WO2006095918A1 - 内燃機関の排気浄化システム - Google Patents
内燃機関の排気浄化システム Download PDFInfo
- Publication number
- WO2006095918A1 WO2006095918A1 PCT/JP2006/305191 JP2006305191W WO2006095918A1 WO 2006095918 A1 WO2006095918 A1 WO 2006095918A1 JP 2006305191 W JP2006305191 W JP 2006305191W WO 2006095918 A1 WO2006095918 A1 WO 2006095918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust
- purification
- exhaust gas
- opening
- internal combustion
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/90—Injecting reactants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
- F01N3/0878—Bypassing absorbents or adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/36—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust gas purification system for an internal combustion engine.
- the exhaust of internal combustion engines contains harmful substances such as NOx.
- an NOx catalyst for purifying NOx in the exhaust gas in the exhaust system of the internal combustion engine.
- N Ox reduction treatment a reducing agent supplied to the storage reduction type NOx catalyst.
- S Ox in the exhaust gas is stored in the N Ox catalyst and the purification capacity is reduced.
- the bed temperature of the N0x catalyst may be raised and a reducing agent may be supplied. (Hereinafter referred to as “S Ox regeneration process”.)
- Particulate Matter is also included.
- filter a technique for providing a particulate filter (hereinafter referred to as “filter”) for collecting particulate matter in the exhaust system of an internal combustion engine is known. Yes.
- PM regeneration process As a method for raising the temperature of the exhaust gas introduced into the filter in the PM regeneration process, an oxidation catalyst having oxidation ability is disposed on the upstream side of the filter, and a reducing agent is added to the oxidation catalyst during the PM regeneration process.
- an exhaust purification system (hereinafter referred to as exhaust gas)
- exhaust gas A technology that includes a purification device and its control system, called an “exhaust gas purification system.”), Is provided with a plurality of branch passages and an exhaust purification device disposed in each branch passage.
- the flow rate of exhaust gas introduced into one of the exhaust gas purification devices described above is suppressed to a predetermined amount by a valve capable of changing the cross-sectional area of the flow path, and the flow rate of exhaust gas to be introduced can be suppressed.
- the supplied fuel can be efficiently used to regenerate the purification capacity of the exhaust gas purification device, and the influence on the operation performance of the internal combustion engine can be suppressed.
- Japanese Patent Application Laid-Open No. 7-1029947 discloses a configuration including a plurality of branch passages and an exhaust purification device disposed in each branch passage.
- a technology for supplying a reducing agent when the exhaust throttle valve is closed and the flow rate of exhaust gas decreases is disclosed.
- Japanese Patent No. 2 9 4 7 0 2 in a configuration including a plurality of branch passages and a NOx catalyst arranged in each branch passage, each branch passage is alternately switched by switching a switching valve.
- Japanese Patent No. 2 7 2 7 90 6 also discloses a plurality of branch passages and each branch passage. In a configuration provided with an N Ox catalyst, a technique is disclosed in which a rich spike is performed when the flow rate of exhaust gas in one branch passage is reduced and the flow rate of exhaust gas is reduced.
- An object of the present invention is to provide an exhaust purification system that combines a plurality of branch passages branched from an exhaust passage and an exhaust purification device provided in each branch passage more reliably or more efficiently. It is to provide a technology that can regenerate the purification capacity of the equipment. Disclosure of the invention
- the present invention provides an exhaust gas purification apparatus comprising an exhaust gas passage branched into a plurality of branch passages, and an exhaust gas purification device, a reducing agent adding means, and an exhaust gas flow rate control valve in each branch passage.
- the system has the following features.
- the exhaust flow rate control valve in the branch passage provided with the exhaust purification device whose purification capacity is to be regenerated is substantially fully closed among the plurality of branch passages.
- the opening of the exhaust flow control valve in at least one of the other branch passages is set as a predetermined purification capacity regeneration opening.
- one end is connected to the internal combustion engine and exhaust from the internal combustion engine passes therethrough, and an exhaust passage that branches into a plurality of branch passages along the way,
- An exhaust purification device that is provided in each of the plurality of branch passages and purifies the exhaust gas passing through each branch passage;
- An exhaust flow rate control valve that is provided in each of the plurality of branch passages and controls the flow rate of exhaust gas passing through each branch passage;
- An exhaust purification system for an internal combustion engine comprising:
- the exhaust flow control valve in the branch passage provided with the exhaust purification device to regenerate the purification capacity is substantially fully closed, and in at least one of the other branch passages, The opening degree of the exhaust flow control valve is set to a predetermined opening degree when the purification capacity is regenerated.
- the exhaust purification device in order to regenerate the purification capability of the exhaust purification device provided in each of the above-described branch passages, when the reducing agent is supplied to the exhaust purification device, the exhaust purification device is provided on the upstream side of the exhaust purification device.
- a reducing agent is added to the exhaust gas passing through the branch passage by the reducing agent addition means.
- a part of the added reducing agent is oxidized by coming into contact with the high-temperature exhaust gas and cannot be used for regenerating the purification capacity of the exhaust gas purification device. It has been.
- the reducing agent added from the reducing agent adding means can reach the downstream portion of the exhaust gas purification apparatus by riding on the exhaust gas having a large flow rate. Therefore, when the flow rate of the exhaust gas passing through each branch passage is excessively small, the reducing agent added from the reducing agent-added calorie means cannot reach the entire exhaust gas purification device. There is.
- the flow rate of the exhaust gas passing through the branch passage provided with the exhaust purifying device that should regenerate the purifying capacity is appropriate considering the above two points. Should be a good flow rate.
- the exhaust passage branches into a plurality of branch passages, In each branch passage, an exhaust gas purification system having an exhaust purification device, a reducing agent adding means, and an exhaust flow control valve,
- the exhaust flow control valve in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity is substantially fully closed, and other branch passages
- the opening of the exhaust flow control valve in at least one is determined to be a predetermined opening for regeneration of the purification capacity.
- substantially fully closed means a state in which the exhaust flow rate in the branch passage becomes zero or close to zero due to the complete valve close state or a state close to the complete valve close state.
- the predetermined opening during regeneration of the purification capacity is an opening in the range from the intermediate opening to the fully closed position.
- the branch passage provided with the exhaust purification device for regenerating the purification capacity before and after the exhaust flow control valve is substantially fully closed in the branch passage provided with the exhaust purification device for regenerating the purification capacity. Is an opening determined to control the flow rate of the exhaust gas passing through. In this way, the exhaust flow rate control valve in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity is substantially fully closed, thereby reducing the exhaust flow rate in the branch passage, It can be substantially zero.
- a branch provided with an exhaust purification device for regenerating the purification capacity is provided.
- the flow rate in the process in which the flow rate of the exhaust gas in the passage decreases and becomes substantially zero can be controlled according to the opening when the purification capacity is regenerated.
- the flow rate of the exhaust gas in the branch passage provided with the exhaust gas purification device whose regeneration capacity should be regenerated is brought close to an appropriate flow rate in view of the above two points. be able to. Then, the reducing agent added from the reducing agent adding means can be supplied to the exhaust purification device more reliably or more efficiently.
- the exhaust gas purification device is an NOx storage reduction catalyst or filter. Or a combination of these.
- the number of branch passages in the exhaust purification system is often two, but there is no particular limitation as long as it is two or more.
- the value of the opening at the time of purification capacity regeneration is a plurality of values indicating whether the opening of the exhaust flow rate control valve in one of the other branch passages is the opening at the time of purification capacity regeneration.
- the opening degree of the exhaust flow rate control valve in the branch passage may be determined as appropriate depending on whether or not the opening degree during the purification capacity regeneration is set.
- a predetermined time difference may be provided between the operation of setting the opening of the exhaust flow control valve in at least one of the passages to a predetermined opening during regeneration of the purification capacity.
- the exhaust flow control valve in at least one of the other branch passages
- the branch passage In this case, in the middle of the flow rate of the exhaust gas in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity becoming substantially zero, the branch passage The flow rate of the exhaust gas passing through can be increased relatively. Therefore, in the branch passage provided with the exhaust gas purification device whose regeneration capacity is to be regenerated, the exhaust flow rate control method can be changed by making the exhaust flow rate control valve substantially fully closed.
- a reducing agent is supplied to an exhaust gas purification device provided in one of the plurality of branch passages, and the exhaust gas
- the opening of the exhaust flow control valve in at least one of the other branch passages is set to the opening when the purifying capacity is regenerated, and after a predetermined first time has elapsed.
- the exhaust flow rate control valve may be substantially fully closed in the branch passage provided with the exhaust gas purification device that is to regenerate the purification capacity.
- the internal combustion engine regenerates the purification capability of the exhaust gas purification device provided in one of the plurality of branch passages when the operation state of the internal combustion engine belongs to a predetermined light load region.
- the opening of the exhaust flow control valve in at least one of the other branch passages is set as the opening during regeneration of the purification capacity. Then, after a lapse of a predetermined first time, the exhaust gas in the branch passage provided with the exhaust gas purification device whose regeneration capacity is to be regenerated is provided.
- the air flow control valve is almost fully closed.
- regenerate the said purification ability once can be increased.
- the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity, so that the exhaust flow rate is reduced to substantially zero again. I can do it. Therefore, even when the flow rate of the exhaust gas that passes through the branch passage provided with the exhaust purification device whose purification capability is to be regenerated is small, a sufficient amount of reducing agent is supplied to the exhaust purification device whose regeneration capability is to be regenerated. Can do.
- the predetermined light load region is an operation region where the engine load is small.
- the branch passage When the operating state of the internal combustion engine belongs to this region, when the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust purification device whose purification capacity should be regenerated, the branch passage This is an operating region where it is considered that sufficient reducing agent cannot be supplied to the exhaust gas purification device whose regeneration capacity should be regenerated because the flow rate of exhaust gas passing through the exhaust gas is small.
- This operation region may be experimentally determined in advance.
- the predetermined first time refers to the operation of making the exhaust flow control valve substantially fully closed, and the opening of the exhaust flow control valve in at least one of the other branch passages when the predetermined purification capacity is regenerated. This is the time difference between the opening operation. If this time difference is the first time, the exhaust flow rate at the start of the control in which the exhaust flow control valve is substantially fully closed in the branch passage provided with the exhaust purification device whose regeneration capacity should be regenerated is provided. Thus, the flow rate can be set such that a sufficient reducing agent can be supplied to the exhaust gas purification device whose purification capacity should be regenerated. This first time may be obtained experimentally in advance.
- the exhaust gas flow rate can be sufficiently increased at the start of the control in which the exhaust flow rate control valve is substantially fully closed. Whether or not is determined by a combination of the first time and the opening at the time of regeneration of the purification capacity.
- the operating state of the internal combustion engine belongs to a predetermined medium to light load region.
- the reducing agent is supplied to the exhaust purification device provided in one of the plurality of branch passages and the purification capability of the exhaust purification device is regenerated,
- the exhaust flow control valve In the branch passage provided with the exhaust purification device that should regenerate the purification capacity, the exhaust flow control valve is substantially fully closed, and after a predetermined second time has elapsed, in at least one of the other branch passages, The opening of the exhaust flow control valve may be set to be the opening when the purification capacity is regenerated.
- the reducing agent added from the reducing agent addition means regenerates the purification capacity. It is possible to secure the transportability enough to be supplied to the exhaust gas purification device to be supplied.
- the purification capability is increased.
- the exhaust flow rate control valve in at least one of the other branch passages after a predetermined second time has elapsed after the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust gas purification device to be regenerated. Is the opening during regeneration of the purification capacity.
- the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust gas purification device that should regenerate the purification capacity, the exhaust gas flowing into the branch passage is prevented.
- the flow rate increases relatively.
- the gradient of the decrease in the exhaust flow rate in the branch passage can be made gentle.
- the reducing agent added from the reducing agent adding means can be stably supplied to the exhaust gas purification apparatus that should regenerate the purification capacity for a longer time.
- the predetermined medium to light load region is a region where the engine load is larger than that of the light load region.
- the reducing agent addition device also adds additional calorie. This is a region of the operating state where it is considered that a sufficient exhaust flow rate can be secured to supply the reduced agent thus supplied to the exhaust gas purification device whose regeneration capacity is to be regenerated. This operation region may be experimentally determined in advance.
- the predetermined second time refers to an operation in which the exhaust flow control valve is substantially fully closed, and an opening of the exhaust flow control valve in at least one of the other branch passages when a predetermined purification capacity is regenerated. This is the time difference between the opening operation. If this time difference is the second time, the flow rate of the exhaust gas decreases after the start of the control in which the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust gas purification device whose purification capacity should be regenerated. The slope of can be relaxed. This second time may be obtained experimentally in advance.
- the gradient of the decrease in the exhaust gas flow rate after the start of the control in which the exhaust gas flow control valve is substantially fully closed is sufficiently provided in the branch passage provided with the exhaust gas purification device that actually regenerates the purification capacity. It can be determined by the combination of the second time and the opening at the time of regeneration of the purification capacity.
- the opening at the time of purification capacity regeneration is such that the purification capacity of the exhaust purification device that should regenerate the purification capacity is substantially the best after the regeneration of the purification capacity, at least of the other branch passages
- the opening of the exhaust flow control valve in one and may be determined according to the operating state of the internal combustion engine.
- how to change the exhaust flow rate in the branch passage when the exhaust flow control valve is substantially fully closed in the branch passage provided with the exhaust purification device to regenerate the purification capacity is as follows. As described above, it varies depending on the opening of the exhaust flow control valve in the other branch passage. Similarly, it varies depending on the operating state of the internal combustion engine at that time. Then, at the time when the reducing agent is added from the reducing agent addition means and after that, the exhaust flow rate in the branch passage provided with the exhaust purification device to regenerate the purification capacity is the other branch. It varies depending on the opening of the exhaust flow control valve in the passage and the operating state of the internal combustion engine.
- the reduction added from the reducing agent addition means The manner in which the agent reaches the exhaust purification device where the purification capability should be regenerated also changes, and as a result, the degree of regeneration of the purification capability in the exhaust purification device where the purification capability should be restored also varies. Change.
- the value of the opening at the time of purifying the purifying ability that can optimize the purifying ability of the exhaust purification device that should regenerate the purifying ability is obtained in advance. You may keep it.
- the exhaust flow control valve in the branch passage provided with the exhaust purification device whose purification capability is to be regenerated is substantially fully closed.
- the opening degree of the exhaust flow rate control valve in at least one of the other branch passages is set as the opening degree at the time of regeneration of the purification capacity that optimizes the purification capacity after regeneration of the exhaust gas purification apparatus that should regenerate the purification capacity.
- the purification capability of the exhaust purification device that should regenerate the purification capability can be regenerated to the best state.
- the opening at the time of purification capacity regeneration makes the exhaust flow rate control valve substantially fully closed in a branch passage provided with an exhaust gas purification device that regenerates the purification capacity,
- the opening of the exhaust flow control valve in at least one of the other branch passages is the opening when the purification capacity is regenerated, the influence on the engine output of the internal combustion engine exceeds a predetermined allowable value.
