WO2006092912A1 - 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法 - Google Patents

固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法 Download PDF

Info

Publication number
WO2006092912A1
WO2006092912A1 PCT/JP2006/300786 JP2006300786W WO2006092912A1 WO 2006092912 A1 WO2006092912 A1 WO 2006092912A1 JP 2006300786 W JP2006300786 W JP 2006300786W WO 2006092912 A1 WO2006092912 A1 WO 2006092912A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
powder
electrode
electrolyte layer
layer
Prior art date
Application number
PCT/JP2006/300786
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Shimada
Original Assignee
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Tokyo Electric Power Company, Incorporated filed Critical The Tokyo Electric Power Company, Incorporated
Priority to JP2007505816A priority Critical patent/JP4143938B2/ja
Priority to DE112006000220T priority patent/DE112006000220T5/de
Publication of WO2006092912A1 publication Critical patent/WO2006092912A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for producing the same.
  • the solid oxide fuel cell has a structure in which an electrolyte is sandwiched between a fuel electrode and an air electrode, and the electrolyte, the fuel electrode, and the air electrode are both composed of a metal oxide or a metal, and are all solid. .
  • the cell reaction occurs at a three-phase interface where any of gas, ions, and electrons can react. Therefore, in order to improve the battery performance, it is necessary to increase the three-phase interface.
  • the three-phase interface is formed not only on the contact surface between the electrolyte and the electrode but also inside the electrode, Increasing the three-phase interface has been performed.
  • a child particle is fixed to the mother particle, and either one of the mother particle or the child particle is an electrolyte substance, and a powdery composite particle having the other as a fuel electrode substance or an air electrode substance, By forming the electrode, an electrolyte material is mixed with the electrode material, and an electrode having a porous structure has been manufactured.
  • the anode material refers to a material that generates water and electrons from hydrogen and oxide ions of the fuel and conducts electrons
  • the air electrode material refers to oxides from oxygen and electrons.
  • the electrolyte substance refers to a substance that conducts oxide ions generated at the air electrode to the fuel electrode.
  • the composite particles and the electrodes formed from the composite particles include, for example, Japanese Patent Application Laid-Open No. 10-1444 33 7 in Patent Document 1, an oxide having oxygen ion conductivity (for example, yttria stable).
  • a metal having an electrode activity for example, nickel oxide
  • a fuel electrode for a solid oxide fuel cell comprising the composite particles.
  • the electrolyte layer porous and fill the pores with an electrode material to form a three-phase interface in the electrolyte layer and increase the three-phase interface.
  • an electrode material for example, in Japanese Patent Application Laid-Open No. 3-1 4 7 2 6 4, a porous layer made of zirconium is preliminarily formed at an interface in contact with a fuel electrode of a solid electrolyte plate interposed between a fuel electrode and an oxidizer electrode.
  • a solid electrolyte fuel cell is disclosed in which the fuel electrode is constituted by the porous layer and nickel or a nickel-zirconia mixture filled in the pores.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-1 4 4 3 3 7 (Example 1) ⁇
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-1 4 7 2 6 4 (Claims, Examples) )
  • the electrolyte substance powder is dispersed in a liquid containing a solvent such as ethanol and a binder component such as polyvinyl propylal dissolved in the solvent.
  • the slurry is applied to the surface of the electrolyte plate and further baked, whereby the liquid in the slurry is burned off and fine pores are formed.
  • the liquid component exists in the slurry in a state of filling the gaps between the spherical electrolyte substances, and is a liquid, the shape of the liquid component in the slurry, that is, after firing. It was difficult to control the shape of the pores.
  • the pores formed in the porous electrolyte layer include Some pores did not have a diameter (diameter) large enough to be filled with an electrode material such as nickel. Therefore, in the case of Japanese Patent Laid-Open No. 3-1 4 7 2 6 4, in order to form a large number of pores having a diameter large enough to be filled with an electrode material such as nickel, By increasing the ratio of the liquid to the electrolyte material powder in the slurry, the possibility of forming pores having a sufficiently large diameter to be filled with the electrode material must be increased. I had to. However, if the proportion of the liquid in the slurry is large, the pore volume of the electrolyte layer becomes too large, and the amount of the electrolyte substance powder in the electrolyte layer becomes small.
  • an object of the present invention is to provide a method for producing a cell for a solid oxide fuel cell that can increase the number of three-phase interfaces of a porous electrolyte layer and that has a small decrease in conductivity of the electrolyte layer.
  • the present inventors have (1) By adding a solid pore-forming agent to the slurry for forming the porous electrolyte layer, The shape of the pores of the porous electrolyte layer can be controlled. Specifically, the pore-forming agent is present in the gap of the electrolyte powder in the slurry, and the size of the gap Therefore, the size of the gap between the electrolyte substance powders, that is, the diameter of the pores after firing can be made larger than the diameter of the pore-forming agent.
  • the size of the soot required to be filled with the electrode material Since the pores can be reliably formed, the decrease in the conductivity of the porous electrolyte layer can be reduced and the amount of the three-phase interface can be increased as compared with the conventional method, and (2)
  • the average particle diameter of the electrolyte substance powder By reducing the average particle diameter of the electrolyte substance powder relative to the average diameter of the pore-forming agent, the number of contacts between the electrolyte substance powders can be increased and the electrolyte substance powders can be easily sintered.
  • the inventors have found that the conductivity of the electrolyte layer can be increased, and have completed the present invention.
  • a slurry for forming an electrolyte layer containing an electrolyte substance powder and a pore-forming agent is applied to the surface of the electrolyte substrate, and then the electrolyte substrate is fired so that the porous electrolyte layer is A porous electrolyte layer forming step for obtaining a formed electrolyte substrate, and an electrode material powder, an electrode material powder and an electrolyte material powder on the surface of the porous electrolyte layer of the substrate.
  • the electrode layer forming slurry containing the mixed powder of the electrode material or the composite powder of the electrode material and the electrolyte material is applied, and then the electrolyte substrate on which the porous electrolyte layer is formed is fired to fill the electrode material
  • the present invention provides a method for producing a solid oxide fuel cell having an electrode layer forming step for obtaining an electrolyte substrate on which a porous electrolyte layer and an electrode layer are formed.
  • the present invention (2). Is made of an electrolyte substance, and has a porous electrolyte layer having a porosity of 30 to 70%, and the electrode substance powder, the electrode substance powder, and the electrolyte substance powder
  • the present invention provides a solid oxide fuel cell having an electrode material-filled porous electrolyte layer obtained by filling a mixed powder of the above or a composite powder of an electrode material and an electrolyte material.
  • the present invention (3) is a porous electrolyte which is formed of an electrolyte substance, and the volume ratio of the pores of the porous electrolyte layer to the apparent volume of the electrode substance-filled porous electrolyte layer is 30 to 70% Electrode material powder filled in the pores of the porous electrolyte layer, mixed powder of electrode material powder and electrolyte material powder, or composite of electrode material and electrolyte material powder It is intended to provide a solid oxide fuel cell having a porous electrolyte layer.
  • the manufacturing method of the cell for solid oxide fuel cells which can increase the three-phase interface of an electrolyte layer and has a small fall of the electroconductivity of an electrolyte layer can be provided.
  • FIG. 1 is a schematic diagram showing a porous electrolyte layer forming step according to the manufacturing method of the present invention
  • FIG. 2 is a schematic diagram showing an electrode layer forming step according to the manufacturing method of the present invention
  • FIG. 3 is a schematic diagram showing the composite particle powder and the aggregate powder of the electrode material and the electrolyte material according to the present invention
  • FIG. 4 is the electrode material according to the solid oxide fuel cell of the present invention.
  • FIG. 5 is a schematic enlarged view of the end face of the filled porous electrolyte layer, and FIG. 5 is formed on the porous electrolyte layer 46 constituting the electrode material filled porous electrolyte layer 42 in FIG. FIG.
  • FIG. 6 is a diagram showing the voids 4 7 in the electrode material-filled porous electrolyte layer 42 shown in FIG. 4 by hatching.
  • FIG. 7 is a schematic diagram showing the porous electrolyte layer 56.
  • FIG. 8 shows the pores 57 in the porous electrolyte layer 56 shown in FIG.
  • Fig. 9 is a side view of a stationary polarization measurement sample, and
  • Fig. 10 is a graph showing the results of measuring the power generation characteristics of a solid oxide fuel cell.
  • Fig. 11 is a schematic diagram showing a porous electrolyte layer forming process according to a method for producing a cell for a solid oxide fuel cell having a conventional porous electrolyte layer
  • Fig. 12 is a diagram showing conventional production.
  • FIG. 2 is a schematic diagram showing an electrode substrate-filled porous electrolyte layer formed by a method and an electrolyte substrate on which an electrode layer is formed.
  • the method for producing a cell for a solid oxide fuel cell of the present invention includes a porous electrolyte layer forming step and an electrode layer forming step.
  • the manufacturing method of the present invention will be described with reference to FIG. 1 and FIG.
  • FIG. 1 is a schematic view showing a porous electrolyte layer forming process according to the production method of the present invention, and is an end view taken along a plane perpendicular to the planar direction of the electrolyte substrate.
  • FIG. 2 is a schematic view showing an electrode layer forming step according to the manufacturing method of the present invention, and is an end view taken along a plane perpendicular to the planar direction of the electrolyte substrate.
  • electrolyte substrate 10 coated with the electrolyte layer forming slurry layer 14 is obtained ((I) in FIG. 1).
  • the liquid component of the electrolyte layer forming slurry layer 14 is mainly a solvent and a binder component dissolved in the solvent.
  • the electrolyte substance powder (a) It exists so as to fill the gap between 1 and 2 and the pore-forming agent 1 3.
  • electrolyte substance powder (a) in order to distinguish the electrolyte substance powder contained in the electrolyte layer forming slurry from the electrolyte substance powder contained in the electrode layer forming slurry described later, the electrolyte layer forming The electrolyte substance powder contained in the slurry is referred to as electrolyte substance powder (a), and the electrolyte substance powder contained in the electrode layer forming slurry is referred to as electrolyte substance powder (b).
  • the electrolyte substrate 10 to which the electrolyte layer forming slurry layer 14 is applied, the electrolyte substrate 20 on which the porous electrolyte layer 22 is formed is obtained.
  • the pore-forming agent 13 and the liquid component in the electrolyte layer forming slurry layer 14 are burned away, so that the burned-out trace becomes the pore 21 ((II) in FIG. 1).
  • the electrolyte substance powder (a) 1 2 Sinters at the part where they are in contact with each other.
  • the electrolyte substrate 20 on which the porous electrolyte layer is formed on the surface 24 of the porous electrolyte layer (the surface of the porous electrolyte layer opposite to the surface in contact with the electrolyte substrate 11)
  • the slurry (electrode layer forming slurry 3 4) in which the electrode substance powder 28 (solid content) is dispersed in the liquid component 26 is applied.
  • the electrode layer forming slurry 34 is impregnated into the pores 21 of the porous electrolyte layer 22, thereby obtaining the porous electrolyte layer 27 filled with the electrode layer forming slurry 34. It is done.
  • a slurry layer 29 for forming an electrode layer is formed on the surface 33 of the porous electrolyte layer 27 opposite to the electrolyte substrate 11 (see FIG. 2). (III)).
  • the electrode layer forming slurry layer 29 is applied to obtain the electrolyte substrate 25 on which the porous electrolyte layer is formed.
  • the electrode material powder 28 is a fuel electrode material powder when the electrode layer formed on the surface of the porous electrolyte layer 22 is a fuel electrode layer, and an air electrode material when the electrode layer is an air electrode layer. It is a powder.
  • the electrode material-filled porous electrolyte layer 31 and the electrode layer 32 filled with the electrode material powder 28 are obtained.
  • a formed electrolyte substrate 30 is obtained ((IV) in FIG. 2).
  • the liquid component 26 in the electrode layer forming slurry 34 is burned away, and the electrode material powders 28, the electrode material powder 28, and the electrolyte material powder (a) 12 are Sinter at the parts that are in contact with each other.
  • Electrode material filled porous electrolyte layer and electrode layer Either one of a fuel electrode layer and an air electrode layer
  • the method of The electrode layer can be formed by using to produce a solid oxide fuel cell.
  • an electrode layer (either one of a fuel electrode layer or an air electrode layer) is formed on one surface of the electrolyte substrate using a known method, and then, on the other surface of the electrolyte substrate, By carrying out the porous electrolyte layer forming step and the electrode layer forming step, an electrode substance-filled porous electrolyte layer and an electrode layer (the other of the fuel electrode layer or the air electrode layer) filled with the electrode material powder To produce a solid oxide fuel cell.
  • an electrode layer (either one of a fuel electrode layer or an air electrode layer) is formed using a known method, and then the surface of the electrode layer is densely formed using a known method.
  • a solid oxide fuel cell can be produced by forming a solid electrolyte layer and an electrode layer (the other of the fuel electrode layer and the air electrode layer).
  • a slurry for forming an electrolyte layer containing an electrolyte substance powder and a pore-forming agent is applied to the surface of the electrolyte substrate, and then the electrolyte substrate is fired.
  • the electrolyte substance related to the electrolyte substance powder (a) is not particularly limited as long as it is an electrolyte substance that is usually used for producing an electrolyte layer of a solid oxide fuel cell.
  • Y zirconium (Zr), scandium (Sc), cerium (Ce), samarium (Sm), aluminum (A1), titanium (Ti), magnesium (Mg), lanthanum (L a), gallium (G a), niobium (N b), tantalum (T a), cesium (S i), gadolinium (G d), strontium (S r), ytterbium (Y b), iron ( Examples thereof include one or more metal oxides selected from F e), cobalt (C o) and nickel (N i).
  • examples of the metal oxide having two or more metal species include scandia-stabilized zirconia (S c SZ; S c 2 0 3 -Z r 0 2 ). , Scandiaceria stabilized zirconia (l OS cl C e SZ; (1 0 S c 2 O 3 -C e O 2 ) and Z r O 2 ), ittria stabilized zirconia (YSZ; Y 2 O 3 — Z r O 2), lanthanum strike opening Nchiumu magnesium gallate (LS GM; L a 0. 8 S r 0. 2 G a 0. 8 M g ..
  • S c SZ Scandiaceria stabilized zirconia
  • l OS cl C e SZ (1 0 S c 2 O 3 -C e O 2
  • Z r O 2 ittria stabilized zirconia
  • LS GM lanthanum strike opening Nchiumu magnesium gallate
  • the average particle diameter of the electrolyte substance powder (a) is preferably from 0.01 to 3 m, particularly preferably from 0 ⁇ 05 to 1 / zm, more preferably from 0.1 to 0.7 ⁇ . It is. The smaller the average particle size of the electrolyte substance powder (a), the more contacts between the electrolyte substance powders (a) and the easier it is for the electrolyte substance powders (a) to sinter. The conductivity of the electrolyte layer is increased. However, if the average particle diameter of the electrolyte substance powder (a) is less than 0.3 ⁇ , the shrinkage of the electrolyte layer during firing becomes large, and the porous electrolyte layer is likely to be damaged. Further, when the average particle size of the electrolyte substance powder (a) exceeds 3 ⁇ m, the conductivity of the porous electrolyte layer tends to be low.
  • the pore-forming agent is not particularly limited as long as it does not dissolve in the solvent of the electrolyte layer forming slurry, exists as a solid in the electrolyte layer forming slurry, and is burned off by the firing.
  • the pore-forming agent include carbon powder, thermoplastic resin powder, thermoplastic resin fiber, thermosetting resin powder, thermosetting resin fiber, natural fiber, and natural fiber derivatives.
  • the carbon powder include carbon black, activated carbon, graphite (graphite), and amorphous carbon.
  • the content of the metal component in the carbon powder is preferably 10 O mg Z kg or less, particularly preferably no metal component.
  • thermoplastic resin powder, the thermoplastic resin fiber, the thermosetting resin powder, or the thermosetting resin fiber may be, for example, a hydrocarbon compound such as polystyrene, or polymethyl methacrylate.
  • Oxygen-containing organic compounds such as phenol resin and epoxy resin; nitrogen-containing compounds such as polyamide, melamine resin, urea resin and polyurethane; sulfur-containing yellow compounds such as polysulfone; atoms other than carbon and hydrogen atoms It may be a compound containing Of these, hydrocarbon compounds and oxygen-containing organic compounds are preferred in that no gas other than carbon dioxide is generated during combustion.
  • the natural fiber include cellulose fiber and protein fiber, and the cellulose fiber includes semi-manufactured acetate and rayon.
  • the natural fiber derivative may be a natural fiber such as ethyl cellulose. Examples include stealth.
  • the shape of the pore-forming agent is granular, fibrous or flaky, and the granular form includes not only those having a circular cross section but also those having an elliptical, polygonal or indeterminate cross section. Includes needles and cylinders.
  • the diameters in the vertical direction, the horizontal direction, and the depth direction are approximately the same, and the particles having the same length in the horizontal direction as compared to the diameters in the vertical direction and the depth direction are fibrous.
  • flaky when the thickness in the vertical direction is extremely small compared to the diameter in the horizontal and depth directions. However, they are not strictly distinguished, and the boundary is not It is not strictly determined.
  • the average particle size (average diameter) of the pore-forming agent is preferably 0.1 to 20 m, particularly preferably 0.5 to 10 ⁇ m, more preferably 1 ⁇ 5 m. If the average particle size of the pore-forming agent is less than 0.1 ⁇ , the pore size of the pores of the porous electrolyte layer becomes too small, so that the slurry for forming the electrode layer is difficult to be impregnated, and If it exceeds 20 zm, the pore volume of the pores of the porous electrolyte layer becomes too large, and the conductivity of the porous electrolyte layer tends to be low.
  • the average value of the average pore diameter of the granular pore-forming agent is the average value of the largest length among the diameters in the longitudinal direction, the transverse direction and the depth direction of the individual particles.
  • the average fiber length of the pore-forming agent is preferably from 0.1 to 1; I 0 jm, particularly preferably from 0.05 to 5 m, more preferably 0.1 to 1 ⁇ m. If the average fiber length of the pore former is less than 0.3 ⁇ , the pore diameter of the pores of the porous electrolyte layer becomes too small, so that the slurry for electrode layer formation is difficult to impregnate. Also, if it exceeds l O m, the pore volume of the pores of the porous electrolyte layer becomes too large, and the conductivity of the porous electrolyte layer tends to be low.
  • the average fiber diameter of the pore former is 0786
  • the average value of the lengths of individual fibers in the lateral direction is the average fiber length, and the larger length of the diameters of the individual fibers in the longitudinal and depth directions is used.
  • the average value is the average fiber diameter.
  • the average diameter of the pore-forming agent is preferably 0.:! To 20 / zm, particularly preferably 0.5 to 10 m, and more preferably 1 to 5 /. im. If the average diameter of the pore-forming agent is less than 0.1 ⁇ , the pore diameter of the pores of the porous electrolyte layer becomes too small, so that the slurry for forming the electrode layer is not easily impregnated. If it exceeds 20 ⁇ m, the pore volume of the pores of the porous electrolyte layer becomes too large, and the conductivity of the porous electrolyte layer tends to be low. In the case of flakes, the average diameter is the average of the larger lengths of the diameters in the horizontal and depth directions of the individual flakes.
  • the ratio of the average diameter of the pore-forming agent to the average particle diameter of the electrolyte substance powder (a) is preferably 2 to 1 G 00, Particularly preferably, it is 4 to 100, and more preferably 5 to 20.
  • the ratio of the average diameter of the pore-forming agent to the average particle diameter of the electrolyte substance powder (a) is in the above range, the conductivity of the porous electrolyte layer is increased.
  • the ratio is determined by taking the average fiber length as the average diameter of the pore former.
  • the slurry for forming an electrolyte layer contains the electrolyte substance powder (a) and the pore former, and the electrolyte substance powder (a) and the pore former are dispersed in a liquid component of the slurry.
  • the liquid component of the slurry is composed of an organic solvent and a binder component dissolved in the organic solvent.
  • the ratio of the volume ratio of the electrolyte substance powder (a) to the volume ratio of the pore former is preferably 0.1 to 10. Particularly preferred is 0.3 to 3, more preferably 0.6 6 to 1.5. If the ratio of the volume ratio of the electrolyte substance powder (a) to the volume ratio of the pore former is less than 0.1, the conductivity of the porous electrolyte layer tends to be low, and if the ratio exceeds 10 Since the volume of the pores filled with the electrode material powder is reduced, it is difficult to increase the amount of the three-phase interface.
  • the electrolyte layer forming slurry is dissolved in a solvent to form a binder component such as polyvinyl butyl resin that functions as a binder, ethyl cellulose, and a plasticizer such as di-n-butyl phthalate that functions as a plasticizer.
  • a binder component such as polyvinyl butyl resin that functions as a binder, ethyl cellulose, and a plasticizer such as di-n-butyl phthalate that functions as a plasticizer.
  • Components, dispersant components such as nonionic dispersants, and antifoam components such as octyl phenyl ether can be contained.
  • the binder component, plasticizer component, dispersant component or antifoam component is dissolved in the liquid component of the electrolyte layer forming slurry.
