WO2006095545A1 - ズームレンズ系及び撮像装置 - Google Patents

ズームレンズ系及び撮像装置 Download PDF

Info

Publication number
WO2006095545A1
WO2006095545A1 PCT/JP2006/302664 JP2006302664W WO2006095545A1 WO 2006095545 A1 WO2006095545 A1 WO 2006095545A1 JP 2006302664 W JP2006302664 W JP 2006302664W WO 2006095545 A1 WO2006095545 A1 WO 2006095545A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
refractive power
group
wide
Prior art date
Application number
PCT/JP2006/302664
Other languages
English (en)
French (fr)
Other versions
WO2006095545A9 (ja
Inventor
Masafumi Sueyoshi
Daisuke Kuroda
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US11/587,934 priority Critical patent/US7545579B2/en
Priority to EP06713805A priority patent/EP1857852A4/en
Priority to CN2006800004684A priority patent/CN1989434B/zh
Publication of WO2006095545A1 publication Critical patent/WO2006095545A1/ja
Publication of WO2006095545A9 publication Critical patent/WO2006095545A9/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a novel zoom lens system and an imaging device.
  • it is excellent in compactness suitable for imaging optical systems of digital input / output devices such as digital still cameras and digital video cameras, and covers wide-angle side to telephoto side while providing high imaging performance regardless of subject distance.
  • the present invention relates to a zoom lens system having the same and an imaging device provided with the zoom lens system.
  • imaging devices using individual imaging devices such as digital still cameras are in widespread use. Above all, with the spread of digital still cameras, it is excellent in compactness, while one lens covers from the wide-angle side to the telephoto side, and has high image quality over the entire zoom range regardless of the subject distance. A zoom lens having is required.
  • the zoom lenses described in the above-mentioned JP-A-4-146407 and JP-A-11-174324 relate to an interchangeable lens such as a single-lens reflex camera, and an arrangement space of a flip-up mirror etc. It is difficult to miniaturize and widen the lens because it is necessary to secure a long back focus for the
  • the present invention provides high imaging performance over the entire zoom range regardless of the object distance while covering from the wide angle side to the telephoto side used in video cameras and digital still cameras. It is an object of the present invention to provide a zoom lens system having the same and an imaging device using the zoom lens system. Disclosure of the invention
  • the zoom lens system according to the present invention in order to solve the problems described above, comprises, in order from the object side, at least a first lens group GR1 having positive refractive power and a second lens group having negative refractive power.
  • GR2 a third lens group GR3 having a positive refractive power
  • a fourth lens group GR4 having a positive refractive power
  • a fifth lens group GR5 having a weak refractive power (including a refractive power of 0)
  • the sixth lens unit GR6 having a negative refracting power is changed to perform zooming by changing the distance between the respective lens units, and the i-th lens unit to the j-th lens unit at the wide-angle end Group spacing
  • focusing is performed by moving the fourth lens unit GR4 in the optical axis direction.
  • a zoom lens system comprising a plurality of groups and changing magnification by changing a group interval, and an imaging element for converting an optical image formed by the zoom lens system into an electrical signal.
  • the zoom lens system includes at least a first lens group GR1 having positive refractive power and a second lens group GR2 having negative refractive power, which are arranged in order from the object side.
  • the group interval is DW ('), and the inter-group distance between the i-th lens unit and the j-th lens unit at the telephoto end When you DTG-j) and the following conditional expressions (1), (2), satisfies (3),
  • the zoom lens system of the present invention can be made compact and have high magnification, and the imaging device of the present invention can be made compact by using the zoom lens system of the present invention. As well as being able to do this, it becomes possible to shoot at high magnifications up to the wide-angle range and even into the telephoto range. Further, by providing at least six lens groups and changing the group spacing of each lens group at the time of zooming, it is possible to achieve a compact and high-magnification zoom lens system with a relatively small amount of movement of the entire lens system. In addition, by setting the fourth lens unit GR4 having a small lens diameter as the focus unit, the drive system of the focus unit can be made compact, and in turn, high speed imaging of AF (autofocus) speed becomes possible.
  • the imaging device of the present invention is compact, while using the zoom lens system of the present invention, enables imaging with a high magnification ratio up to the wide-angle range and the telephoto range, and the usability is improved by the high-speed AF. , You will be able to accurately capture the shutter opportunity.
  • the third lens group GR3 and the fifth lens group GR5 are integrally formed along the optical axis. Since it moves, the third lens group GR3, the fourth lens group GR4, and the fifth lens group GR5 can be configured by one cam cylinder, and among them, the fourth lens group GR4 which is the focusing group is moved.
  • the distance between the third lens group GR3, the fourth lens group GR4, and the fifth lens group GR5 is conditional expression (4) DW (3-4) ⁇ DT (3-4), (5) DW (4-5)> Since DT (4-5) is satisfied, high imaging performance in the zooming area and focusing area regardless of the subject distance Have.
  • the fifth lens group GR5 is composed of a single lens having at least one aspheric surface, and the fifth lens group Assuming that the focal length of G R5 is fg 5 and the focal length at the wide-angle end of the whole system is ⁇ , the conditional expression (6) -0.4 fw / fg 5 0.4 is satisfied. Corrects the starting aberrations more effectively to obtain good imaging performance at all shooting distances.
  • the back focus (air equivalent length) at the wide-angle end is Twbf
  • the focal length at the wide-angle end of the whole system is 1.
  • the sixth lens group GR6 is a negative lens having at least negative refractive power, which is arranged in order from the object side, and a positive lens. Since one positive lens having refractive power is provided, the peripheral ray is jumped up by the negative lens and suppressed by the positive lens, thereby making it easy to widen the angle while suppressing distortion, and it is possible to obtain an imaging element.
  • the incident angle can be made gentle, and lateral chromatic aberration can be corrected effectively.
  • the sixth lens group GR 6 is a negative lens having at least negative refractive power arranged in order from the object side and a positive lens. and a positive lens having a refractive power have one, when the lateral magnification and j8 WG6 at the wide angle end of the sixth lens group GR6, conditional expression (9) 1.05 rather
  • FIG. 1 is a diagram showing a lens configuration of a first embodiment of a zoom lens system according to the present invention.
  • FIG. 2 shows various aberration diagrams of Numerical Example 1 in which specific numerical values are applied to the first embodiment of the zoom lens system of the present invention, together with FIG. 3 and FIG. It shows spherical aberration, astigmatism and distortion at the wide-angle end.
  • FIG. 3 shows spherical aberration, astigmatism and distortion at an intermediate focal length.
  • FIG. 4 shows spherical aberration, astigmatism and distortion at the telephoto end.
  • FIG. 5 is a view showing a lens configuration of a second embodiment of a zoom lens system according to the present invention.
  • FIG. 6 shows various aberration diagrams of Numerical Example 2 in which specific numerical values are applied to the second embodiment of the zoom lens system of the present invention, together with FIG. 7 and FIG. It shows spherical aberration, astigmatism and distortion at the wide-angle end.
  • Fig. 7 shows spherical aberration, astigmatism and distortion at an intermediate focal length.
  • FIG. 8 shows spherical aberration, astigmatism and distortion at the telephoto end.
  • FIG. 9 is a view showing a lens configuration of a third embodiment of a zoom lens system according to the present invention.
  • FIG. 10 shows various aberration diagrams of Numerical Example 3 in which specific numerical values are applied to the third embodiment of the zoom lens system of the present invention, together with FIG. 11 and FIG. It shows spherical aberration, astigmatism and distortion at the wide angle end.
  • FIG. 11 shows spherical aberration, astigmatism and distortion at an intermediate focal length.
  • FIG. 13 shows spherical aberration, astigmatism and distortion at the telephoto end.
  • FIG. 13 is a block diagram showing an embodiment of the imaging apparatus of the present invention.
  • the zoom lens system according to the present invention has a first lens group GR1 having positive refractive power, a second lens group GR2 having negative refractive power, and a positive refractive power, which are arranged in order from at least the object side.
  • the group spacing between the ith lens group and the jth lens group is DWG-j), and the ith lens group and the jth lens at the telephoto end
  • the following conditional expressions (1), (2) and (3) are satisfied and the fourth lens group GR4 is moved in the optical axis direction
  • the focusing group can be made smaller as compared to the case where the first lens group and the second lens group are conventionally set as the focusing group, and the photographing distance is set. Regardless, high imaging performance can be achieved, and furthermore, the drive mechanism of the focus group can be made compact. Furthermore, since the focus group can be moved at high speed and with high stop accuracy, high speed AF (auto focus) becomes possible, and high image forming performance can be obtained.
  • the power also defines the distance between the first lens group GR1 and the second lens group GR2 at the time of zooming to the telephoto end, and the conditional expression (2) is the zooming at the wide-angle end to the far end. Defines the distance between the second lens unit GR2 and the third lens unit GR3. By satisfying these conditions, it is possible to have a large zooming action up to the wide-angle end power and the telephoto end. .
  • conditional expression (3) defines the distance between the fifth lens group GR5 and the sixth lens group GR6 at the time of zooming to the telephoto end, as well as the wide-angle end power. Can be changed while properly correcting the
  • the third lens unit GR3 and the fifth lens unit GR5 move integrally along the optical axis during zooming.
  • the third, fourth and fifth lens units GR3, GR4 and GR5 can be constituted by one cam cylinder, and if the fourth lens unit GR4 which is the focusing unit is moved among them.
  • the third, fourth, and fifth lens units tend to have tight manufacturing tolerances, which are easy in mechanical configuration, and this facilitates relative positioning of the third, fourth, and fifth lens groups GR3, GR4, and GR5. It is desirable that the distance between the third lens group GR3, the fourth lens group GR4, and the fifth lens group GR5 satisfy the following conditional expressions (4) and (5).
  • conditional expression (4) also defines the distance between the third lens unit GR3 and the fourth lens unit GR4 which is the focus lens unit at the time of zooming to the telephoto end, also at the wide-angle end force.
  • Equation (5) defines the distance between the fourth lens unit GR4 and the fifth lens unit GR5, which are the focusing unit, during zooming to the telephoto end, as well as by the wide-angle end force.
  • the variation of the spherical aberration caused by the variation of the subject distance which suppresses the variation of the curvature of field due to focusing while securing the movement amount of the fourth lens unit GR4 which is the focusing lens unit at the time of focusing,
  • the fourth lens unit GR4 which is the focusing lens unit at the time of focusing
  • the fifth lens group GR5 is composed of a single lens having at least one aspheric surface, and the focal length of the fifth lens group GR5 is fg5, and the focal length ⁇ of the entire system at the wide-angle end is It is desirable that conditional expression (6) be satisfied.
  • the fifth lens group GR5 has at least one aspheric surface so as to cancel the variation of the spherical aberration caused by the movement of the fourth lens group GR4 as the focusing group during focusing, so that the subject distance is infinite. Even if the distance to the distance is changed, the variation of the spherical aberration can be reduced and good imaging performance can be obtained at all shooting distances.
  • the conditional expression (6) defines the ratio of the focal length of the fifth lens unit GR5 having weak power and refractive power to the focal length at the wide-angle end in the entire lens system. !
  • the value of / fg5 is 0.4 or less, the negative power of the fifth lens group GR5 becomes too strong, and the amount of image plane variation with respect to the amount of movement of the fourth lens group GR4 which is the focusing group becomes large. Not preferable for AF control. Also,!
  • the back focus (air equivalent length) at the wide angle end is Twbf, and the focus at the wide angle end of the entire system When the distance is 1, it is desirable to satisfy the following conditional expression (7).
  • the conditional expression (7) defines the ratio between the back focus length at the wide angle end and the focal length of the entire lens system at the wide angle end. That is, when the value of Twbf / is less than 0.2, the low-pass filter (LPF) and infrared (IR) shielding glass become very close to the imaging element surface, and dust attached to the LPF and IR shielding glass at the minimum aperture. Defects in the LPF and IR shielding glass become more noticeable. In addition, when the value of Twbf / l is 1.2 or more, the diameter of the lens front lens becomes large, which makes it difficult to miniaturize, making it difficult to achieve a wide angle.
  • LPF low-pass filter
  • IR infrared
  • the sixth lens group GR6 has one negative lens having at least negative refractive power and one positive lens having positive refractive power, which are arranged in order on the object side, and the sixth lens group GR6 It is desirable that the following conditional expression (8) be satisfied, where the lateral magnification at the telephoto end is ⁇ tg6.
  • the peripheral ray is bounced up by the negative lens and suppressed by the positive lens. While suppressing distortion, it is easy to widen the angle, and the angle of incidence on the imaging device can be made gentle. Further, the lateral chromatic aberration can also be corrected effectively.
  • the conditional expression (8) defines the lateral magnification of the sixth lens group GR6 at the telephoto end. This makes it possible to magnify the image all at once, which makes it possible to miniaturize the whole lens system.
  • the sixth lens group GR6 has a large magnification, it is possible to take pictures to the near distance side even when using a large image pickup element, and it is possible to earn the closest distance. If the value of j8 tg6 is less than 1.1, the magnification of the sixth lens group GR6 will be small, and it will be difficult to miniaturize the entire lens system, and the closest distance will be far. In addition, when the value of j8 tg6 is 2.0 or more, the assembling accuracy of the lens becomes very strict, which is not preferable in production.
  • the sixth lens group GR6 has one negative lens having at least negative refractive power and one positive lens having positive refractive power, which are arranged in order on the object side, and the sixth lens group GR6 It is desirable that the conditional expression (9) below be satisfied, where ⁇ wg6 is the lateral magnification at the wide-angle end of
