WO2006106628A1 - 磁気記録媒体用基板及び垂直磁気記録媒体 - Google Patents

磁気記録媒体用基板及び垂直磁気記録媒体 Download PDF

Info

Publication number
WO2006106628A1
WO2006106628A1 PCT/JP2006/306148 JP2006306148W WO2006106628A1 WO 2006106628 A1 WO2006106628 A1 WO 2006106628A1 JP 2006306148 W JP2006306148 W JP 2006306148W WO 2006106628 A1 WO2006106628 A1 WO 2006106628A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
magnetic recording
recording medium
soft magnetic
Prior art date
Application number
PCT/JP2006/306148
Other languages
English (en)
French (fr)
Inventor
Teiichiro Umezawa
Yoshiaki Sonobe
Kong Kim
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to US11/887,539 priority Critical patent/US7955723B2/en
Publication of WO2006106628A1 publication Critical patent/WO2006106628A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer

Definitions

  • the present invention relates to a magnetic recording medium substrate constituting a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording system HDD (hard disk drive) or the like.
  • HDD hard disk drive
  • the present invention also relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.
  • a 2.5-inch magnetic disk is 30 GB per disk.
  • An information recording capacity exceeding (gigabytes) has been demanded.
  • a magnetic recording medium having a magnetic recording layer of a so-called in-plane magnetic recording system (longitudinal magnetic recording system, horizontal magnetic recording system) is used. ing.
  • the magnetization direction in the magnetic recording layer is substantially parallel to the main surface portion of the magnetic recording medium.
  • the perpendicular magnetic recording method is a preferable recording / reproducing method for achieving information recording with a high recording surface density.
  • the perpendicular magnetic recording medium adopting the perpendicular magnetic recording system has a magnetic recording layer, which is a hard magnetic layer, whose axis of easy magnetization is perpendicular to the main surface of the magnetic recording medium (normal direction).
  • a magnetic recording layer which is a hard magnetic layer, whose axis of easy magnetization is perpendicular to the main surface of the magnetic recording medium (normal direction).
  • the easy axis of magnetization of the magnetic recording layer is the c-axis in the hexagonal close packed (hep) crystal structure of cobalt. Therefore, in this case, it is necessary to orient the c-axis of the cobalt crystal structure in a direction perpendicular to the main surface of the magnetic recording medium.
  • a soft magnetic layer made of a soft magnetic material or a ferromagnetic microcrystal is provided on a nonmagnetic substrate, and a magnetic recording layer made of a hard magnetic material is formed on the soft magnetic layer.
  • a so-called double-layered perpendicular magnetic recording medium is proposed.
  • the soft magnetic layer has a function of guiding a magnetic flux emitted from the magnetic head and vertically transmitted through the magnetic recording layer or a magnetic flux emitted perpendicularly from the magnetic recording layer to a magnetic path reaching the magnetic head.
  • a suitable magnetic circuit can be formed between the magnetic head, the magnetic recording layer, and the soft magnetic layer during magnetic recording, based on the mirror image effect.
  • the soft magnetic layer can provide an effect of assisting magnetic recording. Therefore, it is considered that providing a soft magnetic layer between the nonmagnetic substrate and the magnetic recording layer is a preferable configuration for the perpendicular magnetic recording medium.
  • noise reduction has been a problem conventionally. Therefore, it is indispensable to reduce noise even in a perpendicular magnetic recording medium having a soft magnetic layer between a nonmagnetic substrate and a magnetic recording layer. This noise is generated from both the magnetic recording layer and the soft magnetic layer. In particular, spike noise generated by the soft magnetic layer force (spike noise) and medium noise are problems. .
  • Patent Document 1 discloses that a perpendicular magnetic layer in which a pair of ferromagnetic magnetic backing layers having the same film thickness are provided between a nonmagnetic substrate and a magnetic recording layer via a nonmagnetic layer. The recording medium is described.
  • the pair of ferromagnetic films of the backing magnetic layer are coupled antiparallel to each other, and according to Patent Document 1, the leakage magnetic flux generated from the domain wall in the backing magnetic layer is generated by the magnetic head.
  • the magnetic wall caused by the backing magnetic layer is reduced by fixing the domain wall in the backing magnetic layer so that it does not move easily.
  • Patent Document 2 describes a perpendicular magnetic recording medium in which a soft magnetic underlayer is provided between a nonmagnetic substrate and a magnetic recording layer.
  • the soft magnetic underlayer includes a first soft magnetic layer, a magnetic domain control layer including at least an antiferromagnetic layer, and a second soft magnetic layer.
  • the ratio (dl / d2) force between the thickness dl of the first soft magnetic layer and the thickness d2 of the second soft magnetic layer is not less than 0.3 and not more than 1.5.
  • the soft magnetic underlayer forms a magnetic domain control layer including an antiferromagnetic layer. Therefore, the magnetization curve of the soft magnetic underlayer shifts in the magnetic field direction. Since the coercive force He of the soft magnetic underlayer obtained from this magnetization curve is smaller than the exchange bias magnetic field (shift amount) Hex, the magnetization cannot take a unique value at zero magnetic field, that is, the magnetization curve Hysteresis no longer crosses zero magnetic field.
  • the soft magnetic underlayer since the hysteresis of the magnetization curve does not cross the zero magnetic field, the soft magnetic underlayer has a uniaxial magnetic anisotropy in which the radial direction of the nonmagnetic substrate is the easy axis of magnetization. And unidirectional magnetic anisotropy with the direction of the magnetic field as the easy magnetization direction, the domain wall in this soft magnetic underlayer is traced to the end side of the nonmagnetic substrate, and becomes a pseudo single domain state. The Therefore, the occurrence of spike noise in the data area is suppressed.
  • Non-Patent Document 1 describes a perpendicular magnetic recording medium in which a pair of soft magnetic layers laminated via a nonmagnetic layer is provided between a nonmagnetic substrate and a magnetic recording layer. . In this perpendicular magnetic recording medium, the pair of soft magnetic layers are antiparallel coupled to each other. According to Non-Patent Document 1, the force that suppresses spike noise when the thickness of each soft magnetic layer is the same. If the difference in the thickness of each soft magnetic layer becomes large, spike noise is generated.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-331920
  • Patent Document 2 JP 2004-348849 A
  • Non-Patent Document 1 Abstracts of the 28th Annual Conference of the Japan Society of Applied Magnetics (2004) p.612-p.613 Disclosure of Invention
  • the information recording surface density is about 1 square inch.
  • the perpendicular magnetic recording medium is laminated between the non-magnetic substrate and the magnetic recording layer via the non-magnetic layer. If a pair of soft magnetic layers antiparallel to each other are provided and the thickness of each soft magnetic layer is equal, spike noise is certainly suppressed. However, in this case, in the soft magnetic layer, the magnetic domains are discontinuous, and the formation of domain walls is confirmed by optical observation power, and it is thought that medium noise is increased.
  • a domain wall is formed in the soft magnetic layer.
  • the domain wall may cause noise.
  • the present invention is proposed in view of the above-described circumstances, and an object of the present invention is to combine a pair of soft magnetic layers laminated via a nonmagnetic layer with a nonmagnetic substrate, a magnetic recording layer, and the like.
  • a perpendicular magnetic recording medium capable of reliably suppressing medium noise even when information recording and reproduction with a high recording surface density is performed on a perpendicular magnetic recording medium provided between the two.
  • another object of the present invention is to provide a magnetic recording medium substrate which can constitute such a perpendicular magnetic recording medium.
  • the present inventor has found that a pair of soft magnetic layers stacked via a nonmagnetic layer is provided between a nonmagnetic substrate and a magnetic recording layer.
  • magnetic recording media we have obtained knowledge that the cause of media noise can be eliminated by preventing the formation of domain walls by setting the difference in thickness of each soft magnetic layer to an appropriate value. .
  • spike noise in a perpendicular magnetic recording medium is noise caused by a soft magnetic layer and is visible in a low frequency region. This is due to the movement of the domain wall and is also called Barkhausen noise.
  • medium noise is noise generated in the high frequency region, and is generated by the radius and size distribution of magnetic grains.
  • the domain wall is observed by OSA.
  • spike noise is suppressed by fixing the domain wall by the configuration of the AFC + AFM (antiferromagnetic coupling) soft magnetic layer.
  • the soft magnetic layer in the present invention eliminates the domain wall even without the AFM layer, so that spike noise can be reduced.
  • the spike noise usually disappears completely only with the AFC configuration, but when a pair of soft magnetic layers laminated via a nonmagnetic layer as in the present invention has a magnetic hysteresis, The domain wall is eliminated and spike noise can be completely eliminated. In addition, media noise can be eliminated as the domain wall disappears.
