WO2006106687A1 - 微細炭素繊維含有樹脂組成物の製造方法 - Google Patents

微細炭素繊維含有樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2006106687A1
WO2006106687A1 PCT/JP2006/306333 JP2006306333W WO2006106687A1 WO 2006106687 A1 WO2006106687 A1 WO 2006106687A1 JP 2006306333 W JP2006306333 W JP 2006306333W WO 2006106687 A1 WO2006106687 A1 WO 2006106687A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fine carbon
carbon fiber
resin composition
thermoplastic resin
Prior art date
Application number
PCT/JP2006/306333
Other languages
English (en)
French (fr)
Inventor
Koichi Handa
Subiantoro
Yoshihisa Gotoh
Akira Fukami
Yoshiyuki Naito
Original Assignee
Bussan Nanotech Research Institute Inc.
Tsubakuro Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc., Tsubakuro Chemical Industry Co., Ltd. filed Critical Bussan Nanotech Research Institute Inc.
Publication of WO2006106687A1 publication Critical patent/WO2006106687A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Definitions

  • the present invention relates to a method for producing a fine carbon fiber-containing resin composition that uniformly disperses fine carbon fibers in a thermoplastic resin at a stable blending ratio and exhibits physical properties such as excellent electrical conductivity. is there.
  • Thermoplastic resins are widely used in various applications because they have excellent molding characteristics and relatively good mechanical strength and thermal characteristics.
  • thermoplastic resins are blended with fillers to improve their low electrical conductivity or to increase mechanical strength and thermal strength.
  • fillers are also conventionally used.
  • thermoplastic resin For example, carbon black, carbon fiber, metal fiber, metal powder and the like are used as the conductive filler blended in the thermoplastic resin.
  • thermoplastic resin with the conductive filler and impart high electrical conductivity
  • a high filling amount of, for example, about 20% by mass with respect to the resin is required. In this case, the mechanical properties and molding processing properties inherent to the thermoplastic resin are impaired.
  • the fine carbon fiber is very light and difficult to be blended and filled in the thermoplastic resin. Furthermore, since the fine carbon fibers are likely to aggregate, in order to uniformly disperse them in the thermoplastic resin, extrusion conditions that provide a high shear rate are required. For this reason, the fine carbon fibers are cut by the shearing force applied during the kneading, and a predetermined electric transmission is performed. In some cases, conductivity was not expressed.
  • Patent Document 1 in order to solve the difficulty in dispersing and blending fine carbon fibers in a thermoplastic resin as described above, fine carbon fibers having a diameter of 3.5 to 75 nm are entangled with each other. Further, it is disclosed that an aggregate having an average particle size of 0.:! To 50 ⁇ m is blended in a thermoplastic resin.
  • Patent Document 1 does not specifically indicate such an agglomeration of the aggregate in the thermoplastic resin, kneading conditions, and the like, and is added during the kneading as described above.
  • the problem of cutting the fine carbon fiber due to the shearing force remains, and since the fine carbon fiber is dispersed in the above-mentioned aggregate in the thermoplastic resin, the electrical characteristics inherent in the fine carbon fiber, etc.
  • Patent Document 1 JP-A-7-102112
  • an object of the present invention is to provide a method for producing a carbon fiber-containing thermoplastic resin composition in which fine carbon fibers can be uniformly dispersed in a thermoplastic resin without impairing the properties thereof. To do.
  • the present inventor put fine carbon fibers and a thermoplastic resin into a kneading extruder and kneaded to obtain a carbon fiber-containing thermoplastic resin composition.
  • the extrusion temperature is stipulated in JIS K 7210. 2.
  • the thermoplastic resin under a 16 kg load is set to a temperature condition within a specific range, and the fine temperature in the kneading extruder is set.
  • the residence time of the carbon fiber-containing resin composition and the shear rate for the fine carbon fiber-containing resin composition of the screw segment of the kneading extruder to an appropriate one, the fine carbon fiber is kept uniform while maintaining its shape.
  • the present inventors have found that it is possible to provide a fine carbon fiber-containing resin composition that is dispersed in the composition and has excellent properties such as electrical conductivity.
  • the present invention for solving the above-mentioned problems is a mixture of fine carbon fiber and thermoplastic resin.
  • the cylinder temperature of the kneading extruder is JIS Stipulated in K 7210 2.
  • the temperature at which the melt flow index of the thermoplastic resin under a 16 kg load is 10 to 30 and the residence time of the resin composition containing fine carbon fibers in the kneading extruder is 25
  • the shear rate of the screw segment of the kneading extruder with respect to the fine carbon fiber-containing resin composition is 10,000 to 30,000 Z seconds.
  • JIS K 7210 standard is a content that is in conformity with ISO 1133: 1997.
  • the fine carbon fiber and the thermoplastic resin are mixed in advance using a uniaxial or biaxial stirrer to obtain a premixed material, which is then charged into the kneading extruder. It shows a method for producing a fine carbon-containing resin composition.
  • thermoplastic resin to be used when the thermoplastic resin to be used is in the form of pellets or flakes, the pellets or flakes are preliminarily pulverized with a powder grinder to prepare a preliminary mixture. The manufacturing method of a fine carbon containing resin composition is shown.
  • the present invention also shows a method for producing a fine carbon-containing resin composition, wherein the bulk density of the fine carbon fibers used is 0.0001-0.05 g / cm 3 . .
  • the thermoplastic resin further comprises a polychlorinated bur resin, a polyolefin resin, a polylactic acid resin, a polystyrene resin, an acrylic nitrile-butadiene-styrene (ABS) resin, an acrylic nitrile-styrene (AS) resin, Poly (meth) acrylic resin, polyacrylonitrile resin, saturated polyester resin, ionomer resin, polycarbonate resin, polyamide resin, polyacetal resin, polyphenylene ether resin, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, poly Etherimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, polyether ketone resin, polyamide imide resin, thermoplastic polyimide resin, liquid crystal polyester resin, thermoplastic elastomer Shows a method for manufacturing the first and the fine carbon-containing resin composition is at least one comprising selected from the group consisting of Por
  • the present invention is further selected from the group consisting of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, carbon fiber, glass fiber, and a mixture of two or more thereof.
  • the present invention shows a method for producing a fine carbon fiber-containing resin composition, in which one filler is further blended.
  • FIG. 1 is a drawing schematically showing the configuration of a kneading extruder that can be used in the method for producing a fine carbon fiber-containing resin composition of the present invention.
  • the fine carbon fiber and the thermoplastic resin are put into a kneading extruder and kneaded to prepare a carbon fiber-containing thermoplastic resin composition. To do.
  • the kneading extruder used in the present invention is not particularly limited as long as it has a uniaxial or multiaxial screw segment in the apparatus, but preferably two screw segments are arranged in parallel.
  • a twin screw extruder is preferred.
  • twin-screw extruder there are those in which the screw segments rotate in the same direction and those in which the screw segments rotate in different directions, and any force that can be used can be used.
  • Fig. 1 is a drawing schematically showing the structure of an embodiment of a kneading extruder obtained in the production method of the present invention.
  • the kneading extruder 1 shown in Fig. 1 has two screw segments 2 Power A twin screw extruder arranged in parallel in the screw barrel 3, and at one end of the screw barrel 3 (screw drive source 6 side), a raw material supply port for supplying raw material from the outside into the screw barrel On the other hand, the other end side of the screw barrel 3 is provided with a discharge port 5 for discharging the product kneaded in the screw barrel to the outside.
  • a premixing chamber 7 is provided above the raw material supply port 4.
  • the premixing chamber 7 is provided with a stirrer 8, and is supplied to the kneading extruder 1.
  • the pre-mixed thermoplastic resin and fine carbon fiber can be pumped to the screw part.
  • the cylinder (screw barrel) temperature of the kneading extruder is set to JIS K 7210. 2.
  • the kneading extrusion is carried out at a temperature at which the melt flow index (MFI) of the thermoplastic resin under a 16 kg load is 10-30, more preferably 15-25.
  • MFI melt flow index
  • the MFI is a thermoplastic resin raw material that does not contain fine carbon fibers alone (the thermoplastic resin raw material used is not limited to, for example, thermoplastic resins, and additives such as plasticizers and stabilizers are added. In the case of a resin composition containing, it is a value as the resin composition).
  • the actual temperature range in which the MFI is 10 to 30 varies depending on the type of thermoplastic resin used, but as long as it is set to a temperature range within which the MFI value within the predetermined range can be obtained, the thermoplasticity Regardless of the type of resin, good kneading operation with fine carbon fibers can be performed.
  • the rotational speed of the screw segment of the extruder is controlled to an appropriate value as described below. If necessary, a cooling jacket such as a water cooling jacket and other cooling devices can be provided on the outer periphery of the screw barrel. [0027] Further, in addition to the above-described extrusion temperature conditions, the residence time of the fine carbon fiber-containing resin composition in the kneading extruder is set to 25 to 100 seconds. The cutting speed of the screw segment for the resin composition containing fine carbon fibers is set to 10000-30000Z seconds.