  • the conditional expression (9) sets forth the magnification of the sixth lens unit GR6 at the wide angle end. If the value of j8 wg6 is less than or equal to 1.05, the magnification ratio of the sixth lens group GR6 becomes small, and the downsizing of the entire lens system becomes difficult. When the value of j8 wg6 is 1.5 or more, the lens assembly accuracy becomes very strict, and it becomes difficult to secure the magnification by the movement of the sixth lens group GR6, and the entire lens system is large. Turn
  • At least one of the surfaces of the lenses constituting the second lens group GR2 be an aspheric surface. Thereby, distortion aberration and coma aberration at the wide angle end can be effectively corrected, and compactness and high performance can be achieved.
  • the surfaces of the lenses constituting the sixth lens group GR6 it is desirable that at least one of the surfaces be aspheric. This makes it possible to effectively correct curvature of field and coma in the peripheral area.
  • the aspheric shape is expressed by the following equation (1).
  • FIG. 1 shows the lens arrangement according to a first embodiment 1 of the zoom lens system of the present invention, and from the object side, a first lens group GR1 having a positive refractive power, and a second lens having a negative refractive power.
  • Lens group GR2 a third lens group GR3 having a positive refractive power, a fourth lens group GR4 having a positive refractive power, a fifth lens group GR5 having a negative refractive power, a sixth lens having a negative refractive power
  • a group GR6 is arranged, and upon zooming from the wide-angle end to the telephoto end, the respective lens groups move on the optical axis from the state shown in the upper part of FIG. 1 to the state shown in the lower part.
  • the first lens group GR1 is composed of a cemented lens of a negative lens G11 and a positive lens G12 and a positive lens G13, which are arranged in order from the object side.
  • the second lens group GR2 is composed of, in order from the object side, a negative lens G14 having a compound aspheric surface on the object side, a negative lens G15, a positive lens G16, and a negative lens G17.
  • the third lens group GR3 is composed of, in order from the object side, a positive lens G18 having aspheric surfaces on both sides, a stop S, and a negative lens G19.
  • the fourth lens group GR4 is composed of a cemented lens of a positive lens G110 and a negative lens G111.
  • the fifth lens group GR5 is composed of a negative lens G 112 having an aspheric surface on the object side.
  • the sixth lens group GR6 is composed of, in order from the object side, a negative lens G113 and a positive lens G114 having an aspheric surface on the object side.
  • a low-pass filter L PF having a plane-parallel plate shape is interposed between the final lens surface of the zoom lens system and the imaging surface IMG. It is done.
  • the low-pass filter LPF may be a birefringent low-pass filter made of quartz or the like whose crystal axis direction has been adjusted in a predetermined direction, or a phase-type filter that achieves the required optical cutoff frequency characteristics by the diffraction effect. Application of a low pass filter etc. is possible.
  • Table 1 lists the values of various specifications of Numerical Embodiment 1 in which specific numerical values are applied to the first embodiment described above.
  • the surface No. in the specification table of this numerical embodiment 1 and each numerical embodiment to be described later indicates the i-th surface on the object side surface
  • R indicates the radius of curvature of the i-th surface
  • D indicates the i-th surface.
  • Nd is the d of the glass material having the ith surface on the object side
  • the surface indicated by "ASP" is aspheric.
  • the radius of curvature "INFINITY" indicates a plane.
  • the first lens unit GR1 and the second lens unit GR Distance between the lens group GR2 and the distance between the second lens unit GR2 and the third lens unit GR3 D14, and the distance between the third lens unit GR3 and the fourth lens unit GR4 D19 The fourth lens group G R4 and the fifth lens group GR5, the fifth lens group GR5 and the sixth lens group GR6, the sixth lens group GR6 and the low-pass filter LPF
  • the interplanar spacing D28 changes. Therefore, Table 2 shows the values at the wide-angle end, the intermediate focal length between the wide-angle end and the telephoto end, and the values at the telephoto end together with the focal length f, F number Fno., And half angle of view ⁇ .
  • the lens surfaces of the sixth surface, the fifteenth surface, the sixteenth surface, the twenty-third surface and the twenty-seventh surface are aspheric, and the aspheric coefficients are as shown in Table 3.
  • E ⁇ i is an exponential expression with a base of 10, ie, “10 _i ”, for example, “0.12345E-05” is it represents "0.12345 X 10 _5".
  • Figures 2 to 4 show the various aberrations in the infinity-focused state of the above-mentioned numerical example 1.
  • Figure 3 shows the intermediate focal length between the wide-angle end and the telephoto end.
  • the vertical axis represents the ratio to the open F value
  • the horizontal axis takes defocus
  • the solid line represents the spherical aberration at the d line
  • the dashed dotted line represents the dotted line Represents.
  • the vertical axis represents image height
  • the horizontal axis represents focus
  • the solid line S represents sagittal
  • the dotted line M represents the original image plane.
  • the distortion is represented by the image height on the vertical axis and% on the horizontal axis.
  • FIG. 5 shows a lens arrangement according to a second embodiment 2 of the zoom lens system of the present invention, which comprises, in order from the object side, a first lens group GR1 having a positive refractive power, and a second lens having a negative refractive power.
  • Lens group GR2 a third lens group GR3 having a positive refractive power, a fourth lens group GR4 having a positive refractive power, a fifth lens group GR5 having a positive refractive power, a sixth lens having a negative refractive power Group GR6 is arranged, and upon zooming from the wide-angle end to the telephoto end, the respective lens groups move on the optical axis from the state shown in the upper part of FIG. 5 to the state shown in the lower part.
  • the first lens group GR1 is composed of a cemented lens of a negative lens G21 and a positive lens G22, and a positive lens G23, which are arranged in order from the object side.
  • the second lens group GR2 includes a negative lens G24 having a compound aspheric surface on the object side, a cemented lens of a negative lens G25 and a positive lens G26, and a negative lens G27, which are arranged in order from the object side .
  • the third lens group GR3 is composed of, in order from the object side, a positive lens G28 having aspheric surfaces on both sides, a stop S, and a negative lens G29.
  • the fourth lens group GR4 is composed of a cemented lens of a positive lens G210 and a negative lens G211.
  • the fifth lens group GR5 is composed of a negative lens G212 having an aspheric surface on the object side.
  • the sixth lens group GR6 is composed of, in order from the object side, a negative lens G213 and a positive lens G214 having an aspheric surface on both sides.
  • Table 4 lists values of specifications of Numerical Embodiment 2 in which specific numerical values are applied to the second embodiment described above.
  • Table 5 shows the values at the wide-angle end, the intermediate focal length between the wide-angle end and the telephoto end, and the values at the telephoto end together with the focal length f, F number Fno. And half angle of view ⁇ .
  • the sixth, the fourteenth, the fifteenth, the twenty-second, the twenty-sixth, the twenty-seventh, and the twenty-seventh lens surfaces are aspheric, and the aspheric coefficients are as shown in Table 6.
  • Figures 6 to 8 show various aberration diagrams in the infinity in-focus condition of the above-mentioned numerical example 2.
  • Figure 7 is the intermediate focal length between the wide-angle end and the telephoto end.
  • the vertical axis represents the ratio to the open F value, and the horizontal axis takes defocus
  • the solid line represents the spherical aberration at the d line, the dashed dotted line, and the dotted line.
  • the vertical axis is the image height
  • the horizontal axis is the focus
  • the solid line S is sagittal
  • the dotted line M is Represents the image plane of the original.
  • the distortion is represented by the image height on the vertical axis and% on the horizontal axis.
  • FIG. 9 shows a lens arrangement according to a third embodiment 3 of the zoom lens system of the present invention, which comprises, in order from the object side, a first lens group GR1 having positive refractive power, and a second lens unit having negative refractive power.
  • Lens group GR2 a third lens group GR3 having a positive refractive power, a fourth lens group GR4 having a positive refractive power, a fifth lens group GR5 having a positive refractive power, a sixth lens having a negative refractive power Group GR6 is arranged, and upon zooming from the wide-angle end to the telephoto end, the respective lens units move on the optical axis from the state shown in the upper part of FIG. 9 to the state shown in the lower part.
  • the first lens group GR1 is composed of a positive lens G31.
  • the second lens group GR2 is composed of, in order from the object side, a negative lens G32, a negative lens G33 having a complex aspheric surface on the image side, and a positive lens G34.
  • the third lens group GR3 is composed of, in order from the object side, a positive lens G35 having aspheric surfaces on both sides, a stop S, and a negative lens G36.
  • the fourth lens group GR4 is composed of a cemented lens of a positive lens G37 and a negative lens G38!
  • the fifth lens group GR5 is composed of a negative lens G39 having an aspheric surface on the object side.
  • the sixth lens group GR6 is composed of a negative lens G310, a positive lens G311, and a positive lens G312, which are arranged in order from the object side.
  • Table 7 lists the values of specifications in Numerical Embodiment 3 in which specific numerical values are applied to the third embodiment described above.
  • Figures 10 to 12 show the various aberrations in infinity in-focus condition of the above numerical example 3.
  • the vertical axis represents the ratio to the open F value, and the horizontal axis takes defocus
  • the solid line represents the spherical aberration at the d line
  • the dashed dotted line and the dotted line
  • the vertical axis is the image height
  • the horizontal axis is the focus
  • the solid line S represents the sagittal, dotted M-plane image plane.
  • the distortion is represented by the image height on the vertical axis and% on the horizontal axis.
  • each lens unit of the zoom lens shown in each of the above embodiments is a refractive lens that deflects incident light by refraction (that is, deflection occurs at the interface between media having different refractive indices).
  • force is constituted only by divided type lens) s, not limited to this, for example, diffractive lenses that deflect more incident light to the diffraction, refraction to deflect the incoming Shako line in combination of diffraction and refraction, Diffractive hybrid type lens, the incident light is the refractive index component in the medium
  • Each lens group may be configured of a refractive index distribution type lens or the like which is deflected by a cloth.
  • the optical path may be bent before or after the zoom lens system by arranging in the optical path a surface having no optical power (for example, a reflective surface, a refracting surface, or a diffractive surface). It is possible to achieve an apparent thinning of the camera by properly bending the light path if the bending position is set as needed.
  • a surface having no optical power for example, a reflective surface, a refracting surface, or a diffractive surface.
  • an image may be shifted by shifting one or more lens groups among the lens groups constituting the lens system, or a part of one lens group in a direction substantially perpendicular to the optical axis. It is possible to function as an anti-vibration optical system by combining with a detection system that detects camera shake, a drive system that shifts the lens group, and a control system that gives a shift amount to the drive system according to the output of the detection system It is possible.
  • the present invention it is possible to shift the image with less aberration fluctuation by shifting part or all of the third, fourth, and fifth lens groups in a direction substantially perpendicular to the optical axis. Since the third lens group is disposed in the vicinity of the aperture stop, the off-axis light beam passes near the optical axis, so that the variation of coma aberration generated at the time of shifting is small.
  • FIG. 13 shows an embodiment of the imaging apparatus of the present invention.
  • the imaging device 10 includes a zoom lens 20 and includes an imaging element 30 that converts an optical image formed by the zoom lens 20 into an electrical signal.
  • the imaging device 30 for example, one using a photoelectric conversion device such as a C CD (a heavy duty device) or a CMO; 5 (a supplementary metal oxide semiconductor) is applicable.
  • the zoom lens system according to the present invention can be applied to the zoom lens 20, and in FIG. 13, each lens group of the zoom lens 1 according to the first embodiment shown in FIG. It is shown simplified.
  • the zoom lens according to the second embodiment to the third embodiment which is not limited to the zoom lens according to the first embodiment, or the zoom lens according to the third embodiment.
  • the zoom lens system of the present invention can be used.
  • the electric signal formed by the image pickup device 30 is sent to the control circuit 50 by the video separation circuit 40 for the focus control signal, and the video signal is sent to the video processing circuit.
  • the signal sent to the image processing circuit is processed into a form suitable for the subsequent processing, and used for various processing such as display by a display device, recording on a recording medium, transfer by a communication means, etc. Be served.
  • an operation signal from the outside such as an operation of a focus ring or a focus switch is input to the control circuit 50, and various processing is performed according to the operation signal.
  • the drive unit 70 is operated via the driver circuit 60 that slides with the focal length state based on the command, and the fourth lens group GR4 is moved to a predetermined position.
  • the positional information of the fourth lens group GR4 obtained by each sensor 80 is input to the control circuit 50, and is referred to when outputting a command signal to the driver circuit 60.
  • the control circuit 50 checks the focus state based on the signal sent from the video separation circuit 40, and for example, the fourth lens group GR4 is used as a driver circuit to obtain an optimum focus state. Control through 60.
  • the imaging device 10 described above can take various forms as a specific product.
  • the present invention can be widely applied as a camera unit of digital input / output devices such as digital still cameras, digital video cameras, mobile phones incorporating cameras, PDAs (Personal Digital Assistants) incorporating cameras, and the like.
  • a zoom lens system that is compact and lightweight, covers a wide angle side to a telephoto side, is suitable for high-speed AF, and has a high imaging performance regardless of the shooting distance, and an image pickup apparatus using the zoom lens system. It can be used widely in digital video cameras, digital still cameras, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

