WO2006102466A2 - High power doherty amplifier using multi-stage modules - Google Patents
High power doherty amplifier using multi-stage modules Download PDFInfo
- Publication number
- WO2006102466A2 WO2006102466A2 PCT/US2006/010498 US2006010498W WO2006102466A2 WO 2006102466 A2 WO2006102466 A2 WO 2006102466A2 US 2006010498 W US2006010498 W US 2006010498W WO 2006102466 A2 WO2006102466 A2 WO 2006102466A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifier
- stage
- power
- peak
- amplification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
Definitions
- This invention relates generally to RF power amplifiers, and more particularly the invention relates to a high power amplifier having improved efficiency and linearity using multiple stage modules.
- a power amplifier circuit design which provides improved efficiency in backoff power levels is the Doherty amplifier circuit, which combines power from a main amplifier and from a peak amplifier. See, W. H.
- the main or carrier amplifier 10 and peak amplifier 12 are designed to deliver maximum power with optimum efficiency to a load R, as shown in FIG. IA.
- the main or carrier amplifier is a normal Class B amplifier, while the peak amplifier is designed to only amplify signals which exceed some minimum threshold. For an LDMOS power transistor, this can be accomplished by DC biasing the transistor below its pinch-off voltage for operation similar to Class C.
- the outputs of the two amplifiers are connected by a quarter- wave transmission line of characteristic impedance R, and a load of one-half of the optimum load R is attached to the output of the peak amplifier.
- the RF input power is divided equally with a quarter-wave delay at the input to the peak amplifier, thus assuring that the output power of the two amplifiers at the load R/2 will be in phase.
- the Doherty amplifier has employed discrete single stage amplifiers in the carrier and peak amplifier modules. The present invention realizes advantages not available when using discrete single stage amplifiers.
- multi-stage amplifier modules are employed in a Doherty amplifier for both the main amplifier and the peak amplifier or peak amplifiers.
- the first stage of each amplifier module can include signal pre-distortion whereby the first stage compensates for distortion in both of the first and second stages.
- the design is simple and the results in a high efficiency amplifier with high gain.
- Fig.l is a functional block diagram of a prior art two stage hybrid amplifier module which can be used in an embodiment of the invention.
- Fig. 2 is a functional block diagram of a 2-way two stage RF power amplifier employing hybrid amplifier modules of Fig. 1.
- Fig. 3 is a plot of amplifier gain and input and output return loss versus frequency for one embodiment of the invention.
- Fig. 4 is a graph illustrating Doherty amplifier and individual class AB module gain and efficiency versus CW power output.
- Fig. 5 is a graph of Doherty amplifier gain and AM/PM versus CW power out.
- Fig. 6 is a graph illustrating Doherty 2-Tone CW intermodulation products versus average output power.
- Fig. 7 is a graph illustrating Doherty amplifier intermodulation products versus average power out at three frequencies.
- Fig. 8 is a plot of Doherty amplifier 2- WCMDMA signal ACLR and intermodulation rejection versus average power output.
- Fig. 9 is a graph of Doherty amplifier signal ACLR and IM3 rejection versus average power output for three frequencies.
- Fig. 10 is illustrates specifications for a Doherty amplifier with pre-distortion for a 12.5 watt 2WCDMA signal spectrum in accordance with an embodiment of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
- Fig. 1 is a functional block diagram of a commercially available two stage thick film hybrid microelectronic amplifier (CREE PFM 1903 OSM) which can advantageously be employed in a Doherty amplifier in accordance with an embodiment of the present invention.
- the first stage of the module includes a field effect transistor Ql connected to a RF input through input matching circuitry and pre- distortion circuitry.
- Transistor Q2 is connected to receive the output of Q 1 through input matching circuitry and applies an amplified output through output matching circuitry to the RF output.
- Ql and Q2 are LDMOS transistors, and each LDMOS transistor die exhibits input or output impedances on the order of 1-5 ohms (before adding chip and- wire matching).
- the combination of chip-and-wire matching and distributed circuit matching on the output of the 3OW transistor (Q2) transforms the optimum power- match impedance (for Class AB operation) to a nominal 20 Ohm level. This simplifies the off-module matching circuitry required for a Doherty amplifier subsystem.