  • the residence time is set to 25 to 100 seconds. If the residence time is less than 25 seconds, the distribution of fine carbon fibers in the thermoplastic resin becomes non-uniform, which is not preferable. Even if the residence time is increased, the dispersion of the fine carbon fibers in the thermoplastic resin cannot be further improved, and not only the production efficiency is lowered, but also the fine carbon fibers may be damaged due to an increase in the residence time. This is because it is not preferable because it increases.
  • the shear rate is set to 10000-30000 / sec.
  • the shear rate is less than 10000 / sec, the dispersion of the fine carbon fibers in the thermoplastic resin becomes non-uniform, which is preferably 30000 / sec. This is because if the shear rate is higher, the fine carbon fiber tends to be damaged by cutting and cutting during the kneading extrusion process, which is not preferable.
  • the fine carbon fiber to be compounded and the thermoplastic resin are introduced into the raw material supply port 4 of the kneading extruder 1, and the kneading process is performed under the predetermined conditions.
  • the desired fine carbon fiber-containing thermoplastic resin composition can be prepared.
  • they are previously mixed in a stirrer. Mixing and preparing a premixed body is preferable in order to improve the dispersion treatment in the kneading extruder.
  • the stirrer for preparing the premix is not particularly limited as long as it can perform stirring and mixing under the condition that excessive shearing force is not applied, and a screw, a propeller, a paddle, or a ribbon.
  • a screw, a propeller, a paddle, or a ribbon Each having a single-axis or multi-axis rotating shaft with various stirring elements such as A seed stirrer can be used.
  • the thermoplastic resin as a raw material may be provided in the form of pellets or flakes as well as powder, but such a form of the thermoplastic resin is used as it is as a fine carbon fiber.
  • a form of the thermoplastic resin is used as it is as a fine carbon fiber.
  • the pellets or flakes are appropriately used beforehand. It is desirable to prepare a premix after pulverizing to a sufficiently fine size, for example, less than 1 mm square, using a simple pulverizer.
  • the fine carbon fiber used in the present invention is, for example, a single-walled carbon nanotube having a diameter of about several nanometers that is formed by rounding a single graph ensheet into a cylindrical shape, or a cylindrical graph ensheet in a direction perpendicular to the axis.
  • Examples include laminated multi-walled carbon nanotubes, carbon nanohorns with single-walled carbon nanotubes having a conical closed end, and these fine carbon fibers may be a single body of the kind described above, or A mixture of two or more types is also possible.
  • the use of carbon nanotubes with a cylindrical graph ensheet having a polygonal cross section perpendicular to the axis can be obtained by the production method of the present invention. This is preferable from the viewpoint of improving the dispersibility of the fine carbon fiber in the thermoplastic resin.
  • the fact that the carbon nanotube has a polygonal axial cross section is a force that is caused by high-temperature heat treatment at a temperature of 2400 ° C or higher after the production of fine carbon fibers. Nanotubes can be made dense and have few defects in both the fiber direction and the lamination direction, and the bending rigidity can be remarkably improved.
  • the single-bonn nanotube may be a single layer, but the graphene sheet is laminated in the direction perpendicular to the axis. Is more preferable for improving the bending rigidity.
  • the outer diameter of the fine carbon fiber changes along the axial direction. This is preferable from the viewpoint of preventing axial movement in the plastic resin and improving dispersion stability.
  • the fine carbon fiber has an I / 1 ratio measured by Raman spectroscopic analysis of 0.2 or less, more preferable.
  • thermoplastic resin composition containing fine carbon fibers obtained by the production method of the present invention it is preferable to use a carbon nanotube having a fineness of 0.1 or less, that is, having few defects in the graphene sheet. This is preferable from the viewpoint of improving the electrical conductivity of the carbon fiber in the thermoplastic resin composition.
  • the bulk density of the fine carbon fiber during use is not particularly limited.
  • Reactor S 0.0001 to 0.05 g / cm 3 , more preferably f 0.001 to 0.02 g It is desirable to use a material of about / cm 3 because it can exhibit high dispersibility when kneaded with a thermoplastic resin.
  • the blending ratio of the fine carbon fibers in the thermoplastic resin composition is not particularly limited, and the thermoplastic resin used is also not limited. Although it depends on the type and the like, it is desirable that the total composition is 0.:! To 50% by mass, more preferably 0.3 to 30% by mass. If the content exceeds 50% by mass, the moldability and mechanical strength of the resulting resin composition may be reduced. On the other hand, if the content is less than 0.1% by mass, fine carbon fibers are added. This is because the resulting conductivity imparting effect may not be sufficient, both of which are undesirable.
  • thermoplastic resin used in the present invention is not particularly limited.
  • polychlorinated bur resin Polyolefin resin such as polyethylene, polypropylene, polyethylene-propylene copolymer, cyclic polyolefin; polylactic acid Resin, Polystyrene resin; Acrylic nitrile monobutadiene styrene (ABS) resin; Acrylic nitritole-styrene (AS) resin; Polymethyl acrylate, Polymethyl methacrylate, Polyethyl methacrylate, Polyethyl methacrylate, Poly Poly (meth) a such as acrylic acid and polymethacrylic acid Polyacrylonitrile resin; Saturated polyester resin such as polybutylene terephthalate and polyethylene terephthalate; Ionomer resin; Polycarbonate resin; Polyamide resin such as various nylons; Polyacetal resin; Polyphenylene ether resin; Modified polyphenylene ether resin ; Polyarylate
  • thermoplastic resin composition containing fine carbon fibers of the present invention in addition to the thermoplastic resin and fine carbon fibers, for example, an antioxidant, a heat stabilizer, and a weathering agent may be used as necessary.
  • various additives that can be blended in a usual thermoplastic resin composition such as a colorant such as a release agent and a lubricant, a pigment, and a dye, a plasticizer, an antistatic agent, and a flame retardant can be included. These additives may be blended in advance in the thermoplastic resin raw material to be kneaded with the fine carbon fibers, or may be added to the thermoplastic resin during the kneading treatment with the fine carbon fibers. Good.
  • the fine carbon fiber-containing thermoplastic resin composition of the present invention may contain other fillers in addition to the fine carbon fibers described above, as long as the properties thereof are not significantly impaired.
  • examples of such a filler include metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, carbon fiber, and glass fiber, and these can be used alone or in combination of two or more.
  • the fine carbon fiber-containing thermoplastic resin composition obtained by the production method of the present invention can be used as it is or after further molding by a known method.
  • the molding method include injection molding, extrusion molding, and compression molding.
  • the molded product include injection molded products, sheets, unstretched films, stretched films, round bars, and extrusion molded products such as deformed extruded products.
  • Fine carbon fibers were synthesized using toluene as a raw material by the CVD method.
  • a catalyst As a catalyst, a mixture of phlegene and thiophene was used, and the reaction was performed in a hydrogen gas reducing atmosphere. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain fine carbon fibers. Furthermore, the synthesized fine carbon fibers were calcined in nitrogen at 900 ° C to separate hydrocarbons such as tar, and then heat treated at 2600 ° C in argon at a high temperature.
  • the obtained fine carbon fiber has a fiber diameter of 15 to 100 nm, a fiber length of 1 to 40 ⁇ m, and a bulk density of 0.0032 g / cm 3 and a Raman I / 1 ratio value.
  • 0.090 The obtained fine carbon fiber has a fiber diameter of 15 to 100 nm, a fiber length of 1 to 40 ⁇ m, and a bulk density of 0.0032 g / cm 3 and a Raman I / 1 ratio value.
  • the polycarbonate resin pulverized powder used is stipulated in JIS K 7210 2 Table 1 shows the melt flow index of the thermoplastic resin under 16 kg load.
  • the resin composition pellets thus prepared are supplied to an injection molding machine with a mold clamping 28T, and molding conditions of a molding temperature of 300 ° C, an injection pressure of 1000kg / cm 2 , and a mold temperature of 100 ° C are used. Thus, a flat plate-shaped product of 5 Omm ⁇ 90 mm ⁇ 3 mm was obtained.
  • the obtained flat plate-shaped product was measured for surface resistance using a surface resistance measuring instrument (Hiresta-UP and Loresta-GP manufactured by Mitsubishi Chemical Corporation). The results obtained are shown in Table 1.
  • polycarbonate resin pulverized powder manufactured by Nippon GI Plastics Co., Ltd., Lexan HF1110
  • a resin composition was prepared in the same manner as in Examples 6 to 6 except that the conditions shown in Table 2 were used, and a flat molded product was prepared. The surface resistance value was measured. Table 2 shows the results obtained.
  • a resin composition was prepared in the same manner as in Example 2 except that a polyamide resin (Amilan CM3007, manufactured by Toray Industries, Inc.) (Example 7) was used as the thermoplastic resin instead of polycarbonate. And the surface resistance value was measured. The results obtained are shown in Table 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