  • the pair of soft magnetic layers laminated via the nonmagnetic layer only needs to have magnetic hysteresis, the pair of soft magnetic layers may not have the same magnetic characteristics. Further, by making the thicknesses of the pair of soft magnetic layers having magnetic characteristics which are not homogeneous, the magnetic hysteresis can be obtained. Further, the soft magnetic layer may be composed of a plurality of layers instead of a pair.
  • the Ms of the lower soft magnetic layer may be increased and decreased, while the Ms of the upper soft magnetic layer may be decreased and increased.
  • the pair of soft magnetic layers are formed with substantially the same magnetic characteristics, and the thickness of one layer differs from the thickness of the other layer.
  • the difference between these film thicknesses is 10 nm or less.
  • the soft magnetic layers are magnetically antiparallel to each other.
  • a perpendicular magnetic recording medium having a base layer and a recording layer on a substrate having a nonmagnetic material force, wherein the base layer includes at least a pair of soft magnetic layers stacked via the nonmagnetic layer, and is magnetically It is characterized by having hysteresis.
  • the pair of soft magnetic layers are formed with substantially the same magnetic characteristics, and the film thicknesses thereof are different from each other. .
  • the difference in film thickness between the pair of soft magnetic layers is 10 ⁇ m or less.
  • the pair of soft magnetic layers is amorphous in the perpendicular magnetic recording medium having any one of the deviations of the constitution 4 to the constitution 6, and is characterized in that it is amorphous.
  • a magnetic recording medium substrate and a perpendicular magnetic recording medium according to the present invention include a pair of soft magnetic layers stacked on at least a nonmagnetic layer on a substrate made of a nonmagnetic material. Since the underlayer having hysteresis is provided, it is possible to prevent the domain wall from being formed in the underlayer and to suppress the generation of medium noise.
  • the pair of soft magnetic layers are formed with substantially the same magnetic characteristics, and the film thicknesses thereof are different from each other. Therefore, it is possible to satisfactorily prevent the domain wall from being formed in each soft magnetic layer and to suppress the occurrence of medium noise.
  • the difference in film thickness between the pair of soft magnetic layers is 10 nm or less, so that spike noise is generated in the soft magnetic layer. Can be prevented.
  • a suitable magnetic circuit is formed between the magnetic head, the magnetic recording layer, and the soft magnetic layer, so that information recording and reproduction with a high recording surface density can be performed.
  • the power to do is S.
  • the present invention provides a high recording surface density information recording in a perpendicular magnetic recording medium in which a pair of soft magnetic layers stacked via a nonmagnetic layer is provided between a nonmagnetic substrate and a magnetic recording layer. Even when recording and reproduction are performed, a perpendicular magnetic recording medium capable of reliably suppressing medium noise can be provided, and such a perpendicular magnetic recording medium can be configured for a magnetic recording medium.
  • a substrate can be provided, which can contribute to higher recording surface density in a perpendicular magnetic recording medium.
  • FIG. 1 is a cross-sectional view showing a configuration of a perpendicular magnetic recording medium according to the present invention.
  • FIG. 2 is a graph (hysteresis curve) showing the magnetic characteristics of the soft magnetic layer of the perpendicular magnetic recording medium according to the present invention.
  • FIG. 3 is a plan view showing a state of a domain wall in a soft magnetic layer of a perpendicular magnetic recording medium according to the present invention.
  • the perpendicular magnetic recording medium according to the present invention is configured as a magnetic disk mounted on, for example, an HDD (Hard Disk Drive) or the like, and can perform high-density information signal recording and reproduction by a perpendicular magnetic recording method. It is a medium.
  • the perpendicular magnetic recording medium according to the present invention configured as a magnetic disk is, for example, 0.85 inch (1.0 inch), 1.0 inch, 1.8 inch, 2.5 inch, 3.5 inch. It is made to have a predetermined diameter.
  • FIG. 1 is a cross-sectional view showing a configuration of a perpendicular magnetic recording medium according to the present invention.
  • the perpendicular magnetic recording medium has a structure in which a lower layer is formed on a substrate 1 made of a nonmagnetic material, and a perpendicular magnetic recording layer 4 is formed above the underlayer.
  • the underlying layer is formed to include at least a pair of first and second soft magnetic layers 2 and 3.
  • a nonmagnetic layer 5 is formed between the soft magnetic layers 2 and 3.
  • the first and second soft magnetic layers 2 and 3 are laminated with the nonmagnetic layer 5 interposed therebetween.
  • a nonmagnetic underlayer 6 is formed between the second soft magnetic layer 3 on the upper layer side and the perpendicular magnetic recording layer 4. This nonmagnetic underlayer 6 is a layer for crystal control of the perpendicular magnetic recording layer 4.
  • the layers from the first soft magnetic layer 2 to the nonmagnetic layer 5 and the second soft magnetic layer 3 are underlayers.
  • the underlayer, the nonmagnetic underlayer 6 and the substrate 1 And are magnetic recording medium substrates.
  • a perpendicular magnetic recording medium is obtained by forming the perpendicular magnetic recording layer 4 and a film above the perpendicular magnetic recording layer 4 on the magnetic recording medium substrate.
  • the soft magnetic layer is not limited to the first and second soft magnetic layers 2 and 3, and further includes third and subsequent soft magnetic layers. It ’s good to be out.
  • a glass substrate made of glass containing amorphous can be used as the substrate 1.
  • the glass material forming the substrate 1 is preferably a chemically strengthened glass obtained by chemically strengthening an aluminosilicate glass.
  • a first soft magnetic layer 2 is formed on the substrate 1 via an adhesion layer 7.
  • the thickness of the first soft magnetic layer 2 is about 40 nm to 50 nm.
  • the adhesion layer 7 is a layer for reinforcing the adhesion of the first soft magnetic layer 2 to the substrate 1, and if the adhesion of the first soft magnetic layer 2 to the substrate 1 is sufficiently secured, It does not necessarily need to be provided.
  • the film thickness of the soft magnetic layer can be changed by changing the discharge power and discharge time when the soft magnetic layer is sputtered.
  • the first soft magnetic layer 2 is preferably made of an amorphous material in order to ensure adhesion to the substrate 1 made of glass containing amorphous. Further, it is desirable that the first soft magnetic layer 2 is made of a material having preferable soft magnetic characteristics, for example, a cobalt (Co) based soft magnetic material.
  • a cobalt (Co) based soft magnetic material for example, cobalt (Co) soft magnetic materials, cobalt zirconium (Co—Zr) alloy, cobalt tantalum zirconium (Co—Ta—Zr) alloy, cobalt-niobium-zirconium (Co—Nb—Zr) alloy, etc. This material is particularly preferable as a material forming the first soft magnetic layer 2.
  • the adhesion layer 2 also has an adhesion force to the substrate 1 made of glass containing amorphous and the first soft magnetic layer 2 made of an amorphous material.
  • the substrate 1 made of glass containing amorphous
  • the first soft magnetic layer 2 made of an amorphous material.
  • it is preferably made of an amorphous material such as chromium-titanium (Cr—Ti) alloy.
  • the thickness of the adhesion layer 7 is about 20 nm.
  • a nonmagnetic layer 5 is formed on the first soft magnetic layer 2.
  • the nonmagnetic layer 5 is made of a nonmagnetic material such as ruthenium (Ru) and has a thickness of about 0.7 nm to 0.9 nm.
  • a second soft magnetic layer 3 is formed on the nonmagnetic layer 5.
  • the second soft magnetic layer 3 can be formed as a layer similar to the first soft magnetic layer 2. That is, the second soft magnetic layer 3 is preferably made of an amorphous material. Further, it is desirable that the second soft magnetic layer 3 is made of a material having preferable soft magnetic characteristics. For example, the second soft magnetic layer 3 is preferably made of a cobalt (Co) soft magnetic material.
  • cobalt (Co) soft magnetic materials cobalto-zirconium (Co_Zr) alloy, cobalt-tantalum-zirconium (Co_Ta_Z)
  • a material such as r) alloy or cobalt niobium zirconium (Co—Nb Zr) alloy is particularly preferable as the material forming the second soft magnetic layer 3.
  • the second soft magnetic layer 3 and the first soft magnetic layer 2 are magnetically antiparallel to each other due to the presence of the nonmagnetic layer 5 between them.
  • the film thickness of the second soft magnetic layer 3 is about 40 nm to 50 nm, like the first soft magnetic layer 2.
  • the film thicknesses of the first and second soft magnetic layers 2 and 3 are different from each other so that the magnetic characteristics of the soft magnetic layers 2 and 3 have magnetic hysteresis, as will be described later.
  • the difference in film thickness between them is 10nm or less.
  • a perpendicular magnetic recording layer 4 is formed on the second soft magnetic layer 3 via a nonmagnetic underlayer 6.
  • the nonmagnetic underlayer 6 is formed of tantalum (Ta) or the like and has a film thickness of about 2 nm.
  • the perpendicular magnetic recording layer 4 is made of a hard magnetic material having a hexagonal close packed (hep) crystal structure, such as a cobalt-platinum (Co_Pt) alloy, and is made of chromium (Cr) or silicon dioxide (SiO).