- Each amplifier module assembly includes the two (5W and 30W) die carriers soldered to a bottom plate of copper (1.0 mm thick).
- the silicon LDMOS transistor die (manufactured by Cree Microwave) are eutectically attached to metal interposers.
- the bottom plate also supports a 0.5 mm thick single-layer alumina thick-film substrate which has cutouts where the die carriers are located.
- the alumina substrate is attached to the copper base with a conductive epoxy. The heat from the die is spread through the die carrier (interposer) and then through the thick copper base, before it encounters the external interface.
- Fig. 2 is a functional block diagram of a 2-way two stage Doherty amplifier in accordance with an embodiment of the present invention which employs two
- the amplifier includes a main module 20 and a peaking module 22 which receive an RF input signal through splitter 24.
- the main module 20 is biased for class AB operation, and the peak amplifier module is biased nominally for class C operation.
- Module inputs are connected directly to a 3 dB quadrature hybrid.
- the outputs are matched using short low impedance transmission line elements and shunt capacitors Cp and Cm. Because the output impedances of the modules are much higher than unmatched discrete LDMOS transistors, the additional matching circuitry is minimized.
- Cp and Cm are of different values (Cp « Cm) as is appropriate for the different operating modes (Class C vs. Class AB) of the 3OW devices.
- transmission lines TLl each side.
- the main module side TL2 section is nominally 90° , as is typical of classic 2-Way Doherty designs.
- the output section TL3 and associated capacitors constitute an impedance transformer. All element (transmission line and shunt capacitor) values are adjusted in the circuit analysis and optimization process. The validity and applications power of the CMC device models was confirmed by the experience that only capacitor values were adjusted in prototype circuitry to obtain reported results (transmission line lengths and widths were left at turn-on values).
- the capacitor values are adjusted primarily to achieve optimum peak power levels. Bias conditions are the most sensitive determinate of amplifier linearity and efficiency.
- circuit linearity is optimized at some tradeoff in efficiency. Linearity is critical to the intended applications, in which further correction by pre-distortion can be anticipated.
- a major objective is to achieve system-level linearity standards with pre-distortion only (avoiding feed-forward losses). This strategy can potentially maximize system efficiency and reduce complexity.
- Gain and return loss for the two way, two stage amplifier of Fig. 2 are presented in Figure 3.
- Gain is 26 ⁇ 0.2 dB over 1930-1960 MHz.
- Measured gain and efficiency versus CW output power are compared for the Doherty amplifier and an individual module operated with normal Class AB bias in Figure 4.
- the Class AB module has a peak output capability on nominally 30 Watts (+44.8 dam), whereas the Doherty output is nominally 60 Watts (47.8 dam). Note that both circuits have device quiescent bias levels adjusted for optimum linearity, not for optimum peak power or for efficiency.
- the comparison of the shape of the efficiency versus output power characteristics is of particular interest. Even though the Doherty amplifier has twice the output power capability, its efficiency is similar to that of the individual module at low power levels.
- Figure 5 presents measured gain and relative phase versus output power (AM/PM) for the Doherty amplifier.
- AM/PM phase versus output power
- a characteristic of this 2-Way Doherty amplifier is the degradation of linearity as one deviates from the band center frequency. This is thought to be typical of 2-Way Doherty amplifiers in general. Center-band and band-edge measurements of CW 2- Tone 3rd order IMD products are included in Figure 7. The 2-tone CW Imps show more dependence with frequency than do the 2-WCDMA signal tests. [0023] Standard WCDMA testing involved two signals separated by 10 MHz (3GPP with 8.5 dB peak-to-average), centered at 1960 MHz.
- Measurements show that the IM3 products at 10 MHz offsets tend to be the dominant distortion, and a degree of IM3 asymmetry is evident at lower power levels (this also occurs for the individual modules operated in standard Class AB conditions). ACLR and BVI3 rejection are plotted at three RF frequencies in Figure 9. Measurement system dynamic range is limited to about -55 dab at low power( ⁇ -60 dab at higher power levels).