 微細炭素繊維と熱可塑性樹脂とを、混練押出機に投入して混錬することにより、熱可塑性樹脂中に微細炭素繊維が分散配合されてなる微細炭素含有樹脂組成物を製造する方法において、前記混練押出機のシリンダー温度が、JIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスが10~30となる温度であり、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留時間が25~100秒であり、また、前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん断速度が、10000~30000/秒である条件下に設定する。熱可塑性樹脂へ微細炭素繊維を安定した配合比で均一に分散させ、優れた電気伝導性等の物性を発揮する微細炭素繊維含有樹脂組成物を製造するものである。

Description

明 細 書
微細炭素繊維含有樹脂組成物の製造方法
技術分野
[0001] 本発明は、熱可塑性樹脂へ微細炭素繊維を安定した配合比で均一に分散させ、 優れた電気伝導性等の物性を発揮する微細炭素繊維含有樹脂組成物を製造する 方法に関するものである。
背景技術
[0002] 熱可塑性樹脂は、優れた成形加工特性を有し、機械的強度、熱的特性も比較的良 好なものであるので、種々の用途に広く用いられている。
[0003] 一方で、一般に、熱可塑性樹脂は、その電気伝導性は低ぐこれを改良するため、 あるいは、機械的強度、熱的強度をより高レ、ものとするために、充填材を配合し、複 合材料とすることも従来行われてレ、る。
[0004] 例えば、熱可塑性樹脂に配合される導電性充填材としては、カーボンブラック、炭 素繊維、金属繊維、金属粉末等が用いられている。
[0005] し力、しながら、上記導電性充填材を熱可塑性樹脂に充填し、高い電気伝導性を付 与するためには、例えば、樹脂に対し 20質量%程度といった高い充填量が必要であ り、この場合熱可塑性樹脂が本来有する機械的特性や成形加工特性が損なわれる こととなっていた。
[0006] 近年、カーボンナノチューブに代表される繊維径が 0. 5〜: !OOnmに細められた微 細炭素繊維が開発されており、これら微細炭素繊維は、電気伝導性が高いこと、ァス ぺクト比が大きいこと、単位重量当たりの本数が多いことなどの特性を有することから 、従来の導電性充填材に比べて、比較的少ない添加量においても、優れた電気伝 導性を付与できることが期待されてレ、る。
[0007] しかしながら、微細炭素繊維は、非常に軽微であり、熱可塑性樹脂に配合、充填す ることが困難であった。さらに、微細炭素繊維は、凝集しやすいため、熱可塑性樹脂 中に均一に分散させるには、高いせん断速度となる押出し条件が必要となる。このた め微細炭素繊維が混練時に加わるせん断力により切断されてしまい、所定の電気伝 導性が発現しなレ、ことがあった。
[0008] また、特許文献 1には、上述したような微細炭素繊維の熱可塑性樹脂中への分散 配合の困難性を解決するために、直径 3. 5〜75nmの微細炭素繊維が互いに絡み 合った、平均粒径 0. :!〜 50 x mの凝集体を熱可塑性樹脂中へ配合することが開示 してある。
[0009] し力、しながら、特許文献 1には、このような凝集体の熱可塑性樹脂中への配合、混 練条件等としては、特段示されておらず、上述したような混練時に加わるせん断力に よる微細炭素繊維の切断の問題が残り、また、熱可塑性樹脂中には微細炭素繊維 は前記凝集体の状態で分散したものとなるために、微細炭素繊維が本来有する電気 的特性等を生かすことができず、部位特異的な電気抵抗の変化や、粗分散領域が 弱点となった機械的強度の低下などが生じる虞れが残るものであった。
特許文献 1 :特開平 7— 102112号公報
発明の開示
発明が解決しょうとする課題
[0010] 従って、本発明は、微細炭素繊維をその特性を損なうことなく熱可塑性樹脂中に均 一に分散させることのできる炭素繊維含有熱可塑性樹脂組成物の製造方法を提供 することを課題とする。
課題を解決するための手段
[0011] 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、微細炭素繊維と 熱可塑性樹脂を、混練押出機に投入して混練して炭素繊維含有熱可塑性樹脂組成 物を製造するにおいて、押出温度を JIS K 7210に規定される 2. 16kg荷重下で の前記熱可塑性樹脂のメルトフローインデックスが特定範囲内となる温度条件に設 定し、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留 時間、および前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成 物に対するせん断速度を適当なものに調整することで、微細炭素繊維がその形状を 保持しつつ均一に分散され、電気伝導性等の特性に優れた微細炭素繊維含有樹脂 組成物を提供できることを見出し、本発明に到達したものである。
[0012] すなわち、上記課題を解決する本発明は、微細炭素繊維と熱可塑性樹脂とを、混 練押出機に投入して混鍊することにより、熱可塑性樹脂中に微細炭素繊維が分散配 合されてなる微細炭素含有樹脂組成物を製造する方法において、前記混練押出機 のシリンダー温度が、 JIS K 7210に規定される 2. 16kg荷重下での前記熱可塑性 樹脂のメルトフローインデックスが 10〜30となる温度であり、かつ前記混練押出機内 における前記微細炭素繊維含有樹脂組成物の滞留時間が 25〜 100秒であり、また 、前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対する せん断速度が、 10000〜30000Z秒であることを特徴とするものである。
なお、 JIS K 7210規格は、 ISO 1133 : 1997と内容的に一致する規格である。
[0013] 本発明はさらに、微細炭素繊維と熱可塑性樹脂とを、単軸又は二軸の攪拌機を用 レ、て予め混合して、予備混合体とした後に、前記混練押出機に投入するものである 微細炭素含有樹脂組成物の製造方法を示すものである。
[0014] 本発明はまた、使用される熱可塑性樹脂が、ペレット状またはフレーク状である場 合に、予め当該ペレットまたはフレークを粉碎機にて粉砕してから予備混合体を調製 するものである微細炭素含有樹脂組成物の製造方法を示すものである。