  • the viscosity of the slurry for forming an electrolyte layer is preferably 1 000 to 5 000 0 mPa ⁇ s, particularly preferably 3 000 to 20000 mPa ⁇ s, more preferably 6 00 0 to 0.100 mPa ⁇ s. s.
  • the viscosity of the electrolyte layer forming slurry is adjusted by evaporating and removing the solvent in the electrolyte layer forming slurry using an evaporator or the like.
  • the electrolyte substrate is not particularly limited as long as it is formed into a dense structure that does not allow gas permeation using an electrolyte substance.
  • the electrolyte substrate can be obtained by a known method for producing an electrolyte layer such as a screen printing method.
  • the kind of the electrolyte substance related to the electrolyte substrate is the same as the kind of the electrolyte substance related to the electrolyte substance powder (a).
  • the electrolyte substrate has an electrode layer (fuel electrode) on a surface opposite to a surface on which the electrode material-filled porous electrolyte layer and the electrode layer (either the fuel electrode layer or the air electrode layer) are formed. Layer or air The other of the extreme layers may be formed.
  • the method for applying the electrolyte layer forming slurry to the electrolyte substrate is not particularly limited, and examples thereof include a screen printing method and a doctor plate method. Further, after the application of the electrolyte layer forming slurry, the electrolyte substrate can be dried as necessary.
  • the thickness of the electrolyte layer forming slurry layer applied to the electrolyte substrate is preferably 1 to 100 ⁇ , particularly preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m.
  • the thickness of the electrode material-filled porous electrolyte layer is determined by the thickness of the electrolyte layer forming slurry layer.
  • the firing temperature at the time of firing in the electrolyte layer forming step is usually from 1 2 00 to 1 5500 ° C, preferably from 1 3 00 to: L 4500 ° C, particularly preferably 1 3 5 0 ⁇ 1 4 5 0 ° C.
  • the firing time is usually 1 to 20 hours, preferably 3 to 10 hours, particularly preferably 4 to 8 hours.
  • the electrode material powder is a fuel electrode material powder when the electrode layer formed on the surface of the porous electrolyte layer is different from the case of the fuel electrode layer and the case of the air electrode layer.
  • the air electrode material powder When the air electrode layer is formed, the air electrode material powder.
  • the anode material related to the anode material powder is usually used for producing the anode layer of a solid oxide fuel cell.
  • a solid oxide fuel cell For example, yttrium, zirconium, scandium, cerium, samarium, aluminum, titanium, magnesium, lanthanum, gallium, niobium, tantalum, silicon, gadolinium, It is an oxide of one or more metals selected from strontium, ytterbium, iron, cobalt, nickel and calcium (Ca).
  • the metal oxides having two or more metal species include, for example, nickel oxide (N i O) and samaria doped ceria (Sm 2 O 3 — C e O 2 ) Agglomerates of mixtures, aggregates of nickel oxide and yttria stabilized zirconia (N i O—YS Z), aggregates of nickel oxide and scandia stabilized zirconia (N i O—S c SZ) Aggregates, Aggregates of nickel oxide and yttria stabilized zirconia and samaria doped ceria mixtures, Nickel oxide and scandia stabilized zirconia and sumaria doped ceria mixtures.
  • Agglomerates, nickel oxide and yttria stabilized zirconia and ceria oxide ( C e 0 2) a mixture of coagulation Atsumaritai of aggregates of a mixture of nickel oxide and Sukanjia stabilizing Jirukonia the oxide ceria, said tri cobalt oxide (C o 3 O 4)
  • aggregates of a mixture of nickel oxide and summaria-doped ceria, aggregates of a mixture of nickel oxide and yttria-stabilized zirconia, and aggregates of a mixture of nickel oxide and scandia-stabilized zirconia include electrolyte substances.
  • the thermal expansion coefficient is close to that of the electrolyte substance, which is preferable in terms of good bonding.
  • an air electrode material related to the air electrode material powder is used.
  • an air electrode material used for manufacturing an air electrode layer of a solid oxide fuel cell for example, yttrium, zirconium, scandium, cerium, samarium, One or two selected from aluminum, titanium, magnesium, lanthanum, gallium, niobium, tantalum, silicon, gadolinium, stoichiometric ytterbium, iron, cobalt, nickel, calcium and manganese (Mn) These are metal oxides.
  • metal oxides having two or more metal species include, for example, lanthanum tron thom manganate (La. 8 S ro. 2 Mn O 3 ), Lantern Canorium Cobaltate (L a. 9 C a 0. x Co O 3 ), Lanthanum Cobaltate (La 0 9 S r 0 1 Co O 3 ), Lantern Kobarute Ichito (L a C o O 3) , lanthanum Kano Residencial ⁇ beam manganate (L a 0. 9 C a 0.
  • lanthanum strontium Chiu Mumanganate is preferable in that it does not react with the electrolyte substance and has a good thermal expansion coefficient as compared with the electrolyte substance, so that the bonding is good.
  • the mixed powder is a mixed powder of the electrode substance powder and the electrolyte substance powder (b).
  • the mixed powder is different depending on whether the electrode layer formed on the surface of the porous electrolyte layer is a fuel electrode layer or an air electrode layer.
  • a fuel electrode material powder and an electrolyte material are used.
  • the air electrode layer is formed, it is a mixed powder of the air electrode powder and the electrolyte substance powder (b).
  • the electrode layer forming slurry is preferably an electrode layer forming slurry containing the mixed powder from the viewpoint of increasing the output of the fuel cell.
  • the electrode layer forming slurry is an electrode layer forming slurry containing a mixed powder of the electrode material powder and the electrolyte material powder (b)
  • the denatured material powder (b) / electrode material powder is 0.1 to 2, preferably 0.5 to 1.5, particularly preferably 0.6 to 1.0.
  • the volume ratio is in the above range, the output of the fuel cell is increased.
  • the electrolyte substance related to the electrolyte substance powder (b) is the same as the electrolyte substance related to the electrolyte substance powder (a).
  • the composite powder of the electrode material and the electrolyte material is an aggregate of particles composed of both the electrode material and the electrolyte material. That is, each particle of the composite powder of the electrode material and the electrolyte material constitutes one particle by both the electrode material and the electrolyte material.
  • Examples of the composite powder of the electrode substance and the electrolyte substance include a composite particle powder in which a child particle is fixed to a mother particle, an aggregate powder of the electrode substance and the electrolyte substance, and the like.
  • the composite particle powder and the aggregate powder of the electrode material and the electrolyte material will be described with reference to FIG.
  • FIG. 3 is a schematic view showing the composite particle powder and the aggregate powder of the electrode material and the electrolyte material according to the present invention. In FIG.
  • one or more child particles 37 are fixed on the surface of the mother particle 36 ((A) in FIG. 3).
  • the electrode layer formed on the surface of the porous electrolyte layer is a fuel electrode layer
  • the mother particle 36 and the child particle 37 related to the composite particle 35 are the electrolyte material.
  • the child particle 37 is an anode material
  • the mother particle 36 is an anode material
  • the child particle 37 is an electrolyte material.
  • the mother particle 36 and the child particle 37 related to the composite particle 35 are composed of an electrolyte substance.
  • the child particle 37 is an air electrode material, or the mother particle 36 is an air electrode material, and the child particle 37 is an electrolyte material.
  • the electrolyte substance related to the composite particle powder is an electrolyte substance related to the electrolyte substance powder (a), and the fuel electrode substance related to the composite particle powder is a fuel electrode substance related to the fuel electrode substance powder.
  • the air electrode material related to the composite particle powder is the air electrode material related to the air electrode material powder.
  • the composite particle powder is not particularly limited as long as it is usually a composite particle powder used for manufacturing an electrode for a solid oxide fuel cell.
  • the aggregate 39 of the electrode substance and the electrolyte substance is an aggregate (secondary particle) in which the electrode substance 38 1 and the electrolyte substance 3 8 2 which are primary particles are aggregated (secondary particles).
  • the electrode material 3 8 1 related to the aggregate 39 of the electrode material and the electrolyte material is a fuel electrode material when the electrode layer formed on the surface of the porous electrolyte layer is a fuel electrode layer. In this case, it is an air electrode material.
  • the electrolyte substance related to the aggregate powder of the electrode substance and the electrolyte substance includes the electrolyte substance related to the electrolyte substance powder (a), and the fuel electrode substance related to the aggregate powder of the electrode substance and electrolyte substance includes the fuel The fuel electrode material related to the electrode material powder, and the air electrode material related to the aggregate powder of the electrode material and the electrolyte material are the same as the air electrode material related to the air electrode material powder.
  • the average particle size of the electrode substance powder, the mixed powder of the electrode substance powder and the electrolyte substance powder (b), or the composite powder of the electrode substance and the electrolyte substance is preferably from 0.001 to : L 0 m, particularly preferably from 0.05 to l / m, more preferably from 0.1 to 0.5 m.
  • the average particle size is less than 0.001 ⁇ m, the powders are sintered too much, and the surface area of the electrode layer tends to be small.
  • the average particle size exceeds 10 ⁇ , the electrode material powder, a mixed powder of the electrode material powder and the electrolyte material powder (b) into the pores in the porous electrolyte layer, or The filling amount of the composite powder of the electrode material and the electrolyte material tends to be reduced.
  • the composite powder of the substance and the electrolyte substance is the composite particle powder, the average particle diameter of the mother particle is set as the average particle diameter of the composite powder of the electrode substance and the electrolyte substance.
  • the ratio of the average particle diameter of the child particles to the average particle diameter of the mother particles is particularly limited. However, it is preferably from 0.01 to 1.0, particularly preferably from 0.01 to 0.1.
  • the average diameter of the agent is preferably from 0.01 to :! Particularly preferably, it is 0.01 to 0.1, and more preferably 0.01 to 0.01.
  • the electrode substance powder, the mixed powder of the electrode substance powder and the electrolyte substance powder (b), or the composite powder of the electrode substance and the electrolyte substance Since the pores in the porous electrolyte layer are easily filled, the three-phase interface can be increased.
  • the composite particle powder includes an electrolyte material mother particle powder and a fuel electrode material child particle powder, a fuel electrode material mother particle powder and an electrolyte material child particle powder, an electrolyte material mother particle powder, and an air electrode. It is manufactured by a known method using a child particle powder of a substance, or a mother particle powder of an air electrode substance and a child particle powder of an electrolyte substance.
  • the aggregate powder of the electrode substance and the electrolyte substance is, for example, by spraying droplets of an aqueous solution containing metal ions into a heating furnace to obtain a metal oxide aggregate powder.
  • the metal ions and metal ions of the metal species that become the electrode material by the oxidation reaction are used as an aqueous solution to be sprayed. It is produced by using an aqueous solution containing both metal ions of the metal species that become the electrolyte substance by the oxidation reaction.
  • the electrode layer forming slurry contains the electrode substance powder, a mixed powder of the electrode substance powder and the electrolyte substance powder (b), or a composite powder of the electrode substance and the electrolyte substance, and the slurry
  • the electrode material powder, the mixed powder of the electrode material powder and the electrolyte material powder (b), or the composite powder of the electrode material and the electrolyte material is dispersed in the liquid component of .
  • the liquid portion of the slurry is composed of an organic solvent and a binder component dissolved in the organic solvent.
  • the electrode layer forming slurry may contain a binder component, a plasticizer component, a dispersant component or an antifoaming agent component.
  • the binder component, plasticizer component, dispersant component or antifoaming agent component relating to the electrode layer forming slurry is the same as the electrolyte layer forming slurry.
  • the viscosity of the electrode layer forming slurry is preferably 100 to 50 000 mPa ⁇ s, particularly preferably 3 000 to 20 000 mPa ⁇ s, and more preferably 3 000 to 12000 mPa ⁇ s. s.
  • the viscosity of the electrode layer forming slurry is adjusted by evaporating and removing the solvent in the electrode layer forming slurry using an evaporator or the like. The smaller the viscosity of the electrode layer forming slurry, the easier the electrode layer forming slurry is impregnated into the pores in the porous electrolyte layer.
  • the electrode layer forming slurry layer 29 tends to be difficult to maintain its shape after application, and if it exceeds 50,000 mPa ⁇ s.
  • the “electrode layer forming slurry tends to be difficult to impregnate the pores in the porous electrolyte layer.
  • the electrode layer forming slurry is the surface of the porous electrolyte layer of the electrolyte substrate on which the porous electrolyte layer is formed (the side opposite to the surface in contact with the electrolyte substrate).
  • the coating method is not particularly limited, and examples thereof include a screen printing method and a doctor plate method.
  • the electrolyte substrate on which the porous electrolyte layer is formed can be dried, if necessary.
  • the thickness of the electrode layer-forming slurry layer 29 is preferably 5 to 20000 im, particularly preferably 10 to 500 ⁇ m, more preferably 10 when the electrode layer after formation is a support.
  • the electrode layer after formation is not a support, it is preferably 3 to 2000 ⁇ m, particularly preferably 10 to 100 / m, more preferably 10 to 50 / xm. It is.
  • the firing temperature at the time of firing according to the electrode layer forming step is usually 1 1 00 to 1 6
  • the firing time is usually 1 to 20 hours, preferably 3 to 10 hours, and particularly preferably 3 to 8 hours.
  • the liquid in the electrode layer forming slurry is burned out, and the electrode substance powder, the electrolyte substance powder (b), or a composite powder of the electrode substance and the electrolyte substance is sintered.
  • An electrode material-filled porous electrolyte layer and an electrode filled with the electrode material powder, a mixed powder of the electrode material powder and the electrolyte material powder (b), or a composite powder of the electrode material and the electrolyte material A layer is formed.
  • the electrode substance powder, the mixed powder of the electrode substance powder and the electrolyte substance powder (b), or the electrode It is possible to reliably form pores having a diameter necessary for filling the composite powder of the substance and the electrolyte substance. Therefore, compared with the conventional porous electrolyte layer of a solid oxide fuel cell produced without using a pore-forming agent, the solid oxide fuel cell obtained by the production method of the present invention.
  • the porous electrolyte layer of the cell for use includes many electrode substance powders, mixed powders of electrode substance powders and electrolyte substance powders (b), or the electrode substances and The composite powder with the electrolyte substance is filled.
  • FIG. 11 shows a conventional method for producing a solid oxide fuel cell having a porous electrolyte layer (hereinafter also simply referred to as a conventional production method).
  • FIG. 6 is a schematic view showing a porous electrolyte layer forming step according to the manufacturing method described in Japanese Patent No. 4 and is an end view when cut along a plane perpendicular to the planar direction of the electrolyte substrate.
  • FIG. 12 is a schematic diagram showing an electrode material-filled porous electrolyte layer formed by a conventional manufacturing method and an electrolyte substrate on which the electrode layer is formed. It is an end view when cut along a vertical plane.
  • a slurry layer 74 containing the electrolyte substance powder is applied to the electrolyte substrate 71 by applying a slurry 79 containing the electrolyte substance powder 72.
  • An electrolyte substrate 70 is obtained ((V) in FIG. 11).
  • the slurry layer 74 is composed of a solid component such as the electrolyte substance powder 72 and a liquid component 73, and a binder component such as polyvinyl propylal is dissolved in the liquid component 73. Yes.
  • the liquid component 73 is burned out, and an electrolyte substrate 75 having a porous electrolyte layer 77 is formed ((VI) in FIG. 11).
  • a slurry containing the electrode substance powder 81 is contained inside the pores of the porous electrolyte layer 77 by applying a slurry containing the electrode substance powder 81 to the surface of the porous electrolyte layer.
  • a slurry layer is formed on the surface of the porous electrolyte layer 77.
  • an electrode material-filled porous electrolyte layer 8 2 and an electrode layer 8 3 filled with the electrode material powder 81 are formed.
  • the obtained electrolyte substrate 80 is obtained (Fig. 12).
  • the liquid content 7 3 (specifically, the binder component and the amount of the electrolyte substance powder 72) can be increased.
  • the proportion of the amount of solvent must be increased.
  • the liquid component 73 exists in the slurry layer 74 so as to fill the gap between the electrolyte substance powder 72. Therefore, the shape is not constant, and it is difficult to control the shape.
  • the shape of the pores specifically, the pores The diameter cannot be controlled, and as shown in FIG.
  • the electrode material-filled porous electrolyte layer 8 2 filled with the electrode material powder 81 has pores (7 6 c and 7 6 d) that cannot participate in the increase of the three-phase interface at all.
  • the negative effect of increasing the number of pores in the porous electrolyte layer that is, the positive effect of increasing the three-phase interface by increasing the amount of pores, that is, the porous electrolyte.
  • the adverse effect due to the decrease in the conductivity of the layer was greater.
  • the shape of the pores of the porous electrolyte layer 22 can be controlled by incorporating the solid pore forming agent 13 into the electrolyte layer forming slurry 9.
  • the pore-forming agent 13 is the electrolyte.
  • the layer forming slurry 9 it is present between the electrolyte substance powder (a) 1 2 and the pore forming agent 1 3 is solid, so that the portion of the pore forming agent 1 3 is present.
  • the interval between the electrolyte substance powder (a) 12 is not reduced to be smaller than the pore forming agent 13.
  • the interval between the electrolyte substance powder (a) 12, that is, the size of the pores after firing can be made larger than the diameter of the pore former 13, so that the electrode substance powder 28 is filled. Therefore, it is possible to reliably form pores having a diameter necessary for this purpose.
  • the electrode layer forming slurry 34 is impregnated over the entire pores 21 in the porous electrolyte layer 22, so that the entire interior of the pores in the porous electrolyte layer is impregnated.
  • the electrode material-filled porous electrolyte layer 31 filled with the electrode material powder 28 is obtained.
  • the production method of the present invention since most of the pores of the porous electrolyte layer can participate in the formation of the three-phase interface, the amount of the three-phase interface can be increased as compared with the conventional production method. Therefore, the production method of the present invention has a greater positive effect due to an increase in the three-phase interface than an adverse effect due to a decrease in the conductivity of the porous electrolyte layer due to an increase in the amount of pores. Further, in the production method of the present invention, by using the electrolyte substance powder (a) 12 having an average particle diameter smaller than the average diameter of the pore forming agent 13, the fine pores of the porous electrolyte layer 22 can be obtained.
  • the porous electrolyte layer 2 2 can be formed of the electrolyte substance powder (a) 1 2 having a smaller particle diameter than the pore diameter. Therefore, the number of contact points of the electrolyte substance powder (a) 1 2 existing per unit volume (apparent volume including pores) of the porous electrolyte layer 22 can be increased, and The electrolyte substance powder (a) 1 2 is easily sintered. Therefore, the conductivity of the porous electrolyte layer can be increased.
  • the cell for a solid oxide fuel cell of the present invention is formed of an electrolyte material, and the volume ratio of the pores of the porous electrolyte layer to the apparent volume of the electrode material-filled porous electrolyte layer is 30 to 70%.
  • a porous electrolyte layer, and the porous Electrode substance filled porous electrolyte layer consisting of electrode substance powder filled in pores of electrolyte layer, mixed powder of electrode substance powder and electrolyte substance powder (d), or composite powder of electrode substance and electrolyte substance
  • the porous electrolyte layer is formed.
  • the electrolyte material powder is described as electrolyte material powder (c)
  • the electrolyte material powder filled in the pores of the porous electrolyte layer is described as electrolyte material powder (d).
  • the solid oxide fuel cell of the present invention will be described with reference to FIG.
  • FIG. 4 is a schematic enlarged view of the end face of the electrode material-filled porous electrolyte layer according to the cell for a solid oxide fuel cell of the present invention. As shown in FIG.
  • a solid oxide fuel cell cell 40 is composed of a porous electrolyte layer 46 and an electrode material powder 45 filled in the pores of the porous electrolyte layer 46. It has a substance-filled porous electrolyte layer 42.
  • the electrode material-filled porous electrolyte layer 42 is formed on the surface of the electrolyte substrate 41, and the electrode material-filled porous electrolyte layer 4 on the side opposite to the surface in contact with the electrolyte substrate 41.
  • An electrode layer 43 is formed on the surface 2.
  • the porous electrolyte layer 4 6 constituting the electrode material-filled porous electrolyte layer 42 is formed of an electrolyte material powder (c) 44.
  • the electrolyte material according to the electrolyte material powder (c) 44 is the same as the electrolyte material (a) according to the production method of the present invention.
  • the average particle size of the electrolyte substance powder (c) 44 is preferably 0.01 to 3; um v, particularly preferably 0.05 to 1. ⁇ , and more preferably 0.1 to 0.7 ⁇ . It is. The smaller the average particle size of the electrolyte substance powder (c), the more contacts between the electrolyte substance powder (c) and the electrolyte substance powder (c). Since it becomes easy to sinter each other, the electrical conductivity of this electrode substance filling porous electrolyte layer becomes high.
  • the average particle size of the electrolyte substance powder (c) is less than 0.01 ⁇ m, the shrinkage of the porous electrolyte layer during sintering will increase, making it difficult to produce the porous electrolyte layer or It becomes easy to break.
