WO2006085543A1 - 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法 - Google Patents

光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法 Download PDF

Info

Publication number
WO2006085543A1
WO2006085543A1 PCT/JP2006/302137 JP2006302137W WO2006085543A1 WO 2006085543 A1 WO2006085543 A1 WO 2006085543A1 JP 2006302137 W JP2006302137 W JP 2006302137W WO 2006085543 A1 WO2006085543 A1 WO 2006085543A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole
photovoltaic
thickness direction
film thickness
Prior art date
Application number
PCT/JP2006/302137
Other languages
English (en)
French (fr)
Inventor
Takeshi Nakashima
Eiji Maruyama
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP06713280A priority Critical patent/EP1850397B1/en
Priority to US11/816,240 priority patent/US20090007955A1/en
Publication of WO2006085543A1 publication Critical patent/WO2006085543A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic element photovoltaic module including photovoltaic element, and method for manufacturing photovoltaic element
  • the present invention relates to a photovoltaic element, a photovoltaic module including the photovoltaic element, and a method for manufacturing the photovoltaic element, and more particularly, to a photovoltaic element including a semiconductor layer including a photoelectric conversion layer, and The present invention relates to a photovoltaic module including a photovoltaic element and a method for manufacturing the photovoltaic element.
  • JP-A-51-117591 discloses a lower electrode, an n-type semiconductor layer formed on the lower electrode, a p-type semiconductor layer formed on the n-type semiconductor layer, and a p-type semiconductor.
  • a photoelectric conversion element photovoltaic device comprising a porous p-type semiconductor layer formed on the layer and an upper electrode (transparent electrode) formed so as to cover the upper surface of the porous p-type semiconductor layer Element).
  • a porous p-type semiconductor layer formed on the light incident side, reflection of incident light is suppressed by the pores of the porous p-type semiconductor layer and light is received. Since the surface area of the surface is increased by the pores of the porous p-type semiconductor layer, the decrease in incident light is suppressed. Thereby, the photoelectric conversion efficiency is improved.
  • the porous p-type semiconductor layer is disposed on the light incident side, so that the incident light is porous p. It becomes easy to diffuse in the mold semiconductor layer. In this case, since the optical path length of the light inside the porous p-type semiconductor layer increases, the incident light is easily absorbed by the porous p-type semiconductor layer. As a result, the amount of light reaching the pn junction is reduced, which makes it difficult to sufficiently improve the photoelectric conversion efficiency.
  • a photovoltaic module including a power element and a method for manufacturing the photovoltaic element are provided.
  • a photovoltaic device includes a semiconductor layer including a photoelectric conversion layer, and a film thickness formed on the semiconductor layer on the light incident side.
  • the first layer having the first hole extending in the film thickness direction is provided on the light incident side, thereby providing the first layer.
  • the light incident on the first hole can be guided to the photoelectric conversion layer side below the first layer by the first hole extending in the film thickness direction, and below the first layer by the light diffraction effect. Can be diffused to the photoelectric conversion layer side.
  • the amount of light incident on the photoelectric conversion layer can be increased, and the optical path length of the light incident on the photoelectric conversion layer can be increased by diffusion, so that the photoelectric conversion efficiency is sufficiently improved. Can be made.
  • the first layer is formed of a light-transmitting material, it is possible to prevent the diffused light from being absorbed by the first layer.
  • the amount of light incident on can be increased.
  • the first hole extending in the film thickness direction on the light incident side of the first layer, the reflection at the surface of the first layer can be achieved compared to the case where the first hole is not provided. Since the rate is low, the first layer can function as an antireflection film. This can also increase the amount of light incident on the photoelectric conversion layer, thereby further improving the photoelectric conversion efficiency.
  • the photovoltaic element according to the first aspect preferably further includes a collector electrode formed on the semiconductor layer, and the first layer is formed so as to cover the collector electrode, and is electrically conductive. It consists of a translucent material having. With this configuration, since the first layer can also function as an electrode, the current collection characteristics can be improved.
  • the first layer made of a light-transmitting material is a ZnO layer having a first hole extending in the film thickness direction.
  • ZnO has a function of absorbing ultraviolet rays
  • an organic material is provided below the first layer.
  • a collector electrode containing a material it is possible to suppress the incidence of ultraviolet rays on the collector electrode containing an organic material. Thereby, it can suppress that the organic material part of a collector electrode discolors with an ultraviolet-ray.
  • a plurality of first holes in the first layer are provided so as to penetrate the first layer in the film thickness direction.
  • the second element is preferably formed on the first layer made of a light-transmitting material, and the second layer is formed in a portion corresponding to the first hole of the first layer.
  • a second layer having a light-transmitting material force having holes is further provided, and the etching rate of the second layer with respect to the predetermined etching solution is smaller than the etching rate of the first layer with respect to the predetermined etching solution.
  • the second layer also has a Si compound force including at least one of O and N.
  • the second layer is made of SiO.
  • the second layer Since it can be formed of a material having a relatively low refractive index such as 2 or SiON, light incident on the second layer can be prevented from being reflected from the surface of the second layer.
  • the first layer having the first hole and the second layer having the second hole have a haze of 10% or more and 50% or less. It functions as a diffusion layer with a rate. With this configuration, the light incident on the second layer and the first layer can be sufficiently diffused.
  • the first hole has an inner diameter of 1.2 ⁇ or less.
  • the wavelength of light photoelectrically converted by the photovoltaic element (about 1. or less) can be easily diffused by Huygens' principle (light diffraction effect). Incident light can be diffused more.
  • a photovoltaic module includes a semiconductor layer including a photoelectric conversion layer.
  • a plurality of photovoltaic elements formed on the semiconductor layer and having a first layer of translucent material force having a first hole extending in a film thickness direction on a light incident side; And a tab electrode for connecting a plurality of photovoltaic elements to each other.
  • the photovoltaic module according to the second aspect of the present invention by providing the first layer having the first hole extending in the film thickness direction on the light incident side, The light incident on the first hole can be guided to the photoelectric conversion layer side below the first layer by the first hole extending in the film thickness direction, and below the first layer by the light diffraction effect. Can be diffused to the photoelectric conversion layer side. As a result, the amount of light incident on the photoelectric conversion layer can be increased, and the optical path length of the light incident on the photoelectric conversion layer can be increased by diffusion, so that the photoelectric conversion efficiency can be sufficiently improved. Can do.
  • the first layer is formed of a translucent material, it is possible to suppress the diffused light from being absorbed by the first layer.
  • the amount of incident light can be increased.
  • the reflectance on the surface of the first layer is compared with the case where the first hole is not provided. Therefore, the first layer can function as an antireflection film. This also increases the amount of light incident on the photoelectric conversion layer, thereby further improving the photoelectric conversion efficiency.
  • the photovoltaic module according to the second aspect preferably further includes a resin layer covering the upper surface of the photovoltaic element, and the resin layer is a first layer made of a translucent material. It is formed so as to enter at least a part of the first hole provided in the film thickness direction. According to this configuration, the anchor effect can be obtained by the portion of the resin layer that has entered the first hole of the first layer, so that the bonding strength between the resin layer and the translucent material can be improved. Can do.
  • a method for manufacturing a photovoltaic device includes: forming a first layer made of a translucent material on a semiconductor layer including a photoelectric conversion layer; Forming a second layer on the layer having an etching rate smaller than the etching rate of the first layer with respect to a predetermined etching solution and having a translucent material force having a crystal grain boundary; and a second layer By etching with a predetermined etchant, each of the first layer and the second layer corresponding to the crystal grain boundary of the second layer is each in the film thickness direction. Forming a first hole and a second hole extending.
  • the portion of the first layer corresponding to the crystal grain boundary of the second layer is formed in the film thickness direction.
  • the first hole extending the light incident on the first hole can be guided to the photoelectric conversion layer side below the first layer by the first hole extending in the film thickness direction, and
  • a photovoltaic element that can be diffused to the photoelectric conversion layer side below the first layer by the diffraction effect of light can be easily formed.
  • the amount of light incident on the photoelectric conversion layer can be increased, and the optical path length of the light incident on the photoelectric conversion layer can be increased by diffusion, so that the photoelectric conversion efficiency can be sufficiently increased. Can be improved.
  • the first layer is formed of a light-transmitting material, it is possible to prevent the diffused light from being absorbed by the first layer.
  • the amount of light incident on can be increased.
  • the first hole extending in the film thickness direction in the first layer, the reflectance on the surface of the first layer is lower than when the first hole is not provided.
  • the first layer can function as an antireflection film. This can also increase the amount of light incident on the photoelectric conversion layer, thereby further improving the photoelectric conversion efficiency.
  • a step of forming a collector electrode on the semiconductor layer prior to the step of forming the first layer on the semiconductor layer, a step of forming a collector electrode on the semiconductor layer. Further, the step of forming the first layer on the semiconductor layer includes forming a first layer made of a light-transmitting material having conductivity so as to cover the collector electrode. With this configuration, the first layer can also function as an electrode, and thus the current collection characteristics can be improved.
  • the first layer that also has a translucent material power is a ZnO layer having a first hole extending in the film thickness direction.
  • the film thickness direction includes a step of providing a plurality of first holes penetrating the first layer in the film thickness direction.
  • the second layer also has Si compound strength including at least one of O and N.
  • the second layer can be formed of a material having a relatively low refractive index such as SiO or SiON.
  • the step of forming the first hole and the second hole extending in the film thickness direction includes the first hole having the first hole. Forming a layer and a second layer having a second hole so as to function as a diffusion layer having a haze ratio of 10% to 50%. With this configuration, light incident on the second layer and the first layer can be sufficiently diffused.
  • the first hole has an inner diameter of 1.2 m or less.
  • the wavelength of light (about 1.2 m or less) that is photoelectrically converted by the photovoltaic element can be easily diffused by Huygens principle (light diffraction effect). The light incident on the layers can be more diffused.
  • FIG. 1 is a cross-sectional view showing the structure of a photovoltaic device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view around the ZnO layer of the photovoltaic device according to the embodiment shown in FIG. 1.
  • FIG. 3 is a cross-sectional view showing a structure of a photovoltaic module including the photovoltaic element according to the embodiment shown in FIG.
  • FIG. 4 is a cross-sectional view for explaining details of the photovoltaic device according to the embodiment shown in FIG. 1.
  • FIG. 4 is a cross-sectional view for explaining details of the photovoltaic device according to the embodiment shown in FIG. 1.
  • FIG. 5 is a diagram for explaining the light diffraction principle.
  • FIG. 6 is a diagram for explaining a method for measuring a haze ratio.
  • FIG. 7 is a cross-sectional view for explaining a manufacturing process for the photovoltaic element according to the embodiment shown in FIG. 1.
  • FIG. 8 is a cross-sectional view for explaining a manufacturing process for the photovoltaic element according to the embodiment shown in FIG. 1.
  • FIG. 8 is a cross-sectional view for explaining a manufacturing process for the photovoltaic element according to the embodiment shown in FIG. 1.
  • FIG. 9 is a cross-sectional view for explaining the manufacturing process for the photovoltaic element according to the embodiment shown in FIG. 1.
  • FIG. 10 is a cross-sectional view showing the structure of a photovoltaic device according to Comparative Example 1 of the related art.
  • FIG. 11 is a cross-sectional view showing a structure of a photovoltaic element according to a conventional comparative example 2.
  • FIG. 12 is a cross-sectional view showing the structure of a photovoltaic device according to Comparative Example 3 of the prior art.
  • a substantially intrinsic i-type amorphous silicon layer 3 is formed on the upper surface of the n-type single crystal silicon substrate 2. Is formed.
  • a p-type amorphous silicon layer 4 is formed on the i-type amorphous silicon layer 3.
  • the n-type single crystal silicon substrate 2 is an example of the “photoelectric conversion layer” and “semiconductor layer” of the present invention
  • the i-type amorphous silicon layer 3 is an example of the “semiconductor layer” of the present invention.
  • the p-type amorphous silicon layer 4 is an example of the “semiconductor layer” in the present invention.
  • a transparent conductive film 5 made of an ITO (Indium Tin Oxide) film is formed on the p-type amorphous silicon layer 4.
  • a surface-side collector electrode 6 containing Ag and an organic material is formed.
  • the surface-side collector electrode 6 is an example of the “collector electrode” in the present invention.
  • a ZnO layer 7 that is a non-doped layer having a thickness of about 1 Onm to about 140 nm is formed on the upper surfaces of the transparent conductive film 5 and the front-side collector electrode 6.
  • the ZnO layer 7 is an example of the “first layer” in the present invention.
  • a silicon oxide film 8 having a thickness of about 5 nm and having a strength such as SiO is formed.
  • the silicon oxide film 8 is an example of the “second layer” in the present invention.
  • the silicon oxide film 8 is Etching rate force with respect to an etching solution composed of HCl (about 0.5% by mass). It is smaller than the etching rate of the ZnO layer 7, and is a material.
  • predetermined portions of the ZnO layer 7 and the silicon oxide film 8 are formed in the film thickness direction (in FIG. A large number of through holes 7a and 8a each having an inner diameter of about 0.5 ⁇ m to about 3 ⁇ m extending in the Y direction) are formed.
  • the through hole 7a is an example of the “first hole” in the present invention
  • the through hole 8a is an example of the “second hole” in the present invention.
  • the inner diameter of the surface of these through-holes 7a and 8a is about 1.2 in order to diffuse the wavelength of light (about 1.2 m or less) photoelectrically converted by the solar cell by Huygens principle (light diffraction effect). m or less is desirable.
  • the Huygens principle (the light diffraction effect) is the principle of diffraction as shown by the parallel light power arrow B incident on the aperture A as shown in FIG. Further, as shown in FIGS. 1 and 2, the through hole 7a and the through hole 8a are formed so as to be continuous in the vertical direction (Y direction in FIG. 1).
  • the ZnO layer 7 and the silicon oxide film 8 function as a diffusion layer having a haze ratio of about 10% to about 50%.
  • the haze ratio can be calculated using the following formula (1).
  • Haze ratio (%) [diffuse light Z (direct light + diffuse light)] X 100 (%) ⁇ ⁇ ⁇ (1)
  • the haze ratio measuring device is provided with an integrating sphere C having a sensor (not shown) on the inner surface, and a reflector D or an absorber E.
  • the sample H and the reflector D are attached to the integrating sphere C.
  • the direct light (arrow F) transmitted through the sample H is reflected by the reflector D on the inner surface of the integrating sphere C, and the diffused light (arrow G) transmitted through the sample H is incident on the inner surface of the integrating sphere C.
  • the total of direct light (arrow F) and diffused light (arrow G) transmitted through the sample H is measured by a sensor provided on the inner surface of the integrating sphere C. If diffused light (arrow G) is to be obtained, an absorbing plate E is attached to integrating sphere C instead of reflecting plate D. Then, by absorbing the direct light transmitted through the sample H (arrow F) by the absorption plate E, only the diffused light (arrow G) transmitted through the sample H is measured.
  • the haze ratio (%) increases as the amount of diffused light increases. ,growing.
  • a substantially intrinsic i-type amorphous silicon layer 9 and an n-type amorphous silicon layer 10 are arranged in this order. Formed by.
  • the i-type amorphous silicon layer 9 is an example of the “semiconductor layer” in the present invention
  • the n-type amorphous silicon layer 10 is an example of the “semiconductor layer” in the present invention.
  • a transparent conductive film 11 made of an ITO film is formed on the lower surface of the n-type amorphous silicon layer 10.
  • a back side collector electrode 12 containing Ag and an organic material is formed in a predetermined region on the lower surface of the transparent conductive film 11.
  • the photovoltaic module 21 includes a plurality of photovoltaic elements 1.
  • Each of the plurality of photovoltaic elements 1 is connected to another adjacent photovoltaic element 1 via a tab electrode 22 having a copper foil force.
  • the plurality of photovoltaic elements 1 connected by the tab electrode 22 are covered with a filler 23 having EVA (Ethylene Vinyl Acetate) force.
  • the filler 23 is an example of the “resin layer” in the present invention.
  • the filler 23 made of EVA enters the through holes 7 a and 8 a of the ZnO layer 7 and the silicon oxide film 8. Further, on the upper surface of the filler 23, as shown in FIG. 3, a surface protective material 24 having a glass substrate force is provided. Further, on the lower surface of the filler 23, a back surface protective material 25 having a PVF (Poly Vinyl Fluo ride) force having a thickness of about 25 m is provided.
  • a PVF Poly Vinyl Fluo ride
  • the ZnO layer 7 having the through-hole 7a extending in the film thickness direction (Y direction in FIG. 1) on the light incident side Light incident on the through-hole 7a can be guided to the n-type single crystal silicon substrate 2 side below the ZnO layer 7 by the through-hole 7a extending in the film thickness direction, and the light diffraction effect of the ZnO layer 7 It can be diffused to the lower n-type single crystal silicon substrate 2 side.
  • the amount of light incident on the n-type single crystal silicon substrate 2 can be increased, and the optical path length of the light incident on the n-type single crystal silicon substrate 2 can be increased by diffusion. Efficiency can be improved sufficiently.
  • the ZnO layer 7 is a translucent material and can suppress the diffusion of the diffused light by the ZnO layer 7, so that the n-type single crystal silicon substrate 2 The amount of light incident on can be increased.
  • the through-hole 7a extending in the film thickness direction on the light incident side of the ZnO layer 7, the reflectance on the surface of the ZnO layer 7 is lower than when the through-hole 7a is not provided.
  • the ZnO layer 7 can function as an antireflection film. Also according to this, the amount of light incident on the n-type single crystal silicon substrate 2 can be increased, so that the photoelectric conversion efficiency can be further improved.
  • the ZnO layer 7 is formed so as to cover the surface-side collector electrode 6, and the ZnO layer 7 also functions as an electrode by being formed of a light-transmitting material having conductivity. Therefore, current collection characteristics can be improved.
  • the ZnO layer 7 having a ZnO force by forming the ZnO layer 7 having a ZnO force on the light incident side, the ZnO has a function of absorbing ultraviolet rays. Therefore, an organic material is disposed below the ZnO layer 7. It is possible to suppress ultraviolet rays from entering the front-side collector electrode 6 and the back-side collector electrode 12 that are included. Thereby, it is possible to suppress the organic material portions of the front side collecting electrode 6 and the back side collecting electrode 12 from being discolored by ultraviolet rays.
  • the light incident on the through-holes 7a of the ZnO layer 7 is more incident on the n-type single crystal silicon substrate 2 Therefore, the amount of light incident on the n-type single crystal silicon substrate 2 can be further increased.
  • the silicon oxide film 8 having an etching rate smaller than the etching rate of the ZnO layer 7 with respect to the etching solution (HC1 (about 0.5% by mass)) is formed on the upper surface of the ZnO layer 7.
  • the through hole 8a and the through hole 7a are formed.
  • the through hole 8a formed in the silicon oxide film 8 corresponds to the through hole 8a of the silicon oxide film 8 while suppressing the through hole 7a formed in the ZnO layer 7 from becoming too large.
  • a through hole 7 a can be formed in the ZnO layer 7.
  • the refractive index of SiO or the like is relatively small on the light incident surface.
  • the silicon oxide film 8 By using the silicon oxide film 8, it is possible to suppress the light incident on the silicon oxide film 8 from being reflected on the surface of the silicon oxide film 8.
  • the ZnO layer 7 having the through-hole 7a and the silicon having the through-hole 8a are used.
  • the conoxide film 8 function as a diffusion layer having a haze ratio of about 10% to about 50%, the light incident on the silicon oxide film 8 and the ZnO layer 7 can be sufficiently diffused. Togashi.
  • the filler 23 is formed so as to enter the through hole 7a provided in the film thickness direction of the ZnO layer 7, thereby increasing the anchor effect by the through hole 7a of the ZnO layer 7. be able to. As a result, the bonding strength between the filler 23 and the photovoltaic element 1 can be improved.
  • manufacture of the photovoltaic module 21 including the photovoltaic element 1 and the photovoltaic element 1 according to an embodiment. Describe the process.
  • the n-type single crystal silicon substrate 2 is washed to remove impurities. Then, as shown in FIG. 7, an i-type amorphous silicon layer 3 and a p-type amorphous silicon layer 4 are formed on an n-type single crystal silicon substrate 2 by using an RF plasma CVD (Chemical Vapor Deposition) method. Sequentially formed. Thereafter, an i-type amorphous silicon layer 9 and an n-type amorphous silicon layer 10 are sequentially formed on the lower surface of the n-type single crystal silicon substrate 2 using an RF plasma CVD method. The conditions for forming these i-type amorphous silicon layer 3, p-type amorphous silicon layer 4, i-type amorphous silicon layer 9 and n-type amorphous silicon layer 10 are shown in Table 1 below.
  • reaction pressure and RF power are set to 20 Pa and 150 W, respectively. Further, the gas flow rate for forming the i-type amorphous silicon layer 3 is set to H: 100 sccm and SiH: 40 sccm.
  • the reaction pressure and the RF power are set to 20 Pa and 150 W, respectively.
  • the gas flow rates for forming the p-type amorphous silicon layer 4 are set to H: 40 sccm, SiH: 40 sccm, and B H (2%: H dilution): 20 sccm.
  • the reaction pressure and the RF power are set to 20 Pa and 150 W, respectively. Further, the gas flow rate for forming the i-type amorphous silicon layer 9 is set to H: 100 sccm and SiH: 40 sccm. N-type amorphous silicon layer
  • the reaction pressure and RF power are set to 20 Pa and 150 W, respectively.
  • the gas flow rate when forming the n-type amorphous silicon layer 10 is H: 40 scc
  • a transparent conductive film 5 made of an ITO film is formed on the p-type amorphous silicon layer 4 using a sputtering method.
  • a transparent conductive film 11 made of an ITO film is formed on the lower surface of the n-type amorphous silicon layer 10 using a sputtering method.
  • a surface-side collector electrode 6 containing Ag and an organic material is formed in a predetermined region on the upper surface of the transparent conductive film 5 by using a screen printing method.
  • the back side collector electrode 12 containing Ag and an organic material is formed in a predetermined region on the lower surface of the transparent conductive film 11 by using a screen printing method.
  • a thickness of about lOnm to about 140 nm is used so as to cover the transparent conductive film 5 and the surface-side collector electrode 6 at room temperature using a sputtering method.
  • a ZnO layer 7 having n is formed.
  • a silicon oxide film 8 having a thickness of about 5 nm is formed so as to cover the upper surface of the ZnO layer 7 by sputtering.
  • a large number of crystal grain boundaries 8 b are formed in the silicon oxide film 8.
  • by wet etching by immersing in an etching solution (HC1 (about 0.5 mass%)) for about lOsec, as shown in FIG.
  • the ZnO layer 7 and the silicon oxide film 8 have a thickness direction ( A large number of through holes 7a and 8a having an inner diameter of about 0.5 ⁇ m to about 3 ⁇ m extending in the Y direction in FIG. 1 are formed.
  • the ZnO layer 7 and the silicon oxide film 8 is etched by HC1 (about 0.5 wt 0/0), HC1 (about 0.5 wt%) of crystal grain boundaries 8b of the silicon Sani ⁇ 8 By soaking in This is probably because the ZnO layer 7 is etched and the silicon oxide film 8 is removed. In this way, the photovoltaic device 1 according to the present embodiment shown in FIG. 1 is formed.
  • FIG. 3 when forming the photovoltaic module 21 using the photovoltaic element 1 according to the present embodiment, as shown in FIG. 3, a plurality of adjacent photovoltaic elements 1 are connected to a copper foil. Connected via the tab electrode 22 Then, on the surface protective material 24 which is the glass substrate cover, an EVA sheet which will later become the filler 23, a plurality of photovoltaic elements 1 connected by the tab electrode 22, an EVA sheet which will later become the filler 23 and about Laminate a protective material 25 made of PVF with a thickness of 25 ⁇ m. Thereafter, by performing a vacuum laminating process while heating, the photovoltaic module 21 using the photovoltaic element 1 according to the present embodiment is formed. At this time, in this embodiment, as shown in FIG.
  • Example 1 first, up to the back surface side collector electrode 12 of the photovoltaic device 1 shown in FIG. 1 was formed by using the process of the above-described embodiment. At this time, the transparent conductive film 5 was formed with a thickness of about 50 nm. Thereafter, a ZnO layer 7 having a thickness of about 50 nm was formed at room temperature so as to cover the transparent conductive film 5 and the surface-side collector electrode 6 by sputtering. Then, a silicon oxide film 8 having a thickness of about 5 nm was formed using a sputtering method so as to cover the upper surface of the ZnO layer 7.
  • an etchant by wet etching is performed by immersing for about 1 Osec in (HC1 (about 0.5 wt 0/0)), a number of which extend in the film thickness direction in the ZnO layer 7 and the silicon Sani ⁇ 8 Through holes 7a and 8a were formed.
  • HC1 about 0.5 wt 0/0
  • Comparative Example 1 In Comparative Example 1, first, up to the back surface side collector electrode 12 of the photovoltaic element 31 shown in FIG. 10 was formed by using a process similar to the process of the above-described embodiment. At this time, the transparent conductive film 5 was formed with a thickness of about 50 nm. Thereafter, a ZnO layer 37 having a thickness of about 50 nm or more was formed at a temperature of 180 ° C. so as to cover the transparent conductive film 5 and the front-side collector electrode 6 by using a sputtering method.
  • the ZnO layer 37 is wet-etched by immersing the ZnO layer 37 in an etching solution (HC1 (about 0.5 mass%)) for about 20 seconds, so that the ZnO layer 37 having a crater-shaped surface for diffusing light is reduced to about It was formed to a thickness of 50 nm. In this manner, a photovoltaic element 31 according to Comparative Example 1 was produced. Note that the formation temperature of the ZnO layer 37 was set to 180 ° C. In order to form the surface of the ZnO layer 37 into a crater shape by wet etching, the ZnO layer 37 must have high crystallinity. At the same time, it is necessary to form the ZnO layer 37 having high crystallinity at a high temperature.
  • HC1 about 0.5 mass%
  • Comparative Example 2 first up to the back-side collector electrode 12 of the photovoltaic element 41 shown in FIG. 11 was formed using a process similar to the process of the above-described embodiment. At this time, the transparent conductive film 5a was formed with a thickness of about lOOnm. Thereafter, an MgF layer 47 as an antireflection film having a thickness of about lOOnm is formed so as to cover the transparent conductive film 5a and the surface side collector electrode 6.
  • Comparative Example 3 the processes up to the back side collector electrode 12 of the photovoltaic element 51 shown in FIG. 12 were formed using the same process as that of the above-described embodiment. At this time, the transparent conductive film 5a was formed with a thickness of about lOOnm. In this manner, a photovoltaic device 51 according to Comparative Example 3 was produced. In the photovoltaic element 51 according to Comparative Example 3, the layers were formed without forming layers on the upper surfaces of the transparent conductive film 5a and the surface-side collector electrode 6.
  • Example 1 including the ZnO layer 7 having the through-hole 7a extending in the film thickness direction compared to Comparative Examples 1 to 3 having no through-hole 7a extending in the film thickness direction.
  • the open circuit voltage (V oc) was found to increase.
  • the open circuit voltage of Comparative Example 1 including the ZnO layer 37 having a formation temperature of 180 ° C. and a crater-shaped surface for light diffusion is small.
  • the normalized open circuit voltage was 1.001.
  • Comparative Example 1 including the ZnO layer 37 having a formation temperature of 180 ° C. and a crater-shaped surface for light diffusion the normalized open-circuit voltage was 0.9996.
  • MgF layer 47 as antireflection film
  • Comparative Example 2 the normalized open circuit voltage was 0.999. Although not shown in Table 2, the open-circuit voltage was also slightly reduced in the photovoltaic device in which the ZnO layer 7 of Example 1 was formed at 180 ° C. instead of room temperature.
  • Comparative Example 1 including the ZnO layer 37 having a formation temperature of 180 ° C and a crater-shaped surface for light diffusion, the photovoltaic power is generated by heat during the formation of the ZnO layer 37. It is probable that the open circuit voltage was lowered because the element 31 was damaged.
  • Comparative Example 1 including a ZnO layer 37 having a formation temperature of 180 ° C and a crater-shaped surface for light diffusion
  • Comparative Example 2 including an MgF layer 47 as an antireflection film
  • the short-circuit current was larger than that of Comparative Example 3 in which no layer was formed on the upper surfaces of the transparent conductive film 5a and the front-side collector electrode 6.
  • the comparative example 1 includes the ZnO layer 37 having a crater-shaped surface with a formation temperature of 180 ° C. for light diffusion. MgF layer as antireflection film 47 It was found that the short circuit current was larger than that of Comparative Example 2 including Specifically, in Example 1 including the ZnO layer 7 having the through hole 7a extending in the film thickness direction, the normalized short-circuit current was 1.053.
  • the normalized short-circuit current is 1.021, which is an antireflection film.
  • the normalized short-circuit current is 1.032.
  • Comparative Example 1 including a ZnO layer 37 having a formation temperature of 180 ° C and a crater-shaped surface for light diffusion, light is diffused by the crater shape of the surface of the ZnO layer 37. Therefore, it is possible to increase the optical path length of the incident light in the n-type single crystal silicon substrate 2 (photoelectric conversion layer), and a layer is formed on the upper surfaces of the transparent conductive film 5a and the surface-side collector electrode 6. It is considered that the short-circuit current was larger than that of Comparative Example 3 where no film was formed. In Comparative Example 2 including the MgF layer 47 as an antireflection film, it is formed on the light incident surface.
  • Example 1 including the ZnO layer 7 having the through hole 7a extending in the film thickness direction, the ZnO layer 7 and the silicon oxide film 8 having the through hole 7a extending in the film thickness direction on the light incident surface are provided.
  • the comparative example 1 having only the function of diffusing the light and the function of suppressing the reflection of the light. It is considered that the short-circuit current was larger than that of Comparative Example 2 having
  • a Z ⁇ layer 7 having a through hole 7a extending in the film thickness direction as in Example 1 and a ZnO layer 37 having a crater-shaped surface as in Comparative Example 1 were used.
  • a comparative experiment on transmittance was performed. First, a ZnO layer 7 having a through-hole 7a as in Example 1 and a ZnO layer 37 having a crater-shaped surface as in Comparative Example 1 were fabricated so that the haze ratio was approximately the same. The light transmittance of the ZnO layer 7 having the through-holes 7a extending in the film thickness direction as in Example 1 and the ZnO layer 37 having a crater-shaped surface as in Comparative Example 1 were compared.
  • Example 1 including the ZnO layer 7 having the through hole 7a extending in the film thickness direction.
  • the transmittance of the light of 400 nm, 700 nm and lOOOnm is about 3.5% larger than the transmittance of Comparative Example 1 including the ZnO layer 37 having a crater-shaped surface! That's half power IJ. From this result, it is considered that the photovoltaic device 1 according to Example 1 can increase the amount of incident light reaching the n-type single crystal silicon substrate 2 more than the photovoltaic device 31 according to Comparative Example 1. . As a result, the increase in transmittance due to the through-hole 7a of the ZnO layer 7 is also considered to be a cause of the increase in the short-circuit current of the photovoltaic device 1 according to Example 1.