[0015] 本発明はまた、使用される微細炭素繊維の嵩密度が 0. 0001-0. 05g/cm3であ ることを特徴とする微細炭素含有樹脂組成物の製造方法を示すものである。
[0016] 本発明はさらに、熱可塑性樹脂が、ポリ塩化ビュル樹脂、ポリオレフイン樹脂、ポリ 乳酸樹脂、ポリスチレン樹脂、アクリル二トリル—ブタジエン—スチレン (ABS)樹脂、 アクリル二トリル—スチレン (AS)樹脂、ポリ(メタ)アクリル樹脂、ポリアクリロニトリル樹 脂、飽和ポリエステル樹脂、アイオノマー樹脂、ポリカーボネート樹脂、ポリアミド樹脂 、ポリアセタール樹脂、ポリフエ二レンエーテル樹脂、変性ポリフエ二レンエーテル樹 脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルサ ルホン樹脂、ポリフヱニレンスルフイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエ ーテルケトン樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリエステル樹 脂、熱可塑性エラストマ一およびそれらのポリマーァロイからなる群より選ばれてなる 少なくとも 1種である微細炭素含有樹脂組成物の製造方法を示すものである。
[0017] 本発明はさらに、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボ ンブラック、炭素繊維、ガラス繊維およびこれらの 2種以上の混合物からなる群から選 ばれてなるいずれ力 1つの充填材をさらに配合するものである微細炭素繊維含有榭 脂組成物の製造方法を示すものである。
図面の簡単な説明
[0018] [図 1]は、本発明の微細炭素繊維含有樹脂組成物の製造方法において用いられ得 る混練押出機の構成を模式的に示す図面である。
符号の説明
[0019] 1 混練押出機
2 スクリューセグメント
3 スクリューノくレノレ
4 原料供給口
5 吐出口
6 スクリュー駆動源
7 予備混合室
8 攪拌機
発明を実施するための最良の形態
[0020] 以下、本発明を好ましい実施形態に基づき詳細に説明する。なお、以下に示される 実施形態は、本発明の説明および理解を容易とするために本明細書中に示されたも のであって、本発明の範囲を何ら限定するものではない。
[0021] 本発明に係る微細炭素繊維含有樹脂組成物の製造方法においては、微細炭素繊 維と熱可塑性樹脂を、混練押出機に投入し、混練して炭素繊維含有熱可塑性樹脂 組成物を調製する。
[0022] 本発明において使用される混練押出機としては、装置内に単軸もしくは多軸のスク リューセグメントを有してなるものであればよいが、好ましくはスクリューセグメントを 2 本並列に配置した 2軸押出機が望ましい。さらに 2軸押出機としては、スクリューセグ メントが同方向に回転するもの、異方向に回転するものがありいずれも用いることがで きる力 同方向に回転するものがより好ましく用いることができる。
[0023] 図 1は、本発明の製造方法において用レ、ら得る混練押出機の一実施形態の構造を 模式的に示す図面である。図 1に示す混練押出機 1は、 2本のスクリューセグメント 2 力 スクリューバレル 3内に並列して配置された 2軸押出機であり、スクリューバレル 3 の一端部側 (スクリュー駆動源 6側)には、外部より原料をスクリューバレル内へと供給 する原料供給口 4が設けられ、一方、スクリューバレル 3の他端部側には、スクリュー バレル内で混練された製品を外部へと吐出する吐出口 5が設けられている。なお、こ の実施形態においては、前記原料供給口 4の上部に、予備混合室 7を有しており、 予備混合室 7には、攪拌機 8が備えられており、混練押出機 1へと供給される熱可塑 性樹脂および微細炭素繊維を予備混合して、スクリュー部へと圧送することができる ようになつている。
[0024] しかして、本発明においては、このような混練押出機に、微細炭素繊維と熱可塑性 樹脂を投入し、混練するにおいて、前記混練押出機のシリンダー(スクリューバレル) 温度を、 JIS K 7210に規定される 2. 16kg荷重下での前記熱可塑性樹脂のメルト フローインデックス(MFI)が 10〜30となる温度、より好ましくは 15〜25となる温度に 設定して、混練押出を行う。なお、上記 MFIは、微細炭素繊維を配合していない、熱 可塑性樹脂原料単独 (使用される熱可塑性樹脂原料が、例えば、熱可塑性樹脂に カロえて、可塑剤、安定化剤等の添加剤を含む樹脂組成物である場合には、当該榭 脂組成物)としての値である。
[0025] これは、 MFIが 30を超える押出温度領域では、熱可塑性樹脂の溶融粘度が低くな りすぎ微細炭素繊維の熱可塑性樹脂への分散が不均一となり好ましくなぐ一方、 M FIが 10未満となる押出温度領域では、熱可塑性樹脂の溶融粘度が高くなりすぎ微 細炭素繊維が混練押出工程中に切断され易くなり好ましくないためである。なお、 M FIが 10〜30となる実際の温度範囲は、使用する熱可塑性樹脂の種類によって異な つてくるが、当該所定範囲の MFI値を得ることのできる温度範囲に設定される限り、 熱可塑性樹脂の種類にかかわらず、微細炭素繊維との良好な混練操作が行えるも のである。
[0026] なお、このように押出温度を熱可塑性樹脂の所定の MFIとなる温度に維持するた めは、以下に述べるように、押出機のスクリューセグメントの回転速度を適度なものに 制御する他、必要に応じて、スクリューバレルの外周に水冷ジャケット等の冷却ジャケ ット、その他の冷却装置を設けることも可能である。 [0027] さらに、本発明においては、上記した押出温度条件に加え、前記混練押出機内に おける前記微細炭素繊維含有樹脂組成物の滞留時間を 25〜100秒とし、また、前 記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん 断速度を、 10000〜30000Z秒に設定する。
[0028] ここで滞留時間を 25〜100秒とするのは、滞留時間が 25秒未満では、熱可塑性樹 脂中での微細炭素繊維の分布が不均一となり好ましくなぐ一方、 100秒を超える滞 留時間をかけても、熱可塑性樹脂中での微細炭素繊維のより一層の分散向上が図 られず、生産効率を低下させるのみならず、滞留時間の増加による微細炭素繊維の 損傷の虞れが高まるゆえに、好ましくないためである。