  • the average particle size of the electrolyte substance powder (c) exceeds 3 im, the conductivity of the electrode material-filled porous electrolyte layer tends to be low.
  • the porous electrolyte layer 46 is porous and has pores.
  • the volume ratio of the pores of the porous electrolyte layer 46 to the apparent volume of the electrode material-filled porous electrolyte layer 42 is 30 to 70%, preferably 35 to 60%, particularly preferably Is between 40% and 50%.
  • the volume ratio of the pores of the porous electrolyte layer 46 is less than 30%, the output of the fuel cell becomes low, and when it exceeds 70%, the output of the fuel cell becomes low or the electrode The mechanical strength of the substance-filled porous electrolyte layer is lowered.
  • the apparent volume of the electrode material-filled porous electrolyte layer 42 is the void 4 7 (FIG.
  • the volume of the electrode material-filled porous electrolyte layer 42 including the volume of the portion not filled with the electrode material powder 45 in the pores.
  • the volume of the pores of the porous electrolyte layer 46 is the volume of pores formed in the porous electrolyte layer 46, and the electrode material filled in the pores. It is the same as the sum of the volume of the powder 45 and the volume of the void 47.
  • the volume ratio of the pores of the porous electrolyte layer 46 to the apparent volume of the electrode material-filled porous electrolyte layer 42 is such that the electrode material-filled porous electrolyte layer 42 is filled with the electrode material.
  • Apparent breakage of the electrode material-filled porous electrolyte layer 42 in an arbitrary cross section when cut by a plane perpendicular to the surface of the electrolyte substrate 41 on which the porous electrolyte layer 42 is formed By calculating the percentage of the cross-sectional area of the pores of the porous electrolyte layer 46 to the area. Is the value obtained.
  • FIG. 5 is a view showing the pores formed in the porous electrolyte layer 46 constituting the electrode substance-filled porous electrolyte layer 42 in FIG. 4 with diagonal lines.
  • the electrode material-filled porous electrolyte layer 42 is cut at an arbitrary plane perpendicular to the surface of the electrolyte substrate 41 on which the electrode material-filled porous electrolyte layer 42 is formed, The cross section is observed with a scanning electron microscope.
  • the cross-section of the electrode material-filled porous electrolyte layer 42 in the obtained SEM photograph is surrounded by a frame, and the area of this frame-enclosed portion 51 (the portion surrounded by a solid line in FIG. 5) is obtained.
  • the area of the cross-section 52 of the pores of the porous electrolyte layer 46 in the frame-enclosed part 51 (the hatched part in the frame-enclosed part 51 in FIG. 5) is obtained.
  • volume ratio (%) of pores of the porous electrolyte layer 46 to the apparent volume of the electrode material-filled porous electrolyte layer 4 2 (of the cross-section of the pore 52 Area / area of the frame 5 1) XI 0 0 (1)
  • volume ratio of the pores of the porous electrolyte layer 46 to the apparent volume of the electrode material-filled porous electrolyte layer 42 is calculated.
  • the volume ratio of the pores of the porous electrolyte layer 46 to the apparent volume of the electrode material-filled porous electrolyte layer 42 is calculated in at least three different cross sections, and The average value is the volume ratio of the pores of the porous electrolyte layer to the apparent volume of the electrode material-filled porous electrolyte layer according to the solid oxide fuel cell of the present invention.
  • the porosity of the electrode material-filled porous electrolyte layer 42 is 20 to 60%, preferably 25 to 50%, particularly preferably 30 to 40%. If the porosity of the electrode material-filled porous electrolyte layer is less than 20%, the output of the fuel cell tends to be low, and if it exceeds 60%, the mechanical properties of the electrode material-filled porous electrolyte layer are low. The mechanical strength tends to be low.
  • the porosity of the electrode material-filled porous electrolyte layer 42 refers to the volume ratio of the volume of the void 47 to the apparent volume of the electrode material-filled porous electrolyte layer 42.
  • the porosity of the electrode material-filled porous electrolyte layer 42 is such that the electrode material-filled porous electrolyte layer 42 is the same as the electrolyte substrate 4 on which the electrode material-filled porous electrolyte layer 42 is formed. 1 to calculate the percentage of the cross-sectional area of the void 47 relative to the apparent cross-sectional area of the electrode material-filled porous electrolyte layer 4 2 in an arbitrary cross-section when cut along a plane perpendicular to the surface of 1 Therefore, it is a value obtained. A specific method for measuring the porosity of the electrode material-filled porous electrolyte layer 42 will be described with reference to FIG. FIG.
  • FIG. 6 is a diagram in which the voids 47 in the electrode material-filled porous electrolyte layer 42 shown in FIG. 4 are indicated by oblique lines.
  • the electrode material-filled porous electrolyte layer 42 is cut along an arbitrary plane perpendicular to the surface of the electrolyte substrate 41 on which the electrode material-filled porous electrolyte layer 42 is formed, and the cross section thereof is cut. Observe with a scanning electron microscope. Next, the electrode material-filled porous electrolyte layer in the obtained SEM photograph
  • the porosity of the electrode material-filled porous electrolyte layer 42 is calculated in at least three different arbitrary cross sections, and the average value thereof is used in the solid oxide fuel cell cell of the present invention.
  • This is the porosity of the electrode material-filled porous electrolyte layer.
  • the substance filled in the pores of the porous electrolyte layer 46 is an electrode substance powder 45 in FIG.
  • the electrode material powder differs depending on whether the electrode layer 43 formed on the surface of the electrode material-filled porous electrolyte layer 42 is a fuel electrode layer or an air electrode layer. When 3 is a fuel electrode layer, it is a fuel electrode material powder, and when this electrode layer 43 is an air electrode layer, it is an air electrode material powder.
  • the fuel electrode material related to the fuel electrode material powder is the same as the fuel electrode material related to the production method of the present invention, and the air related to the air electrode material powder.
  • the polar material is the same as the air electrode material according to the production method of the present invention.
  • Examples of the material filled in the porous electrolyte layer 46 include a mixed powder of an electrode material powder and an electrolyte material powder (d).
  • the solid oxide fuel cell of the present invention has a portion of the electrode material powder 45 filled in the pores of the porous electrolyte layer 46 in FIG. This is a solid oxide fuel cell replaced with powder (d). That is, the material filled in the porous electrolyte layer 46 is a mixed powder of the fuel electrode material powder and the electrolyte material powder (d) when the electrode layer 43 is a fuel electrode layer, and the electrode layer When 4 3 is an air electrode layer, it is a mixed powder of air electrode material powder and electrolyte material powder (d).
  • the electrolyte substance powder (d) relating to the solid oxide fuel cell of the present invention is the same as the electrolyte substance powder (b) according to the production method of the present invention.
  • Examples of the material filled in the porous electrolyte layer 46 include a composite powder of an electrode material and an electrolyte material.
  • the electrode material powder 45 filled in the pores of the porous electrolyte layer 46 in FIG. 4 comprises the electrode material, the electrolyte material, and the like.
  • the solid oxide fuel cell was replaced with a composite powder.
  • the composite powder according to the cell for a solid oxide fuel cell of the present invention is applied to the production method of the present invention. This is the same as the composite powder.
  • the average particle size of the electrode material powder, mixed powder and composite powder according to the solid oxide fuel cell of the present invention is preferably from 0.001 to 10 ⁇ m, particularly preferably from 0.0. 5 to 1 ⁇ , more preferably 0.0 1 to 0.
  • the average particle size the more three-phase interfaces can be made.
  • the average particle size is less than 0.01 / im, the force that makes it difficult to prepare the slurry containing the electrode material powder, the mixed powder, or the composite powder, or during operation of the fuel cell Since sintering is likely to occur, the performance of the fuel cell is likely to deteriorate. If the average particle size exceeds ⁇ ⁇ ⁇ ⁇ , the three-phase interface tends to decrease.
  • the composite powder of the electrode material and the electrolyte material is the composite particle powder
  • the average particle size of the base particle is the average particle size of the composite powder of the electrode material and the electrolyte material.
  • the substance filled in the porous electrolyte layer 46 is preferably the mixed powder from the viewpoint of increasing the output of the fuel cell.
  • the electrode substance powder filled in the pores of the porous electrolyte layer 46, the mixed powder of the electrode substance powder and the electrolyte substance powder (d), or the composite of the electrode substance and the electrolyte substance is 5 to 50%, preferably 5 to 30%, particularly preferably 6 to 20% by volume with respect to the apparent volume of the electrode material-filled porous electrolyte layer 42.
  • the electrode substance powder filled in the pores of the porous electrolyte layer 46 the electrode substance powder filled in the pores of the porous electrolyte layer 46,
  • the filling amount of the mixed powder of the electrode substance powder and the electrolyte substance powder (d), or the composite powder of the electrode substance and the electrolyte substance is the electrode substance-filled porous electrolyte layer obtained by the above formula (1).
  • the volume ratio (%) of the pores of the porous electrolyte layer to the apparent volume of Difference from the porosity (%) of the electrode material-filled porous electrolyte layer obtained (the apparent volume of the electrode material-filled porous electrolyte layer)
  • the volume ratio of the pores of the porous electrolyte layer to (%) — the porosity (%)) of the porous electrolyte layer filled with the electrode material is calculated.
  • the volume ratio of the electrolyte substance powder (d) to the volume ratio of the electrode substance powder in the mixed powder is from 0.5 to 1.5, preferably from 0.5 to 1.5, particularly preferably from 0.6 to 1.0.
  • the filling amount of the electrode material powder filled in the pores is 5 to 50% by volume ratio, preferably 5 to 30% with respect to the apparent volume of the electrode material-filled porous electrolyte layer 42. %, Particularly preferably 6 to 20%.
  • the filling amount is in the above range, the conductivity of the electrode material-filled porous electrolyte layer is increased.
  • the electrode material-filled porous electrolyte layer may be formed only on one surface of the electrolyte substrate, or formed on both surfaces of the electrolyte substrate. May be. That is, the cell for a solid oxide fuel cell of the present invention has either a fuel electrode material-filled porous electrolyte layer or an air electrode material-filled porous layer. It may have both a layer and a porous layer filled with an air electrode material.
  • the electrode material-filled porous electrolyte layer according to the solid oxide fuel cell of the present invention comprises an electrode material powder, an electrode material powder and an electrolyte material powder C d) on the porous electrolyte layer 56 shown in FIG. And a composite powder of an electrode material and an electrolyte material.
  • the electrode material in Fig. 4 The case of obtaining the filled porous electrolyte layer 42 will be described as an example.
  • the electrode material powder is formed on the surface of the porous electrolyte layer 56 formed in 60.
  • the porous electrolyte layer 5 6 coated with the filling slurry is formed.
  • a method of firing the electrolyte substrate 60 is mentioned. That is, first, the porous
  • the slurry is impregnated into the pores 5 7 of the porous electrolyte layer 5 6, and the electrode material
  • step 9 a slurry layer for filling the electrode material is formed.
  • the porous electrolyte layer 5 6 coated with a filling slurry is formed.
  • the liquid material is burned off, and the electrode material powders 45, and the electrode material
  • the porous electrolyte layer 5 6 constitutes the electrode material-filled porous electrolyte layer 4 2
  • porous electrolyte layer 46 This is the same as the porous electrolyte layer 46. That is, the porous electrolyte layer
  • 5 6 is made of electrolyte material, is porous, has pores
  • the porosity of the porous electrolyte layer 56 is preferably 30 to 70%.
  • the porosity of the electrolyte electrolyte layer 56 depends on the apparent volume of the porous electrolyte layer 56.
  • i It refers to the volume ratio of the volume of the pores 57.
  • the porosity of the porous electrolyte layer 56 is such that the porous electrolyte layer 56 is perpendicular to the surface of the electrolyte substrate 60 on which the porous electrolyte layer 56 is formed. This is a value obtained by calculating the percentage of the cross-sectional area of the pore with respect to the apparent cross-sectional area of the porous electrolyte layer 56 in an arbitrary cross-section when cut in a plane.
  • FIG. 8 is a diagram showing the pores 57 in the porous electrolyte layer 56 shown in FIG. 7 by hatching.
  • the porous electrolyte layer 56 is cut along an arbitrary plane perpendicular to the surface of the electrolyte substrate 60 on which the porous electrolyte layer 56 is formed, and the cross section is cut by a scanning electron microscope. Observe at.
  • the cross section of the porous electrolyte layer 56 in the obtained SEM photograph is surrounded by a frame, and the area of the frame surrounding portion 61 (the portion surrounded by the solid line in FIG. 8) is obtained.
  • the area of the cross-section 6 2 of the pore 5 7 in the frame surrounding portion 61 (the hatched portion in the frame surrounding portion 6 1 in FIG. 8) is obtained.
  • Porosity of porous electrolyte layer 5 6 (%) (area of cross section 6 2 of the pore / area of the framed portion 6 1) X I 00 (3)
  • the porosity of the porous electrolyte layer 56 is calculated in at least three different arbitrary cross sections, and the average value thereof is calculated as the porous electrolyte layer according to the solid oxide fuel cell of the present invention. Of the porosity.
  • the specific surface area of the porous electrolyte layer 5 6 is 0.1 to 10 m 2 Zg, preferably 0. Particularly preferred is 0.5 to 3 m 2 Zg. When the specific surface area is in the above range, the output of the fuel cell is increased.
  • the conductivity of the porous electrolyte layer 56 at 1 000 ° C. is 0.0 :! to 0.2 S / cm, preferably 0.05 to 0.2 S / cm, particularly preferably 0 ... 1 to 0.2 S / cm.
  • the abundance ratio of pores having a pore width of 1 ⁇ m or less is preferably 10% or less, particularly preferably 5% or less, and more preferably 3% or less. . Since the pore having a pore width of 1 ⁇ or less is difficult to be impregnated with the slurry for filling the electrode material, the smaller the presence rate of the pore having a pore width of 1 ⁇ m or less, The filling amount of the powder, the mixed powder of the electrode substance powder and the electrolyte substance powder (d), or the composite powder of the electrode substance and the electrolyte substance is increased.
  • the abundance ratio of the pores having a pore width of 1 ⁇ or less means that the porous electrolyte layer 56 is replaced with the electrolyte substrate 6 on which the porous electrolyte layer 56 is formed.
  • the cell for a solid oxide fuel cell of the present invention is formed of an electrolyte material, and an electrode material powder and an electrode material are placed in the pores of the porous electrolyte layer having a porosity of 30 to 70%.
  • a solid oxide fuel cell having an electrode material-filled porous electrolyte layer obtained by filling a mixed powder of a powder and an electrolyte material powder, or a composite powder of an electrode material and an electrolyte material.
  • the average particle diameter and the average diameter were measured using MICROTRAC-S300 (manufactured by Nikkiso Co., Ltd.).
  • Ni O nickel oxide
  • l OS cl C e SZ scandiaceria stabilized zirconia
  • di-n-butyl phthalate 10 m 1, octyl phenyl ether, 2 m 1, dispersed Agent (Nonion OP— 8 3 RAT, manufactured by Nippon Oil & Fats Co., Ltd.) 2 m
  • Polyvinyl petitral resin 10 g, isopropanol 80 m 1 and acetone 80 m 1 in a ball mill. And mixed for 24 hours at room temperature.
  • the solvent was evaporated from the obtained slurry while reducing the pressure with an evaporator, and the slurry was prepared so that the viscosity of the slurry was 100 OmPa seconds.
  • slurry A for forming the fuel electrode layer was obtained.
  • Nickel oxide average particle size 7 ⁇ m
  • a slurry layer for forming a fuel electrode layer having a thickness of 700 m is formed by a screen printing method, dried, and fired at 1 400 ° C. for 3 hours.
  • Fuel electrode layer B was manufactured.
  • the electrolyte substrate-forming slurry C is applied to one surface of the fuel electrode layer B by a screen printing method so that the film thickness becomes 10 ⁇ , and after drying, at 140 ° C. And calcination for 5 hours to obtain an electrolyte substrate D (hereinafter simply referred to as electrolyte substrate D) in which a dense layer of an electrolyte substance is formed on the surface of the fuel electrode layer B.
  • Carbon powder High purity chemical industry, average particle size 5 ⁇ m
  • the slurry E for forming the porous electrolyte layer is applied to the surface of the electrolyte substrate D opposite to the surface on which the fuel electrode layer is formed, so that the film thickness becomes 10 m by screen printing. It was applied and dried.
  • the electrolyte substrate D on which the electrolyte layer forming slurry E is applied is baked at 1400 ° C. for 3 hours, and the electrolyte substrate F on which the porous electrolyte layer is formed (hereinafter simply referred to as the electrolyte substrate F). To be described. Analysis of porous electrolyte layer>
  • the electrolyte substrate F was cut along a plane perpendicular to the surface of the electrolyte substrate, and the cut surface was observed with a scanning electron microscope. Using the obtained SEM photograph, the porosity of the porous electrolyte layer of the electrolyte substrate F was determined by the method described above. When the porosity was measured at three different cross sections, the average value of the porosity was 44%.
  • the specific surface area of the porous electrolyte layer of the electrolyte substrate F was measured by a Kr gas adsorption method using C / V PZT CDZMS. As a result, the specific surface area was 0.67 m 2 / g.
  • a slurry E for forming the porous electrolyte layer is applied onto an alumina prism having a width of 5 mm, a length of 30 mm, and a height of 0.5 mm, and is fired to obtain a width of 5 mm, a length of 3 Omm, and a height of 0.5 mm.
  • the porous electrolyte layer was formed.
  • the conductivity at 1000 ° C. of the porous electrolyte layer of the electrolyte substrate F was measured by a DC four-terminal method and an AC four-terminal method. As a result, blinking 7 this 0 conductivity at 0. 07 S / cm
  • An electrolyte substrate F was obtained by the same method as above, and the air electrode layer forming slurry G was applied to the surface of the porous electrolyte layer of the electrolyte substrate F by a screen printing method so that the film thickness after application was 20 It was applied to make ⁇ and dried.
  • the electrolyte substrate F coated with the air electrode forming slurry G was fired at 120 ° C. for 3 hours to obtain a cell H for a solid oxide fuel cell.
  • the volume ratio of the scandiaceria-stabilized zirconium oxide to the apparent volume of the air electrode material-filled porous electrolyte layer in the air electrode material-filled porous electrolyte layer of the solid oxide fuel cell H is 60.8%, The volume fraction of lanthanum strontium manganate was 7.2%.
  • Fig. 9 shows a side view of the stationary polarization measurement sample for performing stationary polarization measurement.
  • the stationary polarization measurement sample 68 has a cylindrical electrolyte pellet 63 having a diameter of 15 mm and a thickness of 2 mm, and is formed at the center of one bottom surface of the electrolyte pellet 6 3.
  • Columnar air electrode layer 6 5 platinum reference electrode 66 formed with a width of 1.0 mm over the entire circumference of the side surface of columnar electrolyte pellet 6 3 and the other bottom surface of electrolyte pellet 6 3 It consists of a platinum counter electrode 6 7 with a diameter of 6 mm that is concentric in plan view.
  • the production of the stationary polarization measurement sample 68 will be described as follows. First, scandiacelia-stabilized zirconia (1 OS cl C e SZ) used for the preparation of the slurry for forming the fuel electrode layer is set to 0.3 1 8 3 ton / After applying a load of cm 2 and pressing, it was fired at 140 ° C. for 3 hours to obtain a cylindrical electrolyte pellet 63 having a diameter of 15 mm and a thickness of 2 mm.
  • the porous electrolyte layer forming slurry E is formed into a circular shape having a diameter of 6 mm and a film thickness of 10 m by screen printing. And dried. Then, the electrolyte pellet 63 to which the electrolyte layer forming slurry E was applied was baked at 140 ° C. for 3 hours to obtain an electrolyte pellet 63 having a porous electrolyte layer formed thereon.
  • the air electrode layer forming slurry G is applied to the surface of the porous electrolyte layer of the electrolyte pellet 63 on which the porous electrolyte layer is formed by a screen printing method so that the film thickness after application is 2 It was applied to 0 m and dried. Then, the electrolyte pellet 6 3 coated with the air electrode forming slurry G was baked at 120 ° C. for 3 hours, and the air electrode material-filled porous electrolyte layer 64 and the air electrode layer 65 were formed. Electrolyte beret 63 was obtained.
  • platinum paste (TR-79 0 5, Tanaka Kikinzoku Co., Ltd.) is formed on the side surface and the other bottom surface of the electrolyte pellet 63 in which the air electrode material-filled porous electrolyte layer 64 and the air electrode layer 65 are formed.
  • the stationary polarization measurement sample 6 8 was subjected to an impedance measurement device (manufactured by Solartron Co., Ltd.), and the potential between W 1 and R (interface overvoltage) was changed in an air atmosphere at 100 ° C. The current density between W 2 and C was measured. The results are shown in Table 1 and Figure 10.
  • a fuel electrode layer, an electrolyte substrate, a porous electrolyte layer, and an air electrode layer were formed in the same manner as in Example 1.
  • the volume ratio of the scandiaceria-stabilized zirconium oxide to the apparent volume of the air electrode material-filled porous electrolyte layer is 56%
  • lanthanum strontium manganate The volume fraction of was 12%.
  • Example 2 The same procedure as in Example 1 was carried out except that the slurry for forming the air electrode layer was replaced with the slurry for forming the air electrode layer used in Example 2. The results are shown in Tables 1 and 10.
  • Example 2 The same procedure as in Example 1 was performed, except that the porous electrolyte layer was not formed. That is, in the same manner as in Example 1, a fuel electrode layer, an electrolyte substrate, and an air electrode layer were formed to obtain a solid oxide fuel cell K.
  • Electrolyte substrate on which a porous electrolyte layer is formed 2 1, 5 7, 7 6 Pore
  • Electrode substrate filled with electrode material powder and filled with porous electrolyte layer and electrode layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