- a key application objective is to further improve linearity by use of pre- distortion.
- Figure 10 shows 2-WCDMA signal data using a PMC-Sierra Paladin 15 digital pre-distortion to enhance the Doherty amplifier linearity.
- the signal in this case is two WCDMA signals with crestfactor reduction to 7.5 dB.
- Average output power is 12.5 Watts, and efficiency is 26.8%, with ACLR & EVI3 at -51 & -54 dBc.
- Efficiency across the RF band varies from 28% to 26% (1930- 1990), and ACLR is ⁇ -49dBc and IM3 is ⁇ -50dBc.
- JM3 asymmetry is very small after application of pre-D. This demonstrates excellent linearity and efficiency using this Doherty design in conjunction with pre-distortion.
- the two-way two stage Doherty amplifier in Fig. 2 uses small surface-mount hybrid modules as the active elements in a 2- way 6OW Doherty amplifier.
- the design demonstrates good efficiency (26%) for two 3GPP WCDMA signals at 1OW average output, with ACLR of -40 dBc and IM3 of -38 dBc (uncorrected).
- 12.5 W of WCDMA is produced at 26% efficiency & ACLR/EVI3 rejections of -49 dBc / -50 dBc across the full 1930-1990 MHz band.
- the associated 26 dB gain and low input return loss simplifies system design.
- the transistors can be lateral DMOS silicon field effect transistors, MESFETs, HEMTs, HBTs, and bipolar transistors.
- the invention has applicability to amplifiers having more than one peak amplifier and using modules with two or more stages. For example, a three way two stage amplifier using three CREE PFMl 9030 modules has been simulated for producing over 90 watts of single tone power with overall gain of 24dB.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06739337A EP1861920A4 (en) | 2005-03-24 | 2006-03-16 | DOHERTY HIGH-PERFORMANCE AMPLIFIERS WITH MULTI-STAGE MODULES |
| JP2008503161A JP2008535321A (ja) | 2005-03-24 | 2006-03-16 | 多段モジュールを用いた高電力ドハティ増幅器 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/090,577 | 2005-03-24 | ||
| US11/090,577 US7193473B2 (en) | 2005-03-24 | 2005-03-24 | High power Doherty amplifier using multi-stage modules |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006102466A2 true WO2006102466A2 (en) | 2006-09-28 |
| WO2006102466A3 WO2006102466A3 (en) | 2007-04-05 |
Family
ID=37024603
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/010498 Ceased WO2006102466A2 (en) | 2005-03-24 | 2006-03-16 | High power doherty amplifier using multi-stage modules |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7193473B2 (enExample) |
| EP (2) | EP2442444B1 (enExample) |
| JP (2) | JP2008535321A (enExample) |
| TW (1) | TWI377783B (enExample) |
| WO (1) | WO2006102466A2 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009031097A1 (en) * | 2007-09-03 | 2009-03-12 | Nxp B.V. | Multi-way doherty amplifier |
| EP2442442A4 (en) * | 2009-06-12 | 2012-04-18 | Huawei Tech Co Ltd | POWER AMPLIFIERS AND TRANSMITTERS |
| US8390381B2 (en) | 2010-06-02 | 2013-03-05 | Nxp B.V. | Two stage Doherty amplifier |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005093948A1 (ja) * | 2004-03-26 | 2005-10-06 | Hitachi Kokusai Electric Inc. | 増幅器 |
| US7847630B2 (en) * | 2004-11-05 | 2010-12-07 | Hitachi Kokusai Electric Inc. | Amplifier |
| US7362170B2 (en) * | 2005-12-01 | 2008-04-22 | Andrew Corporation | High gain, high efficiency power amplifier |