- the minimum opening in a range that does not exist may be determined in accordance with the operating state of the internal combustion engine.
- the branch passage When the exhaust flow control valve is substantially fully closed, and the opening of the exhaust flow control valve in one of the other branch passages is closed from the fully open state to the opening when the purifying capacity is regenerated. think about. In this case, the total amount of exhaust that can pass through the plurality of branch passages is reduced.
- the opening at the time of regeneration of the purification capacity may be determined as follows. That is, the exhaust flow control valve in the branch passage provided with the exhaust purification device to regenerate the purification ability is substantially fully closed, and the exhaust flow control valve in at least one of the other branch passages Even if the opening of the engine is closed to the opening when the purification capacity is regenerated, the influence on the engine output of the internal combustion engine does not exceed a predetermined allowable value, and the opening is the smallest among them. .
- the purifying capacity regeneration opening may be obtained in advance according to the operating state of the internal combustion engine.
- the predetermined allowable value is a degree of influence on the engine output of the internal combustion engine as a threshold value that does not cause a decrease in the engine output of the internal combustion engine to be unpleasant to the driver. Also good.
- the exhaust gas flow rate in the branch passage provided with the exhaust gas purification device that should regenerate the purification capacity is increased as much as possible without affecting the engine output of the internal combustion engine.
- the reducing agent added from the reducing agent addition means can be supplied to the exhaust purification device whose regeneration capability should be regenerated more reliably, and the excessive influence on the engine output of the internal combustion engine can be suppressed. .
- the purification capacity regeneration opening degree is determined according to an operating state of the internal combustion engine, and the purification of the exhaust purification apparatus to regenerate the purification capacity is performed.
- the exhaust flow rate control valve is substantially fully closed in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity determined according to the operating state of the internal combustion engine, and the other branch
- the effect on the engine output of the internal combustion engine when the opening of the exhaust flow control valve in at least one of the passages is the opening when the purification capacity regeneration is performed Minimum opening in a range that does not exceed the predetermined tolerance
- the exhaust gas flow control valve in at least one of the other branch passages may be opened to optimize the purification capacity after regeneration in the exhaust gas purification apparatus that should regenerate the purification capacity.
- the value of degree is obtained in advance, and this value is basically determined as the opening when purifying capacity is regenerated.
- the purification capacity regeneration opening thus determined is smaller than the minimum valve opening in the range where the influence on the engine output of the internal combustion engine does not exceed a predetermined allowable value, the engine output of the internal combustion engine
- the minimum valve opening in a range where the effect on the air pressure does not exceed the predetermined allowable value is determined as the opening when the purification capacity is regenerated.
- the purification capacity after regeneration of the exhaust gas purification device whose regeneration capacity should be regenerated can be made as high as possible, and the engine output of the internal combustion engine is excessively increased. Can be suppressed.
- the opening at the time of purification capacity regeneration is the temperature of the exhaust purification apparatus that should regenerate the purification capacity, and the branch passage provided with the exhaust purification apparatus that should regenerate the purification capacity,
- the correction may be made based on at least one of the back pressure by the exhaust gas purification device.
- the higher the temperature of the exhaust gas purification device the higher the purification capacity regeneration opening degree that makes the best purification performance after regeneration of the exhaust gas purification device to which the purification capacity should be regenerated.
- the value of is considered to be larger. This is because if the temperature of the exhaust gas purification device that should regenerate the purification capacity is high, the reduction reaction is more likely to occur, and therefore the purification capacity can be sufficiently regenerated with a small amount of reducing agent.
- the higher the back pressure by the exhaust purification device in the branch passage provided with the exhaust purification device to regenerate the purification capacity the higher the engine output of the internal combustion engine. It is considered that the minimum valve opening will be larger in the range where the effect does not exceed the predetermined allowable value. This is the exhaust purification that should regenerate the purification capacity.
- the valve opening degree of the exhaust flow control valve in the other branch passage can be increased to pass through the plurality of branch passages. This is because if the total value of the exhaust gas flow rate is not increased, the influence on the engine output of the internal combustion engine is likely to increase.
- the opening during the purification capacity regeneration depends on the temperature of the exhaust gas purification apparatus to regenerate the purification capacity and the exhaust gas purification apparatus in the branch passage provided with the air purification apparatus to regenerate the purification capacity. Correction may be made based on at least one of the back pressures.
- the purification ability after regeneration of the exhaust purification apparatus that should regenerate the purification ability can be made the best.
- the influence on the engine output of the internal combustion engine and the drivability can be suppressed more reliably.
- the opening at the time of regeneration of the purification capacity may be corrected to be larger as the temperature of the exhaust gas purification apparatus that is to regenerate the purification capacity is higher. Further, the higher the back pressure by the exhaust gas purification device in the branch passage provided with the exhaust gas purification device to regenerate the purification capacity, the larger the opening during purification capacity regeneration may be corrected.
- the exhaust flow rate set to the opening when the purifying capacity is regenerated during the regeneration is completed.
- the opening degree of the valve may be substantially fully closed from the opening degree when the purification capacity is regenerated.
- the exhaust gas in the branch passages provided with the exhaust gas purification device in which the purification capacity should be regenerated first close the flow control valve and at least other branch passages
- the opening of the exhaust control valve provided in one is defined as the opening during regeneration of the purification capacity. Then, when regeneration of the exhaust purification purification capacity that should first regenerate the purification capacity is completed, the opening of the exhaust flow control valve provided in the branch passage is not fully opened, but the direct purification capacity is restored. Opening during regeneration.
- the exhaust flow control valve in the branch passage provided with the exhaust purification device whose regeneration capacity is to be regenerated next is substantially fully closed. At this time, if the exhaust flow control valve in the branch passage provided with the exhaust purification device that should regenerate the purification capacity is at the opening when the purification capacity is regenerated, the exhaust flow control valve is fully opened. Without returning to, directly close almost completely.
- the drive amount of the exhaust flow control valve provided in each branch passage is reduced as much as possible. can do.
- a change in the back pressure in the entire branch passage can be suppressed.
- the influence on the engine output of the internal combustion engine can be suppressed, and the power consumption and noise can be reduced.
- FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its exhaust system and control system in an embodiment of the present invention.
- FIG. 2 shows the opening / closing operation of the first valve and the second valve when the Nx reduction process is performed on the first exhaust purification device in the first embodiment of the present invention, and the exhaust in the first branch passage associated therewith.
- 4 is a time chart showing the flow rate change and the opening and closing operation of the first fuel addition valve.
- FIG. 3 shows the opening / closing operation of the first valve and the second valve when the Nx reduction process is performed on the first exhaust gas purification device according to the first embodiment of the present invention, and the exhaust gas in the first branch passage associated therewith. Time shown for another example of flow rate change and opening / closing operation of the first fuel addition valve It is a cheat.
- FIG. 4 shows the state of operation of the internal combustion engine according to the first embodiment of the present invention and the second state in the NOx reduction treatment in which the NOx reduction ability after the NOx reduction treatment of the first exhaust purification device is the best. It is a graph which shows the relationship with the valve opening degree of a valve.
- FIG. 5 shows the second valve during the Nx reduction process in which the operating state of the internal combustion engine and the influence on the engine output of the internal combustion engine in Example 1 of the present invention are minimal within a range not exceeding the allowable value. It is a graph which shows the relationship with the valve opening degree.
- FIG. 6 shows the operating state of the internal combustion engine in Example 1 of the present invention and the N after the NOx reduction treatment of the first exhaust purification device within the range where the influence on the engine output of the internal combustion engine does not exceed the allowable value.
- FIG. 7 is a graph showing the relationship between the opening degree of the second valve and the opening degree of the second valve during the N Ox reduction process in which the Ox purification capacity is the best.
- FIG. 6 is a time chart showing the opening / closing operation of the first valve and the second valve when the Ox reduction process is performed, the change in the exhaust flow rate in the first branch passage, and the opening / closing operation of the first fuel addition valve.
- FIG. 8 shows the opening / closing operation of the first valve and the second valve when the NOx reduction treatment is continuously performed on the first exhaust purification device and the second exhaust purification device in Embodiment 3 of the present invention
- FIG. 8 shows the opening / closing operation of the first valve and the second valve when the NOx reduction treatment is continuously performed on the first exhaust purification device and the second exhaust purification device in Embodiment 3 of the present invention
- this 3 is a time chart showing changes in the exhaust flow rate in the first branch passage and the second branch passage, and the opening and closing operations of the first fuel addition valve and the second fuel addition valve.
- FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to the present embodiment and its exhaust system and control system.
- the internal combustion engine 1 shown in FIG. 1 is a diesel engine.
- the inside of the internal combustion engine 1 and its intake system are omitted.
- an exhaust pipe 5 through which exhaust gas from the internal combustion engine 1 flows is connected to the internal combustion engine 1, and this exhaust pipe 5 is connected downstream to a muffler (not shown). Further, an exhaust gas purification unit 10 for purifying particulate matter (for example, soot) and NOx in the exhaust gas is disposed in the middle of the exhaust pipe 5.
- the upstream of the exhaust purification unit 10 is referred to as a first exhaust pipe 5a
- the downstream is referred to as a second exhaust pipe 5b.
- the first exhaust pipe 5 a is branched into a first branch passage 10 a and a second branch passage 10 b, and the first branch passage 10 a
- the second branch passage 10 b joins downstream to form a second exhaust pipe 5 b.
- the first branch passage 10 a is provided with a first exhaust gas purification device 11 a that collects particulate matter (for example, soot) in the exhaust gas and further stores and reduces NOx in the exhaust gas.
- a second exhaust purification device 11 b is provided in the second branch passage 10 b.
- the first exhaust pipe 5a and the second exhaust pipe 5b constitute an exhaust passage in the present embodiment.
- the first branch path 10 a and the second branch path 10 0 b constitute a branch path in this embodiment.
- the first exhaust gas purification device 1 1 a and the second exhaust gas purification device 1 1 b in this example are configured such that an occlusion reduction type NOx catalyst is supported on a wall flow type filter made of a porous base material.
- the first exhaust gas purification device 11a and the second exhaust gas purification device 11b do not necessarily have a configuration in which the storage reduction type NOx catalyst is supported on the filter.
- the filter may be composed of a filter that does not support an NOx storage reduction catalyst and an NOx storage reduction catalyst provided in series with the filter.
- a first valve 12 2 a for controlling the flow rate of the exhaust gas passing through the first branch passage 10 a is provided in the first branch passage 10 a at a downstream portion of the first exhaust purification device 11 a. ing. Similarly, in the second branch passage 10 0 b, the downstream part of the second exhaust purification device 1 1 b The minute is equipped with a second valve 12b.
- the first valve 12a and the second valve 12b are the exhaust flow control valves in this embodiment.
- the upstream side of the first exhaust purification device 1 1a in the first branch passage 10a is a fuel as a reducing agent during the NOx reduction treatment of the first exhaust purification device 1 1a.
- a first fuel addition valve 14a for adding to the exhaust gas.
- a second fuel addition valve 14b is provided upstream of the second exhaust purification device 11b in the second branch passage 10b.
- the first fuel addition valve 14 a and the second fuel addition valve 14 b described above constitute a reducing agent addition means in this embodiment.
- the internal combustion engine 1 configured as described above and its exhaust system include an electronic control unit (ECU: Electronic Control) for controlling the internal combustion engine 1 and the exhaust system.
- ECU Electronic Control
- the ECU 35 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the driver's request, and performs control related to the exhaust gas purification unit 10 of the internal combustion engine 1.
- Sensors related to control of the operating state of the internal combustion engine 1 such as a crank position sensor and an accelerator position sensor (not shown) are connected to the ECU 35 via electric wiring so that their output signals are input to the ECU 35. It has become.
- a fuel injection valve (not shown) in the internal combustion engine 1 is connected to the ECU 35 via an electrical wiring.
- the first valve 12a, the second valve 12b, and the first fuel in this embodiment are connected to the ECU 35.
- the additional fuel valve 14 a and the second fuel addition valve 14 b are connected via electric wiring and are controlled by the ECU 35.
- the ECU 35 includes a CPU, ROM, RAM, and the like, and the ROM stores a program for performing various controls of the internal combustion engine 1 and a map storing data.
- a program for performing various controls of the internal combustion engine 1 and a map storing data Yes. 1st exhaust gas purification device 1 1a, 2nd exhaust gas purification device 1 NOx reduction treatment routine for reducing and releasing NOx stored in 1 lb, 1st exhaust gas purification device 1 1a, 2nd exhaust gas purification device 1 1 S Ox poisoning recovery routine to reduce and release S Ox stored in b, 1st exhaust purification device 1 1a, 2nd exhaust purification device
- the PM regeneration processing routine (the explanation of each is omitted) for removing the particulate matter collected and deposited in the device 1 1 b is one of the programs stored in the ROM of the ECU 35. It is.
- FIG. 2 shows the opening and closing operation of the first valve 1 2 a and the second valve 1 2 b when the NOx reduction treatment for the first exhaust purification device 1 1 a is performed
- the associated first branch passage 1 0 6 is a time chart showing changes in the exhaust flow rate at a and opening / closing operations of the first fuel addition valve 14 a.
- the horizontal axis in Fig. 2 represents time.
- both the first valve 12a and the second valve 12b are fully opened.
- the second valve 12b is closed to the first intermediate opening. Then, a part of the exhaust gas that has passed through the second branch passage 10 b until then passes through the first branch passage 10 a, so the flow rate of the exhaust gas that passes through the first branch passage 10 a is It increases once.
- the first valve 12 a is fully closed.
- the exhaust gas that has passed through the first branch passage 10 a rapidly decreases and becomes substantially zero.
- the second valve 1 2 b is returned to the fully open state at time t 2.
- the first fuel addition valve 14a is turned on. Operate and add fuel as a reducing agent to the exhaust gas passing through the first branch passage 100a. Then, it passes through the first branch passage 10 0 a once increased at time t 1 At the time of an appropriate exhaust flow rate during the process of reducing exhaust gas, fuel as a reducing agent can be added to the exhaust gas passing through the first branch passage 10a.
- the first valve 12a force S is fully opened.
- both the first valve 1 2 a and the second valve 1 2 b are fully opened, so the flow rate of the exhaust gas passing through the first branch passage 10 0 a is moderate before the start of the NOx reduction process. Flow rate.
- the reducing agent is added to the exhaust gas purification device. We thought about the situation where we could not supply enough.
- the fuel as the reducing agent was supplied from the first fuel addition valve 14 a during the change of the exhaust flow rate in the first branch passage 10 a described above. Then, even when the operating state of the internal combustion engine 1 belongs to the light load region and the flow rate of the exhaust gas discharged from the internal combustion engine 1 is small, the flow rate of the exhaust gas passing through the first branch passage is once increased. , Can be reduced. Therefore, the fuel added from the first fuel addition valve 14 a can be more reliably supplied to the first exhaust purification device 11 a. As a result, the NOx reduction treatment of the first exhaust purification device 11a can be completed more reliably.