[0029] さらにせん断速度を、 10000〜30000/秒とするのは、 10000/秒未満のせん断 速度では、熱可塑性樹脂中での微細炭素繊維の分散が不均一となり、好ましくなぐ 一方 30000/秒を超えるせん断速度では、微細炭素繊維が混練押出工程中にお レ、て切断等の損傷を受けやすくなり、好ましくないためである。
[0030] 本発明に係る製造方法においては、複合化される微細炭素繊維と熱可塑性樹脂と を、混練押出機 1の原料供給口 4へと投入し、上記所定条件において、混練処理を 行うことで、所期の微細炭素繊維含有熱可塑性樹脂組成物を調製することができる 、望ましくは、微細炭素繊維と熱可塑性樹脂とを混練押出機へと投入するに先立 ち、これらを攪拌機において予め混合し、予備混合体としておくことが、混練押出機 における分散処理をより良好なものとする上で好ましい。
[0031] このような予備混合体とする上での、攪拌処理としては、例えば、図 1に示すような、 混練押出機 1の原料供給口 4の上部に配置された予備混合室 7内において攪拌機 8 により混合処理し、そのまま混練押出機 1のスクリューバレル内へと供給するような連 続的な処理であっても、あるいは、別途、攪拌機において予め混合処理して得られた 予備混合体を、混練押出機 1のスクリューバレル内へと供給するような段階的な処理 であってもよぐさらに、これらの両者を併用するようなものであってもよい。
[0032] また、予備混合体を調製する上での攪拌機としては、過度のせん断力が負荷され ない条件にて攪拌混合を行えるものであれば特に限定されず、スクリューないしプロ ペラ、パドル、リボン等の各種攪拌子を備えた単軸ないしは多軸の回転軸を有する各 種の攪拌機を用いることができる。好ましくは、攪拌時に撹拌槽内において静的領域 を設けることなく系全体で均一な撹拌を行う上から多軸、代表的には 2軸の攪拌機を 用いることが望ましい。
[0033] なお、原料としての熱可塑性樹脂は、粉体としてのみではなぐペレット状またはフ レーク状等といった形状で提供される場合があるが、このような形態の熱可塑性樹脂 をそのまま微細炭素繊維と混合ないし混練すると、微細炭素繊維を均一に分散配合 することが困難となるので、このような形態、特に、その粒子寸法が 3mm角以上であ る場合には、予め当該ペレットまたはフレークを適当な粉砕機にて、十分に微細、例 えば、 1mm角未満まで、粉砕してから予備混合体を調製することが望ましい。
[0034] 次に、本発明のカーボンナノ構造体含有熱硬化性樹脂組成物の製造方法におい て用いられる原料について説明する。
[0035] 本発明において用いられる微細炭素繊維とは、例えば、一枚のグラフエンシートが 筒状に丸まってできる直径数 nm程度の単層カーボンナノチューブや、筒状のグラフ エンシートが軸直角方向に積層した多層カーボンナノチューブ、単層カーボンナノチ ユーブの端部が円錐状で閉じたカーボンナノホーンなどが例示され、これらの微細炭 素繊維は、上記したような種類の単独体とすることも、あるいは、 2種以上の混合体と することも可能である。
[0036] これらの微細炭素繊維のうち、特に、筒状のグラフエンシートが軸直交断面が多角 形状であるカーボンナノチューブを用いることが、本発明の製造方法により得られる 微細炭素繊維含有熱可塑性樹脂組成物にぉレ、て、微細炭素繊維の熱可塑性樹脂 中における分散性を高める上から好ましいものである。カーボンナノチューブの軸直 交断面が多角形状であることは、微細炭素繊維を製造後に、例えば、 2400°C以上 の温度にて高温熱処理を施すことに起因するものである力 この熱処理により、カー ボンナノチューブを繊維方向および積層方向の両方において緻密で欠陥の少ない ものとし、曲げ剛性を著しく向上させることができる。この結果、曲がりにくぐ弾性、す なわち変形後も元の形状に戻ろうとする性質を付与することができるので、絡み合つ た構造をとり難く熱硬化性樹脂に容易に分散させることができるためである。なお、力 一ボンナノチューブは単層でもよいが、グラフヱンシートが軸直角方向に積層したも のの方が、曲げ剛性を向上させる上で好ましいものである。
[0037] また、微細炭素繊維の外径は、軸方向に沿って変化するものであることが、本発明 の製造方法により得られる微細炭素繊維含有熱可塑性樹脂組成物において、微細 炭素繊維の熱可塑性樹脂中における軸方向への移動を防止し、分散の安定性を向 上させる上から好ましレ、ものである。
[0038] また、微細炭素繊維は、ラマン分光分析で測定される I /1比が 0. 2以下、より好
D G
ましくは 0. 1以下であるもの、つまりグラフヱンシート内の欠陥が少ないカーボンナノ チューブを用いることが、本発明の製造方法により得られる微細炭素繊維含有熱可 塑性樹脂組成物において、微細炭素繊維の熱可塑性樹脂組成物中における導電 性を向上させる上から好ましレ、ものである。
[0039] なお、使用時における微細炭素繊維の嵩密度としては、特に限定されるものではな レヽカ S、 0. 0001〜0. 05g/cm3、より好ましく fま 0. 001〜0. 02g/cm3程度のもの を用いることが、熱可塑性樹脂と混練された際に高い分散性を発揮できる上から望ま しい。
[0040] また、本発明の微細炭素繊維含有熱可塑性樹脂組成物の製造方法において、熱 可塑性樹脂組成物における微細炭素繊維の配合割合としては、特に限定されるもの ではなぐまた用いる熱可塑性樹脂の種類等によっても左右されるが、組成物全体の 0.:!〜 50質量%より好ましくは 0. 3〜30質量%であることが望ましい。含有割合が 5 0質量%を超えると得られる樹脂組成物の成形加工性、機械的強度等が低下する虞 れがあり、一方、 0. 1質量%未満では、微細炭素繊維を配合したことにより得られる 導電性付与効果が、十分なものとならない虞れがあり、いずれも好ましくないためで ある。