 ビデオカメラ、デジタルスチルカメラに用いられるコンパクトで広角側から望遠側までカバーしつつ、被写体距離によらずズーム全域において高い結像性能を有するズームレンズ系及び該ズームレンズ系を用いた撮像装置を提供することを課題とする。物体側より順に配列された少なくとも、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4と、弱い屈折力(屈折力=0を含む)を有する第5レンズ群GR5と、負の屈折力を有する第6レンズ群GR6とを含み、上記各レンズ群の間の間隔を変化させることにより変倍を行い、広角端における第iレンズ群と第jレンズ群との間の群間隔をDW(i-j) 、望遠端における第iレンズ群と第jレンズ群との間の群間隔をDT(i-j) としたとき、以下の条件式(1)、(2)、(3)を満足し、かつ、上記第4レンズ群GR4が光軸方向に移動することによってフォーカシングが行われるズームレンズ系。  (1)DW(1-2) <DT(1-2)  (2)DW(2-3) >DT(2-3)  (3)DW(5-6) >DT(5-6)

Description

明 細 書
ズームレンズ系及び撮像装置
技術分野
[0001] 本発明は新規なズームレンズ系及び撮像装置に関する。詳しくは、デジタルスチル カメラやデジタルビデオカメラ等のデジタル入出力機器の撮影光学系に好適なコン パクト性に優れ、広角側力 望遠側までをカバーしつつ、被写体距離によらず高い 結像性能を有するズームレンズ系及び上記ズームレンズ系を備えた撮像装置に関 するものである。
本出願は、日本国において 2005年 3月 11日に出願された日本特許出願番号 200 5— 068933を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。
背景技術
[0002] 近年、デジタルスチルカメラ等の個体撮像素子を用いた撮像装置が普及しつつあ る。中でも、デジタルスチルカメラの普及に伴い、コンパクト性に優れ、 1本のレンズで 広角側から望遠側までをカバーしつつ、かつ、被写体距離によらずズーム全域にお Vヽて高 、結像性能を有するズームレンズが求められて 、る。
例えば、特開平 4— 146407号公報、特開平 11— 174324号公報に記載されたズ ームレンズにおいては、正負正負正負の 6つのレンズ群を設け高変倍化を図ってい る。
し力しながら、上記した特開平 4— 146407号公報及び特開平 11— 174324号公 報に記載されたズームレンズは、一眼レフカメラ等の交換レンズに関するものであり、 跳ね上げミラーの配置スペース等のための長いバックフォーカスを確保しなければな らないために、小型化並びに広角化が困難であった。
本発明は、上記したような問題に鑑み、ビデオカメラ、デジタルスチルカメラに用い られるコンパクトで広角側から望遠側までカバーしつつ、被写体距離によらずズーム 全域にお 、て高 、結像性能を有するズームレンズ系及び該ズームレンズ系を用いた 撮像装置を提供することを課題とする。 発明の開示
発明が解決しょうとする課題
本発明ズームレンズ系は、上記した課題を解決するために、物体側より順に配列さ れた少なくとも、正の屈折力を有する第 1レンズ群 GR1と、負の屈折力を有する第 2レ ンズ群 GR2と、正の屈折力を有する第 3レンズ群 GR3と、正の屈折力を有する第 4レ ンズ群 GR4と、弱い屈折力(屈折力 =0を含む)を有する第 5レンズ群 GR5と、負の 屈折力を有する第 6レンズ群 GR6とを含み、上記各レンズ群の間の間隔を変化させ ることにより変倍を行い、広角端における第 iレンズ群と第 jレンズ群との間の群間隔を
DWG-j)、望遠端における第 iレンズ群と第 jレンズ群との間の群間隔を DT( ')としたと き、以下の条件式(1)、(2)、(3)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(5-6) >DT(5— 6)
かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われる。
また、本発明撮像装置は、複数の群から成り群間隔を変えることにより変倍を行うズ ームレンズ系と、上記ズームレンズ系により形成された光学像を電気的な信号に変換 する撮像素子とを備えた撮像装置であって、上記ズームレンズ系は、物体側より順に 配列された少なくとも、正の屈折力を有する第 1レンズ群 GR1と、負の屈折力を有す る第 2レンズ群 GR2と、正の屈折力を有する第 3レンズ群 GR3と、正の屈折力を有す る第 4レンズ群 GR4と、弱い屈折力(屈折力 =0を含む)を有する第 5レンズ群 GR5と 、負の屈折力を有する第 6レンズ群 GR6とを含み、上記各レンズ群の間の間隔を変 ィ匕させることにより変倍を行い、広角端における第 iレンズ群と第 jレンズ群との間の群 間隔を DW( ')、望遠端における第 iレンズ群と第 jレンズ群との間の群間隔を DTG-j) としたとき、以下の条件式(1)、 (2)、 (3)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(5-6) >DT(5— 6) かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われる。
従って、本発明ズームレンズ系にあっては、小型で高倍率とすることが可能であり、 また、本発明撮像装置にあっては、本発明ズームレンズ系を使用することにより、小 型に構成できるとともに、広角域力も望遠域まで高倍率による撮影が可能になる。 また、少なくとも 6個のレンズ群を設け、変倍時に各レンズ群の群間隔を変化させる ことにより、レンズ全系の移動量が比較的少ないコンパクトで且つ高倍率のズームレ ンズ系を達成できる。また、レンズ径の小さい第 4レンズ群 GR4をフォーカス群とする ことで、フォーカス群の駆動系をコンパクトにすることができ、ひいては AF (オートフォ 一カス)速度の高速ィ匕が可能になる。
そして、本発明撮像装置は、本発明ズームレンズ系を使用することにより、小型であ りながら、広角域力 望遠域まで高い変倍率による撮影が可能になり、また、高速 AF により使い勝手が良好となり、シャッターチャンスを的確に捉えることが可能になる。 請求の範囲第 2項及び請求の範囲第 9項に記載した発明にあっては、変倍に際し 、上記第 3レンズ群 GR3と第 5レンズ群 GR5とが光軸上に沿って、一体的に移動する ので、第 3レンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5を 1つのカム筒で構 成することができ、その中でフォーカス群である第 4レンズ群 GR4を動かすようにすれ ば、メカ構成が容易になるだけでなぐ製造上の公差が厳しくなりがちな第 3レンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5の相対的な位置出しが容易になる。 請求の範囲第 3項及び請求の範囲第 10項に記載した発明にあっては、上記第 3レ ンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5の間隔が条件式(4) DW(3- 4) < DT(3-4)、 (5) DW(4-5) >DT(4-5)を満足するので、被写体距離に関わりなぐズーミ ング領域及びフォーカシング領域で高い結像性能を有する。
請求の範囲第 4項及び請求の範囲第 11項に記載した発明にあっては、上記第 5レ ンズ群 GR5は少なくとも 1面の非球面を持つ 1枚のレンズで構成され、第 5レンズ群 G R5の焦点距離を fg5、全系の広角端での焦点距離 ^としたとき、条件式 (6) -0.4く f w/fg5く 0.4を満足するので、被写体距離の変動に際して発生する球面収差を始めと する諸収差をより効果的に補正して全ての撮影距離において良好な結像性能が得 られる。
請求の範囲第 5項及び請求の範囲第 12項に記載した発明にあっては、広角端に おけるバックフォーカス (空気換算長)を Twbfとし、全系の広角端での焦点距離を 1 と したとき、条件式(7) 0.2く Twbf/l く 1.2を満足するので、レンズ前玉径の大型化を 防ぎつつ広角化が阻害されず、また、最小絞り時にゴミ等が目立たないようにするこ とが出来る。
請求の範囲第 6項及び請求の範囲第 13項に記載した発明にあっては、上記第 6レ ンズ群 GR6は、物体側から順に配列された少なくとも負の屈折力を有する負レンズと 正の屈折力を有する正レンズを 1つずつ有するので、負レンズで周辺光線を跳ね上 げ、正レンズで抑えてあげることで、歪曲収差を抑えつつ、広角化が容易になり、撮 像素子への入射角度も緩やかにすることができるとともに、倍率色収差も効果的に補 正することができる。また、第 6レンズ群 GR6の望遠端における横倍率を |8 tg6とした とき、条件式(8) 1.1く j8 tg6く 2.0を満足するので、レンズ全系の小型化が達成可能 になり、さらに、より近距離での撮影が可能になる。
請求の範囲第 7項及び請求の範囲第 14項に記載した発明にあっては、上記第 6レ ンズ群 GR6は、物体側から順に配列された少なくとも負の屈折力を有する負レンズと 正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6の広角端における 横倍率を j8 wg6としたとき、条件式(9) 1.05く|8 §6く 1.5を満足するので、レンズ全 系の大型化をさけつつ、第 6レンズ群 GR6の移動による拡大率を所定の値に確保す ることが出来る。
図面の簡単な説明
[図 1]図 1は、本発明ズームレンズ系の第 1の実施の形態のレンズ構成を示す図であ る。
[図 2]図 2は、図 3及び図 4とともに本発明ズームレンズ系の第 1の実施の形態に具体 的数値を適用した数値実施例 1の各種収差図を示すものであり、本図は広角端にお ける球面収差、非点収差、歪曲収差を示すものである。
[図 3]図 3は、中間焦点距離における球面収差、非点収差、歪曲収差を示すものであ る。 [図 4]図 4は、望遠端における球面収差、非点収差、歪曲収差を示すものである。
[図 5]図 5は、本発明ズームレンズ系の第 2の実施の形態のレンズ構成を示す図であ る。
[図 6]図 6は、図 7及び図 8とともに本発明ズームレンズ系の第 2の実施の形態に具体 的数値を適用した数値実施例 2の各種収差図を示すものであり、本図は広角端にお ける球面収差、非点収差、歪曲収差を示すものである。
[図 7]図 7は、中間焦点距離における球面収差、非点収差、歪曲収差を示すものであ る。
[図 8]図 8は、望遠端における球面収差、非点収差、歪曲収差を示すものである。
[図 9]図 9は、本発明ズームレンズ系の第 3の実施の形態のレンズ構成を示す図であ る。
