WO2006106630A1 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
WO2006106630A1
WO2006106630A1 PCT/JP2006/306161 JP2006306161W WO2006106630A1 WO 2006106630 A1 WO2006106630 A1 WO 2006106630A1 JP 2006306161 W JP2006306161 W JP 2006306161W WO 2006106630 A1 WO2006106630 A1 WO 2006106630A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
flow
air
inlet
Prior art date
Application number
PCT/JP2006/306161
Other languages
English (en)
French (fr)
Inventor
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06730109.3A priority Critical patent/EP1890088A4/en
Priority to CN2006800105863A priority patent/CN101151493B/zh
Priority to US11/887,247 priority patent/US8033532B2/en
Priority to AU2006231190A priority patent/AU2006231190B2/en
Publication of WO2006106630A1 publication Critical patent/WO2006106630A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption

Definitions

  • the present invention relates to a humidity control apparatus, and particularly relates to a protective measure for piping and the like of a humidity control apparatus that has a water circuit and performs a batch-type operation.
  • the humidity control apparatus of Patent Document 1 includes two adsorbing elements having an adsorbent and a refrigerant circuit that performs a refrigeration cycle.
  • the humidity control apparatus dehumidifies the first air with the first adsorption element and regenerates the second adsorption element with the second air heated by the condenser of the refrigerant circuit, and the second adsorption element.
  • the first air is dehumidified by the element, and the second operation of regenerating the first adsorption element by the second air heated by the condenser is performed. These two operations are alternately repeated to supply the dehumidified first air or the humidified second air into the room.
  • the adsorption heat exchanger in which the adsorbing element and the heat exchanger are integrated and an adsorbent is supported.
  • the adsorption heat exchange is configured as a V, so-called fin “and” tube type heat exchange having a large number of plate-like fins and a copper tube penetrating the fins.
  • An adsorbent is supported on the surfaces of the fins and the copper tube.
  • circulation air is dehumidified and humidified by the adsorbent, and the adsorbent is heated and cooled by the refrigerant flowing in the copper pipe.
  • a humidity control apparatus using a water circuit in which cold water or hot water flows can be considered instead of the refrigerant circuit.
  • the adsorbent is cooled and heated by alternately flowing cold water and hot water to the adsorption heat exchanger.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-60954
  • the present invention has been made in view of such a point, and an object of the present invention is to control humidity by performing water adsorption / desorption with an adsorbent of an adsorption heat exchanger by switching the flow of water.
  • an object of the present invention is to control humidity by performing water adsorption / desorption with an adsorbent of an adsorption heat exchanger by switching the flow of water.
  • the device when the water flow is switched, if the water flow is interrupted due to a malfunction of the switching valve or the like, the high pressure acting on the piping or the like is suppressed.
  • the first invention includes a first heat exchange (32) and a second heat exchange (42) having an adsorbent and performing adsorption of moisture in the air and release of water into the air by desorption.
  • a water circuit (20) through which cold water and hot water flow, and the water circuit (20) is connected to the first heat exchanger (32) by the hot water introduced from the first inlet (21).
  • the cold water introduced from the second inlet (23) flows to the second outlet (24) through the second heat exchanger (42), and flows to the first outlet (22).
  • Hot water introduced from the first inlet (21) flows to the first outlet (22) through the second heat exchanger (42), and cold water introduced from the second inlet (23) flows to the first heat exchanger.
  • the water flow is switched so as to switch to the second flow state that flows to the second outlet (24) through (32), and moisture is exchanged in the first heat exchanger ⁇ (32) and the second heat exchanger (42). Assuming a humidity control device that alternately absorbs and desorbs!
  • the water circuit (20) includes a bypass passage that connects the inlets (21, 23) and the outlets (22, 24) when switching the water flow.
  • the switching of the water flow in the water circuit (20) is performed by, for example, a flow path such as a three-way valve or a four-way valve. This is done by switching the switching valve.
  • the flow of water may be interrupted if the flow path switching valve is completely switched due to malfunction or is held at an intermediate opening. In that case, since water is an incompressible fluid, high pressure acts on pipes and heat exchangers (32, 42).
  • the second invention has a first heat exchange (32) and a second heat exchange (42) which have an adsorbent and perform the adsorption of moisture in the air and the release of water into the air by desorption.
  • a water circuit (20) through which either cold water or hot water flows.
  • the water circuit (20) is configured such that the water introduced from the inlet (21) is the first heat exchanger ( 32) The first flow state that flows to the outlet (22) and the second flow state that the water introduced from the inlet (21) flows to the outlet (22) through the second heat exchanger (42) It is premised on a humidity control device that switches the water flow so that the first heat exchanger (32) and the second heat exchanger (42) alternately absorb and desorb moisture.
  • the water circuit (20) includes a bypass passage that connects the inlet (21) and the outlet (22) when switching the water flow.
  • the cold water flows.
  • the first heat exchanger (32) or the second heat exchanger (42) moisture in the air passing therethrough Is adsorbed by the adsorbent and the air is dehumidified.
  • the second heat exchanger (42) or the first heat exchanger (32) in which the cold water does not flow the water adsorbed by the adsorbent force is released into the passing air, and the air is humidified.
  • a third invention is the above first or second invention, wherein the bypass passage has a bypass shut-off valve (37), and the upstream side and the downstream side of the first heat exchanger (32). One of them is connected to either the upstream side or the downstream side of the second heat exchanger (42).
  • the water circuit (20) is configured to switch the inlet side switching means for hot water (31) for switching the water flow between the first flow state and the second flow state.
  • the bypass passage has a bypass shutoff valve (37), and is connected to the upstream side of the hot water inlet side switching means (31) and the downstream side of the hot water outlet side switching means (33).
  • both the inlet side switching means (31) and the outlet side switching means (33) for hot water are operated by opening the bypass shutoff valve (37) for hot water when switching the water flow. Even in the case of an intermediate opening due to a malfunction, the hot water introduced from the first inlet (21) flows reliably to the first outlet (22) through the hot water bypass passage. Also, by switching the cold water bypass shut-off valve (37) when switching the water flow, the inlet side switching means (41 ) And outlet side switching means (43) are in the intermediate opening state, the cold water introduced from the second inlet (2 3) passes through the cold water bypass passage to the second outlet (24). It flows reliably. Therefore, at least one of the cold and hot water is prevented from being blocked, and high pressure can be prevented from acting on the piping and the like.
  • the water circuit (20) is configured to switch the inlet side switching means for hot water (31) for switching the water flow between the first flow state and the second flow state. ) And an outlet side switching means (33), an inlet side switching means (41) for cold water, and an outlet side switching means (43).
  • the inlet side switching means (31, 41) is switched.
  • each outlet side switching means (33, 43) is switched first, so that compared with the case where each inlet side switching means (31, 41) is switched first.
  • the cold water and the hot water can continue to flow to the predetermined first heat exchanger (32) or the second heat exchanger (42) until the switching is completed. This suppresses a decrease in the dehumidifying / humidifying capacity when the water flow is switched.
  • the hot water outlet side is switched after the cold water outlet side switching means (43) is switched at the time of switching the water flow. Switch the switching means (3 3).
  • the air humidified by the first heat exchanger (32) or the second heat exchanger (42) through which hot water flows is supplied to the user side.
  • the outlet side switching means (43) for cold water is switched first, so that the flow of cold water is blocked until the outlet side switching means (33) for hot water is switched. become. That is, when the water flow is switched, the hot water flows through the first heat exchanger (32) or the second heat exchanger (42) for a longer time than the cold water. Therefore, a decrease in the humidifying capacity is suppressed.
  • the outlet side switching means for cold water is switched after the outlet side switching means (33) for hot water is switched at the time of switching the water flow. 4 Switch 3).
  • the air dehumidified by the first heat exchanger (32) or the second heat exchanger (42) through which the cold water flows is supplied to the user side.
  • the outlet side switching means (33) for hot water is switched first, the flow of warm water is interrupted until the outlet side switching means (43) for cold water is switched. That is, during the switching of the water flow, the cold water flows through the first heat exchanger (32) or the second heat exchanger (42) for a longer time than the hot water. Therefore, a decrease in the dehumidifying capacity is suppressed.
  • the water circuit (20) has an inlet side switching means (31) and an outlet for switching the water flow between the first flow state and the second flow state.
  • Side switching means (33) is provided.
  • the bypass passage has a bypass cutoff valve (37) and is connected to the upstream side of the inlet side switching means (31) and the downstream side of the outlet side switching means (33)!
  • the binos shut-off valve (37) when the water flow is switched, the binos shut-off valve (37) is opened, so that both the inlet side switching means (31) and the outlet side switching means (33) are in an inoperative state with an intermediate opening state. Even in this case, cold water or hot water introduced from the inlet (21) flows through the bypass passage to the outlet (22). Therefore, blocking of the water flow can be avoided and high pressure can be prevented from acting on the piping.
  • the water circuit (20) includes an inlet side switching means (31) and an outlet for switching the water flow between the first flow state and the second flow state.
  • Side switching means (33) is provided.
  • the present invention switches the inlet side switching means (31) after switching the outlet side switching means (33) when switching the water flow.
  • the outlet side switching means (33) is switched first, so cold water or hot water is supplied to the water as compared with the case where the inlet side switching means (31) is switched first.
  • the flow can continue to flow to the predetermined first heat exchanger (32) or the second heat exchanger (42) as long as possible until the flow switching is completed. This suppresses a decrease in the dehumidifying / humidifying capacity when the water flow is switched.
  • the tenth invention includes a first heat exchange (32) and a second heat exchange (42) having an adsorbent and performing the adsorption of moisture in the air and the release of water into the air by desorption. ) And a water circuit (20) through which cold and hot water flows, and the water circuit (20) is connected to the first heat exchanger (32) by the hot water introduced from the first inlet (21).
  • a switching means (31, 33, 41, 43) is provided for switching the water flow so as to switch to the second flow state flowing through the heat exchanger (32) to the second outlet (24). It assumes a humidity control device that alternately absorbs and desorbs moisture in the first heat exchanger (32) and the second heat exchanger (42).
  • the water circuit (20) includes a cold water / hot water buffer tank (39, 49) upstream of the outlet side switching means (33, 43).
  • the water flow is switched by switching a flow switching valve such as a three-way valve or a four-way valve, and the flow switching valve is switched due to a malfunction or the like. If it is touched, the flow of water is cut off and high pressure is applied to the pipe.
  • a flow switching valve such as a three-way valve or a four-way valve
  • the notch tanks (39, 49) are provided on the upstream side of the switching means (33, 43) on the outlet side, so that they are introduced from the respective inlets (21, 23). Hot and cold water are stored in the buffer tanks (39, 49) as they are. In other words, the high pressure generated in the piping is absorbed by the noffer tank (39, 49). This suppresses the high pressure acting on the piping and heat exchange (32, 42).
  • the eleventh invention includes a first heat exchange (32) and a second heat exchange (42) that have an adsorbent and adsorb moisture in the air and release the water into the air by desorption.
  • a water circuit (20) through which either cold water or hot water flows.
  • the water circuit (20) is configured such that the water introduced from the inlet (21) is the first heat exchanger ( 32) The first flow state that flows to the outlet (22) and the second flow state that the water introduced from the inlet (21) flows to the outlet (22) through the second heat exchanger (42) Switching means (31, 33) for switching the water flow so that the water flow is switched to the first heat exchanger (32) and the second heat exchanger (42). It assumes a wet device.
  • the water circuit (20) includes a water buffer tank (39, 49) upstream of the outlet switching means (33)! /
  • the water flow is switched by switching a flow path switching valve such as a three-way valve or a four-way valve, and the flow path switching valve is switched due to a malfunction or the like. If it is touched, the flow of water is cut off and high pressure is applied to the pipe.
  • a flow path switching valve such as a three-way valve or a four-way valve
  • the water buffer tank is located upstream of the outlet-side switching means (33). Since (39, 49) is provided, hot water or cold water introduced from the inlet (21, 23) is stored in the buffer tank (39, 49) as it is. In other words, since the high pressure generated in the piping and the like is absorbed by the noffer tank (39, 49), the high pressure acting on the piping and heat exchange (32, 42) is suppressed.
  • the second heat exchanger (42) dehumidifies the first air and the first heat exchanger (32)
  • the first heat exchanger (32) dehumidifies the first air and the second heat exchanger (42) humidifies the second air.
  • Switch the air flow The air flow is switched after a predetermined time after the flow of at least one of cold water and hot water is switched.
  • the first air in the first flow state, the first air is dehumidified by the first heat exchanger (32) through which cold water flows, and the second heat exchanger ( 42) humidifies the second air
  • the first air in the second flow state, the first air is dehumidified by the second heat exchanger (42) through which cold water flows.
  • the cold water flow and the air flow are switched so that the second air is humidified by the first heat exchanger (32).
  • the air flow is switched after a predetermined time after the cold water flow is switched.
  • the air flow is switched a predetermined time after the flow of the cold water is switched.
  • the heat exchange (32, 42) is cooled in advance by cold water before the air flow is switched. Therefore, the first air passing through the heat exchanger (32, 42) is not heated after the air flow is switched. This prevents warm air from being supplied to the room.
  • the second air in the first flow state, the second air is humidified by the first heat exchanger (32) through which hot water flows and the second heat exchanger ( 42) dehumidifies the first air
  • the second air in the second flow state, the second air is humidified by the second heat exchanger (42) through which hot water flows and the first air is removed by the first heat exchanger (32).
  • the air flow is switched a predetermined time after the flow of the hot water is switched.
  • heat exchange ⁇ (32,42 ) Is preheated with warm water. Therefore, the second air passing through the heat exchanger (32, 42) is not cooled after the air flow is switched. As a result, cold air is not supplied indoors.
  • the hot water bypasses the first heat exchange (32) and the second heat exchange (42) in the intermediate state. There is a flowing bypass.
  • the hot water flows through the bypass passage and bypasses the heat exchanger (3 2, 42), so the flow of hot water to the heat exchanger (32, 42) is surely prevented. Is done. Therefore, it is possible to reliably prevent warm air from being supplied into the room in the intermediate state.
  • the water circuit (20) is configured such that the cold water bypasses the first heat exchange (32) and the second heat exchange (42) in the intermediate state. There is a flowing bypass.
  • the bypass passages that connect the respective inlets (21, 23) and the respective outlets (22, 24) are provided. Even if malfunction occurs, cold water and hot water can be reliably discharged to the outlets (22, 24) via the bypass passage. Accordingly, since the water flow can be prevented from being interrupted, high pressure can be prevented from acting on the piping and the heat exchanger (32, 42). As a result, the device can be protected.
  • either the upstream side or the downstream side of the first heat exchanger (32) and either the upstream side or the downstream side of the second heat exchanger (42) are connected.
  • the water flowing through the route passes through the second heat exchanger (42). It can be discharged to the route and discharged directly from the exit (22, 24). As a result, the action of high pressure on the piping or the like can be prevented.
  • the hot water bypass passage is connected to the upstream side of the hot water inlet side switching means (31) and the downstream side of the hot water outlet side switching means (33). Since the bypass passage for cold water is connected to the upstream side of the inlet side switching means (41) for cold water and the downstream side of the outlet side switching means (43) for cold water, each inlet side switching means ( 31 and 41) and each outlet side switching means (33 and 43) can reliably flow cold water or hot water to each outlet (22, 24) through each bypass passage. . Therefore, since the interruption of the cold / hot water flow can be avoided, the high water pressure can be protected even under subordinates.
  • the inlet side switching means (31, 41) Therefore, during the switching of the water flow, cold water and hot water are supplied to the predetermined first heat exchanger (32) and And the second heat exchange ⁇ (42). Therefore, it is possible to suppress a decrease in the dehumidifying / humidifying capacity when switching the water flow.
  • the outlet side switching means (33) for hot water is switched after the outlet side switching means (43) for cold water is switched.
  • the outlet side switching means (43) for cold water is switched after the outlet side switching means (33) for hot water is switched, humidification or dehumidification is performed when switching the water flow. Hot or cold water can flow for a long time even to the heat exchanger (32, 42) that supplies fresh air to the user side. Therefore, it is possible to suppress a decrease in the dehumidifying / humidifying capacity when switching the water flow.
  • the bypass passage is connected to the upstream side of the inlet side switching means (31) and the downstream side of the outlet side switching means (33). Even when both (31) and the outlet side switching means (33) are in the intermediate opening state, cold water or hot water can surely flow to the outlet (22) through the bypass passage. Therefore, it is possible to reliably prevent the water flow from being interrupted, so that subordinates can be protected at high water pressure.
  • the inlet side switching means (31) is switched after the water outlet side switching means (33) is switched.
  • the cold water or the hot water can be circulated to the predetermined first heat exchanger (32) and the second heat exchanger (42) as long as possible. Accordingly, it is possible to suppress the dehumidifying or humidifying ability of each heat exchanger (32, 42) when switching the water flow.
  • the cold water and hot water buffer tanks (39, 49) are provided upstream of the outlet side switching means (33, 43), the flow path switching is performed. Even if the valve malfunctions and the water flow is interrupted, cold and hot water can be stored in the buffer tank (39, 49), so the high pressure acting on the piping and heat exchange (32, 42) is suppressed. can do. As a result, the piping and the like can be protected at a high pressure.
  • the buffer tank of water (39, 39) upstream of the switching means (33) on the outlet side. 49) cold water or hot water can be stored in the buffer tank (39, 49) even if the flow path switching valve malfunctions and the water flow is interrupted. High The pressure can be suppressed.
  • the heat exchanger (32, 42) can be cooled or heated in advance. Therefore, the first air can be supplied to the room without heating during the cooling and dehumidifying operation, and the second air can be supplied to the room without cooling during the heating and humidifying operation. This can improve comfort.
  • the heat exchanger (32, 42) through which the first air flows is cooled in advance. be able to. Therefore, the first air can be supplied indoors without heating during the cooling and dehumidifying operation. Thereby, comfort can be improved.
  • the fourteenth aspect of the invention since the air flow is switched after a predetermined time after switching the flow of hot water, the heat exchanger (32, 42) through which the second air flows is heated in advance. be able to. Therefore, the second air can be supplied indoors without cooling during the cooling and dehumidifying operation. Thereby, comfort can be improved.
  • the hot water in the dehumidifying operation, is not allowed to flow through any heat exchange (32, 42) in the intermediate state, so the first air is heated even in the intermediate state. It can be supplied indoors without. Therefore, the comfort is further improved.
  • the second air is cooled even in the intermediate state. It can be supplied indoors without. Therefore, the comfort is further improved.
  • the intermediate state since the binos passage in which the hot water or the cold water flows in the intermediate state bypassing the heat exchange ⁇ (32, 42) is provided, the intermediate state However, even if the first air is not heated and the second air is not cooled, it can be supplied to the room.
  • FIG. 1 is a piping system diagram showing a water circuit of a humidity control apparatus according to a first embodiment.
  • FIG. 2 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 1.
  • FIG. 3 is a piping system diagram showing a water circuit during a cooling and dehumidifying operation according to the first embodiment.
  • FIG. 4 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 1.
  • FIG. 5 is a piping system diagram showing a water circuit during a cooling and dehumidifying operation according to Embodiment 1.
  • FIG. 6 is a piping diagram showing a water circuit during a cooling / dehumidifying operation according to the first embodiment.
  • FIG. 7 is a piping system diagram showing a water circuit during a cooling and dehumidifying operation according to Embodiment 1.
  • FIG. 8 is a piping diagram showing a water circuit of the humidity control apparatus according to the second embodiment.
  • FIG. 9 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 2.
  • FIG. 10 is a piping diagram showing a water circuit during a cooling and dehumidifying operation according to Embodiment 2.
  • FIG. 11 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 2.
  • FIG. 12 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 2.
  • FIG. 13 is a piping system diagram showing a water circuit during a cooling and dehumidifying operation according to a modification of the second embodiment.
  • FIG. 14 is a piping diagram showing a water circuit of the humidity control apparatus according to the third embodiment.
  • FIG. 15 is a piping system diagram showing a water circuit during cooling and dehumidifying operation according to Embodiment 3.
  • FIG. 16 is a piping diagram showing a water circuit during a cooling and dehumidifying operation according to Embodiment 3.
  • FIG. 17 is a piping system diagram showing a water circuit during a cooling and dehumidifying operation according to Embodiment 3.
  • FIG. 18 is a piping diagram showing a water circuit during a cooling / dehumidifying operation according to Embodiment 3.
  • FIG. 19 is a piping diagram showing a water circuit of the humidity control apparatus according to the fourth embodiment.
  • FIG. 20 is a piping diagram showing a water circuit of the humidity control apparatus according to the fourth embodiment.
  • FIG. 21 is a piping system diagram showing a water circuit of a humidity control apparatus according to a modification of the fourth embodiment.
  • FIG. 22 is a piping diagram showing a water circuit of a humidity control apparatus according to a modification of the fourth embodiment. is there.
  • FIG. 23 is a piping diagram showing a water circuit of the humidity control apparatus according to the fifth embodiment.
  • FIG. 24 is a piping diagram showing a water circuit of the humidity control apparatus according to the fifth embodiment.
  • FIG. 25 is a piping diagram showing a water circuit of the humidity control apparatus according to the sixth embodiment.
  • FIG. 26 is a piping diagram showing a water circuit of the humidity control apparatus according to the sixth embodiment.
  • FIG. 27 is a piping diagram showing a water circuit of the humidity control apparatus according to the seventh embodiment.
  • FIG. 28 is a piping diagram showing a water circuit of the humidity control apparatus according to the seventh embodiment.
  • FIG. 29 is a piping diagram showing a water circuit of the humidity control apparatus according to the eighth embodiment.
  • FIG. 30 is a piping diagram showing a water circuit of the humidity control apparatus according to the ninth embodiment.
  • FIG. 31 is a piping diagram showing a water circuit of a humidity control apparatus according to a modification of the ninth embodiment.
  • FIG. 32 is a piping diagram showing a water circuit of the humidity control apparatus according to the tenth embodiment.
  • FIG. 33 is a piping diagram showing a water circuit of the humidity control apparatus according to the tenth embodiment.
  • FIG. 34 is a piping diagram showing a water circuit of a humidity control apparatus according to a modification of the tenth embodiment.
  • FIG. 35 is a piping diagram showing a water circuit of a humidity control apparatus according to a modification of Embodiment 10.
  • FIG. 36 is a piping diagram showing a water circuit of the humidity control apparatus according to the eleventh embodiment.
  • FIG. 37 is a piping diagram showing a water circuit of the humidity control apparatus according to the eleventh embodiment. Explanation of symbols
  • Second adsorption heat exchanger (second heat exchanger)
  • the humidity control apparatus (10) of the present embodiment performs dehumidification and humidification of room air.
  • the humidity control device (10) includes a water circuit (20) through which cold water and hot water flow.
  • the water circuit (20) is provided with a first inlet (21) and a first outlet (22) for hot water, and a second inlet (23) and a second outlet (24) for cold water.
  • the water circuit (20) includes a first passage (30) and a second passage (40).
  • the first passage (30) is a passage connecting the first inlet (21) and the first outlet (22), and the second passage (40) is the second inlet (23) and the second outlet ( 24)
  • the first passage (30) is provided with an inlet side three-way valve (31), a first adsorption heat exchange (32), and an outlet side three-way valve (33) in order of the first inlet (21) side force.
