料 5を分解することにより、 情報記録層 7に記録マークが形成されて、情報記録層 7へ情報が記録される (ステツ プ S103)。
[0029] 光ディスク 1へ情報を記録しない場合 (ステップ S 101: No)、処理部 11は、光デイス ク 1に記録された情報を再生する場合である力否かを判定する (ステップ S104)。光 ディスク 1に記録された情報を再生しない場合 (ステップ S 104 : No)、処理は終了す る。光ディスク 1に記録された情報を再生する場合 (ステップ S104 :Yes)、処理部 11 は、光ピックアップ 13が備えるレーザーダイオード等の光源力も光ディスク 1の情報 記録層 7へ照射される読み出し光の光強度 Wを、所定の値 W に設定する (ステップ
S105)。ここで、 W >W であり、また、図 4に示す、発熱材料の発熱量と照射される sl s2
記録光 Lの光強度との関係に従って、各値が設定される。
R
[0030] これは、記録時における光強度 W(W 以上)で情報記録層 7の情報を読み出すと、 sl
情報記録層 7の発熱材料 6が発熱して記録材料 5を分解させるおそれがある力 であ る。したがって、読み出し光の光強度 W は、少なくとも記録時における光強度 W よ s2 sl りも低く設定する。発熱材料 6が、図 4で説明したような、照射される記録光の光強度 Wに対して、発熱量 Qが非線形に変化する特性を有していれば、光強度の閾値 W
1 を境界として、光強度がこれよりも小さい場合には発熱量は極めて小さくなるので読 み出し光の光強度 w としては好ましい。 [0031] 読み出し光の光強度 Wを所定の値 W に設定したら (ステップ S 105)。処理部 11は
、光ピックアップ 13が設定した光強度 Wで読み出し光を情報記録層 7へ照射するよ うにドライバ 12を制御し、光ディスク 1の情報記録層 7へ読み出し光を照射する。これ によって、処理部 11は、光ピックアップ 13が検出した信号から、情報記録層 7に記録 された記録マークと、記録マーク以外の部分との屈折率の差を判別し、情報記録層 7 に記録された情報を再生する (ステップ S106)。
[0032] 以上、この実施の形態では、情報を記録する記録光を吸収して発熱し、また、外形 寸法 Dは、情報を読み出す読み出し光の回折限界よりも小さく形成される発熱材料 6 と、前記記録光の波長の吸収率が前記発熱材料 6よりも低ぐかつ加熱によって光の 屈折率が変化することにより情報を記録し、さらに前記発熱材料 6を分散させる記録 材料 5と、を含む。
[0033] これによつて、発熱の総量を従来よりも小さく抑えることができ、また、発熱源が点在 しているので、熱の拡散が抑制される。その結果、この実施の形態に係る光ディスク 1 が備える情報記録層 7は、従来の光ディスクよりも微小な記録マークを形成することが できる。また、この実施の形態では、記録光の波長や、光学系を構成するレンズの開 口率等を変更することなしに、微小な記録マークを形成することができる。これによつ て、光源や装置構成に変更を加える必要はないので、記録装置の設計変更をするこ となしに、微小な記録マークを形成して高密度記録が実現できる。なお、上記実施の 形態 1の構成は、以下の実施の形態においても適宜適用できる。
[0034] (実施の形態 2)
実施の形態 2は、光ディスクの情報記録層が、加熱によって屈折率が低下すること により情報を記録し、さらに発熱材料を分散させる記録材料と、記録光の吸収率が前 記記録材料よりも低ぐまた、外形寸法は読み出し光の回折限界よりも小さく形成され 、さらに、熱伝導率が前記記録材料よりも低い伝熱抑制部とを含む点に特徴がある。
[0035] 図 10— 1〜図 10— 3は、この実施の形態に係る光ディスクに情報を担う記録マーク を形成する過程を示す説明図である。なお、図 10— 1〜図 10— 3では、光ディスク 1 aの基板、保護層、ラベル面は省略する力 光ディスク 1と同様の構造であることは言 うまでもない。この光ディスク laの情報記録層 7aは、図 10— 1に示すように、例えば 有機色素を粒子状に形成した固体の分散材料 6aを伝熱抑制部として用いる。分散 材料 6aは、例えば有機色素である記録材料 5aに分散されて構成されて ヽる。
[0036] この実施の形態に係る光ディスク laが備える情報記録層 7aを構成する記録材料 5 aは、加熱されることによって分解し、屈折率が低下する材料である。これによつて、 記録材料 5は、情報記録層 7へ情報を記録する機能を有する。また、記録材料 5aは 、分散材料 6aを分散させて、情報記録層 7の母相となる。
[0037] 図 11は、この実施の形態に係る光ディスクの情報記録層を構成する材料の光吸収 率と記録光の波長との関係を示す説明図である。図 11の実線 Sは、記録材料 5aの
5
光吸収率と波長との関係を表し、実線 Sは、分散材料 6aの光吸収率と波長との関係
6
を表す。図 11に示すように、波長が λである記録光が照射された場合の分散材料 6
1
aの光吸収率 r?は、記録材料 5aとは異なる。図 11に示すように、分散材料 6aは、記 録光の光吸収率 r?が記録材料 5aよりも低い。すなわち、分散材料 6aは波長が λで ある記録光を吸収しない。あるいは、分散材料 6aが波長えの
1 記録光を吸収するとし ても、その程度は極めて小さい。これにより、波長えの記録光が情報記録層 7aに照
1
射されたときは、記録材料 5aは記録光を吸収して発熱し、屈折率が変化するが、分 散材料 6aは発熱しない。