- the second valve 12 b maintains the first intermediate opening until a predetermined time elapses after the first valve 12 a is fully opened at time t5. All at time t6 It may be opened. By doing so, it is possible to suppress a rapid change in the total exhaust flow rate passing through the first branch passage 10 a and the second branch passage 10 b, and to suppress torque shock. In addition, it is possible to suppress the operation timings of the first valve 1 2 a and the second valve 1 2 b from overlapping, and it is possible to suppress an increase in noise when the valve is driven.
- the first intermediate opening in FIGS. 2 and 3 corresponds to the opening during purification capacity regeneration in the present embodiment, but the value of this opening may be a predetermined constant value. Also, as this value, an optimal value may be determined for each NOx reduction process according to the operating state of the internal combustion engine 1. That is, since the amount of exhaust discharged from the internal combustion engine 1 varies depending on the operating state of the internal combustion engine 1, the first exhaust gas purification device 1 1 a after the completion of the NOx reduction process depends on the operating state of the internal combustion engine 1. It is possible to determine the value of the first intermediate opening for the best N Ox purification capacity. This depends on how the NOx reduction capacity of the first exhaust purification device 11a after NOX reduction treatment is reliably supplied to the entire first exhaust purification device 11a. It depends.
- a map that stores the relationship between the operating state of the internal combustion engine 1 and the value of the first intermediate opening for the best N0x purification capacity of the exhaust purification device after the completion of the NOx reduction treatment is stored. It may be prepared in advance based on experiments, and the value of the valve opening degree of the second valve 1 2 b corresponding to the operating state of the internal combustion engine 1 may be read and determined from this map.
- FIG. 4 according to the operation state of the internal combustion engine 1 and the operation state of the internal combustion engine 1 as the reference of the above map, the N of the first exhaust purification device 1 1 a after the completion of the NOx reduction process
- An example of a graph of the relationship with the value of the first intermediate opening for the best Ox purification capacity is shown.
- the horizontal axis represents the engine speed and the vertical axis represents the engine load.
- the straight line indicated by the solid line indicates the value of the first intermediate opening that should be selected in each engine speed and engine load operating condition.
- this relationship between the operating state of the internal combustion engine 1 and the first intermediate opening degree may be corrected by the temperature of the first exhaust gas purification device 11 a that should regenerate the purification capacity. That is, when the temperature of the first exhaust purification device 1 1 a is high, N in the first exhaust purification device 1 1 a Since the reactivity of the Ox catalyst is increased, high purification efficiency can be obtained even if the amount of fuel that reaches the first exhaust purification device 1 1a is small. Therefore, it is considered that the value of the first intermediate opening in the same operating state shifts to the larger side.
- the map for reading out the first intermediate opening degree may be changed according to the temperature of the first exhaust purification device 11 1 a whose purification capacity should be regenerated.
- the map for reading the first intermediate opening is the same map regardless of the temperature of the first exhaust purification device 11 1 a, and the value read from the map is set to the first exhaust purification device 1
- the final value of the first intermediate opening may be obtained by multiplying the coefficient corresponding to the temperature of 1 1 a.
- the first intermediate opening in FIG. 2 may be determined as the minimum opening in a range in which the influence on the engine output of the internal combustion engine 1 does not exceed the allowable value according to the operating state of the internal combustion engine 1. Good.
- the engine output of engine 1 may be affected.
- the control shown in FIG. 3 when the control shown in FIG. 3 is performed, even when the first valve 1 2 a is fully closed at time t 2, the total exhaust flow rate that can pass through the two branch passages decreases.
- the engine output of the internal combustion engine 1 may be affected. If this influence is large, the operation performance of the internal combustion engine 1 may be deteriorated.
- a map storing the relationship between the operating state of the internal combustion engine 1 and the first intermediate opening as the minimum opening within a range where the influence on the engine output of the internal combustion engine 1 does not exceed the allowable value is prepared in advance. From this map, the value of the first intermediate opening degree corresponding to the operating state of the internal combustion engine 1 may be read.
- the allowable value is a degree of the influence exerted on the engine output as a threshold at which the decrease in the engine output of the internal combustion engine 1 is not uncomfortable for the driver, and may be obtained in advance by experiments.
- FIG. 5 shows the first intermediate opening as the minimum opening in a range where the influence on the engine output of the internal combustion engine 1 does not exceed a predetermined allowable value according to the operating state of the internal combustion engine 1.
- the relationship between the operating state of the internal combustion engine 1 and the first intermediate opening when determining is shown.
- the value of the first intermediate opening degree may be corrected by the amount of PM trapped in the first exhaust gas purification device 11 a that should perform the N0x reduction treatment. This is because the back pressure in the first exhaust purification device 1 1a increases when the amount of PM trapped in the first exhaust purification device 1 1a to be subjected to NOx reduction treatment increases.
- the second valve 1 2 b is closed, the total exhaust flow rate that can pass through the first branch passage 10 0 a and the second branch passage 1 Ob becomes smaller, and the engine output of the internal combustion engine 1 is reduced. This is because the effect is expected to increase.
- the map for reading the first intermediate opening degree may be changed according to the amount of PM trapped by the first exhaust purification device 11 a that should perform the NOx reduction treatment.
- the map for reading the first intermediate opening is the same map regardless of the amount of PM collected by the first exhaust purification device 1 1 a, and the first exhaust is set to the value of the valve opening read from the map.
- the first intermediate opening may be obtained by multiplying the coefficient corresponding to the amount of PM collected by the purification device 11a.
- the amount of PM collected in this case is calculated from the distance traveled by the vehicle after the PM regeneration process that removes the particulate matter previously collected by the filter of the first exhaust gas purification device 1 1a by oxidation. You may make it do.
- an exhaust pressure sensor (not shown) is provided before and after the first exhaust purification device 11a, and the back pressure is directly detected from the difference in the output of the exhaust pressure sensor before and after the first exhaust purification device 11a. May be.
- the value of the first intermediate opening degree according to the operating state of the internal combustion engine 1 derived by the above two methods is compared, and the larger opening degree is finally determined.
- the first intermediate opening may be determined. That is, basically, according to the operating state of the internal combustion engine 1, the N0x purification capacity of the first exhaust purification device 1 1a after the completion of the Nx reduction process is the best, the second valve 1 2 b is the final first intermediate opening And decide.
- the determined value of the first intermediate opening is the smallest in the range where the influence on the engine output of the internal combustion engine 1 does not exceed the predetermined allowable value in the operating state of the internal combustion engine 1 at that time.
- the opening is smaller than the opening, the minimum opening within a range where the influence on the engine output of the internal combustion engine 1 does not exceed a predetermined allowable value in the operating state is used as the first intermediate opening.
- the N0x purification capacity of the first exhaust purification device 1 1 a after NOx reduction treatment is limited within a range that does not affect the engine output of the internal combustion engine 1.
- the opening of the second valve 1 2 b that can be made as high as possible can be determined as the first intermediate opening.
- FIG. 6 shows the relationship between the operating state of the internal combustion engine 1 and the first intermediate opening in this case.
- the broken line indicates the opening value of the second valve 1 2 b shown in FIGS. 4 and 5, and the solid line indicates the first intermediate opening degree.
- a map may be created based on the line shown by the solid line in FIG. 6 and the value of the first intermediate opening degree corresponding to the operating state of the internal combustion engine 1 may be read. For example, when the operating state of the internal combustion engine 1 is indicated by point A in FIG. 6, the valve opening at which the NOx purification efficiency of the first exhaust purification device 1 1a after the completion of the NOx reduction process is 6 is 6 5%. On the other hand, the minimum opening at which the influence on the engine output of the internal combustion engine 1 does not exceed the allowable value is 75%. In this case, 75% is selected as the first intermediate opening.
- Example 2 in the present invention will be described.
- the second valve 12b is closed to the second intermediate opening.
- Fig. 7 shows the opening / closing operation of each exhaust flow rate control valve when the NOx reduction treatment of the first exhaust purification device 1 1a is performed, the change in the exhaust flow rate in the first branch passage 10 0a and the first fuel 6 is a time chart showing the opening / closing operation of the addition valve 14 a.
- the operating state of the internal combustion engine 1 belongs to the light to medium load range, and the reducing agent is sufficiently supplied to the exhaust gas purification apparatus by adding the reducing agent as it is to the exhaust gas passing through each branch passage. It explains the control in the state that can do.
- the first valve 1 2 a is fully closed first. Then, the flow rate of the exhaust gas passing through the first branch passage 10 0a starts to decrease. Thereafter, at time t 7, the second valve 1 2 a is closed to the second intermediate opening. Then, a portion of the exhaust gas that has passed through the second branch passage 10 0 b flows into the first branch passage 10 0 a that is going to be fully closed, so the exhaust flow rate in the first branch passage 10 0 a is reduced. The slope of the decrease is gentle.
- the second intermediate opening may be a force corresponding to the opening at the time of purification capacity regeneration in the present embodiment and a value different from the first intermediate opening described above. And, like the first intermediate opening, it may be a predetermined constant value. Alternatively, depending on the operating state of the internal combustion engine 1, the opening degree at which the NOx purification efficiency of the first exhaust purification device 11a after the NOx reduction treatment ends is the best. Further, the opening degree may be the minimum opening in a range in which the influence on the engine output of the internal combustion engine 1 does not exceed a predetermined allowable value according to the operating state of the internal combustion engine 1. Next, in this state, at time 8, fuel is added from the first fuel addition valve 14 a.
- the flow rate of the exhaust gas passing through the first branch passage 10 a is gradually reduced.
- fuel is added from the fuel addition valve 1 4 a. Therefore, the fuel added from the first fuel addition valve 14 a can be stably supplied to the first exhaust purification device 11 a for a long time. Then, the setting accuracy required at time t8 when fuel addition from the fuel addition valve 14a starts is relaxed, and a large amount of fuel is supplied to the first exhaust purification device 11a. can do.
- the operating state of the internal combustion engine 1 is a light to medium load state, and the fuel added from the fuel addition valve is sufficiently supplied to the exhaust purification device.
- the case where transportability is ensured was described.
- the first valve 1 2 a in the first branch passage 10 a of the NOx reduction treatment is fully closed, and immediately after that, the second valve in the second branch passage 10 0 b Close valve 1 2 b to the 2nd intermediate opening.
- Example 3 the gradient of the decrease in the exhaust flow rate in the first branch passage 10 0 a performing the NOx reduction treatment can be made gentle, and the reducing agent can be stably supplied to the first exhaust purification device 1 over a long period of time. 1 A can be supplied. Therefore, the required accuracy of the fuel addition timing from the first fuel addition valve 14 a can be relaxed, and a large amount of fuel can be supplied to the first exhaust purification device 11 a more reliably.
- Example 3 in the present invention will be described.
- the NOx reduction treatment of the first exhaust purification device 11a and the NOx reduction treatment of the second exhaust purification device 11b are continuously performed.
- Fig. 8 shows the opening / closing operation of each exhaust flow control valve when NOx reduction treatment is continuously performed on the first exhaust purification device 1 1a and the second exhaust purification device 1 1b
- the first minute 6 is a time chart showing changes in the exhaust flow rate in the branch passage 10a and the second branch passage 10b, and the opening and closing operations of the first fuel addition valve 14a and the second fuel addition valve 14b.
- the control from time t 1 to t 4 is the same as the control described in FIG. In the control shown in FIG. 3, at time t5, the first valve 12a is fully opened, and at time t6, the second valve 12b is fully opened.
- the NOx reduction treatment of the first exhaust purification device 11a is completed, the NOx reduction treatment of the second exhaust purification device 11b is continuously performed. Instead of fully opening the first valve 1 2 a at time t 5, the first valve 1 2 a is opened to the first intermediate opening.
- both the first valve 1 2 a and the second valve 1 2 b are in the first intermediate opening state. Accordingly, the flow rate of the exhaust gas passing through the second branch passage 10 b through which substantially the entire amount of exhaust gas discharged from the internal combustion engine 1 has passed until then decreases to a moderate flow rate. At the same time, the flow rate of the exhaust gas passing through the first branch passage 10 0 a, which has been substantially zero, increases to a flow rate equivalent to that of the second branch passage 10 0 b. Next, at the time 10, the second valve 1 2 b is fully closed. As a result, the flow rate of the exhaust gas passing through the second branch passage 10 b further decreases and becomes substantially zero.
- the case where the Nx reduction treatment is continuously performed for both the first exhaust purification device 11a and the second exhaust purification device 11b has been described.
- the first valve 1 2 a is set to the first intermediate opening without returning to the fully open state, and the second valve 1 2 b
- the NOx reduction of the second exhaust gas purification device 1 1 b is started with the direct closing state.
- the amount of drive at the opening and closing valves of the first valve 1 2 a and the second valve 1 2 b can be reduced as much as possible, and this affects the change in back pressure and the effect on the engine output. Can be made as small as possible. Furthermore, it is possible to reduce power consumption and noise associated with opening and closing operations of the first valve 12a and the second valve 12b.
- the internal combustion engine 1 is a diesel engine, but the above embodiment may be applied to a gasoline engine.
- the first exhaust purification device 1 1a and the second exhaust purification device 1 1b have been described, but the first exhaust purification device 1 1a and The same control may be applied when performing the S Ox regeneration process and the PMS raw process in the second exhaust purification device lib.
- fuel as a reducing agent may be supplied to the oxidation catalyst arranged upstream of each filter instead of the NOx catalyst.
- the present invention can also be applied to a selective reduction type NOx catalyst system that supplies urea water as a reducing agent into the exhaust passage and reduces NOx in the exhaust gas.
- the N0x reduction process is performed for the exhaust purification device provided in one branch passage.
- the control has been described.
- N Ox reduction treatment is performed on one exhaust purification device.
- the present invention may be applied to control the opening of the exhaust flow control valve in one of the other branch passages.
- an exhaust flow control valve in two or more of the other branch passages You may apply this invention, when controlling the opening degree of.
- the exhaust in two or more of the other branch passages The same idea as the present invention may be applied to control the opening of the flow control valve.
- “fully closed” in the above embodiments does not mean a completely closed state. It also includes a state close to a complete valve closing state, in which the valve is closed to such an extent that the effects of the present invention are sufficiently obtained.
- the exhaust purification system in an exhaust purification system that combines a plurality of branch passages branched from the exhaust passage and an exhaust purification device provided in each branch passage, the exhaust purification system is more reliably or more efficient.