[図 10]図 10は、図 11及び図 12とともに本発明ズームレンズ系の第 3の実施の形態に 具体的数値を適用した数値実施例 3の各種収差図を示すものであり、本図は広角端 における球面収差、非点収差、歪曲収差を示すものである。
[図 11]図 11は、中間焦点距離における球面収差、非点収差、歪曲収差を示すもの である。
[図 12]図 13は、望遠端における球面収差、非点収差、歪曲収差を示すものである。
[図 13]図 13は、本発明撮像装置の実施の形態を示すブロック図である。
発明を実施するための最良の形態
以下に、本発明ズームレンズ系及び撮像装置を実施するための最良の形態につい て添付図面を参照して説明する。
本発明ズームレンズ系は、少なくとも物体側より順に配列された、正の屈折力を有 する第 1レンズ群 GR1と、負の屈折力を有する第 2レンズ群 GR2と、正の屈折力を有 する第 3レンズ群 GR3と、正の屈折力を有する第 4レンズ群 GR4と、弱い屈折力(「弱 い屈折力」には、「屈折力 = 0」、すなわち、軸上において屈折力を有しない場合をも 含む)を有する第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを含み 、上記各レンズ群の間の間隔を変化させることにより変倍を行い、広角端における第 i レンズ群と第 jレンズ群との間の群間隔を DWG- j)、望遠端における第 iレンズ群と第 j レンズ群との間の群間隔を DT(i-j)としたとき、以下の条件式(1)、 (2)、 (3)を満足し 、かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われる。
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(5-6) >DT(5-6)
上記したように、少なくとも 6個のレンズ群を設け、変倍時に各レンズ群間隔を変化 させることにより、レンズ全系の移動量が比較的少ないコンパクトでかつ高倍率なズ ームレンズ系を達成することができる。また、第 4レンズ群 GR4をフォーカス群とするこ とによって、従来の第 1レンズ群や第 2レンズ群をフォーカス群とする場合に比較して フォーカス群を小型に構成することができるとともに撮影距離によらず高い結像性能 を達成することが出来、さらに、フォーカス群の駆動機構を小型に構成することが出 来る。さらにまた、フォーカス群を高速に且つ高い停止精度で移動させることが出来 るため、高速 AF (オートフォーカス)が可能になり、高い結像性能を得ることができる 上記条件式(1)は広角端力も望遠端への変倍に際しての、第 1レンズ群 GR1と第 2 レンズ群 GR2との間の間隔を規定するものであり、上記条件式(2)は広角端力 望 遠端への変倍に際しての、第 2レンズ群 GR2と第 3レンズ群 GR3との間の間隔を規 定するものであり、これらを満足することで広角端力 望遠端まで大きな変倍作用をも たすことができる。
上記条件式 (3)は広角端力も望遠端への変倍に際しての、第 5レンズ群 GR5と第 6 レンズ群 GR6との間の間隔を規定するものであり、これらを満足することで諸収差を 良好に補正しつつ、変倍作用をもたせることができる
変倍に際し上記第 3レンズ群 GR3と第 5レンズ群 GR5が光軸上に沿って、一体的 に移動することが望ましい。これによつて第 3、 4、 5レンズ群 GR3、 GR4、 GR5を 1つ のカム筒で構成することができ、その中でフォーカス群である第 4レンズ群 GR4を動 かすようにすれば、メカ構成上容易になるだけでなぐ製造上の公差が厳しくなりがち な第 3、 4、 5レンズ群 GR3、 GR4、 GR5の相対的な位置出しが容易になる。 上記第 3レンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5の間隔が以下の条件 式 (4)、 (5)を満足することが望ましい。
(4) DW(3-4) < DT(3-4)
(5) DW(4-5) >DT(4-5)
上記条件式 (4)は広角端力も望遠端への変倍に際しての、第 3レンズ群 GR3とフォ 一カス群である第 4レンズ群 GR4との間の間隔を規定するものであり、上記条件式(5 )は広角端力も望遠端への変倍に際しての、フォーカス群である第 4レンズ群 GR4と 第 5レンズ群 GR5との間の間隔を規定するものであり、これらを満足することでフォー カシング時のフォーカシングレンズ群である第 4レンズ群 GR4の移動量を確保しつつ 、フォーカシングによる像面湾曲の変動を抑えるば力りでなぐ被写体距離の変化に より発生する球面収差の変動を、フォーカスレンズ群の前後の間隔を変化させること によって、逆方向に発生させて打ち消すことで、良好に補正することができる。
上記第 5レンズ群 GR5は少なくとも 1面の非球面を持つ 1枚のレンズで構成され、第 5レンズ群 GR5の焦点距離を fg5、全系の広角端での焦点距離 ^としたとき、以下 の条件式 (6)を満足することが望ま 、。
(6) -0.4 < lw/fg5 < 0.4
上記フォーカス群である第 4レンズ群 GR4のフォーカシング時の移動による球面収 差の変動を打ち消すように、上記第 5レンズ群 GR5は少なくとも 1面の非球面を有す ることにより、被写体距離が無限遠力 近接まで変化しても、球面収差の変動を小さ くして、すべての撮影距離において良好な結像性能が得られる。
上記条件式 (6)は弱 、屈折力を有する第 5レンズ群 GR5の焦点距離とレンズ全系 における広角端の焦点距離との比率を規定するものである。! /fg5の値が 0. 4以 下の場合は、第 5レンズ群 GR5の負のパワーが強くなりすぎて、フォーカス群である 第 4レンズ群 GR4の移動量に対する像面変動量が大きくなり、 AF制御上好ましくな い。また、! /fg4の値が 0. 4以上の場合はフォーカス群である第 4レンズ群 GR4の正 のパワーを弱くする必要があり、フォーカシング時の第 4レンズ群 GR4の可動範囲が 大きくなり、レンズ系全体の小型化が困難になる。
広角端におけるバックフォーカス (空気換算長)を Twbfとし、全系の広角端での焦点 距離を 1 としたとき、以下の条件式 (7)を満足することが望ま 、。
(7) 0.2 < Twbf/lw < 1.2
上記条件式(7)は広角端におけるバックフォーカス長と、広角端におけるレンズ全 系の焦点距離との比率を規定するものである。即ち、 Twbf/ の値が 0. 2以下の場合 は、ローパスフィルタ (LPF)や赤外線 (IR)遮蔽ガラスが撮像素子面に非常に近くな り、最小絞り時に LPFや IR遮蔽ガラスに付着したゴミゃ LPFや IR遮蔽ガラスの欠陥 が目立ちやすくなる。また、 Twbf/l の値が 1. 2以上の場合は、レンズ前玉径が大きく なり、小型化が困難になるだけでなぐ広角化が困難になる。
上記第 6レンズ群 GR6は、物体側カゝら順に配列された少なくとも負の屈折力を有す る負レンズと正の屈折力を有する正レンズを 1つずつ有し、第 6レンズ群 GR6の望遠 端における横倍率を β tg6としたとき、以下の条件式 (8)を満足することが望ま 、。
(8) 1.1〈j8 tg6く 2.0
物体側力 順に少なくとも負の屈折力を有する負レンズと正の屈折力を有する正レ ンズとを 1つずつ有することによって、負レンズで周辺光線を跳ね上げ、正レンズで抑 えてあげることで、歪曲収差を抑えつつ、広角化が容易になり、撮像素子への入射 角度も緩やかにすることができる。また、倍率色収差も効果的に補正することができる 上記条件式 (8)は望遠端における第 6レンズ群 GR6の横倍率を規定するものであ る。これによつて、像を一気に拡大することができるため、レンズ全系を小型化するこ とが可能になる。また、第 6レンズ群 GR6が大きな倍率を有することにより、大型撮像 素子を使用する場合でもより近距離側までの撮影が可能になり、最至近距離を稼ぐ ことができる。 j8 tg6の値が 1. 1以下の場合は、第 6レンズ群 GR6による拡大率が小さ くなり、レンズ全系の小型化が困難になるだけでなぐ最近接距離も遠くなつてしまう。 また、 j8 tg6の値が 2. 0以上の場合は、レンズの組み付け精度が非常に厳しくなり製 造上好ましくない。
上記第 6レンズ群 GR6は、物体側カゝら順に配列された少なくとも負の屈折力を有す る負レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6の広 角端における横倍率を β wg6としたとき、以下の条件式 (9)を満足することが望ま U、
Figure imgf000011_0001
上記条件式(9)は広角端における第 6レンズ群 GR6の倍率を規定するものである。 j8 wg6の値が 1. 05以下の場合は、第 6レンズ群 GR6による拡大率が小さくなり、レン ズ全系の小型化が困難になる。また、 j8 wg6の値が 1. 5以上の場合は、レンズの組 み付け精度が非常に厳しくなるとともに、第 6レンズ群 GR6の移動による倍率を確保 することが困難となり、レンズ全系が大型化する。
上記第 2レンズ群 GR2を構成するレンズの各面のうち、少なくとも 1の面を非球面に よって構成することが望ましい。これにより、広角端における歪曲収差やコマ収差を 効果的に補正することができ、コンパクト化と高性能化を達成することができる。 上記第 6レンズ群 GR6を構成するレンズの各面のうち、少なくとも 1の面を非球面に よって構成することが望ましい。これにより、周辺域での像面湾曲やコマ収差を効果 的に補正することが可能となる。
以下に、本発明ズームレンズ系の 3つの実施の形態及びこれら実施の形態に具体 的数値を適用した数値実施例について図 1乃至図 12及び表 1乃至表 11を参照して 説明する。
なお、各実施の形態において非球面が用いられるが、非球面形状は次の数 1式に よって表される。
[数 1]
Figure imgf000011_0002
ここで、
y:光軸と垂直な方向の高さ
X:レンズ面頂点からの光軸方向の距離
c:レンズ頂点での近軸曲率 κ:コーニック定数
Α1:第 i次の非球面係数
である。
図 1は本発明ズームレンズ系の第 1の実施の形態 1によるレンズ構成を示しており、 物体側より順に、正の屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レ ンズ群 GR2、正の屈折力を有する第 3レンズ群 GR3、正の屈折力を有する第 4レン ズ群 GR4、負の屈折力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ 群 GR6が配列されて成り、広角端から望遠端への変倍に際し、上記各レンズ群は図 1の上段に示す状態から下段に示す状態へと実線で示すように光軸上を移動する。 第 1レンズ群 GR1は、物体側より順に配列された、負レンズ G 11と正レンズ G 12と の接合レンズ及び正レンズ G 13で構成されている。第 2レンズ群 GR2は、物体側より 順に配列された、物体側に複合非球面を有する負レンズ G 14と、負レンズ G15と、正 レンズ G16と、負レンズ G 17で構成されている。第 3レンズ群 GR3は、物体側より順 に配列された、両面に非球面を有する正レンズ G18と、絞り Sと、負レンズ G19で構 成されている。第 4レンズ群 GR4は、正レンズ G110と負レンズ G111との接合レンズ で構成されている。第 5レンズ群 GR5は、物体側に非球面を有する負レンズ G 112で 構成される。第6レンズ群 GR6は、物体側より順に配列された、負レンズ G113と、物 体側に非球面を有する正レンズ G114で構成されて 、る。