[0041] 一方、本発明において用いられる熱可塑性樹脂としては、特に限定されるものでは ないが、例えば、ポリ塩化ビュル樹脂;ポリエチレン、ポリプロピレン、ポリエチレン— プロピレンコポリマー、環状ポリオレフイン等のポリオレフイン樹脂;ポリ乳酸樹脂、ポリ スチレン樹脂;アクリル二トリル一ブタジエン一スチレン (ABS)樹脂;アクリル二トリノレ —スチレン (AS)樹脂;ポリメチルアタリレート、ポリメチルメタタリレート、ポリェチルァ タリレート、ポリェチルメタタリレート、ポリアクリル酸、ポリメタクリル酸等のポリ(メタ)ァ クリル樹脂;ポリアクリロニトリル樹脂;ポリブチレンテレフタレート、ポリエチレンテレフ タレート等の飽和ポリエステル樹脂;アイオノマー樹脂;ポリカーボネート樹脂;各種ナ ィロン等のポリアミド樹脂;ポリアセタール樹脂;ポリフエ二レンエーテル樹脂;変性ポリ フエ二レンエーテル樹脂;ポリアリレート樹脂;ポリサルホン樹脂、ポリエーテルイミド樹 脂;ポリエーテルサルホン樹脂;ポリフエ二レンスルフイド樹脂;ポリエーテルエーテノレ ケトン樹脂;ポリエーテルケトン樹脂;ポリアミドイミド樹脂;熱可塑性ポリイミド樹脂;液 晶ポリエステル樹脂;および各種熱可塑性エラストマ一、並びにそれらのポリマーァロ ィなどが挙げられる。本発明においては、これらの熱可塑性樹脂は 1種または 2種以 上を併用して用いることができる。
[0042] 本発明の微細炭素繊維含有熱可塑性樹脂組成物の製造方法においては、熱可 塑性樹脂および微細炭素繊維以外に、必要に応じて、例えば、酸化防止剤、熱安定 化剤、耐候剤、離型剤及び滑材、顔料、染料といった着色剤、可塑剤、帯電防止剤 、難燃化剤等の通常の熱可塑性樹脂組成物中に配合され得る各種添加剤を含むこ とができる。これらの添加剤は、微細炭素繊維と混練処理される熱可塑性樹脂原料 中に予め配合しておくことも、また、微細炭素繊維との混練処理時において熱可塑性 樹脂に添加するものであってもよい。
[0043] さらに、本発明の微細炭素繊維含有熱可塑性樹脂組成物には、上述した微細炭 素繊維に加えて、その特性を大きく損なわない限度において、他の充填剤を含んで レ、てもよく、そのような充填剤としては例えば、金属微粒子、シリカ、炭酸カルシウム、 炭酸マグネシウム、カーボンブラック、炭素繊維、ガラス繊維などが挙げられ、これら を一種または二種以上組み合わせて用いることができる。
[0044] 本発明の製造方法により得られた微細炭素繊維含有熱可塑性樹脂組成物は、そ のまま、あるいはさらに公知の方法で成形して用いることができる。成形方法としては 、射出成形、押出成形、圧縮成形などが挙げられる。また、成形品としては、射出成 形品、シート、未延伸フィルム、延伸フィルム、丸棒、異形押出品などの押出成形品 などが例示できる。
実施例
[0045] 以下、実施例により本発明を更に詳しく説明するが、以下の実施例は、本発明の理 解と説明を容易とするために例示されたものであって、本発明はこれらの実施例に何 ら限定されるものではない。
[0046] 参考例 1 微細炭素繊維の合成
CVD法によって、トルエンを原料として微細炭素繊維を合成した。
[0047] 触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °Cで熱分解して、微細炭素繊維を得た。さらに、合成された微細炭素繊維を窒素中 で 900°Cで焼成して、タールなどの炭化水素を分離し、さらにその後、アルゴン中で 2600°Cで高温熱処理した。
[0048] 得られた微細炭素繊維は、繊維径 15〜: 100nm、繊維長さ 1〜40 μ mのものであり 、また、その嵩密度は 0. 0032g/cm3、ラマン I /1 比値は 0. 090であった。
D G
[0049] なお、嵩密度およびラマン分光分析は以下のようにして行った。
[0050] <嵩密度の測定 >
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. lMpa、容量 1. 3リツ トルの空気を分散板下部から送り粉体を吹出し、 自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。
[0051] <ラマン分光分析 >
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。
[0052] 実施例:!〜 6
熱可塑性樹脂として、ポリカーボネート樹脂粉砕パウダー(日本ジーィ一プラスチッ タス株式会社製、レキサン HF1110)と、参考例 1で得られた微細炭素繊維とを、 (三 井鉱山株式会社製、ヘンシェルミキサー)を用いて、表 1に示す組成比にて予備混合 した。そして、この予備混合物を、スクリュー径 35mm、 LZD = 35の 2軸押出機に投 入し、表 1に示す押出温度、滞留時間、せん断速度にて溶融混練し、樹脂組成物べ レットを得た。
[0053] なお、使用したポリカーボネート樹脂粉砕パウダーの JIS K 7210に規定される 2 . 16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスは、それぞれ表 1に 示す通りであった。
[0054] このようにして調製された樹脂組成物ペレットを、型締カ 28Tの射出成形機に供給 し、成形温度 300°C、射出圧力 1000kg/cm2、金型温度 100°Cの成形条件にて、 5 Omm X 90mm X 3mmの平板状成形品を得た。
[0055] 得られた、平板状成形品について、表面抵抗測定器 (三菱化学 (株)製 Hiresta-UP 及び Loresta-GP)を用いて、表面抵抗値を測定した。得られた結果を表 1に示す。
[0056] 比較例:!〜 6
表 2に示す組成比にて混合する以外は、実施例 1〜6と同様にして、ポリカーボネ ート樹脂粉砕パウダー(日本ジーィ一プラスチックス株式会社製、レキサン HF1110 )と、参考例 1で得られた微細炭素繊維とを、予備混合した後、表 2に示す条件を用 いる以外は、実施例:!〜 6と同様にして樹脂組成物を調製し、さらに平板状成形品を 作成して、表面抵抗値を測定した。得られた結果を表 2に示す。
[0057] [表 1]
Figure imgf000013_0001
[0058] [表 2]
Figure imgf000014_0001
[0059] 実施例 7
熱可塑性樹脂として、ポリカーボネートに代えて、ポリアミド樹脂 (東レ株式会社製、 アミラン CM3007) (実施例 7)を用いる以外は、実施例 2と同様にして樹脂組成物を 調製し、さらに平板状成形品を作成して、表面抵抗値を測定した。得られた結果を表 3に示す。
[0060] [表 3]
Figure imgf000014_0002

Claims

請求の範囲
[1] 微細炭素繊維と熱可塑性樹脂とを、混練押出機に投入して混鍊することにより、熱 可塑性樹脂中に微細炭素繊維が分散配合されてなる微細炭素含有樹脂組成物を 製造する方法において、前記混練押出機のシリンダー温度が、 JIS K 7210に規 定される 2. 16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスが 10〜3 0となる温度であり、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組 成物の滞留時間が 25〜: 100秒であり、また、前記混練押出機のスクリューセグメント の微細炭素繊維含有樹脂組成物に対するせん断速度が、 10000〜30000/秒で あることを特徴とする微細炭素含有樹脂組成物の製造方法。
[2] 微細炭素繊維と熱可塑性樹脂とを、単軸又は二軸の攪拌機を用いて予め混合して 、予備混合体とした後に、前記混練押出機に投入するものである請求項 1に記載の 微細炭素含有樹脂組成物の製造方法。
[3] 使用される熱可塑性樹脂が、ペレット状またはフレーク状である場合に、予め当該 ペレットまたはフレークを粉碎機にて粉砕してから予備混合体を調製するものである 請求項 2に記載の微細炭素含有樹脂組成物の製造方法。
[4] 使用される微細炭素繊維の嵩密度が 0. 0001〜0. 05g/cm3であることを特徴と する請求項:!〜 3のいずれか 1つに記載の微細炭素含有樹脂組成物の製造方法。
[5] 熱可塑性樹脂が、ポリ塩化ビニル樹脂、ポリオレフイン樹脂、ポリ乳酸樹脂、ポリス チレン樹脂、アクリル二トリル一ブタジエン一スチレン (ABS)樹脂、アクリル二トリル一 スチレン (AS)樹脂、ポリ(メタ)アクリル樹脂、ポリアクリロニトリル樹脂、飽和ポリエス テル樹脂、アイオノマー樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセターノレ 樹脂、ポリフエ二レンエーテル樹脂、変性ポリフエ二レンエーテル樹脂、ポリアリレート 樹脂、ポリサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、ポリフ ヱ二レンスルフイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、 ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリエステル樹脂、熱可塑性エラ ストマーおよびそれらのポリマーァロイからなる群より選ばれてなる少なくとも 1種であ る、請求項:!〜 4のいずれか 1つに記載の微細炭素含有樹脂組成物の製造方法。
[6] 金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、炭素繊 維、ガラス繊維およびこれらの 2種以上の混合物からなる群から選ばれてなるレ、ずれ 力 1つの充填材をさらに配合するものである請求項 1〜5のいずれか 1つに記載の微 細炭素繊維含有樹脂組成物の製造方法。
PCT/JP2006/306333 2005-03-31 2006-03-28 微細炭素繊維含有樹脂組成物の製造方法 WO2006106687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104456A JP4869615B2 (ja) 2005-03-31 2005-03-31 微細炭素繊維含有樹脂組成物の製造方法
JP2005-104456 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106687A1 true WO2006106687A1 (ja) 2006-10-12

Family

ID=37073253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306333 WO2006106687A1 (ja) 2005-03-31 2006-03-28 微細炭素繊維含有樹脂組成物の製造方法

Country Status (2)

Country Link
JP (1) JP4869615B2 (ja)
WO (1) WO2006106687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241688A1 (en) * 2011-03-23 2012-09-27 Sumitomo Chemical Company, Limited Method for producing liquid crystal polyester composition
CN110480863A (zh) * 2018-05-15 2019-11-22 东芝机械株式会社 导电性复合材料的制造方法
CN110651008A (zh) * 2017-05-24 2020-01-03 三菱瓦斯化学株式会社 由碳纤维强化热塑性树脂形成的片材和该片材的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207351B2 (ja) * 2007-03-23 2013-06-12 独立行政法人産業技術総合研究所 溶融混練物、樹脂成形物及びその製造方法
JP2012161965A (ja) * 2011-02-04 2012-08-30 Vision Development Co Ltd ダイヤモンド微粒子を含有するダイヤモンド−樹脂複合材料の製造方法
JP5964665B2 (ja) * 2012-06-12 2016-08-03 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物
JP5964664B2 (ja) * 2012-06-12 2016-08-03 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154811A (ja) * 1984-12-18 1986-07-14 オクシデンタル・ケミカル・コーポレイシヨン 高導電性の熱可塑性材料の製造方法
JPH07102112A (ja) * 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc 熱可塑性エラストマー組成物および樹脂組成物
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2005264134A (ja) * 2003-09-02 2005-09-29 Showa Denko Kk 導電性ポリマー、その製造方法及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154811A (ja) * 1984-12-18 1986-07-14 オクシデンタル・ケミカル・コーポレイシヨン 高導電性の熱可塑性材料の製造方法
JPH07102112A (ja) * 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc 熱可塑性エラストマー組成物および樹脂組成物
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2005264134A (ja) * 2003-09-02 2005-09-29 Showa Denko Kk 導電性ポリマー、その製造方法及びその用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241688A1 (en) * 2011-03-23 2012-09-27 Sumitomo Chemical Company, Limited Method for producing liquid crystal polyester composition
CN110651008A (zh) * 2017-05-24 2020-01-03 三菱瓦斯化学株式会社 由碳纤维强化热塑性树脂形成的片材和该片材的制造方法
CN110480863A (zh) * 2018-05-15 2019-11-22 东芝机械株式会社 导电性复合材料的制造方法
US11584830B2 (en) 2018-05-15 2023-02-21 Shibaura Machine Co., Ltd. Production method for conductive composite material
CN110480863B (zh) * 2018-05-15 2023-07-28 芝浦机械株式会社 导电性复合材料的制造方法

Also Published As

Publication number Publication date
JP2006282842A (ja) 2006-10-19
JP4869615B2 (ja) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4896422B2 (ja) 微細炭素繊維含有樹脂組成物の製造方法
EP2029265B1 (en) Ultrasound assisted continuous process and apparatus for dispersion of nanofibers and nanotubes in polymers
Villmow et al. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix
KR101197288B1 (ko) 탄소나노소재 분말의 펠릿과 그 제조 방법
JP4869615B2 (ja) 微細炭素繊維含有樹脂組成物の製造方法
KR101183016B1 (ko) 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
US20090023851A1 (en) Process for the production of an electrically conducting polymer composite material
JP5268050B2 (ja) カーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法
WO2013111862A1 (ja) 導電性樹脂用マスターバッチの製造方法およびマスターバッチ
CN1813314A (zh) 包含碳纳米管的导电组合物及其制造方法
KR101082492B1 (ko) 대전방지 열가소성 수지 조성물 및 그 제조방법
KR101164287B1 (ko) 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그 제조방법
WO2017169482A1 (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法
TW202043003A (zh) 含有再生碳纖維的碳纖維複合材料、成形體及碳纖維複合材料的製造方法
KR102034670B1 (ko) 전도성 수지 조성물 및 그 제조방법
Kadam et al. Effect of nano-alumina concentration on the properties of poly (vinyl chloride)/thermoplastic polyester elastomer blend system
WO2013157621A1 (ja) 導電性樹脂用マスターバッチ及び導電性樹脂
KR20170112929A (ko) 충격강도가 우수한 전기전도성 고분자 복합체, 전기전도성 수지 조성물 및 그 제조방법
JP4404702B2 (ja) カーボンナノ線条体分散樹脂組成物の製造方法
JP6310736B2 (ja) 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物
CN111601770A (zh) 由松散碳纳米管制备的附聚固体材料
KR102084641B1 (ko) 전도성 수지 조성물 및 그 제조방법
JP2008001848A (ja) 液晶性樹脂組成物
KR20120078469A (ko) 전도성이 향상된 고분자/탄소나노튜브 복합체 및 이의 제조방법
KR20140073866A (ko) 탄소나노소재 분말의 고형체와 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730281

Country of ref document: EP

Kind code of ref document: A1