- the purification capacity of the device can be regenerated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
排気通路から分岐された複数個の分岐通路と、各分岐通路に設けられた排気浄化装置を組み合わせた排気浄化システムにおいて、より確実にまたはより効率良く、排気浄化装置の浄化能力を再生することができる技術を提供する。第1分岐通路に設けられた第1排気浄化装置の浄化能力の再生の際には、第2分岐通路に設けられた第2弁を所定の第1中間開度とし、さらに第1分岐通路に設けられた第1弁を全閉状態とする。その後、第1分岐通路に設けられた第1燃料添加弁から燃料を添加する。
Description
明 細 書 内燃機関の排気浄化システム 技術分野
本発明は内燃機関の排気浄化システムに関する。 背景技術
内燃機関の排気には N Oxなどの有害物質が含まれている。 これらの有害物質 の排出を低減するために、 内燃機関の排気系に、 排気中の N Oxを浄化する N O X触媒を設けることが知られている。 この技術において例えば吸蔵還元型 N Ox 触媒を設けた場合には、 吸蔵された N Oxの量が増加すると浄化能力が低下する ため、 吸蔵還元型 N Ox触媒に還元剤を供給し、 同触媒に吸蔵された N O xを還 元放出することが行われる (以下、 「N Ox還元処理」 という。 ) 。
さらに、 N Ox触媒に排気中の S Oxが吸蔵され、 浄化能力が低下する S Ox 被毒を解消するために、 N〇x触媒の床温を上昇させるとともに還元剤を供給す る場合もある (以下、 「S Ox再生処理」 という。 ) 。
一方、 内燃機関の排気にはカーボンを主成分とする微粒子物質 (P M :
Particulate Matter) も含まれている。 これらの微粒子物質の大気への放散を防 止するために内燃機関の排気系に微粒子物質を捕集するパティキュレートフィル タ (以下、 「フィルタ」 とレ、う。 ) を設ける技術が知られている。
力かるフィルタにおいては、 捕集された微粒子物質の堆積量が増加すると、 フ ィルタの目詰まりによって排気における背圧が上昇し機関性能が低下する。 これ に対し、 フィルタに導入される排気の温度を上昇させることによりフィノレタの温 度を上昇させ、 捕集された微粒子物質を酸ィ匕除去し、 フィルタの排気浄化能力の 再生を図るようにしている (以下、 「P M再生処理」 という。 ) 。
ここで、 上記 P M再生処理においてフィルタに導入される排気の温度を上昇さ せる方法として、 フィルタの上流側に酸化能を有する酸化触媒を配置し、 P M再 生処理時に、 該酸化触媒に還元剤を供給することにより、 該酸化触媒において酸 化反応を起し、 フィルタの上流側の排気温度を上昇させる方法が知られている。 そして、 この際、 排気浄化装置に導入される排気の流量を抑える方が望ましい ことが知られている。 これは、 上記の N Ox触媒やフィルタなどの排気浄化装置 に還元剤を供給して、 浄化能力を再生する際には、 供給された還元剤が高温の排 気と接触して酸化することにより前記吸蔵還元型 N Ox触媒や前記酸化触媒にお ける酸化反応に用いられなくなることを抑制するためである。
これに対し、 特開 2 0 0 3— 1 0 6 1 4 2号公報や、 特開 2 0 0 3— 7 4 3 2 8号公報に開示されているように、 排気浄化システム (以下、 排気浄化装置及び、 その制御系を含め、 「排気浄ィヒシステム」 という。 ) において複数の分岐通路及 び各分岐通路に配置された排気浄ィ匕装置を備えるようにした技術が提案されてい る。 この技術においては、 上記の排気浄ィヒ装置のうちの一つに導入される排気の 流量を、 流路断面積を変更可能な弁によって所定量まで抑え、 導入する排気の流 量が抑えられた排気浄化装置に還元剤としての燃料を供給することにより、 供給 された燃料が効率よく排気浄化装置の浄化能力の再生に用いられるとともに、 内 燃機関の運転性能に及ぼす影響を抑制する。
また、 これに関連して、 特開平 7— 1 0 2 9 4 7号公報には、 複数の分岐通路 及び各分岐通路に配置された排気浄化装置を備えた構成において、 一方の分岐通 路における排気絞り弁を閉じ、 排気の流量が低下した時に還元剤を供給する技術 が開示されている。 また、 特許第 2 9 4 7 0 2 1号公報には、 複数の分岐通路及 ぴ各分岐通路に配置された N Ox触媒を備えた構成において、 切換弁の切換え作 用により各分岐通路に交互に排気ガスを導びく技術が開示されている。 さらに、 特許第 2 7 2 7 9 0 6号公報にも、 複数の分岐通路及ぴ各分岐通路に配置された
N Ox触媒を備えた構成において、 一方の分岐通路の排気の流量を減少させ、 排 気の流量が低下した時にリッチスパイクを実施する技術が開示されている。
し力 し、 上記技術においても、 還元剤としての燃料を前記排気浄化装置の全体 に確実に供給し、 効率良く浄化能力の再生を行うという点では改善の余地があつ た。
本発明の目的とするところは、 排気通路から分岐された複数個の分岐通路と、 各分岐通路に設けられた排気浄化装置を組み合わせた排気浄化システムにおいて、 より確実にまたはより効率良く、 排気浄化装置の浄化能力を再生することができ る技術を提供することである。 発明の開示
上記目的を達成するための本発明は、 排気通路が複数の分岐通路に分岐すると ともに、 各分岐通路に、 排気浄化装置と、 還元剤添加手段と、 排気流量制御弁を 備えた排気浄ィ匕システムであって、 以下のことを最大の特徴とする。
すなわち、 前記排気浄化装置の浄化能力の再生の際には、 前記複数の分岐通路 のうち、 浄化能力を再生すべき排気浄化装置が設けられた分岐通路における排気 流量制御弁を略全閉にする。 また、 他の分岐通路の少なくとも一つにおける排気 流量制御弁の開度を、 所定の浄化能力再生時開度とする。
より詳しくは、 一端が内燃機関に接続されて該内燃機関からの排気が通過する とともに、 途中で複数の分岐通路に分岐する排気通路と、
前記複数の分岐通路の各々に設けられ、 各分岐通路を通過する前記排気を浄ィ匕 する排気浄化装置と、
前記複数の分岐通路の各々に設けられ、 各分岐通路を通過する排気の流量を制 御する排気流量制御弁と、
前記複数の分岐通路の各々における前記排気浄化装置の上流に設けられるとと もに各分岐通路を通過する排気に還元剤を添加する還元剤添加手段と、
を備える内燃機関の排気浄化システムであって、
前記複数の分岐通路の一つに設けられた前記排気浄化装置に還元剤を供給して、 該排気浄化装置の浄ィヒ能力を再生する際には、
前記複数の分岐通路のうち、 浄化能力を再生すべき前記排気浄化装置が設けら れた分岐通路における、 前記排気流量制御弁を略全閉とするとともに、 他の分岐 通路の少なくとも一つにおける、 排気流量制御弁の開度を、 所定の浄化能力再生 時開度とすることを特徴とする。
ここで、 上記の各分岐通路に備えられた排気浄化装置の浄化能力を再生するた めに、 前記排気浄化装置に還元剤を供給する場合には、 該排気浄化装置の上流側 に設けられた還元剤添加手段によって、 前記分岐通路を通過する排気に還元剤が 添加される。 し力 し、 前述のように、 添加された還元剤の一部は、 高温の前記排 気と接触することにより酸化されてしまい、 排気浄化装置の浄化能力の再生に用 いられないことが知られている。 そして、 前記分岐通路を通過する排気の流量が 多い程、 前記還元剤添加手段から添加された還元剤のうち、 前記浄化能力の再生 に用いられない還元剤の割合が増加する。 従って、 前記浄化能力の再生処理にお ける燃費を向上させるためには、 浄化能力を再生すベき前記排気浄化装置が設け られた分岐通路を通過する排気の流量は少なくする方が良い。
一方、 前記還元剤添加手段から添加された還元剤は流量の多い排気に乗ること により、 排気浄ィヒ装置における下流側の部分にまで到達することができる。 従つ て、 各分岐通路を通過する排気の流量が過度に少ない場合には、 前記還元剤添カロ 手段から添加された還元剤は、 前記排気浄化装置の全体にまで行き渡ることがで きない場合がある。
すなわち、 排気浄ィヒ装置の浄ィ匕能力を再生する場合、 前記浄化能力を再生すベ き排気浄化装置が設けられた分岐通路を通過する排気の流量は、 上記の 2点を鑑 みた適当な流量とすべきである。
そこで、 本発明においては、 排気通路が複数の分岐通路に分岐するとともに、
各分岐通路に、 排気浄化装置と、 還元剤添加手段と、 排気流量制御弁を備えた排 気净化システムであって、
前記排気浄化装置の浄化能力の再生の際には、 浄化能力を再生すべき排気浄ィ匕 装置が設けられた分岐通路における排気流量制御弁を略全閉とし、 且つ、 他の分 岐通路の少なくとも一つにおける、 排気流量制御弁の開度を所定の浄化能力再生 時開度とすることとした。
ここで、 略全閉とは、 完全な閉弁状態若しくは完全な閉弁状態に近い状態であ つて、 このことにより分岐通路における排気流量が零または零に近くなる状態を い 。
ここで所定の浄化能力再生時開度とは中間開度から全閉までの範囲の開度で ある。 また、 浄ィ匕能力を再生すべき排気浄化装置が設けられた分岐通路における 排気流量制御弁が略全閉とされた前後の、 該浄化能力を再生すべき排気浄化装置 が設けられた分岐通路を通過する排気の流量を制御すべく定められる開度である。 こうすれば、 浄ィ匕能力を再生すべき排気浄ィヒ装置が設けられた分岐通路におけ る排気流量制御弁を略全閉とすることにより、 該分岐通路における排気の流量を 減少させ、 略零とすることができる。 また、 他の分岐通路の少なくとも一つにお ける、 排気流量制御弁の開度を所定の浄化能力再生時開度とすることにより、 浄 化能力を再生すべき排気浄化装置が設けられた分岐通路における排気の流量が減 少して略零になる過程における流量を、 該浄化能力再生時開度に応じて制御する ことができる。
その結果、 前記還元剤添加手段から還元剤を添加する際の、 浄化能力を再生す べき排気浄ィ匕装置が設けられた分岐通路における排気の流量を前記 2点を鑑みた 適当な流量に近づけることができる。 そして、 前記還元剤添加手段から添加され た還元剤を、 より確実にまたはより効率よく、 前記排気浄化装置に供給すること ができる。
なお、 ここで排気浄ィ匕装置は、 吸蔵還元型 N Ox触媒またはフィルタであって
もよいし、 それらを組み合わせたものであってもよい。 また、 前記排気浄化シス テムにおける分岐通路の数は 2個であることが多いが、 2個以上であれば特に制 限はない。
さらに、 前記浄化能力再生時開度の値は、 前記他の分岐通路のうちの一つの分 岐通路における排気流量制御弁の開度が該浄化能力再生時開度とされるのか、 複 数個の分岐通路における排気流量制御弁の開度が該浄化能力再生時開度とされる のかの条件によって適宜定めるようにしてもよい。
また、 本発明においては、 前記複数の分岐通路のうち、 浄化能力を再生すべき 前記排気浄化装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉 とする動作と、 他の分岐通路の少なくとも一つにおける、 前記排気流量制御弁の 開度を所定の浄化能力再生時開度とする動作との間には、 所定の時間差を設ける ようにしてもよい。
ここで、 例えば、 前記浄化能力を再生すべき排気浄化装置が備えられた分岐通 路における、 排気流量制御弁を略全閉とする前に、 前記他の分岐通路の少なくと も一つにおける、 排気流量制御弁の開度を所定の浄ィヒ能力再生時開度とした場合 について考える。 この場合には、 ー且、 前記浄化能力を再生すべき排気浄化装置 が備えられた分岐通路における排気の流量を増加させることができる。 従って、 前記浄化能力を再生すベき排気浄化装置が備えられた分岐通路における、 排気流 量制御弁を略全閉とする動作の開始時における排気の流量を多くすることができ る。 そうすると、 排気流量制御弁を略全閉とすることによる、 排気の流量の変化 の幅を広げることができる。
また、 例えば、 前記浄化能力を再生すべき排気浄化装置が備えられた分岐通路 における、 排気流量制御弁を略全閉とした後に、 前記他の分岐通路の少なくとも 一つにおける、 排気流量制御弁の開度を所定の浄化能力再生時開度とした場合に ついて考える。 この場合は、 前記浄化能力を再生すべき排気浄化装置が設けられ た分岐通路における排気の流量が減少して略零となる途中において、 該分岐通路
を通過する排気の流量を相対的に増加させることができる。 従って、 前記浄化能 力を再生すべき排気浄化装置が備えられた分岐通路において、 前記排気流量制御 弁を略全閉とすることによる、 排気流量の減少の仕方を変化させることができる。 このように、 前記排気流量制御弁を略全閉とする動作と、 前記排気流量制御弁 の開度を所定の浄化能力再生時開度とする動作との間に、 所定の時間差を設ける ことにより、 前記浄化能力を再生すべき排気浄化装置が備えられた方の分岐通路 において排気流量制御弁を略全閉とすることによる、 該分岐通路における排気流 量の変化の仕方を、 より大きな自由度をもつて制御することができる。
また、 本発明においては、 前記内燃機関の運転状態が所定の軽負荷領域に属す る場合において、 前記複数の分岐通路の一つに設けられた排気浄化装置に還元剤 を供給して、 前記排気浄化装置の浄化能力を再生する際には、 前記他の分岐通路 の少なくとも一つにおける、 前記排気流量制御弁の開度を前記浄化能力再生時開 度としてから、 所定の第 1時間の経過後に、 前記浄化能力を再生すべき排気浄ィ匕 装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉とするように してもよい。
すなわち、 前記内燃機関の運転状態が軽負荷領域に属する場合には、 もともと 前記内燃機関から排出される排気の量が少ない。 従って、 浄化能力を再生すべき 排気浄化装置が備えられた分岐通路における、 排気流量制御弁を略全閉とした場 合に、 該分岐通路を通過する排気の流量が減少を開始する初期の流量が少なく、 還元剤添加手段から添加された還元剤が充分に前記浄化能力を再生すべき排気浄 化装置に供給できないおそれがある。
従って、 前記内燃機関が前記内燃機関の運転状態が所定の軽負荷領域に属する 場合に、 前記複数の分岐通路の一つに設けられた排気浄ィヒ装置の浄ィヒ能力を再生 する際には、 前記他の分岐通路の少なくとも一つにおける、 排気流量制御弁の開 度を前記浄ィヒ能力再生時開度とする。 そして、 それから所定の第 1時間の経過後 に、 前記浄化能力を再生すべき排気浄ィヒ装置が備えられた分岐通路における、 排
気流量制御弁を略全閉とする。
そうすれば、 一旦、 前記浄化能力を再生すべき排気浄化装置が備えられた分岐 通路における排気の流量を増加させることができる。 そして、 その後に、 前記浄 化能力を再生すべき排気浄化装置が備えられた分岐通路における、 排気流量制御 弁を略全閉とすることにより、 再度排気の流量を減少させて略零とすることがで きる。 従って、 浄化能力を再生すべき排気浄化装置が備えられた分岐通路を通過 する排気の流量が少ない場合でも、 前記浄化能力を再生すべき排気浄化装置に充 分な量の還元剤を供給することができる。