また、この第 1の実施の形態及び後述する第 2、第 3の実施の形態において、ズー ムレンズ系の最終レンズ面と撮像面 IMGとの間に平行平面板状のローパスフィルタ L PFが介挿されている。なお、上記ローパスフィルタ LPFとしては、所定の結晶軸方向 が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的 な遮断周波数の特性を回折効果により達成する位相型ローパスフィルタ等の適用が 可能である。
表 1に上記した第 1の実施の形態に具体的数値を適用した数値実施例 1の諸元の 値を掲げる。この数値実施例 1及び後に説明する各数値実施例の諸元表中の面 No .は物体側カゝら i番目の面を示し、 Rは第 i番目の面の曲率半径、 Dは第 i番目の面と 第 i+ 1番目の面との間の軸上面間隔、 Ndは物体側に第 i番目の面を有する硝材の d 線( λ =587.6應)に対する屈折率、 Vdは物体側に第 i番目の面を有する硝材の d線 に対するアッベ数を示す。また、「ASP」で示した面は非球面であることを示す。曲率 半径「INFINITY」は平面であることを示す。
[¾1]
Figure imgf000013_0001
広角端より望遠端へのレンズ位置状態の変化に伴って、第 1レンズ群 GRlと第 2レ ンズ群 GR2との間の面間隔 D5、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 D14、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D19、第 4レンズ群 G R4と第 5レンズ群 GR5との間の面間隔 D22、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D24、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D28 が変化する。そこで、表 2に上記各面間隔の広角端、広角端と望遠端との間の中間 焦点距離及び望遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと ともに示す。
[表 2]
Figure imgf000014_0001
第 6面、第 15面、第 16面、第 23面及び第 27面の各レンズ面は非球面で構成され ており、非球面係数は表 3に示す通りである。なお、表 3及び以下の非球面係数を示 す表において「E—i」は 10を底とする指数表現、すなわち、「10_i」を表しており、例 えば、「0.12345E- 05」は「0.12345 X 10_5」を表している。
[表 3] 面 o. K A* A6 A8 Αιο
6 0.OOOE+O0 1.492E-05 -2.805E-08 4.172E-11 -3.731E-14
15 O.0OOE+00 -2.686E-05 -4.953E-08 2.916ΕΊ0 -8.762E-13
16 0.000E+00 1.538E 05 -2.549E-08 2.661E-10 O.OOOE+00
23 0.0OOE+00 7.124E-05 -2.204E-07 1.241E-09 4.679B-13
27 0.000E+00 ■9.611E-05 5.149E-07 ■2.641E-09 6.244E-12 図 2乃至図 4に上記数値実施例 1の無限遠合焦状態での諸収差図をそれぞれ示し 、図 2は広角端 (f= 14.74)、図 3は広角端と望遠端との中間焦点距離 (f =33.96)、図 4は望遠端 (f= 78.21)における諸収差図を示すものである。
図 2乃至図 4の各収差図において、球面収差では縦軸は開放 F値との割合、横軸 にデフォーカスをとり、実線が d線、一点鎖線力 線、点線力 ½線での球面収差を表わ す。非点収差では縦軸が像高、横軸がフォーカスで、実線 Sがサジタル、点線 Mがメ リジォナルの像面を表わす。歪曲収差は縦軸が像高、横軸は%で表わす。
上記数値実施例 1にあっては、後述する表 10及び表 11に示すように、条件式(1) 乃至 (9)を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間 焦点距離及び望遠端にぉ 、て、各収差ともノ ランス良く補正されて 、る。
図 5は本発明ズームレンズ系の第 2の実施の形態 2によるレンズ構成を示しており、 物体側より順に、正の屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レ ンズ群 GR2、正の屈折力を有する第 3レンズ群 GR3、正の屈折力を有する第 4レン ズ群 GR4、正の屈折力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ 群 GR6が配列されて成り、広角端から望遠端への変倍に際し、上記各レンズ群は図 5の上段に示す状態から下段に示す状態へと実線で示すように光軸上を移動する。 第 1レンズ群 GR1は、物体側より順に配列された、負レンズ G21と正レンズ G22と の接合レンズと、正レンズ G23で構成されている。第 2レンズ群 GR2は物体側から順 に配列された、物体側に複合非球面を有する負レンズ G24と、負レンズ G25と正レン ズ G26との接合レンズと、負レンズ G27で構成されている。第 3レンズ群 GR3は、物 体側から順に配列された、両面に非球面を有する正レンズ G28と、絞り Sと、負レンズ G29で構成されている。第 4レンズ群 GR4は、正レンズ G210と負レンズ G211との接 合レンズで構成されている。第 5レンズ群 GR5は、物体側に非球面を有する負レンズ G212で構成される。第 6レンズ群 GR6は、物体側から順に配列された、負レンズ G2 13と、両面に非球面を有する正レンズ G214で構成されている。
表 4に上記した第 2の実施の形態に具体的数値を適用した数値実施例 2の諸元の 値を掲げる。
[表 4] 面 o. R D Nd d
1 500.000 1.700 1.8467 23.785
2 89.433 4.558 1.7292 54.674
3 30368.607 0.200
4 63.257 4.175 1.8350 42.984
5 236.092 variable
6 -893.766 ASP 0.200 1.5361 41.207
7 165.419 1.500 1.8350 42.984
8 16.144 7.827
9 -66.815 1.100 1.8350 42.984
10 31.665 5.303 1.8467 23.785
11 -41.056 1.17.3
12 ■30.000 1.100 1.8350 42.984
13 -67.131 variable
14 16.904 ASP 3.476 1.6180 63.396
15 •42.387 ASP 2.500
絞り INFINITY 3.000
17 30.101 0.900 1.9229 20.880
18 15.438 variable
19 24.046 4.988 1.4970 81.608
20 -12.476 0.900 1.8350 42.984
21 19.662 vanaole
22 -18.069 ASP 1.600 1.8061 40.734
23 ■24.363 variable
24 -11.833 1.000 1.7292 54.674
25 ■343.116 0.200
26 20.764 ASP 3.700 1.5831 59.461
27 120.143 ASP variable
28 INFINITY 2.820 1.5168 64.198
9 INFINITY 1.000
30 IHFINITY 0.500 1.5567 58.649
31 INFINITY 1.000
IMG INFINITY
広角端より望遠端へのレンズ位置状態の変化に伴って、第 1レンズ群 GR1と第 2レ ンズ群 GR2との間の面間隔 D5、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 D13、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D18、第 4レンズ群 G R4と第 5レンズ群 GR5との間の面間隔 D21、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D23、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D27 が変化する。そこで、表 5に上記各面間隔の広角端、広角端と望遠端との間の中間 焦点距離及び望遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと ともに示す。
[表 5]
Figure imgf000017_0001
第 6面、第 14面、第 15面、第 22面、第 26面及び第 27面の各レンズ面は非球面で 構成されており、非球面係数は表 6に示す通りである。
Figure imgf000017_0002
図 6乃至図 8に上記数値実施例 2の無限遠合焦状態での諸収差図をそれぞれ示し 、図 6は広角端 (f= 14.73)、図 7は広角端と望遠端との中間焦点距離 (f=33.94)、図 8は望遠端 (f= 78.21)における諸収差図を示すものである。
図 6乃至図 8の各収差図において、球面収差では縦軸は開放 F値との割合、横軸 にデフォーカスをとり、実線が d線、一点鎖線力 線、点線力 ½線での球面収差を表わ す。非点収差では縦軸が像高、横軸がフォーカスで、実線 Sがサジタル、点線 Mがメ リジォナルの像面を表わす。歪曲収差は縦軸が像高、横軸は%で表わす。
上記数値実施例 2にあっては、後述する表 10及び表 11に示すように、条件式(1) 乃至 (9)を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間 焦点距離及び望遠端にぉ 、て、各収差ともノ ランス良く補正されて 、る。