明細書
固体酸化物形燃料電池用セル
及び固体酸化物形燃料電池用セルの製造方法 技術分野
本発明は、 固体酸化物形燃料電池用セル及びその製造方法に関する。 背景技術
固体酸化物形燃料電池のセルは、 電解質を燃料極及び空気極で挟み込 むようにして構成され、 該電解質、 該燃料極及び該空気極ともに金属酸 化物又は金属で構成されており、 全て固体である。
該固体酸化物形燃料電池において、 電池反応は、 ガス、 イオン、 電子 のいずれもが反応可能な三相界面で起こる。 そのため、 電池性能を向上 させるためには、 該三相界面を増加させることが必要である。
そこで、 従来より、 電解質物質を電極物質に混合させ、 更に電極を多 孔質構造にするごとにより、 該三相界面を、 電解質と電極の接触面だけ でなく、 電極内部にも.形成させ、 該三相界面を増加させることが行われ てきた。 具体的には、 母粒子に子粒子が固定されており、 該母粒子又は 該子粒子のいずれか一方を電解質物質とし、 他方を燃料極物質又は空気 極物質とする粉末状の複合粒子を、 電極に成形することにより、 電極材 料に電解質材料が混合されており、 且つ多孔質構造の電極が製造されて きた。 なお、 本発明において、 燃料極物質とは、 燃料の水素及び酸化物 イオンから水及び電子を生成させ且つ電子を導電する性質を持つ物質を 指し、 空気極物質とは、 酸素及び電子から酸化物イオンを生成させ且つ 電子を導電する性質を持つ物質を指し、 電解質物質とは、 空気極で生成 する酸化物イオンを燃料極に導電させる性質を持つ物質を指す。 該複合粒子及び該複合粒子により形成される電極としては、 例えば、 特許文献 1の特開平 1 0— 1 4 4 3 3 7号公報には、 酸素イオン導電性 を有する酸化物 (例えば、 イットリア安定化ジルコユア) の表面に、 電 極活性を有する金属 (例えば、 酸化ニッケル) が担持されている複合粒 子、 及ぴ該複合粒子からなる固体電解質形燃料電池用の燃料電極が開示 されている。
しかし、 該母粒子及ぴ該子粒子の粒径を小さくする等の方法で、 電極 中に形成される三相界面の量を多くするには、 自ずと限界がある。
そこで、 電解質層を多孔質にし、 孔部に電極物質を充填することによ り、 電解質層にも三相界面を形成させ、 三相界面を増加させることが行 われてきた。 例えば、 特開平 3— 1 4 7 2 6 4号公報には、 燃料極と酸 化剤極との間に介在する固体電解質板の燃料極と接する界面に、 予めジ ルコニァからなる多孔質層を被着し、 前記多孔質層とその孔部に充填さ れたニッケルもしくはニッケルージルコニァ混合物とにより前記燃料極 を構成している固体電解質燃料電池が開示されている。
(特許文献 1 ) 特開平 1 0— 1 4 4 3 3 7号公報 (実施例 1 ) ■ (特許文献 2 ) 特開平 3— 1 4 7 2 6 4号公報 (特許請求の範囲、 実 施例)
特開平 3— 1 4 7 2 6 4号公報の場合、 エタノール等の溶媒及ぴ該溶 媒に溶解しているポリビニルプチラール等のバインダー成分を含む液体 分に、 電解質物質粉末が分散されているスラリーを、 電解質板の表面に 塗布し、 更に焼成することにより、 該スラリー中の液体分が焼失し、 細 孔が形成される。 ところが、 該液体分は、 該スラリー中で、 球状の電解 '質物質の隙間を埋めるような状態で存在し、 液体であるため、 該スラリ 一中の該液体分の形状、 すなわち、 焼成後の細孔の形状を制御すること が困難であった。 そのため、 多孔質の電解質層に形成される細孔には、 ニッケル等の電極物質が充填されるために十分な大きさの径 (直径) を 有しない細孔も存在した。 従って、 特開平 3— 1 4 7 2 6 4号公報の場 合、 ニッケル等の電極物質が充填されるために十分な大きさの径を有す る細孔を、 多く形成させるためには、 該スラリー中の、 該電解質物質粉 末に対する該液体分の割合を多く して、 電極物質が充填されるために十 分な大きさの径を有する細孔が形成される可能性を、 増やさなければな らなかった。 ところが、 該スラリー中に該液体分の割合が多いと、 電解 質層の細孔の容積が多くなり過ぎ、 電解質層中の電解質物質粉末の量が 少なくなるため、 電子が移動するため経路が少なくなる。 そのため、 電 解質層の導電率が低くなる。 そして、 導電率が低くなれば、 燃料電池の 出力が低くなる。 すなわち、 特開平 3— 1 4 7 2 6 4号公報の場合、 導 電率を低下させることなく、 三相界面の量を多くすることは困難である という問題があった。
従って、 本発明の課題は、 多孔質電解質層の三相界面を多くすること ができ且つ電解質層の導電率の低下が小さい固体酸化物形燃料電池用セ ルの製造方法を提供することにある。 発明の開示
本発明者らは、 上記従来技術 おける課題を解決すべく、 鋭意研究を 重ねた結果、 (1 ) 多孔質電解質層を形成させるためのスラリーに、 固 体の造孔剤を含有させることにより、 該多孔質電解質層の細孔の形状を 制御することができること、 具体的には、 該遙孔剤が、 該スラリー中で 電解質物粉末の隙間に入り込んで存在しており、 該隙間の大きさは、 該 造孔剤の径より小さくなることはないので、 、 電解質物質粉末の隙間の 大きさ、 すなわち、 焼成後の細孔の径を、 該造孔剤の径以上にすること ができる。 そのため、 電極物質が充填されるために必要な大きさの铎を 有する細孔を、 確実に形成させることができるので、 従来法に比べ、 多 孔質電解質層の導電率の低下が少なく且つ三相界面の量を多くできるこ と、 更には、 (2 ) 該造孔剤の平均径に対し、 該電解質物質粉末の平均 粒径を小さくすることより、 該電解質物質粉末同士の接点を多くでき且 っ該電解質物質粉末同士が焼結し易くなるので、 多孔質電解質層の導電 率を高くすることができること等を見出し本発明を完成するに至った。 すなわち、 本発明 (1 ) は、 電解質基板の表面に、 電解質物質粉末及 び造孔剤を含有する電解質層形成用スラリーを塗布し、 次いで、 該電解 質基板を焼成し、 多孔質電解質層が形成されている電解質基板を得る多 孔質電解質層形成工程、 及ぴ該多孔質電解質層が形成されている電解質 基板の多孔質電解質層の表面に、 電極物質粉末、 電極物質粉末と電解質 物質粉末との混合粉末、 又は電極物質と電解質物質との複合体粉末を含 有する電極層形成用スラリーを塗布し、 次いで、 該多孔質電解質層が形 成されている電解質基板を焼成し、 電極物質充填多孔質電解質層及ぴ電 極層が形成されている電解質基板を得る電極層形成工程を有する固体酸 化物形燃料電池用セルの製造方法を提供するものである。
また、 本発明 (2 ) .は、 電解質物質で形成されており、 気孔率が 3 0 〜 7 0 %である多孔質電解質層の細孔に、 電極物質粉末、 電極物質粉末 と電解質物質粉末との混合粉末、 又は電極物質と電解質物質との複合体 粉末を充填して得られる電極物質充填多孔質電解質層を有する固体酸化 物形燃料電池用セルを提供するものである。
また、 本発明 (3 ) は、 電解質物質で形成されており、 電極物質充填 多孔質電解質層の見かけ体積に対する多孔質電解質層の細孔の体積比率 が 3 0〜 7 0 %である多孔質電解質層、 及ぴ該多孔質電解質層の細孔に 充填されている電極物質粉末、 電極物質粉末と電解質物質粉末との混合 粉末、 又は電極物質と電解質物質との複合体粉末からなる電極物質充填 多孔質電解質層を有する固体酸化物形燃料電池用セルを提供するもので め 。
本発明によれば、 電解質層の三相界面を多くすることができ且つ電解 質層の導電率の低下が小さい固体酸化物形燃料電池用セルの製造方法を 提供することができる。 図面の簡単な説明
第 1図は、 本発明の製造方法に係る多孔質電解質層形成工程を示す模 式図であり、 第 2図は、 本発明の製造方法に係る電極層形成工程を示す 模式図であり、 第 3図は、 本発明に係る複合粒子粉末及び電極物質と電 解質物質の凝集体粉末を示す模式図であり、 第 4図は、 本発明の固体酸 化物形燃料電池用セルに係る電極物質充填多孔質電解質層の端面の模式 的な拡大図であり、 第 5図は、 第 4図中の該電極物質充填多孔質電解質 層 4 2を構成する該多孔質電解質層 4 6に形成されている細孔を、 斜線 で示した図であり、 第 6図は、 第 4図に示す該電極物質充填多孔質電解 質層 4 2中の該空隙 4 7を、 斜線で示した図であり、 第 7図は、 多孔質 電解質層 5 6を示す模式図であり、 第 8図は、 第 7図に示す該多孔質電 解質層 5 6中の該細孔 5 7を、 斜線で示した図であり、 第 9図は、 定常 分極測定試料の側面図であり、 第 1 0図は、 固体酸化物形燃料電池用セ ルの発電特性を測定した結果を示すグラフであり、 第 1 1図は、 従来の 多孔質電解質層を有する固体酸化物形燃料電池用セルの製造方法に係る 多孔質電解質層形成工程を示す模式図であり、 第 1 2図は、 従来の製造 方法で形成される電極物質充填多孔質電解質層及び電極層が形成されて いる電解質基板を示す模式図である。
発明を実施するための最良の形態 本発明の固体酸化物形燃料電池用セルの製造方法 (以下、 単に本発明 の製造方法とも記載する。 ) は、 多孔質電解質層形成工程及び電極層形 成工程を有する。 本発明の製造方法について、 第 1図及び第 2図を参照 に説明する。 第 1図は、 本発明の製造方法に係る多孔質電解質層形成ェ 程を示す模式図であり、 電解質基板の平面方向に対して垂直な面で切つ た時の端面図である。 また、 第 2図は、 本発明の製造方法に係る電極層 形成工程を示す模式図であり、 電解質基板の平面方向に対して垂直な面 で切つた時の端面図である。
電解質基板 1 1の一方の面に、 電解質物質粉末 (a ) 1 2及ぴ造孔剤 1 3 (固体分) 力 液体分に分散されているスラリー (電解質層形成用 スラリー 9 ) を塗布することにより、 電解質層形成用スラリー層 1 4が 塗布されている電解質基板 1 0が得られる (第 1図中 ( I ) ) 。 なお、 該電解質層形成用スラリー層 1 4の液体分は、 主に、 溶媒及び該溶媒に 溶解しているバインダー成分であり、 第 1図中 (I ) では、 該電解質物 質粉末 (a ) 1 2及ぴ該造孔剤 1 3の隙間を埋めるようにして存在して いる。 なお、 本発明において、 該電解質層形成用スラリーに含有されて いる電解質物質粉末と.、 後述する電極層形成用スラリ一に含有されてい る電解質物質粉末を区別するために、 該電解質層形成用スラリーに含有 されている電解質物質粉末を、 電解質物質粉末 (a ) と記載し、 該電極 層形成用スラリーに含有されている電解質物質粉末を、 電解質物質粉末 ( b ) と記載する。
そして、 電解質層形成用スラリー層 1 4が塗布されている電解質基板 1 0を、 焼成することにより、 多孔質電解質層 2 2が形成されている電 解質基板 2 0が得られる。 このとき、 該電解質層形成用スラリー層 1 4 中の、 該造孔剤 1 3及び該液体分が焼失することにより、 焼失した跡が 細孔 2 1となる (第 1図中 ( I I ) ) と共に、 該電解質物質粉末 (a ) 1 2同士が、 互いに接触している部分で焼結する。
次いで、 該多孔質電解質層が形成されている電解質基板 2 0の、 多孔 質電解質層の表面 2 4 (電解質基板 1 1と接している面とは反対側の多 孔質電解質層の面) に、 電極物質粉末 2 8 (固体分) が液体分 2 6に分 散されているスラリー (電極層形成用スラリー 3 4 ) を塗布する。 この ことにより、 該電極層形成用スラリー 3 4が、 該多孔質電解質層 2 2の 細孔 2 1に含浸し、 電極層形成用スラリー 3 4が充填されている多孔質 電解質層 2 7が得られる。 それと同時に、 該多孔質電解質層 2 7の、 電 解質基板 1 1と反対側の多孔質電解質層の表面 3 3に、 電極層形成用ス ラリー層 2 9が形成される (第 2図中 ( I I I ) ) 。 このようにして、 該電極層形成用スラリー層 2 9が塗布され、 該多孔質電解質層が形成さ れている電解質基板 2 5が得られる。 なお、 該電極物質粉末 2 8は、 該 多孔質電解質層 2 2の表面に形成させる電極層が、 燃料極層の場合は、 燃料極物質粉末であり、 空気極層の場合は、 空気極物質粉末である。 そして、 該多孔質電解質層が形成されている電解質基板 2 5を、 焼成 することにより、 該電極物質粉末 2 8が充填されている電極物質充填多 孔質電解質層 3 1及び電極層 3 2が形成されている電解質基板 3 0が得 られる (第 2図中 (I V ) ) 。 このとき、 該電極層形成用スラリー 3 4 中の液体分 2 6が焼失すると共に、 該電極物質粉末 2 8同士、 及び該電 極物質粉末 2 8と該電解質物質粉末 (a ) 1 2が、 互いに接触している 部分で焼結する。
このように、 該多孔質電解質層形成工程及ぴ該電極層形成工程を行う ことにより、 電解質基板の一方の面に、 電極物質粉末が充填されている 電極物質充填多孔質電解質層及び電極層 (燃料極層又は空気極層のいず れか一方) を形成させる ά 次いで、 該電解質基板の他方の面に、 該多孔 質電解質層形成工程及ぴ該電極層形成工程を行い、 又は他の公知の方法 を用いて、 電極層 (燃料極層又は空気極層の他方) を形成させ、 固体酸 化物形燃料電池用セルを製造することができる。 また、 先に、 電解質基 板の一方の面に、 公知の方法を用いて電極層 (燃料極層又は空気極層の いずれか一方) を形成させ、 次いで、 該電解質基板の他方の面に、 該多 孔質電解質層形成工程及ぴ該電極層形成工程を行うことにより、 電極物 質粉末が充填されている電極物質充填多孔質電解質層及び電極層 (燃料 極層又は空気極層の他方) を形成させ、 固体酸化物形燃料電池用セルを 製造することもできる。 また、 公知の方法を用いて、 先ず、 電極層 (燃 料極層又は空気極層のいずれか一方) を形成し、 次いで、 該電極層の表 面に、 公知の方法を用いて、 緻密な電解質層を形成させ、 次いで、 該緻 密な電解質層め表面に、 該多孔質電解質層形成工程及ぴ該電極層形成ェ 程を行うことにより、 電極物質粉末が充填されている電極物質充填多孔 質電解質層及び電極層 (燃料極層又は空気極層の他方) を形成させ、 固 体酸化物形燃料電池用セルを製造することもできる。
すなわち、 本発明の製造方法は、 電解質基板の表面に、 電解質物質粉 末及ぴ造孔剤を含有する電解質層形成用スラリーを塗布し、 次いで、 該 電解質基板を焼成し、 .多孔質電解質層が形成されている電解質基板を得 る多孔質電解質層形成工程、 及ぴ該多孔質電解質層が形成されている電 解質基板の多孔質電解質層の表面に、 電極物質粉末、 電極物質粉末と電 解質物質粉末との混合粉末、 又は電極物質と電解質物質との複合体粉末 を含有する電極層形成用スラリーを塗布し、 次いで、 該多孔質電解質層 が形成されている電解質基板を焼成し、 電極物質充填多孔質電解質層及 ぴ電極層が形成されている電解質基板を得る電極層形成工程を有する。 本発明の製造方法において、 該電解質物質粉末 (a ) に係る電解質物 質としては、 通常、 固体酸化物形燃料電池用セルの電解質層の製造に用 いられる電解質物質であれば、 特に制限されず、 例えば、 イットリウム 00786
(Y) 、 ジルコニウム (Z r ) 、 スカンジウム ( S c ) 、 セリ ウム (C e ) 、 サマリウム ( S m) 、 アルミニウム (A 1 ) 、 チタン (T i ) 、 マグネシウム (M g ) 、 ランタン (L a ) 、 ガリ ウム (G a ) 、 ニオブ (N b ) 、 タンタル (T a ) 、 ケィ素 ( S i ) 、 ガドリニウム (G d ) 、 ス トロンチウム (S r ) 、 ィッテルビウム (Y b ) 、 鉄 (F e ) 、 コパ ルト (C o) 及ぴニッケル (N i ) から選ばれる 1種又は 2種以上の金 属の酸化物が挙げられる。 該電解質物質を構成する金属酸化物のうち、 金属種が 2種以上である金属酸化物としては、 例えば、 スカンジァ安定 化ジルコ-ァ (S c S Z ; S c 203- Z r 02) 、 スカンジアセリァ安 定化ジルコニァ ( l O S c l C e S Z ; ( 1 0 S c 2O 3 - C e O 2) 一 Z r O 2)、イツ トリァ安定化ジルコユア (Y S Z ; Y2O 3— Z r O 2)、 ランタンスト口ンチウムマグネシウムガレート (L S GM ; L a 0. 8 S r 0. 2 G a 0. 8M g。. 203) 等のランタンガレート、 ガドリ -ァ安定化 ジルコニァ (G d 203— Z r O 2) 、 サマリアドープセリア (S m2O 3 — C e 02) 、 ガドリ -ァドープセリア (G d 203— C e 02) 、 酸化ィ ッ トリ ゥム固溶酸化ビスマス (Y2O 3— B i 203) 等が挙げられ、 これ らの金属酸化物のうち、 酸素イオン導電性が良好であり、 また、 動作温 度においても熱的に安定な点で、 スカンジァ安定化ジルコニァ、 スカン ジアセリァ安定化ジルコニァ、 イットリア安定化ジルコ -ァ、 ランタン ス ト口ンチウムマグネシウムガレート等のランタンガレートが好ましい c なお、 サマリアドープセリア、 ガドリニアドープセリアは、 イオン導電 性及び電子導電性の両方を有しているので、 電解質物質の金属酸化物と して用いることも、 酸化エッケルと混合物して、 後述する燃料極物質の 金属酸化物として用いることもできる。
該電解質物質粉末( a ) の平均粒径は、好ましくは 0. 0 1〜 3 m、 特に好ましくは 0 · 0 5〜1 /z m、 更に好ましくは 0. 1〜0. 7 μ να である。 該電解質物質粉末 (a ) の平均粒径が、 小さい程、 該電解質物 質粉末 (a ) 同士の接点が多くなり且つ該電解質物質粉末 (a ) 同士が 焼結し易くなるので、 該多孔質電解質層の導電率が高くなる。 ただし、 該電解質物質粉末 (a ) の平均粒径が、 0 . Ο ΐ μ πι未満になると、 焼 成時の電解質層の収縮が大きくなるので、 多孔質電解質層が破損し易く なる。 また、該電解質物質粉末(a ) の平均粒径が、 3 μ mを超えると、 該多孔質電解質層の導電率が低くなり易い。
該造孔剤は、 該電解質層形成用スラリーの溶媒に溶解せず、 該電解質 層形成用スラリー中で固体として存在し且つ該焼成により焼失するもの であれば、 特に制限されない。 該造孔剤としては、 例えば、 炭素粉末、 熱可塑性樹脂粉末、 熱可塑性樹脂繊維、 熱硬化性樹脂粉末、 熱硬化性樹 脂繊維、 天然繊維、 天然繊維の誘導体等が挙げられる。 該炭素粉末とし ては、 例えば、 カーボンブラック、 活性炭、 グラフアイ ト (黒鉛) 、 無 定形炭素等が挙げられる。 該炭素粉末中の金属成分の含有量は、 好まし くは 1 0 O m g Z k g以下、 特に好ましくは金属成分を含有しないこと である。 また、 該熱可塑性樹脂粉末、 該熱可塑性樹脂繊維、 該熱硬化性 榭脂粉末又は該熱硬化性樹脂繊維としては、 例えば、 ポリスチレン等の 炭化水素化合物であってもよいし、 ポリメタクリル酸メチル、 フヱノー ル樹脂、 エポキシ樹脂等の含酸素有機化合物;ポリアミ ド、 メラミン樹 脂、 尿素樹脂、 ポリウレタン等の含窒素化合物; ポリスルホン等の含硫 黄化合物のような、 炭素原子及び水素原子以外の原子を含む化合物であ つてもよい。 これらのうち、 燃焼時に炭酸ガス以外のガスが発生しない 点で、 炭化水素化合物及び含酸素有機化合物が好ましい。 該天然繊維と しては、 例えば、 セルロース繊維、 タンパク繊維等が挙げられ、 該セル ロース繊維には、 半人造のアセテートやレーヨンも含まれる。 また、 該 天然繊維の誘導体としては、 ェチルセルロース等の天然繊維のェチルェ ステル等が挙げられる。
該造孔剤の形状は、 粒状、 繊維状又はフレーク状であり、 粒状には、 断面が円形のものだけでなく、 断面がだ円形、 多角形、 不定形のものも 含まれ、 繊維状には、 針状のもの、 円筒状のものも含まれる。 なお、 本 発明においては、 縦方向、 横方向及び奥行き方向の径が、 同程度のもの を粒状と、 縦方向及び奥行き方向の径に比べ、 横方向の長さが極めて大 きいものを繊維状と、 横方向及ぴ奥行き方向の径に比べ、 縦方向の厚さ が極めて小さいものをフレーク状と記載し説明するが、 それらは、 必ず しも、 厳格に区別されるものではなく、 境界が厳格に定まるものではな い。