ここで、 所定の軽負荷領域とは、 機関負荷が小さい運転領域である。 そして、 内燃機関の運転状態がこの領域に属する場合に、 単に浄化能力を再生すべき排気 浄化装置が備えられた分岐通路における、 排気流量制御弁を略全閉とした場合に は、 該分岐通路を通過する排気の流量が少ないために、 浄化能力を再生すべき排 気浄化装置に充分な還元剤を供給できないと考えられる運転領域である。 この運 転領域は予め実験的に確定してもよい。
また、 所定の第 1時間とは、 前記排気流量制御弁を略全閉とする動作と、 他の 分岐通路の少なくとも一つにおける、 前記排気流量制御弁の開度を所定の浄化能 力再生時開度とする動作との間の時間差である。 そしてこの時間差を第 1時間と すれば、 前記浄化能力を再生すべき前記排気浄化装置が備えられた分岐通路にお いて、 排気流量制御弁を略全閉とする制御の開始時における排気の流量を、 浄ィ匕 能力を再生すべき排気浄化装置に充分な還元剤を供給できるような流量にするこ とができる。 この第 1時間は予め実験的に求めるようにしてもよい。
なお、 実際に前記浄化能力を再生すべき前記排気浄化装置が備えられた分岐通 路において、 排気流量制御弁を略全閉とする制御の開始時における排気の流量を 充分に多くすることができるかどうかは、 前記第 1時間と、 前記浄化能力再生時 開度との組み合わせによって定められる。
また、 本発明においては、 前記内燃機関の運転状態が所定の中軽負荷領域に属
する場合において、 前記複数の分岐通路の一つに設けられた排気浄化装置に還元 剤を供給して、 前記排気浄化装置の浄化能力を再生する際には、
前記浄化能力を再生すベき排気浄化装置が備えられた分岐通路における、 排気 流量制御弁を略全閉としてから、 所定の第 2時間の経過後に、 前記他の分岐通路 の少なくとも一つにおける、 前記排気流量制御弁の開度を前記浄化能力再生時開 度とするようにしてもよい。
すなわち、 前記内燃機関の運転状態が軽〜中負荷領域に属する場合には、 前記 内燃機関から排出される排気の量は比較的多くなる。 従って、 浄化能力を再生す べき排気浄ィヒ装置が備えられた分岐通路において、 排気流量制御弁を略全閉とし た場合に、 還元剤添加手段から添加された還元剤が前記浄化能力を再生すべき排 気浄ィ匕装置に充分に供給されるだけの運搬性を確保することができる。
このような場合において、 前記複数の分岐通路の一つに設けられた排気浄化装 置に還元剤を供給して、 前記排気浄化装置の浄化能力を再生する際には、 前記浄ィヒ能力を再生すべき排気浄化装置が備えられた分岐通路における、 排気 流量制御弁を略全閉としてから、 所定の第 2時間の経過後に、 前記他の分岐通路 の少なくとも一つにおける、 前記排気流量制御弁の開度を前記浄化能力再生時開 度とする。
そうすれば、 前記浄ィヒ能力を再生すべき排気浄ィ匕装置が備えられた分岐通路に おける、 排気流量制御弁を略全閉とした後に、 該分岐通路に流入しょうとする排 気の流量が相対的に増加する。 その結果として、 該分岐通路における排気流量の 減少の勾配を緩やかにすることができる。 このことで、 より長時間に亘つて、 前 記還元剤添加手段から添加された還元剤を安定的に、 前記浄化能力を再生すべき 排気浄化装置に供給することができる。
ここで、 所定の中軽負荷領域とは、 前記軽負荷領域よりは機関負荷が大きい領 域である。 そして、 前記浄化能力を再生すべき排気浄化装置が備えられた分岐通 路における排気流量制御弁を略全閉とする際にも、 前記還元剤添加装置から添カロ
された還元剤を前記浄ィヒ能力を再生すべき排気浄化装置に供給するために充分な 排気の流量を確保することができると考えられる運転状態の領域である。 この運 転領域は予め実験的に確定してもよい。
また、 所定の第 2時間とは、 前記排気流量制御弁を略全閉とする動作と、 他の 分岐通路の少なくとも一つにおける、 前記排気流量制御弁の開度を所定の浄化能 力再生時開度とする動作との間の時間差である。 そしてこの時間差を第 2時間と すれば、 浄化能力を再生すべき前記排気浄化装置が備えられた分岐通路において、 排気流量制御弁を略全閉とする制御の開始時以降における排気の流量の減少の勾 配を緩やかにすることができる。 この第 2時間は予め実験的に求めるようにして もよい。
なお、 実際に前記浄化能力を再生すべき前記排気浄化装置が備えられた分岐通 路において、 排気流量制御弁を略全閉とする制御の開始時以降における排気の流 量の減少の勾配を充分に緩やかにすることができるかどうかは、 前記第 2時間と、 前記浄化能力再生時開度との組み合わせによって定められる。
また、 本発明においては、 前記浄化能力再生時開度は、 前記浄化能力を再生す べき前記排気浄化装置の、 浄化能力の再生後における浄化能力が略最良となる、 前記他の分岐通路の少なくとも一つにおける前記排気流量制御弁の開度であり、 前記内燃機関の運転状態に応じて決定されるようにしてもよレ、。
ここで、 前記浄ィヒ能力を再生すべき排気浄ィヒ装置が備えられた分岐通路におい て、 排気流量制御弁を略全閉とする際の、 該分岐通路における排気流量の変化の 仕方は、 前述のように、 前記他の分岐通路における排気流量制卸弁の開度によつ て変化する。 同様に、 その際の前記内燃機関の運転状態によっても変化する。 そうすると、 前記還元剤添加手段から還元剤が添加された時点及ぴそれ以降の、 前記浄ィ匕能力を再生すべき排気浄ィヒ装置が備えられた分岐通路における排気流量 は、 前記他の分岐通路における前記排気流量制御弁の開度及び、 前記内燃機関の 運転状態により変化する。 それにより、 前記還元剤添加手段から添加された還元
剤の、 前記浄ィヒ能力を再生すべき排気浄ィヒ装置への到達の仕方も変化し、 結果と して、 前記浄化能力を再生すべき排気浄化装置における浄ィヒ能力の再生度合いも 変化する。
そこで、 本発明においては、 前記内燃機関の運転状態に応じて、 前記浄化能力 を再生すべき排気浄化装置の浄化能力を最良とすることができる浄ィヒ能力再生時 開度の値を予め求めておいてもよい。 そして、 前記排気浄化装置の浄化能力を再 生させる際には、 浄化能力を再生すべき排気浄化装置が備えられた分岐通路にお ける、 排気流量制御弁を略全閉とする。 また、 他の分岐通路の少なくとも一つに おける排気流量制御弁の開度を、 前記浄化能力を再生すべき排気浄化装置の再生 後の浄化能力を最良とする浄化能力再生時開度とする。
そうすれば、 前記内燃機関の運転状態にかかわらず、 前記浄化能力を再生すベ き排気浄化装置の浄化能力を、 最良の状態に再生することができる。
また、 本発明においては、 前記浄化能力再生時開度は、 前記浄化能力を再生す ベき排気浄ィヒ装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉 とするとともに、 前記他の分岐通路の少なくとも一つにおける、 前記排気流量制 御弁の開度を該浄化能力再生時開度とした場合に、 前記内燃機関の機関出力に与 える影響が所定の許容値を超えない範囲における最小の開度であり、 前記内燃機 関の運転状態に応じて決定されるようにしてもよい。
ここで、 前記複数の分岐通路のいずれか一つに設けられた排気浄ィヒ装置に還元 剤を供給して、 前記排気浄化装置の浄化能力を再生する際に、 該分岐通路におけ る前記排気流量制御弁を略全閉とするとともに、 例えば他の分岐通路の一つにお ける、 前記排気流量制御弁の開度を、 全開状態から浄ィヒ能力再生時開度まで閉弁 した場合について考える。 この場合には、 前記複数の分岐通路全体を通過できる 排気の合計量が減少する。
そうすると、 前記内燃機関の運転状態によっては、 浄化能力を再生すべき排気 浄化装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉とすると
ともに、 他の分岐通路の少なくとも一つにおける前記排気流量制御弁の開度を、 浄化能力再生時開度とすることにより、 前記内燃機関の機関出力が低下するなど の影響が出るおそれがある。
そこで、 本発明においては、 浄ィ匕能力再生時開度を以下のように定めてもよレ、。 すなわち、 浄ィヒ能力を再生すべき排気浄化装置が備えられた分岐通路における前 記排気流量制御弁を略全閉とするとともに、 他の分岐通路の少なくとも一つにお ける前記排気流量制御弁の開度を当該浄化能力再生時開度まで閉弁しても、 前記 内燃機関の機関出力に及ぼす影響が所定の許容値を超えない開度であって、 その 中で最小の開度とする。 そして、 当該浄化能力再生時開度は、 前記内燃機関の運 転状態に応じて予め求めるようにしてもよい。
ここで所定の許容値とは、 前記内燃機関の機関出力の低下が運転者にとって不 快とならない閾値としての、 前記内燃機関の機関出力に及ぶ影響の度合いであり、 予め実験によって求めるようにしても良い。
そうすれば、 前記浄ィヒ能力を再生すべき排気浄ィ匕装置が備えられた分岐通路に おける排気流量を、 前記内燃機関の機関出力に影響を及ぼさない範囲で可及的に 多くすることができる。 従って、 前記還元剤添加手段から添加された還元剤をよ り確実に前記浄化能力を再生すべき排気浄化装置に供給できるとともに、 前記内 燃機関の機関出力に過度な影響を及ぼすことを抑制できる。
また、 本発明においては、 前記浄ィヒ能力再生時開度は、 前記内燃機関の運転状 態に応じて決定された、 前記浄ィ匕能力を再生すべき前記排気浄ィヒ装置の、 浄化能 力の再生後における浄ィヒ能力が略最良となる、 前記他の分岐通路の少なくとも一 つにおける前記排気流量制御弁の開度と、
前記内燃機関の運転状態に応じて決定された、 前記浄化能力を再生すべき排気 浄ィ匕装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉とすると ともに、 前記他の分岐通路の少なくとも一つにおける、 前記排気流量制御弁の開 度を該浄化能力再生時開度とした場合に、 前記内燃機関の機関出力に与える影響
が所定の許容値を超えない範囲における最小の開度と、
を比較した場合の、 より大きい方の開度であるようにしてもよい。
例えば、 前記内燃機関の運転状態に応じて、 前記浄化能力を再生すべき排気浄 化装置における再生後の浄化能力を最良とする、 前記他の分岐通路の少なくとも 一つにおける排気流量制御弁の開度の値を予め求めておき、 基本的にはこの値を 浄化能力再生時開度として決定する。 そして、 こうして決定された浄化能力再生 時開度が、 前記内燃機関の機関出力に与える影響が所定の許容値を超えない範囲 における最小の弁開度より小さい場合には、 前記内燃機関の機関出力に与える影 響が所定の許容値を超えない範囲における最小の弁開度を浄ィヒ能力再生時開度と して決定する。
そうすれば、 前記内燃機関の運転状態にかかわらず、 浄化能力を再生すべき排 気浄化装置の再生後の浄化能力を可及的に高くすることができるとともに、 前記 内燃機関の機関出力に過度な影響を及ぼすことを抑制できる。
また、 本発明においては、 前記浄化能力再生時開度は、 前記浄化能力を再生す べき前記排気浄化装置の温度及び、 前記浄化能力を再生すべき前記排気浄化装置 が備えられた分岐通路における、 前記排気浄化装置による背圧の少なくとも一方 に基いて補正されるようにしてもよレ、。
ここで、 内燃機関の運転状態が同じであれば、 排気浄化装置の温度が高いほど、 前記浄化能力を再生すべき排気浄化装置の再生後の浄化能力を最良とする浄化能 力再生時開度の値はより大きくなると考えられる。 これは、 浄化能力を再生すベ き排気浄化装置の温度が高ければ、 還元反応がより生じ易くなるため、 少量の還 元剤によつて充分に浄化能力を再生できることによる。
また、 内燃機関の運転状態が同じであれば、 前記浄化能力を再生すべき排気浄 化装置が備えられた分岐通路における、 前記排気浄化装置による背圧が高いほど、 前記内燃機関の機関出力に与える影響が所定の許容値を超えない範囲で最小の弁 開度はより大きくなると考えられる。 これは、 前記浄化能力を再生すべき排気浄
化装置が備えられた分岐通路における、 前記排気浄化装置による背圧が高い場合 には、 他の分岐通路における排気流量制御弁の弁開度を大きくして、 前記複数の 分岐通路を通過可能な排気の流量の合計値を増加させないと、 前記内燃機関の機 関出力に及ぼす影響が大きくなる可能性が高いからである。
従って、 前記浄化能力再生時開度は、 前記浄化能力を再生すべき排気浄化装置 の温度及び、 前記浄化能力を再生すべきお気浄化装置が備えられた分岐通路にお ける、 前記排気浄化装置による背圧の少なくとも一つに基いて補正するとよい。 このことにより、 前記内燃機関の運転状態にかかわらず、 より確実に、 浄化能力 を再生すべき排気浄化装置の再生後の浄化能力を最良とすることができる。 また、 より確実に、 前記内燃機関の機関出力への影響が大きくなりドライバビリティが 損なわれることを抑制できる。
具体的には、 前記浄化能力再生時開度を、 前記浄化能力を再生すべき排気浄化 装置の温度が高い程、 大きい方に補正してもよい。 また、 前記浄化能力を再生す べき排気浄ィヒ装置が備えられた分岐通路における、 前記排気浄化装置による背圧 が高い程、 前記浄化能力再生時開度を大きい方に補正してもよい。
また、 本発明においては、 前記複数の分岐通路の一つに設けられた前記排気浄 化装置の浄ィヒ能力を再生した後に、 該再生中に前記浄化能力再生時開度とされた 排気流量制御弁が設けられた分岐通路における前記排気浄化装置の浄化能力を連 続して再生する際には、 浄化能力の再生が終了した前記排気浄ィヒ装置が備えられ た分岐通路における、 前記排気流量制御弁の開度を略全閉状態から前記浄化能力 再生時開度とするとともに、 浄化能力の再生をこれから行うべき前記排気浄ィ匕装 置が備えられた分岐通路における、 前記排気流量制御弁の開度を前記浄化能力再 生時開度から略全閉状態とするようにしてもよい。
すなわち、 複数の分岐通路に設けられた排気浄化装置の浄化能力を連続して再 生する場合には、 まず、 最初に浄ィヒ能力を再生すべき排気浄化装置が設けられた 分岐通路における排気流量制御弁を閉弁するとともに、 他の分岐通路の少なくと
も一つに設けられた排気制御弁の開度を浄化能力再生時開度とする。 そして、 最 初に浄化能力を再生すべき排気浄化の浄化能力の再生が終了した際には、 その分 岐通路に設けられた排気流量制御弁の開度を全開に戻さずに、 直接浄化能力再生 時開度とする。 一方、 次に浄化能力を再生すべき排気浄化装置が設けられた分岐 通路における排気流量制御弁を略全閉とする。 この際、 次に浄化能力を再生すベ き排気浄化装置が設けられた分岐通路における排気流量制御弁が浄ィヒ能力再生時 開度となっていた場合には、 この排気流量制御弁を全開に戻さずに、 直接略全閉 とする。
そうすれば、 複数の分岐通路に設けられた排気浄ィ匕装置の浄化能力を連続して 再生する場合に、 各分岐通路に設けられた排気流量制御弁の駆動量を可及的に少 なくすることができる。 また、 前記分岐通路全体における背圧の変化を抑制する ことができる。 結果として内燃機関の機関出力に及ぼす影響を抑制することがで きるとともに、 消費電力や騒音を低減することができる。
なお、 本発明における課題を解決するための手段は、 可能な限り組み合わせて 使用することができる。 図面の簡単な説明
第 1図は、 本発明の実施例における内燃機関と、 その排気系及び制御系の概略 構成を示す図である。