| US7541866B2 (en) * | 2006-09-29 | 2009-06-02 | Nortel Networks Limited | Enhanced doherty amplifier with asymmetrical semiconductors |
| DE102006057324A1 (de) * | 2006-12-05 | 2008-06-19 | Rohde & Schwarz Gmbh & Co. Kg | Doherty-Verstärker-System |
| US9479202B2 (en) * | 2008-02-19 | 2016-10-25 | Infineon Technologies Ag | System and method for burst mode amplifier |
| US7764120B2 (en) * | 2008-08-19 | 2010-07-27 | Cree, Inc. | Integrated circuit with parallel sets of transistor amplifiers having different turn on power levels |
| WO2011046031A1 (ja) | 2009-10-13 | 2011-04-21 | 日本電気株式会社 | 電力増幅器およびその動作方法 |
| DE102010034067A1 (de) * | 2010-08-12 | 2012-02-16 | Rohde & Schwarz Gmbh & Co. Kg | Hochfrequenzleistungsverstärker mit Doherty-Erweiterung |
| US8611834B2 (en) | 2010-11-01 | 2013-12-17 | Cree, Inc. | Matching network for transmission circuitry |
| US9071211B1 (en) * | 2011-12-15 | 2015-06-30 | Anadigics, Inc. | Compact doherty combiner |
| US8698560B2 (en) * | 2012-05-09 | 2014-04-15 | Mstar Semiconductor, Inc. | Variable-gain low noise amplifier |
| US8754710B2 (en) * | 2012-06-22 | 2014-06-17 | Mstar Semiconductor, Inc. | Low-noise amplifiers for RF receiver |
| CN202818232U (zh) | 2012-09-18 | 2013-03-20 | 中兴通讯股份有限公司 | 一种Doherty功放电路 |
| US9007126B2 (en) | 2013-02-25 | 2015-04-14 | Intel Mobile Communications GmbH | Multi-mode amplifier system |
| US9407214B2 (en) | 2013-06-28 | 2016-08-02 | Cree, Inc. | MMIC power amplifier |
| US9030260B2 (en) * | 2013-07-19 | 2015-05-12 | Alcatel Lucent | Dual-band high efficiency Doherty amplifiers with hybrid packaged power devices |
| US11233483B2 (en) | 2017-02-02 | 2022-01-25 | Macom Technology Solutions Holdings, Inc. | 90-degree lumped and distributed Doherty impedance inverter |
| CN110785926B (zh) | 2017-04-24 | 2023-10-03 | 麦克姆技术解决方案控股有限公司 | 具有大rf分数和瞬时带宽的反向多尔蒂功率放大器 |
| WO2018197918A1 (en) | 2017-04-24 | 2018-11-01 | Macom Technology Solutions Holdings, Inc. | Improved efficiency, symmetrical doherty power amplifier |
| EP3616320B1 (en) * | 2017-04-24 | 2023-11-08 | MACOM Technology Solutions Holdings, Inc. | Inverted doherty power amplifier with large rf and instantaneous bandwidths |
| FR3070100A1 (fr) | 2017-08-14 | 2019-02-15 | Macom Technology Solutions Holdings, Inc. | Architecture d'amplificateur de puissance sans modulation, a large bande et a haut rendement |
| US11283410B2 (en) | 2017-10-02 | 2022-03-22 | Macom Technology Solutions Holdings, Inc. | No-load-modulation, high-efficiency power amplifier |
| US10250197B1 (en) | 2017-11-06 | 2019-04-02 | Nxp Usa, Inc. | Multiple-stage power amplifiers implemented with multiple semiconductor technologies |
| EP3480945A1 (en) | 2017-11-06 | 2019-05-08 | NXP USA, Inc. | Multiple-stage power amplifiers implemented with multiple semiconductor technologies |
| US10530306B2 (en) | 2018-04-13 | 2020-01-07 | Nxp Usa, Inc. | Hybrid power amplifier circuit or system with combination low-pass and high-pass interstage circuitry and method of operating same |
| CN112640298A (zh) | 2018-10-05 | 2021-04-09 | 镁可微波技术有限公司 | 低负载调制功率放大器 |
| US12009788B2 (en) | 2019-03-28 | 2024-06-11 | Macom Technology Solutions Holdings, Inc. | In-transistor load modulation |
| US11888448B2 (en) | 2019-12-30 | 2024-01-30 | Macom Technology Solutions Holdings, Inc. | Low-load-modulation broadband amplifier |
| US12028022B2 (en) | 2020-12-10 | 2024-07-02 | Macom Technology Solutions Holdings, Inc. | Hybrid power amplifier with GaN-on-Si and GaN-on-SiC circuits |