図 9は本発明ズームレンズ系の第 3の実施の形態 3によるレンズ構成を示しており、 物体側より順に、正の屈折力を有する第 1レンズ群 GR1、負の屈折力を有する第 2レ ンズ群 GR2、正の屈折力を有する第 3レンズ群 GR3、正の屈折力を有する第 4レン ズ群 GR4、正の屈折力を有する第 5レンズ群 GR5、負の屈折力を有する第 6レンズ 群 GR6が配列されて成り、広角端から望遠端への変倍に際し、上記各レンズ群は図 9の上段に示す状態から下段に示す状態へと実線で示すように光軸上を移動する。 第 1レンズ群 GR1は、正レンズ G31で構成されている。第 2レンズ群 GR2は、物体 側から順に配列された、負レンズ G32と、像側に複合非球面を有する負レンズ G33と 、正レンズ G34で構成されている。第 3レンズ群 GR3は、物体側から順に配列された 、両面に非球面を有する正レンズ G35と、絞り Sと、負レンズ G36で構成されている。 第 4レンズ群 GR4は、正レンズ G37と負レンズ G38との接合レンズで構成されて!、る 。第 5レンズ群 GR5は、物体側に非球面を有する負レンズ G39で構成される。第 6レ ンズ群 GR6は、物体側から順に配列された、負レンズ G310と、正レンズ G311と正レ ンズ G312で構成されて!、る。
表 7に上記した第 3の実施の形態に具体的数値を適用した数値実施例 3の諸元の 値を掲げる。
[表 7]
面 No. R D Nd Vd
1 74.828 6.000 1.4875 70.441
2 2323.689 variable
3 194.721 1.200 1.8350 42.984
4 18.739 6.801
5 69.005 1.300 1.8350 42.984
6 28.020 0.200 1.5361 41.207
7 21.464 ASP 3.464
8 39.064 3.427 1.9229 20.880
9 167.403 variable
10 16.232 ASP 4.078 1.δ831 59.461
11 -70.493 ASP 3.427
絞り INFINITY 3.000
13 27.824 0.900 1.9229 20.880
14 14.769 variable
15 25.530 4.800 1.4875 70.441
16 11.175 0.900 1.8042 46.503
17 -18.168 vanaDle
18 ■43.645 ASP 1.600 1.5831 59.461
19 -100.000 variable
20 -13.656 1.000 1.8061 33.269
21 99.385 1.011
22 -166.154 2.977 1.7020 40.196
23 -26.038 0.200
24 -46.145 3.229 1.9229 20.880
25 -144.316 variable
26 INFINITY 2.820 1.5168 64.198
27 INFINITY 1.000
28 INFINITY 0.500 1.5567 58.649
29 INFINITY 1.000
IMG INFINITY
広角端より望遠端へのレンズ位置状態の変化に伴って、第 1レンズ群 GR1と第 2レ ンズ群 GR2との間の面間隔 D2、第 2レンズ群 GR2と第 3レンズ群 GR3との間の面間 隔 D9、第 3レンズ群 GR3と第 4レンズ群 GR4との間の面間隔 D14、第 4レンズ群 GR 4と第 5レンズ群 GR5との間の面間隔 D17、第 5レンズ群 GR5と第 6レンズ群 GR6と の間の面間隔 D19、第 6レンズ群 GR6とローパスフィルタ LPFとの間の面間隔 D25 が変化する。そこで、表 8に上記各面間隔の広角端、広角端と望遠端との間の中間 焦点距離及び望遠端における各値を焦点距離 f、 Fナンバー Fno.及び半画角 ωと ともに示す。
[表 8]
Figure imgf000020_0001
第 7面、第 10面、第 11面、及び第 18面の各レンズ面は非球面で構成されており、 非球面係数は表 9に示す通りである。
[表 9]
Figure imgf000020_0002
図 10乃至図 12に上記数値実施例 3の無限遠合焦状態での諸収差図をそれぞれ 示し、図 10は広角端 (f= 14.73)、図 11は広角端と望遠端との中間焦点距離 (f=32. 05)、図 12は望遠端 (f =69.72)における諸収差図を示すものである。
図 10乃至図 12の各収差図において、球面収差では縦軸は開放 F値との割合、横 軸にデフォーカスをとり、実線が d線、一点鎖線力 線、点線力 ½線での球面収差を 表わす。非点収差では縦軸が像高、横軸がフォーカスで、実線 Sがサジタル、点線 Mカ リジォナルの像面を表わす。歪曲収差は縦軸が像高、横軸は%で表わす。 上記数値実施例 3にあっては、後述する表 10及び表 11に示すように、条件式(1) 乃至 (9)を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間 焦点距離及び望遠端にぉ 、て、各収差ともノ ランス良く補正されて 、る。 上記各数値実施例 1乃至 3の条件式(1)乃至(5)対応値を表 10に、また、条件式 ( 6)乃至(9)対応値を表 11に、それぞれ示す。
[表 10] 数値実施例
式 (1) DW (1 -2) DT (1— 2)
1 1.000 50.015
2 1.000 39.832
3 1.000 52.494
式 (2) DW (2 -3) DT (2— 3)
1 29.974 1.000
2 27.079 1.000
3 42.096 1.000
式 (3) D (3一 4) DT (3 - 4)
1 6.955 9.352
2 6.737 8.220
3 5.133 8.837
式 (4) DW (4 -5) DT (4- 5)
1 3.896 1.500
2 2.984 1.500
3 5.203 1.500
式 (5) DW (5一 6〉 DT (5 - 6)
1 4.050 6.518
2 4.211 7.548
3 3.536 15.543 11] 式 (6) 式 (7) 式 (8) 式 (9)
数値実施例 fw/¾5 Twbffw Btg6 6wg6
1 ■0.0718 0.622 1.578 1.198
2 -0.1513 0.955 1.408 1.174
3 •0.1102 0.693 1.408 1.300 なお、上記各実施の形態で示すズームレンズの各レンズ群は、入射光線を屈折に より偏向させる屈折型レンズ (つまり、異なる屈折率を有する媒質同士の界面で偏向 が行われるタイプのレンズ)のみで構成されている力 s、これに限らず、例えば、回折に より入射光線を偏向させる回折型レンズ、回折作用と屈折作用との組み合わせで入 射光線を偏向させる屈折,回折ハイブリッド型レンズ、入射光線を媒質内の屈折率分 布により偏向させる屈折率分布型レンズ等で各レンズ群を構成してもよい。
また、光学的なパワーを有しない面 (例えば、反射面、屈折面、回折面)を光路中に 配置することにより、ズームレンズ系の前後又は途中で光路を折り曲げるようにしても よい。折り曲げ位置は必要に応じて設定すればよぐ光路の適正な折り曲げにより、 カメラの見かけ上の薄型化を達成することが可能である。
また、レンズ系を構成するレンズ群のうち、 1つ又は複数のレンズ群、あるいは 1つ のレンズ群の一部を光軸にほぼ垂直な方向にシフトさせることにより、像をシフトさせ ることも可能であり、カメラのブレを検出する検出系、上記レンズ群をシフトさせる駆動 系、検出系の出力に従って駆動系にシフト量を与える制御系と糸且合せることにより、 防振光学系として機能させることが可能である。
特に、本発明においては、第 3、 4、 5レンズ群の一部、あるいは全体を光軸にほぼ 垂直な方向にシフトさせることにより、少ない収差変動で像をシフトさせることが可能 である。第 3レンズ群は開口絞りの近傍に配置されるので、軸外光束が光軸付近を通 過するので、シフトさせた際に発生するコマ収差の変動が少ないからである。
図 13に本発明撮像装置の実施の形態を示す。
撮像装置 10はズームレンズ 20を備え、ズームレンズ 20によって形成した光学像を 電気信号に変換する撮像素子 30を有する。なお、撮像素子 30としては、例えば、 C CD (し harge し oupled Device)や CMO;5(し omplementary Metal-Oxide Semiconduct or)等の光電変換素子を使用したものが適用可能である。上記ズームレンズ 20には 本発明に力かるズームレンズ系を適用することができ、図 13では、図 1に示した第 1 の実施の形態に力かるズームレンズ 1の各レンズ群を単レンズに簡略化して示してあ る。勿論、第 1の実施の形態に力かるズームレンズだけでなぐ第 2の実施の形態乃 至第 3の実施の形態に力かるズームレンズや本明細書で示した実施の形態以外の 形態で構成された本発明ズームレンズ系を使用することができる。
上記撮像素子 30によって形成された電気信号は映像分離回路 40によってフォー カス制御用の信号が制御回路 50に送られ、映像用の信号は映像処理回路へと送ら れる。映像処理回路へ送られた信号は、その後の処理に適した形態にカ卩ェされて、 表示装置による表示、記録媒体への記録、通信手段による転送等々種々の処理に 供される。
制御回路 50には、例えば、フォーカスリングやフォーカススィッチの操作等、外部か らの操作信号が入力され、該操作信号に応じて種々の処理が為される。例えば、フ オーカススィッチによるフォーカス指令が入力されると、指令に基づく焦点距離状態と すべぐドライバ回路 60を介して駆動部 70を動作させて、第 4レンズ群 GR4を所定の 位置へと移動させる。各センサ 80によって得られた第 4レンズ群 GR4の位置情報は 制御回路 50に入力されて、ドライバ回路 60へ指令信号を出力する際に参照される。 また、 AF時においては制御回路 50は上記映像分離回路 40から送られた信号に基 づいてフォーカス状態をチェックし、最適なフォーカス状態が得られるように、例えば 、第 4レンズ群 GR4をドライバ回路 60を介して制御する。
上記した撮像装置 10は、具体的製品としては、各種の形態を採りうる。例えば、デ ジタルスチルカメラ、デジタルビデオカメラ、カメラが組み込まれた携帯電話、カメラが 組み込まれた PDA (Personal Digital Assistant)等々のデジタル入出力機器のカメラ 部等として、広く適用することができる。
なお、上記した各実施の形態及び数値実施例にお!ヽて示された各部の具体的形 状及び数値は、何れも本発明を実施するに際して行う具体ィ匕のほんの一例を示した ものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されることがあつ てはならないものである。
産業上の利用可能性
小型軽量で、且つ、広角側から望遠側までをカバーしつつ、高速 AFに最適で撮影 距離によらず高い結像性能を有するズームレンズ系及び該ズームレンズ系を使用し た撮像装置を提供することが出来、デジタルビデオカメラ、デジタルスチルカメラ等に 広く利用することが出来る。