  • this perpendicular magnetic recording layer 4 By including a nonmagnetic material such as 2 or the like, it is formed as a dull-fluctuated magnetic layer.
  • chromium (Cr) or silicon dioxide (Si) is interposed between the magnetic grains so that the exchange interaction between the magnetic grains (magnetic grains) is suppressed or blocked.
  • Nonmagnetic material such as O is deposited.
  • This perpendicular magnetic recording layer 4 has a film thickness of about 15 nm.
  • the magnetic material constituting the perpendicular magnetic recording layer 4 is not particularly limited as long as it is a hard magnetic material.
  • the perpendicular magnetic recording layer 4 is composed of a granular material.
  • the magnetic layer be a dull-fluctuating magnetic layer containing a cobalt (Co) -based ferromagnetic material.
  • Cobalt (Co) -based ferromagnetic materials have magnetic anisotropy in the c-axis direction of the hexagonal close-packed (hep) crystal structure. Controlled to be vertically aligned.
  • a protective layer 8 is formed on the perpendicular magnetic recording layer 4.
  • This protective layer 8 is made of hydrogen, etc., and has a film thickness of about 5 nm.
  • the protective layer 8 is a layer for protecting the perpendicular magnetic recording medium from an impact of a magnetic head (not shown).
  • a lubricating layer 9 is formed on the protective layer 8.
  • the lubricating layer 9 is made of perfluoropolyether (PFPE) or the like, and has a thickness of about 1 nm.
  • PFPE perfluoropolyether
  • This lubricating layer 9 is a layer for reducing the impact of a magnetic head (not shown).
  • the first and second soft magnetic layers 2 and 3 are formed between the substrate 1 and the perpendicular magnetic recording layer 4.
  • these soft magnetic layers 2 and 3 are provided, so that a so-called two-layer perpendicular magnetic recording medium is obtained. Therefore, in this perpendicular magnetic recording medium, a suitable magnetic circuit can be formed between the magnetic head (not shown), the perpendicular magnetic recording layer 4 and the soft magnetic layers 2 and 3 at the time of magnetic recording. Based on the above, each soft magnetic layer 2 and 3 can obtain an action of assisting magnetic recording.
  • the soft magnetic layers 2 and 3 that are magnetically anti-parallel coupled to each other are formed with substantially the same magnetic characteristics, and each of the soft magnetic layers 2 and 3 has a different thickness.
  • the magnetic characteristics integrated with 3 have magnetic hysteresis.
  • the magnetic characteristics obtained by integrating all the soft magnetic layers should have magnetic hysteresis.
  • FIG. 2 is a graph (hysteresis curve, line) showing the magnetic characteristics of the soft magnetic layer of the perpendicular magnetic recording medium according to the present invention.
  • the magnetization curves of the soft magnetic layers 2 and 3 are shifted in the magnetic field direction. Since the coercive force He of each soft magnetic layer 2 and 3 obtained from this magnetization curve is smaller than the exchange bias magnetic field (shift amount) Hex, the magnetization cannot take a unique value in the zero magnetic field. That is, as shown in Fig. 2, the hysteresis of the magnetization curve does not cross the zero magnetic field.
  • FIG. 3 is a plan view showing the state of the domain wall in the soft magnetic layer of the perpendicular magnetic recording medium according to the present invention.
  • FIG. 3 shows the result of optically observing the soft magnetic layer with a measuring device using the Kerr effect, for example, OSA (Optical Surface Analyzer).
  • OSA is a device that utilizes the fact that the polarization angle of light changes when the magnetization direction changes.
  • SA optical surface analyzer
  • each of the soft magnetic layers 2 and 3 is about 40 nm to 50 nm, or the difference between these thicknesses, which is preferably thinner, is preferably lOnm or less.
  • Each of the soft magnetic layers 2 and 3 may be thicker than the other soft magnetic layer.
  • an amorphous aluminosilicate glass was formed into a disk shape by direct pressing to produce a glass disk.
  • the glass disk was subjected to polishing I ”, polishing, and chemical strengthening in sequence, to obtain a smooth non-magnetic substrate made of the chemically strengthened glass disk.
  • the adhesion layer 7 and the first layer were formed in an argon gas (Ar) atmosphere by a DC magnetron sputtering method using a vacuum deposition apparatus.
  • a soft magnetic layer 2, a nonmagnetic layer 5, a second soft magnetic layer 3, and a nonmagnetic underlayer 6 were sequentially formed.
  • the pressure of the nanoregon gas was 4.5 mTorr.
  • the adhesion layer 7 was formed to be a chromium (Cr) amorphous layer having a thickness of 20 nm. Concrete Specifically, the adhesion layer 7 was formed using an amorphous chromium-titanium (Cr—Ti) alloy target.
  • the first soft magnetic layer 2 is an alloy layer of amorphous (amorphous) cobalt tantalum zirconium (Co-Ta-Zr) (Co: 88 at%, Ta: 7 at%, Zr: 5 at%) Then, a film was formed using a cobalt-zirconium-tantalum alloy target.
  • This cobalt-zirconium mu tantalum alloy is a soft magnetic material exhibiting soft magnetic properties.
  • the first soft magnetic layer 2 has a film thickness of 45 nm (Example 1), a film thickness of 50 nm (Example 2), a film thickness of 50 nm (Example 3), and a film thickness of 55 nm (Example 4). Four types of film thickness were created.
  • a ruthenium metal target was used so that the nonmagnetic layer 5 became a ruthenium (Ru) metal layer having a thickness of 0.7 to 0.9 nm and having a nonmagnetic hexagonal close packed (hep) crystal structure.
  • the film was formed.
  • the second soft magnetic layer 3 is amorphous (amorphous) cobalt-tantalum-zirconium (Co-Ta-Zr) (Co: 88at%, Ta: The film was formed using a cobalt zirconium tantalum alloy target so as to be an alloy layer of 7 at%, Zr: 5 at%.
  • the second soft magnetic layer 3 has a film thickness of 50 nm (Example 1), a film thickness of 45 nm (Example 2), a film thickness of 55 nm (Example 3), and a film thickness of 50 nm (Example 4).
  • a film thickness of 50 nm Example 1
  • a film thickness of 45 nm Example 2
  • a film thickness of 55 nm Example 3
  • a film thickness of 50 nm Example 4
  • the nonmagnetic underlayer 6 was formed using a tantalum metal target so as to be a nonmagnetic tantalum (Ta) metal layer having a thickness of 2 nm.
  • Ta nonmagnetic tantalum
  • a portion of the magnetic recording medium substrate on which the nonmagnetic underlayer 6 was formed as described above was fractionated, and the surface roughness was measured with an atomic force microscope (AFM). It was in shape. Further, when the magnetic characteristics of the magnetic recording medium substrate of each of these examples were measured, it was confirmed that they exhibited suitable soft magnetic characteristics. Furthermore, when a magnetic field was applied in the radial direction to the magnetic recording medium substrate of each example and the hysteresis of the magnetization curve was measured, hysteresis was confirmed. It was also confirmed that there was residual magnetization when the applied magnetic field was removed. In the magnetic recording medium substrate of each example, the entire surface is continuously connected. It was confirmed that a continuous magnetic domain was formed and no domain wall was formed.
  • AFM atomic force microscope
  • Co_Cr_Pt_ (SiO) Cobalt-chromium-platinum-silicon dioxide
  • Co Cobalt-chromium-platinum-silicon dioxide
  • a film was formed using a target.
  • the material forming the perpendicular magnetic recording layer 4 is an alloy dull material.
  • the pressure of the argon gas is preferably 10 m Torr or more in at least the formation of the perpendicular magnetic recording layer 4.
  • the protective layer 8 is made of hydrogenated carbon, has a sufficient film hardness, and can protect the perpendicular magnetic recording layer 4 against an impact from the magnetic head.
  • a lubricating layer 9 made of perfluoropolyether (PFPE) was formed on the protective layer 8 by dip coating.
  • the thickness of the lubricating layer 9 is lnm.
  • the perpendicular magnetic recording media of these examples are sure to have good characteristics that do not generate spike noise and medium noise when performing information recording / reproducing on the perpendicular magnetic recording layer 4. This.
  • a magnetic recording medium substrate and a perpendicular magnetic recording medium were prepared using the same materials and processes as in the previous examples.
  • the film thicknesses of the first and second soft magnetic layers 2 and 3 were as follows. It was equal to each other. The thicknesses of these soft magnetic layers 2 and 3 were 40 nm (Comparative Example 1), 50 nm (Comparative Example 2), 60 nm (Comparative Example 3), and 75 nm (Comparative Example 4), respectively.
  • the perpendicular magnetic recording layer 4 similar to that of the above-described example was formed, the protective layer 8 and the lubricating layer 9 were formed, and the perpendicular magnetic recording medium was formed. Created.
  • the perpendicular magnetic recording media of these comparative examples generate spike noise and medium noise when performing information recording / reproduction on the perpendicular magnetic recording layer 4, and have characteristics more than the perpendicular magnetic recording media of the above-described embodiments. Was confirmed to be inferior.
  • the present invention is used for a magnetic recording medium substrate constituting a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording system HDD (hard disk drive) or the like.
  • HDD hard disk drive
  • the present invention is used for a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording system HDD (node disk drive) or the like.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