| EP4297274A1 (en) | 2022-06-24 | 2023-12-27 | Wolfspeed, Inc. | Flip chip doherty amplifier devices |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004222151A (ja) | 2003-01-17 | 2004-08-05 | Nec Corp | ドハーティ増幅器 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW293899B (enExample) * | 1994-10-18 | 1996-12-21 | Seiko Epson Corp | |
| JP3135195B2 (ja) * | 1994-10-26 | 2001-02-13 | 三菱電機株式会社 | マイクロ波集積回路 |
| FI972345A0 (fi) * | 1995-11-30 | 1997-06-02 | Motorola Inc | Vahvistinpiiri ja vahvistinpiirin viritysmenetelmä |
| US5786727A (en) * | 1996-10-15 | 1998-07-28 | Motorola, Inc. | Multi-stage high efficiency linear power amplifier and method therefor |
| US6262629B1 (en) * | 1999-07-06 | 2001-07-17 | Motorola, Inc. | High efficiency power amplifier having reduced output matching networks for use in portable devices |
| EP1104093A1 (en) * | 1999-11-24 | 2001-05-30 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for generation of a RF signal |
| US6320462B1 (en) * | 2000-04-12 | 2001-11-20 | Raytheon Company | Amplifier circuit |
| US6864742B2 (en) * | 2001-06-08 | 2005-03-08 | Northrop Grumman Corporation | Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers |
| US6737922B2 (en) | 2002-01-28 | 2004-05-18 | Cree Microwave, Inc. | N-way RF power amplifier circuit with increased back-off capability and power added efficiency using unequal input power division |
| US6791417B2 (en) | 2002-01-28 | 2004-09-14 | Cree Microwave, Inc. | N-way RF power amplifier circuit with increased back-off capability and power added efficiency using selected phase lengths and output impedances |
| US6700444B2 (en) | 2002-01-28 | 2004-03-02 | Cree Microwave, Inc. | N-way RF power amplifier with increased backoff power and power added efficiency |
| KR100553252B1 (ko) * | 2002-02-01 | 2006-02-20 | 아바고테크놀로지스코리아 주식회사 | 휴대용 단말기의 전력 증폭 장치 |
| GB2393866A (en) * | 2002-09-06 | 2004-04-07 | Filtronic Plc | A class F Doherty amplifier using PHEMTs |
| US6822321B2 (en) * | 2002-09-30 | 2004-11-23 | Cree Microwave, Inc. | Packaged RF power transistor having RF bypassing/output matching network |
| KR100480496B1 (ko) * | 2002-11-18 | 2005-04-07 | 학교법인 포항공과대학교 | 도허티 증폭기를 이용한 신호 증폭 장치 |
| US6798295B2 (en) | 2002-12-13 | 2004-09-28 | Cree Microwave, Inc. | Single package multi-chip RF power amplifier |
-
2005
- 2005-03-24 US US11/090,577 patent/US7193473B2/en not_active Expired - Lifetime
-
2006
- 2006-03-16 EP EP12150378.3A patent/EP2442444B1/en active Active
- 2006-03-16 WO PCT/US2006/010498 patent/WO2006102466A2/en not_active Ceased
- 2006-03-16 EP EP06739337A patent/EP1861920A4/en not_active Ceased
- 2006-03-16 JP JP2008503161A patent/JP2008535321A/ja active Pending
- 2006-03-21 TW TW095109664A patent/TWI377783B/zh active
-
2009
- 2009-06-29 JP JP2009153975A patent/JP2009219161A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004222151A (ja) | 2003-01-17 | 2004-08-05 | Nec Corp | ドハーティ増幅器 |
Non-Patent Citations (2)
| Title |
|---|
| GAJADHARSING J R ET AL.: "Analysis and Design of a 200W LDMOS Based Doherty Amplifier for 3G Base Stations", MICROWAVE SYMPOSIUM DIGEST, vol. 2, 6 June 2004 (2004-06-06), pages 529 - 532, XP010727602, DOI: doi:10.1109/MWSYM.2004.1336032 |
| See also references of EP1861920A4 |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009031097A1 (en) * | 2007-09-03 | 2009-03-12 | Nxp B.V. | Multi-way doherty amplifier |