  • the second passage (40) is provided with an inlet side three-way valve (41), a second adsorption heat exchanger (42), and an outlet side three-way valve (43) in this order from the second inlet (23) side. .
  • the first passage (30) and the second passage (40) are connected to an inlet side branch passage (34, 44) and an outlet side branch passage (35, 45), respectively.
  • the inlet-side branch passage (34) of the first passage (30) has one end connected to the inlet-side three-way valve (31) of the first passage (30) and the other end connected to the inlet-side three-way of the second passage (40).
  • One end of the outlet side branch passage (35) of the first passage (30) is connected between the first adsorption heat exchanger (32) and the outlet side three-way valve (33) in the first passage (30), The other end is connected to the outlet side three-way valve (43) of the second passage (40)!
  • the inlet side branch passage (44) of the second passage (40) has one end connected to the inlet side three-way valve (41) of the second passage (40) and the other end to the inlet side of the first passage (30). Connected between the three-way valve (31) and the first adsorption heat exchanger (32). Second passage above One end of the outlet side branch passage (45) of (40) is connected between the second adsorption heat exchanger (42) and the outlet side three-way valve (43) in the second passage (40), and the other end is It is connected to the outlet side three-way valve (33) of one passage (30).
  • the three-way valve (31) on the inlet side of the first passage (30) is in a first state where the first inlet (21) side communicates with the upstream side of the first adsorption heat exchanger (32) (see FIG. 1). It is configured to switch between a state indicated by a solid line) and a second state (state indicated by a broken line in FIG. 1) communicating with the inlet side branch passage (34).
  • the outlet side three-way valve (33) of the first passage (30) is in a first state (shown by a solid line in FIG. 1) where the first outlet (22) side communicates with the downstream side of the first adsorption heat exchanger (32). State) and a second state (state indicated by a broken line in FIG. 1) communicating with the outlet side branch passage (45).
  • the inlet side three-way valve (41) of the second passage (40) is in a first state (shown by a solid line in FIG. 1) where the second inlet (23) side communicates with the upstream side of the second adsorption heat exchanger (42). State) and a second state (state indicated by a broken line in FIG. 1) communicating with the inlet side branch passage (44).
  • the outlet side three-way valve (43) of the second passage (40) is in a first state where the second outlet (24) side communicates with the downstream side of the second adsorption heat exchanger (42) (shown by a solid line in FIG. 1). State) and a second state (state indicated by a broken line in FIG. 1) communicating with the outlet side branch passage (35).
  • the first adsorption heat exchanger (32) and the second adsorption heat exchanger (42) are each constituted by a cross-fin type fin 'and' tube heat exchanger. That is, the first adsorption heat exchanger (32) and the second adsorption heat exchanger (42) include a large number of aluminum fins formed in a rectangular plate shape, and a copper heat transfer tube penetrating the fins. And have.
  • an adsorbent capable of adsorbing and desorbing moisture is supported by dip molding (dip molding) together with a binder as an adhesive.
  • the adsorbent include zeolite, silica gel, activated carbon, an organic polymer polymer material having hydrophilicity or water absorption, an ion exchange resin material having a carboxylic acid group or a sulfonic acid group, and a thermosensitive polymer. A functional polymer material or the like is used.
  • the inlet-side three-way valve (31) and the outlet-side three-way valve (33) of the first passage (30) are hot water inlets for switching the water flow between the first flow state and the second flow state.
  • the inlet side three-way valve (41) and the outlet side three-way valve (43) of the second passage (40) are switched to the inlet side for cold water to switch the water flow between the first flow state and the second flow state.
  • Means and outlet side switching means are provided to switch the water flow between the first flow state and the second flow state.
  • the moisture of the first air is adsorbed by the adsorbent in the first adsorption heat exchanger (32) to dehumidify the first air, and at the same time, the first air and the adsorbent Is cooled by cold water, while the second adsorption heat exchanger (42) releases moisture from the adsorbent to the second air and humidifies the second air.
  • the second air and the adsorbent Heated with warm water.
  • the humidity control apparatus (10) is configured to switch between a cooling and dehumidifying operation and a heating and humidifying operation. During the cooling and dehumidifying operation, the first air is supplied to the room and the second air is discharged to the outside. During the heating and humidifying operation, the second air is supplied to the room and the first air is discharged to the outside. The air flow is switched.
  • the humidity control apparatus (10) is provided with a bypass passage (36) having a bypass three-way valve (37) as a feature of the present invention.
  • the bypass passage (36) has one end connected upstream of the inlet side three-way valve (31) in the first passage (30) and the other end connected to the outlet side three-way valve (30) in the first passage (30). 33) Connected to the downstream side of! [0086]
  • the bypass three-way valve (37) constitutes a bypass cutoff valve for blocking hot water from bypassing through the bypass passage (36).
  • the bypass three-way valve (37) is in a second state (as shown in FIG. 1) in which the hot hydraulic power flowing from the first inlet (21) to the bypass passage (36) flows directly toward the first outlet (22). It is configured to switch between a first state (indicated by a broken line) and a first state (indicated by a solid line in FIG. 1) that returns to the first passage (30) again.
  • bypass passage (36) switches the bypass three-way valve (37) to the second state when the water flow is switched, and the hot water introduced from the first inlet (21) is converted into the first adsorption heat exchanger. (32) and the second adsorption heat exchange (42), the inlet side three-way valve (31) and the outlet side three-way valve (33) can be bypassed to flow to the first outlet (22). ing.
  • the bypass passage (36) constitutes a passage connecting the first inlet (21) and the first outlet (22) when the water flow is switched.
  • the outlet side branch passage (35) of the first passage (30) and the outlet side branch passage (45) of the second passage (40) also serves as a bypass passage connecting each inlet (21, 23) and each outlet (22, 24).
  • the humidity control apparatus (10) is configured to switch the air flow after a predetermined time after switching the water flow when switching between the first cycle operation and the second cycle operation. For example, in the cooling and dehumidifying operation, the air flow is switched when a predetermined time elapses after switching the flow of the cold water. In the case of heating / humidifying operation, the air flow is switched after a predetermined time has elapsed after switching the hot water flow.
  • the water circuit (20) is configured to switch each outlet side three-way valve (33, 43) and switch each inlet side three-way valve (31, 41) when switching the flow of cold / hot water.
  • the outlet side three-way valve (43 ) after switching the outlet side three-way valve (33) of the first passage (30) for hot water, the outlet side three-way valve (43 ).
  • the outlet side three-way valve (33) for the first passage (30) for hot water has been.
  • the operation of the humidity control apparatus (10) will be described.
  • this humidity control device (10) switching between a cooling / dehumidifying operation and a heating / humidifying operation is possible.
  • the cooling and dehumidifying operation will be described.
  • This cooling and dehumidifying operation is an operation for supplying the dehumidified first air into the room.
  • the switching operation to the first cycle operating force and the second cycle operation will be mainly described with reference to FIGS.
  • the water circuit (20) is switched to the first flow state in which the first cycle operation is performed. Specifically, each inlet-side three-way valve (31, 41) and each outlet-side three-way valve (33, 43) are set to the first state, and the bypass three-way valve (37) is set to the first state.
  • the humidity control device (10) also has the outdoor air (OA) flowing as the first air to the second adsorption heat exchanger (42), and the indoor air (RA) as the second air as the first adsorption heat exchanger. Air flow is set to flow to (32). Hot water is introduced from the first inlet (21), and cold water is introduced from the second inlet (23).
  • the hot water introduced from the first inlet (21) flows to the first adsorption heat exchanger (32) through the inlet-side three-way valve (31).
  • the adsorbent and the second air are heated by the hot water, and at this time, moisture is released from the adsorbent to the second air, and the second air is humidified.
  • this second air is exhausted outside the room as exhaust air (EA).
  • the hot water exiting the first adsorption heat exchanger (32) is discharged from the first outlet (22) through the outlet side three-way valve (33).
  • the cold water introduced from the second inlet (23) flows through the inlet side three-way valve (41) to the second adsorption heat exchanger (42).
  • the second adsorption heat exchanger (42) the adsorbent and the first air are cooled by the cold water.
  • the moisture in the first air is adsorbed by the adsorbent and the first air is dehumidified.
  • the first air is supplied indoors as supply air (SA).
  • SA supply air
  • the cold water that has exited the second adsorption heat exchanger (42) passes through the outlet side three-way valve (43) and is discharged from the second outlet (24). That is, in this first cycle operation, hot water flows only through the first passage (30), and cold water flows through only the second passage (40).
  • the water circuit (20) has a bypass three-way valve when the first cycle operation is performed for a predetermined time.
  • each outlet-side three-way valve (33, 43) is switched before each inlet-side three-way valve (31, 41), and the outlet-side three-way valve (33) of the first passage (30) (33 ) Is switched so that the three-way valve (43) on the outlet side of the second passage (40) is switched! /
  • the second adsorption heat exchange ( 42) Cold water can be circulated as long as possible. As a result, a decrease in dehumidifying ability can be suppressed.
  • the first adsorption heat exchanger (32) still retains the heat generated by the hot water that has been circulated until then, but is gradually cooled by the addition of cold water. At that time, the second air is cooled and discharged outside the room.
  • the second adsorption heat exchanger (42) since the cold heat from the cold water that has been circulating remains, the first air is cooled by the remaining cold heat and supplied to the room. Furthermore, since the second adsorption heat exchanger (42) does not flow hot water and is not heated by the hot water, the first air can be reliably prevented from being heated.
  • the water circuit (20) is configured such that when a predetermined time elapses after switching to the intermediate state, the inlet side three-way valve (31) of the first passage (30) enters the second state. At the same time, the air flow is switched and the second cycle operation is performed. That is, the outdoor air (OA) as the first air flows to the first adsorption heat exchanger (32), and the indoor air (RA) as the second air flows to the second adsorption heat exchanger (42). The flow is switched.
  • the second adsorption heat exchanger (42) the adsorbent and the second air are heated by the hot water, and at that time, the second air is humidified and discharged to the outside as exhaust air (EA). .
  • the first adsorption heat exchanger (32) the adsorbent and the first air are cooled by cold water, At this time, the first air is dehumidified and supplied to the room as supply air (SA).
  • SA supply air
  • the first adsorption heat exchanger (32) heated in the first cycle operation is cooled by cold water for a predetermined time in an intermediate state.
  • the bypass three-way valve (37) is switched to the first state, and the switching to the second flow state in which the second cycle operation is performed is completed.
  • Second cycle operating force The switching to the first cycle operation is performed in the same manner as the switching described above. That is, the water circuit (20) is configured such that when the second cycle operation is performed for a predetermined time, the bypass three-way valve (37) is switched to the second state and then the outlet-side three-way valve of the first passage (30). (33), the outlet side three-way valve (43) of the second passage (40), and the inlet side three-way valve (41) of the second passage (40) are sequentially switched to the first state to be in an intermediate state.
  • the inlet side three-way valve (31) of the first passage (30) is switched to the first state, and the first air flows to the second adsorption heat exchanger (42), The air flow is switched so that the second air flows to the first adsorption heat exchanger (32).
  • the three-way valve for no-pass (37) is switched to the first state, and the switching to the first flow state for performing the first cycle operation is completed. Therefore, even in this case, the flow of cold water and hot water is not interrupted, and there is no risk of rupture of the piping.
  • This heating / humidifying operation is an operation for supplying humidified second air to the room. That is, in this operation, room air (RA) is taken in as the first air, and outdoor air (OA) is taken in as the second air.
  • RA room air
  • OA outdoor air
  • the outlet-side three-way valve (33), the inlet-side three-way valve (31) of the first passage (30), and the inlet-side three-way valve (41) of the second passage (40) are sequentially switched to the second state.
  • the noisy three-way valve (37) is switched to the first state, and the switching to the second cycle operation is completed. Even in this case, the flow of cold water and hot water is not interrupted, so there is no risk of rupture of piping.
  • the switching from the second cycle operation to the first cycle operation is performed after the bypass three-way valve (37) is switched to the second state and then the outlet side three-way valve (43) in the second passage (40).
  • the inlet side three-way valve (31) of the first passage (30) and the inlet side three-way valve (41) of the second passage (40) are sequentially switched to the first state
  • the bypass three-way valve (37) Switching to the 1 state completes the switch to the 1st cycle operation.
  • an on-off valve that is a two-way valve may be used instead of the bypass three-way valve (37).
  • the two-way valve is set to the closed state during the first cycle operation and the second cycle operation, and the two-way valve is set to the open state during switching between the first cycle operation and the second cycle operation. That is, the two-way valve closed state corresponds to the first state of the bypass three-way valve (37), and the two-way valve open state corresponds to the second state of the bypass three-way valve (37). Switch the direction valve.
  • each outlet-side branch passage (35, 45) since the bypass passage (36) is provided to connect the first inlet (21) and the first outlet (22) when the water flow is switched, each outlet-side branch passage (35, 45) However, when the water flow is switched, the inlets (21, 23) also function as bypass passages that connect to the outlets (22, 24), so various three-way valves (31, 33, 41, 43) malfunction. Even if it occurs, the water introduced from the first inlet (21) can surely flow to the first outlet (22). Therefore, the flow of cold / hot water can be prevented from being interrupted. This prevents high pressure from acting on the piping and heat exchange (32, 42).
  • each outlet side three-way valve (33, 43) is switched first, so that each heat exchange ⁇ (32, 42) is cold and hot water for a little longer time. Can be distributed. Therefore, when the water flow is switched, it is possible to suppress a decrease in air dehumidifying / humidifying capability.
  • the outlet side three-way valve (33) of the second passage (40) is switched after the outlet side three-way valve (33) of the first passage (30), and heating is performed.
  • the outlet side three-way valve (43) of the first passage (30) is switched after switching the outlet side three-way valve (43) of the second passage (40).
  • Cold water and hot water can be circulated as long as possible to the exchanger (32, 42). Therefore, it is possible to further suppress a decrease in the dehumidifying / humidifying capacity when switching the water flow.
  • the adsorption heat exchanger (32, 42) that has been humidifying the second air can be cooled with cold water. Therefore, immediately after the air flow is switched, the first air is not heated by the adsorption heat exchanger (32, 42) and supplied to the room, so that comfort can be improved.
  • the first air is cooled by the cold heat remaining in the adsorption heat exchanger (32, 42) in the intermediate state, comfort is not impaired even in the intermediate state. Furthermore, since the hot water does not flow to any of the adsorption heat exchangers (32, 42) in the intermediate state, the first air can be reliably cooled and supplied to the room. As a result, comfort can be further improved.
  • the humidity control apparatus (10) of the second embodiment is different from the first embodiment in that various three-way valves (31, 33, 41,...) Are used as the flow path switching means of the water circuit (20).
  • the two-way valve (3a, 4a, 3b, ⁇ ⁇ ⁇ ) is used.
  • the first passage (30) includes the first two-way valve (3, the first adsorption heat exchanger (32) and the second two-way valve in order of the first inlet (21) side force.
  • the second passage (40) is provided in order from the second inlet (23) side in order from the first two-way valve (4a), the second adsorption heat exchanger (42), and the second passage (40).
  • a two-way valve (4b) is provided, and the first passage (30) and the second passage (40) are provided with an inlet side branch passage (34, 44) and an outlet in the same manner as in the first embodiment. Side branch passages (35, 45) are connected.
  • the inlet side branch passage (34) of the first passage (30) is provided with a third two-way valve (3c) in the middle, and one end of the first two-way valve (3a in the first passage (30)).
  • the other end of the second passage (40) is connected between the first two-way valve (4a) and the second adsorption heat exchanger (42).
  • the first two-way valve (3a) of the first passage (30) and the third two-way valve (3c) of the inlet side branch passage (34) constitute an inlet side switching means for hot water. Yes.
  • the outlet side branch passage (35) of the first passage (30) is provided with a fourth two-way valve (3d) in the middle, and one end thereof is connected to the first adsorption heat exchanger (32 ) And the second two-way valve (3b), and the other end is connected to the downstream side of the second two-way valve (4b) in the second passage (40). Then, the fourth two-way valve (3d) in the outlet side branch passage (35) and the second two-way valve (4 in the second passage (40)) b) constitutes outlet side switching means for cold water.
  • the inlet side branch passage (44) of the second passage (40) is provided with a third two-way valve (4c) in the middle, and one end of the first two-way valve (4a) in the second passage (40). ) And the other end is connected between the first two-way valve (3a) and the first adsorption heat exchanger (32) in the first passage (30).
  • the first two-way valve (4a) of the second passage (40) and the third two-way valve (4c) of the inlet side branch passage (44) constitute an inlet side switching means for cold water. Yes.
  • the outlet side branch passage (45) of the second passage (40) is provided with a fourth two-way valve (4d) in the middle, and one end of the second passage heat passage (42) in the second passage (40) (42 ) And the second two-way valve (4b), and the other end is connected to the downstream side of the second two-way valve (3b) in the first passage (30).
  • the second two-way valve (3b) in the first passage (30) and the fourth two-way valve (4d) in the outlet side branch passage (45) constitute outlet side switching means for hot water. Yes. That is, eight two-way valves are used in the water circuit (20).
  • each of the inlet-side branch passages (34, 44) and each of the outlet-side branch passages (35, 45) It also functions as a bypass passage that connects each inlet (21, 23) and each outlet (22, 24).
  • the water circuit (20) is switched to the first flow state in which the first cycle operation is performed. Specifically, each first two-way valve (3a, 4a) and each second two-way valve (3b, 4b) are set in an open state, and each third two-way valve (3c, 4c) and each fourth second valve are set.
  • the direction valves (3d, 4d) are set to the closed state.
  • the air flow and cold / hot water inlet are the same as those in the first embodiment.
  • the hot water introduced from the first inlet (21) heats the adsorbent and the second air in the first adsorption heat exchanger (32) and flows to the first outlet (22).
  • the second air is humidified.
  • the cold water introduced from the second inlet (23) cools the adsorbent and the first air in the second adsorption heat exchanger (42) and flows to the second outlet (24).
  • the first air is dehumidified.
  • the fourth two-way valves (3d, 4d) are switched to the open state as shown in FIG.
  • a portion of the hot water that has exited the first adsorption heat exchanger (32) flows to the first outlet (22), and the rest flows through the outlet branch passage (35 ) To the second outlet (24).
  • a part of the cold water exiting the second adsorption heat exchanger (42) joins the hot water in the first passage (30) and flows to the second outlet (24), and the rest is the outlet branch passage ( 45), the hot water in the first passage (30) joins and flows to the first outlet (22). That is, in this state, two routes to the hot water outlet introduced from the first inlet (21) are secured, and two routes to the cold water outlet introduced from the second inlet (23). Will be secured.
  • the second two-way valves (3b, 4b) are switched to the closed state.
  • the entire amount of hot water that has exited the first adsorption heat exchanger (32) flows to the second outlet (24), and the entire amount of cold water that has exited the second adsorption heat exchanger (42) flows to the first outlet (22).
  • the second two-way valve (3b, 4b) malfunctions, two routes to the outlets of cold water and hot water are secured in advance, so that the flow of cold / hot water is blocked. No
  • each third two-way valve (3c, 4c) is switched to the open state.
  • a part of the hot water introduced from the first inlet (21) and a part of the cold water introduced from the second inlet (23) pass through the first adsorption heat exchanger (32) to the second outlet.
  • the remaining hot water introduced from the first inlet (21) and the remaining cold water introduced from the second inlet (23) pass through the second adsorption heat exchanger (42) and the first outlet (22).
  • the first adsorption heat exchanger (32) is slightly cooled by the flow of cold water.
  • the second adsorption heat exchanger (42) is heated to some extent by the addition of a flow of hot water.
  • each of the first two-way valves (3a, 4a) is set to the closed state from the state described above, and the air flow is switched. Switch to the 2nd flow state with 2-cycle operation.
  • the hot water introduced from the first inlet (21) heats the adsorbent and the second air in the second adsorption heat exchanger (42) and flows to the first outlet (22).
  • the second air is humidified.
  • the cold water introduced from the second inlet (23) cools the adsorbent and the first air in the first adsorption heat exchanger (32) and flows to the second outlet (24). At that time, the first air is dehumidified.
  • the second cycle operating force The switching to the first cycle operation is not shown, but each second second operating force is not shown.
  • the direction valves (3b, 4b) are switched to the open state, and the fourth two-way valves (3d, 4d) are sequentially switched to the closed state.
  • the third two-way valve (3c, 4c) is switched to the closed state.
  • the air flow is switched so that the first air flows to the second adsorption heat exchanger (42) and the second air flows to the first adsorption heat exchanger (32). This completes the switch to the first cycle operation. In this manner, the first cycle operation and the second cycle operation are alternately switched, and the cooling and dehumidifying operation is continuously performed.
  • indoor air (RA) is taken in as the first air and dehumidified, and then discharged to the outside of the room.
  • Outdoor air (OA) is taken in as the second air and humidified, and then supplied to the room.
  • RA indoor air
  • OA Outdoor air
  • the first air flows to the second adsorption heat exchanger (42), and the second air flows to the first adsorption heat exchanger (32).
  • the heating / humidifying operation the switching operation similar to that in the cooling / dehumidifying operation is performed, and the first cycle operation and the second cycle operation are switched.
  • Other configurations, operations, and effects are the same as those in the first embodiment.
  • the state is switched to the intermediate state when switching between the first cycle operation and the second cycle operation in the second embodiment. That is, when switching from the first cycle operation to the second cycle operation, in the second embodiment, the two third two-way valves (3c, 4c) are switched from the state of FIG. 10 to the open state and switched to the state of FIG.
  • the state force in FIG. 10 is switched to the intermediate state shown in FIG.
  • the first two-way valve (4a) of the second passage (40) is switched to the closed state, and the inlet side branch passage of the second passage (40)
  • the third two-way valve (4c) of (44) is switched to the open state and switched to the intermediate state.
  • the cold water introduced from the second inlet (23) flows through the inlet side branch passage (44) to the first passage (30) and joins the hot water, and then the first adsorption heat exchanger (32 ).
  • This first adsorption heat exchanger (32) is gradually cooled by the addition of a flow of cold water.
  • neither hot water nor cold water flows through the second adsorption heat exchanger (42).
  • the first air is cooled by the cold heat remaining in the second adsorption heat exchanger (42).
  • the second adsorption heat exchange (42) on the user side is switched.
  • the flow (supply) of hot water to is blocked.
  • the third two-way valve (4c) of the first passage (30) inlet side branch passage (44) is opened, and the first passage (30)
  • the first two-way valve (3a) is switched to the closed state, and the air flow is switched to perform the second cycle operation (see FIG. 12).
  • the second air is humidified by the second adsorption heat exchanger (42), and the first air is dehumidified by the first adsorption heat exchanger (32).
  • the first adsorption heat exchanger (32) heated in the first cycle operation is cooled by the cold water for a predetermined time in the intermediate state. It is cooled without being heated and supplied into the room. Therefore, it is possible to improve indoor comfort.
  • the second cycle operating force is switched to the first cycle operation
  • the second two-way valves (3b, 4b) are open and the third two-way valves (3c, 4c) are not shown.
  • the first two-way valve (4a) of the second passage (40) is opened, and the third two-way valve (44) of the inlet side branch passage (44) of the second passage (40) ( 4c) is switched to the closed state and switched to the intermediate state.
  • cold water and hot water flow to the second outlet (24) through the second adsorption heat exchanger (42).
  • the first two-way valve (3a) of the first passage (30) is opened, and the inlet side branch of the first passage (30)
  • the third two-way valve (3c) in the passage (44) is switched to the closed state, the first air flows to the second adsorption heat exchanger (42), and the second air flows to the first adsorption heat exchanger (32).