第 2図は、 本発明の実施例 1における第 1排気浄ィ匕装置に対する N〇x還元処 理を行う場合の第 1弁及ぴ第 2弁の開閉動作、 それに伴う第 1分岐通路における 排気流量の変化及び、 第 1燃料添加弁の開閉動作について示したタイムチヤート である。
第 3図は、 本発明の実施例 1における第 1排気浄ィヒ装置に対する N〇x還元処 理を行う場合の第 1弁及ぴ第 2弁の開閉動作、 それに伴う第 1分岐通路における 排気流量の変化及び、 第 1燃料添加弁の開閉動作の別の例について示したタイム
チヤ一トである。
第 4図は、 本発明の実施例 1における内燃機関の運転状態と、 第 1排気浄化装 置の N Ox還元処理後の N Ox浄化能力が最良となる、 N Ox還元処理時におけ る第 2弁の弁開度との関係を示すグラフである。
第 5図は、 本発明の実施例 1における内燃機関の運転状態と、 内燃機関の機関 出力に及ぼす影響が許容値を超えない範囲で最小である、 N〇x還元処理時にお ける第 2弁の弁開度との関係を示すグラフである。
第 6図は、 本発明の実施例 1における内燃機関の運転状態と、 内燃機関の機関 出力に及ぼす影響が許容値を超えない範囲で、 第 1排気浄化装置の N Ox還元処 理後の N Ox浄化能力が最良となる、 N Ox還元処理時における第 2弁の弁開度 との関係を示すグラフである 第 7図は、 本発明の実施例 2における第 1排気浄ィヒ装置に対する N Ox還元処 理を行う場合の第 1弁及び第 2弁の開閉動作、 それに伴う第 1分岐通路における 排気流量の変化及ぴ、 第 1燃料添加弁の開閉動作について示したタイムチャート である。
第 8図は、 本発明の実施例 3における第 1排気浄化装置及び第 2排気浄化装置 に対する N Ox還元処理を連続して行う場合の第 1弁及び第 2弁の開閉動作、 そ れに伴う第 1分岐通路及び第 2分岐通路における排気流量の変化及び、 第 1燃料 添加弁及び第 2燃料添加弁の開閉動作について示したタイムチヤ一トである。 発明を実施するための最良の形態
以下に図面を参照して、 この発明を実施するための最良の形態を例示的に詳し く説明する。
実施例 1
図 1は、 本実施例に係る内燃機関と、 その排気系及び制御系の概略構成を示す 図である。 図 1に示す内燃機関 1は、 ディーゼル機関である。 なお、 図 1におい ては、 内燃機関 1の内部及びその吸気系は省略されている。
図 1において、 内燃機関 1には、 内燃機関 1からの排気が流通する排気管 5が 接続され、 この排気管 5は下流にて図示しないマフラーに接続されている。 また、 排気管 5の途中には、 排気中の微粒子物質 (例えば、 煤) や N Oxを浄ィ匕する排 気浄化部 1 0が配置されている。 以下、 排気管 5において、 排気浄化部 1 0の上 流を第 1排気管 5 a、 下流を第 2排気管 5 bという。 また、 排気浄化部 1 0内で は、 第 1排気管 5 aは、 第 1分岐通路 1 0 a、 第 2分岐通路 1 0 bに分岐されて おり、 この第 1分岐通路 1 0 a及ぴ第 2分岐通路 1 0 bは下流において合流し、 第 2排気管 5 bを形成している。 そして、 第 1分岐通路 1 0 aには、 排気中の微 粒子物質 (例えば、 煤) を捕集し、 さらに排気中の N Oxを吸蔵還元する第 1排 気浄化装置 1 1 aが設けられており、 第 2分岐通路 1 0 bには、 同じく第 2排気 浄化装置 1 1 bが設けられている。 ここで、 第 1排気管 5 a及び、 第 2排気管 5 bは、 本実施例における排気通路を構成する。 第 1分岐通路 1 0 a及ぴ、 第 2分 岐通路 1 0 bは本実施例における分岐通路を構成する。
本実施例における第 1排気浄ィ匕装置 1 1 a、 第 2排気浄化装置 1 1 bは、 多孔 質の基材からなるウォールフロ一型のフィルタに吸蔵還元型 N Ox触媒が担持さ れたものである。 但し、 必ずしも第 1排気浄化装置 1 1 a、 第 2排気浄化装置 1 1 bはフィルタに吸蔵還元型 N Ox触媒が担持された構成でなくてもよい。 例え ば、 吸蔵還元型 N Ox触媒が担持されていないフィルタと、 それに直列に設けら れた吸蔵還元型 N〇x触媒とからなる構成にしてもよい。
また、 第 1分岐通路 1 0 aにおける、 第 1排気浄化装置 1 1 aの下流部分には、 第 1分岐通路 1 0 aを通過する排気の流量を制御する第 1弁 1 2 aが備えられて いる。 同様に、 第 2分岐通路 1 0 bにおける、 第 2排気浄化装置 1 1 bの下流部
分には、 第 2弁 12 bが備えられている。 なお、 上記の第 1弁 12 a及び第 2弁 1 2 bは、 本実施例における排気流量制御弁である。
また、 図 1中、 第 1分岐通路 10 aにおける第 1排気浄化装置 1 1 aの上流側 には、 第 1排気浄化装置 1 1 aの NOx還元処理などの際に、 還元剤としての燃 料を排気に添加する第 1燃料添加弁 14 aが備えられている。 同様に、 第 2分岐 通路 10 bにおける第 2排気浄ィヒ装置 1 1 bの上流側には、 第 2燃料添加弁 14 bが備えられている。 なお、 上記の第 1燃料添加弁 14 a及び第 2燃料添加弁 1 4 bは、 本実施例における還元剤添加手段を構成する。
以上述べたように構成された内燃機関 1及びその排気系には、 該内燃機関 1及 ぴ排気系を制御するための電子制御ュニット (ECU: Electronic Control
Unit) 35が併設されている。 この ECU35は、 内燃機関 1の運転条件や運転 者の要求に応じて内燃機関 1の運転状態等を制御する他、 内燃機関 1の排気浄化 部 10に係る制御を行うユニットである。
ECU35には、 図示しないクランクポジションセンサや、 アクセルポジショ ンセンサなどの内燃機関 1の運転状態の制御に係るセンサ類が電気配線を介して 接続され、 それらの出力信号が ECU 35に入力されるようになっている。 一方、 ECU35には、 内燃機関 1内の図示しない燃料噴射弁等が電気配線を介して接 続される他、 本実施例における第 1弁 12 a、 第 2弁 1 2 b及び、 第 1燃料添カロ 弁 14 a、 第 2燃料添加弁 14 bが電気配線を介して接続されており、 ECU 3 5によって制御されるようになっている。
また、 ECU35には、 CPU、 R〇M、 R AM等が備えられており、 ROM には、 内燃機関 1の種々の制御を行うためのプログラムや、 データを格納したマ ップが記憶されている。 第 1排気浄化装置 1 1 a、 第 2排気浄化装置 1 l bに吸 蔵された NOxを還元放出させるための NOx還元処理ルーチンの他、 第 1排気 浄化装置 1 1 a、 第 2排気浄化装置 1 1 bに吸蔵された S Oxを還元放出させる ための S Ox被毒回復処理ルーチン、 第 1排気浄化装置 1 1 a、 第 2排気浄化装
置 1 1 bに捕集、 堆積された微粒子物質を酸化除去するための P M再生処理ルー チン (各々の説明は省略) なども、 E C U 3 5の R OMに記憶されているプログ ラムの一つである。
次に、 本実施例の排気浄化システムにおける、 N Ox還元処理時の制御につい て説明する。 まず、 図 2を用いて、 内燃機関 1の運転状態が軽負荷の領域に属し、 そのまま各分岐通路を通過する排気に還元剤を添加したとしても、 排気浄化装置 に還元剤を充分に供給することが出来ない状態で、 第 1排気浄化装置 1 1 aの N 〇x還元処理を行う場合について説明する。 図 2は、 第 1排気浄ィ匕装置 1 1 aに 対する N Ox還元処理を行う場合の第 1弁 1 2 a及ぴ第 2弁 1 2 bの開閉動作、 それに伴う第 1分岐通路 1 0 aにおける排気流量の変化及び、 第 1燃料添加弁 1 4 aの開閉動作について示したタイムチャートである。 図 2における横軸は時間 を示している。
図 2に示すように、 内燃機関 1の通常運転時は、 第 1弁 1 2 a及び第 2弁 1 2 bの双方が全開状態となっている。 そして、 第 1排気浄化装置 1 l aの N Ox還 元処理時にはまず、 時点 t 1において、 第 2弁 1 2 bを第 1中間開度まで閉弁す る。 そうすると、 それまで第 2分岐通路 1 0 bを通過していた排気の一部が第 1 分岐通路 1 0 aを通過するようになるため、 第 1分岐通路 1 0 aを通過する排気 の流量は一且増加する。
次に、 第 1分岐通路 1 0 aを通過する排気の流量が安定した時点 t 2において、 第 1弁 1 2 aを全閉する。 そうすると、 第 1分岐通路 1 0 aを通過していた排気 は急激に減少し、 略零となる。 また、 本実施例においては、 時点 t 2において、 第 2弁 1 2 bを全開状態に戻している。
そして、 上述の急激な排気流量の変化が始まった時点 t 2から、 急激な排気流 量の変化が略終了する時点 t 4までの間の時点 t 3において、 第 1燃料添加弁 1 4 aを作動させ、 第 1分岐通路 1 0 aを通過中の排気に還元剤としての燃料を添 加する。 そうすると、 時点 t 1において一旦増加した第 1分岐通路 1 0 aを通過
する排気が減少する過程の適当な排気流量の時期において、 第 1分岐通路 1 0 a を通過中の排気に還元剤としての燃料を添加することができる。
その後、 第 1排気浄化装置 1 1 aにおける N Oxの還元反応が充分に行われる 時間が経過した後、 時点 t 5において、 第 1弁 1 2 a力 S全開にされる。 そうする と、 第 1弁 1 2 a及び第 2弁 1 2 bの両方が全開状態となるので、 第 1分岐通路 1 0 aを通過する排気の流量は N Ox還元処理開始前の中程度の流量となる。 上記のように、 本実施例では、 内燃機関 1の運転状態が軽負荷の領域に属し、 そのまま各分岐通路を通過する排気に還元剤を添カ卩したとしても、 排気浄化装置 に還元剤を充分に供給することが出来ない状態について考えた。 このような状態 おいて、 第 1排気浄化装置 1 1 aの N〇x還元処理を行う場合には、 まず第 2弁 1 2 aを一旦第 1中間開度まで閉弁することにより、 第 1分岐通路 1 0 aを通過 する排気の流量をー且増加させた。 そしてその状態から、 第 1分岐通路 1 0 aを 通過する排気の流量が安定した後に、 第 1弁 1 2 aを全閉状態とするとともに第 2弁 1 2 bを全開状態に戻し、 第 1分岐通路 1 0 aを通過する排気の流量を急激 に減少させた。
そして、 上記した、 第 1分岐通路 1 0 aにおける排気流量の変化途中に、 第 1 燃料添加弁 1 4 aから還元剤としての燃料を供給した。 そうすれば、 内燃機関 1 の運転状態が軽負荷の領域に属し、 内燃機関 1から排出される排気の流量が少な い場合でも、 第 1分岐通路を通過する排気の流量を一旦増加させてから、 減少さ せることができる。 従って、 第 1燃料添加弁 1 4 aから添加された燃料を、 より 確実に第 1排気浄化装置 1 1 aに供給することができる。 その結果、 より確実に、 第 1排気浄化装置 1 1 aの N Ox還元処理を完了させることができる。
なお、 上記の例においては、 第 2弁 1 2 bが時点 t 1において第 1中間開度ま で閉弁された後、 時点 t 2において全開状態に戻される制御を行った。 これに対 し、 図 3に示すように、 第 2弁 1 2 bは、 時点 t 5において第 1弁 1 2 aが全開 とされてから所定時間が経るまでは第 1中間開度を維持し、 時点 t 6において全
開されるようにしてもよい。 そうすれば、 第 1分岐通路 1 0 a及び第 2分岐通路 1 0 bを通過する合計の排気流量の変化が急激に変化することを抑制でき、 トル クショックを抑制することができる。 また、 第 1弁 1 2 aと第 2弁 1 2 bの作動 時期が重なることを抑制でき、 弁駆動時の騒音が大きくなることを抑制できる。 ここで、 図 2及び図 3における第 1中間開度は、 本実施例における浄化能力再 生時開度に相当するが、 この開度の値は予め定められた一定値としてもよい。 ま た、 この値として、 内燃機関 1の運転状態に応じて最適な値を N Ox還元処理毎 に決定してもよレ、。 すなわち、 内燃機関 1から排出される排気の量は内燃機関 1 の運転状態によって変化するので、 内燃機関 1の運転状態に応じて、 N Ox還元 処理の終了後の第 1排気浄化装置 1 1 aの N Ox浄化能力が最良となるための第 1中間開度の値を定めることができる。 これは、 第 1排気浄化装置 1 1 aの N O X還元処理後における N Ox浄化能力が、 第 1排気浄化装置 1 1 aの全体に如何 に確実に適量の燃料が供給されたかに依存していることによる。
従って、 内燃機関 1の運転状態と、 N Ox還元処理の終了後の排気浄化装置の N〇x浄ィ匕能力が最良となるための第 1中間開度の値との関係を格納したマップ を予め実験に基いて作成しておき、 このマップから、 内燃機関 1の運転状態に対 応する、 第 2弁 1 2 bの弁開度の値を読み出して決定してもよい。
図 4には、 上記マップの基準となる、 内燃機関 1の運転状態と、 内燃機関 1の 運転状態に応じて、 N Ox還元処理の終了後の第 1排気浄ィヒ装置 1 1 aの N Ox 浄化能力が最良となるための第 1中間開度の値との関係のグラフの例を示す。 図 4において横軸は機関回転数、 縦軸は機関負荷を示す。 そして、 実線で示す直線 は、 各機関回転数、 機関負荷の運転状態において選択されるべき第 1中間開度の 値を示す。
なお、 この、 内燃機関 1の運転状態と第 1中間開度との関係は、 浄化能力を再 生すべき第 1排気浄化装置 1 1 aの温度によって補正されてもよい。 すなわち、 第 1排気浄化装置 1 1 aの温度が高い場合には、 第 1排気浄化装置 1 1 a中の N
Ox触媒における反応性が上昇するので、 第 1排気浄化装置 1 1 aに到達する燃 料が少なくても高い浄ィ匕効率を得ることができる。 従って、 同じ運転状態におけ る第 1中間開度の値は大きい方にシフ卜すると考えられるからである。
具体的には、 浄化能力を再生すべき第 1排気浄化装置 1 1 aの温度によって、 第 1中間開度を読み出すマップを変更してもよい。 あるいは、 第 1中間開度を読 み出すマップは第 1排気浄ィヒ装置 1 1 aの温度に係らず同一のマップとし、 該マ ップから読み出された値に、 第 1排気浄化装置 1 1 aの温度に対応した係数を乗 じることにより、 最終的な第 1中間開度の値を求めてもよい。
またここで、 図 2における第 1中間開度は、 内燃機関 1の運転状態に応じて、 内燃機関 1の機関出力に及ぼす影響が許容値を超えない範囲における最小の開度 として決定してもよい。
すなわち、 時点 t 1において、 第 2弁 1 2 aを第 1中間開度まで閉弁した際に は、 2つの分岐通路を通過できる合計の排気の流量が減少するので、 運転状態に よっては内燃機関 1の機関出力に影響を及ぼす場合がある。 また、 特に図 3で示 した制御を行う場合に、 時点 t 2において第 1弁 1 2 aを全閉にした際にも、 2 つの分岐通路を通過できる合計の排気の流量が減少するので、 内燃機関 1の機関 出力に影響を及ぼす場合がある。 そしてこの影響が大きいと、 内燃機関 1の運転 性能が悪ィ匕するおそれがある。