 非磁性層を介して積層され互いに反平行結合している一対の軟磁性層を非磁性基板と磁気記録層との間に設けた垂直磁気記録媒体において、高記録面密度の情報記録及び再生を行う場合においても、スパイクノイズ及び媒体ノイズを確実に抑制することができるようにする。  非磁性材料からなる基板上に、少なくとも一対の軟磁性層を非磁性層を介して積層させて形成し、一対の軟磁性層を統合した磁気特性が磁気的ヒステリシスを有しているようにして、磁壁が形成されることを抑制する。

Description

明 細 書
磁気記録媒体用基板及び垂直磁気記録媒体
技術分野
[0001] 本発明は、垂直磁気記録方式 HDD (ハードディスクドライブ)等に搭載される垂直 磁気記録媒体を構成する磁気記録媒体用基板に関する。
[0002] また、本発明は、垂直磁気記録方式 HDD (ハードディスクドライブ)等に搭載される 垂直磁気記録媒体に関する。
背景技術
[0003] 近年、情報化社会の高度化に伴って種々の情報処理装置が提案されており、また 、これら情報処理装置において使用される情報記録装置が提案されている。そして、 このような情報記録装置においては、情報処理装置の小型化、高性能化のために、 情報記録容量の大量化、記録密度の高密度化が求められている。
[0004] このような情報記録装置として、 HDD (ハードディスクドライブ)に代表される磁気記 録媒体を記録媒体として使用する磁気記録装置においては、 2. 5インチ径磁気ディ スクにおいて、 1枚あたり 30GB (ギガバイト)を超える情報記録容量が求められるよう になってきている。
[0005] 磁気記録媒体における情報記録容量の向上を図るためには、磁気記録媒体と、こ の磁気記録媒体に対して情報信号の記録再生を行う磁気ヘッドとの双方の性能向 上が必要である。磁気記録媒体において、前述の要求に応えるためには、 1平方ィ ンチあたり 60ギガビット(60GbitZinch2)を超える情報記録面密度を実現することが 必要である。
[0006] ところで、現在広く使用されている磁気記録装置においては、磁気記録媒体として 、いわゆる面内磁気記録方式 (長手磁気記録方式、水平磁気記録方式)の磁気記録 層を備えたものが使用されている。この面内磁気記録方式においては、磁気記録層 における磁化方向は、磁気記録媒体の主面部に略々平行な方向となる。
[0007] 面内磁気記録方式において、磁気記録層における結晶粒を小さくして、 1平方イン チあたり 60ギガビットのような高記録面密度で情報記録を行おうとしても、隣接する結 晶粒間の反磁界の影響が大きくなり、良好な記録が行えない虞れがある。また、磁気 記録層における結晶粒を小さくする場合には、磁気記録層の厚さを薄くしなければな らないので、熱磁気余効による熱揺らぎ障害が発生し易くなるという問題がある。熱 揺らぎ障害が顕著になると、記録磁化が時間経過とともに減衰し、ついには記録され た情報を正常に再生することができなくなってしまう。
[0008] そのため、近年、磁気記録媒体において、面内磁気記録方式に代えて、垂直磁気 記録方式を採用することが提案されている。垂直磁気記録方式においては、記録面 密度を高くしても、熱揺らぎ障害に対する耐性が高い。したがって、垂直磁気記録方 式は、高記録面密度の情報記録を達成するのに好ましい記録再生方式である。
[0009] 磁気記録媒体において、面内磁気記録方式に代えて垂直磁気記録方式を採用す るためには、磁気記録層の構成について、大幅な変更が必要である。すなわち、垂 直磁気記録方式を採用した垂直磁気記録媒体にぉレ、ては、硬磁性層である磁気記 録層の磁化容易軸を、磁気記録媒体の主面に対する垂直方向(法線方向)に配向さ せる必要がある。例えば、磁気記録層をコバルト(Co)系強磁性材料を用いて形成す る場合には、磁気記録層の磁化容易軸は、コバルトの六方細密充填 (hep)結晶構造 における c軸となる。したがって、この場合には、コバルトの結晶構造の c軸を磁気記 録媒体の主面に対する垂直方向に配向させる必要がある。
[0010] そして、このような垂直磁気記録媒体においては、非磁性基板上に軟磁性体や強 磁性微結晶からなる軟磁性層を備え、この軟磁性層上に硬磁性体からなる磁気記録 層を備える、いわゆる二層型垂直磁気記録媒体が提案されている。この軟磁性層は 、磁気ヘッドから発せられ磁気記録層を垂直に透過した磁束、あるいは、磁気記録 層から垂直に発せられた磁束を、磁気ヘッドに至る磁路に導く機能を有している。す なわち、このような二層型垂直磁気記録媒体においては、磁気記録時において、磁 気ヘッド、磁気記録層及び軟磁性層間に、好適な磁気回路を形成することができ、 鏡像効果に基づき、軟磁性層が磁気記録を補助する作用を得ることができる。したが つて、非磁性基板と磁気記録層との間に軟磁性層を設けることは、垂直磁気記録媒 体として好ましい構成であると考えられる。
[0011] ところで、垂直磁気記録媒体においては、従来より、ノイズの低減が課題となってお り、非磁性基板と磁気記録層との間に軟磁性層を有する垂直磁気記録媒体にぉレヽ ても、ノイズの低減が不可欠である。このノイズは、磁気記録層と軟磁性層との双方か ら発生しており、特に、軟磁性層力 発生するスパイク状のノイズ (スパイクノイズ)と、 媒体ノイズとが問題となってレ、る。
[0012] そこで、従来、このようなノイズの低減を図るための提案がなされている。例えば、特 許文献 1には、非磁性基板と磁気記録層との間に、非磁性層を介して積層された一 対の同一膜厚の強磁性膜力 なる裏打磁性層を設けた垂直磁気記録媒体が記載さ れている。
[0013] この垂直磁気記録媒体においては、裏打磁性層の一対の強磁性膜は、互いに反 平行結合しており、特許文献 1によれば、裏打磁性層中の磁壁から生ずる漏れ磁束 が磁気ヘッドに流入することが防止されるとともに、裏打磁性層中の磁壁が容易に移 動しないように固定されることによって、裏打磁性層に起因する媒体ノイズが低減され るとしている。
[0014] また、特許文献 2には、非磁性基板と磁気記録層との間に軟磁性下地層を設けた 垂直磁気記録媒体が記載されている。この軟磁性下地層は、第 1の軟磁性層と、少 なくとも反強磁性層を含む磁区制御層と、第 2の軟磁性層とからなつている。この垂 直磁気記録媒体においては、第 1の軟磁性層の厚み dl及び第 2の軟磁性層の厚み d2の比(dl/d2)力 0. 3以上、 1 · 5以下となっている。
[0015] この垂直磁気記録媒体においては、垂直磁気記録ディスクとして構成した場合に おいて、非磁性基板の半径方向に磁界を印加すると、軟磁性下地層が反強磁性層 を含む磁区制御層を有しているため、軟磁性下地層の磁化曲線が磁界方向にシフト する。この磁化曲線から求まる軟磁性下地層の保磁力 Heが交換バイアス磁界 (シフ ト量) Hexより小さくなつていることにより、ゼロ磁界において磁化が唯一の値を取らな くなり、すなわち、磁化曲線のヒステリシスがゼロ磁界と交差しなくなる。
[0016] そして、特許文献 2によれば、磁化曲線のヒステリシスがゼロ磁界と交差しなくなるこ とにより、軟磁性下地層には、非磁性基板の半径方向を磁化容易軸とする一軸磁気 異方性と磁界の向きを磁化容易方向とする一方向磁気異方性とが生じて、この軟磁 性下地層中の磁壁が非磁性基板の端部側に追レ、やられて疑似単磁区状態となるた めに、データ領域におけるスパイクノイズの発生が抑制されるとしている。
[0017] さらに、非特許文献 1には、非磁性基板と磁気記録層との間に、非磁性層を介して 積層された一対の軟磁性層を設けた垂直磁気記録媒体が記載されている。この垂 直磁気記録媒体においては、一対の軟磁性層は、互いに反平行結合している。この 非特許文献 1によれば、各軟磁性層の厚さが等しいときにはスパイクノイズが抑制さ れる力 各軟磁性層の厚さの差が大きくなると、スパイクノイズが発生するとしている。
[0018] 特許文献 1 :特開 2001— 331920公報
特許文献 2:特開 2004— 348849公報
非特許文献 1:第 28回日本応用磁気学会学術講演概要集 (2004) p.612〜p.613 発明の開示
発明が解決しょうとする課題
[0019] ところで、近年の記録媒体においては、情報記録面密度として、 1平方インチあたり
100Gビット(100Gbit/inch2)以上が求められるようになりつつある。このような高記 録面密度において良好に情報記録及び再生が行える垂直磁気記録媒体を実現す るには、スパイクノイズ及び媒体ノイズのより一層の抑制が必要となる。
[0020] 前述の非特許文献 1に記載されてレ、るように、垂直磁気記録媒体にぉレ、て、非磁 性基板と磁気記録層との間に、非磁性層を介して積層され互いに反平行結合してい る一対の軟磁性層を設け、各軟磁性層の厚さを等しくした場合には、確かにスパイク ノイズは抑制される。しかし、この場合には、軟磁性層において、磁区が不連続となり 、磁壁が形成されることが光学的な観察力 確認され、媒体ノイズがあがっていると思 われる。
[0021] このような垂直磁気記録媒体において、 1平方インチあたり 100Gビット以上というよ うな高記録面密度の情報記録及び再生を行おうとする場合には、軟磁性層において 磁壁が形成されていると、この磁壁がノイズ発生の原因となる虞れがある。
[0022] そこで、本発明は、上述の実情に鑑みて提案されるものであって、その目的は、非 磁性層を介して積層された一対の軟磁性層を非磁性基板と磁気記録層との間に設 けた垂直磁気記録媒体にぉレ、て、高記録面密度の情報記録及び再生を行う場合に おいても、媒体ノイズを確実に抑制することができる垂直磁気記録媒体を提供するこ とにあり、また、このような垂直磁気記録媒体を構成することができる磁気記録媒体用 基板を提供することにある。
課題を解決するための手段
[0023] 本発明者は、前記課題を解決すべく研究を進めた結果、非磁性層を介して積層さ れた一対の軟磁性層を非磁性基板と磁気記録層との間に設けた垂直磁気記録媒体 において、各軟磁性層の厚さの差を適切な値とすることにより、磁壁が形成されない ようにして、媒体ノイズの発生原因を解消することができるとの知見を得るに至った。
[0024] 通常、垂直磁気記録媒体におけるスパイクノイズは、軟磁性層起因のノイズであり、 低周波領域で見える。これは磁壁の移動によるもので、バルクハウゼンノイズとも言わ れている。一方、媒体ノイズは、高周波領域に生じるノイズで、磁性粒の半径やサイ ズ分布により生ずる。軟磁性層膜厚が等しい AFC軟磁性層は、磁壁が OSAで観測 される。非特許文献 1では、 AFC+AFM (反強磁性カップリング)軟磁性層の構成に よって、磁壁を固定することによってスパイクノイズを抑えている。一方、本発明にお ける軟磁性層は、 AFM層がなくても磁壁をなくすのでスパイクノイズを低減できる。 つまり、通常は AFC構成だけでは完全にはスパイクノイズは消えなレ、が、本発明のよ うに非磁性層を介して積層された一対の軟磁性層が磁気的ヒステリンスを有している と、磁壁をなくし、スパイクノイズを完全に消すことができる。また、磁壁がなくなること に伴い、媒体ノイズをも消すことができる。