該造孔剤が粒状の場合、 該造孔剤の平均粒径 (平均径) は、 好ましく は 0 . 1〜2 0 m、 特に好ましくは 0 . 5〜: 1 0 μ m、 更に好ましく は 1〜5 mである。 該造孔剤の平均粒径が、 0 . 1 μ πι未満だと、 該 多孔質電解質層の細孔の細孔径が小さくなり過ぎるので、 該電極層形成 用スラリーが含浸し難くなり易く、 また、 2 0 z mを超えると、 該多孔 質電解質層の細孔の細孔容積が大きくなり過ぎるので、 該多孔質電解質 層の導電率が低くなり.易い。 なお、 粒状の場合、 個々の粒子の縦方向、 横方向及び奥行き方向の径のうち、 最も大きい長さを平均した値が、 該 粒状の造孔剤の平均粒径である。
また、 該造孔剤が繊維状の場合、 該造孔剤の平均繊維長は、 好ましく は 0 . 0 1〜; I 0 j m、 特に好ましくは 0 . 0 5〜 5 m、 更に好まし くは 0 . 1〜 1 ^ mである。 該造孔剤の平均繊維長が、 0 . Ο ΐ μ πι未 満だと、 該多孔質電解質層の細孔の細孔径が小さくなり過ぎるので、 該 電極層形成用スラリーが含浸し難くなり易く、 また、 l O mを超える と、 該多孔質電解質層の細孔の細孔容積が大きくなり過ぎるので、 該多 孔質電解質層の導電率が低くなり易い。また、該造孔剤の平均繊維径は、 0786
特に制限されないが、 好ましくは 0. 00 1〜 1 111、 特に好ましくは 0. 00 5〜0. 5 /zmである。 なお、 繊維状の場合、 個々の繊維の横 方向の長さを、 平均した値が、 平均繊維長であり、 個々の繊維の縦方向 及ぴ奥行き方向の径のうち、 大きい方の長さを平均した値が、 平均繊維 径である。
また、 該造孔剤がフレーク状の場合、 該造孔剤の平均径は、 好ましく は 0. :!〜 20 /z m、 特に好ましくは 0. 5〜 1 0 m、 更に好ましく は l〜5 /i mである。 該造孔剤の平均径が、 0. Ι μ πι未満だと、 該多 孔質電解質層の細孔の細孔径が小さくなり過ぎるので、 該電極層形成用 スラリーが含浸し難くなり易く、 また、 20 μ mを超えると、 該多孔質 電解質層の細孔の細孔容積が大きくなり過ぎるので、 該多孔質電解質層 の導電率が低くなり易い。 なお、 フレーク状の場合、 個々のフレーク状 物の横方向及び奥行き方向の径のうち、大きい方の長さを平均した値が、 平均径である。
該電解質物質粉末(a)の平均粒径に対する該造孔剤の平均径の比(造 孔剤の平均径 /電解質物質粉末 (a) の平均粒径) は、 好ましくは 2〜 1 G 00、特に好ましくは 4〜 1 00、更に好ましくは 5〜 20である。 該電解質物質粉末 (a) の平均粒径に対する該造孔剤の平均径の比が、 上記範囲にあることにより、 該多孔質電解質層の導電率が高くなる。 な お、 該造孔剤が繊維状の場合は、 その平均繊維長を、 上記造孔剤の平均 径として、 比を求める。
該電解質層形成用スラリーは、 該電解質物質粉末 (a) 及び該造孔剤 を含有しており、 該スラリーの液体分に、 該電解質物質粉末 (a) 及び 該造孔剤を分散させることにより、 調製される。 また、 該スラリーの液 体分は、 有機溶媒及ぴ該有機溶媒に溶解しているバインダー成分等によ り構成されている。 0786
該電解質層形成用スラリー中、 該造孔剤の体積割合に対する該電解質 物質粉末 (a ) の体積割合の比 (電解質物質粉末 (a) /造孔剤) は、 好ましくは 0. 1〜 1 0、 特に好ましくは 0. 3〜3、 更に好ましくは 0. 6 6〜 1. 5である。 該造孔剤の体積割合に対する該電解質物質粉 末 (a) の体積割合の比が、 0. 1未満だと、 該多孔質電解質層の導電 率が低くなり易く、 また、 1 0を超えると、 該電極物質粉末が充填され る細孔の容積が少なくなるので、 三相界面の量を多くし難くなる。
該電解質層形成用スラリーは、 溶媒に溶解することにより、 バインダ 一として機能するポリビニルプチラール樹脂、 ェチルセルロース等のバ インダー成分、 可塑剤として機能するフタル酸ジ一 n—ブチル等の可塑 剤成分、 ノニオン系分散剤等の分散剤成分、 ォクチルフエ二ルエーテル 等の消泡剤成分を含有することができる。 該バインダー成分、 可塑剤成 分、 分散剤成分又は消泡剤成分は、 該電解質層形成用スラ リーの液体分 に溶解して存在している。
該電解質層形成用スラリーの粘度は、 好ましくは 1 000〜 5 000 0 mP a · s、 特に好ましくは 3 000〜2 0000mP a · s、 更に 好ま-しくは 6 00 0〜.1 200 0mP a · sである。 該電解質層形成用 スラリーの粘度は、 エバポレーター等を用いて、 該電解質層形成用スラ リー中の溶媒を蒸発除去することにより、 調整される。
該電解質基板は、 電解質物質を用いて、 ガスが透過しないような、 緻 密な構造に成形されているものであれば、 特に制限されない。 該電解質 基板は、 スクリーン印刷法等の公知の電解質層の製造方法により得られ る。 なお、 該電解質基板に係る電解質物質の種類は、 該電解質物質粉末 (a) に係る電解質物質の種類と同様である。 また、 該電解質基板は、 電極物質充填多孔質電解質層及ぴ電極層 (燃料極層又は空気極層のいず れか一方) が形成される面とは反対の面に、 電極層 (燃料極層又は空気 極層の他方) が形成されているものであってもよい。
該電解質層形成用スラリーを、該電解質基板に塗布する方法としては、 特に制限されず、 例えば、 スクリーン印刷法、 ドクタープレート法等が 挙げられる。 また、 該電解質層形成用スラリーの塗布後、 必要に応じ、 電解質基板を乾燥することができる。
該電解質基板に塗布される該電解質層形成用スラリ一層の厚み (第 1 図中、 電解質層形成用スラリー層 1 4の厚み) は、 好ましくは 1〜 1 0 0 μ πι、 特に好ましくは 5〜 3 0 μ m、 更に好ましくは 1 0〜2 0 μ m である。 該電解質層形成用スラリー層の厚みが、 Ι μ πι未満だと、 該多 孔質電解質層に形成される三相界面の量が少なくなり易く、 また、 1 0 0 /z mを超えると、 該多孔質電解質層の導電率が低くなり易い。 なお、 該電解質層形成用スラリ一層の厚みにより、 該電極物質充填多孔質電解 質層の厚み (第 2図中、 電極物質充填多孔質電解質層 3 1の厚み) が定 ま »。
該電解質層形成工程に係る焼成の際の焼成温度は、 通常 1 2 0 0〜 1 5 5 0 °C、 好ましくは 1 3 0 0〜: L 4 5 0 °C、 特に好ましくは 1 3 5 0 〜1 4 5 0 °Cである。 また、 焼成時間は、 通常 1〜2 0時間、 好ましく は 3〜 1 0時間、 特に好ましくは 4〜 8時間である。 該焼成を行うこと により、該造孔剤及ぴ該液体分が焼失すると共に、該電解質物質粉末( a ) 同士が焼結し、 該多孔質電解質層が形成される。
該電極物質粉末は、該多孔質電解質層の表面に形成させる該電極層が、 燃料極層の場合と空気極層の場合で異なり、 燃料極層を形成させる場合 は、 燃料極物質粉末であり、 空気極層を形成させる場合は、 空気極物質 粉末である。
本発明の製造方法にお'いて、 該燃料極物質粉末に係る燃料極物質とし ては、 通常、 固体酸化物形燃料電池用セルの燃料極層の製造に用いられ る燃料極物質であれば、 特に制限されず、 例えば、 イットリウム、 ジル コ-ゥム、 スカンジウム、 セリ ウム、 サマリ ウム、 アルミニウム、 チタ ン、 マグネシウム、 ランタン、 ガリゥム、 ニオブ、 タンタル、 シリコン、 ガドリニウム、 ストロンチウム、 イッテルビウム、 鉄、 コバルト、 ニッ ケル及びカルシウム (C a) から選ばれる 1種又は 2種以上の金属の酸 化物である。 該燃料極物質を構成する金属酸化物のうち、 金属種が 2種 以上である金属酸化物としては、 例えば、 酸化ニッケル (N i O) とサ マリアドープセリア (Sm2O3— C e O2) の混合物の凝集体、 酸化二 ッケルとイットリア安定化ジルコユアの混合物 (N i O— YS Z) の凝 集体、 酸化ニッケルとスカンジァ安定化ジルコニァの混合物 (N i O— S c S Z) の凝集体、 酸化ニッケルとイットリア安定化ジルコユアとサ マリアドープセリアの混合物の凝集体、 酸化ニッケルとスカンジァ安定 化ジルコニァとサマリァドープセリアの混合物の.凝集体、 酸化ニッケル とイットリア安定化ジルコニァと酸化セリア (C e 02) の混合物の凝 集体、 酸化ニッケルとスカンジァ安定化ジルコニァと酸化セリアの混合 物の凝集体、 酸化コバルト (C o 3O4) とイッ トリア安定化ジルコニァ の混合物の凝集体、 酸化コバルトとスカンジァ安定化ジルコユアの混合 物の凝集体、 酸化ルテニウム (Ru02) とイットリア安定化ジルコ二 ァの混合物の凝集体、 酸化ルテニゥムとスカンジァ安定化ジルコニァの 混合物の凝集体、 酸化ニッケルとガドリニアドープセリア (G d 203— C e O2) の混合物の凝集体等が挙げられる。 これらのうち、 酸化ニッ ケルとサマリァドープセリァの混合物の凝集体、 酸化ニッケルとィット リア安定化ジルコニァの混合物の凝集体及ぴ酸化ニッケルとスカンジァ 安定化ジルコニァの混合物の凝集体が、 電解質物質と反応せず、 また、 電解質物質と熱膨張率が近いので接合が良好である点で好ましい。
本発明の製造方法において、 該空気極物質粉末に係る空気極物質とし ては、 通常、 固体酸化物形燃料電池用セルの空気極層の製造に用いられ る空気極物質であれば、 特に制限されず、 例えば、 イッ トリウム、 ジル コニゥム、 スカンジウム、 セリウム、 サマリ ウム、 アルミニウム、 チタ ン、 マグネシウム、 ランタン、 ガリ ゥム、 ニオブ、 タンタル、 シリコン、 ガドリニウム、 ス ト口ンチウム、 ィッテルビウム、 鉄、 コバルト、 ニッ ケル、 カルシウム及ぴマンガン (Mn) から選ばれる 1種又は 2種以上 の金属の酸化物である。 該空気極物質を構成する金属酸化物のうち、 金 属種が 2種以上である金属酸化物としては、 例えば、 ランタンス トロン チゥムマンガネート ( L a。. 8 S r o. 2Mn O3) 、 ランタンカノレシゥム コバルテ一ト (L a。. 9 C a 0. x C o O 3) 、 ランタンス ト口ンチウムコ バルテ一ト (L a 0 9 S r 0 1C o O3) 、 ランタンコバルテ一ト (L a C o O 3) 、 ランタンカノレシゥムマンガネート (L a 0. 9 C a 0. iMn O 3) 等が挙げられ、 これらの金属酸化物のうち、 ランタンストロンチウ ムマンガネートが、 電解質物質と反応せず、 また、 電解質物質と熱膨張 率が近いので接合が良好である点で好ましい。
本発明の製造方法において、 該混合粉末は、 該電極物質粉末と該電解 質物質粉末 (b ) との.混合粉末である。 該混合粉末は、 該多孔質電解質 層の表面に形成させる該電極層が、 燃料極層の場合と空気極層の場合で 異なり、 燃料極層を形成させる場合は、 燃料極物質粉末と電解質物質粉 末 (b) との混合粉末であり、 空気極層を形成させる場合は、 空気極物 質粉末と電解質物質粉末 (b ) との混合粉末である。 そして、 該電極層 形成用スラリ一が、 該混合粉末を含有する電極層形成用スラリ一である ことが、 燃料電池の出力が高くなる点で好ましい。 また、 該電極層形成 用スラリーが、 該電極物質粉末と該電解質物質粉末 (b ) との混合粉末 を含有する電極層形成用スラリーである場合、 該混合粉末中の'該電極物 質粉末の体積割合に対する該電解質物質粉末 (b ) の体積割合の比 (電 解質物質粉末 (b ) /電極物質粉末) は、 0 . 1〜2、 好ましくは 0 . 5〜 1 . 5、 特に好ましくは 0 . 6〜 1 . 0である。 該体積割合が上記 範囲にあることにより、 燃料電池の出力が高くなる。 なお、 該電解質物 質粉末 (b ) に係る電解質物質は、 該電解質物質粉末 (a ) に係る電解 質物質と同様である。
該電極物質と電解質物質との複合体粉末は、 電極物質と電解質物質の 両方で構成されている粒子の集合物である。 すなわち、 該電極物質と電 解質物質との複合体粉末の個々の粒子は、 電極物質と電解質物質の両方 によって 1粒子を構成している。 該電極物質と電解質物質との複合体粉 末としては、例えば、母粒子に子粒子が固定されている複合粒子粉末や、 電極物質と電解質物質の凝集体粉末等が挙げられる。 該複合粒子粉末及 ぴ該電極物質と電解質物質の凝集体粉末について、 第 3図を用いて説明 する。 第 3図は、 本発明に係る複合粒子粉末及び電極物質と電解質物質 の凝集体粉末を示す模式図である。 第 3図中、 複合粒子 3 5は、 母粒子 3 6の表面に、 1以上の子粒子 3 7が固定されている(第 3図中(A) )。 該複合粒子 3 5に係る母粒子 3 6及び子粒子 3 7は、 該多孔質電解質層 の表面に形成させる電極層が、 燃料極層の場合は、 該母粒子 3 6が電解 質物質であり、 該子粒子 3 7が燃料極物質であるか、 又は該母粒子 3 6 が燃料極物質であり、 該子粒子 3 7が電解質物質である。 また、 該複合 粒子 3 5に係る母粒子 3 6及び子粒子 3 7は、 該多孔質電解質層の表面 に形成させる電極層が、 空気極層の場合は、 該母粒子 3 6が電解質物質 であり、 該子粒子 3 7が空気極物質であるか、 又は該母粒子 3 6が空気 極物質であり、 該子粒子 3 7が電解質物質である。 また、 該複合粒子粉 末に係る電解質物質は、 該電解質物質粉末 (a ) に係る電解質物質と、 該複合粒子粉末に係る燃料極物質は、 該燃料極物質粉末に係る燃料極物 質と、 該複合粒子粉末に係る空気極物質は、 該空気極物質粉末に係る空 W
気極物質と同様である。 なお、 該複合粒子粉末は、 通常、 固体酸化物形 燃料電池用の電極の製造に用いられる複合粒子粉末であれば、 特に制限 されない。
また、 第 3図中、 電極物質と電解質物質の凝集体 3 9は、 一次粒子で ある電極物質 3 8 1と電解質物質 3 8 2が凝集した凝集体'(二次粒子) である (第 3図中 (B ) ) 。 該電極物質と電解質物質の凝集体 3 9に係 る電極物質 3 8 1は、 該多孔質電解質層の表面に形成させる電極層が、 燃料極層の場合は燃料極物質であり、 空気極層の場合は空気極物質であ る。 また、 該電極物質と電解質物質の凝集体粉末に係る電解質物質は、 該電解質物質粉末 (a ) に係る電解質物質と、 該電極物質と電解質物質 の凝集体粉末に係る燃料極物質は、 該燃料極物質粉末に係る燃料極物質 と、 該電極物質と電解質物質の凝集体粉末に係る空気極物質は、 該空気 極物質粉末に係る空気極物質と同様である。
該電極物質粉末、 該電極物質粉末と電解質物質粉末 (b ) との混合粉 末、 又は該電極物質と電解質物質との複合体粉末の平均粒径は、 好まし くは 0 . 0 0 1〜: L 0 m、 特に好ましくは 0 . 0 .0 5〜 l / m、 更に 好ましくは 0 . 0 1〜0 . 5 mである。 該平均粒径が、 小さい程、 該 電極物質粉末、 該電極物質粉末と電解質物質粉末 (b ) との混合粉末、 又は該電極物質と電解質物質との複合体粉末が、 該多孔質電解質層中の 細孔に充填され易くなるので、 三相界面を多くすることができ、 且つ粉 末同士が焼結し易くなるので、 該電極層の導電率が高くなる。 ただし、 該平均粒径が、 0 . 0 0 1 μ m未満になると、 粉末同士の焼結が起こり 過ぎるため、 電極層の表面積が小さくなり易い。 また、 該平均粒径が、 1 0 μ ηιを超えると、該多孔質電解質層中の細孔への、該電極物質粉末、 該電極物質粉末と電解質物質粉末 (b ) との混合粉末、 又は該電極物質 と電解質物質との複合体粉末の充填量が少なくなり易い。 なお、 該電極 物質と電解質物質との複合体粉末が、 該複合粒子粉末の場合は、 該母粒 子の平均粒径を、 該電極物質と電解質物質との複合体粉末の平均粒径と する。
なお、 該電極物質と電解質物質との複合体粉末が、 該複合粒子の場合 は、 該母粒子の平均粒径に対する該子粒子の平均粒径の比 (子粒子ノ母 粒子) は、 特に制限されないが、 好ましくは 0 . 0 0 1〜 1 . 0、 特に 好ましくは 0 . 0 1〜0 . 1である。
該造孔剤の平均径に対する該電極層形成用スラリーに含有されている 該電極物質粉末、該電極物質粉末と電解質物質粉末( b ) との混合粉末、 又は該電極物質と電解質物質との複合体粉末の平均粒径の比 (該電極物 質粉末、 該電極物質粉末と電解質物質粉末 (b ) との混合粉末、 又は該 電極物質と電解質物質との複合体粉末の平均粒径/造孔剤の平均径)は、 好ましくは 0 . 0 0 1〜:!、 特に好ましくは 0 . 0 0 1〜0 . 1、 更に 好ましくは 0 . 0 0 1〜0 . 0 1である。 該平均粒径の比が、 上記範囲 にあることにより、 該電極物質粉末、 該電極物質粉末と電解質物質粉末 ( b ) との混合粉末、 又は該電極物質と電解質物質との複合体粉末が該 多孔質電解質層中の細孔に充填され易くなるので、 三相界面を多くする ことができる。
なお、 該複合粒子粉末は、 電解質物質の母粒子粉末及び燃料極物質の 子粒子粉末、 燃料極物質の母粒子粉末及び電解質物質の子粒子粉末、 電 解質物質の母粒子粉末及ぴ空気極物質の子粒子粉末、 又は空気極物質の 母粒子粉末及び電解質物質の子粒子粉末を用いて、 公知の方法により製 造される。 また、 該電極物質と電解質物質の凝集体粉末は、 例えば、 金 属イオンを含有する水溶液の液滴を、 加熱炉に噴霧して、 金属酸化物の 凝集体粉末を得る、 一般に噴霧熱分解法と呼ばれる方法を用い、 噴霧す る水溶液として、 酸化反応により電極物質となる金属種の金属イオン及 ぴ酸化反応により電解質物質となる金属種の金属イオンの両方を含有す る水溶液を用いることにより製造される。
該電極層形成用スラリーは、 該電極物質粉末、 該電極物質粉末と電解 質物質粉末 (b) との混合粉末、 又は該電極物質と電解質物質との複合 体粉末を含有しており、 該スラリーの液体分に、 該電極物質粉末、 該電 極物質粉末と電解質物質粉末 (b) との混合粉末、 又は該電極物質と電 解質物質との複合体粉末を分散させることにより、 調製される。 また、 該スラリ一の液体分は、 有機溶媒及び該有機溶媒に溶解しているバイン ダー成分等により構成されている。
該電極層形成用スラリーは、 バインダー成分、 可塑剤成分、 分散剤成 分又は消泡剤成分を含有することができる。 該電極層形成用スラリ一に 係るバインダー成分、 可塑剤成分、 分散剤成分又は消泡剤成分は、 該電 解質層形成用スラリーと同様である。
該電極層形成用スラリ一の粘度は、 好ましくは 1 0 0 0〜 50 000 mP a · s、 特に好ましくは 3 000〜2 0 000mP a . s、 更に好 ましくは 3 000〜1 2000mP a · sである。 該電極層形成用スラ リーの粘度は、 エバポレーター等を用いて、 該電極層形成用スラリー中 の該溶媒を蒸発除去することにより、 調整される。 該電極層形成用スラ リーの粘度が小さい程、 該電極層形成用スラリーが、 該多孔質電解質層 中の細孔に含浸され易くなる。 該電極層形成用スラリーの粘度が、 1 0 0 OmP a · s未満だと、 該電極層形成用スラリー層 2 9が、 塗布後に 形状を保ち難くなり易く、 また、 50000mP a · sを超えると、 該 "電極層形成用スラリーが、 該多孔質電解質層中の細孔に含浸し難くなり 易い。
該電極層形成用スラリ "を、 該多孔質電解質層が形成されている電解 質基板の多孔質電解質層の表面 (電解質基板と接している面とは反対側 の面) に、 塗布する方法としては、 特に制限されず、 例えば、 スクリー ン印刷法、 ドクタープレート法等が挙げられる。 また、 該電極層形成用 スラリーの塗布後、 必要に応じ、 多孔質電解質層が形成されている電解 質基板を乾燥することができる。
該電極層形成用スラリ一層 2 9の厚さは、 形成後の電極層が支持体と なる場合、 好ましくは 5〜200 0 i m、 特に好ましくは 1 0〜 50 0 β m、 更に好ましくは 1 0〜 1 0 0 μ mであり、 形成後の電極層が支持 体とならない場合、 好ましくは 3〜 2 000 μ m、 特に好ましくは 1 0 〜1 00 / m、 更に好ましくは 1 0〜50 /xmである。
該電極層形成工程に係る焼成の際の焼成温度は、 通常 1 1 00〜 1 6
00°C、 好ましくは 1 1 00〜: L 5 0 0°C、 特に好ましくは 1 1 00〜
1400°Cである。 また、 焼成時間は、 通常 1〜 20時間、 好ましくは 3〜 1 0時間、 特に好ましくは 3〜 8時間である。 該焼成を行うことに より、 該電極層形成用スラリー中の液体分が焼失すると共に、 該電極物 質粉末、 電解質物質粉末 (b) 又は該電極物質と電解質物質との複合体 粉末が焼結し、該電極物質粉末、該電極物質粉末と該電解質物質粉末(b) との混合粉末、 又は該電極物質と電解質物質との複合体粉末が充填され ている電極物質充填多孔質電解質層及び電極層が形成される。
本発明の製造方法によれば、 多孔質電解質層に形成される細孔の細孔 径を制御できるので、電極物質粉末、電極物質粉末と電解質物質粉末( b ) との混合粉末、 又は該電極物質と電解質物質との複合体粉末を充填する ために必要な径を有する細孔を、 確実に形成させることができる。 その ため、 従来のような、 造孔剤を用いずに製造される固体酸化物形燃料電 池用セルの多孔質電解質層に比べ、 本発明の製造方法により得られる固 体酸化物形燃料電池用セルの多孔質電解質層には、多くの電極物質粉末、 電極物質粉末と電解質物質粉末 (b) との混合粉末、 又は該電極物質と 電解質物質との複合体粉末が充填されている。
上記本発明の製造方法の効果について、 第 1図、 第 2図、 第 1 1図及 ぴ第 1 2図を参照に、 従来の製造方法との差異を示し説明する。 第 1 1 図は、 従来の多孔質電解質層を有する固体酸化物形燃料電池用セルの製 造方法 (以下、 単に従来の製造方法とも記載する。 ) 、 例えば、 特開平 3 - 1 4 7 2 6 4号公報に記載されている製造方法に係る多孔質電解質 層形成工程を示す模式図であり、 電解質基板の平面方向に対して垂直な 面で切った時の端面図である。 また、 第 1 2図は、 従来の製造方法で形 成される電極物質充填多孔質電解質層及び電極層が形成されている電解 質基板を示す模式図であり、 電解質基板の平面方向に対して垂直な面で 切った時の端面図である。 該従来の製造方法では、 先ず、 電解質基板 7 1に、 電解質物質粉末 7 2を含有するスラリー 7 9を塗布することによ り、 該電解質物質粉末を含有するスラリ一層 7 4が塗布されている電解 質基板 7 0が得られる (第 1 1図中 (V ) ) 。 該スラリー層 7 4は、 該 電解質物質粉末 7 2のような固体分と液体分 7 3により構成され、 該液 体分 7 3には、 例えば、 ポリビニルプチラール等のバインダー成分が溶 解されている。 次いで、 該電解質基板 7 0を焼成することにより、 該液 体分 7 3が焼失し、 多孔質電解質層 7 7が形成されている電解質基板 7 5が得られる (第 1 1図中 (V I ) ) 。 次いで、 電極物質粉末 8 1を含 有するスラリーを、 該多孔質電解質層の表面に塗布することにより、 該 多孔質電解質層 7 7の.細孔内部に、 該電極物質粉末 8 1を含有するスラ リーを含浸させると同時に、 該多孔質電解質層 7 7に表面にスラリー層 を形成させる。 そして、 該多孔質電解質層が形成されている電解質基板 7 5を焼成することにより、 該電極物質粉末 8 1が充填されている電極 物質充填多孔質電解質層 8 2及ぴ電極層 8 3が形成されている電解質基 板 8 0が得られる (第 1 2図) 。 該従来の製造方法では、 多孔質電解質層 7 7中の細孔の量を多くする ためには、 該電解質物質粉末 7 2の量に対する該液体分 7 3 (具体的に は、 バインダー成分及ぴ溶媒) の量の割合を多く しなければならない。 そして、 第 1 1図中 (V ) に示すように、 該液体分 7 3は、 該スラリー 層 7 4中では、 該電解質物質粉末 7 2の隙間を埋めるようにして存在し ているが、 液体であるため、 その形状は一定せず、 また、 形状を制御す ることも困難である。 そして、 該液体分 7 3が、 焼成後に、 該多孔質電 解質層 7 7の細孔 7 6となるため、該従来の製造方法では、細孔の形状、 具体的には、 細孔の径を制御することはできず、 第 1 1図中 (V I ) の ように、 細孔の径が極めて小さい部分 (例えば、 7 8 a及び 7 8 b ) が 生じる。 そして、 該電極物質粉末 8 1を含有するスラリーが、 該多孔質 電解質層 7 7に塗布された時に、 細孔 7 6 a及び 7 6 bのように、 全範 囲に亘つて、 細孔径が該電極物質粉末 8 1の粒径より大きければ、 該細 孔 7 6 a及ぴ 7 6 bの内部全体に、 該電極物質粉末を含有するスラリー が含浸される。 ところが、 細孔 7 6 c又は 7 6 dのように、 細孔径が該 電極物質粉末 8 1の粒径より小さい部分(7 8 a及び 7 8 b )があると、 該スラリーが、 該細孔 7 6 c及び 7 6 dの内部にまで含浸されない。 こ のため、 該電極物質粉末 8 1が充填されている電極物質充填多孔質電解 質層 8 2には、 三相界面の増加に全く関与できない細孔 (7 6 c及び 7 6 d ) が存在していた。 従って、 従来の製造方法では、 細孔の量を増や して、 三相界面の増加させることによる好影響より、 該多孔質電解質層 に細孔が増えることによる悪影響、 すなわち、 該多孔質電解質層の導電 率の低下による悪影響の方が大きかった。
一方、 本発明の製造方法では、 該電解質層形成用スラリー 9に、 固体 の造孔剤 1 3を含有させることにより、 該多孔質電解質層 2 2の細孔の 形状を制御することができる。 具体的には、 該造孔剤 1 3が、 該電解質 層形成用スラリー 9中で該電解質物質粉末 (a ) 1 2の間に入り込んで 存在しており、 該造孔剤 1 3は、 固体なので、 該造孔剤 1 3が存在して いる部分の該電解質物質粉末 (a ) 1 2の間隔は、 該造孔剤 1 3の径ょ り小さくなることはない。 そのため、電解質物質粉末(a ) 1 2の間隔、 すなわち、 焼成後の細孔の大きさを、 該造孔剤 1 3の径以上にすること ができるので、 該電極物質粉末 2 8が充填されるために必要な大きさの 径を有する細孔を、 確実に形成させることができる。 このことにより、 該電極層形成用スラリー 3 4が、 該多孔質電解質層 2 2中の細孔 2 1の 全体に亘つて含浸されるので、 多孔質電解質層中の細孔の内部の全体に 亘つて、 該電極物質粉末 2 8が充填されている電極物質充填多孔質電解 質層 3 1が得られる。 すなわち、 本発明の製造方法は、 多孔質電解質層 の細孔の大部分が三相界面の形成に関与できるので、 従来の製造方法に 比べ、 三相界面の量を多くすることができる。 従って、 本発明の製造方 法は、 細孔の量が増えて該多孔質電解質層の導電率が低下することによ る悪影響より、 三相界面が増加することによる好影響の方が大きい。 また、 本発明の製造方法では、 該造孔剤 1 3の平均径より小さい平均 粒径を有する、 該電解質物質粉末 (a ) 1 2を用いることにより、 該多 孔質電解質層 2 2の細孔の径に比べ、小さい粒径の電解質物質粉末( a ) 1 2で、 該多孔質電解質層 2 2を形成させることができる。 そのため、 該多孔質電解質層 2 2の単位体積 (細孔も含むみかけ上の体積) 当りに 存在する、 該電解質物質粉末 (a ) 1 2同士の接触点の数を多すること ができ且つ該電解質物質粉末( a ) 1 2同士が焼結し易くなる。従って、 該多孔質電解質層の導電率を高くすることができる。
本発明の固体酸化物形燃料電池用セルは、 電解質物質で形成されてお り、 電極物質充填多孔質電解質層の見かけ体積に対する多孔質電解質層 の細孔の体積比率が 3 0〜7 0 %である多孔質電解質層、 及ぴ該多孔質 電解質層の細孔に充填されている電極物質粉末、 電極物質粉末と電解質 物質粉末 (d) との混合粉末、 又は電極物質と電解質物質との複合体粉 末からなる電極物質充填多孔質電解質層を有する固体酸化物形燃料電池 用セルである。 なお、 本発明において、 該多孔質電解質層を形成してい る電解質物質粉末と該多孔質電解質層の細孔に充填されている電解質物 質粉末を区別するために、 該多孔質電解質層を形成している電解質物質 粉末を、 電解質物質粉末 (c ) と記載し、 該多孔質電解質層の細孔に充 填されている電解質物質粉末を、 電解質物質粉末 (d) と記載する。 本発明の固体酸化物形燃料電池用セルについて、 第 4図を参照して説 明する。 第 4図は、 本発明の固体酸化物形燃料電池用セルに係る電極物 質充填多孔質電解質層の端面の模式的な拡大図である。 第 4図に示すよ うに、 固体酸化物形燃料電池用セル 4 0は、 多孔質電解質層 4 6及び該 多孔質電解質層 4 6の細孔に充填されている電極物質粉末 4 5からなる 電極物質充填多孔質電解質層 4 2を有する。 該電極物質充填多孔質電解 質層 4 2は、 電解質基板 4 1の表面に形成されており、 また、 該電解質 基板 4 1と接している面とは反対側の電極物質充填多孔質電解質層 4 2 の面-に、 電極層 4 3が形成されている。
該電極物質充填多孔質電解質層 4 2を構成する該多孔質電解質層 4 6 は、 電解質物質粉末 (c) 4 4で形成されている。
本発明の固体酸化物形燃料電池用セルにおいて、 該電解質物質粉末 ( c ) 4 4に係る電解質物質は、 前記本発明の製造方法に係る電解質物 質 (a) と同様である。
該電解質物質粉末 (c) 44の平均粒径は、 好ましくは 0. 0 1〜 3 ; u mv特に好ましくは 0. 0 5〜 1.μ πι、 更に好ましくは 0. 1〜0. 7 μ πιである。 該電解質物質粉末 (c ) の平均粒径が、 小さい程、 該電 解質物質粉末 (c ) 同士の接点が多くなり且つ該電解質物質粉末 (c ) 同士が焼結し易くなるので、 該電極物質充填多孔質電解質層の導電率が 高くなる。 ただし、 該電解質物質粉末 (c ) の平均粒径が、 0 . 0 1 μ m未満になると、 焼結時に多孔質電解質層の収縮が大きくなり、 多孔質 電解質層の作製が困難になるか又は破損し易くなる。 また、 該電解質物 質粉末 (c ) の平均粒径が、 3 i mを超えると、 該電極物質充填多孔質 電解質層の導電率が低くなり易い。
該多孔質電解質層 4 6は、多孔質であり、細孔を有している。そして、 該電極物質充填多孔質電解質層 4 2の見かけ体積に対する該多孔質電解 質層 4 6の細孔の体積比率は、 3 0〜 7 0 %、好ましくは 3 5〜 6 0 %、 特に好ましくは 4 0〜5 0 %である。 該多孔質電解質層 4 6の細孔の体 積比率が、 3 0 %未満だと、 燃料電池の出力が低くなり、 また、 7 0 % を超えると、 燃料電池の出力が低くなるか又は電極物質充填多孔質電解 質層の機械的強度が低くなる。 なお、 該電極物質充填多孔質電解質層 4 2の見かけ上の体積とは、 該電極物質充填多孔質電解質層 4 2中の空隙 4 7 (第 4図) 、 すなわち、 該多孔質電解質層 4 6の細孔中の該電極物 質粉末 4 5が充填されていない部分の体積も含めた該電極物質充填多孔 質電解質層 4 2の体積のことである。 また、 該多孔質電解質層 4 6の細 孔の体積とは、 該多孔質電解質層 4 6に形成されている細孔の体積のこ とであり、 該細孔に充填されている該電極物質粉 4 5の体積及ぴ該空隙 4 7の体積の合計と同じである。
本発明において、 該電極物質充填多孔質電解質層 4 2の見かけ体積に 対する該多孔質電解質層 4 6の細孔の体積比率は、 該電極物質充填多孔 質電解質層 4 2を、 該電極物質充填多孔質電解質層 4 2が形成されてい る該電解質基板 4 1の表面に対して垂直な面で切った時の任意の断面に おける、 該電極物質充填多孔質電解質層 4 2の見かけ上の断面積に対す る該多孔質電解質層 4 6の細孔の断面積の百分率を計算することによつ て得られる値である。 具体的な該電極物質充填多孔質電解質層 4 2の見 かけ体積に対する該多孔質電解質層 4 6の細孔の体積比率の測定方法に ついて、 第 5図を参照して説明する。 第 5図は、 第 4図中の該電極物質 充填多孔質電解質層 4 2を構成する該多孔質電解質層 4 6に形成されて いる細孔を、 斜線で示した図である。 先ず、 該電極物質充填多孔質電解 質層 4 2を、 該電極物質充填多孔質電解質層 4 2が形成されている該電 解質基板 4 1の表面に対して垂直な任意の面で切り、 その断面を、 走查 型電子顕微鏡で観察する。 次いで、 得られた S E M写真中の該電極物質 充填多孔質電解質層 4 2の断面を枠で囲み、 この枠囲み部分 5 1 (第 5 図中、 実線で囲まれている部分) の面積を求める。 次いで、 該枠囲み部 分 5 1内にある該多孔質電解質層 4 6の細孔の断面 5 2 (第 5図中、 該 枠囲み部分 5 1内の斜線部分) の面積を求める。 そして、 下記式 ( 1 ) : 該電極物質充填多孔質電解質層 4 2の見かけ体積に対する該多孔質電 解質層 4 6の細孔の体積比率 (%) = (該細孔の断面 5 2の面積/該枠 囲み部分 5 1の面積) X I 0 0 ( 1 )
により、 該電極物質充填多孔質電解質層 4 2の見かけ体積に対する該多 孔質電解質層 4 6の細孔の体積比率を計算する。
そ.して、 該電極物質充填多孔質電解質層 4 2の見かけ体積に対する該 多孔質電解質層 4 6の細孔の体積比率の算出を、 少なくとも 3箇所の異 なる任意の断面で行い、 それらの平均値を、 本発明の固体酸化物形燃料 電池用セルに係る電極物質充填多孔質電解質層の見かけ体積に対する多 孔質電解質層の細孔の体積比率とする。
該電極物質充填多孔質電解質層 4 2の気孔率は、 2 0〜6 0 %、 好ま しくは 2 5〜5 0 %、 特に好ましくは 3 0〜4 0 %である。 該電極物質 充填多孔質電解質層の気孔率が、 2 0 %未満だと燃料電池の出力が低く なり易く、 また、 6 0 %を超えると電極物質充填多孔質電解質層の機械 的強度が低くなり易い。 なお、 該電極物質充填多孔質電解質層 4 2の気 孔率とは、 該電極物質充填多孔質電解質層 4 2の見かけ体積に対する該 空隙 4 7の体積の体積比率を指す。
本発明において、 該電極物質充填多孔質電解質層 4 2の気孔率は、 該 電極物質充填多孔質電解質層 4 2を、 該電極物質充填多孔質電解質層 4 2が形成されている該電解質基板 4 1の表面に対して垂直な面で切った 時の任意の断面における、 該電極物質充填多孔質電解質層 4 2の見かけ 上の断面積に対する該空隙 4 7の断面積の百分率を計算することによつ て得られる値である。 具体的な該電極物質充填多孔質電解質層 4 2の気 孔率の測定方法について、 第 6図を参照して説明する。 第 6図は、 第 4 図に示す該電極物質充填多孔質電解質層 4 2中の該空隙 4 7を、 斜線で 示した図である。 先ず、 該電極物質充填多孔質電解質層 4 2を、 該電極 物質充填多孔質電解質層 4 2が形成されている該電解質基板 4 1の表面 に対して垂直な任意の面で切り、 その断面を、 走査型電子顕微鏡で観察 する。 次いで、 得られた S E M写真中の該電極物質充填多孔質電解質層
4 2の断面を枠で囲み、 この枠囲み部分 5 3 (第 6図中、 実線で囲まれ ている部分) の面積を求める。 次いで.、 該枠囲み部分 5 3内にある該空 隙 4 7の断面 5 4 (第 6図中、 該枠囲み部分 5 3内の斜線部分) の面積 を求める。 そして、 下記式 (2 ) :
該電極物質充填多孔質電解質層 4 2の気孔率 (%) = (該空隙の断面
5 4の面積/該枠囲み部分 5 3の面積) X I 0 0 ( 2 )
により、 該電極物質充填多孔質電解質層 4 2の気孔率を計算する。
そして、 該電極物質充填多孔質電解質層 4 2の気孔率の算出を、 少な くとも 3箇所の異なる任意の断面で行い、 それらの平均値を、 本発明の 固体酸化物形燃料電池用セルに係る電極物質充填多孔質電解質層の気孔 率とする。 該多孔質電解質層 4 6の細孔に充填されている物質は、 第 4図では、 電極物質粉末 4 5である。 該電極物質粉末は、 該電極物質充填多孔質電 解質層 4 2の表面に形成されている該電極層 4 3が、 燃料極層の場合と 空気極層の場合で異なり、 該電極層 4 3が燃料極層の場合は、 燃料極物 質粉末であり、 該電極層 4 3が空気極層の場合は、 空気極物質粉末であ る。 本発明の固体酸化物形燃料電池用セルにおいて、 該燃料極物質粉末 に係る燃料極物質は、本発明の製造方法に係る燃料極物質と同様であり、 また、 該空気極物質粉末に係る空気極物質は、 本発明の製造方法に係る 空気極物質と同様である。
また、 該多孔質電解質層 4 6に充填される物質としては、 電極物質粉 末と電解質物質粉末 (d ) との混合粉末が挙げられる。 この場合、 本発 明の固体酸化物形燃料電池用セルは、 第 4図中の該多孔質電解質層 4 6 の細孔に充填されている該電極物質粉末 4 5の一部が、 電解質物質粉末 ( d )と置き換えられた固体酸化物形燃料電池用セルである。すなわち、 該多孔質電解質層 4 6に充填される物質は、 該電極層 4 3が燃料極層の 場合は、 燃料極物質粉末と電解質物質粉末 (d ) との混合粉末であり、 該電極層 4 3が空気極層の場合は、 空気極物質粉末と電解質物質粉末 ( d ) との混合粉末である。 本発明の固体酸化物形燃料電池用セルに係 る電解質物質粉末 (d ) は、 前記本発明の製造方法に係る電解質物質粉 末 (b ) と同様である。
また、 該多孔質電解質層 4 6に充填される物質としては、 電極物質と 電解質物質との複合体粉末が挙げられる。 この場合、 本発明の固体酸化 物形燃料電池用セルは、 第 4図中の該多孔質電解質層 4 6の細孔に充填 されている該電極物質粉末 4 5が、 電極物質と電解質物質との複合体粉 末に置き換えられた固体酸化物形燃料電池用セルである。 本発明の固体 酸化物形燃料電池用セルに係る複合体粉末は、 前記本発明の製造方法に 係る複合体粉末と同様である。
本発明の固体酸化物形燃料電池用セルに係る電極物質粉末、 混合粉末 及ぴ複合体粉末の平均粒径は、 好ましくは 0 . 0 0 1〜 1 0 μ m、 特に 好ましくは 0 . 0 0 5〜1 μ πι、 更に好ましくは 0 . 0 1〜0 .
である。 該平均粒径が、 小さい程、 三相界面を多くすることができる。 ただし、該平均粒径が、 0 . 0 0 1 /i m未満になると、該電極物質粉末、 該混合粉末又は該複合体粉末を含有するスラリーの調製が困難となる力、 又は燃料電池の運転時に焼結が起こり易くなるので、 燃料電池の性能が 低下し易くなる。 また、 該平均粒径が、 Ι Ο μ ηιを超えると、 三相界面 が少なくなり易い。 なお、 該電極物質と電解質物質の複合体粉末が、 該 複合粒子粉末の場合は、 該母粒子の平均粒径を、 該電極物質と電解質物 質の複合体粉末の平均粒径とする。
そして、 該多孔質電解質層 4 6に充填されている物質が、 該混合粉末 であることが、 燃料電池の出力が高くなる点で好ましい。
該多孔質電解質層 4 6の細孔に充填されている該電極物質粉末、 該電 極物質粉末と電解質物質粉末 (d ) との混合粉末、 又は該電極物質と電 解質物質"との複合体粉末の充填量は、 該電極物質充填多孔質電解質層 4 2の見かけ上の体積に対して、 体積割合で 5〜5 0 %、 好ましくは 5〜 3 0 %、 特に好ましくは 6〜 2 0 %である。 該充填量が上記範囲にある ことにより、 燃料電池の出力が高くなる。 なお、 本発明において、 該多 孔質電解質層 4 6の細孔に充填されている該電極物質粉末、 該電極物質 粉末と電解質物質粉末 (d ) との混合粉末、 又は該電極物質と電解質物 質との複合体粉末の充填量は、 前記式 (1 ) により得られる電極物質充 填多孔質電解質層の見かけ体積に対する該多孔質電解質層の細孔の体積 比率 (%) と、 前記式 (2 ) により得られる電極物質充填多孔質電解質 層の気孔率 (%) との差 (該電極物質充填多孔質電解質層の見かけ体積 に対する該多孔質電解質層の細孔の体積比率 (%) —該電極物質充填多 孔質電解質層の気孔率 (%) ) を計算することに求められる。
また、 該多孔質電解質層 4 6の細孔に充填されている物質が、 該混合 粉末の場合、 該混合粉末中の該電極物質粉末の体積割合に対する該電解 質物質粉末 (d ) の体積割合の比 (電解質物質粉末 (d ) Z電極物質粉 末) は、 0 . :!〜 2、 好ましくは 0 . 5〜; 1 . 5、 特に好ましくは 0 . 6〜 1 . 0である。 該体積割合の比が上記範囲にあることにより、 燃料 電池の出力が高くなる。
該多孔質電解質層 4 6の細孔に充填されている物質が、 該電極物質粉 末、 又は該電極物質粉末と電解質物質粉末 (d ) との混合粉末の場合、 多孔質電解質層 4 6の細孔に充填されている電極物質粉末の充填量は、 該電極物質充填多孔質電解質層 4 2の見かけ上の体積に対して、 体積割 合で 5〜 5 0 %、 好ましくは 5〜 3 0 %、 特に好ましくは 6〜 2 0 %で ある。 該充填量が上記範囲にあることにより、 電極物質充填多孔質電解 質層の導電率が高くなる。
本発明の固体酸化物形燃料電池用セルにおいて、 該電極物質充填多孔 質電解質層は、 該電解質基板の一方の面のみに形成されていてもよく、 あるいは、 該電解質基板の両方の面に形成されていてもよい。 つまり、 本発明の固体酸化物形燃料電池用セルは、 燃料極物質充填多孔質電解質 層又は空気極物質充填多孔質層のいずれか一方を有するものであっても、 燃料極物質充填多孔質電解質層及び空気極物質充填多孔質層の両方を有 するものであってもよい。
本発明の固体酸化物形燃料電池用セルに係る電極物質充填多孔質電解 質層は、 第 7図に示す多孔質電解質層 5 6に、 電極物質粉末、 電極物質 粉末と電解質物質粉末 C d ) との混合粉末、 又は電極物質と電解質物質 との複合体粉末を充填することにより得られる。 第 4図中の該電極物質 充填多孔質電解質層 4 2を得る場合を例に説明すると、 該多孔質電解質
層 5 6に、 該電極物質粉末 4 5を充填する方法としては、 該電解質基板
6 0に形成されている該多孔質電解質層 5 6の表面に、 該電極物質粉末
4 5を含有する電極物質充填用スラリーを塗布し、 次いで、 該電極物質
充填用スラリーが塗布された、 該多孔質電解質層 5 6が形成されている
電解質基板 6 0を焼成する方法が挙げられる。 つまり、 先ず、 該多孔質
電解質層 5 6が形成されている電解質基板 6 0の多孔質電解質層の表面
5 9 (電解質基板 6 0と接している面とは反対側の多孔質電解質層の面) に、 該電極物質粉末 4 5 (固体分) が液体分に分散されているスラリー
(電極物質充填用スラリー) を塗布することにより、 該電極物質充填用
スラリーを、 該多孔質電解質層 5 6の細孔 5 7に含浸させ、 該電極物質
充填用スラリーを該多孔質電解質層 5 6に充填すると同時に、 該多孔質
電解質層 5 6の、 該電解質基板 6 0と反対側の多孔質電解質層の表面 5
9に、 電極物質充填用スラリー層を形成させる。 次いで、 該電極物質充
填用スラリーが塗布された、 該多孔質電解質層 5 6が形成されている該
電解質基板 5 5を焼成することにより、 該電極物質充填用スラリー中の
液体分を焼失させると共に、 該電極物質粉末 4 5同士、 及ぴ該電極物質
粉末 4 5と該電解質物質粉末 (c ) 5 8力 互いに接触している部分で
焼結する。 このようにして、 該電極物質充填多孔質電解質層 4 2が得ら
れる。
該多孔質電解質層 5 6は、 該電極物質充填多孔質電解質層 4 2を構成
する該多孔質電解質層 4 6と同様である。 すなわち、 該多孔質電解質層
5 6は、 電解質物質で形成されており、 多孔質であり、 細孔を有してい
る。 そして、 該多孔質電解質層 5 6の気孔率は、 3 0〜7 0 %、 好まし
くは 3 5〜6 0 %、 特に好ましくは 4 0〜 5 0 %である。 なお、 該多孔
質電解質層 5 6の気孔率とは、 該多孔質電解質層 5 6の見かけ体積に対
32
i する該細孔 5 7の体積の体積比率を指す。
なお、 本発明において、 該多孔質電解質層 5 6の気孔率は、 該多孔質 電解質層 5 6を、 該多孔質電解質層 5 6が形成されている該電解質基板 6 0の表面に対して垂直な面で切った時の任意の断面における、 該多孔 質電解質層 5 6の見かけ上の断面積に対する該細孔の断面積の百分率を 計算することによって得られる値である。 具体的な該多孔質電解質層 5 6の気孔率の測定方法について、第 8図を参照して説明する。第 8図は、 第 7図に示す該多孔質電解質層 56中の該細孔 5 7を、 斜線で示した図 である。 先ず、 該多孔質電解質層 5 6を、 該多孔質電解質層 5 6が形成 されている該電解質基板 6 0の表面に対して垂直な任意の面で切り、 そ の断面を、 走査型電子顕微鏡で観察する。 次いで、 得られた S EM写真 中の該多孔質電解質層 5 6の断面を枠で囲み、 この枠囲み部分 6 1 (第 8図中、 実線で囲まれている部分) の面積を求める。 次いで、 該枠囲み 部分 6 1内にある該細孔 5 7の断面 6 2 (第 8図中、 該枠囲み部分 6 1 内の斜線部分) の面積を求める。 そして、 下記式 (3) :
該多孔質電解質層 5 6の気孔率 (%) = (該細孔の断面 6 2の面積/ 該枠囲み部分 6 1の面積) X I 00 (3)
により、 該多孔質電解質層 56の気孔率を計算する。
そして、 '該多孔質電解質層 56の気孔率の算出を、 少なくとも 3箇所 の異なる任意の断面で行い、 それらの平均値を、 本発明の固体酸化物形 燃料電池用セルに係る多孔質電解質層の気孔率とする。
該多孔質電解質層 5 6の比表面積は、 0. l〜 1 0m2Zg、 好まし くは 0.
Figure imgf000035_0001
、 特に好ましくは 0. 5〜3m2Zgである。 該 比表面積が上記範囲にあることにより、 燃料電池の出力が高くなる。 該多孔質電解質層 5 6の 1 000°Cにおける導電率は、 0.0 :!〜 0. 2 S/ cm、好ましくは 0. 05〜0. 2 S / c m、特に好ましくは 0.. 1〜0 . 2 S / c mである。
該多孔質電解質層 5 6中、 細孔幅が 1 β m以下の細孔の存在率は、 好 ましくは 1 0 %以下、 特に好ましくは 5 %以下、 更に好ましくは 3 %以 下である。 該細孔幅が 1 μ πι以下の細孔には、 該電極物質充填用スラリ 一が含浸し難いため、該細孔幅が 1 μ m以下の細孔の存在率が少ない程、 該電極物質粉末、該電極物質粉末と電解質物質粉末( d ) との混合粉末、 又は該電極物質と電解質物質との複合体粉末の充填量が多くなる。なお、 本発明において該細孔幅が 1 μ πι以下の細孔の存在率とは、 該多孔質電 解質層 5 6を、 該多孔質電解質層 5 6が形成されている該電解質基板 6 0の表面に対して垂直な面で切った時の任意の断面における、 該多孔質 電解質層 5 6の見かけ上の断面積に対する細孔幅が 1 μ m以下の細孔の 断面積の百分率を指す。 そして、 該存在率を、 少なく とも 3箇所の異な る任意の断面で求め、 それらの平均値を、 該細孔幅が 1 ^ m以下の細孔 の存在率とする。
つまり、 本発明の固体酸化物形燃料電池用セルは、 電解質物質で形成 されており、 気孔率が 3 0〜7 0 %である多孔質電解質層の細孔に、 電 極物質粉末、 電極物質粉末と電解質物質粉末との混合粉末、 又は電極物 質と電解質物質との複合体粉末を充填して得られる電極物質充填多孔質 電解質層を有する固体酸化物形燃料電池用セルである。
なお、 本発明では、 M I C R O T R A C— S 3 0 0 0 (日機装社製) を用いて、 平均粒径及ぴ平均径の測定を行った。
次に、 実施例を挙げて本発明を更に具体的に説明するが、 これは単 に例示であって、 本発明を制限するものではない。
(実施例)
(実施例 1 ) '
ぐ燃料極層の製造 > (燃料極層形成用スラリーの調製)
酸化ニッケル (N i O) 5 5 g、 スカンジァセリァ安定化ジルコニァ (l O S c l C e S Z) を 4 5 g、 フタル酸ジ一 n—プチル 1 0 m 1、 ォクチルフエニルエーテル 2 m 1、分散剤(ノ二オン O P— 8 3 RAT, 日本油脂社製) 2mし ポリビニルプチラール樹脂 (和光純薬社製) 1 0 g、 イソプロパノール 8 0 m 1、 アセトン 8 0 m 1 をボールミルにカロ え'、 室温で 24時間混合した。 得られたスラリーを、 エバポレーターで 減圧しながら溶媒を蒸発させ、 該スラリ一の粘度が、 1 0 0 0 OmP a 秒になるように調製し、 燃料極層形成用スラリ一 Aを得た。
·酸化二ッケル;平均粒径 7 μ m
•スカンジァセリァ安定化ジルコニァ ; ジルコニァ中のスカンジァの含 有量 1 Omo 1 %、 セリアの含有量 1 mo 1 %、 平均粒径 0. 5 5 m (燃料極層形成用スラリーの焼成)
次いで、該燃料極層形成用スラリ一 Aを用い、スクリーン印刷法にて、 膜厚が 700 mの燃料極層形成用スラリー層を形成させ、 乾燥後、 1 400°C、 3時間焼成し、 燃料極層 Bを製造した。
<電解質基板の製造〉.
(電解質基板形成用スラリ一の調製)
燃料極層形成用スラリ一の調製に用いたスカンジァセリァ安定化ジル コニァ ( l O S c l C e S Z) を 5 5. 02 g、 フタル酸ジ— n—プチ ル 1 0m l、 ォクチルフエ-ルエーテル 2m 1、 燃料極層形成用スラリ 一の調製に用い 分散剤 2m 1、 燃料極層形成用スラリーの調製で用い たポリ ビニルプチラール樹脂 5 g、 イソプロパノール 8 Om 1、 ァセト ン 8 Om 1をボールミルに加え、 室温で 24時間混合した。 得られたス ラリーを、 エバポレータ^-で減圧しながら溶媒を蒸発させ、 該スラリー の粘度が、 1 0 0 0 OmP a秒になるように調製し、 電解質基板形成用 スラリー cを得た。
(電解質基板形成用スラリ一の塗布及び焼成)
該燃料極層 Bの一方の表面に、 該電解質基板形成用スラリー Cを、 ス クリーン印刷法にて、 膜厚が 1 0 πιとなるように塗布し、 乾燥させた 後 1 40 0°Cで、 5時間焼成し、 燃料極層 Bの表面に電解質物質の緻密 層が形成されている電解質基板 D (以下、単に電解質基板 Dと記載する。) を得た。
<多孔質電解質層の形成〉
(多孔質電解質層形成用スラリーの調製)
燃料極層形成用スラリ一の調製に用いたスカンジァセリァ安定化ジル コニァ (l O S c l C e S Z) を 70. 8 g、 炭素粉末 29. 2 g、 フ タル酸ジ一 n—ブチル 1 0 m 1、 オタチルフエ二ノレエーテル 2 m 1、 燃 料極層形成用スラリーの調製に用いた分散剤 2 m 1、 燃料極層形成用ス ラリーの調製で用いたポリビニルプチラール樹脂 5 g、 イソプロパノー ル 8 0m l、 アセ トン 8 0 m 1をボールミルに加え、 室温で 24時間混 合した。 得られたスラリーを、 エバポレーターで減圧しながら溶媒を蒸 発させ、該スラリーの粘度が、 1 000 OmP a秒になるように調製し、 多孔質電解質層形成用スラリー Eを得た。
•炭素粉末;高純度化学工業社製、 平均粒径 5 μ m
(多孔質電解質層形成用スラリ一の塗布及び焼成)
該電解質基板 Dの燃料極層が形成されている面とは反対の面に、 該多 孔質電解質層形成用スラリー Eを、 スク リーン印刷法にて、 膜厚が 1 0 mとなるように塗布し、 乾燥させた。 次いで、 電解質層形成用スラリ 一 Eが塗布されている電解質基板 Dを、 14 00°Cで、 3時間焼成し、 多孔質電解質層が形成されている電解質基板 F (以下、 単に電解質基板 Fと記載する。 ) を得た。 く多孔質電解質層の分析〉
1. 多孔質電解質層の気孔率の測定
該電解質基板 Fを、 電解質基板の表面に対して垂直な面で切断し、 断 面を、 走査型電子顕微鏡で観察した。 得られた S EM写真を用いて、 前 述した方法で、 該電解質基板 Fの多孔質電解質層の気孔率を求めた。 そ して、 気孔率の測定を異なる 3箇所の断面で行ったところ、 気孔率の平 均値は 44 %であった。
2. 比表面積の測定
該電解質基板 Fの多孔質電解質層の比表面積を、 全自動ガス吸着量測 定装置ォートソープ一 1一 C/V PZT CDZMSを用いる K rガス吸 着法により測定した。 その結果、比表面積は 0. 6 7m2/gであった。
3. 伝導率の測定
幅 5 mmX長さ 30 mmX高さ 0. 5 mmのアルミナ角柱上に、 該多 孔質電解質層形成用スラリー Eを塗布し、 焼成して、 幅 5mmX長さ 3 OmmX高さ 0. 0 5 mmの該多孔質電解質層を形成させた。 次いで、 直流四端子法及び交流四端子法により、 該電解質基板 Fの多孔質電解質 層の 1 000°Cの伝導率を測定した。 その結果、 伝導率は 0. 07 S/ c mでめつ 7こ 0
4. 細孔幅が 1 μ m以下の細孔の存在率
上記 1. 気孔率の測定で得られた S EM写真を用いて、 前述した方法 で、 該電解質基板 Fの多孔質電解質層中の細孔幅が 1 /im以下の細孔の 存在率を求めた。 そして、 存在率の測定を異なる 3箇所の断面で行った ところ、 存在率の平均値は 5%であった。
<空気極層の形成 >
(空気極層形成用スラリ ^"の調製)
ランタンス トロンチウムマンガネート (L n o. s S r o. sMn L oOg) 8 2 g、 燃料極層形成用スラリーの調製で用いたスカンジアセリァ安定 化ジルコユア ( l O S c l C e S Z) 1 8 g、 フタル酸ジ一 n—ブチル 1 0m l , ォクチルフエ二ルエーテル 2 m 1、 燃料極層开成用スラリ一 の調製に用いた分散剤 2 m 1、 燃料極層形成用スラリ一の調製で用いた ポリビュルブチラール樹脂 1 0 g、 イソプロパノール 8 0 m 1、 ァセ ト ン 8 0m 1をボールミルに加え、 室温で 24時間混合した。 得られたス ラリーを、 エバポレーターで減圧しながら溶媒を蒸発させ、 該スラリー の粘度が、 1 0 0 00 mP a秒になるように調製し、 空気極層形成用ス ラリ一 Gを得た。
· ランタンスト口ンチウムマンガネート ;平均粒径 0. 4 9 / m
(空気極層形成用スラリーの塗布及び焼成)
上記と同様の方法で電解質基板 Fを得、 該電解質基板 Fの多孔質電解 質層の表面に、該空気極層形成用スラリ一 Gを、スクリーン印刷法にて、 塗布後の膜厚が 20 μπιとなるように塗布し、 乾燥した。 次いで、 空気 極形成用スラリー Gが塗布された電解質基板 Fを、 1 2 0 0°C'で、 3時 間焼成し、 固体酸化物形燃料電池用セル Hを得た。 、 該固体酸化物燃料電池用セル Hの空気極物質充填多孔質電解質層中、 該空気極物質充填多孔質電解質層の見かけ体積に対するのスカンジァセ リア安定化ジルコユアの体積割合は 6 0. 8 %、 ランタンストロンチウ ムマンガネートの体積割合は 7. 2%であった。
(性能評価)
電極物質充填多孔質電解質層の違いによる発電特性の違いを検出する ために、 定常分極測定を行った。 第 9図は、 定常分極測定を行うための 定常分極測定試料の側面図を示す。 定常分極測定試料 6 8は、 直径 1 5 mm、 厚さ 2 mmの円柱状の電解質ペレツト 6 3、 該電角 質ペレツト 6 3の一方の底面の中央に形成されている、 平面視が同心円となる直径 6 mm、 厚さ 1 0 mの円柱状の空気極物質充填多孔質電解質層 64、 該 空気極物質充填多孔質電解質層 64の表面に形成されている、 直径 6 m m、 厚さ 20 μ mの円柱状の空気極層 6 5、 該円柱状の電解質ペレツト 6 3の側面の全周に亘つて、 1. 0 mmの幅で形成されている白金参照 電極 66及び該電解質ペレツト 6 3の他方の底面の中央に形成されてい る、 平面視が同心円となる直径 6mmの白金対極 6 7からなる。
該定常分極測定試料 6 8の製造について述べると、 先ず、 該燃料極層 形成用スラリ一の調製に用いたスカンジァセリァ安定化ジルコニァ ( 1 O S c l C e S Z) を、 0. 3 1 8 3 トン/ c m2の荷重を加えてプレ ス後、 1 40 0°Cで 3時間焼成して、 直径 1 5mm、 厚み 2mmの円柱 状の電解質ペレツ ト 6 3を得た。
次いで、 該電解質ペレット 6 3の一方の底面の中央に、 該多孔質電解 質層形成用スラリー Eを、 スクリーン印刷法にて、 直径が 6 mmの円形 状、 膜厚が 1 0 mとなるように塗布し、 乾燥させた。 そして、 電解質 層形成用スラリー Eが塗布された電解質ペレツト 6 3を、 1 40 0°Cで、 3時間焼成し、多孔質電解質層が形成された電解質ペレツト 6 3を得た。 次-いで、 該多孔質電解質層が形成された電解質ペレツ ト 6 3の多孔質 電解質層の表面に、 該空気極層形成用スラリー Gを、 スクリーン印刷法 にて、塗布後の膜厚が 2 0 mとなるように塗布し、乾燥した。そして、 空気極形成用スラリー Gが塗布された電解質ペレッ ト 6 3を、 1 2 0 0°Cで、 3時間焼成し、 空気極物質充填多孔質電解質層 64及び空気極 層 65が形成された電解質べレット 6 3を得た。 . 次いで、 該空気極物質充填多孔質電解質層 64及び空気極層 6 5が形 成された電解質ペレツト 63の側面及ぴ他方の底面に、白金ペースト(T R— 79 0 5、 田中貴金属社製) を塗布し、 1 00 (TCで焼成して、 該 定常分極測定試料 6 8を得た。 該定常分極測定試料 6 8を、 インピーダンス測定装置 (ソーラトロン 社製) にて、空気雰囲気、 1 0 0 0 °Cの条件下で、 W 1— R間の電位 (界 面過電圧) を変化させた時の W 2— C間の電流密度を測定した。 その結 果を、 第 1表及び第 1 0図に示す。
(実施例 2 )
空気極層形成用スラリ一の調製において、 ランタンス ト口ンチウムマ ンガネート 8 2 g及ぴ燃料極層形成用スラリ一の調製で用いたスカンジ ァセリァ安定化ジルコニァ 1 8 gに代えて、 ランタンス トロンチウムマ ンガネート 1 0 0 gとする以外は、 実施例 1と同様の方法で、 燃料極層 の製造、 電解質基板の製造、 多孔質電解質層の形成及び空気極層の形成 を行い、 固体酸化物形燃料電池用セル Jを得た。 該固体酸化物燃料電池 用セル Jの空気極物質充填多孔質電解質層中、 該空気極物質充填多孔質 電解質層の見かけ体積に対するのスカンジァセリァ安定化ジルコユアの 体積割合は 5 6 %、 ランタンストロンチウムマンガネートの体積割合は 1 2 %であった。
(性能評価)
空気極層形成用スラリ一 Gに代えて、 実施例 2で用いた空気極層形成 用スラリーとする以外は、実施例 1と同様の方法で行った。その結果を、 •第 1表及び第 1 0図に示す。
(比較例 1 ) .
多孔質電解質層の形成を行わない以外は、 実施例 1と同様の方法で行 つた。 すなわち、 実施例 1と同様の方法で、 燃料極層の製造、 電解質基 板の製造及び空気極層の形成を行い、 固体酸化物形燃料電池用セル Kを 得た。
(性能評価) '
多孔質電解質層の形成を行わない以外は、 実施例 1と同様の方法で行 0786
つた。 その結果を、 第 1表及ぴ第 10図に示す。 つまり、 比較例 1で得 た定常分極測定試料は、 実施例 1と同様の方法で、 電解質ペレッ トの製 造、 空気極層の形成、 第一参照電極の形成及び第二参照電極の形成を行 い得られたものである。
第 1表
Figure imgf000043_0001
(符号の説明)
9 電解質層形成用スラリー
1 0 電解質層形成用スラリー層が塗布されている電解質基板
1 1、 41、 60、 71 電解質基板
1 2、 44、 58、 72 電解質物質粉末
1 3 造孔剤
14 電解質層形成用スラリー層
20、 55、 75 多孔質電解質層が形成されている電解質基板 2 1、 5 7、 7 6 細孔
2 2、 46、 5 6 , 7 7 多孔質電解質層
24、 3 3、 5 9 多孔質電解質層の表面
2 5 電極層形成用スラリー層が塗布され、 多孔質電解質層が 形成されている電解質基板
2 6, 7 3 液体分
2 7 電極層形成用スラリ一が充填されている多孔質電解質層
2 8、 4 5、 8 1 電極物質粉末
2 9 電極層形成用スラリ一層
3 0, 8 0 電極物質粉末が充填されている電極物質充填多孔質電解 質層及ぴ電極層が形成されている電解質基板
3 1、 42、 8 2 電極物質充填多孔質電解質層
3 2、 4 3、 8
34 電極層形成用スラリ一
3 5 複合粒子
3 6 母粒子
3 7- 子粒子.
3 8 1 電極物質
3 8 2 電解質物質
3 9 電極物質と電解質物質の凝集体
40 固体酸化物形燃料電池用セル
5 1、 5 3、 6 1 枠囲み部分
5 2, 6 2 細孔の断面
54 空隙 4 7の断面
6 3 電解質べレット
6 4 空気極物質充填多孔質電解質層 6 5 空気極層
6 6 白金参照電極
6 7 白金対極
6 8 定常分極測定試料
7 0 スラリーが塗布されている電解質基板
7 4 電解質物質粉末を含有するスラリー層
7 8 電極物質粉末の粒径より小さい部分
7 9 電解質物質粉末を含有するスラリー 産業上の利用可能性
本発明の固体酸化物形燃料電池用セル又は本発明の固体酸化物形燃料 電池用セルの製造方法を用いることにより、 電池性能に優れる固体酸化 物形燃料電池を製造することができる。