Claims

請求の範囲
[1] 1.物体側より順に配列された少なくとも、正の屈折力を有する第 1レンズ群 GR1と、 負の屈折力を有する第 2レンズ群 GR2と、正の屈折力を有する第 3レンズ群 GR3と、 正の屈折力を有する第 4レンズ群 GR4と、弱い屈折力(屈折力 =0を含む)を有する 第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを含み、
上記各レンズ群の間の間隔を変化させることにより変倍を行い、
広角端における第 iレンズ群と第 jレンズ群との間の群間隔を DWG-j)、望遠端にお ける第 iレンズ群と第 jレンズ群との間の群間隔を DT(i-j)としたとき、以下の条件式 (1)、 (2)、 (3)を満足し、
(1) DW(l-2) < DT(l-2)
(2) DW(2-3) >DT(2-3)
(3) DW(5-6) >DT(5— 6)
かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われる
ことを特徴とするズームレンズ系。
[2] 2.変倍に際し、上記第 3レンズ群 GR3と第 5レンズ群 GR5とが光軸上に沿って、一 体的に移動することを特徴とする請求の範囲第 1項に記載のズームレンズ系。
[3] 3.上記第 3レンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5の間隔が以下の条 件式 (4)、 (5)を満足することを特徴とする請求の範囲第 1項記載のズームレンズ系。
(4) DW(3-4) < DT(3-4)
(5) DW(4-5) >DT(4-5)
[4] 4.上記第 5レンズ群 GR5は少なくとも 1面の非球面を持つ 1枚のレンズで構成され、 第 5レンズ群 GR5の焦点距離を fg5、全系の広角端での焦点距離 ^としたとき、以 下の条件式 (6)を満足することを特徴とする請求の範囲第 1項記載のズームレンズ系
(6) -0.4 < lw/fg5 < 0.4
[5] 5.広角端におけるバックフォーカス (空気換算長)を Twbfとし、全系の広角端での焦 点距離を 1 としたとき、以下の条件式 (7)を満足することを特徴とする請求の範囲第 1 項記載のズームレンズ系。
(7) 0.2 < Twbf/lw < 1.2
[6] 6.上記第 6レンズ群 GR6は、物体側力も順に配列された少なくとも負の屈折力を有 する負レンズと正の屈折力を有する正レンズを 1つずつ有し、第 6レンズ群 GR6の望 遠端における横倍率を β tg6としたとき、以下の条件式 (8)を満足することを特徴とす る請求の範囲第 1項記載のズームレンズ系。
(8) 1.1〈j8 tg6く 2.0
[7] 7.上記第 6レンズ群 GR6は、物体側力も順に配列された少なくとも負の屈折力を有 する負レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6の 広角端における横倍率を β wg6としたとき、以下の条件式 (9)を満足することを特徴と する請求の範囲第 6項記載のズームレンズ系。
(9) 1.05く j8 wg6く 1.5
[8] 8.複数の群力 成り群間隔を変えることにより変倍を行うズームレンズ系と、上記ズ ームレンズ系により形成された光学像を電気的な信号に変換する撮像素子とを備え た撮像装置であって、
上記ズームレンズ系は、物体側より順に配列された少なくとも、正の屈折力を有する 第 1レンズ群 GR1と、負の屈折力を有する第 2レンズ群 GR2と、正の屈折力を有する 第 3レンズ群 GR3と、正の屈折力を有する第 4レンズ群 GR4と、弱い屈折力(屈折力 =0を含む)を有する第 5レンズ群 GR5と、負の屈折力を有する第 6レンズ群 GR6とを 含み、
上記各レンズ群の間の間隔を変化させることにより変倍を行い、
広角端における第 iレンズ群と第 jレンズ群との間の群間隔を DWG-j)、望遠端にお ける第 iレンズ群と第 jレンズ群との間の群間隔を DT(i-j)としたとき、以下の条件式(1 0)、 (11)、 (12)を満足し、
(10) DW(l— 2) < DT(l-2)
(11) DW(2-3) >DT(2-3)
(12) DW(5-6) >DT(5-6)
かつ、上記第 4レンズ群 GR4が光軸方向に移動することによってフォーカシングが 行われる
ことを特徴とする撮像装置。
[9] 9.変倍に際し、上記第 3レンズ群 GR3と第 5レンズ群 GR5とが光軸上に沿って、一 体的に移動することを特徴とする請求の範囲第 8項記載の撮像装置。
[10] 10.上記第 3レンズ群 GR3、第 4レンズ群 GR4、第 5レンズ群 GR5の間隔が以下の 条件式 (13)、 (14)を満足することを特徴とする請求の範囲第 8項記載の撮像装置。
(13) DW(3-4) < DT(3-4)
(14) DW(4-5) >DT(4-5)
[11] 11.上記第 5レンズ群 GR5は少なくとも 1面の非球面を持つ 1枚のレンズで構成され 、第 5レンズ群 GR5の焦点距離を fg5、全系の広角端での焦点距離を としたとき、以 下の条件式 (15)を満足することを特徴とする請求の範囲第 8項記載の撮像装置。
(15) - 0.4 < lw/fg5 < 0.4
[12] 12.広角端におけるノックフォーカス (空気換算長)を Twbfとし、全系の広角端での 焦点距離を 1 としたとき、以下の条件式(16)を満足することを特徴とする請求の範囲 第 8項記載の撮像装置。
(16) 0.2 < Twbf/lw < 1.2
[13] 13.上記第 6レンズ群 GR6は、物体側力 順に配列された少なくとも負の屈折力を 有する負レンズと正の屈折力を有する正レンズを 1つずつ有し、第 6レンズ群 GR6の 望遠端における横倍率を β tg6としたとき、以下の条件式(17)を満足することを特徴 とする請求の範囲第 8項記載の撮像装置。
Figure imgf000026_0001
[14] 14.上記第 6レンズ群 GR6は、物体側力 順に配列された少なくとも負の屈折力を 有する負レンズと正の屈折力を有する正レンズとを 1つずつ有し、第 6レンズ群 GR6 の広角端における横倍率を β wg6としたとき、以下の条件式(18)を満足することを特 徴とする請求の範囲第 13項記載の撮像装置。
(18) 1.05 < j8 wg6 < 1.5
PCT/JP2006/302664 2005-03-11 2006-02-15 ズームレンズ系及び撮像装置 WO2006095545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/587,934 US7545579B2 (en) 2005-03-11 2006-02-15 Zoom lens system and image pick-up apparaus
EP06713805A EP1857852A4 (en) 2005-03-11 2006-02-15 ZOOM LENS SYSTEM AND IMAGING DEVICE
CN2006800004684A CN1989434B (zh) 2005-03-11 2006-02-15 变焦镜头系统及摄像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-068933 2005-03-11
JP2005068933A JP4324878B2 (ja) 2005-03-11 2005-03-11 ズームレンズ系及び撮像装置