[0025] 本発明においては、磁気的ヒステリシスによって、磁気的エネルギー、磁壁を抑制 していると考えられる。このため、非磁性層を介して積層された一対の軟磁性層が磁 気的ヒステリシスを有していればよいので、一対の軟磁性層それぞれが同質の磁気 特性ではなくともよい。また、同質でない磁気特性を有する一対の軟磁性層の膜厚を 同じ厚さにすることによって、磁気的ヒステリシスを有するようにすることもできる。さら に、軟磁性層は、一対でなく複数の層で構成してもよい。また、軟磁性層の AFC構 造において、軟磁性層の上下の磁化を打ち消すためには、 Msと膜厚との積( = Ms ' t)が上下で同じになることが重要である。つまり、下層の軟磁性層の Msを大きくして 薄くし、一方、上層の軟磁性層の Msを下げて厚くするようにしてもよい。
[0026] すなわち、本発明は、以下の構成のいずれか一を備えるものである。 [0027] 〔構成 1〕
非磁性材料からなる基板上に下地層を有する磁気記録媒体用基板であって、下地 層は、少なくとも、非磁性層を介して積層された一対の軟磁性層を含み、磁気的ヒス テリシスを有することを特徴とするものである。
[0028] 〔構成 2〕
構成 1を有する磁気記録媒体用基板において、一対の軟磁性層は、互いに実質的 に同一な磁気特性で形成されており、一方の層の膜厚が、他方の層の膜厚に対して 異なっており、これらの膜厚の差が 10nm以下であることを特徴とするものである。
[0029] 〔構成 3〕
構成 1、または、構成 2を有する磁気記録媒体用基板において、軟磁性層が互いに 磁気的に反平行結合していることを特徴とするものである。
[0030] 〔構成 4〕
非磁性材料力 なる基板上に下地層と記録層とを有する垂直磁気記録媒体であつ て、下地層は、少なくとも、非磁性層を介して積層された一対の軟磁性層を含み、磁 気的ヒステリシスを有することを特徴とするものである。
[0031] 〔構成 5〕
構成 4を有する垂直磁気記録媒体において、一対の軟磁性層は、互いに実質的に 同一な磁気特性で形成されており、それぞれの膜厚が、互いに異なっていることを特 徴とするものである。
[0032] 〔構成 6〕
構成 5を有する垂直磁気記録媒体において、一対の軟磁性層の膜厚の差は、 10η m以下であることを特徴とするものである。
[0033] 〔構成 7〕
構成 4乃至構成 6のレ、ずれか一を有する垂直磁気記録媒体にぉレ、て、一対の軟磁 性層は、アモルファスであることを特徴とするものである。
発明の効果
[0034] 本発明に係る磁気記録媒体用基板及び垂直磁気記録媒体は、非磁性材料からな る基板上に、少なくとも非磁性層を介して積層された一対の軟磁性層を含み磁気的 ヒステリシスを有する下地層を有しているので、下地層中に磁壁が形成されることを防 止し、媒体ノイズの発生を抑制することができる。
[0035] また、本発明に係る磁気記録媒体用基板及び垂直磁気記録媒体においては、一 対の軟磁性層が互いに実質的に同一な磁気特性で形成され、それぞれの膜厚が互 いに異なっていることによって、各軟磁性層中に磁壁が形成されることを良好に防止 し、媒体ノイズの発生を抑制することができる。
[0036] さらに、本発明に係る磁気記録媒体用基板及び垂直磁気記録媒体においては、 一対の軟磁性層の膜厚の差が 10nm以下であることによって、軟磁性層におけるス パイクノイズの発生を防止することができる。
[0037] そして、本発明に係る垂直磁気記録媒体にぉレ、ては、磁気ヘッド、磁気記録層及 び軟磁性層間に好適な磁気回路が形成され、高記録面密度の情報記録及び再生 を行うこと力 Sできる。
[0038] すなわち、本発明は、非磁性層を介して積層された一対の軟磁性層を非磁性基板 と磁気記録層との間に設けた垂直磁気記録媒体において、高記録面密度の情報記 録及び再生を行う場合においても、媒体ノイズを確実に抑制することができる垂直磁 気記録媒体を提供することができ、また、このような垂直磁気記録媒体を構成すること ができる磁気記録媒体用基板を提供することができ、垂直磁気記録媒体おける高記 録面密度化に資することができるものである。
図面の簡単な説明
[0039] [図 1]本発明に係る垂直磁気記録媒体の構成を示す断面図である。
[図 2]本発明に係る垂直磁気記録媒体の軟磁性層の磁気特性を示すグラフ(ヒステリ シス曲泉)である。
[図 3]本発明に係る垂直磁気記録媒体の軟磁性層における磁壁の状態を示す平面 図である。
符号の説明
[0040] 1 基板
2 第 1の軟磁性層
3 第 2の軟磁性層 4 垂直磁気記録層
5 非磁性層
発明を実施するための最良の形態
[0041] 以下、本発明を実施するための最良の形態について、図面を参照しながら説明す る。
[0042] 本発明に係る垂直磁気記録媒体は、例えば、 HDD (ハードディスクドライブ)等に 搭載される磁気ディスクとして構成され、垂直磁気記録方式によって高密度の情報 信号記録及び再生を行うことができる記録媒体である。
[0043] なお、磁気ディスクとして構成された本発明に係る垂直磁気記録媒体は、例えば、 0. 85インチ(inch)、 1. 0インチ、 1. 8インチ、 2· 5インチ、 3. 5インチなどの所定の 直径となされて作製される。
[0044] 図 1は、本発明に係る垂直磁気記録媒体の構成を示す断面図である。
[0045] この垂直磁気記録媒体は、図 1に示すように、非磁性材料からなる基板 1上に、下 地層と、この下地層より上層に、垂直磁気記録層 4が形成されて構成されている。下 地層は、少なくとも、対をなす第 1及び第 2の軟磁性層 2, 3を含んで形成されている。 そして、各軟磁性層 2, 3間には、非磁性層 5が形成されている。すなわち、第 1及び 第 2の軟磁性層 2, 3は、非磁性層 5を介して、互いに積層された状態となっている。 また、上層側の第 2の軟磁性層 3と垂直磁気記録層 4との間には、非磁性下地層 6が 形成されている。この非磁性下地層 6は、垂直磁気記録層 4の結晶制御のための層 である。
[0046] この垂直磁気記録媒体において、第 1の軟磁性層 2から、非磁性層 5及び第 2の軟 磁性層 3までが下地層であり、この下地層と非磁性下地層 6と基板 1とが磁気記録媒 体用基板である。そして、この磁気記録媒体用基板上に垂直磁気記録層 4及びこの 垂直磁気記録層 4より上層の膜を形成したものが垂直磁気記録媒体となる。
[0047] なお、この磁気記録媒体用基板の下地層においては、軟磁性層は、第 1及び第 2 の軟磁性層 2, 3に限定されず、さらに、第 3以降の軟磁性層を含んでいることとして あよい。
[0048] 基板 1としては、アモルファスを含むガラスからなるガラス基板を使用することができ る。この基板 1をなすガラス材料としては、アルミノシリケートガラスを化学強化した化 学強化ガラスが好ましい。
[0049] この基板 1上には、付着層 7を介して、第 1の軟磁性層 2が形成されている。この第 1 の軟磁性層 2の膜厚は、 40nm乃至 50nm程度である。付着層 7は、第 1の軟磁性層 2の基板 1に対する密着力を補強するための層であり、第 1の軟磁性層 2の基板 1に 対する密着力が充分に確保されていれば、必ずしも設けることを要しない。
[0050] なお、軟磁性層の膜厚は、軟磁性層をスパッタする際の放電電力や放電時間を変 えることによって変えることができる。
[0051] 第 1の軟磁性層 2は、アモルファスを含むガラスからなる基板 1に対する密着力を確 保するためには、アモルファス材料からなることが好ましい。また、この第 1の軟磁性 層 2は、好ましい軟磁気特性を備える材料からなることが望ましぐ例えば、コバルト( Co)系軟磁性材料からなることが望ましい。コバルト (Co)系軟磁性材料のなかでも、 コバルト ジルコニウム(Co— Zr)系合金、コバルト タンタル ジルコニウム(Co— Ta— Zr)系合金、コバルト—ニオブ—ジルコニウム(Co— Nb— Zr)系合金などの材 料が第 1の軟磁性層 2をなす材料として特に好ましい。
[0052] なお、付着層 7を設ける場合には、この密着層 2も、アモルファスを含むガラスからな る基板 1及びアモルファス材料からなる第 1の軟磁性層 2に対する密着力を確保する ために、例えば、クロム一チタン(Cr—Ti)系合金などのアモルファス材料からなるこ とが好ましい。この付着層 7の膜厚は、 20nm程度である。
[0053] 第 1の軟磁性層 2上には、非磁性層 5が形成されている。この非磁性層 5は、ルテニ ゥム (Ru)の如き非磁性材料により、 0· 7nm乃至 0· 9nm程度の膜厚を有して形成さ れている。
[0054] 非磁性層 5上には、第 2の軟磁性層 3が形成されている。この第 2の軟磁性層 3は、 第 1の軟磁性層 2と同様の層として形成することができる。すなわち、この第 2の軟磁 性層 3は、アモルファス材料からなることが好ましい。また、この第 2の軟磁性層 3は、 好ましい軟磁気特性を備える材料からなることが望ましぐ例えば、コバルト(Co)系 軟磁性材料からなることが望ましい。コバルト(Co)系軟磁性材料のなかでも、コバノレ ト—ジルコニウム(Co_Zr)系合金、コバルト—タンタル—ジルコニウム(Co_Ta_Z r)系合金、コバルト ニオブ ジルコニウム(Co— Nb Zr)系合金などの材料が第 2の軟磁性層 3をなす材料として特に好ましい。
[0055] この第 2の軟磁性層 3と第 1の軟磁性層 2とは、互いの間に非磁性層 5が存在してい ることによって、互いに磁気的に反平行結合している。そして、この第 2の軟磁性層 3 の膜厚は、第 1の軟磁性層 2と同様に、 40nm乃至 50nm程度である。ただし、これら 第 1及び第 2の軟磁性層 2, 3の膜厚は、後述するように、各軟磁性層 2, 3を統合した 磁気特性が磁気的ヒステリシスを有するようにするため、互いに異なっており、互いの 膜厚の差は、 10nm以下となっている。
[0056] この第 2の軟磁性層 3上には、非磁性下地層 6を介して、垂直磁気記録層 4が形成 されている。非磁性下地層 6は、タンタル (Ta)などによって形成され、膜厚は、 2nm 程度である。垂直磁気記録層 4は、コバルト—白金(Co_Pt)系合金の如き、六方細 密充填 (hep)結晶構造の硬磁性材料からなり、クロム(Cr)や二酸化シリコン (Si〇 )
2 等の非磁性材料を含有することにより、ダラ二ユラ一磁性層として形成されている。す なわち、この垂直磁気記録層 4においては、磁性粒 (磁性グレイン)間の交換相互作 用が抑制、または、遮断されるように、磁性粒間に、クロム(Cr)や二酸化シリコン(Si O )等の非磁性材料が析出している。この垂直磁気記録層 4は、膜厚が 15nm程度
2
であり、ェピタキシャル成長(ヘテロェピタキシャル成長)によって形成される。
[0057] なお、本発明において、垂直磁気記録層 4を構成する磁性材料としては、硬磁性 体材料であれば特に限定されないが、前述したように、この垂直磁気記録層 4は、グ ラニユラ一磁性層、特にコバルト(Co)系強磁性材料を含むダラ二ユラ一磁性層であ ることが好ましい。コバルト(Co)系の強磁性材料は、六方細密充填 (hep)結晶構造 の c軸方向に磁気異方性を備えるので、垂直磁気記録層 4においては、この c軸が基 板面に対して垂直配向するように制御される。一方、六方細密充填 (hep)結晶構造 を有する材料において、 c軸の垂直配向が促進されれば促進されるほど、磁性粒 (磁 性グレイン)間の交換相互作用を遮断、または、抑制するための非磁性の粒界部の 形成が阻害されてしまうという問題がある。コバノレト(Co)系強磁性材料を含むダラ二 ユラ一磁性層においては、このような阻害要因を緩和して積極的に非磁性粒界部を 形成させることができるので、垂直磁気記録層 4を構成する磁性材料として好適であ る。