| US9325280B2 (en) | 2007-09-03 | 2016-04-26 | Ampleon Netherlands B.V. | Multi-way doherty amplifier |
| EP2442442A4 (en) * | 2009-06-12 | 2012-04-18 | Huawei Tech Co Ltd | POWER AMPLIFIERS AND TRANSMITTERS |
| US8446218B2 (en) | 2009-06-12 | 2013-05-21 | Huawei Technologies Co., Ltd. | Power amplifier and transmitter |
| US8390381B2 (en) | 2010-06-02 | 2013-03-05 | Nxp B.V. | Two stage Doherty amplifier |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008535321A (ja) | 2008-08-28 |
| TW200703886A (en) | 2007-01-16 |
| JP2009219161A (ja) | 2009-09-24 |
| WO2006102466A3 (en) | 2007-04-05 |
| EP2442444B1 (en) | 2014-08-20 |
| US20060214732A1 (en) | 2006-09-28 |
| EP1861920A2 (en) | 2007-12-05 |
| EP2442444A1 (en) | 2012-04-18 |
| EP1861920A4 (en) | 2009-12-02 |
| TWI377783B (en) | 2012-11-21 |
| US7193473B2 (en) | 2007-03-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2442444B1 (en) | High power Doherty amplifier using multi-stage modules | |
| CN108512514B (zh) | 多级rf放大器装置 | |
| JP2945833B2 (ja) | マイクロ波ドハティ型増幅器 | |
| Van Der Heijden et al. | A 19W high-efficiency wide-band CMOS-GaN class-E Chireix RF outphasing power amplifier | |
| Kang et al. | Design of bandwidth-enhanced Doherty power amplifiers for handset applications | |
| US11515842B2 (en) | Doherty power amplifiers and devices with low voltage driver stage in carrier-path and high voltage driver stage in peaking-path | |
| CN111480292B (zh) | 空载调制高效功率放大器 | |
| US20090212858A1 (en) | Integrated Doherty type amplifier arrangement with high power efficiency | |
| US10630241B2 (en) | Amplifier with integrated directional coupler | |
| EP3014766A1 (en) | Mmic power amplifier | |
| Wohlert et al. | 8-Watt linear three-stage GaN Doherty power amplifier for 28 GHz 5G applications | |
| CN110785926A (zh) | 具有大rf分数和瞬时带宽的反向多尔蒂功率放大器 | |
| JPWO2009066353A1 (ja) | 電力増幅器 | |
| Wei et al. | High efficiency linear GaAs MMIC amplifier for wireless base station and Femto cell applications | |
| Do et al. | A 60 GHz SiGe-HBT power amplifier with 20% PAE at 15 dBm output power | |
| Kimball et al. | High efficiency WCDMA envelope tracking base-station amplifier implemented with GaAs HVHBTs | |
| Crescenzi et al. | 60 Watt Doherty amplifiers using high gain 2-stage hybrid amplifier modules | |
| Sugiura et al. | High efficiency class-E and compact Doherty power amplifiers with novel harmonics termination for handset applications | |
| Sugiura et al. | High efficiency compact Doherty power amplifier with novel harmonics termination for handset applications | |
| Katz et al. | GaN SSPA for UHF space applications | |
| Courty et al. | A 3.7-4.2 GHz MMIC Doherty Power Amplifier Linearized over 500MHz Instantaneous Bandwidth | |
| US12155356B2 (en) | Monolithic microwave integrated circuit device with internal decoupling capacitor | |
| Kato et al. | A 4-mm-square 1.9 GHz Doherty power amplifier module for mobile terminals | |
| Oka et al. | Enhanced linearity and efficiency of HBT power amplifiers for 5-GHz wireless-LANs | |
| Lin et al. | A 3.6-4.5 GHz Doherty RF Power Amplifier Using $0.25-\mu\mathrm {m} $ GaN/SiC HEMT and GaAs IPD Technology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006739337 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2008503161 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |