WO2006085576A1 - プラズマ源、イオン源、及び、イオン生成方法 - Google Patents

プラズマ源、イオン源、及び、イオン生成方法 Download PDF

Info

Publication number
WO2006085576A1
WO2006085576A1 PCT/JP2006/302243 JP2006302243W WO2006085576A1 WO 2006085576 A1 WO2006085576 A1 WO 2006085576A1 JP 2006302243 W JP2006302243 W JP 2006302243W WO 2006085576 A1 WO2006085576 A1 WO 2006085576A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
electrode
plasma
metal
thermal electrode
Prior art date
Application number
PCT/JP2006/302243
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Kasama
Kenji Omote
Kuniyoshi Yokoo
Kenichiro Komatsu
Original Assignee
Ideal Star Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc. filed Critical Ideal Star Inc.
Publication of WO2006085576A1 publication Critical patent/WO2006085576A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Definitions

  • the present invention relates to a plasma source that generates ions by a contact ionization method, an ion source, and an ion generation method, and more particularly, to a plasma source that is useful for manufacturing an endohedral fullerene.
  • Patent Document 1 Japanese Patent Laid-Open No. 02-311757
  • Non-Patent Document 2 Plasma 'Nuclear Fusion Society Journal No. 75-8 No. 8 pp.927-933 (August 1999) "Characteristics and Applications of Fullerene Plasma"
  • Non-Patent Document 3 0. Heinz, The Review of Scientific Instrument, Vol. 39 (No. 8), pp. 12 29-1230, August 1968
  • Atomic inclusion fullerene is a substance in which one or more atoms are confined in the internal space of a carbon cluster known as fullerene.
  • the first endohedral fullerene for which the hypothesis of existence was proposed was La®C by the group of Smalley et al. In 1991 (Non-patent Document 1)
  • the synthesis method attempted at this time was to apply laser to a sample made of La 0 and graphite powder.
  • Non-Patent Document 2 Currently, other than the laser evaporation method described above, the arc discharge method and the plasma synthesis method described in Non-Patent Document 2 have been tried as methods for producing the carbon cluster base material. We were unable to efficiently synthesize a large amount of carbon cluster base material.
  • the plasma synthesis method uses a carbon cluster, for example, an internal atomic plasma flow in a vacuum vessel.
  • fullerene is injected and the inner fullerene is deposited on a deposition substrate disposed downstream of the plasma flow.
  • the method for producing endohedral fullerene by the plasma synthesis method will be described using Fig. 5.
  • alkali metal vapor is ejected from a sublimation oven 52 containing encapsulated atoms, for example, alkali metal, toward a single-layered hot electrode 51 having a flat surface, a plasma flow 55 is formed by contact ionization.
  • the plasma flow 55 moves toward the deposition substrate 57.
  • the fullerene vapor 56 ejected from the fullerene sublimation oven 53 reacts with electrons and alkali metal ions constituting the plasma flow 55 to generate inclusion fullerene, which is deposited on the deposition substrate 57.
  • Bernas-type, Freeman-type, and microwave-type ion sources are known as ion sources used in semiconductor manufacturing apparatuses, for example, ion implantation apparatuses.
  • atoms are ionized by free electrons colliding with neutral atoms in the gas phase. For this reason, the ion current efficiency cannot be increased, and the ion current that can be extracted is lower than that of the conventional plasma source.
  • the ion generation method using the contact ionization plasma method is known!
  • ionization is performed by bringing a component to be analyzed into contact with a heated filament.
  • the contact area with the filament cannot be increased, so that sufficient ion current can be taken for measurement applications.Also, sufficient ion current can be taken for large-scale synthesis of endohedral fullerenes. I helped.
  • the force sword type ion source shown in Fig. 2 is used to generate alkali metal ions.
  • an alkali metal ion source that heats a force sword impregnated with porous molybdenum plate 29 by heat treatment with a tungsten wire heater 26 is available from Heat Wave Labs Inc. in the United States.
  • this ion source can only obtain an ion current of about 0.1 mA at the maximum (Non-patent Document 3). For this reason, it was impossible to extract the ionic current necessary for mass synthesis of endohedral fullerenes.
  • Encapsulated fullerene is expected to be applied as a material for pharmaceuticals, electronic devices, recording media, fuel cells, etc., utilizing its unique molecular structure, electrical properties, and magnetic properties.
  • a metal-encapsulated fullerene encapsulating a metal atom such as an alkali metal or an alkaline earth metal is interesting and has a characteristic as an inclusion target atom.
  • the present invention (1) is a thermal electrode in which a metal plate having a plurality of openings is laminated, which generates ions by injecting vapor or gas containing ions to be ionized onto the surface.
  • the present invention (2) is the hot electrode of the invention (1), wherein the ion target atom is an alkali metal.
  • the material of the metal plate is tungsten, molybdenum, tantalum, rhenium.
  • the thermal electrode according to the invention (1) or the invention (2) characterized in that it is a material containing a metal or alloy having one or more selected elemental forces.
  • the present invention (4) is the thermal electrode according to any one of the inventions (1) to (3), wherein the metal plate is a wire mesh having a plurality of metal line forces.
  • the present invention (5) is the thermal electrode of the invention (4), characterized in that the thermal electrode is heated by passing an electric current through the metal wire.
  • the present invention (6) is a plasma source comprising the thermal electrode of the invention (1) to the invention (5).
  • the present invention (7) is an ion source comprising the thermal electrode of the invention (1) to the invention (5).
  • the present invention (8) is an apparatus for producing a carbon cluster base material, characterized in that plasma is generated using the plasma source of the invention (6).
  • the present invention (9) is characterized in that ions are generated using the ion source of the invention (7).
  • the present invention (10) is an ion generation method for generating ions by bringing the ionization target atom into contact with the thermal electrode of the inventions (1) to (5).
  • the present invention (11) is a method for producing a carbon cluster base material, characterized in that plasma is generated using the plasma source of the invention (6).
  • the present invention (12) is a method for manufacturing a semiconductor device, characterized in that an ion beam is generated using the ion source of the invention (7).
  • An alkali metal vapor is jetted onto the hot electrode, and a plasma flow is taken out from the opposite side of the jetting surface (transmission type plasma source).
  • Alkali metal atoms repeatedly contact a high-temperature metal body, and the contact probability increases dramatically. Ion ion efficiency is improved and a large ion current can be extracted.
  • a plurality of metal plates having a plurality of openings are stacked to constitute a thermal electrode.
  • Alkali metal vapor is jetted onto the thermal electrode, and a plasma flow is taken out in a direction different from the vapor jet direction with the same surface force as the jetting surface (reflection plasma source).
  • the probability that alkali metal atoms come into contact with a high-temperature metal body is further increased, ion efficiency is improved, and a large ion current can be extracted.
  • one of the plurality of metal plates constituting the thermal electrode is a plate without a hole in the innermost metal plate as viewed from the steam injection side force. Since the alkali metal vapor does not permeate the hot electrode, the supplied alkali metal atoms can be ionized without waste.
  • thermoelectrode Using a metal wire made of a high-melting-point, high-resistance material such as tungsten, molybdenum, tantalum, rhenium, osmium, or iridium, and forming a wire mesh-shaped thermal electrode, it is possible to generate heat by passing current through the thermoelectrode itself. It is possible to reduce the power consumption because the use efficiency of thermal energy is higher than that of a thermal electrode that is indirectly heated by a heater. 6. By using rhenium, osmium, or iridium having a high work function as the material of the hot electrode, alkali metal atoms are easily ionized, so that ion efficiency is improved and a large ion current can be extracted.
  • a metal wire made of a high-melting-point, high-resistance material such as tungsten, molybdenum, tantalum, rhenium, osmium, or iridium
  • the high current ion source of the present invention for example, it becomes possible to increase the current of ion implantation in the semiconductor manufacturing process, and it is effective in shortening the manufacturing time of the source / drain diffusion process.
  • FIG. 1 (a) is a conceptual diagram of an ion source having a transmissive laminated thermal electrode according to the present invention.
  • (b) is a front view of a specific example of the laminated thermal electrode used in the ion source shown in (a).
  • FIG. 2 is a conceptual diagram of a conventional alkali metal impregnated sword type ion source.
  • FIG. 3 is actual measurement data of ion current in an ion beam generated by an ion source having a transmission type laminated thermal electrode according to the present invention.
  • FIG. 4 is a conceptual diagram of an ion source having a reflective laminated thermal electrode according to the present invention.
  • FIG. 5 is a conceptual diagram of an endohedral fullerene production apparatus using a conventional thermal electrode.
  • FIG. 6 (a) to (d) are conceptual diagrams of the mechanism of contact ionization.
  • FIG. 7 is measured data of ion current in plasma generated by a plasma source having a Re single-layered thermal electrode according to the present invention.
  • FIG. 8 is mass spectrometry data of endohedral fullerenes produced using the plasma source according to the present invention.
  • Figures 6 (a) to (d) show that the inventors analyzed It is a conceptual diagram of the mechanism of the contact ionization used.
  • FIG. 6 (d) is a conceptual diagram of contact ionization related to a conventional plasma source.
  • An atomized vapor 92 such as an alkali metal is jetted onto a hot electrode 91 heated to 1000 to 3000 ° C.
  • a part of the atoms 94 is taken away by the thermal electrode 91 to become positive ions 95.
  • the remaining atoms do not become ions and leave the hot electrode 91 as neutral atoms 96.
  • the atoms generally move according to the flow of the vapor, approaching the thermal electrode, hitting it, and moving away.
  • the atoms move randomly, so some atoms come into contact with the thermal electrode many times, but most atoms have the opportunity to contact the thermal electrode only once. Therefore, in a conventional plasma source using a single-layered hot electrode having no holes, the ratio of ionized atoms contained in the plasma flow 93, that is, ion efficiency is not high.
  • Thermal electrode made of a metal plate having a plurality of openings
  • the inventors configured a thermal electrode by laminating a plurality of metal plates having a plurality of openings, and by ejecting ions to be ionized onto the thermal electrode, the probability that the atoms are in contact with the thermal electrode.
  • a plasma source according to the present invention has been devised.
  • the ionization is not limited to the reflection type contact ionization in which the direction of movement of the conventional vapor flow and plasma flow is opposite, but also in the case of transmission type contact ionization with the same movement direction of vapor flow and plasma flow. Can be generated. Accordingly, there is an effect that the degree of freedom in designing a manufacturing apparatus using a plasma source or an ion source is increased.
  • FIG. 6 (a) is a conceptual diagram of contact ionization by a transmissive laminated thermal electrode.
  • the thermal electrode is a laminate of three metal plates 61, 62, 63. Each metal plate has a plurality of openings and is heated to 1000-3000 ° C.
  • Ionization target atomic vapor 64 is sprayed onto the metal plate 61.
  • the ions 66 to be ionized pass through the holes in the metal plate and contact the hot metal plates 61, 62, 63 one after another. Some atoms lose their electrons to the metal plate and become positive ions 67.
  • the ions that have passed through the laminate become a plasma flow 65 that flows in the same direction as the vapor 64. Since the contact probability between the atom and the metal plate increases, the ion efficiency in the plasma flow 65 increases, and a large ion current can be extracted.
  • Fig. 6 (b) is a conceptual diagram of contact ionization by a reflective laminated thermal electrode.
  • 3 thermal electrodes It is a laminate of metal plates 71, 72, 73. Each metal plate has a plurality of openings and is heated to 1000-3000 ° C.
  • Ionization target atomic vapor 74 is sprayed onto metal plate 73.
  • the ions 76 to be ionized pass through the holes in the metal plate and contact the hot metal plates 73, 72, 71 one after another. Some atoms pass through the laminate, while the remaining atoms flow in the direction opposite to the direction of vapor incidence. Those atoms contact the metal plates 72 and 73 again.
  • the ionization efficiency can be further increased.
  • a reflective laminated thermal electrode as shown in FIG. 6 (c)
  • the thermal electrode When a metal plate with holes is used as the thermal electrode, the ion efficiency can be improved even with a single-layer metal plate, compared to the conventional case of using a flat metal plate without holes. This is because when there are many holes, the surface area increases, and the probability of contact between the atoms and the metal plate increases. Similarly, even if there is no hole, the use of a metal plate with an uneven surface, for example, a porous metal plate, increases the surface area, thereby improving ion efficiency.
  • the thermal electrode according to the present invention uses a metal plate having a plurality of openings as described above.
  • the opening means a through-hole that is not just a recess.
  • a thin metal plate having a large number of holes may be used, or a wire mesh produced using a plurality of metal wires may be used.
  • the metal mesh may be in the form of a mesh having vertical lines and horizontal lines, or may be in the form of stripes having only vertical lines or horizontal lines. Furthermore, it may be made by combining metal wires with various angles such as diagonal as well as vertical and horizontal.
  • a heating method of the hot electrode there is a method in which a heater is disposed in the vicinity of the metal plate and heated by radiant heat.
  • a heater is disposed in the vicinity of the metal plate and heated by radiant heat.
  • an electric current is directly passed through the wire mesh to form the wire mesh. It is also possible to generate heat. In this case, since the heat utilization efficiency is high, it is possible to reduce power consumption.
  • the size of the opening formed in the metal plate is set in a range of 0.01 mm or more and 1 cm or less, It is preferable to arrange the openings uniformly in the plane of the metal plate. If the number of laminated plates is 2 or more, it is more preferable to laminate 3 or more effective forces.
  • the thickness of the thin plate is preferably 0.01 mm or more and 1 cm or less.
  • the diameter of the metal wire is preferably 0.01 mm or more and 1 cm or less.
  • the laminates may be in contact with each other. Further, the interval between the laminated plates is preferably set in the range of 0.01 mm or more and 10 cm or less. It is more preferable to set it in the range of 1 mm or more and 1 cm or less. By arranging the spacers between the laminated plates, it becomes possible to easily arrange the laminated plates with high precision and fine intervals.
  • It must be a refractory metal that does not dissolve under the set conditions such as the degree of vacuum and temperature when generating ions.
  • the work function difference from the ionization target atom is a value that causes sufficient electron transfer with thermal energy.
  • the heating temperature of the hot electrode is usually set in the range of 1000 to 3000 ° C. Therefore, as the material of the metal plate, the high-melting point metals such as tungsten (W), molybdenum (Mo), tantalum (Ta), rhenium (Re), osmium (Os), and iridium (Ir) are the most powerful. It is preferable to select and use appropriately considering functions, processability, and manufacturing costs. In addition, it is also possible to use an alloy of these materials by selecting a plurality of elements.
  • metal oxides are reduced in a hydrogen atmosphere, and the resulting metal powder is pressed or sintered at high temperature. Solidify to make a metal material. This metal material can be rolled to produce a plate-like or linear member.
  • “Plasma” includes positively charged particles and negatively charged particles, and is generally electrically neutral. It is a group of charged particles that keeps.
  • a “plasma source” is an apparatus that generates plasma. Plasma exhibits unique properties such as the flow of electric current due to the movement of charged particles that interact with each other due to Coulomb forces between charged particles.
  • a plasma source excites atoms by ionization methods such as gas discharge, impact ionization, and contact ionization to generate plasma that is ion and electron force.
  • Plasma can control the movement of charged particles by an external electric field or an external magnetic field, and is applied to microfabrication technologies such as CVD, sputtering, and etching.
  • An “ion source” is an apparatus that generates an ion or ion beam.
  • ion sources use a method in which a plasma including ions and electrons is generated from a plasma source, and only necessary ions are accelerated and extracted as an ion beam by applying an electric field and / or mass spectrometry with an extraction electrode. Yes.
  • the ion beam generated by the ion source is applied to microfabrication technologies such as ion implantation and FIB.
  • a gas or vapor consisting of atoms to be ionized When a gas or vapor consisting of atoms to be ionized is jetted to a metal body heated to a high temperature in a vacuum atmosphere, electrons are excited by thermal energy, causing electron transfer between the ions to be ionized and the metal body, and positive or negative ions. Produces.
  • This is an ionization method called “contact ionization”.
  • the metal body is usually heated to 1000 to 3000 ° C., connected to a power source for electron irradiation or ion extraction, and a voltage is applied. For this reason, a metal body used for contact ionization is called a “thermal electrode”.
  • fullerenes In addition to endohedral fullerenes in which atoms or molecules other than carbon are confined in the hollow part of cage-like fullerene molecules, heterofullerenes, chemically modified fullerenes, fullerene polymers, fullerene polymers Shall be included.
  • the production apparatus of the present invention can be used for the production of these fullerene base materials by the reaction of plasma and fullerene, in addition to the production of endohedral fullerenes.
  • mixed fullerene can be used as the fullerene as a raw material.
  • “mixture A “fullerene” is a carbon cluster material in which a plurality of different types of fullerenes are mixed.
  • the fullerene used as a raw material includes nitrogen heterofullerene and acid fullerene.
  • Nitrogen heterofullerene and acid fullerene are synthesized in large quantities when producing fullerene-based materials such as endohedral fullerene by plasma treatment of force fullerene, which is a substance contained in the fullerene-based material defined above. It is possible to produce fullerene-based materials with higher industrial value than nitrogen heterofullerene and acid fullerene by reusing them.
  • Carbon cluster is a general term for molecules bonded with carbon, and includes diamond, graphite, and carbon nanotubes in addition to fullerene.
  • the “carbon cluster base material” is a material manufactured based on a carbon cluster, and includes, for example, a peapod in which a carbon nanotube includes a fullerene base material in addition to the above-described fullerene base material.
  • FIG. 1 (a) is a conceptual diagram of an ion source using a transmissive laminated thermal electrode according to the present invention.
  • the ion source shown in FIG. 1 (a) is composed of a vacuum vessel 8, a sublimation oven 2 filled with an alkali metal 4, a laminated thermal electrode 1, and a lead electrode 3.
  • FIG. 1 (b) is a front view of a specific example of the laminated thermal electrode.
  • the thermal electrode shown in Fig. 1 (b) has a wire diameter of 0.03 mm and a density of 100 mesh Z inch.
  • a commercially available tungsten wire mesh (Yuraco catalog number: W-468071) is shifted by half a pitch vertically and horizontally.
  • Two electrodes are welded on top of a 0.3 mm thick tantalum plate.
  • the electrode shape is such that the width of the wire mesh end where the current for heating the electrode flows in and out is larger than the width of the area where the neutral atoms come in contact, The temperature rise in the contact ionization part is made uniform and stabilized.
  • a current of about 30 A is applied to the contact ionization electrode 1 at an applied voltage of 10 V, and the temperature of the contact ionization electrode 1 is raised to about 1400 ° C. by self-heating. This temperature can be adjusted to 1000-3000 ° C by changing the applied voltage.
  • the sublimation oven 2 is heated, and the sublimated alkali metal vapor 7 is sprayed from the spray port 6 to the electrode 1 for contact ionization.
  • Alkali metal atoms come into contact with the two laminated tungsten meshes, and take away electrons to become positive ions.
  • the generated positive ions are accelerated by the electric field generated by the extraction electrode 3 applied with a negative voltage and extracted as an ion beam 5.
  • FIG. 4 is a conceptual diagram of an ion source having a reflective laminated thermal electrode according to the present invention.
  • the ion source shown in FIG. 4 includes a sublimation oven 42 filled with an alkali metal 44, a laminated thermal electrode 41, and an extraction electrode 43.
  • the laminated thermal electrode for example, a tungsten wire mesh shown in FIG. 1 (b) can be used. 4 is used, the alkali metal vapor 47 is sprayed onto the laminated thermal electrode 41 at an incident angle of 45 °, for example. Alkali metal atoms come into contact with the laminated thermal electrode 41 to generate alkali metal positive ions. The generated positive ions are accelerated by the extraction electrode 43 to which a negative voltage is applied, and become an ion beam 45 that flows in the direction of the I extraction electrode 43.
  • thermal electrode that has particularly high generation efficiency of metal ions.
  • the inventors use rhenium, osmium, or iridium, which has a work function larger than tungsten, which is conventionally used for tungsten, as the material of the metal plate, so that even a single-layer metal plate without an opening is conventionally used. It was found that ionic efficiency can be improved.
  • the ionization target atom is a metal, in particular, alkali metal or alkaline earth
  • a plate having rhenium, osmium, or iridium force as the metal plate, the difference between the ionization voltage of the ionization target atom and the work function of the metal plate material is reduced. Since the probability that the atom contacts the metal plate and becomes an ion (ion probability) increases, a large ion current can be extracted.
  • rhenium, osmium, or iridium can be calored by pressing or high-temperature sintering. Since both are metals with high material costs, for example, rhenium sputtered on a tungsten plate (manufactured and sold by Tokyo Tungsten Co., Ltd.) or a plate with rhenium-tungsten alloy strength to reduce costs. (Manufactured and sold by Toshiba Materials) can also be used.
  • the high current ion source of the present invention for example, it is possible to increase the current of ion implantation in the semiconductor manufacturing process, and it is effective in shortening the manufacturing time of the source / drain diffusion process.
  • the plasma source of the present invention can be used to generate ions of alkali metals such as lithium and sodium and alkaline earth metals such as calcium.
  • the ion source of the present invention can be used to generate ions such as phosphorus, boron, arsenic, and antimony.
  • ion source using the transmissive laminated thermal electrode shown in Fig. 1 was fabricated and the dependence of the ionic current on the lithium oven temperature was measured (Fig. 3).
  • the ionic current is plotted as a relative ratio between the case where the laminated hot electrode of the present invention is used and the case where a conventional hot electrode without a single layer hole is used.
  • the laminar thermal electrode used was a laminate of three wire meshes with tungsten wires with a diameter of 1 mm arranged in a mesh (vertical and horizontal) at intervals of 5 mm. A current was passed through both ends of the hot electrode to generate heat, and the electrode temperature was about 1400 ° C. When the lithium oven temperature was 480 ° C, the ion current was about 20 times higher than that of the conventional ion source.
  • a plasma source using a Re-made hot electrode was prepared and compared with a plasma source using a W-made hot electrode.
  • a metal plate for a sputtering target manufactured by Goodfellow was used as the Re thermal electrode.
  • the electrode material was 99.99% Re
  • the impurities contained 1150ppm oxygen and 62ppm hydrogen.
  • the shape of the hot electrode is a disk made of Re with a thickness of 1 mm and a diameter of 50 mm, and a product of W with a disk of 4 mm in thickness and a diameter of 50 mm. In both cases, single-layer flat plates without holes were used.
  • the plasma source was placed in a vacuum chamber, and the hot electrode was heated to 1700-1900 ° C by a heater placed on the back surface of the hot electrode. Li vapor was sprayed onto the surface of the hot electrode to ionize Li molecules and generate plasma.
  • the plasma was confined by a magnetic field generated by an electromagnetic coil placed around the vacuum chamber, and the Li ion current in the plasma was measured with an ion probe.
  • FIG. 7 is a graph showing measurement data of the hot electrode temperature dependence of Li ion current.
  • the temperature of the Li sublimation oven was 540 ° C.
  • the power applied to the heater that heats the hot electrode was 2 to 2.4kW, and the magnetic field strength was 0.03T for the Re plasma source and 0. IT for the W plasma source.
  • the graph shows that both the Re plasma source and the W plasma source increase the ionic current as the temperature of the hot electrode rises. It can also be seen that the Re plasma source can take 3.5 to 3.8 times more ion current force than the W plasma source.
  • a plasma source using a Re-made thermal electrode is attached to the Li-encapsulated fullerene production device, and the Li ion plasma generated by the plasma source is irradiated onto the deposition substrate, and at the same time, fullerene vapor from fullerene sublimation oven cover is injected onto the deposition substrate Li-encapsulated fullerene was synthesized on the deposition substrate.
  • the synthesis conditions are as follows. Thermal electrode input power: 2.3 to 2.5kW, magnetic field strength: 0.03T, substrate bias voltage: -30V, Li-ion current: 4.5 to 6.6mA, C60 oven temperature: 580 to 600 ° C, synthesis time: 4 hours
  • Figure 8 shows the mass spectrometric data of the compound by LDTOF-MASS. Indicates the existence of Li @ C
  • the plasma source according to the present invention is particularly useful for the production of carbon cluster-based materials such as endohedral fullerenes because it can generate a high-current plasma.

Description

明 細 書
プラズマ源、イオン源、及び、イオン生成方法
技術分野
[0001] 本発明は、接触電離方式によりイオンを発生するプラズマ源、イオン源、及び、ィォ ン生成方法に関し、特に、原子内包フラーレンの製造に有用なプラズマ源に関する。 背景技術
[0002] 特許文献 1 :特開平 02— 311757号公報
非特許文献 l :Y.Chai et al, J.Phys.Chem., 95, 7564 (1991)
非特許文献 2 :プラズマ '核融合学会誌第 75卷第 8号 pp.927-933 (1999年 8月) 「フ ラーレンプラズマの性質と応用」
非特許文献 3 : 0. Heinz, The Review of Scientific Instrument, Vol. 39(No. 8), pp. 12 29-1230, August 1968
[0003] 原子内包フラーレンは、フラーレンとして知られる炭素クラスターの内部空間に 1個 又は複数個の原子を閉じ込めた物質である。初めて存在の仮説が提唱された原子 内包フラーレンは、 1991年 Smalleyらのグループによる La®C である(非特許文献 1)
82
。このとき試みられた合成方法は、 La 0とグラフアイト粉末を原料とする試料にレーザ
2 3
一光を照射するレーザー蒸発法であった。しかし、彼らが原子内包フラーレンを合成 したと述べているのは、 LDTOF-MASSにより内包フラーレンに相当する質量ピークを 観察したというものに過ぎな力つた。彼らの合成法は合成量が極めて少なぐその物 性や構造を評価して確実に物質の存在を立証することができるものではな力つた。 近年、内包フラーレンを含む炭素クラスターベース材料の有用性が着目され、物性 や構造の評価、或いは、研究利用、工業利用のために、生産効率の高い炭素クラス ターベース材料製造技術の出現が期待されて 、る。炭素クラスターベース材料の製 造方法としては、現在、上記したレーザー蒸発法以外に、アーク放電法や、非特許 文献 2に記載されたプラズマ合成法が試みられているが、いずれの方法も、十分な量 の炭素クラスターベース材料を効率的に合成することができな力つた。
[0004] プラズマ合成法は、真空容器内で内包原子プラズマ流に、炭素クラスター、例えば 、フラーレンを噴射し、プラズマ流の下流に配置した堆積基板に内包フラーレンを堆 積させる技術である。図 5を用いて、プラズマ合成法による内包フラーレンの製造方 法を説明する。内包対象原子、例えば、アルカリ金属を収容した昇華オーブン 52か ら平坦な表面を有する単層の熱電極 51に向けてアルカリ金属蒸気を噴出すると、接 触電離によってプラズマ流 55が形成される。プラズマ流 55は堆積基板 57に向かつ て移動する。フラーレン昇華オーブン 53から噴出したフラーレン蒸気 56がプラズマ 流 55を構成する電子やアルカリ金属イオンと反応して内包フラーレンが生成され、堆 積基板 57上に堆積する。内包フラーレンの合成量を増やすには、プラズマ流におけ るイオン電流を増やすことが必要である力 S、従来の表面が平坦な熱電極を用いたプ ラズマ源では、せいぜい 1mA程度のイオン電流し力とることができず、十分な量の内 包フラーレンの合成に必要な数 mA以上のイオンを取り出すことができな力つた。 一方、半導体製造装置、例えば、イオン注入装置に使用されるイオン源としては、 バーナス型、フリーマン型、マイクロ波型のイオン源が知られている。これらの方式で は、気相の中性原子に自由電子を衝突させて原子をイオンィ匕している。このため、や はりイオンィ匕効率を高くできず、取り出せるイオン電流は前記した従来のプラズマ源 よりも低力つた。
一部の計測用途でも、接触電離プラズマ法によるイオン生成法が知られて!/ヽる (特 許文献 1)。特許文献 1による方法では、加熱したフィラメントに被分析成分を接触さ せてイオン化を行う。この方法ではフィラメントとの接触面積を大きくとれないので、計 測用途には十分なイオン電流をとることが可能である力 やはり内包フラーレンの大 量合成に十分な量のイオン電流をとることはできな力つた。
核融合装置等の学術研究用として、図 2に示す力ソード型イオン源が、アルカリ金 属イオン生成のために使用されている。例えば、多孔質モリブデン板 29にリチウムを 熱処理で含浸させた力ソードをタングステン線ヒーター 26で加熱するアルカリ金属ィ オン源が米国 Heat Wave Labs Incから発売されている。し力し、このイオン源は、最 大でも 0.1mA程度のイオン電流しか得られない(非特許文献 3)。そのため、やはり内 包フラーレンの大量合成に必要なイオン電流を取り出すことはできな力つた。
発明の開示 発明が解決しょうとする課題
[0006] 内包フラーレンは、その特異な分子構造、電気的特性、磁気的特性を利用して、医 薬品、電子デバイス、記録媒体、燃料電池などの材料として応用が期待されている。 特に、内包対象原子として、アルカリ金属又はアルカリ土類金属などの金属原子を内 包した金属内包フラーレンが興味深 、特性を示すとの報告がなされて 、る。
しかし、新規材料としての期待は大きいものの、内包フラーレンの生成自体がまだ 研究開発の領域を出ておらず、製品への応用と!、う点では十分な成果が得られて!/、 ない。従って、工業用材料として用いるのに十分な量の内包フラーレンを製造する方 法の確立が望まれている。さらに、内包フラーレンの大量合成のために、高いイオン 電流でプラズマを取り出すことのできるプラズマ源の開発が望まれて 、る。
課題を解決するための手段
[0007] 本発明(1)は、イオンィ匕対象原子を含む蒸気又はガスを表面に噴射してイオンを 生成する、複数の開口部を有する金属板を積層した熱電極である。
[0008] 本発明(2)は、前記イオンィ匕対象原子がアルカリ金属であることを特徴とする前記 発明(1)の熱電極である。
[0009] 本発明(3)は、前記金属板の材料が、タングステン、モリブデン、タンタル、レニウム
、オスミウム、イリジウム力 選択された一つ又は複数の元素力 なる金属又は合金を 含む材料であることを特徴とする前記発明(1)又は前記発明(2)の熱電極である。
[0010] 本発明(4)は、前記金属板が、複数の金属線力もなる金網であることを特徴とする 前記発明(1)乃至前記発明(3)の熱電極である。
[0011] 本発明(5)は、前記金属線に電流を流すことにより前記熱電極を加熱することを特 徴とする前記発明(4)の熱電極である。
[0012] 本発明(6)は、前記発明(1)乃至前記発明(5)の熱電極を備えたプラズマ源である
[0013] 本発明(7)は、前記発明(1)乃至前記発明(5)の熱電極を備えたイオン源である。
[0014] 本発明(8)は、前記発明(6)のプラズマ源を用いてプラズマを生成することを特徴と する炭素クラスターベース材料の製造装置である。
[0015] 本発明(9)は、前記発明(7)のイオン源を用いてイオンを生成することを特徴とする 半導体装置の製造装置である。
[0016] 本発明(10)は、前記発明(1)乃至前記発明(5)の熱電極にイオン化対象原子を 接触させてイオンを生成するイオン生成方法である。
[0017] 本発明(11)は、前記発明(6)のプラズマ源を用いてプラズマを生成することを特徴 とする炭素クラスターベース材料の製造方法である。
[0018] 本発明(12)は、前記発明(7)のイオン源を用いてイオンビームを生成することを特 徴とする半導体装置の製造方法である。
発明の効果
[0019] 1.複数の開口部を有する金属板からなる熱電極にアルカリ金属蒸気を噴射して接 触電離によりイオンを生成する。アルカリ金属原子が接触する高温の金属板の表面 積が大きくなり、イオンィ匕効率が向上し、大きなイオン電流を取り出すことができる。
2.複数の開口部を有する複数の金属板を積層して熱電極を構成する。該熱電極に アルカリ金属蒸気を噴射して、噴射面と反対面からプラズマ流を取り出す (透過型プ ラズマ源)。アルカリ金属原子が高温の金属体に繰り返し接触し、接触確率が飛躍的 に増加する。イオンィ匕効率が向上し、大きなイオン電流を取り出すことができる。
3.複数の開口部を有する複数の金属板を積層して熱電極を構成する。該熱電極に アルカリ金属蒸気を噴射して、噴射面と同じ面力 蒸気噴射方向と異なる方向にブラ ズマ流を取り出す (反射型プラズマ源)。アルカリ金属原子が高温の金属体に接触す る確率がさらに増加し、イオンィ匕効率が向上し、大きなイオン電流を取り出すことがで きる。
4.反射型プラズマ源の場合は、熱電極を構成する複数の金属板のうち蒸気噴射側 力 見て一番奥の一枚の金属板は穴のな 、板とするのが好まし 、。アルカリ金属蒸 気が熱電極を透過しな!ヽので、供給されるアルカリ金属原子を無駄なくイオン化する ことができる。
5.タングステン、モリブデン、タンタル、レニウム、オスミウム、イリジウムなど高融点、 高抵抗材料からなる金属線を用い、金網形状の熱電極を形成することにより、熱電 極自体に電流を流して発熱させることができ、加熱ヒーターにより間接的に加熱する 熱電極に比べ、熱エネルギーの利用効率が高ぐ消費電力の低減が可能である。 6.熱電極の材料に仕事関数の大きいレニウム、オスミウム、イリジウムを用いることに より、アルカリ金属原子が電離しやすくなるので、イオンィ匕効率が向上し、大きなィォ ン電流を取り出すことができる。
7.本発明の大電流プラズマ源を用いることにより、内包フラーレンなど炭素クラスタ 一ベース材料の大量生成が可能になる。
8.本発明の大電流イオン源を用いることにより、例えば、半導体製造プロセスにおい てイオン注入の大電流化が可能になり、ソース'ドレイン拡散工程の製造時間短縮な どに効果がある。
図面の簡単な説明
[図 l](a)は、本発明に係る透過型の積層熱電極を有するイオン源の概念図である。 (b )は、(a)に示すイオン源で用いる積層熱電極の具体例の正面図である。
[図 2]従来のアルカリ金属含浸力ソード型イオン源の概念図である。
[図 3]本発明に係る透過型の積層熱電極を有するイオン源で生成したイオンビームに おけるイオン電流の実測データである。
[図 4]本発明に係る反射型の積層熱電極を有するイオン源の概念図である。
[図 5]従来の熱電極を用いた内包フラーレン製造装置の概念図である。
[図 6](a)乃至 (d)は、接触電離のメカニズムの概念図である。
[図 7]本発明に係る Re製単層熱電極を有するプラズマ源で生成したプラズマにおけ るイオン電流の実測データである。
[図 8]本発明に係るプラズマ源を用いて製造した内包フラーレンの質量分析データで ある。
符号の説明
1、 41 積層熱電極
2、 42 アルカリ金属昇華オーブン
3、 43 引き出し電極
4、 44 アルカリ金属
5、 45 ィ才ンビーム
6、 46 アルカリ金属蒸気導入管 7、 47 アルカリ金属蒸気
8 真空容器
11 タングステン金網積層板
12 電流印加用のタンタル板
25 ィ才ンビーム
26 タングステン線ヒーター
27 アルミナ充填体
28 ヒーター容器
29 リチウム含浸多孔質モリブデン板
50、 59 中性アルカリ金属
51 熱電極
52 アルカリ金属昇華オーブン
53 フラーレン昇華オーブン
54 再昇華円筒
55 プラズマ流
56 フラーレン蒸気
57 堆積基板
58 容器
61、 62、 63、 71、 72、 73、 81、 82、 83、 91 熱電極
64、 74、 84、 92 イオン化対象原子蒸気
65、 75、 85、 93 プラズマ流
66、 76、 86、 94 イオン化対象原子
67、 77、 87、 95 イオン
発明を実施するための最良の形態
[0022] 以下、本発明の最良形態について説明する。
[0023] [熱電極]
発明者らは、従来のプラズマ合成法で用いられるプラズマ源では十分大きなイオン 電流を取り出すことができない原因を分析した。図 6(a)乃至 (d)は、発明者らが分析に 用いた接触電離のメカニズムの概念図である。
図 6(d)は、従来のプラズマ源に係る接触電離の概念図である。アルカリ金属などィ オン化対象原子蒸気 92を 1000〜3000°Cに加熱した熱電極 91に噴射する。蒸気 92 を構成する原子 94は、熱電極 91に接触すると、一部が熱電極 91に電子を奪われて 正イオン 95になる。しかし、残りの原子はイオンにならず、中性原子 96のまま熱電極 91から離れる。原子は全体的には蒸気の流れに従って、熱電極に近づいて、ぶつ かって、離れるという運動をしている。微視的には、原子はランダムな動きをしている ので、何度も熱電極と接触する原子もあるが、大部分の原子は一度しか熱電極に接 触する機会がない。従って、従来の穴を有しない単層の熱電極を用いたプラズマ源 では、プラズマ流 93に含まれるイオンィ匕した原子の割合、即ちイオンィ匕効率は高くな い。
[0024] (複数の開口部を有する金属板からなる熱電極)
そこで、発明者らは、複数の開口部を有する金属板を複数枚積層して熱電極を構 成し、該熱電極にイオン化対象原子を噴射することで、原子が熱電極に接触する確 率が増える本発明に係るプラズマ源を考え出した。さらに、穴があいていることで、従 来の蒸気流とプラズマ流の運動方向が反対の反射型の接触電離だけではなぐ蒸 気流とプラズマ流の運動方向が同一の透過型の接触電離でもイオン生成を行うこと ができる。従って、プラズマ源又はイオン源を用いた製造装置の設計自由度が増える という効果もある。
[0025] 図 6(a)は、透過型の積層熱電極による接触電離の概念図である。熱電極は 3枚の 金属板 61、 62、 63を積層したものである。各金属板には複数の開口部が形成され ており、 1000〜3000°Cに加熱している。イオン化対象原子蒸気 64を金属板 61に噴 射する。イオン化対象原子 66は、金属板における穴を通過して、高温の金属板 61、 62、 63に次々に接触する。一部の原子は金属板に電子を奪われ正イオン 67になる 。積層板を通過したイオンは蒸気 64と同じ方向に流れるプラズマ流 65になる。原子 と金属板の接触確率が増えるので、プラズマ流 65におけるイオンィ匕効率が高くなり、 大きなイオン電流を取り出すことが可能になる。
[0026] 図 6(b)は、反射型の積層熱電極による接触電離の概念図である。熱電極は 3枚の 金属板 71、 72、 73を積層したものである。各金属板には複数の開口部が形成され ており、 1000〜3000°Cに加熱している。イオン化対象原子蒸気 74を金属板 73に噴 射する。イオン化対象原子 76は、金属板の穴を通過して、高温の金属板 73、 72、 7 1に次々に接触する。一部の原子は積層板を通過するが、残りの原子は蒸気の入射 方向と反対方向に流れる。それらの原子は、金属板 72、 73に再度接触する。原子が 金属板と接触する確率が透過型の熱電極よりも高くなるので、イオン化効率をさら〖こ 高くすることができる。反射型の積層熱電極の場合は、図 6(c)に示すように、蒸気の 入射側からみて一番奥に配置された金属板を穴のな 、板とすることが好ま 、。その 場合、熱電極を通過してしまうために、プラズマ流として取り出すことのできないィォ ンが少なくなるので、さらにイオンィ匕効率の向上が可能である。
[0027] 熱電極として穴のある金属板を用いる場合には、従来の穴のない平坦な金属板を 用いる場合に比べ、単層の金属板でもイオンィ匕効率を向上できる。多くの穴があいて いる場合は、表面積が大きくなるので、原子と金属板の接触確率が増えるからである 。同様に、穴があいていなくても、表面に凹凸のある金属板、例えば、ポーラスな金 属板を用いることで表面積が大きくなり、イオンィ匕効率の向上が可能になる。
[0028] (熱電極の構造)
本発明に係る熱電極のひとつの具体例は、上記にぉ 、て説明したように複数の開 口部を有する金属板を用いるものである。ここで、開口部というのは、単なる凹部のこ とではなぐ貫通孔のことを意味する。複数の開口部を有する金属板としては、薄い 金属板に多数の穴をあけたものを用いてもょ 、し、複数の金属線を用いて作製した 金網を用いてもよい。金網は、縦線と横線を有するメッシュ状であってもよいし、縦線 又は横線のみを有するストライプ状であってもよい。さらに、縦、横の他に斜めなどさ まざまな角度の金属線を組み合わせて作製したものでもよ 、。
[0029] 熱電極の加熱方法は、金属板の近傍に加熱ヒーターを配置して輻射熱で加熱する 方法もあるし、前記した金網構造の熱電極の場合は、金網に直接電流を流して金網 を発熱させることも可能である。この場合、熱利用効率が高いので、消費電力を低減 することが可能である。
[0030] 金属板に形成される開口部の大きさは、 0.01mm以上、 1cm以下の範囲に設定し、 金属板の面内において開口部を均等に配置するのが好ましい。積層板の枚数は 2枚 以上であれば有効である力 3枚以上積層するのがより好ましい。
金属板を薄板で形成する場合は、薄板の厚さは 0.01mm以上、 1cm以下とするのが 好ましい。金属板を金網にする場合は、金属線の直径は 0.01mm以上、 1cm以下とす るのが好ましい。
積層板は互いに接触していてもよい。さらに、積層板の間隔は、 0.01mm以上、 10c m以下の範囲に設定するのが好ましい。 1mm以上、 1cm以下の範囲に設定するのが より好ましい。積層板の間にスぺーサーを配置することにより、容易に高精度、微細 間隔の積層板配置を行うことが可能になる。
[0031] (金属板の材料)
熱電極を構成する金属板の材料の選択は、
(1)イオンを生成する際の真空度、温度などの設定条件で溶解しない高融点金属で あること、
(2)イオン化対象原子との仕事関数差が熱エネルギーで十分電子移動が起きる値 であること
を考慮して決める必要がある。熱電極の加熱温度は通常 1000〜3000°Cの範囲で設 定される。従って、金属板の材料としては、高融点金属であるタングステン (W)、モリブ デン(Mo)、タンタル (Ta)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)の中力ら仕 事関数、加工容易性、製造コストを考慮して適宜選択して用いるのが好ましい。また 、これらの材料力も複数の元素を選択して、その合金を用いることも可能である。 これらの高融点金属は、低融点金属と比べて、溶解して精鍊できないことから、通 常金属酸ィ匕物を水素雰囲気で還元して、得られた金属粉末をプレスや高温焼結に より固めて金属素材を作製する。この金属素材を圧延して板状又は線状の部材を作 製することができる。
[0032] [用語の定義]
ここで、本明細書で用いられる用語の意義について明らかにする。
(プラズマ源、イオン源)
「プラズマ」とは、正の荷電粒子と負の荷電粒子を含み、全体的にほぼ電気的中性 を保った荷電粒子集団のことである。
「プラズマ源」とは、プラズマを生成する装置のことである。プラズマは、荷電粒子間 にクーロン力による相互作用が働ぐ荷電粒子の移動により電流が流れるなど特有の 性質を示す。通常、プラズマ源では、気体放電、衝突電離、接触電離などの電離方 法で原子を励起してイオンと電子力 なるプラズマを生成する。プラズマは、外部電 界ゃ外部磁界により荷電粒子の動きを制御でき、 CVD、スパッタリング、エッチングな どの微細加工技術に応用されている。
「イオン源」とは、イオン又はイオンビームを生成する装置のことである。通常、ィォ ン源では、プラズマ源によりイオンと電子を含むプラズマを生成し、引き出し電極によ る電界印加及び/又は質量分析により必要なイオンだけ加速してイオンビームとして 取り出す方式が用いられている。イオン源で生成したイオンビームは、イオン注入、 FI Bなどの微細加工技術に応用されている。
[0033] (接触電離、熱電極)
真空雰囲気でイオン化対象原子からなるガス又は蒸気を高温に加熱した金属体に 噴射すると、熱エネルギーにより電子が励起され、イオン化対象原子と金属体の間で 電子の移動が起こり、正又は負のイオンが生成する。これは、「接触電離」と呼ばれる 電離方法である。金属体は、通常、 1000〜3000°Cに加熱されており、電子の照射、 又は、イオンの引き出しのため電源に接続され、電圧が印加される。このため接触電 離に用いられる金属体は「熱電極」と呼ばれる。
[0034] (フラーレンベース材料、炭素クラスターベース材料)
「フラーレン」とは、 C (n=60, 70, 76, 78· · · )で示される中空の炭素クラスター物質 であり、例えば、 C やじ を挙げることができる。また、「フラーレンベース材料」とは、
60 70
フラーレンをベースにして製造した材料のことであり、篕状のフラーレン分子の中空 部に炭素以外の原子又は分子を閉じ込めた内包フラーレン以外にも、ヘテロフラー レン、化学修飾フラーレン、フラーレン重合体、フラーレンポリマーを含むものとする。 本発明の製造装置は、内包フラーレンの製造以外にも、プラズマとフラーレンの反応 により、これらのフラーレンベース材料の製造に用いることが可能である。
また、原料となるフラーレンとして、混合フラーレンを用いることも可能である。「混合 フラーレン」とは、種類の異なる複数のフラーレンが混合した炭素クラスター物質のこ とである。抵抗加熱法やアーク放電法でフラーレンを製造する場合、生成されたフラ 一レンの中で、重量比にして、 70〜85%が C
60、 10〜15%が C 、残りが C
70 76、C
78、C 8 などの高次フラーレンとなる。燃焼法によるフラーレンの製造においても、 C、C の
4 60 70 重量比は高次フラーレンよりも大きい。従って、 C
60、C は、他の高次フラーレンと比 70
較して入手が容易でかつ安価である。また、 C とじ 力もなる混合フラーレンも、フロ
60 70
ンティアカーボンなどから市販されており、容易に入手してフラーレンベース材料の 製造に利用することができる。
さらに、原料となるフラーレンには、窒素へテロフラーレンや酸ィ匕フラーレンを含む ものとする。窒素へテロフラーレンや酸ィ匕フラーレンは、上記に定義されたフラーレン ベース材料に含まれる物質である力 フラーレンをプラズマ処理し、例えば内包フラ 一レンなどのフラーレンベース材料を製造するときに大量に合成される副生成物であ り、これらを再利用して、窒素へテロフラーレンや酸ィヒフラーレン以外の産業上より価 値の高いフラーレンベース材料を製造することが可能である。
[0035] 「炭素クラスター」とは、炭素が結合した分子の総称であり、フラーレンの他にもダイ ャモンド、グラフアイト、カーボンナノチューブが含まれる。「炭素クラスターベース材 料」とは、炭素クラスターをベースにして製造した材料のことであり、上記したフラーレ ンベース材料の他に、例えば、カーボンナノチューブにフラーレンベース材料を内包 したピーポッドなどが含まれる。
[0036] [透過型の積層熱電極を用いたイオン源]
図 1(a)は、本発明に係る透過型の積層熱電極を用いたイオン源の概念図である。 図 1(a)に示すイオン源は、真空容器 8と、アルカリ金属 4を充填した昇華オーブン 2と 、積層熱電極 1と、引き出し電極 3とから構成される。
図 1(b)は、積層熱電極の具体例の正面図である。図 1 (b)に示す熱電極は、線径: 0 . 03mm,密度: 100メッシュ Zインチの市販のタングステン金網(ユラコ社カタログ番 号: W— 468071)を上下左右に半ピッチずつずらして、厚み 0. 3mmのタンタル板 の上に 2枚重ねて電気溶接した電極である。電極形状は、電極加熱用の電流が流入 •流出する金網端部の幅を、中性原子が飛来して接触する領域の幅より大きくして、 接触電離部の温度上昇の均一化、安定化を図っている。金網を半ピッチずつずらす ことにより、中性原子と金網の接触確率が向上する。
この接触電離用の電極 1に、印加電圧 10Vで 30A程度の電流を流して、自己発熱 により接触電離用の電極 1を約 1400°Cに昇温させる。印加電圧を変えることにより、 この温度を 1000〜3000°Cに調節可能である。この他に、接触電離用の電極 1の外 部に加熱ヒーターを設置して輻射熱で加熱する方法や、加速した電子を接触電離用 の電極 1に衝突さる方法により加熱することも可能である。
次に、昇華オーブン 2を加熱して、昇華したアルカリ金属蒸気 7を噴射口 6から接触 電離用の電極 1に噴射する。アルカリ金属原子は、 2枚の積層されたタングステン金 網に接触して、電子を奪われ正イオンになる。生成された正イオンは、負の電圧を印 カロした引き出し電極 3による電界により加速されて、イオンビーム 5として取り出される
[0037] [反射型の積層熱電極を用いたイオン源]
図 4は、本発明に係る反射型の積層熱電極を有するイオン源の概念図である。図 4 に示すイオン源は、アルカリ金属 44を充填した昇華オーブン 42と、積層熱電極 41と 、引き出し電極 43とから構成される。
積層熱電極としては、例えば、図 1(b)に示すタングステン金網を用いることも可能で ある。図 4に示す反射型の積層熱電極を用いる場合は、アルカリ金属蒸気 47を積層 熱電極 41に対し、例えば、 45° の入射角で噴射する。積層熱電極 41にアルカリ金 属原子が接触してアルカリ金属の正イオンが発生する。発生した正イオンは、負の電 圧を印加した引き出し電極 43により加速されて、 Iき出し電極 43の方向に流れるィ 才ンビーム 45となる。
[0038] [金属イオン生成効率の高い熱電極]
本発明に係る熱電極の別の具体例は、特に金属イオンの生成効率が高 、熱電極 である。発明者らは、金属板の材料に、従来用いられていたタングステンではなぐタ ングステンよりも仕事関数の大きいレニウム、オスミウム、又はイリジウムを用いることで 、開口部のない単層の金属板でも、従来よりもイオンィ匕効率の向上が可能になること を見出した。イオン化対象原子が金属である場合、特に、アルカリ金属やアルカリ土 類金属である場合に、金属板にレニウム、オスミウム、又はイリジウム力もなる板を用 いることにより、イオン化対象原子の電離電圧と金属板材料の仕事関数の差が小さく なる。原子が金属板に接触してイオンになる確率 (イオンィ匕確率)が高くなるため、大 きなイオン電流を取り出すことが可能になる。
[0039] レニウム、オスミウム、又はイリジウムは、前記したようにプレスや高温焼結によりカロ ェすることが可能である。いずれも材料コストの高い金属であるため、コスト低減のた め、タングステン板上に例えばレニウムをスパッタした板 (東京タングステン社から製 造販売されて ヽる)や、レニウムとタングステンの合金力もなる板 (東芝マテリアル社か ら製造販売されて 、る)を用いることも可能である。
[0040] [プラズマ源、イオン源の応用]
本発明の大電流プラズマ源を用いることにより、内包フラーレンなど炭素クラスター ベース材料の大量生成が可能になる。
本発明の大電流イオン源を用いることにより、例えば、半導体製造プロセスにおい てイオン注入の大電流化が可能になり、ソース'ドレイン拡散工程の製造時間短縮な どに効果がある。
[0041] 炭素クラスターベース材料の製造用として、例えば、リチウムやナトリウムなどのアル カリ金属やカルシウムなどのアルカリ土類金属のイオンを生成するために本発明のプ ラズマ源を用いることが可能である。また、半導体装置の製造用として、例えば、リン 、ボロン、砒素、アンチモンなどのイオンを生成するために本発明のイオン源を用いる ことも可能である。
実施例
[0042] 以下、実施例を挙げて本発明について詳細に説明する力 本発明は以下の実施 例に限定されるものではない。
[0043] [実施例 1]
(積層熱電極を用いたイオン源)
図 1に示す透過型の積層熱電極を用いたイオン源を作製し、イオン電流のリチウム オーブン温度依存性を測定した(図 3)。イオン電流は、本発明の積層熱電極を用い た場合と、従来の単層穴なしの熱電極を用いた場合の相対比でプロットしてある。積 層熱電極は、直径 lmmのタングステン線を 5mm間隔でメッシュ状 (縦と横)に配置した 金網を 3枚積層したものを用いた。熱電極の両端に電流を流して発熱させ、電極温 度を約 1400°Cとした。リチウムオーブン温度が 480°Cの時に、従来のイオン源と比較し て約 20倍の高 、イオン電流を取り出すことができた。
[0044] [実施例 2]
(Re製熱電極を用いたプラズマ源)
Re製熱電極を用いたプラズマ源を作製し、 W製熱電極を用いたプラズマ源と比較し た。 Re製熱電極は、 Goodfellow社のスパッターターゲット用の金属板を用いた。材料 の分析データによると、電極材料は、 Reが 99.99%で、不純物としては、酸素が 1150pp m、水素が 62ppm含まれていた。熱電極の形状は、 Re製が厚さ lmm、直径 50mmの円 板、 W製が厚さ 4mm、直径 50mmの円板である。いずれも穴のない単層の平板を用い た。
[0045] (イオン電流の測定)
プラズマ源を真空室中に配置し、熱電極の裏面に配置したヒーターにより熱電極を 1700〜1900°Cに加熱した。熱電極表面に、 Li蒸気を噴射して Li分子をイオン化しプ ラズマを生成した。真空室の周りに配置した電磁コイルで発生させた磁場によりブラ ズマを閉じ込め、イオンプローブによりプラズマ中の Liイオン電流を測定した。
図 7は、 Liイオン電流の熱電極温度依存性の測定データを示すグラフである。 Li昇 華オーブンの温度は 540°Cとした。熱電極を加熱するヒーターに印加した電力は 2〜2 .4kW、磁場強度は、 Reプラズマ源では 0.03T、 Wプラズマ源では 0. ITとした。グラフか ら、 Reプラズマ源、 Wプラズマ源とも、熱電極の温度が上昇するとイオン電流が増加 することがわ力る。また、 Reプラズマ源は Wプラズマ源と比較して、イオン電流力 3.5〜 3.8倍多くとれることがわかる。
[0046] (Li内包フラーレンの合成実験)
Re製熱電極を用いたプラズマ源を Li内包フラーレン製造装置に取付け、プラズマ 源により生成した Liイオンプラズマを堆積基板に照射し、同時に、フラーレン昇華ォ ーブンカゝらフラーレン蒸気を堆積基板に噴射して Li内包フラーレンを堆積基板上に 合成した。合成条件は以下の通りである。 熱電極投入電力: 2.3〜2.5kW、磁場強度: 0.03T、基板バイアス電圧: -30V、 Liィォ ン電流: 4.5〜6.6mA、 C60オーブン温度: 580〜600°C、合成時間: 4時間
図 8は、合成物の LDTOF-MASSによる質量分析データである。 Li@C の存在を示
60
す 727のピークがあり、 Re製熱電極を用いて内包フラーレンを合成可能なことが確認 できた。また、従来の W製熱電極を用いた内包フラーレンの製造装置と比較して、内 包率の向上も確認された。実際にイオン電流が増えたことで、内包フラーレンの生成 効率が向上することが確かめられた。
産業上の利用可能性
以上のように、本発明に係るプラズマ源は、特に、大電流のプラズマを生成できる ので、内包フラーレンなど炭素クラスターベース材料の製造に有用である。

Claims

請求の範囲
[I] イオン化対象原子を含む蒸気又はガスを表面に噴射してイオンを生成する、複数の 開口部を有する金属板を積層した熱電極。
[2] 前記イオン化対象原子がアルカリ金属であることを特徴とする請求項 1記載の熱電極
[3] 前記金属板の材料が、タングステン、モリブデン、タンタル、レニウム、オスミウム、イリ ジゥム力 選択された一つ又は複数の元素からなる金属又は合金を含む材料である ことを特徴とする請求項 1又は 2のいずれか 1項記載の熱電極。
[4] 前記金属板が、複数の金属線力 なる金網であることを特徴とする請求項 1乃至 3の V、ずれか 1項記載の熱電極。
[5] 前記金属線に電流を流すことにより前記熱電極を加熱することを特徴とする請求項 4 記載の熱電極。
[6] 請求項 1乃至 5の 、ずれか 1項記載の熱電極を備えたプラズマ源。
[7] 請求項 1乃至 5の 、ずれか 1項記載の熱電極を備えたイオン源。
[8] 請求項 6記載のプラズマ源を用いてプラズマを生成することを特徴とする炭素クラスタ 一ベース材料の製造装置。
[9] 請求項 7記載のイオン源を用いてイオンを生成することを特徴とする半導体装置の製 造装置。
[10] 請求項 1乃至 5のいずれか 1項記載の熱電極にイオン化対象原子を接触させてィォ ンを生成するイオン生成方法。
[II] 請求項 6記載のプラズマ源を用いてプラズマを生成することを特徴とする炭素クラスタ 一ベース材料の製造方法。
[12] 請求項 7記載のイオン源を用いてイオンビームを生成することを特徴とする半導体装 置の製造方法。
PCT/JP2006/302243 2005-02-09 2006-02-09 プラズマ源、イオン源、及び、イオン生成方法 WO2006085576A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-032425 2005-02-09
JP2005032425 2005-02-09
JP2006-030536 2006-02-08
JP2006030536A JP2006253122A (ja) 2005-02-09 2006-02-08 プラズマ源、イオン源、及び、イオン生成方法

Publications (1)

Publication Number Publication Date
WO2006085576A1 true WO2006085576A1 (ja) 2006-08-17

Family

ID=36793147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302243 WO2006085576A1 (ja) 2005-02-09 2006-02-09 プラズマ源、イオン源、及び、イオン生成方法

Country Status (3)

Country Link
JP (1) JP2006253122A (ja)
TW (1) TW200641953A (ja)
WO (1) WO2006085576A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112616233A (zh) * 2020-12-16 2021-04-06 中国科学院合肥物质科学研究院 一种适用于加速器的稳态高束流密度长寿命锂离子源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036272A1 (nl) * 2007-12-19 2009-06-22 Asml Netherlands Bv Radiation source, lithographic apparatus and device manufacturing method.
CN105097402A (zh) * 2014-05-23 2015-11-25 中微半导体设备(上海)有限公司 等离子体处理腔室及其直流电极和加热装置的复合组件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265944A (ja) * 1997-03-25 1998-10-06 Sumitomo Electric Ind Ltd 硬質被膜とその製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265944A (ja) * 1997-03-25 1998-10-06 Sumitomo Electric Ind Ltd 硬質被膜とその製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112616233A (zh) * 2020-12-16 2021-04-06 中国科学院合肥物质科学研究院 一种适用于加速器的稳态高束流密度长寿命锂离子源
CN112616233B (zh) * 2020-12-16 2023-03-21 中国科学院合肥物质科学研究院 一种适用于加速器的稳态高束流密度长寿命锂离子源

Also Published As

Publication number Publication date
JP2006253122A (ja) 2006-09-21
TW200641953A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
Laskin et al. From isolated ions to multilayer functional materials using ion soft landing
Wang et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications
JP5698982B2 (ja) 照明ランプ及びナノ炭素材料複合基板とその製造方法
JP4814986B2 (ja) カーボンナノチューブ成長方法
JP2007179963A (ja) 燃料電池用触媒の製造方法及び触媒の担持方法
US20090142584A1 (en) Process for the deposition of metal nanoparticles by physical vapor deposition
US9183965B2 (en) Conductive hard carbon film and method for forming the same
JP5379831B2 (ja) 材料膜の製造方法及び製造装置
WO2006085576A1 (ja) プラズマ源、イオン源、及び、イオン生成方法
JP5228986B2 (ja) ナノ炭素材料複合基板製造方法
US20150292080A1 (en) Apparatus for the generation of nanocluster films and methods for doing the same
JP4872042B2 (ja) 高密度カーボンナノチューブ集合体及びその製造方法
Kabir et al. Fabrication of individual vertically aligned carbon nanofibres on metal substrates from prefabricated catalyst dots
Brantov et al. Laser-triggered proton acceleration from hydrogenated low-density targets
JP6371712B2 (ja) プラズマ生成方法及び内包フラーレンの生成方法
JP2000268741A (ja) 炭素原子クラスターイオン生成装置及び炭素原子クラスターイオンの生成方法
Mulders Purity and resistivity improvements for electron-beam-induced deposition of Pt
Skopinski et al. Velocity distributions of particles sputtered from supported two-dimensional MoS 2 during highly charged ion irradiation
KR101396063B1 (ko) 흑연상 탄소 나노 점의 제조방법
de Boer et al. Charging effects during focused electron beam induced deposition of silicon oxide
JP5125195B2 (ja) 量子ドットの製造方法
TWI433611B (zh) A plasma source, an ion manufacturing method, a plasma manufacturing method, and a method of manufacturing the inner package carbon cluster
JP4965373B2 (ja) カーボンナノチューブの作製方法
JPH05205647A (ja) イオン発生用引出グリッド及びその製造方法並びにこのグリッドを利用したイオン発生装置
JP3803756B2 (ja) クラスターイオン種のソフトランディング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713386

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713386

Country of ref document: EP