そこで、 内燃機関 1の運転状態と、 内燃機関 1の機関出力に与える影響が許容 値を超えない範囲で最小の開度としての第 1中間開度との関係を格納したマップ を予め準備し、 このマップから、 内燃機関 1の運転状態に対応する第 1中間開度 の値を読み出すようにしてもよい。 ここで許容値とは、 内燃機関 1の機関出力の 低下が運転者にとって不快とならない閾値としての、 機関出力に及ぼされる影響 の度合いであって、 予め実験によって求めるようにしてもよい。
そうすれば、 排気浄化装置の浄化能力の再生をより確実に行うことができると ともに、 排気浄ィ匕装置の浄ィ匕能力の再生が内燃機関 1の運転性能に過度な影響を
及ぼすことを抑制することができる。
なお、 図 5には、 第 1中間開度を、 内燃機関 1の運転状態に応じて、 内燃機関 1の機関出力に与える影響が所定の許容値を超えない範囲における最小の開度と して決定する場合の、 内燃機関 1の運転状態と第 1中間開度との関係を示す。 ここで、 N〇x還元処理を行うべき第 1排気浄化装置 1 1 aにおける P M捕集 量によって、 第 1中間開度の値を捕正してもよい。 これは、 N Ox還元処理を行 うべき第 1排気浄化装置 1 1 aにおける P M捕集量が多い場合には、 第 1排気浄 化装置 1 1 aにおける背圧が上昇するので、 時点 t 2において、 第 2弁 1 2 bを 閉弁した際に、 第 1分岐通路 1 0 a及び第 2分岐通路 1 O bを通過できる合計の 排気の流量がより少なくなり、 内燃機関 1の機関出力に及ぼす影響が大きくなる と考えられるからである。
具体的には、 N Ox還元処理を行うべき第 1排気浄化装置 1 1 aの P M捕集量 によって、 第 1中間開度を読み出すマップを変更してもよい。 あるいは、 第 1中 間開度を読み出すマップは第 1排気浄化装置 1 1 aの P M捕集量に係らず同一の マップとし、 該マップから読み出された弁開度の値に、 第 1排気浄化装置 1 1 a の P M捕集量に対応した係数を乗じることにより、 第 1中間開度を求めてもよい。 また、 この場合の P M捕集量は、 前回第 1排気浄化装置 1 1 aのフィルタに捕 集された微粒子物質を酸化除去する P M再生処理を実施してからの、 車両の走行 距離などから算出するようにしてもよい。 あるいは、 第 1排気浄ィ匕装置 1 1 aの 前後に図示しない排気圧センサを設け、 第 1排気浄化装置 1 1 aの前後の排気圧 センサの出力の差から背圧を直接検出するようにしてもよい。
さらに、 本実施例においては、 上記の 2通りの方法で導出された、 内燃機関 1 の運転状態に応じた第 1中間開度の値を比較し、 より開度が大きい方を、 最終的 な第 1中間開度として決定するようにしてもよい。 すなわち、 基本的には、 内燃 機関 1の運転状態に応じて、 N〇x還元処理の終了後の第 1排気浄ィ匕装置 1 1 a の N〇x浄化能力が最良となる、 第 2弁 1 2 bの開度を最終的な第 1中間開度と
して決定する。
し力 し、 決定された第 1中間開度の値が、 内燃機関 1のその際の運転状態にお いて、 内燃機関 1の機関出力に与える影響が所定の許容値を超えない範囲で最小 の開度よりも小さい場合には、 その運転状態において内燃機関 1の機関出力に及 ぼす影響が所定の許容値を超えない範囲における最小の開度を第 1中間開度とし て用いる。
そうすれば、 内燃機関 1の運転状態に応じて、 内燃機関 1の機関出力に影響を 及ぼさない範囲で、 N Ox還元処理後の第 1排気浄化装置 1 1 aの N〇x浄化能 力を可及的に高くすることができる第 2弁 1 2 bの開度を、 第 1中間開度として 決定することができる。 この場合の、 内燃機関 1の運転状態と、 第 1中間開度と の関係を図 6に示す。
図 6において、 破線で示すのは、 それぞれ、 図 4及び、 図 5で示した第 2弁 1 2 bの開度の値であり、 実線で示すのは、 これらのうち、 第 1中間開度としてよ り大きい開度が得られるラインを選択したものである。 図 6における実線で示す ラインを基にマップを作成し、 内燃機関 1の運転状態に応じた第 1中間開度の値 を読み出せばよい。 例えば内燃機関 1の運転状態が図 6中 A点で示される場合、 N〇x還元処理の終了後の第 1排気浄化装置 1 1 aの N Ox浄化効率が最良とな る弁開度は 6 5 %となる。 一方、 内燃機関 1の機関出力に及ぼす影響が許容値を 超えない最小の開度は 7 5 %となる。 この場合、 第 1中間開度としては 7 5 %が 選択される。
なお、 上記の実施例においては、 第 1排気浄化装置 1 1 aの N〇x還元処理を 行う場合について説明したが、 第 2排気浄化装置 1 2 bの N Ox還元処理を行う 場合についても同様の考えを適用できる。 その場合は、 第 1分岐通路 1 0 aと第 2分岐通路 1 0 b、 第 1排気浄ィ匕装置 1 1 aと第 2排気浄ィヒ装置 1 1 b、 第 1弁 1 2 3と第2弁1 2 13、 第 1燃料添加弁 1 4 aと第 2燃料添加弁 1 4 bとを入れ 替えて考えればよい。 以下の説明についても同様である。
実施例 2
次に、 本発明における実施例 2について説明する。 実施例 2においては、 内燃 機関 1における運転状態が、 軽〜中負荷領域に属している状態で、 第 1排気浄化 装置 1 1 aの N〇x還元処理を行う場合の制御について説明する。 この場合は、 第 1弁 1 2 aを全閉状態とした後に、 第 2弁 1 2 bを第 2中間開度まで閉弁する。 図 7は、 第 1排気浄化装置 1 1 aの N Ox還元処理を行う場合の、 各排気流量 制御弁の開閉動作、 それに伴う第 1分岐通路 1 0 aにおける排気流量の変化及び、 第 1燃料添加弁 1 4 aの開閉動作について示したタイムチャートである。
特に、 内燃機関 1の運転状態が軽〜中負荷の領域に属し、 各分岐通路を通過す る排気にそのまま還元剤を添加することにより、 排気浄ィヒ装置に還元剤を充分に 供給することが出来る状態における制御ついて説明している。
図 7によれば、 時点 t lにおいてまず、 第 1弁 1 2 aが全閉となる。 そうする と、 第 1分岐通路 1 0 aを通過する排気の流量が減少を始める。 その後時点 t 7 において、 第 2弁 1 2 aが第 2中間開度まで閉弁される。 そうすると、 第 2分岐 通路 1 0 bを通過していた排気の一部が、 全閉状態になろうとする第 1分岐通路 1 0 aに流入するため、 第 1分岐通路 1 0 aにおける排気流量の減少の勾配が緩 やかになる。
ここで、 第 2中間開度は、 本実施例における浄化能力再生時開度に相当する力 前述の第 1中間開度とは異なる値でもよい。 そして、 第 1中間開度ど同様、 予め 定められた一定値としてもよい。 あるいは、 内燃機関 1の運転状態に応じて、 N Ox還元処理の終了後の第 1排気浄化装置 1 1 aの N Ox浄化効率が最良となる 開度としてもよレ、。 また、 内燃機関 1の運転状態に応じて、 内燃機関 1の機関出 力に与える影響が所定の許容値を超えない範囲における最小の開度としてもよい。 次にこの状態で、 時点 8において、 第 1燃料添加弁 1 4 aから燃料が添カロさ れる。 すなわち、 第 1分岐通路 1 0 aを通過する排気の流量が緩やかに減少して
いる状態で、 燃料添加弁 1 4 aから燃料が添加される。 従って、 第 1燃料添加弁 1 4 aから添加された燃料を長時間に亘つて安定的に第 1排気浄ィヒ装置 1 1 aに 供給することができる。 そうすると、 燃料添加弁 1 4 aからの燃料添加が開始さ れる時点 t 8に要求される設定精度が緩和されるとともに、 多くの量の燃料を良 好に第 1排気浄化装置 1 1 aに供給することができる。
そして、 第 1排気浄化装置 1 1 aにおいて充分に N〇x還元が終了したと考え られる時点 t 9において、 第 1弁 1 2 a及び第 2弁 1 2 bを全開させ、 各分岐通 路を通過する排気の流量を、 時点 t 1以前の状態に戻す。
以上、 説明したとおり、 本実施例においては、 内燃機関 1の運転状態が軽〜中 負荷状態であって、 燃料添加弁から添加された燃料が充分に排気浄ィ匕装置に供給 されるだけの運搬性が確保されている場合について説明した。 そのような場合に は、 まず、 N Ox還元処理を行う方の第 1分岐通路 1 0 aにおける第 1弁 1 2 a を全閉とし、 その直後に、 第 2分岐通路 1 0 bにおける第 2弁 1 2 bを第 2中間 開度まで閉弁させる。
そうすれば、 N Ox還元処理を行う第 1分岐通路 1 0 aにおける排気流量の減 少の勾配を緩やかにすることができ、 長時間に亘つて安定的に還元剤を第 1排気 浄化装置 1 1 aに供給することができる。 従って、 第 1燃料添加弁 1 4 aからの 燃料添加タイミングの要求精度を緩和することができ、 多くの燃料をより確実に 第 1排気浄化装置 1 1 aに供給することができる。 実施例 3
次に、 本発明における実施例 3について説明する。 実施例 3においては、 第 1 排気浄化装置 1 1 aの N Ox還元処理と第 2排気浄化装置 1 1 bの N Ox還元処 理とを連続して行う場合について説明する。
図 8は、 第 1排気浄化装置 1 1 a及び第 2排気浄化装置 1 1 bに対する N〇x 還元処理を連続して行う場合の各排気流量制御弁の開閉動作、 それに伴う第 1分
岐通路 1 0 a及び第 2分岐通路 1 0 bにおける排気流量の変化、 第 1燃料添加弁 1 4 a及ぴ第 2燃料添加弁 1 4 bの開閉動作について示したタイムチャートであ る。
図 8において、 時点 t 1〜 t 4までの制御は図 3において説明した制御と同等 であるので説明を省略する。 そして、 図 3に示した制御では、 時点 t 5において は、 第 1弁 1 2 aを全開とし、 時点 t 6において第 2弁 1 2 bを全開とした。 こ れに対し、 本実施例では、 第 1排気浄化装置 1 1 aの N O x還元処理が終了した 際には、 連続して第 2排気浄化装置 1 1 bの N O x還元処理を行うので、 時点 t 5において第 1弁 1 2 aを全開にするのではなく、 第 1弁 1 2 aを第 1中間開度 まで開弁する。
そうすることにより、 第 1弁 1 2 a、 第 2弁 1 2 bの両方が第 1中間開度であ る状態となる。 従って、 それまで内燃機関 1から排出される排気の略全量が通過 していた第 2分岐通路 1 0 bを通過する排気の流量は、 中程度の流量まで減少す る。 同時に、 それまで略零であった第 1分岐通路 1 0 aを通過する排気の流量は、 第 2分岐通路 1 0 bと同等の流量まで増加する。 次に、 時点 1 0において、 第 2弁 1 2 bを全閉とする。 そうすると、 第 2分岐通路 1 0 bを通過する排気の流 量はさらに減少し、 略零となる。 同時に、 内燃機関 1から排出される排気の略全 量が第 1分岐通路 1 0 aを通過することとなる。 そして、 本実施例においては、 上述したように第 2分岐通路 1 0 bを通過する排気の流量が、 中程度の流量から 略零まで減少している期間中の時点 t 1 1において、 第 2燃料添加弁 1 4 から 燃料を添加する。
それにより、 第 2排気浄化装置 1 1 bに還元剤としての燃料が供給され、 第 2 排気浄化装置 1 1 bにおける N〇x還元が開始される。 その後、 第 2排気浄化装 置 1 1 bにおける N O x還元が終了するのに充分な時間が経過した後、 時点 1 2において、 第 1弁 1 2 a及び第 2弁 1 2 bの両方が全開される。 そうすること により、 第 1分岐通路 1 0 a及ぴ第 2分岐通路 1 0 bを通過する排気の流量がと
もに、 時点 t 1以前の状態に戻る。
以上、 本実施例においては、 第 1排気浄化装置 1 1 a及ぴ、 第 2排気浄化装置 1 1 bの両方について連続して N〇x還元処理を行う場合について説明した。 こ の場合には、 第 1排気浄化装置 1 1 aの N Ox還元が終了した時点で、 第 1弁 1 2 aを全開状態に戻さずに第 1中間開度とし、 第 2弁 1 2 bを直接全閉状態とし た上で、 第 2排気浄化装置 1 1 bの N O x還元を開始している。
そうすれば、 第 1弁 1 2 a及び第 2弁 1 2 bの開閉弁の際の駆動量を可及的に 少なくすることができ、 このことによる背圧の変化や、 機関出力に及ぼす影響を 可及的に小さくすることができる。 さらに、 第 1弁 1 2 a及び第 2弁 1 2 bの開 閉弁動作に伴う消費電力や騒音を低減することができる。
なお、 上記の説明においては、 内燃機関 1はディーゼノレ機関であるとしたが、 上記実施例をガソリンエンジンに適用しても構わない。
また、 上記実施例においては、 第 1排気浄化装置 1 1 a及び第 2排気浄化装置 1 1 bに対する N〇x還元処理を実施する場合について説明したが、 第 1排気浄 化装置 1 1 a及び第 2排気浄化装置 l i bにおける S Ox再生処理や P MS生処 理を実施する場合に、 同様の制御を適用してもよい。 特に、 P M再生処理を実施 する場合には、 N Ox触媒ではなく、 各フィルタの上流に配置された酸化触媒に 還元剤としての燃料を供給するようにしてもよレ、。
さらに、 上記実施例においては、 吸蔵還元型 N Ox触媒に還元剤としての燃料 を添加することにより N Ox還元処理などを実施する場合について説明した。 こ れに対し本発明は、 尿素水を還元剤として排気通路内に供給し、 排気ガス中の N O Xを還元する選択還元型 N O X触媒システムにも適用が可能である。
また、 上記実施例においては、 排気通路を 2つの分岐通路に分岐する排気浄化 システムにおいて、 1方の分岐通路に備えられた排気浄ィヒ装置に対して N〇x還 元処理を行う場合の制御について説明した。 これに対し、 3つ以上の分岐通路に 分岐する排気浄化システムにおいて、 1つの排気浄ィ匕装置に対して N Ox還元処
理を行う場合に、 他の分岐通路のうちの 1つにおける排気流量制御弁の開度を制 御する場合に本発明を適用してもよレ、。
さらに、 3つ以上の分岐通路に分岐する排気浄化システムにおいて、 1つの排 気浄化装置に対して N Ox還元処理を行う場合に、 他の分岐通路のうちの 2っ以 上における排気流量制御弁の開度を制御する場合に本発明を適用してもよい。 加 えて、 4つ以上の分岐通路に分岐する排気浄化システムにおいて、 2つ以上の排 気浄化装置に対して同時に N Ox還元処理を行う際に、 他の分岐通路のうちの 2 つ以上における排気流量制御弁の開度を制御する場合などに本発明と同様の考え 方を適用してもよレ、。
また、 上記の実施例における全閉とは、 完全な閉弁状態のみを意味しない。 完 全な閉弁状態に近い状態であって、 本発明の効果が充分に得られる程度まで閉弁 された状態も含んでいる。 産業上の利用可能性
本発明にあっては、 排気通路から分岐された複数個の分岐通路と、 各分岐通路 に設けられた排気浄化装置を組み合わせた排気浄化システムにおいて、 より確実 にまたはより効率良く、 排気浄ィヒ装置の浄化能力を再生することができる。
Claims
1 .
一端が内燃機関に接続されて該内燃機関からの排気が通過するとともに、 途中 で複数の分岐通路に分岐する排気通路と、
前記複数の分岐通路の各々に設けられ、 各分岐通路を通過する前記排気を浄ィ匕 する排気浄化装置と、
前記複数の分岐通路の各々に設けられ、 各分岐通路を通過する排気の流量を制 御する排気流量制御弁と、
前記複数の分岐通路の各々における前記排気浄化装置の上流に設けられるとと もに各分岐通路を通過する排気に還元剤を添加する還元剤添加手段と、
を備える内燃機関の排気浄化システムであって、
前記複数の分岐通路の一つに設けられた前記排気浄化装置に還元剤を供給して、 該排気浄ィヒ装置の浄化能力を再生する際には、
前記複数の分岐通路のうち、 浄ィヒ能力を再生すべき前記排気浄化装置が設けら れた分岐通路における、 前記排気流量制御弁を略全閉とするとともに、 他の分岐 通路の少なくとも一つにおける、 排気流量制御弁の開度を、 所定の浄化能力再生 時開度とすることを特徴とする内燃機関の排気浄化システム。
2 .
前記複数の分岐通路のうち、 浄化能力を再生すべき前記排気浄化装置が備えら れた分岐通路における、 前記排気流量制御弁を略全閉とする動作と、 他の分岐通 路の少なくとも一つにおける、 前記排気流量制御弁の開度を所定の浄化能力再生 時開度とする動作との間には、 所定の時間差を設けたことを特徴とする請求項 1 に記載の内燃機関の排気浄化システム。
3 .
前記内燃機関の運転状態が所定の軽負荷領域に属する場合において、 前記複数 の分岐通路の一つに設けられた排気浄ィヒ装置に還元剤を供給して、 前記排気浄化 装置の浄化能力を再生する際には、
前記他の分岐通路少なくとも一つにおける、 前記排気流量制御弁の開度を前記 浄化能力再生時開度としてから、 所定の第 1時間の経過後に、 前記浄化能力を再 生すべき排気浄化装置が備えられた分岐通路における、 前記排気流量制御弁を略 全閉とすることを特徴とする請求項 2に記載の内燃機関の排気浄化システム。
4 .
前記内燃機関の運転状態が所定の中軽負荷領域に属する場合において、 前記複 数の分岐通路の一つに設けられた排気浄ィ匕装置に還元剤を供給して、 前記排気浄 化装置の浄ィヒ能力を再生する際には、
前記浄化能力を再生すべき排気浄ィ匕装置が備えられた分岐通路における、 排気 流量制御弁を略全閉としてから、 所定の第 2時間の経過後に、 前記他の分岐通路 の少なくとも一つにおける、 前記排気流量制御弁の開度を前記浄化能力再生時開 度とすることを特徴とする請求項 2に記載の内燃機関の排気浄化システム。
5 .
前記浄化能力再生時開度は、 前記浄化能力を再生すべき前記排気浄化装置の、 浄化能力の再生後における浄化能力が略最良となる、 前記他の分岐通路の少なく とも一つにおける前記排気流量制御弁の開度であり、 前記内燃機関の運転状態に 応じて決定されることを特徴とする請求項 1から 4のいずれかに記載の内燃機関 の排気浄化システム。
6 .
前記浄化能力再生時開度は、 前記浄化能力を再生すべき排気浄化装置が備えら れた分岐通路における、 前記排気流量制御弁を略全閉とするとともに、 前記他の 分岐通路の少なくとも一つにおける、 前記排気流量制御弁の開度を該浄化能力再 生時開度とした場合に、 前記内燃機関の機関出力に与える影響が所定の許容値を
超えない範囲における最小の開度であり、 前記内燃機関の運転状態に応じて決定 されることを特徴とする請求項 1カゝら 4のいずれかに記載の内燃機関の排気浄化 システム。
7 .
前記浄化能力再生時開度は、 前記内燃機関の運転状態に応じて決定された、 前 記浄化能力を再生すべき前記排気浄化装置の、 浄化能力の再生後における浄化能 力が略最良となる、 前記他の分岐通路の少なくとも一つにおける前記排気流量制 御弁の開度と、 .
前記内燃機関の運転状態に応じて決定された、 前記浄化能力を再生すべき排気 浄化装置が備えられた分岐通路における、 前記排気流量制御弁を略全閉とすると ともに、 前記他の分岐通路の少なぐとも一つにおける、 前記排気流量制御弁の開 度を該浄化能力再生時開度とした場合に、 前記内燃機関の機関出力に与える影響 が所定の許容値を超えない範囲における最小の開度と、
を比較した場合の、 より大きい方の開度であることを特徴とする請求項 1から 4のいずれかに記載の内燃機関の排気浄化システム。
8 .
前記浄化能力再生時開度は、 前記浄化能力を再生すべき前記排気浄化装置の温 度及び、 前記浄化能力を再生すべき前記排気浄化装置が備えられた分岐通路にお ける、 前記排気浄ィヒ装置による背圧の少なくとも一方に基いて補正されることを 特徴とする請求項 5から 7のいずれかに記載の内燃機関の排気浄化システム。
9 .
前記複数の分岐通路の一つに設けられた前記排気浄ィ匕装置の浄ィ匕能力を再生し た後に、 該再生中に前記浄化能力再生時開度とされた排気流量制御弁が設けられ た分岐通路における前記排気浄ィヒ装置の浄ィヒ能力を連続して再生する際には、 浄 化能力の再生が終了した前記排気浄化装置が備えられた分岐通路における、 前記 排気流量制御弁の開度を略全閉状態から前記浄ィヒ能力 生時開度とするとともに、
浄化能力の再生をこれから行うべき前記排気浄化装置が備えられた分岐通路にお ける、 前記排気流量制御弁の開度を前記浄化能力再生時開度から略全閉状態とす ることを特徴とする請求項 1カゝら 8のいずれかに記載の内燃機関の排気浄ィ匕シス テム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06715682A EP1857650B1 (en) | 2005-03-09 | 2006-03-09 | Exhaust gas purification system for internal combustion engine |
US11/884,128 US7963102B2 (en) | 2005-03-09 | 2006-03-09 | Exhaust purification system for internal combustion engine |
CN200680006346A CN100595423C (zh) | 2005-03-09 | 2006-03-09 | 内燃机的排气净化系统 |
DE602006013799T DE602006013799D1 (de) | 2005-03-09 | 2006-03-09 | Abgasreinigungssystem für verbrennungsmotor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-066208 | 2005-03-09 | ||
JP2005066208A JP4148231B2 (ja) | 2005-03-09 | 2005-03-09 | 内燃機関の排気浄化システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006095918A1 true WO2006095918A1 (ja) | 2006-09-14 |
Family
ID=36953498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/305191 WO2006095918A1 (ja) | 2005-03-09 | 2006-03-09 | 内燃機関の排気浄化システム |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1857650B1 (ja) |
JP (1) | JP4148231B2 (ja) |
CN (1) | CN100595423C (ja) |
DE (1) | DE602006013799D1 (ja) |
WO (1) | WO2006095918A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120204542A1 (en) * | 2010-10-13 | 2012-08-16 | Cummins Intellectual Property, Inc. | Multi-leg exhaust aftertreatment system and method |
US11867111B2 (en) | 2019-05-09 | 2024-01-09 | Cummins Emission Solutions Inc. | Valve arrangement for split-flow close-coupled catalyst |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110289902A1 (en) * | 2010-05-27 | 2011-12-01 | International Engine Intellectual Property Company , Llc | Method for operating an exhaust valve for diesel particulate filter regeneration |
JP5908814B2 (ja) * | 2012-09-13 | 2016-04-26 | 株式会社小松製作所 | 排ガス処理装置、ディーゼルエンジン及び排ガス処理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11107739A (ja) * | 1997-10-08 | 1999-04-20 | Tokyo Gas Co Ltd | 内燃機関の排気浄化装置 |
JP2001140635A (ja) * | 1999-11-18 | 2001-05-22 | Hino Motors Ltd | 排気浄化装置 |
JP2003106142A (ja) * | 2001-10-01 | 2003-04-09 | Toyota Motor Corp | 排気ガス浄化装置 |
JP2003120269A (ja) * | 2001-10-10 | 2003-04-23 | Toyota Motor Corp | 触媒温度制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030113242A1 (en) * | 2001-12-18 | 2003-06-19 | Hepburn Jeffrey Scott | Emission control device for an engine |
-
2005
- 2005-03-09 JP JP2005066208A patent/JP4148231B2/ja not_active Expired - Fee Related
-
2006
- 2006-03-09 WO PCT/JP2006/305191 patent/WO2006095918A1/ja active Application Filing
- 2006-03-09 CN CN200680006346A patent/CN100595423C/zh not_active Expired - Fee Related
- 2006-03-09 DE DE602006013799T patent/DE602006013799D1/de active Active
- 2006-03-09 EP EP06715682A patent/EP1857650B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11107739A (ja) * | 1997-10-08 | 1999-04-20 | Tokyo Gas Co Ltd | 内燃機関の排気浄化装置 |
JP2001140635A (ja) * | 1999-11-18 | 2001-05-22 | Hino Motors Ltd | 排気浄化装置 |
JP2003106142A (ja) * | 2001-10-01 | 2003-04-09 | Toyota Motor Corp | 排気ガス浄化装置 |
JP2003120269A (ja) * | 2001-10-10 | 2003-04-23 | Toyota Motor Corp | 触媒温度制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1857650A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120204542A1 (en) * | 2010-10-13 | 2012-08-16 | Cummins Intellectual Property, Inc. | Multi-leg exhaust aftertreatment system and method |
US9151202B2 (en) * | 2010-10-13 | 2015-10-06 | Cummins Intellectual Property, Inc. | Multi-leg exhaust aftertreatment system and method |
US10001047B2 (en) | 2010-10-13 | 2018-06-19 | Cumming Intellectual Property, Inc. | Multi-leg exhaust aftertreatment system and method |
US10273861B2 (en) | 2010-10-13 | 2019-04-30 | Cummins Intellectual Property, Inc. | Multi-leg exhaust aftertreatment system and method |
US11867111B2 (en) | 2019-05-09 | 2024-01-09 | Cummins Emission Solutions Inc. | Valve arrangement for split-flow close-coupled catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2006250001A (ja) | 2006-09-21 |
EP1857650A1 (en) | 2007-11-21 |
EP1857650A4 (en) | 2008-10-01 |
EP1857650B1 (en) | 2010-04-21 |
CN101128654A (zh) | 2008-02-20 |
CN100595423C (zh) | 2010-03-24 |
DE602006013799D1 (de) | 2010-06-02 |
JP4148231B2 (ja) | 2008-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5118331B2 (ja) | 排気浄化装置 | |
JP5790868B2 (ja) | 内燃機関の排気浄化装置 | |
JP4972914B2 (ja) | 排気ガス浄化システムの再生制御方法及び排気ガス浄化システム | |
JP5884906B2 (ja) | 内燃機関の排気浄化装置 | |
JP2006153000A (ja) | 内燃機関の排気浄化装置 | |
JP4314135B2 (ja) | 車載内燃機関の排気浄化装置 | |
JP2009203898A (ja) | 排気浄化システム | |
JP4148254B2 (ja) | 内燃機関の排気浄化システム及び、排気浄化装置の浄化能力の再生方法。 | |
JP4135757B2 (ja) | 内燃機関の排気浄化システム | |
US7963102B2 (en) | Exhaust purification system for internal combustion engine | |
WO2006095918A1 (ja) | 内燃機関の排気浄化システム | |
WO2007015478A1 (ja) | 排気浄化装置 | |
JP4888134B2 (ja) | 内燃機関の排気浄化システム | |
JP2006022741A (ja) | 内燃機関の排気浄化システム | |
JP2007077875A (ja) | 内燃機関の排気浄化システム | |
JP4507697B2 (ja) | 内燃機関の排気浄化システム | |
JP2007154769A (ja) | 排気浄化装置 | |
JP2009133291A (ja) | 内燃機関の排気浄化装置及びその制御方法 | |
JP4674531B2 (ja) | 内燃機関の排気浄化装置 | |
JP4013774B2 (ja) | 内燃機関の排気浄化装置 | |
JP2007177663A (ja) | 内燃機関の排気浄化システム | |
JP2006022739A (ja) | 内燃機関の排気浄化システム | |
JP2005207377A (ja) | 内燃機関の排気浄化装置 | |
JP2005330936A (ja) | 内燃機関の排気浄化システム | |
JP2006022740A (ja) | 内燃機関の排気浄化システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11884128 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006715682 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680006346.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006715682 Country of ref document: EP |