  • the air flow is switched to flow to This completes the switch to the first cycle operation. Note that the switching operation similar to the above is also performed in the heating and humidifying operation.
  • the flows of both cold water and hot water may be switched simultaneously in the intermediate state.
  • the two first two-way valves (3a, 4a) are switched to the closed state, and at the same time, the two third two-way valves (3c, 4c) are switched to the opened state.
  • the adsorption heat exchanger (32, 42) through which the first air circulates is gradually heated by the hot water, but since the cold heat remains, the first air is much reduced. It is supplied indoors without being heated. That is, the first air is not heated more than when the air flow is switched simultaneously with the flow of cold / hot water. The same applies to heating / humidifying operation.
  • the humidity controller (10) of the third embodiment includes a bypass passage (36) having a bypass three-way valve (37) in the water circuit (20) of the first embodiment. It was added to 2 passages (40). That is, in this embodiment, the cold water bypass passage (36) is added to the cold water bypass passage (36) in addition to the hot water bypass passage (36).
  • the bypass passage (36) has one end closer to the second inlet (23) than the inlet-side three-way valve (41) in the second passage (40). The other end is connected to the second outlet (24) side of the outlet three-way valve (43) in the second passage (40).
  • the bypass three-way valve (37) is in a second state (shown by a broken line in FIG. 1) that flows toward the second outlet (24) as it is, with the cold hydraulic power flowing from the second inlet (23) to the bypass passage (36). State) and a first state (state indicated by a solid line in FIG. 1) returning to the second passage (40) again.
  • bypass passage (36) bypasses the cold water introduced from the second inlet (23) by bypassing the first adsorption heat exchanger (32) and the second adsorption heat exchanger (42). It is configured so that it can flow to the second outlet (24).
  • hot water is fixedly introduced from the first inlet (21)
  • cold water is fixedly introduced from the second inlet (23). Therefore, in the present embodiment, a bypass passage (36) dedicated to hot water and a bypass passage (36) dedicated to cold water are provided.
  • the water circuit (20) is switched to perform the first cycle operation. Specifically, the two bypass three-way valves (37) are both set to the first state. Thereafter, as shown in FIG. 15, the two bypass three-way valves (37) are switched to the second state.
  • each outlet side three-way valve (33, 43) switches to the second state almost simultaneously. Can be replaced. That is, in this embodiment, as described above, the bypass passages (36) for the hot water and the cold water are provided, so even if each outlet side three-way valve (33, 43) malfunctions, the hot water In addition, it is possible to reliably prevent the flow of cold water from being interrupted. Therefore, the pipes can be prevented from bursting.
  • the humidity controller (10) of the fourth embodiment is configured such that the water circuit (20) flows only in hot water.
  • the water circuit (20) includes one hot water inlet (21) and one outlet (22).
  • the water circuit (20) includes a first passage (30) similar to that of the first embodiment and a second passage (38) having a configuration changed from that of the first embodiment.
  • the first passage (30) connects the inlet (21) and the outlet (22).
  • the inlet side three-way valve (31), the first adsorption heat exchanger (32), and An outlet side three-way valve (33) is provided.
  • the second passage (38) has a second adsorption heat exchanger (42) on the way, and is connected to the inlet side three-way valve (31) and the outlet side three-way valve (33).
  • the hot water introduced from the inlet (21) is first adsorbed as shown in Fig. 19 by switching the inlet-side three-way valve (31) and the outlet-side three-way valve (33).
  • the second cycle operation (second flow state) flowing to the outlet (22) is alternately performed.
  • the inlet-side three-way valve (31) and the outlet-side three-way valve (33) constitute inlet-side switching means and outlet-side switching means that switch the hot water flow between the first flow state and the second flow state.
  • the humidity control device (10) switches between cooling and dehumidifying operation and heating and humidifying operation. It is possible.
  • FIG. 19 and FIG. 20 show the operation of the heating / humidifying operation.
  • the outdoor air (OA) is taken as the second air into the first adsorption heat exchanger (32) or the second adsorption heat exchanger (42) through which hot water flows, Switch the air flow to supply indoors (see Figure 19 and Figure 20).
  • the outdoor air (OA) is taken as the first air into the second adsorption heat exchanger (42) or the first adsorption heat exchanger (32) where hot water does not flow, and dehumidification is performed. After that, switch the air flow so that it is supplied indoors.
  • the water circuit (20) is provided with a bypass passage (36).
  • One end of the bypass passage (36) is connected to the inlet (21) side from the inlet side three-way valve (31) in the first passage (30), and the other end is connected to the outlet side three-way in the first passage (30).
  • the bypass passage (36) is provided with a bypass two-way valve (37) which is a bypass cutoff valve.
  • the bypass two-way valve (37) is switched to the open state. Subsequently, after switching the outlet-side three-way valve (33) to the second state, the inlet-side three-way valve (31) is switched to the second state. After that, the bypass two-way valve (37) is switched to the closed state and at the same time the air flow is switched.
  • the air flow is switched simultaneously with the switching of the bypass two-way valve (37).
  • the bypass two-way valve (37) is switched to the closed state and the force is maintained for a predetermined time. Later sky
  • the air flow may be switched. That is, the intermediate state similar to that of the first embodiment is switched for a predetermined time after the bypass two-way valve (37) is switched to the closed state.
  • the adsorption heat exchanger (32, 42) is heated in advance by hot water before the second air flows. Therefore, even immediately after switching the air flow, warm air can be reliably supplied into the room, so comfort is not impaired.
  • the cold water introduced from the inlet (21) is converted into the first adsorption heat exchanger by switching between the inlet side three-way valve (31) and the outlet side three-way valve (33).
  • the first cycle operation (state shown in Fig. 21) flowing to the outlet (22) through (32) and the cold water introduced from the inlet (21) flows to the second path (38) to enter the second adsorption heat exchanger.
  • the second cycle operation (state of FIG. 22) flowing to the outlet (22) is alternately performed.
  • the humidity control apparatus (10) can be switched between a cooling and dehumidifying operation and a heating and humidifying operation. 21 and 22 show the operation of the cooling and dehumidifying operation.
  • bypass passage (36) One end of the bypass passage (36) is connected between the first adsorption heat exchanger (32) and the outlet side three-way valve (33) in the first passage (30), and the other end is the second passage. It is connected to the downstream side of the second adsorption heat exchanger (42) in (38). That is, the bypass passage (36) is connected to the downstream side of the first adsorption heat exchanger (32) and the downstream side of the second adsorption heat exchanger (42).
  • a bypass two-way valve (37) which is a bypass shutoff valve, is placed in the middle of the binos passage (36). ) Is provided.
  • the switching between the first cycle operation and the second cycle operation is the same as in the fourth embodiment.
  • the first adsorption is performed because the outlet side three-way valve (33) is switched before the inlet side three-way valve (31).
  • Cold water can flow as long as possible to the heat exchanger (32).
  • a decrease in dehumidifying ability can be suppressed.
  • the two-way valve for the no-pass (37) is opened in advance, even if the outlet side three-way valve (33) is switched, the first adsorption heat exchanger (32) that does not block the flow of cold water is discharged.
  • the chilled water can flow through the bypass passage (36) to the second passage (38) and reliably flow to the outlet (22) through the outlet-side three-way valve (33). Therefore, high pressure can be prevented from acting on the pipe and the heat exchanger (32, 42).
  • the bypass passage (36) may be connected to the upstream side of the first adsorption heat exchange (32) and the second adsorption heat exchanger (42), or the upstream side. And may be connected to the downstream side.
  • the bypass two-way valve (37) may be switched to a closed state, and the air flow may be switched after a predetermined time.
  • the adsorption heat exchanger (32, 42) is cooled in advance by cold water before the first air flows. Therefore, even immediately after switching the air flow, the cool air can be reliably supplied into the room, so that comfort is not impaired.
  • the humidity control apparatus (10) of the fifth embodiment is configured such that the first embodiment uses four three-way valves (31, 33,%) As the flow path switching means. Instead of this, two four-way valves (3,4) are used as the flow path switching means. In this embodiment, cold water is fixedly introduced from the first inlet (21), and hot water is fixedly introduced from the second inlet (23).
  • the water circuit (20) includes a first passage (30) having a first adsorption heat exchanger (32) in the middle and a second passage having a second adsorption heat exchanger (42) in the middle. 2 passages (40).
  • the various branch passages (34, 35, 44, 45) in the first embodiment are omitted.
  • the first four-way valve (3) is connected to the first adsorption heat exchanger (32) in the first passage (30). It is connected to the inlet (21) side and the second outlet (24) side of the second adsorption heat exchanger (42) in the second passage (40).
  • the second four-way valve (4) is connected to the first outlet (22) side of the first adsorption heat exchange (32) in the first passage (30) and the second adsorption heat exchange (42) in the second passage (40). Is connected to the 2nd entrance (23) side.
  • the first inlet (21) communicates with one end of the first adsorption heat exchanger (32) and one end of the second adsorption heat exchanger (42) and the second outlet (24) and the first inlet (21) communicate with one end of the second adsorption heat exchanger (42) and the first adsorption heat exchanger (32). It is configured to switch between a state in which one end of the pipe communicates with the second outlet (24) (the state indicated by a solid line in FIG. 24).
  • the second four-way valve (4) communicates with the other end of the first adsorption heat exchanger (32) and the first outlet (22) and between the second inlet (23) and the second adsorption heat exchanger (42).
  • the cold water is converted into the first adsorption heat exchanger.
  • Perform the first cycle operation in which the hot water flows to the first outlet (22) through (32) and the hot water flows to the second outlet (24) through the second adsorption heat exchanger (42).
  • the first adsorption heat exchanger (32) dehumidifies the first air
  • the second adsorption heat exchanger (42) humidifies the second air.
  • the first four-way valve (3) and the second four-way valve (4) are switched to the state shown by the solid line in FIG.
  • the water circuit (20) causes the cold water to pass through the second adsorption heat exchanger (42).
  • a second cycle operation is performed in which the hot water flows through the first adsorption heat exchanger (32) to the second outlet (24) through the first outlet (22).
  • the second air is humidified by the first adsorption heat exchanger (32), and the first air is dehumidified by the second adsorption heat exchanger (42).
  • the humidity control apparatus (10) can be switched between a cooling and dehumidifying operation and a heating and humidifying operation! 21 and 22 show the operation of the heating / humidifying operation.
  • the water circuit (20) is provided with two bypass passages (36).
  • the bypass passage (36) is connected to the first inlet (21) side from the first four-way valve (3) and the first outlet (22) from the second four-way valve (4) in the first passage (30). Connected between the side.
  • the other no-pass passage (36) is connected to the second outlet (24) side from the first four-way valve (3) and the second inlet (23) side from the second four-way valve (4) in the second passage (40). Connected between and.
  • Each bypass passage (36) is provided with a bypass two-way valve (37) which is a bypass cutoff valve.
  • Each bypass two-way valve (37) is configured to switch from the closed state to the open state before switching the first four-way valve (3) and the second four-way valve (4).
  • Cold and hot water flows through each bypass passage (36) to the first outlet (22) and the second outlet (24), so the flow of cold and hot water is not blocked. Therefore, the rupture of the piping can be prevented.
  • Other configurations, operations, and effects are the same as those in the first embodiment. In the present embodiment, it is needless to say that a three-way valve may be used as the bypass two-way valve (37).
  • the humidity control apparatus (10) of the sixth embodiment is such that the first embodiment is provided with a binos passage (36) and a bypass three-way valve (37) in the water circuit (20). Instead of this, two buffer tanks (39, 49) are provided.
  • FIG. 25 and FIG. 26 show the first cycle operation and the second cycle operation during the cooling and dehumidifying operation.
  • the buffer tanks (39, 49) are provided in the first passage (30) and the second passage (40), respectively.
  • the kaffa tank (39) of the first passage (30) is provided on the upstream side of the first adsorption heat exchange (32) and is connected to the inlet side branch passage (44) of the second passage (40).
  • the buffer tank (49) of the second passage (40) is provided on the upstream side of the second adsorption heat exchanger (42), and is connected to the inlet side branch passage (34) of the first passage (30). That is, each of these buffer tanks (3 9, 49) are provided on the upstream side of each outlet side three-way valve (33, 43), and are provided in a passage communicating with each inlet (21, 23) at least when the water flow is switched.
  • the buffer tank (39, 49) constitutes a buffer container having a predetermined volume. Therefore, for example, when switching to the first cycle operating force and the second cycle operation in the first passage (30), the outlet side three-way valve (33) is normally switched to the second state, and the inlet side three-way valve ( In the case of 31) malfunction, hot water introduced from the first inlet (21) is stored in the notch tank (39). On the other hand, in the second passage (40), for example, when the outlet-side three-way valve (43) switches to the second state normally and the inlet-side three-way valve (41) malfunctions, the second inlet ( The cold water introduced from 23) is stored in the buffer tank (49). This suppresses the high pressure generated by blocking the water flow. As a result, the piping and the like can be protected from the high pressure cover.
  • each buffer tank (39, 49) is provided upstream of the first adsorption heat exchanger (32) and the second adsorption heat exchanger (42).
  • it may be provided on the downstream side of each adsorption heat exchanger (32, 42) !, and the upstream side of one adsorption heat exchanger (32, 42) and the other adsorption heat exchanger ( 42, 32) and downstream!
  • the humidity control device (10) of the seventh embodiment is configured so that the fourth embodiment is provided with a binos passage (36) and a bypass three-way valve (37) in the water circuit (20). Instead of this, two buffer tanks (39, 49) are provided.
  • FIG. 27 and FIG. 28 show the first cycle operation and the second cycle operation during the heating / humidifying operation.
  • Each of the buffer tanks (39, 49) is provided in the first passage (30) and the second passage (38), respectively.
  • the kaffa tank (39) of the first passage (30) is provided between the first adsorption heat exchange (32) and the inlet side three-way valve (31).
  • the kaffa tank (49) of the second passage (40) is provided on the upstream side of the second adsorption heat exchanger (42). That is, each buffer The link (39, 49) is provided upstream of the outlet side three-way valve (33), and is provided in a passage communicating with the inlet (21) at least when the water flow is switched.
  • the buffer tank (39, 49) constitutes a buffer container having a predetermined volume. Therefore, for example, when switching to the first cycle operating force and the second cycle operation, the outlet side three-way valve (33) switches to the second state normally, and the inlet side three-way valve (31) malfunctions. In this case, the hot water introduced from the first inlet (21) is stored in the buffer tank (39) of the first passage (30).
  • each buffer tank (39, 49) is provided upstream of the first adsorption heat exchanger (32) and the second adsorption heat exchanger (42).
  • it may be provided on the downstream side of each adsorption heat exchanger (32, 42) !, and the upstream side of one adsorption heat exchanger (32, 42) and the other adsorption heat exchanger ( 42, 32) and downstream!
  • the humidity control apparatus (10) of the eighth embodiment is configured such that two water circuits (20) are connected in parallel in the first embodiment. Further, in this embodiment, one set of each inlet (21, 23) and outlet (22, 24) of cold / hot water common to the two water circuits (20a, 20b) is provided. That is, the hot water introduced from the first inlet (21) and the cold water introduced from the second inlet (23) branch and flow into the first water circuit (20a) and the second water circuit (20b).
  • the humidity control apparatus (10) has a cooling and dehumidifying operation in the first water circuit (20a) and the second water circuit (20b). And heating / humidification operation. That is, the first water circuit (20a) and the second water circuit (20b) can be switched independently between the cooling and dehumidifying operation and the heating and humidifying operation. Also in this case, in each water circuit (20a, 20b), there is no possibility that the flow of cold / hot water is interrupted when switching between the first cycle operation and the second cycle operation. Other configurations, operations, and effects are the same as those in the first embodiment.
  • the humidity controller (10) of the ninth embodiment is obtained by adding a third passage (46) having an air heat exchanger (47) to the water circuit (20) of the first embodiment. It is. Specifically, the third passage (46) is provided with an air heat exchanger (47) in the middle, and one end of the second passage (41) from the inlet side three-way valve (41) in the second passage (40). The other end is connected to the second outlet (24) side of the outlet three-way valve (43) in the second passage (40).
  • This figure shows the operation during the cooling and dehumidifying operation.
  • the air heat exchanger (47) is a sensible heat exchanger configured by a so-called cross fin type fin 'and' tube type heat exchanger.
  • This air heat exchange (47) cold water flows during the cooling and dehumidifying operation, and hot water flows during the heating and humidifying operation.
  • the air heat exchanger (47) also receives the first air dehumidified during the cooling and dehumidifying operation and the indoor air (RA) as the third air, while the second air humidified during the heating and humidifying operation flows. Both are configured so that room air (RA) flows as third air. Note that switching between the first cycle operation and the second cycle operation is the same as in the first embodiment in the cooling and dehumidifying operation and the heating and humidifying operation.
  • the first air dehumidified by the first adsorption heat exchanger (32) or the second adsorption heat exchanger ⁇ (42) is cooled by the cold water by the air heat exchanger (47).
  • the air is cooled and supplied to the room, and the third air is cooled by cold water by air heat exchange (47) and supplied to the room. Therefore, the cooling capacity is improved.
  • the second air humidified by the first adsorption heat exchanger (32) or the second adsorption heat exchanger (42) is heated by hot water by the air heat exchange (47) and supplied to the room.
  • the third air is heated by the air heat exchanger (47) with hot water and supplied to the room. Therefore, the heating capacity is improved.
  • Other configurations, operations, and effects are the same as those in the first embodiment.
  • the second air and the third air are separately taken in in the cooling and dehumidifying operation, and the first air and the third air are taken in separately in the heating and humidifying operation.
  • a part of the first air may be flown to the air heat exchanger (47) as the third air.
  • the third passage (46) having the air heat exchange (47) in the present embodiment is similarly applied to the water circuit (20) in the second embodiment.
  • the first air after the dehumidification in Embodiment 9 or the second air after the humidification is caused to flow to the air heat exchanger (47).
  • One air or humidified second air is supplied to the room as it is. That is, in the cooling and dehumidifying operation, the dehumidified first air is supplied to the room as it is, and the third air cooled by the air heat exchanger (47) is supplied to the room.
  • the humidified second air is supplied to the room as it is, and the third air heated by the air heat exchange (47) is supplied to the room. Therefore, cooling capacity and heating capacity are improved.
  • the third passage (46) having the air heat exchanger (47) in the present modification is similarly applied to the water circuit (20) in the second embodiment.
  • the humidity control apparatus (10) of the tenth embodiment is configured as a circuit in which the water circuit (20) flows only in hot water.
  • the water circuit (20) has one inlet (21) and one outlet (22) of hot water.
  • the water circuit (20) includes a first passage (30) similar to that of the first embodiment and a second passage (38) having a configuration changed from that of the first embodiment.
  • the first passage (30) connects the inlet (21) and the outlet (22).
  • the second passage (38) has a second adsorption heat exchanger (42) in the middle, and is connected to the inlet side three-way valve (31) and the outlet side three-way valve (33).
  • the hot water introduced from the inlet (21) passes through the first adsorption heat exchanger (32) by switching the inlet side three-way valve (31) and outlet side three-way valve (33).
  • the first cycle operation (state shown in Fig. 32) flowing through the outlet (22) and the hot water introduced from the inlet (21) into the second passage (38)
  • the second cycle operation (state of FIG. 33) flowing to the outlet (22) is alternately performed.
  • the humidity control device (10) can be switched between a cooling and dehumidifying operation and a heating and humidifying operation.
  • FIG. 32 and FIG. 33 show the operation of the heating / humidifying operation.
  • the air flow is switched so that the second air humidified by the first adsorption heat exchanger (32) or the second adsorption heat exchanger (42) through which hot water flows is supplied to the room. (See Figure 32 and Figure 33).
  • air is supplied so that the first air dehumidified by the second adsorption heat exchanger (42) or the first adsorption heat exchanger (32) is supplied to the room without flowing hot water. Switch the flow.
  • the water circuit (20) switches the inlet side three-way valve (31) and the outlet side three-way valve (33), that is, switches the flow of hot water for a predetermined time. After the elapse of time, the air flow is switched. Therefore, the first adsorption heat exchange (32) or the second adsorption heat exchanger (42), which has dehumidified the first air during the predetermined time, is heated in advance. 2Air is immediately heated and supplied into the room. Thereby, the comfort in the room is improved.
  • the hydraulic circuit (20) in which the water circuit (20) of Embodiment 10 is configured as a circuit through which only hot water flows is configured as a circuit through which only cold water flows. It is. That is, in the water circuit (20), the cold water introduced from the inlet (21) passes through the first adsorption heat exchanger (32) by switching between the inlet side three-way valve (31) and the outlet side three-way valve (33). Then, the first cycle operation (state shown in Fig. 34) flowing to the outlet (22) and the cold water introduced from the inlet (21) flows to the second passage (38) and passes through the second adsorption heat exchanger (42). After passing, the second cycle operation (state of FIG.
  • FIG. 35 shows the operation of the cooling and dehumidifying operation.
  • the air flow is switched so that the first air dehumidified by the first adsorption heat exchanger (32) or the second adsorption heat exchanger (42) through which cold water flows is supplied to the room. (See Figure 34 and Figure 35).
  • cold water flows.
  • the air flow is switched so that the second air humidified by the second adsorption heat exchanger (42) or the first adsorption heat exchanger (32) is supplied into the room.
  • the water circuit (20) switches the inlet-side three-way valve (31) and the outlet-side three-way valve (33), that is, switches the flow of cold water for a predetermined time. After the elapse of time, the air flow is switched. Therefore, the first adsorption heat exchange (32) or the second adsorption heat exchanger (42) that has humidified the second air during the predetermined time is cooled in advance, so that after the air flow is switched, 1 Air is immediately cooled and supplied to the room. Thereby, the comfort in the room is improved.
  • the humidity control apparatus (10) of the eleventh embodiment is replaced with the inlet side three-way valve (31) and the outlet side three-way valve (33) in the water circuit (20) of the tenth embodiment.
  • a plurality of two-way valves are used. That is, the first passage (30) is provided with the first two-way valve (3a) and the second two-way valve (3b) on the upstream side and the downstream side of the first adsorption heat exchanger (32), respectively. Yes.
  • the second passage (38) is provided with a third two-way valve (3c) and a fourth two-way valve (3d) on the upstream side and the downstream side of the second adsorption heat exchanger (42), respectively. Speak.
  • the water circuit (20) includes a third two-way valve (3c) and a fourth two-way valve (3d), with the first two-way valve (3a) and the second two-way valve (3b) open.
  • the first two-way valve (3a) and the second two-way valve (3b) are closed, the third two-way valve (3c) and the fourth two-way valve (3d) Switches to the state where each is set to open. That is, in the water circuit (20), the first cycle operation in which the hot water introduced from the inlet (21) flows to the outlet (22) through the first adsorption heat exchanger (32) (state shown in Fig. 36).
  • the humidity control device (10) can be switched between a cooling and dehumidifying operation and a heating and humidifying operation.
  • FIG. 36 and FIG. 37 show the operation of the heating / humidifying operation.
  • the water circuit (20) in the case of the heating and humidifying operation, is configured to switch the flow of air after a predetermined time has elapsed after switching the flow of hot water. Therefore, after the air flow is switched, the second air is immediately heated and supplied to the room. Be paid. Thereby, the comfort in the room is improved.
  • the water circuit (20) is configured as a circuit that flows only cold water instead of hot water, the water circuit (20) is configured to switch the air flow after a predetermined time has elapsed since the cold water flow was switched.
  • the installation position of the binos passage (36) is set upstream and downstream of the first adsorption heat exchanger (32) as in the modification of the fourth embodiment. It may be connected to either one of the upstream side and the downstream side of the second adsorption heat exchanger (42).
  • the bypass three-way valve (37) is configured as a two-way valve.
  • the present invention is useful as a humidity control apparatus including a water circuit having an adsorption heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)