Claims

請求の範囲
1 . 電解質基板の表面に、 電解質物質粉末及び造孔剤を含有する電解質 層形成用スラリーを塗布し、 次いで、 該電解質基板を焼成し、 多孔質電 解質層が形成されている電解質基板を得る多孔質電解質層形成工程、 及 ぴ該多孔質電解質層が形成されている電解質基板の多孔質電解質層の表 面に、 電極物質粉末、 電極物質粉末と電解質物質粉末との混合粉末、 又 は電極物質と電解質物質との複合体粉末を含有する電極層形成用スラリ 一を塗布し、 次いで、 該多孔質電解質層が形成されている電解質基板を 焼成し、 電極物質充填多孔質電解質層及ぴ電極層が形成されている電解 質基板を得る電極層形成工程を有することを特徴とする固体酸化物形燃 料電池用セルの製造方法。
2 . 前記造孔剤の平均径に対する前記電極層形成用スラリーに含有され ている前記電極物質粉末、 前記混合粉末、 又は前記電極物質と電解質物 質との複合体粉末の平均粒径の.比が、 0 . 0 0 1〜 1であることを特徴 とする請求項 1に記載の固体酸化物形燃料電池用セルの製造方法。
3 . -前記電解質層形成用スラリーに含有されている前記電解質物質粉末 の平均粒径に対する前記造孔剤の平均径の比が、 2〜1 0 0 0であるこ とを特徴とする請求項 1又は 2いずれか 1項に記載の固体酸化物形燃料 電池用セルの製造方法。
4 . 前記電解質層形成用スラリー中、 前記造孔剤の体積割合に対する前 記電解質層形成用スラリーに含有されている前記電解質物質粉末の体積 割合の比が、 0 . 1〜1 0であることを特徴とする請求項 1〜3いずれ か 1項に記載の固体酸化物形燃料電池用セルの製造方法。
5 . 電解質物質で形成されており、 気孔率が 3 0〜7 0 %である多孔質 電解質層の細孔に、 電極物質粉末、 電極物質粉末と電解質物質粉末との 混合粉末、 又は電極物質と電解質物質との複合体粉末を充填して得られ る電極物質充填多孔質電解質層を有することを特徴とする固体酸化物形 燃料電池用セル。
6 . 前記多孔質電解質層の比表面積が 0 . 1〜 1 O m 2 Z gであること を特徴とする請求項 5記載の固体酸化物形燃料電池用セル。
7 . 電解質物質で形成されており、 電極物質充填多孔質電解質層の見か け体積に対する多孔質電解質層の細孔の体積比率が 3 0〜7 0 %である 多孔質電解質層、 及び該多孔質電解質層の細孔に充填されている電極物 質粉末、 電極物質粉末と電解質物質粉末との混合粉末、 又は電極物質と 電解質物質との複合体粉末からなる電極物質充填多孔質電解質層を有す ることを特徴とする固体酸化物形燃料電池用セル。
8 . 前記電極物質充填多孔質電解質層中、 前記多孔質電解質層の細孔に 充填されている前記電極物質粉末の充填量が、 該電極物質充填多孔質電 解質層の見かけ体積に対して、 体積割合で 5〜 5 0 %であることを特徴 とする請求項 5〜 7いずれか 1項記載の固体酸化物形燃料電池用セル。
PCT/JP2006/300786 2005-02-28 2006-01-13 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法 WO2006092912A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007505816A JP4143938B2 (ja) 2005-02-28 2006-01-13 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
DE112006000220T DE112006000220T5 (de) 2005-02-28 2006-01-13 Zelle für Festoxid-Brennstoffzelle und Verfahren zur Herstellung einer Zelle für Festoxid-Brennstoffzelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005052648 2005-02-28
JP2005-052648 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006092912A1 true WO2006092912A1 (ja) 2006-09-08

Family

ID=36940954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300786 WO2006092912A1 (ja) 2005-02-28 2006-01-13 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法

Country Status (4)

Country Link
US (1) US20080102337A1 (ja)
JP (1) JP4143938B2 (ja)
DE (1) DE112006000220T5 (ja)
WO (1) WO2006092912A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094365A (ja) * 2010-10-27 2012-05-17 Kikusui Chemical Industries Co Ltd 固体酸化物形燃料電池用単セル
JP2012119316A (ja) * 2010-12-01 2012-06-21 Samsung Electro-Mechanics Co Ltd 燃料電池用電極材料、これを含む燃料電池及びその製造方法
JP2016501435A (ja) * 2012-12-18 2016-01-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 固体酸化物燃料電池における層のための粉末混合物
CN106688130A (zh) * 2014-09-19 2017-05-17 大阪瓦斯株式会社 电化学元件、固体氧化物型燃料电池单元、以及它们的制造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048445A2 (en) 2006-10-18 2008-04-24 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
US10615444B2 (en) 2006-10-18 2020-04-07 Bloom Energy Corporation Anode with high redox stability
US20080261099A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite SOFC electrolyte
US20080254336A1 (en) * 2007-04-13 2008-10-16 Bloom Energy Corporation Composite anode showing low performance loss with time
DE102007026233A1 (de) * 2007-05-31 2008-12-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung einer gasdichten Festelektrolytschicht und Festelektrolytschicht
US8617763B2 (en) * 2009-08-12 2013-12-31 Bloom Energy Corporation Internal reforming anode for solid oxide fuel cells
WO2011094098A2 (en) * 2010-01-26 2011-08-04 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
JP4773588B1 (ja) * 2010-06-15 2011-09-14 日本碍子株式会社 燃料電池セル
US8440362B2 (en) 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
US20130266725A1 (en) * 2012-04-06 2013-10-10 Chun Lu Ceramic-supported metal-containing composites for rechargeable oxide-ion battery (rob) cells
US9515344B2 (en) 2012-11-20 2016-12-06 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
DE102012223794A1 (de) * 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Wiederaufladbarer elektrischer Energiespeicher, insbesondere in Form eines Metalloxid-Luft-Energiespeichers, mit wenigstens einem wenigstens ein Speichermaterial zur Speicherung elektrischer Energie umfassenden Speicherelement
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
EP2814099A1 (en) 2013-06-12 2014-12-17 Topsøe Fuel Cell A/S Electrochemical cell
US10651496B2 (en) 2015-03-06 2020-05-12 Bloom Energy Corporation Modular pad for a fuel cell system
KR102141266B1 (ko) * 2016-09-30 2020-08-04 주식회사 엘지화학 고체 산화물 연료전지의 전해질, 이를 포함하는 고체 산화물 연료전지, 상기 전해질용 조성물 및 상기 전해질의 제조방법
JP6879759B2 (ja) * 2017-02-09 2021-06-02 株式会社日本触媒 ジルコニア電解質およびその製造方法
US10680251B2 (en) 2017-08-28 2020-06-09 Bloom Energy Corporation SOFC including redox-tolerant anode electrode and system including the same
WO2023075776A1 (en) * 2021-10-28 2023-05-04 General Electric Company Solid state battery, ceramic electrolyte structure and methods of making

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722056A (ja) * 1993-07-02 1995-01-24 Fuji Electric Co Ltd 固体電解質型燃料電池の製造方法
JPH1021934A (ja) * 1996-07-01 1998-01-23 Mitsubishi Heavy Ind Ltd 燃料電池用電極
JP2000200614A (ja) * 1999-01-06 2000-07-18 Mitsubishi Materials Corp 固体酸化物型燃料電池の電極とその製造方法
JP2001102061A (ja) * 1999-10-01 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池用燃料極の作製法
JP2003017073A (ja) * 2002-05-27 2003-01-17 Kyocera Corp 固体電解質型燃料電池セルおよびその製造方法
WO2003098724A1 (fr) * 2002-05-22 2003-11-27 Nippon Shokubai Co., Ltd. Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production
JP2005026055A (ja) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd 燃料電池用複合電極及び固体電解質型燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026134B1 (en) * 1998-05-20 2003-11-19 Nippon Shokubai Co., Ltd. Porous ceramic sheet, process for producing the same, and setter for use in the process
US7740772B2 (en) * 2002-06-06 2010-06-22 The Trustees Of The University Of Pennsylvania Ceramic anodes and method of producing the same
US6998187B2 (en) * 2003-08-07 2006-02-14 Nanodynamics, Inc. Solid oxide fuel cells with novel internal geometry
JP2005116225A (ja) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd 固体酸化物形燃料電池用電極及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722056A (ja) * 1993-07-02 1995-01-24 Fuji Electric Co Ltd 固体電解質型燃料電池の製造方法
JPH1021934A (ja) * 1996-07-01 1998-01-23 Mitsubishi Heavy Ind Ltd 燃料電池用電極
JP2000200614A (ja) * 1999-01-06 2000-07-18 Mitsubishi Materials Corp 固体酸化物型燃料電池の電極とその製造方法
JP2001102061A (ja) * 1999-10-01 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池用燃料極の作製法
WO2003098724A1 (fr) * 2002-05-22 2003-11-27 Nippon Shokubai Co., Ltd. Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production
JP2003017073A (ja) * 2002-05-27 2003-01-17 Kyocera Corp 固体電解質型燃料電池セルおよびその製造方法
JP2005026055A (ja) * 2003-07-02 2005-01-27 Nissan Motor Co Ltd 燃料電池用複合電極及び固体電解質型燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094365A (ja) * 2010-10-27 2012-05-17 Kikusui Chemical Industries Co Ltd 固体酸化物形燃料電池用単セル
JP2012119316A (ja) * 2010-12-01 2012-06-21 Samsung Electro-Mechanics Co Ltd 燃料電池用電極材料、これを含む燃料電池及びその製造方法
JP2016501435A (ja) * 2012-12-18 2016-01-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 固体酸化物燃料電池における層のための粉末混合物
KR101734854B1 (ko) * 2012-12-18 2017-05-12 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 고체산화물 연료전지 층의 분말 혼합물
CN106688130A (zh) * 2014-09-19 2017-05-17 大阪瓦斯株式会社 电化学元件、固体氧化物型燃料电池单元、以及它们的制造方法
CN106688130B (zh) * 2014-09-19 2020-08-11 大阪瓦斯株式会社 电化学元件、固体氧化物型燃料电池单元、以及它们的制造方法

Also Published As

Publication number Publication date
JPWO2006092912A1 (ja) 2008-08-07
US20080102337A1 (en) 2008-05-01
JP4143938B2 (ja) 2008-09-03
DE112006000220T5 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
WO2006092912A1 (ja) 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
JP5469795B2 (ja) サーメット電解質を用いたアノード支持固体酸化物燃料電池
AU2004216002B9 (en) Porous electrode, solid oxide fuel cell, and method of producing the same
Küngas et al. Restructuring porous YSZ by treatment in hydrofluoric acid for use in SOFC cathodes
JP2007529852A5 (ja)
JP5710701B2 (ja) 酸化ビズマスを含むセリア系組成物、セリア系複合電解質粉末、及びこれらの焼結方法、並びにその焼結体
JP2006344543A (ja) 固体酸化物形燃料電池用セルの製造方法
JP2012134122A (ja) 固体酸化物型燃料電池
EP2538474A2 (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
JP5546559B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP2006147334A (ja) 固体酸化物形燃料電池の燃料極用材料、固体酸化物形燃料電池用燃料極および固体酸化物形燃料電池
JP2018524765A (ja) 空気極組成物、空気極およびこれを含む燃料電池
Liu et al. A high‐performance solid oxide fuel cell with a layered electrolyte for reduced temperatures
KR100692642B1 (ko) 고체산화물 연료전지 전해질용 이트리아 안정화 지르코니아졸의 제조 방법과 이를 이용한 전해질 박막의 형성 방법
JP6664132B2 (ja) 多孔質構造体とその製造方法、及びそれを用いた電気化学セルとその製造方法
KR101362063B1 (ko) 세리아계 조성물, 세리아계 복합 전해질 분말 및 이를 이용한 소결 방법 및 소결체
JP7285117B2 (ja) 固体酸化物形燃料電池の支持体形成用材料およびその利用
JP2007115536A (ja) 多孔質固体酸化物形燃料電池用電極の製造方法
KR101572477B1 (ko) 고체산화물형 연료전지의 지지체를 겸하는 연료극 및 그의 제조방법
JP2009231052A (ja) 固体酸化物形燃料電池用セル及びその製造方法
JP5365123B2 (ja) 固体酸化物形燃料電池用電解質、及びこれを用いた固体酸化物形燃料電池
JP7107875B2 (ja) 燃料極-固体電解質層複合体の製造方法
JP2004303712A (ja) 固体酸化物形燃料電池
JP5655032B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP4626756B2 (ja) 固体酸化物形燃料電池用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505816

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120060002201

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11662924

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112006000220

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06700935

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6700935

Country of ref document: EP