[0058] 垂直磁気記録層 4上には、保護層 8が形成されている。この保護層 8は、水素化力 一ボンなどからなり、膜厚は 5nm程度である。この保護層 8は、図示しない磁気ヘッド の衝撃から、この垂直磁気記録媒体を防護するための層である。
[0059] また、この保護層 8上には、潤滑層 9が形成されている。この潤滑層 9は、パーフル ォロポリエーテル(PFPE)などからなり、膜厚は lnm程度である。この潤滑層 9は、図 示しない磁気ヘッドの衝撃を緩和するための層である。
[0060] ところで、第 1及び第 2の軟磁性層 2, 3は、基板 1と垂直磁気記録層 4との間に位置 して形成されている。この垂直磁気記録媒体においては、これら軟磁性層 2, 3が設 けられてレ、ることにより、いわゆる二層型垂直磁気記録媒体となっている。したがって 、この垂直磁気記録媒体においては、磁気記録時において、図示しない磁気ヘッド 、垂直磁気記録層 4及び各軟磁性層 2, 3間に、好適な磁気回路を形成することがで き、鏡像効果に基づき、各軟磁性層 2, 3が磁気記録を補助する作用を得ることがで きる。
[0061] 互いに磁気的に反平行結合している各軟磁性層 2, 3は、互いに実質的に同一な 磁気特性で形成されており、互いに膜厚が異なることによって、各軟磁性層 2, 3を統 合した磁気特性が磁気的ヒステリシスを有している。なお、第 3以降の軟磁性層が存 在する場合には、これら全ての軟磁性層を統合した磁気特性が磁気的ヒステリシスを 有しているようにする。
[0062] 図 2は、本発明に係る垂直磁気記録媒体の軟磁性層の磁気特性を示すグラフ(ヒス テリシス曲,線)である。
[0063] これら軟磁性層 2, 3に所定の方向に磁界を印加すると、各軟磁性層 2, 3の磁化曲 線が磁界方向にシフトする。そして、この磁化曲線から求まる各軟磁性層 2, 3の保磁 力 Heが交換バイアス磁界(シフト量) Hexより小さくなつていることにより、ゼロ磁界に おいて磁化が唯一の値を取らなくなる。すなわち、図 2に示すように、磁化曲線のヒス テリシスがゼロ磁界と交差しなくなる。
[0064] 図 3は、本発明に係る垂直磁気記録媒体の軟磁性層における磁壁の状態を示す 平面図である。 [0065] 図 3は、カー(Kerr)効果を利用した測定装置、例えば、 OSA (Optical Surface Anal yzer)で、光学的に軟磁性層を観測した結果である。 OSAは、磁化方向が変化して いると、光の偏光角が変化することを利用した装置であり、スパイクノイズ、媒体ノイズ
Figure imgf000014_0001
[0066] ここでは、 SMOKE (Surface Magnet Optical Kerr Effect:表面磁気光学 Kerr効果 )を利用して磁化の反転を調べる〇SA(Optical Surface Analyzer)により、媒体表面 の磁化方向の分布を観察した。
[0067] これら軟磁性層 2, 3がこのような磁気特性を有していることにより、これら軟磁性層 2 , 3の交換バイアス磁界(シフト量) Hexが上昇し、これら軟磁性層 2, 3においては、 図 3中の(a)に示すように、垂直磁気記録媒体の略々全面に亘つて連続した磁区が 形成され、磁壁が形成されない状態となる。なお、図 3中の(b)は、軟磁性層におい て磁区が不連続となり、磁壁が形成されてレ、る状態を示してレ、る。
[0068] 各軟磁性層 2, 3の膜厚は、それぞれ 40nm乃至 50nm程度、あるいは、より薄くす ることが好ましぐこれら膜厚の差は、 lOnm以下であることが好ましい。なお、各軟磁 性層 2, 3は、いずれを他方の軟磁性層より厚くしてもよい。
実施例
[0069] 以下、本発明の実施例について、比較例を挙げつつ、詳細に説明する。
[0070] この実施例においては、アモルファスのアルミノシリケートガラスをダイレクトプレスに より円盤状に成型し、ガラスディスクを作成した。このガラスディスクに、研肖 I」、研磨、 化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性の基板を得た。
[0071] この基板の主面部の表面粗さを原子間力顕微鏡 (AFM)によって測定したところ、 Rmaxが 4. 8nm、 Raが 0. 42nmという平滑な表面开状であった。なお、 Rmax及び R aの表記は、 日本工業規格 (JISB0601)にしたがっている。
[0072] このようにして得られたディスク基板上に、真空引きを行なった成膜装置を用いて、 DCマグネトロンスパッタリング法にて、アルゴンガス (Ar)雰囲気中で、付着層 7、第 1 の軟磁性層 2、非磁性層 5、第 2の軟磁性層 3、非磁性下地層 6を順次成膜した。ァ ノレゴンガスの圧力は 4· 5mTorrとした。
[0073] 付着層 7は、膜厚 20nmのクロム(Cr)系アモルファス層となるように成膜した。具体 的には、この付着層 7は、アモルファスのクロム一チタン(Cr—Ti)合金ターゲットを用 レ、て成膜した。
[0074] 第 1の軟磁性層 2は、アモルファス(非晶質)のコバルト タンタル ジルコニウム(C o-Ta-Zr) (Co : 88at%、 Ta : 7at%、 Zr: 5at%、)の合金層となるように、コバルト —ジルコニウム一タンタル合金ターゲットを用いて成膜した。このコバルト一ジルコ二 ゥムータンタル合金は、軟磁気特性を示す軟磁性体である。
[0075] この第 1の軟磁性層 2は、膜厚 45nm (実施例 1)、膜厚 50nm (実施例 2)、膜厚 50 nm (実施例 3)、膜厚 55nm (実施例 4)の 4種類の膜厚のものを作成した。
[0076] 次に、非磁性層 5を、膜厚 0. 7乃至 0. 9nmの非磁性で六方細密充填 (hep)結晶 構造のルテニウム (Ru)金属層となるように、ルテニウム金属ターゲットを用いて成膜 した。
[0077] 第 2の軟磁性層 3は、第 1の軟磁性層 2と同様に、アモルファス(非晶質)のコバルト —タンタル一ジルコニウム(Co— Ta— Zr) (Co: 88at%、 Ta: 7at%、 Zr: 5at%、)の 合金層となるように、コバルト ジルコニウム タンタル合金ターゲットを用いて成膜し た。
[0078] この第 2の軟磁性層 3は、膜厚 50nm (実施例 1)、膜厚 45nm (実施例 2)、膜厚 55 nm (実施例 3)、膜厚 50nm (実施例 4)の 4種類の膜厚のものを作成した。したがって 、第 1の軟磁性層 2の膜厚 (T1)と第 2の軟磁性層 3の膜厚 (T2)との差( I T1 T2 I )は、実施例 1乃至実施例 4において、いずれも 5nmとした。
[0079] 次に、非磁性下地層 6を、膜厚 2nmの非磁性のタンタル (Ta)金属層となるように、 タンタル金属ターゲットを用いて成膜した。
[0080] このように非磁性下地層 6までが成膜された磁気記録媒体用基板の一部を分取し、 原子間力顕微鏡 (AFM)により、表面粗さを測定したところ、平滑な表面形状であつ た。また、これら各実施例の磁気記録媒体用基板の磁気特性を測定したところ、好適 な軟磁性特性を示していることが確認された。さらに、各実施例の磁気記録媒体用 基板について径方向に磁界を印加して、磁化曲線のヒステリシスを測定したところ、ヒ ステリシスが確認された。また、印加磁界を除去したときに残留磁化があることも確認 された。そして、各実施例の磁気記録媒体用基板においては、略々全面に亘つて連 続した磁区が形成され、磁壁が形成されていないことが確認された。
[0081] 次に、各磁気記録媒体用基板上に垂直磁気記録層 4を成膜した。すなわち、膜厚
15nmの六方細密充填 (hep)結晶構造からなる垂直磁気記録層 4が形成されるよう に、コバルト—クロム—白金—二酸化シリコン(Co_Cr_Pt_ (SiO ) )系合金((Co
2
: 64at%、 Cr: 16at%、 Pt : 20at%): 92mol% - SiO : 8mol%)からなる硬磁性体の
2
ターゲットを用いて成膜した。この垂直磁気記録層 4をなす材料は、合金ダラ二ユラ一 材料である。
[0082] なお、少なくとも垂直磁気記録層 4の成膜においては、アルゴンガスの圧力は 10m Torr以上とすることが好ましい。
[0083] 次に、アルゴン (Ar)に水素を 30%含有させた混合ガスを用いて、カーボンターグ ットをスパッタリングすることにより、膜厚 5nmの水素化カーボン (水素化炭素)からな る保護層 8を形成した。この保護層 8は、水素化カーボンからなることで、充分な膜硬 度を有し、磁気ヘッドからの衝撃に対して垂直磁気記録層 4を防護することができる。
[0084] そして、この保護層 8上に、ディップコート法により、パーフルォロポリエーテル(PF PE)からなる潤滑層 9を形成した。この潤滑層 9の膜厚は lnmである。
[0085] 以上の製造工程により、磁気ディスクとしての垂直磁気記録媒体が作製された。
[0086] これら実施例の垂直磁気記録媒体は、垂直磁気記録層 4に対する情報記録再生 を行う際に、スパイクノイズ及び媒体ノイズの発生しない良好な特性を有することが確 p' c! "れ /こ。
[0087] 〔比較例〕
この比較例においては、前述の実施例と同様の材料及び工程を用いて磁気記録 媒体用基板及び垂直磁気記録媒体を作成したが、第 1及び第 2の軟磁性層 2, 3の 膜厚は互いに等しくした。これら軟磁性層 2, 3の膜厚は、それぞれ 40nm (比較例 1) 、 50nm (比較例 2)、 60nm (比較例 3)、 75nm (比較例 4)とした。
[0088] これら各比較例にぉレ、て、非磁性下地層 6までを成膜した磁気記録媒体用基板の 磁気特性を測定したところ、好適な軟磁性特性を示していることが確認された。しかし 、各比較例について径方向に磁界を印加して、磁化曲線のヒステリシスを測定したと ころ、印加磁界を除去したときにゼロ磁界となり、ヒステリシスを有していないことが確 認された。そして、各比較例においては、磁区が不連続となり、磁壁が形成されてい ることが確認された。
[0089] これら各比較例の磁気記録媒体用基板において、前述の実施例と同様の垂直磁 気記録層 4を成膜し、保護層 8及び潤滑層 9を形成して、垂直磁気記録媒体を作成 した。
[0090] これら比較例の垂直磁気記録媒体は、垂直磁気記録層 4に対する情報記録再生 を行う際に、スパイクノイズ及び媒体ノイズが発生し、前述の各実施例の垂直磁気記 録媒体よりも特性が劣ることが確認された。
産業上の利用可能性
[0091] 本発明は、垂直磁気記録方式 HDD (ハードディスクドライブ)等に搭載される垂直 磁気記録媒体を構成する磁気記録媒体用基板に利用される。
[0092] また、本発明は、垂直磁気記録方式 HDD (ノヽードディスクドライブ)等に搭載される 垂直磁気記録媒体に利用される。

Claims

請求の範囲
[1] 非磁性材料からなる基板上に、下地層を有する磁気記録媒体用基板であって、 前記下地層は、少なくとも、非磁性層を介して積層された一対の軟磁性層を含み、 磁気的ヒステリシスを有する
ことを特徴とする磁気記録媒体用基板。
[2] 前記一対の軟磁性層は、互いに実質的に同一な磁気特性で形成されており、一方 の層の膜厚が、他方の層の膜厚に対して異なっており、これらの膜厚の差が lOnm 以下である
ことを特徴とする請求項 1記載の磁気記録媒体用基板。
[3] 前記軟磁性層が互いに磁気的に反平行結合している
ことを特徴とする請求項 1、または、請求項 2記載の磁気記録媒体用基板。
[4] 非磁性材料からなる基板上に、下地層と記録層とを有する垂直磁気記録媒体であ つて、
前記下地層は、少なくとも、非磁性層を介して積層された一対の軟磁性層を含み、 磁気的ヒステリシスを有する
ことを特徴とする垂直磁気記録媒体。
[5] 前記一対の軟磁性層は、互いに実質的に同一な磁気特性で形成されており、それ ぞれの膜厚が、互いに異なっている
ことを特徴とする請求項 4記載の垂直磁気記録媒体。
[6] 前記一対の軟磁性層の膜厚の差は、 lOnm以下である
ことを特徴とする請求項 5記載の垂直磁気記録媒体。
[7] 前記一対の軟磁性層は、アモルファスである
ことを特徴とする請求項 4乃至請求項 6のいずれか一に記載の垂直磁気記録媒体
PCT/JP2006/306148 2005-03-31 2006-03-27 磁気記録媒体用基板及び垂直磁気記録媒体 WO2006106628A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/887,539 US7955723B2 (en) 2005-03-31 2006-03-27 Magnetic recording medium substrate and perpendicular magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-102422 2005-03-31
JP2005102422 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106628A1 true WO2006106628A1 (ja) 2006-10-12

Family

ID=37073194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306148 WO2006106628A1 (ja) 2005-03-31 2006-03-27 磁気記録媒体用基板及び垂直磁気記録媒体

Country Status (3)

Country Link
US (1) US7955723B2 (ja)
JP (1) JP5043155B2 (ja)
WO (1) WO2006106628A1 (ja)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117895B2 (ja) 2008-03-17 2013-01-16 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気記録媒体及びその製造方法
JP2009238299A (ja) 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5453666B2 (ja) 2008-03-30 2014-03-26 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスク及びその製造方法
US9177586B2 (en) 2008-09-30 2015-11-03 WD Media (Singapore), LLC Magnetic disk and manufacturing method thereof
US8877359B2 (en) 2008-12-05 2014-11-04 Wd Media (Singapore) Pte. Ltd. Magnetic disk and method for manufacturing same
WO2010116908A1 (ja) 2009-03-28 2010-10-14 Hoya株式会社 磁気ディスク用潤滑剤化合物及び磁気ディスク
JP2010257567A (ja) 2009-03-30 2010-11-11 Wd Media Singapore Pte Ltd 垂直磁気記録媒体およびその製造方法
US20100300884A1 (en) 2009-05-26 2010-12-02 Wd Media, Inc. Electro-deposited passivation coatings for patterned media
US8496466B1 (en) 2009-11-06 2013-07-30 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
JP5643516B2 (ja) 2010-01-08 2014-12-17 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気記録媒体
JP5574414B2 (ja) 2010-03-29 2014-08-20 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気ディスクの評価方法及び磁気ディスクの製造方法
JP5634749B2 (ja) 2010-05-21 2014-12-03 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP5645476B2 (ja) 2010-05-21 2014-12-24 ダブリュディ・メディア・シンガポール・プライベートリミテッド 垂直磁気ディスク
JP2011248968A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2011248969A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスク
JP2011248967A (ja) 2010-05-28 2011-12-08 Wd Media (Singapore) Pte. Ltd 垂直磁気ディスクの製造方法
JP2012009086A (ja) 2010-06-22 2012-01-12 Wd Media (Singapore) Pte. Ltd 垂直磁気記録媒体及びその製造方法
US8889275B1 (en) 2010-08-20 2014-11-18 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
US8743666B1 (en) 2011-03-08 2014-06-03 Western Digital Technologies, Inc. Energy assisted magnetic recording medium capable of suppressing high DC readback noise
US8711499B1 (en) 2011-03-10 2014-04-29 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US8491800B1 (en) 2011-03-25 2013-07-23 WD Media, LLC Manufacturing of hard masks for patterning magnetic media
US9028985B2 (en) 2011-03-31 2015-05-12 WD Media, LLC Recording media with multiple exchange coupled magnetic layers
US8565050B1 (en) 2011-12-20 2013-10-22 WD Media, LLC Heat assisted magnetic recording media having moment keeper layer
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US8993134B2 (en) 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates
US9034492B1 (en) 2013-01-11 2015-05-19 WD Media, LLC Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording
US10115428B1 (en) 2013-02-15 2018-10-30 Wd Media, Inc. HAMR media structure having an anisotropic thermal barrier layer
US9153268B1 (en) 2013-02-19 2015-10-06 WD Media, LLC Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure
US9183867B1 (en) 2013-02-21 2015-11-10 WD Media, LLC Systems and methods for forming implanted capping layers in magnetic media for magnetic recording
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer
US9190094B2 (en) 2013-04-04 2015-11-17 Western Digital (Fremont) Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement
US9093122B1 (en) 2013-04-05 2015-07-28 WD Media, LLC Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
US8867322B1 (en) 2013-05-07 2014-10-21 WD Media, LLC Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US9296082B1 (en) 2013-06-11 2016-03-29 WD Media, LLC Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer
US9406330B1 (en) 2013-06-19 2016-08-02 WD Media, LLC Method for HDD disk defect source detection
US9607646B2 (en) 2013-07-30 2017-03-28 WD Media, LLC Hard disk double lubrication layer
US9389135B2 (en) 2013-09-26 2016-07-12 WD Media, LLC Systems and methods for calibrating a load cell of a disk burnishing machine
US9177585B1 (en) 2013-10-23 2015-11-03 WD Media, LLC Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording
US9581510B1 (en) 2013-12-16 2017-02-28 Western Digital Technologies, Inc. Sputter chamber pressure gauge with vibration absorber
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
US9447368B1 (en) 2014-02-18 2016-09-20 WD Media, LLC Detergent composition with low foam and high nickel solubility
US9431045B1 (en) 2014-04-25 2016-08-30 WD Media, LLC Magnetic seed layer used with an unbalanced soft underlayer
US9042053B1 (en) 2014-06-24 2015-05-26 WD Media, LLC Thermally stabilized perpendicular magnetic recording medium
US9159350B1 (en) 2014-07-02 2015-10-13 WD Media, LLC High damping cap layer for magnetic recording media
US10054363B2 (en) 2014-08-15 2018-08-21 WD Media, LLC Method and apparatus for cryogenic dynamic cooling
US9082447B1 (en) 2014-09-22 2015-07-14 WD Media, LLC Determining storage media substrate material type
US9227324B1 (en) 2014-09-25 2016-01-05 WD Media, LLC Mandrel for substrate transport system with notch
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US8995078B1 (en) 2014-09-25 2015-03-31 WD Media, LLC Method of testing a head for contamination
US9449633B1 (en) 2014-11-06 2016-09-20 WD Media, LLC Smooth structures for heat-assisted magnetic recording media
US9818442B2 (en) 2014-12-01 2017-11-14 WD Media, LLC Magnetic media having improved magnetic grain size distribution and intergranular segregation
US9401300B1 (en) 2014-12-18 2016-07-26 WD Media, LLC Media substrate gripper including a plurality of snap-fit fingers
US9218850B1 (en) 2014-12-23 2015-12-22 WD Media, LLC Exchange break layer for heat-assisted magnetic recording media
US9257134B1 (en) 2014-12-24 2016-02-09 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
US9990940B1 (en) 2014-12-30 2018-06-05 WD Media, LLC Seed structure for perpendicular magnetic recording media
US9280998B1 (en) 2015-03-30 2016-03-08 WD Media, LLC Acidic post-sputter wash for magnetic recording media
US9275669B1 (en) 2015-03-31 2016-03-01 WD Media, LLC TbFeCo in PMR media for SNR improvement
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US11074934B1 (en) 2015-09-25 2021-07-27 Western Digital Technologies, Inc. Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
US10236026B1 (en) 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US9406329B1 (en) 2015-11-30 2016-08-02 WD Media, LLC HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US10121506B1 (en) 2015-12-29 2018-11-06 WD Media, LLC Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348952A (ja) * 2003-05-20 2004-12-09 Komag Inc 垂直記録ディスク用軟磁性膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034485B2 (ja) * 1999-11-30 2008-01-16 株式会社東芝 磁気記録媒体
JP3350512B2 (ja) 2000-05-23 2002-11-25 株式会社日立製作所 垂直磁気記録媒体及び磁気記録再生装置
SG91343A1 (en) * 2000-07-19 2002-09-17 Toshiba Kk Perpendicular magnetic recording medium and magnetic recording apparatus
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
JP3762277B2 (ja) * 2000-09-29 2006-04-05 キヤノン株式会社 磁気記録媒体及びその製造方法
US7166375B2 (en) * 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
JP3653007B2 (ja) * 2001-05-14 2005-05-25 株式会社日立製作所 垂直磁気記録媒体とその製造方法および磁気記憶装置
JP2003324225A (ja) * 2002-04-26 2003-11-14 Nec Corp 積層フェリ型磁性薄膜並びにそれを使用した磁気抵抗効果素子及び強磁性トンネル素子
JP2004079058A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 垂直磁気記録媒体及び磁気記録再生装置
JP2004348777A (ja) * 2003-05-20 2004-12-09 Hitachi Ltd 垂直磁気記録媒体および磁気記録装置
JP2004348849A (ja) 2003-05-22 2004-12-09 Hitachi Ltd 垂直磁気記録媒体及び磁気記録装置
JP3896366B2 (ja) * 2004-04-21 2007-03-22 Tdk株式会社 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348952A (ja) * 2003-05-20 2004-12-09 Komag Inc 垂直記録ディスク用軟磁性膜

Also Published As

Publication number Publication date
JP5043155B2 (ja) 2012-10-10
JP2010231881A (ja) 2010-10-14
US7955723B2 (en) 2011-06-07
US20100203358A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5043155B2 (ja) 磁気記録媒体用基板及び垂直磁気記録媒体
US6723450B2 (en) Magnetic recording medium with antiparallel coupled ferromagnetic films as the recording layer
JP5260510B2 (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP5061307B2 (ja) 磁気記録媒体および磁気記録再生装置
US20090311557A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
JP5105333B2 (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
US6383668B1 (en) Magnetic recording media with antiferromagnetically coupled host layer for the magnetic recording layer
JP2011034603A (ja) 垂直磁気記録媒体
JP2008176858A (ja) 垂直磁気記録媒体、及びそれを用いたハードディスクドライブ
JP2009087500A (ja) 垂直磁気記録媒体および磁気記録再生装置
JP2008146816A (ja) 粒間交換強化層を含む多層記録構造を備えた垂直磁気記録媒体
JP2009059431A (ja) 磁気記録媒体および磁気記録再生装置
JPWO2009014205A1 (ja) 垂直磁気記録媒体、その製造方法および磁気記録再生装置
US8034471B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium and magnetic recording reproducing apparatus
JP2006155865A (ja) 垂直磁気記録媒体および垂直磁気記録再生装置
JP2008192249A (ja) 垂直磁気記録媒体、その製造方法および磁気記録再生装置
JP2009064520A (ja) 磁気記録媒体および磁気記録再生装置
JP2008276859A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
US20100014191A1 (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus
JP5345543B2 (ja) 垂直磁気記録媒体の製造方法および磁気記録再生装置
JP2007102833A (ja) 垂直磁気記録媒体
JP4928139B2 (ja) 磁気記録媒体用基板及び垂直磁気記録媒体
JP2009146507A (ja) 垂直磁気記録媒体及び磁気記録再生装置
JP4782047B2 (ja) 垂直磁気記録媒体および磁気記録再生装置
US20110116189A1 (en) Magnetic recording medium and magnetic recording/reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 11887539

Country of ref document: US