Abstract

  温水が第1入口(21)から第1吸着熱交換器(32)を経て第1出口(22)へ流れると共に冷水が第2入口(23)から第2吸着熱交換器(42)を経て第2出口(24)へ流れる第1状態と、温水が第1入口(21)から第2吸着熱交換器(42)を経て第1出口(22)へ流れると共に冷水が第2入口(23)から第1吸着熱交換器(32)を経て第2出口(24)へ流れる第2状態とになるように水流れを切り換える水回路(20)を備えている。その切換の際に各入口(21,23)と各出口(22,24)とが繋がるバイパス通路(36)を備えている。これにより、各種三方弁(31,33,・・・)とが作動不良を起こしても、冷温水が確実にバイパス通路(36)を通って各出口(22,24)へ流れる。

Description

明 細 書
調湿装置
技術分野
[0001] 本発明は、調湿装置に関し、特に、水回路を有してバッチ式の運転動作を行う調 湿装置の配管等の保護対策に係るものである。
背景技術
[0002] 従来より、吸着剤と冷凍サイクルとを用いて空気の湿度調節を行う調湿装置が知 られている (例えば、特許文献 1参照)。
[0003] 上記特許文献 1の調湿装置は、吸着剤を有する 2つの吸着素子と冷凍サイクルを 行う冷媒回路とを備えている。この調湿装置は、第 1の吸着素子で第 1空気を除湿す ると共に冷媒回路の凝縮器で加熱された第 2空気で第 2の吸着素子を再生する第 1 動作と、第 2の吸着素子で第 1空気を除湿すると共に凝縮器で加熱された第 2空気で 第 1の吸着素子を再生する第 2動作とを行う。そして、この 2つの動作が交互に繰り返 され、除湿した第 1空気または加湿した第 2空気が室内へ供給される。
[0004] 一方、上記吸着素子と熱交換器とを一体化し、吸着剤が担持された吸着熱交換 器を用いることが考えられている。この場合、吸着熱交 は、多数の板状のフィンと 該フィンを貫通する銅管とを備えた、 V、わゆるフィン 'アンド'チューブ型の熱交 に構成されている。そして、このフィンおよび銅管の表面に吸着剤が担持されている 。この熱交翻では、吸着剤によって流通空気の除加湿が行われると共に、銅管内 を流れる冷媒によって吸着剤の加熱や冷却が行われる。
[0005] さらに、冷媒回路に代えて冷水や温水が流れる水回路を用いた調湿装置が考え られる。つまり、冷水と温水とを吸着熱交換器へ交互に流すことにより、その吸着剤の 冷却や加熱が行われる。
特許文献 1:特開 2004— 60954号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上述した水回路を用いる従来の調湿装置では、水の流れを切り換 える際に水の流れが閉塞される恐れがあるという問題があった。つまり、水の流れを 切り換えるため、三方弁や四方弁を用いて切り換えるが、この三方弁等が作動不良 等により正常に切り換わらな力つた場合に水の流れが遮断される。これにより、水が 非圧縮性流体であることから、配管や熱交換器内に高圧が作用し、最悪の場合には それらが破裂するという問題があった。
[0007] 本発明は、斯カる点に鑑みてなされたものであり、その目的とするところは、水の 流れを切り換えて吸着熱交換器の吸着剤にて水分の吸脱着を行う調湿装置におい て、水流れを切り換える際に切換弁の作動不良等により水流れが遮断された場合に 、配管等内に作用する高圧を抑制することである。
課題を解決するための手段
[0008] 第 1の発明は、吸着剤を有して空気中の水分の吸着と脱離による空気中への水 分の放出とを行う第 1熱交 (32)および第 2熱交 (42)が接続され、冷水およ び温水の水が流れる水回路 (20)を備え、上記水回路 (20)は、第 1入口(21)より導入 された温水が第 1熱交 (32)を通って第 1出口(22)へ流れると共に、第 2入口(23 )より導入された冷水が第 2熱交換器 (42)を通って第 2出口(24)へ流れる第 1流れ状 態と、第 1入口(21)より導入された温水が第 2熱交換器 (42)を通って第 1出口(22)へ 流れると共に、第 2入口(23)より導入された冷水が第 1熱交換器 (32)を通って第 2出 口(24)へ流れる第 2流れ状態とに切り換わるように水流れを切り換え、第 1熱交^^ ( 32)および第 2熱交換器 (42)で水分の吸脱着を交互に行う調湿装置を前提として!/、 る。そして、上記水回路 (20)は、水流れを切り換える際に、各入口(21,23)と各出口( 22,24)とが繋がるバイパス通路を備えている。
[0009] 上記の発明では、冷水が流れる第 1熱交換器 (32)または第 2熱交換器 (42)にお いて、通過する空気中の水分が吸着剤に吸着されて、該空気が除湿される。一方、 温水が流れる第 2熱交換器 (42)または第 1熱交換器 (32)において、吸着剤から脱離 した水分が通過する空気中へ放出されて、該空気が加湿される。そして、上記水回 路 (20)は、冷水および温水が第 1熱交換器 (32)および第 2熱交換器 (42)を交互に 流れるように水の流れを切り換えて、空気の除加湿が連続的に行われる。
[0010] 上記水回路 (20)における水の流れの切換は、例えば三方弁や四方弁等の流路 切換弁を切換によって行われる。ここで、流路切換弁が作動不良等により全く切り換 わらなつかたり、中間開度状態で保持されると、水の流れが遮断される恐れがある。 そうなると、水が非圧縮性流体であることから、配管や熱交換器 (32,42)等に高圧が 作用してしまう。
[0011] ところが、本発明では、流路切換弁の切換時において、つまり水流れを切り換える 際に各入口(21,23)と各出口(22,24)とが繋がるバイパス通路を備えているので、流 路切換弁が作動不良等を起こした場合、各入口(21,23)より導入された水が確実に 各出口(22,24)へ流れる。したがって、水流れが遮断されることはなぐ配管等に高圧 が作用するのを防止できる。
[0012] 第 2の発明は、吸着剤を有して空気中の水分の吸着と脱離による空気中への水 分の放出とを行う第 1熱交 (32)および第 2熱交 (42)が接続され、冷水およ び温水の何れかの水が流れる水回路 (20)を備え、上記水回路 (20)は、入口(21)よ り導入された水が第 1熱交換器 (32)を通って出口(22)へ流れる第 1流れ状態と、入 口(21)より導入された水が第 2熱交換器 (42)を通って出口(22)へ流れる第 2流れ状 態とに切り換わるように水流れを切り換え、第 1熱交換器 (32)および第 2熱交換器 (42 )で水分の吸脱着を交互に行う調湿装置を前提としている。そして、上記水回路 (20) は、水流れを切り換える際に、入口(21)と出口(22)とが繋がるバイパス通路を備えて いる。
[0013] 上記の発明では、例えば、水回路 (20)を冷水のみが流れる場合、冷水が流れる 第 1熱交換器 (32)または第 2熱交換器 (42)において、通過する空気中の水分が吸 着剤に吸着されて、該空気が除湿される。一方、冷水が流れない第 2熱交換器 (42) または第 1熱交換器 (32)において、吸着剤力 自然脱離した水分が通過する空気中 へ放出されて、該空気が加湿される。
[0014] また、上記水回路 (20)を温水のみが流れる場合、温水が流れる第 1熱交換器 (32 )または第 2熱交 (42)において、吸着剤力 脱離した水分が通過する空気中へ 放出されて、該空気が加湿される。一方、温水が流れない第 2熱交換器 (42)または 第 1熱交換器 (32)において、通過する空気中の水分が吸着剤に吸着されて、該空 気が除湿される。そして、上記水回路 (20)は、冷水または温水が第 1熱交換器 (32) および第 2熱交換器 (42)を交互に流れるように水の流れが流路切換弁によって切り 換えられる。
[0015] ここで、上述した第 1の発明と同様に、流路切換弁が作動不良等を起こしても、各 入口(21,23)より導入された水が確実に各出口(22,24)へ流れる。したがって、水流 れが遮断されることはなぐ配管等に高圧が作用するのを防止できる。
[0016] 第 3の発明は、上記第 1または第 2の発明において、上記バイパス通路が、バイパ ス遮断弁 (37)を有し、第 1熱交換器 (32)の上流側および下流側の何れかと、第 2熱 交換器 (42)の上流側および下流側の何れかとに接続されて!、る。
[0017] 上記の発明では、水流れの切換時の際、例えば水が第 1熱交換器 (32)を通るル ートを流れていた場合、流路切換弁が作動不良を起こして該ルートが遮断されても、 バイパス遮断弁 (37)を開くことにより該水がバイパス通路を介して第 2熱交翻 (42) を通るルートへ流れ、そのまま出口(22,24)へ流れる。また、第 2熱交換器 (42)を通る ルートが遮断された場合も同様に、水がノ ィパス通路を介して第 1熱交 (32)の ルートへ流れて出口(22,24)より排出される。したがって、水流れの遮断が防止される
[0018] 第 4の発明は、上記第 1の発明において、上記水回路 (20)が、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための温水用の入口側切換手段 (31)および出 口側切換手段 (33)と、冷水用の入口側切換手段 (41)および出口側切換手段 (43)と を備えている。そして、上記バイパス通路は、バイパス遮断弁 (37)を有し、温水用の 入口側切換手段 (31)の上流側と温水用の出口側切換手段 (33)の下流側とに接続さ れる温水用のバイパス通路、およびバイパス遮断弁 (37)を有し、冷水用の入口側切 換手段 (41)の上流側と冷水用の出口側切換手段 (43)の下流側とに接続される冷水 用のバイパス通路の少なくとも何れか一方を備えて 、る。
[0019] 上記の発明では、水流れの切換時において温水用のバイパス遮断弁 (37)を開く ことにより、温水用の入口側切換手段 (31)および出口側切換手段 (33)の両方が作 動不良で中間開度状態になった場合でも、第 1入口(21)より導入された温水が温水 用のバイパス通路を通って第 1出口(22)へ確実に流れる。また、水流れの切換時に おいて冷水用のバイパス遮断弁 (37)を開くことにより、冷水用の入口側切換手段 (41 )および出口側切換手段 (43)の両方が中間開度状態になった場合でも、第 2入口(2 3)より導入された冷水が冷水用のバイパス通路を通って第 2出口(24)へ確実に流れ る。したがって、少なくとも冷温水の何れか一方の水流れの遮断が回避され、配管等 に高圧が作用するのを抑制できる。
[0020] 第 5の発明は、上記第 1の発明において、上記水回路 (20)が、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための温水用の入口側切換手段 (31)および出 口側切換手段 (33)と、冷水用の入口側切換手段 (41)および出口側切換手段 (43)と を備えている。そして、本発明は、上記水流れの切換時に、各出口側切換手段 (33,4 3)を切り換えた後に各入口側切換手段 (31 ,41)を切り換える。
[0021] 上記の発明では、水流れの切換時に、各出口側切換手段 (33,43)から先に切り 換えられるので、各入口側切換手段 (31,41)を先に切り換える場合に比べて、冷水お よび温水を切換完了まで所定の第 1熱交換器 (32)または第 2熱交換器 (42)へ流し 続けることができる。これにより、水流れの切換時における除加湿能力の低下が抑制 される。
[0022] 第 6の発明は、上記第 5の発明にお 、て、加湿運転の場合、上記水流れの切換 時に、冷水用の出口側切換手段 (43)を切り換えた後に温水用の出口側切換手段 (3 3)を切り換える。
[0023] 上記の発明では、加湿運転の場合、温水が流れる第 1熱交換器 (32)または第 2 熱交^^ (42)で加湿された空気が利用側へ供給される。ここで、水流れの切換時に 、冷水用の出口側切換手段 (43)を先に切り換えるので、温水用の出口側切換手段( 33)が切り換えられるまでの間、冷水の流れが遮断されることになる。つまり、この水流 れの切換時にぉ 、て、温水が冷水よりも第 1熱交換器 (32)または第 2熱交換器 (42) を長い時間流れることになる。したがって、加湿能力の低下が抑制される。
[0024] 第 7の発明は、上記第 5の発明において、除湿運転の場合、上記水流れの切換 時に、温水用の出口側切換手段 (33)を切り換えた後に冷水用の出口側切換手段 (4 3)を切り換える。
[0025] 上記の発明では、除湿運転の場合、冷水が流れる第 1熱交換器 (32)または第 2 熱交換器 (42)で除湿された空気が利用側へ供給される。ここで、水流れの切換時に 、温水用の出口側切換手段 (33)を先に切り換えるので、冷水用の出口側切換手段( 43)が切り換えられるまでの間、温水の流れが遮断されることになる。つまり、この水流 れの切換時にぉ 、て、冷水が温水よりも第 1熱交換器 (32)または第 2熱交換器 (42) を長い時間流れることになる。したがって、除湿能力の低下が抑制される。
[0026] 第 8の発明は、上記第 2の発明において、上記水回路 (20)が、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための入口側切換手段 (31)および出口側切換 手段 (33)を備えている。そして、上記バイパス通路は、バイパス遮断弁 (37)を有し、 入口側切換手段 (31)の上流側と出口側切換手段 (33)の下流側とに接続されて!、る
[0027] 上記の発明では、水流れの切換時においてバイノス遮断弁 (37)を開くことにより 、入口側切換手段 (31)および出口側切換手段 (33)の両方が作動不良で中間開度 状態になった場合でも、入口(21)より導入された冷水または温水がバイパス通路を 通って出口(22)へ確実に流れる。したがって、水流れの遮断が回避され、配管等に 高圧が作用するのを防止できる。
[0028] 第 9の発明は、上記第 2の発明において、上記水回路 (20)が、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための入口側切換手段 (31)および出口側切換 手段 (33)を備えている。そして、本発明は、上記水流れの切換時に、出口側切換手 段 (33)を切り換えた後に入口側切換手段 (31)を切り換える。
[0029] 上記の発明では、水流れの切換時に、出口側切換手段 (33)から先に切り換えら れるので、入口側切換手段 (31)を先に切り換える場合に比べて、冷水または温水を 水流れの切換完了まで所定の第 1熱交換器 (32)または第 2熱交換器 (42)へ少しで も長く流し続けることができる。これにより、水流れの切換時における除加湿能力の低 下が抑制される。
[0030] 第 10の発明は、吸着剤を有して空気中の水分の吸着と脱離による空気中への水 分の放出とを行う第 1熱交 (32)および第 2熱交 (42)が接続され、冷水およ び温水の水が流れる水回路 (20)を備え、上記水回路 (20)が、第 1入口(21)より導入 された温水が第 1熱交 (32)を通って第 1出口(22)へ流れると共に、第 2入口(23 )より導入された冷水が第 2熱交換器 (42)を通って第 2出口(24)へ流れる第 1流れ状 態と、第 1入口(21)より導入された温水が第 2熱交換器 (42)を通って第 1出口(22)へ 流れると共に、第 2入口(23)より導入された冷水が第 1熱交換器 (32)を通って第 2出 口(24)へ流れる第 2流れ状態とに切り換わるように水流れを切り換えるための切換手 段 (31,33,41,43)を備え、第 1熱交換器 (32)および第 2熱交換器 (42)で水分の吸脱 着を交互に行う調湿装置を前提としている。そして、上記水回路 (20)は、出口側の切 換手段 (33,43)よりも上流側に冷水および温水のバッファタンク (39,49)を備えて!/、る
[0031] 上記の発明では、第 1の発明と同様に、水流れの切換が例えば三方弁や四方弁 等の流路切換弁の切換によって行われ、流路切換弁が作動不良等により切り換わら なつかたりすると、水の流れが遮断されて配管内に高圧が作用する状態となる。
[0032] ところが、本発明では、出口側の切換手段 (33,43)よりも上流側にノ ッファタンク(3 9,49)が設けられているため、各入口(21,23)より導入された温水および冷水がそのま まバッファタンク(39,49)に貯留される。つまり、配管等内に生じた高圧がノ ッファタン ク (39,49)に吸収される。これにより、配管や熱交 (32,42)への作用高圧が抑制さ れる。
[0033] 第 11の発明は、吸着剤を有して空気中の水分の吸着と脱離による空気中への水 分の放出とを行う第 1熱交 (32)および第 2熱交 (42)が接続され、冷水およ び温水の何れかの水が流れる水回路 (20)を備え、上記水回路 (20)は、入口(21)よ り導入された水が第 1熱交換器 (32)を通って出口(22)へ流れる第 1流れ状態と、入 口(21)より導入された水が第 2熱交換器 (42)を通って出口(22)へ流れる第 2流れ状 態とに切り換わるように水流れを切り換えるための切換手段 (31,33)を備え、第 1熱交 換器 (32)および第 2熱交換器 (42)で水分の吸脱着を交互に行う調湿装置を前提と している。そして、上記水回路 (20)は、出口側の切換手段 (33)よりも上流側に水の バッファタンク(39,49)を備えて!/、る。
[0034] 上記の発明では、第 2の発明と同様に、水流れの切換が例えば三方弁や四方弁 等の流路切換弁を切換によって行われ、流路切換弁が作動不良等により切り換わら なつかたりすると、水の流れが遮断されて配管内に高圧が作用する状態となる。
[0035] ところが、本発明では、出口側の切換手段 (33)よりも上流側に水のバッファタンク (39,49)が設けられているので、入口(21,23)より導入された温水または冷水がそのま まバッファタンク(39,49)に貯留される。つまり、配管等内に生じた高圧がノ ッファタン ク (39,49)に吸収されるため、配管や熱交 (32,42)への作用高圧が抑制される。
[0036] 第 12の発明は、上記請求項 1において、上記第 1流れ状態では、第 2熱交換器( 42)で第 1空気を除湿すると共に、第 1熱交換器 (32)で第 2空気を加湿し、上記第 2 流れ状態では、第 1熱交換器 (32)で第 1空気を除湿すると共に、第 2熱交換器 (42) で第 2空気を加湿するように、水流れと空気流れを切り換える。そして、上記空気流 れは、冷水および温水の少なくとも何れかの流れが切り換わって力 所定時間後に 切り換えられる。
[0037] 上記の発明では、冷水が流れる第 1熱交換器 (32)または第 2熱交換器 (42)にお いて、第 1空気中の水分が吸着剤に吸着されると共に、冷水によって吸着剤および 第 1空気が冷却される。一方、温水が流れる第 2熱交換器 (42)または第 1熱交換器( 32)において、吸着剤力 脱着した水分が第 2空気中へ放出されると共に、温水によ つて吸着剤および第 2空気が加熱される。そして、冷房除湿運転時には第 1空気が 室内へ供給され、暖房加湿運転時には第 2空気が室内へ供給される。
[0038] ここで、冷房除湿運転の場合、冷水のみ、又は冷水および温水の流れが切り換え られて力 所定時間後に空気流れが切り換えられる。これにより、空気流れが切り換 わるまでに、温水によって加熱された熱交換器 (32,42)が予め冷水によって冷却され る。したがって、空気流れの切換後にその熱交換器 (32,42)を通る第 1空気が加熱さ れることはない。これにより、室内へ温風が供給されることはない。
[0039] 一方、暖房加湿運転の場合、温水のみ、又は温水および冷水の流れが切り換え られて力 所定時間後に空気流れが切り換えられる。これにより、空気流れが切り換 わるまでに、冷水によって冷却された熱交換器 (32,42)が予め温水によって加熱され る。したがって、空気流れの切換後にその熱交換器 (32,42)を通る第 2空気が冷却さ れることはない。これにより、室内へ冷風が供給されることはない。
[0040] 第 13の発明は、上記第 2の発明において、上記第 1流れ状態では、冷水が流れ る第 1熱交換器 (32)で第 1空気を除湿すると共に、第 2熱交換器 (42)で第 2空気を 加湿し、上記第 2流れ状態では、冷水が流れる第 2熱交換器 (42)で第 1空気を除湿 すると共に、第 1熱交換器 (32)で第 2空気を加湿するように、冷水流れと空気流れを 切り換える。そして、上記空気流れは、冷水流れが切り換わって力 所定時間後に切 り換えられる。
[0041] 上記の発明では、水回路 (20)にお 、て冷水のみが流れる。そして、冷水が流れ る第 1熱交換器 (32)または第 2熱交換器 (42)において、第 1空気中の水分が吸着剤 に吸着されると共に、冷水によって吸着剤および第 1空気が冷却される。一方、冷水 が流れていない第 2熱交換器 (42)または第 1熱交換器 (32)において、吸着剤から脱 着した水分が第 2空気中へ放出される。そして、冷房除湿運転時には第 1空気が室 内へ供給され、暖房加湿運転時には第 2空気が室内へ供給される。
[0042] ここで、冷房除湿運転の場合、冷水の流れが切り換えられてから所定時間後に空 気流れが切り換えられる。これにより、空気流れが切り換わるまでに、熱交^^ (32,42 )が予め冷水によって冷却される。したがって、空気流れの切換後にその熱交換器 (3 2,42)を通る第 1空気が加熱されることはない。これにより、室内へ温風が供給される ことはない。
[0043] 第 14の発明は、上記第 2の発明において、上記第 1流れ状態では、温水が流れ る第 1熱交換器 (32)で第 2空気を加湿すると共に、第 2熱交換器 (42)で第 1空気を 除湿し、上記第 2流れ状態では、温水が流れる第 2熱交換器 (42)で第 2空気を加湿 すると共に、第 1熱交換器 (32)で第 1空気を除湿するように、温水流れと空気流れを 切り換える。そして、上記空気流れは、温水流れが切り換わって力 所定時間後に切 り換えられる。
[0044] 上記の発明では、水回路(20)において温水のみが流れる。そして、温水が流れ ていない第 1熱交換器 (32)または第 2熱交換器 (42)において、第 1空気中の水分が 吸着剤に吸着される。一方、温水が流れる第 2熱交換器 (42)または第 1熱交換器 (3 2)において、吸着剤力 脱着した水分が第 2空気中へ放出されると共に、温水によつ て吸着剤および第 2空気が加熱される。そして、冷房除湿運転時には第 1空気が室 内へ供給され、暖房加湿運転時には第 2空気が室内へ供給される。
[0045] ここで、暖房加湿運転の場合、温水の流れが切り換えられてから所定時間後に空 気流れが切り換えられる。これにより、空気流れが切り換わるまでに、熱交^^ (32,42 )が予め温水によって加熱される。したがって、空気流れの切換後にその熱交換器 (3 2,42)を通る第 2空気が冷却されることはない。これにより、室内へ冷風が供給される ことはない。
[0046] 第 15の発明は、上記第 12の発明において、除湿した第 1空気を利用側へ供給 する除湿運転の際、冷水流れを切り換えて力 空気流れを切り換えるまでの所定時 間の間、温水の第 1熱交換器 (32)および第 2熱交換器 (42)への流れが阻止される 中間状態に切り換わる。
[0047] 上記の発明では、中間状態において、第 1空気が流れる熱交換器 (32,42)には温 水が流れないため、第 1空気が加熱されることはない。したがって、中間状態におい ても室内へ温風が供給されない。
[0048] 第 16の発明は、上記第 12の発明において、加湿した第 2空気を利用側へ供給 する加湿運転の際、温水流れを切り換えて力 空気流れを切り換えるまでの所定時 間の間、冷水の第 1熱交換器 (32)および第 2熱交換器 (42)への流れが阻止される 中間状態に切り換わる。
[0049] 上記の発明では、中間状態において、第 2空気が流れる熱交換器 (32,42)には冷 水が流れないため、第 2空気が冷却されることはない。したがって、中間状態におい ても室内へ冷風が供給されない。
[0050] 第 17の発明は、上記第 15の発明において、上記水回路 (20)は、中間状態時に 温水が第 1熱交翻 (32)および第 2熱交翻 (42)をバイパスして流れるバイパス通 路を備えている。
[0051] 上記の発明では、中間状態において、温水がバイパス通路を流れて熱交換器 (3 2,42)をバイパスするので、確実に温水の熱交換器 (32,42)への流れが阻止される。 したがって、中間状態において温風が室内へ供給されるのを確実に防止できる。
[0052] 第 18の発明は、上記第 16の発明において、上記水回路 (20)は、中間状態時に 冷水が第 1熱交翻 (32)および第 2熱交翻 (42)をバイパスして流れるバイパス通 路を備えている。
[0053] 上記の発明では、中間状態において、冷水がバイパス通路を流れて熱交換器 (3 2,42)をバイパスするので、確実に冷水の熱交換器 (32,42)への流れが阻止される。 したがって、中間状態において冷風が室内へ供給されるのを確実に防止できる。 発明の効果
[0054] したがって、本発明によれば、水流れを切り換える際に各入口(21,23)と各出口(2 2,24)とが繋がるバイパス通路を設けるようにしたので、流路切換弁が作動不良を起こ しても、冷水および温水を確実にバイパス通路を介して各出口(22,24)へ排出させる ことができる。したがって、水流れの遮断を防止することができるので、配管や熱交換 器 (32,42)へ高圧が作用するのを防止できる。この結果、装置を保護することができ る。
[0055] また、第 2の発明によれば、冷水のみまたは温水のみが流れる水回路(20)におい ても、流路切換弁が作動不良を起こしても、冷水または温水を確実にバイパス通路を 介して出口(22)へ排出させることができる。したがって、配管や熱交 (32,42)へ 高圧が作用するのを防止でき、装置を保護することができる。
[0056] また、第 3の発明によれば、第 1熱交換器 (32)の上流側および下流側の何れかと 、第 2熱交 (42)の上流側および下流側の何れかとに接続されるバイパス通路を 設けるようにしたので、例えば第 1熱交換器 (32)を通るルートで水の流れが遮断され ても、そのルートを流れていた水を第 2熱交換器 (42)を通るルートへ流して、そのまま 出口(22,24)から排出させることができる。これにより、配管等への高圧の作用を防止 することができる。
[0057] また、第 4の発明によれば、温水用のバイパス通路を温水用の入口側切換手段( 31)の上流側と温水用の出口側切換手段 (33)の下流側とに接続し、冷水用のバイパ ス通路を冷水用の入口側切換手段 (41)の上流側と冷水用の出口側切換手段 (43) の下流側とに接続するようにしたので、各入口側切換手段 (31,41)および各出口側 切換手段 (33,43)の両方が中間開度状態になった場合でも、確実に冷水または温水 を各バイパス通路を通じて各出口(22,24)へ流すことができる。したがって、冷温水流 れの遮断を回避できるので、配下等を高水圧力も保護することができる。