Publications (2)

Publication Number Publication Date
WO2006095545A1 true WO2006095545A1 (ja) 2006-09-14
WO2006095545A9 WO2006095545A9 (ja) 2007-11-29

Family

ID=36953147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302664 WO2006095545A1 (ja) 2005-03-11 2006-02-15 ズームレンズ系及び撮像装置

Country Status (7)

Country Link
US (1) US7545579B2 (ja)
EP (1) EP1857852A4 (ja)
JP (1) JP4324878B2 (ja)
KR (1) KR20070108810A (ja)
CN (1) CN1989434B (ja)
TW (1) TW200643464A (ja)
WO (1) WO2006095545A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186255A (ja) * 2010-03-10 2011-09-22 Olympus Imaging Corp ズーム光学系及びそれを用いた電子撮像装置
US9091841B2 (en) * 2010-12-15 2015-07-28 Nikon Corporation Zooming optical system, optical apparatus having the zooming optical system, and method for manufacturing zooming optical system
JP6039205B2 (ja) * 2012-03-21 2016-12-07 キヤノン株式会社 撮像装置
JP5973252B2 (ja) * 2012-06-22 2016-08-23 株式会社タムロン ズームレンズ及びそれを備えた撮像装置
WO2014013648A1 (ja) * 2012-07-17 2014-01-23 パナソニック株式会社 ズームレンズ系、撮像装置及びカメラ
JP6127462B2 (ja) * 2012-11-14 2017-05-17 株式会社ニコン 変倍光学系、光学装置
EP2921897A4 (en) 2012-11-14 2016-10-12 Nikon Corp OPTICAL ARRANGEMENT WITH VARIABLE PERFORMANCE, OPTICAL DEVICE AND METHOD FOR PRODUCING THE OPTICAL ARRANGEMENT WITH VARIABLE PERFORMANCE
JP6200647B2 (ja) 2012-12-27 2017-09-20 株式会社タムロン ズームレンズ及び撮像装置
JP6364857B2 (ja) * 2013-03-29 2018-08-01 株式会社シグマ 防振機能を備えた変倍結像光学系
JP5928426B2 (ja) * 2013-09-25 2016-06-01 コニカミノルタ株式会社 変倍光学系,撮像光学装置及びデジタル機器
CN106796339B (zh) * 2014-08-29 2020-07-21 株式会社尼康 变倍光学系统及光学设备
JP6859219B2 (ja) * 2017-07-12 2021-04-14 株式会社タムロン ズームレンズ及び撮像装置
JP6947217B2 (ja) * 2017-09-11 2021-10-13 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP7179594B2 (ja) * 2018-11-29 2022-11-29 キヤノン株式会社 ズームレンズ及び撮像装置
JP7373331B2 (ja) * 2019-09-12 2023-11-02 株式会社タムロン ズームレンズ及び撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (ja) 1990-10-08 1992-05-20 Minolta Camera Co Ltd 高変倍率ズームレンズ
JPH09184981A (ja) 1996-01-06 1997-07-15 Canon Inc ズームレンズ
JPH10333039A (ja) * 1997-06-05 1998-12-18 Minolta Co Ltd ズームレンズ
JPH11174324A (ja) 1997-12-10 1999-07-02 Canon Inc ズームレンズ
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2004037967A (ja) * 2002-07-05 2004-02-05 Minolta Co Ltd 撮像レンズ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935456B1 (ja) * 1970-01-23 1974-09-21
JPS5940616A (ja) * 1982-08-30 1984-03-06 Canon Inc ズ−ムレンズのフオ−カス方法
KR100256205B1 (ko) * 1995-12-11 2000-05-15 유무성 소형 줌렌즈
US6061180A (en) * 1996-10-29 2000-05-09 Canon Kabushiki Kaisha Zoom lens
JPH11223770A (ja) 1998-02-06 1999-08-17 Canon Inc ズームレンズ
US6721105B2 (en) * 2001-12-12 2004-04-13 Nikon Corporation Zoom lens system
JP2006301474A (ja) * 2005-04-25 2006-11-02 Sony Corp ズームレンズ及び撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (ja) 1990-10-08 1992-05-20 Minolta Camera Co Ltd 高変倍率ズームレンズ
JPH09184981A (ja) 1996-01-06 1997-07-15 Canon Inc ズームレンズ
JPH10333039A (ja) * 1997-06-05 1998-12-18 Minolta Co Ltd ズームレンズ
JPH11174324A (ja) 1997-12-10 1999-07-02 Canon Inc ズームレンズ
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2004037967A (ja) * 2002-07-05 2004-02-05 Minolta Co Ltd 撮像レンズ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1857852A4

Also Published As

Publication number Publication date
CN1989434B (zh) 2010-07-28
WO2006095545A9 (ja) 2007-11-29
TWI294525B (ja) 2008-03-11
EP1857852A1 (en) 2007-11-21
US20080309798A1 (en) 2008-12-18
US7545579B2 (en) 2009-06-09
EP1857852A4 (en) 2008-07-16
KR20070108810A (ko) 2007-11-13
CN1989434A (zh) 2007-06-27
JP2006251468A (ja) 2006-09-21
JP4324878B2 (ja) 2009-09-02
TW200643464A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
WO2006095545A1 (ja) ズームレンズ系及び撮像装置
JP4840354B2 (ja) ズームレンズ及び撮像装置
JP4315450B2 (ja) ズームレンズ系及び撮像装置
US7443600B2 (en) Zoom lens and image pickup apparatus having the same
US8228617B2 (en) Zoom lens and image pickup apparatus having the same
US7630141B2 (en) Zoom lens and image pickup apparatus having the zoom lens
JP2006301474A (ja) ズームレンズ及び撮像装置
US8149515B2 (en) Zoom lens and image pickup apparatus with the same
US8089700B2 (en) Zoom lens and image pickup apparatus having the same
JP5836654B2 (ja) ズームレンズ及びそれを有する撮像装置
KR20070105249A (ko) 가변초점거리 렌즈계 및 촬상장치
KR20070109840A (ko) 줌 렌즈 및 촬상장치
JP2006251037A (ja) 折り曲げ光学系及び撮像装置
JP6091868B2 (ja) ズームレンズ
JP2013003240A5 (ja)
JP5294623B2 (ja) ズームレンズ及びそれを有する撮像装置
US20110007405A1 (en) Zoom lens and image pickup apparatus using the same
JP2012042792A (ja) ズームレンズ及びそれを有する撮像装置
JP2019113610A (ja) ズームレンズ及びそれを有する撮像装置
US20230213739A1 (en) Zoom lens and image pickup apparatus having the same
US20240192474A1 (en) Zoom lens, image pickup apparatus, and image pickup system
US20230408800A1 (en) Zoom lens, and image pickup apparatus having the same
JP5506893B2 (ja) ズームレンズ及びそれを有する撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11587934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067023248

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006713805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680000468.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006713805

Country of ref document: EP