[0038] また、分散材料 6aの熱伝導率 κ は、記録材料 5aの熱伝導率 κよりも小さい。記
6 5
録光が情報記録層 7aに照射されて記録材料 5aは発熱するが、分散材料 6aは記録 材料 5aよりも熱伝導率が低 、ので、記録光が照射された領域力 その周辺領域への 熱伝導を抑制できる。これによつて、波長えの記録光が照射された領域からの熱拡
1
散を抑制できるので、この実施の形態に係る光ディスク laが備える情報記録層 7aは 、従来の光ディスクよりも微小な記録マークを形成することができる。次に、上記記録 材料 5aと分散材料 6aとを含んで構成される光ディスク laの情報記録層 7aに情報を 記録する過程を説明する。
[0039] 図 10— 1に示すように、情報を記録するときには、情報記録層 7aに図 11に示す波 長えの記録光 Lを照射する。記録光 Lが照射されると、情報記録層 7aの母相であ
1 R R
る記録材料 5aは記録光 Lを吸収し発熱する。これによつて、記録光 Lが照射された
R R
領域(図 10— 2の Hで示す領域)の記録材料は分解して、記録光 Lが照射されない 領域に対して屈折率が変化 (低下)する。
[0040] これによつて、情報記録層 7aに記録光 Lが照射された領域(図 10— 3の Pで示す
R
領域)が、記録マークとなる。記録マークは、記録光 L
Rが照射されない領域と屈折率 が異なるので、情報記録層 7aに読み出し光を照射することにより記録マークを識別 することができる。このようにして、この実施の形態に係る光ディスク laの情報記録層 7aに情報を記録することができる。
[0041] また、情報記録層 7aに記録光 Lが照射され、記録材料 5aが発熱するとき、分散材
R
料 6aの熱伝導率 K は記録材料 5aの熱伝導率 Κよりも低ぐまた、分散材料 6aは記
6 5
録光 Lをほとんど吸収しないので、記録光 Lの照射によってはほとんど発熱しない。
R R
これによつて、記録光が照射された領域力もの熱拡散を抑制して、微小な記録マーク (図 10— 3の Pで示す領域)を形成することができる。
[0042] この実施の形態に係る光ディスクの情報記録層 7aを構成する分散材料 6a、記録材 料 5aとしては、例えば、実施の形態 1で説明したようなシァニン系有機色素、ジァゾ 系有機色素、フタロシアニン系有機色素等の有機色素を用いることができる。例えば 、記録光の波長を 500nm程度とする場合、例えばィ匕学式 2で示すような、吸収する 光のピーク波長が 400nm〜480nmである材料を、記録材料 5aに用いることができ る。このとき、分散材料 6aには、波長を 500nm程度の記録光をほとんど吸収しない、 例えばィ匕学式 1で示すような、吸収する光のピーク波長が 620ηπ!〜 700nmである 材料を用いることができる。
[0043] また、記録材料 5aの熱伝導を阻害するために、分散材料 6aとして、例えば、前記 記録材料 5aに微小な気泡を内包させても良い。具体的には、例えばスチレン系の材 料を用いて、これに分散材料 6aよりも小さい気泡を内包させる。なお、複数の気泡を 分散材料 6aに内包させることが好ましい。また、上述の分散材料 6aと気泡を混合し て記録材料 5a内に分散させてもよい。このように、吸収する光の波長帯が異なる 2種 類の材料を用いて、この実施の形態に係る光ディスク laの情報記録層 7aを構成する ことができる。ここで、上記説明においては、分散材料 6aは、読み出し光の回折限界 よりも小さい材料を記録材料 5aに分散させる力 記録材料 5aに、最大寸法が読み出 し光の回折限界よりも小さい気泡を形成し、前記気泡を伝熱抑制部としてもよい。な お、複数の気泡を記録材料 5aに形成し、分散させることが好ましい。
[0044] なお、この実施の形態においては、さらに実施の形態 1で説明したような、記録光を 吸収して発熱し、また、外形寸法は読み出し光の回折限界よりも小さく形成される発 熱材料 6 (図 1、図 4 1等参照)を情報記録層 7aへ分散させてもよい。このようにす れば、発熱源が点在し、かつ発熱の総量を従来よりも小さく抑え、さらに記録光の照 射領域から照射領域外への熱伝導を抑制できるので、記録光の照射領域外への熱 拡散をさらに効果的に抑制して、微小な記録マークを形成することができる。
[0045] 以上、この実施の形態では、情報を記録する記録光を吸収して発熱し、かつその 発熱によって光の屈折率が変化することにより情報を記録する記録材料 5aと、前記 記録材料 5aに分散され、かつ前記記録光の吸収率が前記記録材料よりも低ぐまた 、外形寸法は、情報を読み出す読み出し光の回折限界よりも小さぐさらに前記記録 材料よりも熱伝導率が低!ヽ伝熱抑制部 (分散材料 6a)と、を含む。
[0046] これによつて、記録光が照射された領域から、記録光が照射されて 、な 、領域への 熱拡散を抑制できるので、従来の光ディスクよりも微小な記録マークを形成することが できる。また、この実施の形態では、記録光の波長や、光学系を構成するレンズの開 口率等を変更することなしに、微小な記録マークを形成することができる。これによつ て、光源や装置構成に変更を加える必要はないので、記録装置の設計変更をするこ となしに、微小な記録マークを形成して高密度記録が実現できる。
産業上の利用可能性
[0047] 以上のように、本発明に係る光ディスクの情報記録層及び光ディスク、並びにデイス ク装置は、高密度記録に有用であり、特に、微小な記録マークを形成して、高密度記 録を実現することに適して 、る。

Claims

請求の範囲
[1] 情報を記録する記録光を吸収して発熱し、かつその発熱によって光の屈折率が変 化することにより情報を記録する記録材料 (5; 5a)と、
前記記録材料 (5; 5a)に分散され、かつ前記記録光の吸収率が前記記録材料 (5; 5a)よりも低ぐまた、外形寸法は、情報を読み出す読み出し光の回折限界よりも小さ く、さらに前記記録材料 (5 ; 5a)よりも熱伝導率が低!、伝熱抑制部(6a)と、
を含むことを特徴とする光ディスクの情報記録層。
[2] 前記伝熱抑制部 (6a)は、
前記記録光の吸収率が前記記録材料 (5 ; 5a)よりも低ぐまた、外形寸法は、情報 を読み出す読み出し光の回折限界よりも小さい固体の分散材料 (6a)に、気泡を内 包させたことを特徴とする請求項 1に記載の光ディスクの情報記録層。
[3] 前記伝熱抑制部(6a)は、
前記読み出し光の回折限界よりも外形寸法が小さい気泡であることを特徴とする請 求項 2に記載の光ディスクの情報記録層。
[4] さらに、前記記録光を吸収して発熱し、また、外形寸法は、情報を読み出す読み出 し光の回折限界よりも小さく形成される発熱材料 (6)が前記記録材料 (5 ; 5a)に分散 していることを特徴とする請求項 1〜3のいずれ力 1項に記載の光ディスクの情報記 録層。
[5] 請求項 1〜4の 、ずれか 1項に記載の光ディスク(1; la)の情報記録層 (5; 5a)を表 面に形成する基板 (8)と、
前記光ディスクの情報記録層 (5; 5a)の表面に形成される反射層(4)と、 前記反射層 (4)の表面に形成される保護層(3)と、
を含むことを特徴とする光ディスク。
PCT/JP2006/304161 2005-03-31 2006-03-03 光ディスクの情報記録層及び光ディスク WO2006112178A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/887,428 US7911933B2 (en) 2005-03-31 2006-03-03 Information recording layer of optical disc and optical disc
JP2007521120A JP4591790B2 (ja) 2005-03-31 2006-03-03 光ディスクの情報記録層及び光ディスク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005102307 2005-03-31
JP2005-102307 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006112178A1 true WO2006112178A1 (ja) 2006-10-26

Family

ID=37114913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304161 WO2006112178A1 (ja) 2005-03-31 2006-03-03 光ディスクの情報記録層及び光ディスク

Country Status (3)

Country Link
US (1) US7911933B2 (ja)
JP (1) JP4591790B2 (ja)
WO (1) WO2006112178A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454606A (en) * 1977-10-11 1979-05-01 Canon Inc Recording medium
JPS62246789A (ja) * 1986-04-21 1987-10-27 Canon Inc 光記録媒体
JPH05159354A (ja) * 1991-10-11 1993-06-25 Tdk Corp 光記録ディスク
JP2000155981A (ja) * 1998-11-17 2000-06-06 Mitsubishi Chemicals Corp 光メモリ素子
JP2003109247A (ja) * 2001-09-27 2003-04-11 Toshiba Corp 記録媒体、および記録媒体の書き込み読み出し方法
WO2003085657A1 (fr) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'information et son procede de production, et appareil d'enregistrement/reproduction d'information optique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151394A (ja) * 1985-12-25 1987-07-06 Alps Electric Co Ltd 光記録媒体
JP2993973B2 (ja) * 1989-07-08 1999-12-27 日本コロムビア株式会社 光情報記録媒体
JPH06103611A (ja) 1992-09-16 1994-04-15 Ricoh Co Ltd 光情報記録媒体及び光情報記録方法
CA2110233C (en) * 1992-12-02 1999-01-12 Mitsui Toatsu Chemicals, Incorporated Optical information recording medium and composition for optical information recording film
US6045889A (en) * 1997-09-25 2000-04-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Recording medium
US6337117B1 (en) * 1998-07-01 2002-01-08 Mitsubishi Chemical Corporation Optical memory device
WO2000004536A1 (fr) * 1998-07-14 2000-01-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Element de memoire
WO2004057585A1 (ja) * 2002-12-20 2004-07-08 Mitsubishi Chemical Corporation 光記録媒体,光記録媒体の記録方法及び記録装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454606A (en) * 1977-10-11 1979-05-01 Canon Inc Recording medium
JPS62246789A (ja) * 1986-04-21 1987-10-27 Canon Inc 光記録媒体
JPH05159354A (ja) * 1991-10-11 1993-06-25 Tdk Corp 光記録ディスク
JP2000155981A (ja) * 1998-11-17 2000-06-06 Mitsubishi Chemicals Corp 光メモリ素子
JP2003109247A (ja) * 2001-09-27 2003-04-11 Toshiba Corp 記録媒体、および記録媒体の書き込み読み出し方法
WO2003085657A1 (fr) * 2002-04-08 2003-10-16 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement d'information et son procede de production, et appareil d'enregistrement/reproduction d'information optique

Also Published As

Publication number Publication date
JPWO2006112178A1 (ja) 2008-12-04
US7911933B2 (en) 2011-03-22
US20080291804A1 (en) 2008-11-27
JP4591790B2 (ja) 2010-12-01

Similar Documents

Publication Publication Date Title
EP1143431B1 (en) Optical recording medium
KR20060132696A (ko) 광 디스크의 레이저 입사면 상의 라벨
JPH0528498A (ja) 光照射方法並びに光学的情報記録媒体及びそれを用いた記録方法と再生方法
JP2006228354A (ja) 光記録媒体
US20100046345A1 (en) Optical information recording medium, optical information recordng apparatus, and optical information recording method
KR100568061B1 (ko) 광정보 기록 매체, 그것을 이용한 기록 방법, 재생 방법,광정보 기록 장치, 및 광정보 재생 장치
JP2004220747A (ja) 光情報記録媒体、並びに、それを用いた記録方法、再生方法、光情報記録装置、および光情報再生装置
TW505915B (en) Optical information recording medium, method for recording/reproducing the same, and optical pickup
JPH0640161A (ja) 光記録媒体
JP4440307B2 (ja) 光ディスクの情報記録層及び光ディスク、並びにディスク装置
JP4591790B2 (ja) 光ディスクの情報記録層及び光ディスク
WO2003075268A1 (fr) Support d'enregistrement d'informations optiques
JPH0773506A (ja) 光記録媒体及びその再生装置
JP2004354712A (ja) ホログラム記録媒体および記録再生装置
WO2007089041A1 (ja) 光情報記録媒体、並びにその製造方法及び記録方法
JP2008204567A (ja) 光情報記録媒体およびその描画方法
JP2000276767A (ja) 光情報記録媒体
JP3455658B2 (ja) 光メモリ装置における超解像再生方法および光メモリ装置
JPH0538879A (ja) 光記録媒体
JP2007335059A (ja) 光情報記録媒体及び光情報記録媒体の表示方法
JP4381540B2 (ja) 光記録媒体の再生方法
JP2816011B2 (ja) 書換え可能光記録媒体及びその記録方法
JPH0498630A (ja) 光記録媒体
JP2001093187A (ja) 光記録媒体
JP2001047746A (ja) 光記録媒体

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521120

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11887428

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06715220

Country of ref document: EP

Kind code of ref document: A1