[0058] また、第 5の発明によれば、水流れの切換時に、冷水用および温水用の各出口側 切換手段 (33,43)を切り換えた後に各入口側切換手段 (31 ,41)を切り換えるようにし たので、その水流れの切換時の間、冷水および温水を所定の第 1熱交換器 (32)およ び第 2熱交^^ (42)へ少しでも長く流通させることができる。したがって、水流れの切 換時において除加湿の能力低下を抑制することができる。
[0059] また、第 6または第 7の発明によれば、加湿運転の場合には、冷水用の出口側切 換手段 (43)を切り換えた後に温水用の出口側切換手段 (33)を切り換え、除湿運転 の場合には、温水用の出口側切換手段 (33)を切り換えた後に冷水用の出口側切換 手段 (43)を切り換えるようにしたので、水流れの切換時において、加湿または除湿し た空気を利用側へ供給する熱交換器 (32,42)に対して温水または冷水を少しでも長 い時間流すことができる。したがって、水流れの切換時における除加湿の能力低下 を抑制できる。
[0060] また、第 8の発明によれば、バイパス通路を入口側切換手段 (31)の上流側と出口 側切換手段 (33)の下流側とに接続するようにしたので、入口側切換手段 (31)および 出口側切換手段 (33)の両方が中間開度状態になった場合でも、確実に冷水または 温水をバイパス通路を通じて出口(22)へ流すことができる。したがって、水流れが遮 断されるのを確実に回避できるので、配下等を高水圧力 保護することができる。
[0061] また、第 9の発明によれば、水流れの切換時に、水の出口側切換手段 (33)を切り 換えた後に入口側切換手段 (31)を切り換えるようにしたので、その水流れの切換時 の間、冷水または温水を所定の第 1熱交換器 (32)および第 2熱交換器 (42)へ少しで も長く流通させることができる。したがって、水流れの切換時において各熱交^^ (32 ,42)の除湿または加湿の能力低下を抑制することができる。
[0062] また、第 10の発明によれば、出口側の切換手段 (33,43)よりも上流側に冷水およ び温水のバッファタンク (39,49)を備えるようにしたため、流路切換弁の作動不良が起 きて水流れが遮断されても、冷温水をバッファタンク(39,49)に貯留させることができ るので、配管や熱交 (32,42)に作用する高圧を抑制することができる。この結果 、配管等を高圧力 保護できる。
[0063] また、第 11の発明によれば、冷水のみまたは温水のみが流れる水回路 (20)にお いても、出口側の切換手段 (33)よりも上流側に水のバッファタンク (39,49)を備えるよ うにしたため、流路切換弁が作動不良を起こして水流れが遮断されても、冷水または 温水をバッファタンク (39,49)に貯留させることができるので、配管等内に作用する高 圧を抑制することができる。
[0064] また、第 12の発明によれば、冷水等の流れを切り換えてから所定時間後に空気 流れを切り換えるようにしたので、予め熱交換器 (32,42)を冷却または加熱することが できる。したがって、冷房除湿運転時には第 1空気を加熱することなく室内へ供給し、 暖房加湿運転時には第 2空気を冷却することなく室内へ供給することができる。これ により、快適性を向上させることができる。
[0065] また、第 13の発明によれば、冷水の流れを切り換えてから所定時間後に空気流 れを切り換えるようにしたので、予め第 1空気が流れる熱交換器 (32,42)を冷却するこ とができる。したがって、冷房除湿運転時には第 1空気を加熱することなく室内へ供 給することができる。これにより、快適性を向上させることができる。
[0066] また、第 14の発明によれば、温水の流れを切り換えてから所定時間後に空気流 れを切り換えるようにしたので、予め第 2空気が流れる熱交換器 (32,42)を加熱するこ とができる。したがって、冷房除湿運転時には第 2空気を冷却することなく室内へ供 給することができる。これにより、快適性を向上させることができる。
[0067] また、第 15の発明によれば、除湿運転の場合、中間状態において温水を何れの 熱交 (32,42)にも流さないようにしたので、中間状態においても第 1空気を加熱 せずに室内へ供給することができる。したがって、一層快適性が向上する。
[0068] また、第 16の発明によれば、加湿運転の場合、中間状態において冷水を何れの 熱交 (32,42)〖こも流さないようにしたので、中間状態においても第 2空気を冷却 せずに室内へ供給することができる。したがって、一層快適性が向上する。
[0069] また、第 17または第 18の発明によれば、中間状態において、温水または冷水が 熱交^^ (32,42)をバイパスして流れるバイノス通路を設けるようにしたので、中間状 態にお 、ても第 1空気を加熱しな 、まま、また第 2空気を冷却しな 、ままそれぞれ室 内へ供給することができる。
図面の簡単な説明
[0070] [図 1]図 1は、実施形態 1に係る調湿装置の水回路を示す配管系統図である。
[図 2]図 2は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 3]図 3は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。 [図 4]図 4は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 5]図 5は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 6]図 6は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 7]図 7は、実施形態 1に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 8]図 8は、実施形態 2に係る調湿装置の水回路を示す配管系統図である。
[図 9]図 9は、実施形態 2に係る冷房除湿運転時の水回路を示す配管系統図である。
[図 10]図 10は、実施形態 2に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 11]図 11は、実施形態 2に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 12]図 12は、実施形態 2に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 13]図 13は、実施形態 2の変形例に係る冷房除湿運転時の水回路を示す配管系 統図である。
[図 14]図 14は、実施形態 3に係る調湿装置の水回路を示す配管系統図である。
[図 15]図 15は、実施形態 3に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 16]図 16は、実施形態 3に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 17]図 17は、実施形態 3に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 18]図 18は、実施形態 3に係る冷房除湿運転時の水回路を示す配管系統図であ る。
[図 19]図 19は、実施形態 4に係る調湿装置の水回路を示す配管系統図である。
[図 20]図 20は、実施形態 4に係る調湿装置の水回路を示す配管系統図である。
[図 21]図 21は、実施形態 4の変形例に係る調湿装置の水回路を示す配管系統図で ある。
[図 22]図 22は、実施形態 4の変形例に係る調湿装置の水回路を示す配管系統図で ある。
[図 23]図 23は 実施形態 5に係る調湿装置の水回路を示す配管系統図である。
[図 24]図 24は 実施形態 5に係る調湿装置の水回路を示す配管系統図である。
[図 25]図 25は 実施形態 6に係る調湿装置の水回路を示す配管系統図である。
[図 26]図 26は 実施形態 6に係る調湿装置の水回路を示す配管系統図である。
[図 27]図 27は 実施形態 7に係る調湿装置の水回路を示す配管系統図である。
[図 28]図 28は 実施形態 7に係る調湿装置の水回路を示す配管系統図である。
[図 29]図 29は 実施形態 8に係る調湿装置の水回路を示す配管系統図である。
[図 30]図 30は 実施形態 9に係る調湿装置の水回路を示す配管系統図である。
[図 31]図 31は 実施形態 9の変形例に係る調湿装置の水回路を示す配管系統図で ある。
[図 32]図 32は 実施形態 10に係る調湿装置の水回路を示す配管系統図である。
[図 33]図 33は 実施形態 10に係る調湿装置の水回路を示す配管系統図である。
[図 34]図 34は 実施形態 10の変形例に係る調湿装置の水回路を示す配管系統図 である。
[図 35]図 35は 実施形態 10に変形例に係る調湿装置の水回路を示す配管系統図 である。
[図 36]図 36は 実施形態 11に係る調湿装置の水回路を示す配管系統図である。
[図 37]図 37は 実施形態 11に係る調湿装置の水回路を示す配管系統図である。 符号の説明
10
20 水回路
21,23 第 1入口,第 2入口
22,24 第 1出口,第 2出口
31,41 入口側三方弁 (入口側切換手段)
33,43 出口側三方弁(出口側切換手段)
32 第 1吸着熱交換器 (第 1熱交換器)
36 バイパス通路、入口側分岐通路、出口側分岐通路 37 バイパス用三方弁、バイパス用二方弁 (バイパス遮断弁)
39,49 バッファタンク
42 第 2吸着熱交換器 (第 2熱交換器)
発明を実施するための最良の形態
[0072] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0073] 《発明の実施形態 1》
図 1に示すように、本実施形態の調湿装置(10)は、室内空気の除湿と加湿とを行 うものである。この調湿装置(10)は、冷水と温水が流れる水回路 (20)を備えると共に
、第 1空気および第 2空気を取り込んで流通させる空気通路(図示せず)を備えてい る。
[0074] 上記水回路 (20)には、温水用の第 1入口(21)および第 1出口(22)と、冷水用の 第 2入口(23)および第 2出口(24)とが設けられて 、る。
[0075] 上記水回路 (20)は、第 1通路 (30)および第 2通路 (40)を備えている。上記第 1通 路 (30)は、第 1入口(21)と第 1出口(22)とを繋ぐ通路であり、第 2通路 (40)は、第 2入 口(23)と第 2出口(24)とを繋ぐ通路である。
[0076] 上記第 1通路 (30)は、第 1入口(21)側力も順に、入口側三方弁 (31)、第 1吸着熱 交翻 (32)および出口側三方弁 (33)が設けられている。上記第 2通路 (40)は、第 2 入口(23)側から順に、入口側三方弁 (41)、第 2吸着熱交換器 (42)および出口側三 方弁 (43)が設けられている。
[0077] 上記第 1通路 (30)および第 2通路 (40)には、それぞれ入口側分岐通路 (34,44)と 出口側分岐通路 (35,45)とが接続されて!、る。上記第 1通路 (30)の入口側分岐通路 (34)は、一端が第 1通路 (30)の入口側三方弁 (31)に接続され、他端が第 2通路 (40 )における入口側三方弁 (41)と第 2吸着熱交 (42)との間に接続されて!、る。上 記第 1通路 (30)の出口側分岐通路 (35)は、一端が第 1通路 (30)における第 1吸着 熱交 (32)と出口側三方弁 (33)との間に接続され、他端が第 2通路 (40)の出口 側三方弁 (43)に接続されて!、る。上記第 2通路 (40)の入口側分岐通路 (44)は、一 端が第 2通路 (40)の入口側三方弁 (41)に接続され、他端が第 1通路 (30)における 入口側三方弁 (31)と第 1吸着熱交 (32)との間に接続されている。上記第 2通路 (40)の出口側分岐通路 (45)は、一端が第 2通路 (40)における第 2吸着熱交換器 (42 )と出口側三方弁 (43)との間に接続され、他端が第 1通路 (30)の出口側三方弁 (33) に接続されている。
[0078] 上記第 1通路 (30)の入口側三方弁 (31)は、第 1入口(21)側が、第 1吸着熱交換 器 (32)の上流側と連通する第 1状態(図 1に実線で示す状態)と、入口側分岐通路 (3 4)と連通する第 2状態(図 1に破線で示す状態)とに切り換わるように構成されて!、る 。上記第 1通路 (30)の出口側三方弁 (33)は、第 1出口(22)側が、第 1吸着熱交換器 (32)の下流側と連通する第 1状態(図 1に実線で示す状態)と、出口側分岐通路 (45) と連通する第 2状態(図 1に破線で示す状態)とに切り換わるように構成されて 、る。 上記第 2通路 (40)の入口側三方弁 (41)は、第 2入口(23)側が、第 2吸着熱交換器( 42)の上流側と連通する第 1状態(図 1に実線で示す状態)と、入口側分岐通路 (44) と連通する第 2状態(図 1に破線で示す状態)とに切り換わるように構成されて 、る。 上記第 2通路 (40)の出口側三方弁 (43)は、第 2出口(24)側が、第 2吸着熱交換器( 42)の下流側と連通する第 1状態(図 1に実線で示す状態)と、出口側分岐通路 (35) と連通する第 2状態(図 1に破線で示す状態)とに切り換わるように構成されて 、る。
[0079] 上記第 1吸着熱交換器 (32)および第 2吸着熱交換器 (42)は、それぞれクロスフィ ン式のフィン 'アンド'チューブ型熱交^^により構成されている。つまり、上記第 1吸 着熱交換器 (32)および第 2吸着熱交換器 (42)は、長方形板状に形成されたアルミ ニゥム製の多数のフィンと、該フィンを貫通する銅製の伝熱管とを備えて 、る。
[0080] 上記フィンおよび伝熱管の外表面には、水分の吸脱着可能な吸着剤が接着剤で あるバインダーと共にディップ成形 (浸漬成形)により担持されている。上記吸着剤に は、ゼォライト、シリカゲル、活性炭、親水性または吸水性を有する有機高分子ポリマ 一系材料、カルボン酸基またはスルホン酸基を有するイオン交換榭脂系材料、感温 性高分子等の機能性高分子材料などが用いられる。そして、上記第 1吸着熱交翻
(32)が第 1熱交換器を構成し、第 2吸着熱交換器 (42)が第 2熱交換器を構成してい る。
[0081] 上記水回路 (20)は、温水が第 1入口(21)力 第 1吸着熱交換器 (32)を経て第 1 出口(22)へ流れると共に、冷水が第 2入口(23)力 第 2吸着熱交換器 (42)を経て第 2出口(24)へ流れる第 1サイクル動作と、温水が第 1入口(21)力 第 2吸着熱交換器 (42)を経て第 1出口(22)へ流れると共に、冷水が第 2入口(23)力 第 1吸着熱交換 器 (32)を経て第 2出口(24)へ流れる第 2サイクル動作とを交互に繰り返すように冷温 水の流れおよび空気の流れが切り換えられる。つまり、上記水回路 (20)は、冷温水 の流れが切り換えられて、第 1サイクル動作を行う第 1流れ状態と、第 2サイクル動作 を行う第 2流れ状態とに切り換わる。
[0082] 上記第 1通路 (30)の入口側三方弁 (31)および出口側三方弁 (33)は、第 1流れ状 態と第 2流れ状態とに水流れを切り換えるための温水用の入口側切換手段および出 口側切換手段を構成している。また、上記第 2通路 (40)の入口側三方弁 (41)および 出口側三方弁 (43)は、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための 冷水用の入口側切換手段および出口側切換手段を構成して 、る。
[0083] 具体的に、上記第 1サイクル動作では、第 2吸着熱交換器 (42)で第 1空気の水分 が吸着剤に吸着されて該第 1空気の除湿が行われると同時に、該第 1空気および吸 着剤が冷水によって冷却される一方、第 1吸着熱交換器 (32)で吸着剤より水分が第 2空気へ放出されて該第 2空気の加湿が行われると同時に、該第 2空気および吸着 剤が温水によって加熱される。また、上記第 2サイクル動作では、第 1吸着熱交換器( 32)で第 1空気の水分が吸着剤に吸着されて該第 1空気の除湿が行われると同時に 、該第 1空気および吸着剤が冷水によって冷却される一方、第 2吸着熱交換器 (42) で吸着剤より水分が第 2空気へ放出されて該第 2空気の加湿が行われると同時に、 該第 2空気および吸着剤が温水によって加熱される。
[0084] 上記調湿装置(10)は、冷房除湿運転と暖房加湿運転とが切り換わるように構成さ れている。上記冷房除湿運転時には、第 1空気が室内へ供給されると共に第 2空気 が室外へ排出され、暖房加湿運転時には、第 2空気が室内へ供給されると共に第 1 空気が室外へ排出されるように空気の流れが切り換えられる。
[0085] また、上記調湿装置(10)は、本発明の特徴として、バイパス用三方弁 (37)を有す るバイパス通路 (36)が設けられている。このバイパス通路 (36)は、一端が第 1通路 (3 0)における入口側三方弁 (31)よりも上流側に接続され、他端が第 1通路 (30)におけ る出口側三方弁 (33)よりも下流側に接続されて!、る。 [0086] 上記バイパス用三方弁(37)は、温水がバイパス通路(36)を通じてバイパスするの を遮断するためのバイパス遮断弁を構成している。具体的に、このバイパス用三方弁 (37)は、第 1入口(21)よりバイパス通路 (36)へ流れた温水力 そのまま第 1出口(22) 側へ向かって流れる第 2状態(図 1に破線で示す状態)と、再び第 1通路 (30)に戻る 第 1状態(図 1に実線で示す状態)とに切り換わるように構成されている。
[0087] つまり、上記バイパス通路 (36)は、水流れの切換時にバイパス用三方弁 (37)を第 2状態に切り換え、第 1入口(21)より導入された温水を第 1吸着熱交換器 (32)および 第 2吸着熱交翻 (42)と、入口側三方弁 (31)および出口側三方弁 (33)とをバイパス させて第 1出口(22)へ流すことができるように構成されている。さらに言えば、上記バ ィパス通路 (36)は、水流れの切換時の際に、第 1入口(21)と第 1出口(22)とが繋が る通路を構成している。
[0088] また、上記水回路 (20)において、第 1通路 (30)の出口側分岐通路 (35)および第 2通路 (40)の出口側分岐通路 (45)は、水流れの切換の際に、各入口(21,23)と各出 口(22,24)とが繋がるバイパス通路を兼ねている。
[0089] また、上記調湿装置(10)は、第 1サイクル動作および第 2サイクル動作の切換の 際、水流れを切り換えて力 所定時間後に、空気流れを切り換えるように構成されて いる。例えば、冷房除湿運転の場合は、冷水の流れを切り換えた後、所定時間が経 過すると空気流れを切り換える。また、暖房加湿運転の場合は、温水の流れを切り換 えた後、所定時間が経過すると空気流れを切り換える。
[0090] また、上記水回路 (20)は、冷温水の流れを切り換える際、各出口側三方弁 (33,43 )を切り換えて力 各入口側三方弁 (31,41)を切り換えるように構成されている。さらに 、冷房除湿運転の場合は、温水用である第 1通路 (30)の出口側三方弁 (33)を切り換 えた後に、冷水用である第 2通路 (40)の出口側三方弁 (43)を切り換える。一方、暖 房加湿運転の場合は、冷水用である第 2通路 (40)の出口側三方弁 (43)を切り換え た後に、温水用である第 1通路 (30)の出口側三方弁 (33)を切り換える。
[0091] 運転動作
上記調湿装置(10)の運転動作について説明する。この調湿装置(10)では、冷房 除湿運転と暖房加湿運転とが切り換え可能になっている。 [0092] 先ず、冷房除湿運転について説明する。この冷房除湿運転は、除湿した第 1空気 を室内へ供給する運転である。ここでは、主として第 1サイクル動作力 第 2サイクル 動作への切換動作について、図 1〜図 7を参照しながら説明する。
[0093] 図 1に示すように、上記水回路 (20)が第 1サイクル動作を行う第 1流れ状態に切り 換えられる。具体的に、各入口側三方弁 (31,41)および各出口側三方弁 (33,43)が 第 1状態に設定され、バイパス用三方弁 (37)が第 1状態に設定される。また、この調 湿装置(10)は、室外空気 (OA)が第 1空気として第 2吸着熱交換器 (42)へ流れ、室 内空気 (RA)が第 2空気として第 1吸着熱交換器 (32)へ流れるように空気流れが設定 される。そして、温水が第 1入口(21)より導入され、冷水が第 2入口(23)より導入され る。
[0094] 先ず、上記第 1入口(21)より導入された温水は、入口側三方弁 (31)を通って第 1 吸着熱交換器 (32)へ流れる。この第 1吸着熱交換器 (32)では、温水によって吸着剤 および第 2空気が加熱され、その際、吸着剤より水分が第 2空気へ放出されて該第 2 空気の加湿が行われる。その後、この第 2空気は、排出空気 (EA)として室外へ排出 される。上記第 1吸着熱交換器 (32)を出た温水は、出口側三方弁 (33)を通って第 1 出口(22)より排出される。
[0095] 一方、上記第 2入口(23)より導入された冷水は、入口側三方弁 (41)を通って第 2 吸着熱交換器 (42)へ流れる。この第 2吸着熱交換器 (42)では、冷水によって吸着剤 および第 1空気が冷却され、その際、第 1空気中の水分が吸着剤に吸着されて該第 1空気の除湿が行われる。その後、この第 1空気は、供給空気 (SA)として室内へ供給 される。上記第 2吸着熱交換器 (42)を出た冷水は、出口側三方弁 (43)を通って第 2 出口(24)より排出される。つまり、この第 1サイクル動作において、温水は第 1通路 (3 0)のみを流れ、冷水は第 2通路 (40)のみを流れる。
[0096] 上記水回路 (20)は、第 1サイクル動作が所定時間行われると、バイパス用三方弁
(37)、第 1通路 (30)の出口側三方弁 (33)、第 2通路 (40)の出口側三方弁 (43)、第 2 通路 (40)の入口側三方弁 (41)、第 1通路 (30)の入口側三方弁 (31)が順に第 2状態 に切り換えられる。
[0097] 先ず、図 2示すように、上記バイパス用三方弁 (37)が第 2状態に切り換わると、第 1入口(21)より導入された温水の一部が第 1吸着熱交 (32)へ向力つて流れると 共に、残りが第 1通路 (30)からバイパス通路 (36)へ分岐して第 1出口(22)へ流れる。 つまり、この状態では、温水の第 1入口(21)力 第 1出口(22)までのルートが 2つ確 保される。
[0098] 続いて、図 3に示すように、第 1通路 (30)の出口側三方弁 (33)が第 2状態に切り 換えられると、第 1入口(21)より導入された温水の全量がバイパス通路 (36)を通って 第 1出口(22)へ流れる。一方、第 2吸着熱交換器 (42)を出た冷水の一部が第 2出口 (24)へ流れると共に、残りが第 2通路 (40)から出口側分岐通路 (45)へ分岐し、第 1 通路 (30)の出口側三方弁 (33)を通って第 1出口(22)へ流れる。このように、第 1通路 (30)の出口側三方弁 (33)の切換前にバイパス用三方弁 (37)を切り換えて 、るため、 温水の流れを遮断させることなぐ第 1入口(21)力 導入された温水を第 1出口(22) へ確実に流すことができる。
[0099] 続いて、図 4に示すように、第 2通路 (40)の出口側三方弁 (43)が第 2状態に切り 換えられると、第 1入口(21)より導入された温水の一部が第 1吸着熱交 (32)を通 つた後、出口側分岐通路 (35)を介して第 2出口(24)へ流れると共に、残りが第 1通路 (30)からバイパス通路 (36)へ分岐して第 1出口(22)へ流れる。つまり、この状態では 、第 1吸着熱交換器 (32)を通った温水が第 2出口(24)へ流れ、第 2吸着熱交換器 (4 2)を通った冷水の全量が第 1出口(22)へ流れる。
[0100] このように、第 1通路 (30)の出口側三方弁 (33)を切り換えた後に第 2通路 (40)の 出口側三方弁 (43)を切り換えるので、冷水の流れが遮断される恐れがなくなる。つま り、各出口側三方弁 (33,43)を同時に切り換える場合、例えば第 1通路 (30)の出口側 三方弁 (33)が作動不良等により切り換わらな!/、と、冷水の流れが遮断される恐れが あるが、順次切り換えることにより、その切換対象の出口側三方弁 (33,43)が作動不 良等起こしても冷水を必ず第 1出口(22)または第 2出口(24)へ流すことができる。
[0101] そして、図 5に示すように、第 2通路 (40)の入口側三方弁 (41)が第 2状態に切り換 わると、水回路 (20)が中間状態に切り換わる。これにより、第 2入口(23)より導入され た冷水は、入口側分岐通路 (44)を通って第 1通路 (30)へ流れ、その後、第 1入口(2 1)より導入された温水の一部と合流して第 1吸着熱交^^ (32)へ流れる。一方、上 記第 2吸着熱交換器 (42)は、冷水および温水の何れも流通していない状態になる。 この場合も、予め第 1通路 (30)の出口側三方弁 (33)を切り換えていることから、万一 第 2通路 (40)の入口側三方弁 (41)が切換不良を起こしても冷水は第 1出口(22)へ 確実に流れるため、冷水の流れが遮断されて配管等が破裂する恐れはなくなる。
[0102] このように、各出口側三方弁 (33,43)を各入口側三方弁 (31,41)よりも先に切り換 え、しかも第 1通路 (30)の出口側三方弁 (33)を切り換えた後に第 2通路 (40)の出口 側三方弁 (43)を切り換えるようにして!/ヽるため、この水流れの切換時にお!ヽて利用側 である第 2吸着熱交 (42)へ冷水をできるだけ長く流通させることができる。これに より、除湿能力の低下を抑制することができる。
[0103] この中間状態において、第 1吸着熱交換器 (32)は、それまで流通していた温水に よる温熱が残存しているが、冷水が加わって流れることによって徐々に冷却される。 その際、第 2空気が冷却されて室外へ排出される。一方、上記第 2吸着熱交換器 (42 )は、それまで流通していた冷水による冷熱が残存しているため、その残存する冷熱 によって第 1空気が冷却されて室内へ供給される。さらに、上記第 2吸着熱交 (4 2)は、温水が流れないことから、温水によって加熱されないため、第 1空気の加熱を 確実に防止できる。つまり、この中間状態では、第 1サイクル動作から冷水の流れの みが次の第 2サイクル動作用に切り換わる一方、利用側である第 2吸着熱交換器 (42 )への温水の流れ (供給)が阻止される。さらに言うと、この中間状態では、温水がバイ パス通路 (36)を流れることにより、温水が第 2吸着熱交換器 (42)をバイパスして流れ て 、ること〖こなる。
[0104] 図 6に示すように、上記水回路 (20)は、中間状態に切り換わってから所定時間が 経過すると、第 1通路 (30)の入口側三方弁 (31)が第 2状態に切り換えられると共に、 空気の流れが切り換えられ、第 2サイクル動作が行われる。つまり、第 1空気としての 室外空気 (OA)が第 1吸着熱交換器 (32)へ流れ、第 2空気としての室内空気 (RA)が 第 2吸着熱交換器 (42)へ流れるように空気流れが切り換わる。
[0105] 上記第 2吸着熱交換器 (42)では、温水によって吸着剤および第 2空気が加熱さ れ、その際、該第 2空気が加湿されて排出空気 (EA)として室外へ排出される。一方、 上記第 1吸着熱交換器 (32)では、冷水によって吸着剤および第 1空気が冷却され、 その際、該第 1空気が除湿されて供給空気 (SA)として室内へ供給される。ここで、第 1サイクル動作で加熱された第 1吸着熱交換器 (32)は、中間状態の所定時間の間に 、冷水によって冷却されている。したがって、切換後、第 1吸着熱交換器 (32)にて第 1空気が加熱されて室内へ供給されることはないので、室内の快適性を損なうことは ない。そして、上記水回路 (20)は、図 7に示すように、バイパス用三方弁 (37)が第 1 状態に切り換えられ、第 2サイクル動作を行う第 2流れ状態への切換が完了する。
[0106] 上記第 2サイクル動作力 第 1サイクル動作への切換は、上述した切換と同様の 要領で行われる。つまり、上記水回路 (20)は、第 2サイクル動作が所定時間行われる と、バイパス用三方弁 (37)が第 2状態に切り換えられた後、第 1通路 (30)の出口側三 方弁 (33)、第 2通路 (40)の出口側三方弁 (43)、第 2通路 (40)の入口側三方弁 (41) が順に第 1状態に切り換えられて中間状態になる。この中間状態のまま所定時間が 経過すると、第 1通路 (30)の入口側三方弁 (31)が第 1状態に切り換えられると共に、 第 1空気が第 2吸着熱交換器 (42)へ流れ、第 2空気が第 1吸着熱交換器 (32)へ流 れるように空気流れが切り換えられる。そして、最後にノ ィパス用三方弁 (37)が第 1 状態に切り換えられて、第 1サイクル動作を行う第 1流れ状態への切換が完了する。 したがって、この場合においても、冷水および温水の流れが遮断されることはなぐ配 管等の破裂の恐れがなくなる。
[0107] 次に、暖房加湿運転につ!、て説明する。この暖房加湿運転は、加湿した第 2空気 を室内へ供給する運転である。つまり、この運転の場合、室内空気 (RA)が第 1空気と して取り込まれ、室外空気(OA)が第 2空気として取り込まれる。
[0108] 例えば、第 1サイクル動作力 第 2サイクル動作へ切り換える際は、バイパス用三 方弁 (37)、第 2通路 (40)の出口側三方弁 (43)、第 1通路 (30)の出口側三方弁 (33) 、第 1通路 (30)の入口側三方弁 (31)、第 2通路 (40)の入口側三方弁 (41)が順に第 2状態に切り換えられる。そして、ノ ィパス用三方弁 (37)が第 1状態に切り換えられて 第 2サイクル動作への切換が完了する。この場合においても、冷水および温水の流 れが遮断されることはないため、配管等の破裂の恐れがなくなる。また、第 2サイクル 動作から第 1サイクル動作への切換は、バイパス用三方弁 (37)が第 2状態に切り換 えられた後、、第 2通路 (40)の出口側三方弁 (43)、第 1通路 (30)の出口側三方弁 (3 3)、第 1通路 (30)の入口側三方弁 (31)、第 2通路 (40)の入口側三方弁 (41)が順に 第 1状態に切り換えられ、バイパス用三方弁 (37)が第 1状態に切り換えられて第 1サ イタル動作への切換が完了する。
[0109] なお、本実施形態において、バイパス用三方弁 (37)に代えて二方弁である開閉 弁を用いるようにしてもよい。この場合、第 1サイクル動作および第 2サイクル動作中 は二方弁を閉状態に設定し、第 1サイクル動作および第 2サイクル動作の切換中は 二方弁を開状態に設定する。つまり、上記二方弁の閉状態がバイパス用三方弁 (37) の第 1状態に対応し、二方弁の開状態がバイパス用三方弁 (37)の第 2状態に対応す るように二方弁を切り換える。
[0110] 一実施形態 1の効果
以上説明したように、水流れの切換時に第 1入口(21)と第 1出口(22)とが繋がる バイパス通路 (36)を設けるようにしたので、さらに各出口側分岐通路 (35,45)が、水 流れの切換時に各入口(21,23)が各出口(22,24)へ繋がるバイパス通路を兼ねるよう にしたので、各種三方弁 (31,33,41,43)が作動不良等を起こしても、第 1入口(21)より 導入された水を確実に第 1出口(22)へ流すことができる。したがって、冷温水の流れ が遮断されるのを防止することができる。これにより、配管や熱交 (32,42)に対し て高圧が作用するのを防止できる。
[0111] また、水流れの切換時に、各出口側三方弁 (33,43)から先に切り換えるようにして いるので、各熱交^^ (32,42)に対して少しでも長い時間冷温水を流通させることが できる。したがって、水流れの切換時において、空気の除加湿の能力低下を抑制で きる。
[0112] さらに、冷房除湿運転の場合は、第 1通路 (30)の出口側三方弁 (33)を切り換えた 後に第 2通路 (40)の出口側三方弁 (43)を切り換えるようにし、暖房加湿運転の場合 は、第 2通路 (40)の出口側三方弁 (43)を切り換えた後に第 1通路 (30)の出口側三 方弁 (33)を切り換えるようにしたので、利用側の熱交換器 (32,42)に対して冷水およ び温水を少しでも長く流通させることができる。したがって、水流れの切換時における 除加湿の能力低下を一層抑制することができる。
[0113] また、第 1サイクル動作および第 2サイクル動作の切換前に、冷水の流れのみを切 り換える中間状態を所定時間の間維持して力 空気流れを切り換えるようにしたので
、それまで第 2空気を加湿していた吸着熱交換器 (32,42)を冷水によって冷却するこ とができる。したがって、空気流れの切換直後、第 1空気がその吸着熱交換器 (32,42 )で加熱されて室内へ供給されることはないので、快適性を向上させることができる。
[0114] また、中間状態において、第 1空気が吸着熱交換器 (32,42)に残存する冷熱によ つて冷却されるので、中間状態においても快適性を損なうことはない。さらに、中間状 態において、温水が何れの吸着熱交換器 (32,42)へも流れないため、第 1空気を確 実に冷却して室内へ供給することができる。この結果、快適性を一層向上させること ができる。
[0115] 《発明の実施形態 2》
本実施形態 2の調湿装置(10)は、上記実施形態 1が水回路 (20)の流路切換手 段として各種三方弁(31,33,41 · · を用いたのに代えて、複数の二方弁(3a,4a,3b, · · • )を用いるようにしたものである。
[0116] 図 8に示すように、第 1通路 (30)は、第 1入口(21)側力 順に、第 1二方弁 (3 、 第 1吸着熱交 (32)および第 2二方弁 (3b)が設けられて 、る。上記第 2通路 (40) は、第 2入口(23)側から順に、第 1二方弁 (4a)、第 2吸着熱交換器 (42)および第 2二 方弁 (4b)が設けられている。そして、上記第 1通路 (30)および第 2通路 (40)には、実 施形態 1と同様に、入口側分岐通路 (34,44)と出口側分岐通路 (35,45)とが接続され ている。
[0117] 上記第 1通路 (30)の入口側分岐通路 (34)は、途中に第 3二方弁 (3c)が設けられ 、一端が第 1通路 (30)における第 1二方弁 (3a)の上流側に接続され、他端が第 2通 路 (40)における第 1二方弁 (4a)と第 2吸着熱交 (42)との間に接続されている。 そして、上記第 1通路 (30)の第 1二方弁 (3a)と入口側分岐通路 (34)の第 3二方弁 (3 c)とは、温水用の入口側切換手段を構成している。
[0118] 上記第 1通路 (30)の出口側分岐通路 (35)は、途中に第 4二方弁 (3d)が設けられ 、一端が第 1通路 (30)における第 1吸着熱交 (32)と第 2二方弁 (3b)との間に接 続され、他端が第 2通路 (40)における第 2二方弁 (4b)の下流側に接続されている。 そして、上記出口側分岐通路 (35)の第 4二方弁 (3d)と第 2通路 (40)の第 2二方弁 (4 b)とは、冷水用の出口側切換手段を構成している。
[0119] 上記第 2通路 (40)の入口側分岐通路 (44)は、途中に第 3二方弁 (4c)が設けられ 、一端が第 2通路 (40)における第 1二方弁 (4a)の上流側に接続され、他端が第 1通 路 (30)における第 1二方弁 (3a)と第 1吸着熱交 (32)との間に接続されて!、る。 そして、上記第 2通路 (40)の第 1二方弁 (4a)と入口側分岐通路 (44)の第 3二方弁 (4 c)とは、冷水用の入口側切換手段を構成している。
[0120] 上記第 2通路 (40)の出口側分岐通路 (45)は、途中に第 4二方弁 (4d)が設けられ 、一端が第 2通路 (40)における第 2吸着熱交 (42)と第 2二方弁 (4b)との間に接 続され、他端が第 1通路 (30)における第 2二方弁 (3b)の下流側に接続されている。 そして、上記第 1通路 (30)の第 2二方弁 (3b)と出口側分岐通路 (45)の第 4二方弁 (4 d)とは、温水用の出口側切換手段を構成している。つまり、上記水回路 (20)には、 8 個の二方弁が用いられて 、る。
[0121] また、本実施形態においても、実施形態 1と同様に、上記各入口側分岐通路 (34, 44)および各出口側分岐通路 (35,45)は、水流れの切換の際に、各入口(21,23)と各 出口(22,24)とが繋がるバイパス通路を兼用している。
[0122] 次に、本実施形態における冷房除湿運転の動作について、図 8〜図 12を参照し ながら説明する。
[0123] 先ず、図 8に示すように、上記水回路 (20)が第 1サイクル動作を行う第 1流れ状態 に切り換えられる。具体的に、各第 1二方弁 (3a,4a)および各第 2二方弁 (3b,4b)が開 状態に設定され、各第 3二方弁 (3c,4c)および各第 4二方弁 (3d,4d)が閉状態に設定 される。なお、空気流れおよび冷温水の導入口は実施形態 1と同様である。この状態 で、第 1入口(21)より導入された温水は、第 1吸着熱交換器 (32)で吸着剤および第 2 空気を加熱して第 1出口(22)へ流れる。その際、第 2空気の加湿が行われる。上記 第 2入口(23)より導入された冷水は、第 2吸着熱交換器 (42)で吸着剤および第 1空 気を冷却して第 2出口(24)へ流れる。その際、第 1空気の除湿が行われる。
[0124] 上記水回路 (20)は、第 1サイクル動作が所定時間行われると、図 9に示すように、 各第 4二方弁 (3d,4d)が開状態に切り換えられる。この状態では、第 1吸着熱交換器 (32)を出た温水の一部が第 1出口(22)へ流れると共に、残りが出口側分岐通路 (35 )を通って第 2出口(24)へ流れる。また、上記第 2吸着熱交換器 (42)を出た冷水の一 部が第 1通路 (30)の温水と合流して第 2出口(24)へ流れると共に、残りが出口側分 岐通路 (45)を通って第 1通路 (30)の温水と合流して第 1出口(22)へ流れる。すなわ ち、この状態では、第 1入口(21)より導入された温水の出口へのルートが 2つ確保さ れ、第 2入口(23)より導入された冷水の出口へのルートが 2つ確保されることになる。
[0125] 続いて、上記水回路 (20)は、図 10に示すように、各第 2二方弁 (3b,4b)が閉状態 に切り換えられる。この状態では、第 1吸着熱交 (32)を出た温水の全量が第 2出 口(24)へ流れ、第 2吸着熱交換器 (42)を出た冷水の全量が第 1出口(22)へ流れる 。ここで、各第 2二方弁 (3b,4b)が作動不良等を起こしても、予め冷水および温水の 出口へのルートが 2通り確保されているので、冷温水の流れが遮断されることはない
[0126] 続いて、上記水回路 (20)は、図 11に示すように、各第 3二方弁 (3c,4c)がそれぞ れ開状態に切り換えられる。この状態では、第 1入口(21)より導入された温水の一部 と第 2入口(23)より導入された冷水の一部とが第 1吸着熱交 (32)を通って第 2出 口(24)へ流れる。また、第 1入口(21)より導入された温水の残りと第 2入口(23)より導 入された冷水の残りとが第 2吸着熱交換器 (42)を通って第 1出口(22)へ流れる。上 記第 1吸着熱交 (32)は、冷水の流れが加わることにより多少は冷却される。一方 、上記第 2吸着熱交 (42)は、温水の流れが加わることにより多少は加熱される。
[0127] 図 12に示すように、上記水回路 (20)は、上述した状態から各第 1二方弁 (3a,4a) がそれぞれ閉状態に設定されると共に、空気流れが切り換わり、第 2サイクル動作を 行う第 2流れ状態へ切り換えられる。ここで、各第 1二方弁 (3a,4a)が作動不良等を起 こしても、予め冷水および温水の出口へのルートが 2通り確保されているので、冷温 水の流れが遮断されることはない。この第 2サイクル動作では、第 1入口(21)より導入 された温水が第 2吸着熱交換器 (42)で吸着剤および第 2空気を加熱して第 1出口(2 2)へ流れる。その際、第 2空気の加湿が行われる。上記第 2入口(23)より導入された 冷水は、第 1吸着熱交換器 (32)で吸着剤および第 1空気を冷却して第 2出口(24)へ 流れる。その際、第 1空気の除湿が行われる。
[0128] 上記第 2サイクル動作力 第 1サイクル動作への切換は、図示しないが、各第 2二 方弁 (3b,4b)が開状態に、各第 4二方弁 (3d,4d)が閉状態に順に切り換えられる。そ の後、各第 1二方弁 (3a,4a)が開状態に切り換えられた後、第 3二方弁 (3c,4c)が閉 状態に切り換えられる。その際、第 1空気が第 2吸着熱交換器 (42)へ流れ、第 2空気 が第 1吸着熱交 (32)へ流れるように空気流れが切り換わる。これで、第 1サイク ル動作への切換が完了する。このように、第 1サイクル動作および第 2サイクル動作が 交互に切り換えられて冷房除湿運転が連続して行われる。
[0129] 次に、暖房加湿運転について説明する。この暖房加湿運転は、室内空気 (RA)が 第 1空気として取り込まれて除湿された後室外へ排出され、室外空気(OA)が第 2空 気として取り込まれて加湿された後室内へ供給される。つまり、例えば、第 1サイクル 動作では、第 1空気が第 2吸着熱交換器 (42)へ流れ、第 2空気が第 1吸着熱交換器 (32)へ流れる。そして、この暖房加湿運転では、上述した冷房除湿運転時と同様の 切換動作が行われて、第 1サイクル動作および第 2サイクル動作が切り換えられる。 その他の構成、作用および効果は実施形態 1と同様である。
[0130] 一実施形態 2の変形例
本変形例は、上記実施形態 2における第 1サイクル動作と第 2サイクル動作の切 換の際に中間状態に切り換えるようにしたものである。つまり、第 1サイクル動作から 第 2サイクル動作へ切り換える際、上記実施形態 2では、図 10の状態から 2つの第 3 二方弁 (3c,4c)を開状態に切り換えて図 11の状態に切り換えたが、本変形例では、 図 10の状態力 図 13に示す中間状態に切り換える。
[0131] 具体的に、上記水回路 (20)は、第 2通路 (40)の第 1二方弁 (4a)が閉状態に切り 換えられると共に、第 2通路 (40)の入口側分岐通路 (44)の第 3二方弁 (4c)が開状態 に切り換えられて、中間状態に切り換わる。この中間状態では、第 2入口(23)より導 入された冷水が入口側分岐通路 (44)を通って第 1通路 (30)に流れ、温水と合流した 後に第 1吸着熱交換器 (32)へ流れる。この第 1吸着熱交換器 (32)は、冷水の流れが 加わることにより徐々に冷却される。一方、上記第 2吸着熱交 (42)には、温水お よび冷水の何れも流通しない。したがって、第 1空気は、第 2吸着熱交換器 (42)に残 存する冷熱によって冷却される。つまり、この冷房除湿運転の中間状態では、実施形 態 1と同様に、冷水の流れのみが切り換えられ、利用側である第 2吸着熱交翻 (42) への温水の流れ (供給)が阻止される。
[0132] 上記中間状態に切り換わってから所定時間が経過すると、第 1通路 (30)入口側 分岐通路 (44)の第 3二方弁 (4c)が開状態に、第 1通路 (30)の第 1二方弁 (3a)が閉 状態にそれぞれ切り換えられると共に、空気流れが切り換えられて第 2サイクル動作 が行われる(図 12参照)。この第 2サイクル動作では、上述したとおり、第 2吸着熱交 換器 (42)で第 2空気の加湿が行われ、第 1吸着熱交換器 (32)で第 1空気の除湿が 行われる。ここで、第 1サイクル動作で加熱された第 1吸着熱交 (32)は、実施形 態 1と同様に、中間状態の所定時間の間に冷水によって冷却されているため、第 1空 気が加熱されずに冷却されて室内へ供給される。したがって、室内の快適性を向上 させることがでさる。
[0133] 上記第 2サイクル動作力 第 1サイクル動作への切換は、図示しないが、各第 2二 方弁 (3b,4b)が開状態に、各第 3二方弁 (3c,4c)が閉状態に順に切り換えられた後、 第 2通路 (40)の第 1二方弁 (4a)が開状態に、第 2通路 (40)の入口側分岐通路 (44) の第 3二方弁 (4c)が閉状態にそれぞれ切り換えられて、中間状態に切り換わる。この 中間状態では、冷水および温水が第 2吸着熱交換器 (42)を通って第 2出口(24)へ 流れる。その後、水回路 (20)は、中間状態のまま所定時間が経過すると、第 1通路 (3 0)の第 1二方弁 (3a)が開状態に、第 1通路 (30)の入口側分岐通路 (44)の第 3二方 弁 (3c)が閉状態にそれぞれ切り換えられると共に、第 1空気が第 2吸着熱交 (42 )へ流れ、第 2空気が第 1吸着熱交換器 (32)へ流れるように空気流れが切り換わる。 これで、第 1サイクル動作への切換が完了する。なお、暖房加湿運転においても上記 と同様の切換動作が行われる。
[0134] また、本変形例は、中間状態において冷水および温水の両方の流れを同時に切 り換えるようにしてもよい。具体的には、図 10の状態から、 2つの第 1二方弁 (3a,4a)を 閉状態に切り換えると同時に 2つの第 3二方弁 (3c,4c)を開状態に切り換えて図 12に 示す冷温水の流れ状態(中間状態)に切り換える。その際、空気流れは切り換えない 。そして、中間状態のまま所定時間が経過すると、空気流れが切り換えられる。この 場合、冷房除湿運転の中間状態において、第 1空気が流通する吸着熱交換器 (32,4 2)が温水によって徐々に加熱されるが、冷熱が残存しているため第 1空気はそれ程 加熱されることなく室内へ供給される。つまり、冷温水の流れと同時に空気流れを切り 換える場合よりも第 1空気が加熱されることはない。これについては、暖房加湿運転 の場合も同用である。
[0135] 《発明の実施形態 3》
本実施形態 3の調湿装置(10)は、図 14に示すように、上記実施形態 1の水回路( 20)にお 、てバイパス用三方弁 (37)を有するバイパス通路 (36)を第 2通路 (40)に追 カロしたものである。つまり、本実施形態は、冷水用のバイパス通路 (36)が温水用のバ ィパス通路(36)に加え、冷水用のバイパス通路(36)が追加されたものである。
[0136] 上記バイパス通路 (36)は、第 1通路 (30)のものと同様に、一端が第 2通路 (40)に おける入口側三方弁 (41)よりも第 2入口(23)側に接続され、他端が第 2通路 (40)に おける出口側三方弁 (43)よりも第 2出口(24)側に接続されている。上記バイパス用 三方弁 (37)は、第 2入口(23)よりバイパス通路 (36)へ流れた冷水力 そのまま第 2出 口(24)側へ向かって流れる第 2状態(図 1に破線で示す状態)と、再び第 2通路 (40) に戻る第 1状態(図 1に実線で示す状態)とに切り換わるように構成されて 、る。
[0137] すなわち、上記バイパス通路 (36)は、第 2入口(23)より導入された冷水を第 1吸 着熱交換器 (32)および第 2吸着熱交換器 (42)をバイパスさせてそのまま第 2出口(2 4)へ流すことができるように構成されている。なお、本実施形態では、第 1入口(21)よ り温水が固定的に導入され、第 2入口(23)より冷水が固定的に導入される。したがつ て、本実施形態では、温水専用のバイパス通路 (36)と、冷水専用のバイパス通路 (3 6)とが設けられている。
[0138] 次に、本実施形態における冷房除湿運転の動作について、図 14〜図 18を参照 しながら説明する。なお、ここでは、上述した実施形態 1と異なる動作および作用につ いてのみ説明する。
[0139] 先ず、図 14に示すように、上記水回路 (20)が第 1サイクル動作を行うように切り換 えられる。具体的に、 2つのバイパス用三方弁 (37)が共に第 1状態に設定される。そ の後、図 15に示すように、 2つのバイパス用三方弁 (37)が第 2状態に切り換えられる
[0140] 続いて、図 16に示すように、各出口側三方弁 (33,43)がほぼ同時に第 2状態に切 り換えられる。つまり、本実施形態では、上述したように、温水および冷水のそれぞれ のバイパス通路 (36)が設けられて 、るため、各出口側三方弁 (33,43)が作動不良を 起こしても、温水および冷水の流れが遮断されるのを確実に防止することができる。 したがって、配管等の破裂を防止できる。
[0141] 続いて、図 17に示すように、各入口側三方弁 (31,41)がほぼ同時に第 2状態に切 り換えられる。この場合においても、各入口側三方弁 (31,41)が作動不良を起こして も、上述したように、温水および冷水の流れが遮断されるのを確実に防止することが できる。その後、図 18に示すように、 2つのノ ィパス用三方弁 (37)が共に第 1状態に 切り換えられて、第 2サイクル動作への切換が完了する。このように、本実施形態の場 合、切換動作のステップが少なくなるので、切換時間が短くなる。その他の構成、作 用および効果は実施形態 1と同様である。
[0142] 《発明の実施形態 4》
本実施形態 4の調湿装置(10)は、図 19および図 20に示すように、水回路 (20)が 温水のみ流れる回路に構成されている。具体的に、上記水回路 (20)は、温水の入口 (21)および出口(22)を 1つずつ備えている。そして、上記水回路 (20)は、実施形態 1と同様の第 1通路 (30)と、実施形態 1のものと構成を変更した第 2通路 (38)とを備え ている。上記第 1通路 (30)は、入口(21)と出口(22)とを繋ぐものであり、入口(21)側 力 順に、入口側三方弁 (31)、第 1吸着熱交 (32)および出口側三方弁 (33)が 設けられている。上記第 2通路 (38)は、途中に第 2吸着熱交 (42)を有し、入口 側三方弁 (31)と出口側三方弁 (33)とに接続されて!、る。
[0143] 上記水回路 (20)は、入口側三方弁 (31)および出口側三方弁 (33)の切換により、 図 19に示すように、入口(21)より導入された温水が第 1吸着熱交換器 (32)を通って 出口(22)へ流れる第 1サイクル動作 (第 1流れ状態)と、図 20に示すように、入口(21 )より導入された温水が第 2通路 (38)へ流れて第 2吸着熱交換器 (42)を通った後、出 口(22)へ流れる第 2サイクル動作 (第 2流れ状態)とが交互に行われるように構成され ている。つまり、上記入口側三方弁 (31)および出口側三方弁 (33)は、第 1流れ状態 と第 2流れ状態とに温水流れを切り換える入口側切換手段および出口側切換手段を 構成している。また、この調湿装置(10)は、冷房除湿運転と暖房加湿運転とが切換 可能になっている。なお、図 19および図 20は、暖房加湿運転の動作を示すものであ る。
[0144] 例えば、暖房加湿運転の場合、温水が流れる第 1吸着熱交換器 (32)または第 2 吸着熱交換器 (42)に室外空気 (OA)を第 2空気として取り込んで加湿した後、室内 へ供給するように空気流れを切り換える(図 19および図 20参照)。また、冷房除湿運 転の場合、図示しないが、温水が流れない第 2吸着熱交換器 (42)または第 1吸着熱 交換器 (32)に室外空気 (OA)を第 1空気として取り込んで除湿した後、室内へ供給 するように空気流れを切り換える。
[0145] そして、上記水回路(20)は、バイパス通路(36)が設けられて 、る。このバイパス通 路 (36)は、一端が第 1通路 (30)における入口側三方弁 (31)よりも入口(21)側に接 続され、他端が第 1通路 (30)における出口側三方弁 (33)よりも出口(22)側に接続さ れている。このバイパス通路(36)には、バイパス遮断弁であるバイパス用二方弁(37) が設けられている。
[0146] 次に、暖房加湿運転時の第 1サイクル動作力 第 2サイクル動作へ切換について 説明する。先ず、第 1サイクル動作が所定時間行われると、バイパス用二方弁 (37)が 開状態に切り換わる。続いて、出口側三方弁 (33)を第 2状態に切り換えてから入口 側三方弁 (31)を第 2状態に切り換える。その後、バイパス用二方弁 (37)を閉状態に 切り換えると同時に空気流れを切り換える。
[0147] このように、出口側三方弁 (33)を入口側三方弁 (31)よりも先に切り換えるようにし たので、第 1吸着熱交換器 (32)へ温水をできるだけ長く流すことができる。これにより 、加湿能力の低下を抑制できる。ここで、予めバイパス用二方弁(37)を開いているの で、出口側三方弁 (33)を切り換えても、入口(21)より導入された温水をバイパス通路 (36)を介して出口(22)へ確実に流すことができる。したがって、配管や熱交 (32, 42)に対して高圧が作用するのを防止できる。その他の構成、作用および効果は実 施形態 1と同様である。なお、本実施形態では、バイパス用二方弁 (37)に三方弁を 用いるようにしてもょ 、ことは勿論である。
[0148] また、本実施形態では、空気流れをバイパス用二方弁 (37)の切換と同時に切り換 えるようにしたが、バイパス用二方弁 (37)を閉状態に切り換えて力も所定時間後に空 気流れを切り換えるようにしてもよい。つまり、バイパス用二方弁 (37)を閉状態に切り 換えてから所定時間の間、上記実施形態 1と同様の中間状態に切り換わる。これによ り、暖房加湿運転の場合、第 2空気が流れる前に吸着熱交換器 (32,42)が予め温水 によって加熱される。したがって、空気流れの切換直後であっても、室内へ確実に温 風を供給することができるので、快適性が損なわれな 、。
[0149] 一実施形態 4の変形例
本変形例は、図 21および図 22に示すように、上記実施形態 4が水回路 (20)を温 水のみが流れる回路に構成したのに代えて、水回路 (20)を冷水のみが流れる回路 に構成したものである。さらに、本変形例は、上記実施形態 4におけるノ ィパス通路( 36)およびバイパス用二方弁(37)の設置位置を変更したものである。
[0150] 具体的に、上記水回路 (20)は、入口側三方弁 (31)および出口側三方弁 (33)の 切換により、入口(21)より導入された冷水が第 1吸着熱交換器 (32)を通って出口(22 )へ流れる第 1サイクル動作(図 21の状態)と、入口(21)より導入された冷水が第 2通 路 (38)へ流れて第 2吸着熱交換器 (42)を通った後、出口(22)へ流れる第 2サイクル 動作(図 22の状態)とが交互に行われるように構成されている。また、この調湿装置( 10)は、冷房除湿運転と暖房加湿運転とが切換可能になっている。なお、図 21およ び図 22は、冷房除湿運転の動作を示すものである。
[0151] 例えば、冷房除湿運転の場合、冷水が流れる第 1吸着熱交換器 (32)または第 2 吸着熱交換器 (42)に室外空気 (OA)を第 1空気として取り込んで除湿した後、室内 へ供給するように空気流れを切り換える(図 21および図 22参照)。また、暖房加湿運 転の場合、図示しないが、冷水が流れない第 2吸着熱交換器 (42)または第 1吸着熱 交換器 (32)に室外空気 (OA)を第 2空気として取り込んで加湿した後、室内へ供給 するように空気流れを切り換える。
[0152] 上記バイパス通路 (36)は、一端が第 1通路 (30)における第 1吸着熱交換器 (32) と出口側三方弁 (33)との間に接続され、他端が第 2通路 (38)における第 2吸着熱交 翻 (42)の下流側に接続されている。すなわち、このバイパス通路 (36)は、第 1吸着 熱交 (32)の下流側と第 2吸着熱交 (42)の下流側とに接続されている。そし て、このバイノ ス通路(36)の途中には、バイパス遮断弁であるバイパス用二方弁(37 )が設けられている。
[0153] 本変形例にお!、て、第 1サイクル動作および第 2サイクル動作の切換は、上記実 施形態 4と同様である。つまり、例えば冷房除湿運転時の第 1サイクル動作力 第 2サ イタル動作への切換において、出口側三方弁 (33)を入口側三方弁 (31)よりも先に切 り換えるため、第 1吸着熱交換器 (32)へ冷水をできるだけ長く流すことができる。これ により、除湿能力の低下を抑制できる。ここで、予めノ ィパス用二方弁 (37)を開いて いるので、出口側三方弁 (33)を切り換えても、冷水の流れを遮断させることなぐ第 1 吸着熱交換器 (32)を出た冷水をバイパス通路 (36)を介して第 2通路 (38)へ流し、出 口側三方弁 (33)を通じて出口(22)へ確実に流すことができる。したがって、配管や 熱交換器 (32,42)に対して高圧が作用するのを防止できる。
[0154] なお、本実施形態では、バイパス通路 (36)を第 1吸着熱交翻 (32)および第 2吸 着熱交換器 (42)の上流側同士に接続してもよいし、上流側と下流側とに接続するよ うにしてもよい。
[0155] また、本変形例においても、バイパス用二方弁 (37)を閉状態に切り換えて力も所 定時間後に空気流れを切り換えるようにしてもよい。これにより、冷房除湿運転の場 合、第 1空気が流れる前に吸着熱交換器 (32,42)が予め冷水によって冷却される。し たがって、空気流れの切換直後であっても、室内へ確実に冷風を供給することができ るので、快適性が損なわれない。
[0156] 《発明の実施形態 5》
本実施形態 5の調湿装置(10)は、図 23および図 24に示すように、実施形態 1が 流路切換手段として 4つの三方弁 (31,33, · · ·)を用いるようにしたのに代えて、流路 切換手段として 2つの四方弁 (3,4)を用いるようにしたものである。なお、本実施形態 では、第 1入口(21)より冷水が固定的に導入され、第 2入口(23)より温水が固定的に 導入される。
[0157] 具体的に、上記水回路 (20)は、途中に第 1吸着熱交換器 (32)を有する第 1通路( 30)と、途中に第 2吸着熱交換器 (42)を有する第 2通路 (40)とを備えている。なお、 本実施形態では、上記実施形態 1における各種分岐通路 (34,35,44,45)が省略され ている。上記第 1四方弁 (3)は、第 1通路 (30)における第 1吸着熱交換器 (32)の第 1 入口(21)側と第 2通路 (40)における第 2吸着熱交 (42)の第 2出口(24)側とに繋 力 ている。上記第 2四方弁 (4)は、第 1通路 (30)における第 1吸着熱交翻(32)の 第 1出口(22)側と第 2通路 (40)における第 2吸着熱交 (42)の第 2入口(23)側と に繋がっている。
[0158] 上記第 1四方弁 (3)は、第 1入口(21)と第 1吸着熱交 (32)の一端とが連通す ると共に第 2吸着熱交 (42)の一端と第 2出口(24)とが連通する状態(図 23に実 線で示す状態)と、第 1入口(21)と第 2吸着熱交 (42)の一端とが連通すると共に 第 1吸着熱交 (32)の一端と第 2出口(24)とが連通する状態(図 24に実線で示 す状態)とが切り換わるように構成されている。上記第 2四方弁 (4)は、第 1吸着熱交 (32)の他端と第 1出口(22)とが連通すると共に第 2入口(23)と第 2吸着熱交換 器 (42)の他端とが連通する状態(図 23に実線で示す状態)と、第 2入口(23)と第 1吸 着熱交 (32)の他端とが連通すると共に第 2吸着熱交 (42)の他端と第 1出口 (22)とが連通する状態(図 24に実線で示す状態)とが切り換わるように構成されてい る。
[0159] すなわち、上記水回路 (20)は、第 1四方弁 (3)および第 2四方弁 (4)が図 23の実 線で示す状態に切り換わると、冷水が第 1吸着熱交換器 (32)を通って第 1出口(22) へ流れ、温水が第 2吸着熱交換器 (42)を通って第 2出口(24)へ流れる第 1サイクル 動作を行う。その際、第 1吸着熱交換器 (32)で第 1空気の除湿が行われ、第 2吸着 熱交換器 (42)で第 2空気の加湿が行われる。また、上記水回路 (20)は、第 1四方弁 (3)および第 2四方弁 (4)が図 24の実線で示す状態に切り換わると、冷水が第 2吸着 熱交換器 (42)を通って第 1出口(22)へ流れ、温水が第 1吸着熱交換器 (32)を通つ て第 2出口(24)へ流れる第 2サイクル動作を行う。その際、第 1吸着熱交換器 (32)で 第 2空気の加湿が行われ、第 2吸着熱交換器 (42)で第 1空気の除湿が行われる。
[0160] 上記調湿装置(10)は、冷房除湿運転と暖房加湿運転とが切換可能になって!/、る 。なお、図 21および図 22は、暖房加湿運転の動作を示すものである。
[0161] 例えば、暖房加湿運転の場合、温水が流れる第 1吸着熱交換器 (32)または第 2 吸着熱交換器 (42)に室外空気 (OA)を第 2空気として取り込んで加湿した後、室内 へ供給するように空気流れを切り換える(図 23および図 24参照)。また、冷房除湿運 転の場合、図示しないが、冷水が流れる第 2吸着熱交換器 (42)または第 1吸着熱交 換器 (32)に室外空気 (OA)を第 1空気として取り込んで除湿した後、室内へ供給する ように空気流れを切り換える。
[0162] また、上記水回路(20)には、 2つのバイパス通路(36)が設けられて 、る。このバイ パス通路 (36)は、第 1通路 (30)にお 、て、第 1四方弁 (3)より第 1入口(21)側と第 2 四方弁 (4)より第 1出口(22)側との間に接続されている。もう 1つのノ ィパス通路 (36) は、第 2通路 (40)において、第 1四方弁 (3)より第 2出口(24)側と第 2四方弁 (4)より 第 2入口(23)側との間に接続されている。
[0163] 上記各バイパス通路 (36)には、バイパス遮断弁であるバイパス用二方弁 (37)が 設けられている。この各バイパス用二方弁 (37)は、第 1四方弁 (3)および第 2四方弁 ( 4)を切り換える前に閉状態から開状態に切り換わるように構成されている。これにより 、第 1サイクル動作および第 2サイクル動作の切換時に、例えば、第 1四方弁 (3)およ び第 2四方弁 (4)が共に作動不良によって中間開度状態となった場合でも、冷水お よび温水は各バイパス通路 (36)を通って第 1出口(22)および第 2出口(24)へ流れる ため、冷水および温水の流れが遮断されることはない。したがって、配管等の破裂を 防止することができる。その他の構成、作用および効果は実施形態 1と同様である。 なお、本実施形態では、バイパス用二方弁 (37)に三方弁を用いるようにしてもよいこ とは勿論である。
[0164] 《発明の実施形態 6》
本実施形態 6の調湿装置(10)は、図 25および図 26に示すように、実施形態 1が 水回路 (20)にバイノ ス通路 (36)およびバイパス用三方弁 (37)を設けるようにしたの に代えて、 2つのバッファタンク(39,49)を設けるようにしたものである。なお、図 25お よび図 26は、冷房除湿運転時の第 1サイクル動作および第 2サイクル動作を示す。
[0165] 上記各バッファタンク(39,49)は、第 1通路 (30)および第 2通路 (40)にそれぞれ設 けられている。上記第 1通路 (30)のノ ッファタンク (39)は、第 1吸着熱交翻(32)の 上流側に設けられ、第 2通路 (40)の入口側分岐通路 (44)と繋がっている。上記第 2 通路 (40)のバッファタンク (49)は、第 2吸着熱交 (42)の上流側に設けられ、第 1 通路 (30)の入口側分岐通路 (34)と繋がっている。すなわち、この各バッファタンク (3 9,49)は、各出口側三方弁 (33,43)の上流側に設けられ、少なくとも水流れの切換時 に各入口(21,23)に連通する通路に設けられている。
[0166] 上記バッファタンク (39,49)は、所定容積を有する緩衝容器を構成して ヽる。した がって、例えば、第 1通路 (30)において第 1サイクル動作力 第 2サイクル動作への 切換時に、出口側三方弁 (33)は第 2状態に正常に切り換わり、入口側三方弁 (31) は作動不良を起こした場合、第 1入口(21)より導入された温水がノ ッファタンク (39) に貯留される。一方、第 2通路 (40)においても、例えば、出口側三方弁 (43)は第 2状 態に正常に切り換わり、入口側三方弁 (41)は作動不良を起こした場合、第 2入口(23 )より導入された冷水がバッファタンク (49)に貯留される。これにより、水流れの遮断 により発生する高圧が抑制される。この結果、配管等を高圧カゝら保護することができ る。
[0167] さらに、上記バッファタンク(39,49)は、全ての三方弁(31,33, · · ·)の切換が正常に 行われた場合、その切換により冷温水の流れが急激に切り換わる力 その水撃を吸 収することができる。したがって、水流れの切換時において、配管等を水撃から保護 できる。
[0168] なお、本実施形態では、各バッファタンク (39,49)を第 1吸着熱交換器 (32)および 第 2吸着熱交換器 (42)の上流側に設けるようにしたが、これに限らず、例えば各吸着 熱交換器 (32,42)の下流側に設けるようにしてもよ!、し、一方の吸着熱交換器 (32,42 )の上流側と他方の吸着熱交換器 (42,32)の下流側とに設けるようにしてもよ!、。
[0169] 《発明の実施形態 7》
本実施形態 7の調湿装置(10)は、図 27および図 28に示すように、実施形態 4が 水回路 (20)にバイノ ス通路 (36)およびバイパス用三方弁 (37)を設けるようにしたの に代えて、 2つのバッファタンク(39,49)を設けるようにしたものである。なお、図 27お よび図 28は、暖房加湿運転時の第 1サイクル動作および第 2サイクル動作を示す。
[0170] 上記各バッファタンク(39,49)は、第 1通路 (30)および第 2通路 (38)にそれぞれ設 けられている。上記第 1通路 (30)のノ ッファタンク (39)は、第 1吸着熱交翻(32)と 入口側三方弁 (31)との間に設けられて 、る。上記第 2通路 (40)のノ ッファタンク (49) は、第 2吸着熱交換器 (42)の上流側に設けられている。すなわち、この各バッファタ ンク (39,49)は、出口側三方弁 (33)の上流側に設けられ、少なくとも水流れの切換時 に入口(21)に連通する通路に設けられている。
[0171] 上記バッファタンク (39,49)は、所定容積を有する緩衝容器を構成して ヽる。した がって、例えば、第 1サイクル動作力 第 2サイクル動作への切換時に、出口側三方 弁 (33)は第 2状態に正常に切り換わり、入口側三方弁 (31)は作動不良を起こした場 合、第 1入口(21)より導入された温水が第 1通路 (30)のバッファタンク (39)に貯留さ れる。
[0172] 逆に、入口側三方弁 (31)は第 2状態に正常に切り換わり、出口側三方弁 (33)が 作動不良を起こした場合、第 1入口(21)より導入された温水が第 2通路 (38)のノ ッフ ァタンク (49)に貯留される。
[0173] したがって、水流れの遮断によって発生する高圧がバッファタンク (39)に吸収され
、配管等内の高圧が抑制される。これにより、水流れの遮断により発生する高圧が抑 制される。この結果、配管等を高圧カゝら保護することができる。
[0174] さらに、上記バッファタンク(39,49)は、全ての三方弁(31,33, · · · )の切換が正常に 行われた場合、その切換により冷温水の流れが急激に切り換わる力 その水撃を吸 収することができる。したがって、水流れの切換時において、配管等を水撃から保護 できる。
[0175] なお、本実施形態では、各バッファタンク (39,49)を第 1吸着熱交換器 (32)および 第 2吸着熱交換器 (42)の上流側に設けるようにしたが、これに限らず、例えば各吸着 熱交換器 (32,42)の下流側に設けるようにしてもよ!、し、一方の吸着熱交換器 (32,42 )の上流側と他方の吸着熱交換器 (42,32)の下流側とに設けるようにしてもよ!、。
[0176] 《発明の実施形態 8》
本実施形態 8の調湿装置(10)は、図 29に示すように、実施形態 1において水回 路 (20)を 2つ並列に接続するようにしたものである。また、本実施形態では、 2つの水 回路(20a,20b)に共通の冷温水の各入口(21,23)および出口(22,24)が 1組ずっ設 けられている。つまり、第 1入口(21)より導入された温水および第 2入口(23)より導入 された冷水が第 1水回路 (20a)と第 2水回路 (20b)とに分岐して流れる。
[0177] この調湿装置(10)は、第 1水回路 (20a)および第 2水回路 (20b)で冷房除湿運転 と暖房加湿運転とが切り換わる。つまり、第 1水回路 (20a)と第 2水回路 (20b)とは、別 個独立に冷房除湿運転および暖房加湿運転を切り換えて行うことができる。この場合 も、各水回路 (20a,20b)において、第 1サイクル動作および第 2サイクル動作の切換 時において、冷温水の流れが遮断される恐れはない。その他の構成、作用および効 果は実施形態 1と同様である。
[0178] 《発明の実施形態 9》
本実施形態 9の調湿装置(10)は、図 30に示すように、上記実施形態 1の水回路( 20)に空気熱交換器 (47)を有する第 3通路 (46)を追加したものである。具体的に、上 記第 3通路 (46)は、途中に空気熱交換器 (47)が設けられ、一端が第 2通路 (40)に おける入口側三方弁 (41)よりも第 2入口(23)側に接続され、他端が第 2通路 (40)に おける出口側三方弁 (43)よりも第 2出口(24)側に接続されている。なお、本図は、冷 房除湿運転時における動作を示すものである。
[0179] 上記空気熱交換器 (47)は、いわゆるクロスフィン式のフィン 'アンド'チューブ型熱 交 により構成された顕熱熱交 である。この空気熱交 (47)は、冷房除湿 運転時において冷水が流れ、暖房加湿運転時において温水が流れる。また、この空 気熱交換器 (47)は、冷房除湿運転時に除湿した第 1空気が流れると共に室内空気( RA)が第 3空気として流れる一方、暖房加湿運転時に加湿した第 2空気が流れると共 に室内空気 (RA)が第 3空気として流れるように構成されている。なお、冷房除湿運転 および暖房加湿運転にお!、て、第 1サイクル動作および第 2サイクル動作の切換は、 実施形態 1と同様である。
[0180] 本実施形態では、冷房除湿運転時に、第 1吸着熱交換器 (32)または第 2吸着熱 交^^ (42)で除湿された第 1空気が空気熱交 (47)で冷水によって冷却され、 室内へ供給されると共に、第 3空気が空気熱交 (47)で冷水によって冷却されて 室内へ供給される。したがって、冷房能力が向上する。また、暖房加湿運転時に、第 1吸着熱交換器 (32)または第 2吸着熱交換器 (42)で加湿された第 2空気が空気熱 交 (47)で温水によって加熱され、室内へ供給されると共に、第 3空気が空気熱 交換器 (47)で温水によって加熱されて室内へ供給される。したがって、暖房能力が 向上する。その他の構成、作用および効果は実施形態 1と同様である。 [0181] なお、本実施形態において、冷房除湿運転では第 2空気および第 3空気を、暖房 加湿運転では第 1空気および第 3空気をそれぞれ別々に取り込むようにしたが、取り 込んだ第 2空気または第 1空気の一部を第 3空気として空気熱交換器 (47)へ流すよ うにしてもよい。また、本実施形態における空気熱交 (47)を有する第 3通路 (46) は、実施形態 2における水回路 (20)〖こも同様に適用される。
[0182] 一実施形態 9の変形例
本変形例は、図 31に示すように、上記実施形態 9が除湿した第 1空気または加湿 した第 2空気を空気熱交換器 (47)へ流すようにしたのに代えて、除湿後の第 1空気ま たは加湿後の第 2空気をそのまま室内へ供給するようにしたものである。つまり、冷房 除湿運転の場合は、除湿された第 1空気がそのまま室内へ供給されると共に、空気 熱交換器 (47)で冷却された第 3空気が室内へ供給される。また、暖房加湿運転の場 合は、加湿された第 2空気がそのまま室内へ供給されると共に、空気熱交 (47) で加熱された第 3空気が室内へ供給される。したがって、冷房能力および暖房能力 が向上する。その他の構成、作用および効果は実施形態 1と同様である。なお、本変 形例における空気熱交換器 (47)を有する第 3通路 (46)は、実施形態 2における水回 路 (20)にも同様に適用される。
[0183] 《発明の実施形態 10》
本実施形態 10の調湿装置(10)は、図 32および図 33に示すように、水回路 (20) が温水のみ流れる回路に構成されている。具体的に、上記水回路 (20)は、温水の入 口(21)および出口(22)を 1つずつ備えている。そして、上記水回路 (20)は、実施形 態 1と同様の第 1通路 (30)と、実施形態 1のものと構成を変更した第 2通路 (38)とを備 えている。上記第 1通路 (30)は、入口(21)と出口(22)とを繋ぐものであり、入口(21) 側から順に、入口側三方弁 (31)、第 1吸着熱交換器 (32)および出口側三方弁 (33) が設けられている。上記第 2通路 (38)は、途中に第 2吸着熱交 (42)を有し、入 口側三方弁 (31)と出口側三方弁 (33)とに接続されている。
[0184] 上記水回路 (20)は、入口側三方弁 (31)および出口側三方弁 (33)の切換により、 入口(21)より導入された温水が第 1吸着熱交換器 (32)を通って出口(22)へ流れる 第 1サイクル動作(図 32の状態)と、入口(21)より導入された温水が第 2通路 (38)へ 流れて第 2吸着熱交換器 (42)を通った後、出口(22)へ流れる第 2サイクル動作 (図 3 3の状態)とが交互に行われるように構成されている。また、この調湿装置(10)は、冷 房除湿運転と暖房加湿運転とが切換可能になっている。なお、図 32および図 33は、 暖房加湿運転の動作を示すものである。
[0185] 例えば、暖房加湿運転の場合、温水が流れる第 1吸着熱交換器 (32)または第 2 吸着熱交換器 (42)で加湿した第 2空気を室内へ供給するように空気流れを切り換え る(図 32および図 33参照)。また、冷房除湿運転の場合、図示しないが、温水が流れ な 、第 2吸着熱交換器 (42)または第 1吸着熱交換器 (32)で除湿した第 1空気を室内 へ供給するように空気流れを切り換える。
[0186] そして、上記水回路 (20)は、暖房加湿運転の場合、入口側三方弁 (31)および出 口側三方弁 (33)を切り換えてから、つまり温水の流れを切り換えて力 所定時間が 経過した後に、空気の流れを切り換えるように構成されている。したがって、上記所定 時間の間に、第 1空気を除湿していた第 1吸着熱交翻 (32)または第 2吸着熱交換 器 (42)が予め加熱されるため、空気流れの切換後、第 2空気が直ちに加熱されて室 内へ供給される。これにより、室内の快適性が向上する。
[0187] 一実施形態 10の変形例
本変形例は、図 34および図 35に示すように、上記実施形態 10の水回路 (20)を 温水のみが流れる回路に構成した力 水回路 (20)を冷水のみが流れる回路に構成 したものである。つまり、上記水回路 (20)は、入口側三方弁 (31)および出口側三方 弁 (33)の切換により、入口(21)より導入された冷水が第 1吸着熱交換器 (32)を通つ て出口(22)へ流れる第 1サイクル動作(図 34の状態)と、入口(21)より導入された冷 水が第 2通路 (38)へ流れて第 2吸着熱交換器 (42)を通った後、出口(22)へ流れる 第 2サイクル動作(図 35の状態)とが交互に行われるように構成されている。また、こ の調湿装置(10)は、冷房除湿運転と暖房加湿運転とが切換可能になっている。なお 、図 34および図 35は、冷房除湿運転の動作を示すものである。
[0188] 例えば、冷房除湿運転の場合、冷水が流れる第 1吸着熱交換器 (32)または第 2 吸着熱交換器 (42)で除湿した第 1空気を室内へ供給するように空気流れを切り換え る(図 34および図 35参照)。また、暖房加湿運転の場合、図示しないが、冷水が流れ な 、第 2吸着熱交換器 (42)または第 1吸着熱交換器 (32)で加湿した第 2空気を室内 へ供給するように空気流れを切り換える。
[0189] そして、上記水回路 (20)は、冷房除湿運転の場合、入口側三方弁 (31)および出 口側三方弁 (33)を切り換えてから、つまり冷水の流れを切り換えて力 所定時間が 経過した後に、空気の流れを切り換えるように構成されている。したがって、上記所定 時間の間に、第 2空気を加湿していた第 1吸着熱交翻 (32)または第 2吸着熱交換 器 (42)が予め冷却されるため、空気流れの切換後、第 1空気が直ちに冷却されて室 内へ供給される。これにより、室内の快適性が向上する。
[0190] 《発明の実施形態 11》
本実施形態 11の調湿装置(10)は、図 36および図 37に示すように、実施形態 10 の水回路 (20)における入口側三方弁 (31)および出口側三方弁 (33)に代えて、複数 の二方弁を用いるようにしたものである。つまり、上記第 1通路 (30)は、第 1吸着熱交 換器 (32)の上流側および下流側にそれぞれ第 1二方弁 (3a)および第 2二方弁 (3b) が設けられている。また、上記第 2通路 (38)は、第 2吸着熱交 (42)の上流側およ び下流側にそれぞれ第 3二方弁 (3c)および第 4二方弁 (3d)が設けられて ヽる。
[0191] 上記水回路 (20)は、第 1二方弁 (3a)および第 2二方弁 (3b)が開状態に、第 3二 方弁 (3c)および第 4二方弁 (3d)が閉状態にそれぞれ設定される状態と、第 1二方弁 (3a)および第 2二方弁 (3b)が閉状態に、第 3二方弁 (3c)および第 4二方弁 (3d)が開 状態にそれぞれ設定される状態とに切り換わる。つまり、上記水回路 (20)は、入口(2 1)より導入された温水が第 1吸着熱交換器 (32)を通って出口(22)へ流れる第 1サイ クル動作(図 36の状態)と、入口(21)より導入された温水が第 2通路 (38)へ流れて第 2吸着熱交換器 (42)を通った後、出口(22)へ流れる第 2サイクル動作 (図 37の状態) とが交互に行われるように構成されている。また、この調湿装置(10)は、冷房除湿運 転と暖房加湿運転とが切換可能になっている。なお、図 36および図 37は、暖房加湿 運転の動作を示すものである。
[0192] そして、本実施形態においても、水回路 (20)は、暖房加湿運転の場合、温水の 流れを切り換えて力 所定時間が経過した後に空気の流れを切り換えるように構成さ れている。したがって、空気流れの切換後、第 2空気が直ちに加熱されて室内へ供 給される。これにより、室内の快適性が向上する。なお、上記水回路 (20)は、温水で はなく冷水のみ流れる回路に構成された場合、冷水の流れを切り換えてから所定時 間が経過した後に空気の流れを切り換えるように構成される。
[0193] 《その他の実施形態》
例えば、上記実施形態 1または 3の水回路 (20)において、バイノス通路 (36)の設 置位置を実施形態 4の変形例のように、第 1吸着熱交換器 (32)の上流側および下流 側の何れかと、第 2吸着熱交換器 (42)の上流側および下流側の何れかとに接続する ようにしてもよい。その場合、バイパス用三方弁 (37)は、二方弁に構成される。
[0194] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物 、あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0195] 以上説明したように、本発明は、吸着熱交換器を有する水回路を備えた調湿装 置として有用である。

Claims

請求の範囲
[1] 吸着剤を有して空気中の水分の吸着と脱離による空気中への水分の放出とを行 う第 1熱交換器 (32)および第 2熱交換器 (42)が接続され、冷水および温水の水が流 れる水回路 (20)を備え、
上記水回路 (20)は、第 1入口(21)より導入された温水が第 1熱交換器 (32)を通つ て第 1出口(22)へ流れると共に、第 2入口(23)より導入された冷水が第 2熱交 (4 2)を通って第 2出口(24)へ流れる第 1流れ状態と、第 1入口(21)より導入された温水 が第 2熱交 (42)を通って第 1出口(22)へ流れると共に、第 2入口(23)より導入さ れた冷水が第 1熱交換器 (32)を通って第 2出口(24)へ流れる第 2流れ状態とに切り 換わるように水流れを切り換え、第 1熱交換器 (32)および第 2熱交換器 (42)で水分 の吸脱着を交互に行う調湿装置であって、
上記水回路 (20)は、水流れを切り換える際に、各入口(21,23)と各出口(22,24)と が繋がるバイパス通路を備えて!/、る
ことを特徴とする調湿装置。
[2] 吸着剤を有して空気中の水分の吸着と脱離による空気中への水分の放出とを行 う第 1熱交換器 (32)および第 2熱交換器 (42)が接続され、冷水および温水の何れか の水が流れる水回路 (20)を備え、
上記水回路 (20)は、入口(21)より導入された水が第 1熱交換器 (32)を通って出 口(22)へ流れる第 1流れ状態と、入口(21)より導入された水が第 2熱交換器 (42)を 通って出口(22)へ流れる第 2流れ状態とに切り換わるように水流れを切り換え、第 1 熱交換器 (32)および第 2熱交換器 (42)で水分の吸脱着を交互に行う調湿装置であ つて、
上記水回路 (20)は、水流れを切り換える際に、入口(21)と出口(22)とが繋がるバ ィパス通路を備えている
ことを特徴とする調湿装置。
[3] 請求項 1または 2において、
上記バイパス通路は、バイパス遮断弁 (37)を有し、第 1熱交 (32)の上流側お よび下流側の何れかと、第 2熱交換器 (42)の上流側および下流側の何れかとに接続 されている
ことを特徴とする調湿装置。
[4] 請求項 1において、
上記水回路 (20)は、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための 温水用の入口側切換手段 (31)および出口側切換手段 (33)と、冷水用の入口側切 換手段 (41)および出口側切換手段 (43)とを備え、
上記バイパス通路は、バイパス遮断弁 (37)を有し、温水用の入口側切換手段 (31 )の上流側と温水用の出口側切換手段 (33)の下流側とに接続される温水用のバイパ ス通路、およびバイパス遮断弁 (37)を有し、冷水用の入口側切換手段 (41)の上流 側と冷水用の出口側切換手段 (43)の下流側とに接続される冷水用のバイパス通路 の少なくとも何れか一方を備えて 、る
ことを特徴とする調湿装置。
[5] 請求項 1において、
上記水回路 (20)は、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための 温水用の入口側切換手段 (31)および出口側切換手段 (33)と、冷水用の入口側切 換手段 (41)および出口側切換手段 (43)とを備え、
上記水流れの切換時に、各出口側切換手段 (33,43)を切り換えた後に各入口側 切換手段 (31,41)を切り換える
ことを特徴とする調湿装置。
[6] 請求項 5において、
加湿運転の場合、上記水流れの切換時に、冷水用の出口側切換手段 (43)を切り 換えた後に温水用の出口側切換手段 (33)を切り換える
ことを特徴とする調湿装置。
[7] 請求項 5において、
除湿運転の場合、上記水流れの切換時に、温水用の出口側切換手段 (33)を切り 換えた後に冷水用の出口側切換手段 (43)を切り換える
ことを特徴とする調湿装置。
[8] 請求項 2において、 上記水回路 (20)は、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための 入口側切換手段 (31)および出口側切換手段 (33)を備え、
上記バイパス通路は、バイパス遮断弁 (37)を有し、入口側切換手段 (31)の上流 側と出口側切換手段 (33)の下流側とに接続されている
ことを特徴とする調湿装置。
[9] 請求項 2において、
上記水回路 (20)は、第 1流れ状態と第 2流れ状態とに水流れを切り換えるための 入口側切換手段 (31)および出口側切換手段 (33)を備え、
上記水流れの切換時に、出口側切換手段 (33)を切り換えた後に入口側切換手 段 (31)を切り換える
ことを特徴とする調湿装置。
[10] 吸着剤を有して空気中の水分の吸着と脱離による空気中への水分の放出とを行 う第 1熱交換器 (32)および第 2熱交換器 (42)が接続され、冷水および温水の水が流 れる水回路 (20)を備え、
上記水回路 (20)は、第 1入口(21)より導入された温水が第 1熱交換器 (32)を通つ て第 1出口(22)へ流れると共に、第 2入口(23)より導入された冷水が第 2熱交 (4 2)を通って第 2出口(24)へ流れる第 1流れ状態と、第 1入口(21)より導入された温水 が第 2熱交 (42)を通って第 1出口(22)へ流れると共に、第 2入口(23)より導入さ れた冷水が第 1熱交換器 (32)を通って第 2出口(24)へ流れる第 2流れ状態とに切り 換わるように水流れを切り換えるための切換手段 (31,33,41,43)を備え、第 1熱交換 器 (32)および第 2熱交換器 (42)で水分の吸脱着を交互に行う調湿装置であって、 上記水回路 (20)は、出口側の切換手段 (33,43)よりも上流側に冷水および温水 のバッファタンク(39,49)を備えて!/、る
ことを特徴とする調湿装置。
[11] 吸着剤を有して空気中の水分の吸着と脱離による空気中への水分の放出とを行 う第 1熱交換器 (32)および第 2熱交換器 (42)が接続され、冷水および温水の何れか の水が流れる水回路 (20)を備え、
上記水回路 (20)は、入口(21)より導入された水が第 1熱交換器 (32)を通って出 口(22)へ流れる第 1流れ状態と、入口(21)より導入された水が第 2熱交換器 (42)を 通って出口(22)へ流れる第 2流れ状態とに切り換わるように水流れを切り換えるため の切換手段 (31,33)を備え、第 1熱交換器 (32)および第 2熱交換器 (42)で水分の吸 脱着を交互に行う調湿装置であって、
上記水回路 (20)は、出口側の切換手段 (33)よりも上流側に水のバッファタンク (3 9,49)を備えている
ことを特徴とする調湿装置。
[12] 請求項 1において、
上記第 1流れ状態では、第 2熱交換器 (42)で第 1空気を除湿すると共に、第 1熱 交換器 (32)で第 2空気を加湿し、上記第 2流れ状態では、第 1熱交換器 (32)で第 1 空気を除湿すると共に、第 2熱交換器 (42)で第 2空気を加湿するように、水流れと空 気流れを切り換える一方、
上記空気流れは、冷水および温水の少なくとも何れかの流れが切り換わってから 所定時間後に切り換えられる
ことを特徴とする調湿装置。
[13] 請求項 2において、
上記第 1流れ状態では、冷水が流れる第 1熱交換器 (32)で第 1空気を除湿すると 共に、第 2熱交換器 (42)で第 2空気を加湿し、上記第 2流れ状態では、冷水が流れ る第 2熱交換器 (42)で第 1空気を除湿すると共に、第 1熱交換器 (32)で第 2空気を 加湿するように、冷水流れと空気流れを切り換える一方、
上記空気流れは、冷水流れが切り換わってから所定時間後に切り換えられる ことを特徴とする調湿装置。
[14] 請求項 2において、
上記第 1流れ状態では、温水が流れる第 1熱交換器 (32)で第 2空気を加湿すると 共に、第 2熱交換器 (42)で第 1空気を除湿し、上記第 2流れ状態では、温水が流れ る第 2熱交換器 (42)で第 2空気を加湿すると共に、第 1熱交換器 (32)で第 1空気を 除湿するように、温水流れと空気流れを切り換える一方、
上記空気流れは、温水流れが切り換わってから所定時間後に切り換えられる ことを特徴とする調湿装置。
[15] 請求項 12において、
除湿した第 1空気を利用側へ供給する除湿運転の際、冷水流れを切り換えて力 空気流れを切り換えるまでの所定時間の間、温水の第 1熱交換器 (32)および第 2熱 交^^ (42)への流れが阻止される中間状態に切り換わる
ことを特徴とする調湿装置。
[16] 請求項 12において、
加湿した第 2空気を利用側へ供給する加湿運転の際、温水流れを切り換えてから 空気流れを切り換えるまでの所定時間の間、冷水の第 1熱交換器 (32)および第 2熱 交^^ (42)への流れが阻止される中間状態に切り換わる
ことを特徴とする調湿装置。
[17] 請求項 15において、
上記水回路 (20)は、中間状態時に温水が第 1熱交換器 (32)および第 2熱交換器 (42)をバイパスして流れるノ ィパス通路を備えて!/、る
ことを特徴とする調湿装置。
[18] 請求項 16において、
上記水回路 (20)は、中間状態時に冷水が第 1熱交換器 (32)および第 2熱交換器 (42)をバイパスして流れるノ ィパス通路を備えて!/、る
ことを特徴とする調湿装置。
PCT/JP2006/306161 2005-03-31 2006-03-27 調湿装置 WO2006106630A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06730109.3A EP1890088A4 (en) 2005-03-31 2006-03-27 CONDITIONER OF MOISTURE
CN2006800105863A CN101151493B (zh) 2005-03-31 2006-03-27 湿度控制装置
US11/887,247 US8033532B2 (en) 2005-03-31 2006-03-27 Humidifier
AU2006231190A AU2006231190B2 (en) 2005-03-31 2006-03-27 Humidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005103777A JP3879763B2 (ja) 2005-03-31 2005-03-31 調湿装置
JP2005-103777 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106630A1 true WO2006106630A1 (ja) 2006-10-12

Family

ID=37073196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306161 WO2006106630A1 (ja) 2005-03-31 2006-03-27 調湿装置

Country Status (7)

Country Link
US (1) US8033532B2 (ja)
EP (1) EP1890088A4 (ja)
JP (1) JP3879763B2 (ja)
KR (1) KR100949882B1 (ja)
CN (1) CN101151493B (ja)
AU (1) AU2006231190B2 (ja)
WO (1) WO2006106630A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864982B2 (ja) * 2005-05-30 2007-01-10 ダイキン工業株式会社 空調システム
JP2009109124A (ja) * 2007-10-31 2009-05-21 Daikin Ind Ltd 調湿装置
DE102010024624B4 (de) 2010-06-22 2016-03-31 Robert Bosch Gmbh Verfahren zum Betrieb einer Sorptionswärmetauscheranlage und Sorptionswärmetauscheranlage hierfür
US9234665B2 (en) 2010-06-24 2016-01-12 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9057531B2 (en) 2012-09-25 2015-06-16 Chin-Cheng Huang Thermal humidifier
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
CA2958480C (en) 2014-08-19 2022-10-25 Nortek Air Solutions Canada, Inc. Liquid to air membrane energy exchangers
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
US11143430B2 (en) 2015-05-15 2021-10-12 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
KR101667979B1 (ko) * 2015-06-19 2016-10-21 한국생산기술연구원 제습 및 가습 기능을 갖는 공기조화기와 이를 이용한 제습냉방 및 가습난방 방법
WO2016207864A1 (en) 2015-06-26 2016-12-29 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
CN105588244A (zh) * 2016-01-29 2016-05-18 北京科技大学 立式多级吸附式新风处理塔
SG11201807692VA (en) 2016-03-08 2018-10-30 Nortek Air Solutions Canada Inc Systems and methods for providing cooling to a heat load
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
JP7036491B2 (ja) * 2018-04-11 2022-03-15 前田建設工業株式会社 調湿装置
CN111912144A (zh) * 2019-05-07 2020-11-10 开利公司 热交换装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132311U (ja) * 1991-05-23 1992-12-08 清男 小林 床暖房装置
JPH0658642A (ja) * 1992-08-07 1994-03-04 Daikin Ind Ltd 吸着式空気調和装置
JPH07265649A (ja) * 1994-03-31 1995-10-17 Kobe Steel Ltd 乾式除湿装置
JP2003251354A (ja) * 2001-12-27 2003-09-09 Sanyo Electric Co Ltd 水処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425219B (sv) * 1980-09-12 1982-09-13 Jacob Weitman Sett och anordning att rena en forsmutsad gas, exempelvis procrssfranluft, och att dervid styra temperaturen och relativa fuktigheten
US5088295A (en) * 1990-07-30 1992-02-18 Carrier Corporation Air conditioner with dehumidification mode
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
US5510087A (en) * 1994-07-05 1996-04-23 The Babcock & Wilcox Company Two stage downflow flue gas treatment condensing heat exchanger
US5453223A (en) * 1994-09-12 1995-09-26 Acma Limited Method of air cooling and heat exchange apparatus
CN2495363Y (zh) * 2001-02-26 2002-06-19 杭州汉业气源净化设备有限公司 压缩空气的净化干燥装置
US6446942B1 (en) * 2001-05-02 2002-09-10 Ming-Kun Tsai Cooling tower
JP2004060954A (ja) 2002-07-26 2004-02-26 Daikin Ind Ltd 調湿装置
JP3861902B2 (ja) * 2004-09-09 2006-12-27 ダイキン工業株式会社 調湿装置
US7770405B1 (en) * 2005-01-11 2010-08-10 Ac Dc, Llc Environmental air control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132311U (ja) * 1991-05-23 1992-12-08 清男 小林 床暖房装置
JPH0658642A (ja) * 1992-08-07 1994-03-04 Daikin Ind Ltd 吸着式空気調和装置
JPH07265649A (ja) * 1994-03-31 1995-10-17 Kobe Steel Ltd 乾式除湿装置
JP2003251354A (ja) * 2001-12-27 2003-09-09 Sanyo Electric Co Ltd 水処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1890088A4 *

Also Published As

Publication number Publication date
AU2006231190B2 (en) 2009-12-03
JP2006284079A (ja) 2006-10-19
CN101151493A (zh) 2008-03-26
AU2006231190A1 (en) 2006-10-12
KR100949882B1 (ko) 2010-03-25
US20090267243A1 (en) 2009-10-29
KR20070116941A (ko) 2007-12-11
JP3879763B2 (ja) 2007-02-14
US8033532B2 (en) 2011-10-11
CN101151493B (zh) 2013-09-11
EP1890088A4 (en) 2014-02-19
EP1890088A1 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP3879763B2 (ja) 調湿装置
JP4466774B2 (ja) 調湿装置
JP3668785B2 (ja) 空気調和装置
JP3861902B2 (ja) 調湿装置
JP3891207B2 (ja) 調湿装置
JP4075950B2 (ja) 空気調和装置
WO2005095868A1 (ja) 調湿装置
WO2000053982A1 (fr) Climatiseur
WO2006129646A1 (ja) 空調システム
JP3695417B2 (ja) 調湿装置
AU2004264477B2 (en) Humidity control device
JP2002022205A (ja) 空調システム
JP5332534B2 (ja) 空気調和装置
JP4497012B2 (ja) 調湿装置
JP6911328B2 (ja) 蓄熱装置及び車両用エアコン装置
JP4496821B2 (ja) 調湿装置
JP2005164220A (ja) 空気調和装置
JP2005140372A (ja) 空気調和装置
JP2002018228A (ja) 調湿装置
JP2002022206A (ja) 調湿装置
JP6960282B2 (ja) デシカント空調装置
JP4538931B2 (ja) 空調システム
JP2022189334A (ja) 空調システム
JP4529530B2 (ja) 調湿装置
JP2005283075A (ja) 調湿装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010586.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006730109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006231190

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11887247

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006231190

Country of ref document: AU

Date of ref document: 20060327

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006231190

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077025036

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730109

Country of ref document: EP