  • Example 1 normalized cell output: 1.053 including the ZnO layer 7 having the through-holes 7a extending in the film thickness direction
  • the formation temperature was 180 ° C.
  • Comparative example 1 standard cell output: 1.018 including ZnO layer 37 having a crater-shaped surface for light diffusion
  • comparative example 2 standard cell including MgF layer 47 as an antireflection film Output: 1.032
  • Example 1 normalized curve factor: 0.999
  • Example 2 comparative example 1 including ZnO layer 37 having a crater-shaped surface for light diffusion
  • comparative example 2 standard curve
  • MgF layer 47 as an antireflection film Factor: 1.001
  • the photovoltaic module 21 according to Example 2 corresponding to the present embodiment and the photovoltaic modules 61 and 71 according to Comparative Examples 4 and 5 were produced.
  • the photovoltaic module 1 according to Example 1 was used for the production of the photovoltaic module 21 according to Example 2, and the above Comparative Example 1 was used for the production of the photovoltaic module 61 according to Comparative Example 4.
  • a photovoltaic device 31 was used.
  • the photovoltaic element 41 according to Comparative Example 2 was used for the production of the photovoltaic module 71 according to Comparative Example 5.
  • each of the plurality of photovoltaic elements 1 (31, 41) was connected to another adjacent photovoltaic element 1 (31, 41) via a tab electrode 22 having a copper foil force.
  • An EVA sheet and a back surface protective material 25 having a PVF force of about 25 m were laminated in sequence. Thereafter, a vacuum laminating process was performed while heating to form a photovoltaic module 21 (61, 71) including a plurality of photovoltaic elements 1 (31, 41).
  • the ZnO layer is used as the first layer having the hole (through hole) extending in the film thickness direction.
  • the present invention is not limited to this, and the hole extending in the film thickness direction is used.
  • a layer having a light-transmitting material force other than the ZnO layer may be used.
  • the SiO force having an etching rate smaller than the etching rate of the ZnO layer with respect to the etching solution (HC1 (about 0.5% by mass)).
  • the present invention is not limited to this, and as an upper layer of the ZnO layer, TiO, SiO, SiON, SiN, Al, which has a lower etching rate than the ZnO layer.
  • TiO, SiO, SiON, SiN, Al which has a lower etching rate than the ZnO layer.
  • a layer made of TO (Indium Tin Oxide) or the like may be used.
  • the force showing the structure of leaving the silicon oxide film formed on the ZnO layer is not limited to this, and the silicon oxide film is removed after the through hole is formed in the ZnO layer. Please do it.
  • an n-type single crystal silicon substrate is used for the photoelectric conversion layer.
  • the present invention is not limited to this, and a p-type single crystal silicon substrate is used for the photoelectric conversion layer.
  • an n-type or p-type polycrystalline silicon substrate may be used.
  • a ZnO layer having a through hole extending in the film thickness direction is formed on the transparent conductive film formed on the upper surface of the semiconductor layer.
  • a through hole extending in the film thickness direction may be formed in the transparent conductive film formed on the upper surface of the semiconductor layer without providing the ZnO layer.
  • through holes extending in the film thickness direction may be formed in the transparent conductive film by etching using a mask.
  • the through hole formed in the film thickness direction is shown as the hole formed in the first layer.
  • the present invention is not limited to this, and the through hole is formed in the first layer. As long as the hole extends in the direction of the film thickness, it does not need to penetrate.
  • the power of the present invention showing an example in which the ZnO layer is provided as a non-doped layer is not limited thereto, and the ZnO layer may be doped with A1 or Ga.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光電変換効率を向上させるとともに、構造が複雑になるのを抑制することが可能な光起電力素子が得られる。この光起電力素子(1)では、光電変換層(2)を含む半導体層(2~4、9および10)と、半導体層上に形成され、光が入射する側に、膜厚方向に延びる第1の孔(7a)を有する透光性材料からなる第1の層(7)とを備えている。

Description

明 細 書
光起電力素子および光起電力素子を含む光起電力モジュールならびに 光起電力素子の製造方法
技術分野
[0001] この発明は、光起電力素子および光起電力素子を含む光起電力モジュールならび に光起電力素子の製造方法に関し、特に、光電変換層を含む半導体層を備えた光 起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子 の製造方法に関する。
背景技術
[0002] 従来、光電変換層を含む半導体層を備えた光起電力素子において、光電変換効 率を向上させるための種々の提案がなされている。このような光起電力素子は、たと えば、特開昭 51— 117591号公報に開示されている。
[0003] 上記特開昭 51— 117591号公報には、下部電極と、下部電極上に形成された n型 半導体層と、 n型半導体層上に形成された p型半導体層と、 p型半導体層上に形成さ れた多孔質 p型半導体層と、多孔質 p型半導体層の上面を覆うように形成された か らなる上部電極 (透明電極)とを備えた光電変換素子 (光起電力素子)が開示されて いる。この特開昭 51— 117591号公報では、光の入射側に、多孔質 p型半導体層を 配置することによって、入射光の反射が多孔質 p型半導体層の孔により抑制されると ともに、受光面の表面積が多孔質 p型半導体層の孔により増加されるので、入射光が 減少するのが抑制される。これにより、光電変換効率が向上される。
[0004] し力しながら、上記特開昭 51— 117591号公報に開示された光電変換素子では、 光の入射側に、多孔質 p型半導体層を配置することによって、入射光が多孔質 p型半 導体層内を拡散しやすくなる。この場合、多孔質 p型半導体層の内部での光の光路 長が増大するため、入射した光が多孔質 p型半導体層に吸収されやすくなる。その 結果、 pn接合部に到達する光の量が減少するので、光電変換効率を十分に向上さ せるのが困難になるという問題点がある。
発明の開示 [0005] この発明は、上記のような課題を解決するためになされたものであり、この発明の 1 つの目的は、光電変換効率を十分に向上させることが可能な光起電力素子および 光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法を提供 することである。
[0006] 上記目的を達成するために、この発明の第 1の局面による光起電力素子は、光電 変換層を含む半導体層と、半導体層上に形成され、光が入射する側に、膜厚方向に 延びる第 1の孔を有する透光性材料力 なる第 1の層とを備える。
[0007] この発明の第 1の局面による光起電力素子では、上記のように、光が入射する側に 、膜厚方向に延びる第 1の孔を有する第 1の層を設けることによって、第 1の孔に入射 した光を、膜厚方向に延びる第 1の孔により第 1の層の下方の光電変換層側に導くこ とができ、かつ、光の回折効果により第 1の層の下方の光電変換層側に拡散させるこ とができる。これにより、光電変換層に入射する光の量を増加させることができるととも に、拡散により光電変換層に入射する光の光路長を大きくすることができるので、光 電変換効率を十分に向上させることができる。また、第 1の層を、透光性材料により形 成することによって、拡散した光が第 1の層により吸収されるのを抑制することができ るので、これによつても、光電変換層に入射する光の量を増カロさせることができる。ま た、第 1の層の光が入射する側に、膜厚方向に延びる第 1の孔を設けることによって、 第 1の孔を設けない場合に比べて、第 1の層の表面での反射率が低くなるので、第 1 の層を反射防止膜として機能させることができる。これによつても、光電変換層に入射 する光の量を増加させることができるので、光電変換効率をより向上させることができ る。
[0008] 上記第 1の局面による光起電力素子において、好ましくは、半導体層上に形成され た集電極をさらに備え、第 1の層は、集電極を覆うように形成されるとともに、導電性 を有する透光性材料からなる。このように構成すれば、第 1の層も電極として機能させ ることができるので、集電特性を向上させることができる。
[0009] 上記第 1の局面による光起電力素子において、好ましくは、透光性材料からなる第 1の層は、膜厚方向に延びる第 1の孔を有する ZnO層である。このように構成すれば 、 ZnOは紫外線を吸収する機能を有するので、たとえば、第 1の層の下方に、有機材 料を含む集電極が配置されて 、る場合に、有機材料を含む集電極に紫外線が入射 するのを抑制することができる。これにより、集電極の有機材料部分が紫外線により 変色するのを抑制することができる。
[0010] 上記第 1の局面による光起電力素子において、好ましくは、第 1の層の第 1の孔は、 第 1の層を膜厚方向に貫通するように複数設けられている。このように構成すれば、 第 1の孔に入射した光をより光電変換層に到達しやすくできるので、光電変換層に入 射する光の量をより増カロさせることができる。
[0011] 上記第 1の局面による光起電力素子において、好ましくは、透光性材料からなる第 1の層上に形成され、第 1の層の第 1の孔に対応する部分に第 2の孔を有する透光性 材料力もなる第 2の層をさらに備え、所定のエッチング液に対する第 2の層のエツチン グ速度は、所定のエッチング液に対する第 1の層のエッチング速度よりも小さい。この ように構成すれば、所定のエッチング液を用いて第 2の層および第 1の層をエツチン グすることにより、第 2の孔および第 1の孔を形成する際に、第 2の層に形成される第 2の孔が第 1の層に形成される第 1の孔よりも大きくなりすぎるのを抑制しながら、第 2 の層の孔に対応する第 1の層の部分に第 1の孔を形成することができる。
[0012] 上記第 2の層を備える光起電力素子において、好ましくは、第 2の層は、 Oおよび N の少なくとも一方を含む Siィ匕合物力もなる。このように構成すれば、第 2の層を SiO
2 や SiONなどの屈折率の比較的小さ 、材料により形成することができるので、第 2の 層に入射する光が第 2の層の表面で反射されるのを抑制することができる。
[0013] 上記第 2の層を備える光起電力素子において、好ましくは、第 1の孔を有する第 1の 層および第 2の孔を有する第 2の層は、 10%以上 50%以下のヘイズ率を有する拡 散層として機能する。このように構成すれば、第 2の層および第 1の層に入射した光を 十分に拡散させることができる。
[0014] 上記第 1の局面による光起電力素子において、好ましくは、第 1の孔は、 1. 2 μ χη 以下の内径を有する。このように構成すれば、光起電力素子により光電変換される光 の波長 (約 1. 以下)をホイヘンスの原理 (光の回折効果)により拡散させやすく することができるので、第 1の層に入射した光をより拡散させることができる。
[0015] この発明の第 2の局面による光起電力モジュールは、光電変換層を含む半導体層 と、半導体層上に形成され、光が入射する側に、膜厚方向に延びる第 1の孔を有す る透光性材料力 なる第 1の層とを含む複数の光起電力素子と、複数の光起電力素 子を相互に接続するタブ電極とを備える。
[0016] この発明の第 2の局面による光起電力モジュールでは、上記のように、光が入射す る側に、膜厚方向に延びる第 1の孔を有する第 1の層を設けることによって、第 1の孔 に入射した光を、膜厚方向に延びる第 1の孔により第 1の層の下方の光電変換層側 に導くことができ、かつ、光の回折効果により第 1の層の下方の光電変換層側に拡散 させることができる。これにより、光電変換層に入射する光の量を増加させることがで きるとともに、拡散により光電変換層に入射する光の光路長を大きくすることができる ので、光電変換効率を十分に向上させることができる。また、第 1の層を、透光性材 料により形成することによって、拡散した光が第 1の層により吸収されるのを抑制する ことができるので、これによつても、光電変換層に入射する光の量を増加させることが できる。また、第 1の層の光が入射する側に、膜厚方向に延びる第 1の孔を設けること によって、第 1の孔を設けない場合に比べて、第 1の層の表面での反射率が低くなる ので、第 1の層を反射防止膜として機能させることができる。これによつても、光電変 換層に入射する光の量を増カロさせることができるので、光電変換効率をより向上させ ることがでさる。
[0017] 上記第 2の局面による光起電力モジュールにおいて、好ましくは、光起電力素子の 上面を覆う榭脂層をさらに備え、榭脂層は、透光性材料カゝらなる第 1の層の膜厚方向 に設けられた第 1の孔の少なくとも一部に入り込むように形成されている。このように 構成すれば、第 1の層の第 1の孔に入り込んだ榭脂層の部分によりアンカー効果を 得ることができるので、榭脂層と透光性材料との接合強度を向上させることができる。
[0018] この発明の第 3の局面による光起電力素子の製造方法は、光電変換層を含む半導 体層上に透光性材料からなる第 1の層を形成するステップと、第 1の層上に、所定の エッチング液に対する第 1の層のエッチング速度よりも小さいエッチング速度を有する とともに、結晶粒界を有する透光性材料力 なる第 2の層を形成するステップと、第 2 の層の表面力 所定のエッチング液によりエッチングを行うことにより、第 1の層およ び第 2の層のうちの第 2の層の結晶粒界に対応する部分に、それぞれ、膜厚方向に 延びる第 1の孔および第 2の孔を形成するステップとを備える。
[0019] この発明の第 3の局面による光起電力素子の製造方法では、上記のように、第 1の 層のうちの第 2の層の結晶粒界に対応する部分に、膜厚方向に延びる第 1の孔を形 成することによって、第 1の孔に入射した光を、膜厚方向に延びる第 1の孔により第 1 の層の下方の光電変換層側に導くことができ、かつ、光の回折効果により第 1の層の 下方の光電変換層側に拡散させることが可能な光起電力素子を容易に形成すること ができる。これにより、光電変換層に入射する光の量を増カロさせることができるととも に、拡散により光電変換層に入射する光の光路長を大きくすることができるので、光 電変換効率を十分に向上させることができる。また、第 1の層を、透光性材料により形 成することによって、拡散した光が第 1の層により吸収されるのを抑制することができ るので、これによつても、光電変換層に入射する光の量を増カロさせることができる。ま た、第 1の層に、膜厚方向に延びる第 1の孔を形成することによって、第 1の孔を設け ない場合に比べて、第 1の層の表面での反射率が低くなるので、第 1の層を反射防 止膜として機能させることができる。これによつても、光電変換層に入射する光の量を 増加させることができるので、光電変換効率をより向上させることができる。
[0020] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、半導体層 上に第 1の層を形成するステップに先立って、半導体層上に集電極を形成するステ ップをさらに備え、半導体層上に第 1の層を形成するステップは、集電極を覆うように 、導電性を有する透光性材料からなる第 1の層を形成するステップを含む。このように 構成すれば、第 1の層も電極として機能させることができるので、集電特性を向上さ せることができる。
[0021] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、透光性材 料力もなる第 1の層は、膜厚方向に延びる第 1の孔を有する ZnO層である。このよう に構成すれば、 ZnOは紫外線を吸収する機能を有するので、たとえば、第 1の層の 下方に、有機材料を含む集電極が配置されている場合に、有機材料を含む集電極 に紫外線が入射するのを抑制することができる。これにより、集電極の有機材料部分 が紫外線により変色するのを抑制することができる。
[0022] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、膜厚方向 に延びる第 1の孔および第 2の孔を形成するステップは、第 1の層を膜厚方向に貫通 する第 1の孔を複数設けるステップを含む。このように構成すれば、第 1の孔に入射し た光をより光電変換層に到達しやすくできるので、光電変換層に入射する光の量を より増カロさせることができる。
[0023] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、第 2の層は 、 Oおよび Nの少なくとも一方を含む Siィ匕合物力もなる。このように構成すれば、第 2 の層を SiOや SiONなどの屈折率の比較的小さい材料により形成することができる
2
ので、第 2の層に入射する光が第 2の層の表面で反射されるのを抑制することができ る。
[0024] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、膜厚方向 に延びる第 1の孔および第 2の孔を形成するステップは、第 1の孔を有する第 1の層 および第 2の孔を有する第 2の層を、 10%以上 50%以下のヘイズ率を有する拡散層 として機能するように形成するステップを含む。このように構成すれば、第 2の層およ び第 1の層に入射した光を十分に拡散させることができる。
[0025] 上記第 3の局面による光起電力素子の製造方法において、好ましくは、第 1の孔は 、 1. 2 m以下の内径を有する。このように構成すれば、光起電力素子により光電変 換される光の波長 (約 1. 2 m以下)をホイヘンスの原理 (光の回折効果)により拡散 させやすくすることができるので、第 1の層に入射した光をより拡散させることができる 図面の簡単な説明
[0026] [図 1]本発明の一実施形態による光起電力素子の構造を示した断面図である。
[図 2]図 1に示した一実施形態による光起電力素子の ZnO層周辺の斜視図である。
[図 3]図 1に示した一実施形態による光起電力素子を含む光起電力モジュールの構 造を示した断面図である。
[図 4]図 1に示した一実施形態による光起電力素子の詳細を説明するための断面図 である。
[図 5]光の回折原理を説明するための図である。
[図 6]ヘイズ率の測定方法を説明するための図である。 [図 7]図 1に示した一実施形態による光起電力素子の製造プロセスを説明するための 断面図である。
[図 8]図 1に示した一実施形態による光起電力素子の製造プロセスを説明するための 断面図である。
[図 9]図 1に示した一実施形態による光起電力素子の製造プロセスを説明するための 断面図である。
[図 10]従来の比較例 1による光起電力素子の構造を示した断面図である。
[図 11]従来の比較例 2による光起電力素子の構造を示した断面図である。
[図 12]従来の比較例 3による光起電力素子の構造を示した断面図である。
発明を実施するための最良の形態
[0027] 以下、本発明の実施形態を図面に基づいて説明する。
[0028] まず、図 1〜図 6を参照して、本発明の一実施形態による光起電力素子および光起 電力素子を含む光起電力モジュールの構造について説明する。
[0029] 本発明の一実施形態による光起電力素子 1では、図 1に示すように、 n型単結晶シ リコン基板 2の上面上に、実質的に真性の i型非晶質シリコン層 3が形成されている。 また、 i型非晶質シリコン層 3上には、 p型非晶質シリコン層 4が形成されている。なお 、 n型単結晶シリコン基板 2は、本発明の「光電変換層」および「半導体層」の一例で あり、 i型非晶質シリコン層 3は、本発明の「半導体層」の一例である。また、 p型非晶 質シリコン層 4は、本発明の「半導体層」の一例である。
[0030] また、 p型非晶質シリコン層 4上には、 ITO (Indium Tin Oxide)膜からなる透明 導電膜 5が形成されている。透明導電膜 5の上面上の所定の領域には、 Agと有機材 料とを含む表面側集電極 6が形成されている。なお、表面側集電極 6は、本発明の「 集電極」の一例である。
[0031] ここで、本実施形態では、透明導電膜 5および表面側集電極 6の上面上には、約 1 Onm〜約 140nmの厚みを有するノンドープ層である ZnO層 7が形成されている。な お、 ZnO層 7は、本発明の「第 1の層」の一例である。また、 ZnO層 7の上面上には、 約 5nmの厚みを有する SiOなど力もなるシリコン酸ィ匕膜 8が形成されている。なお、
2
シリコン酸ィ匕膜 8は、本発明の「第 2の層」の一例である。なお、シリコン酸ィ匕膜 8は、 HCl (約 0. 5質量%)からなるエッチング液に対するエッチング速度力 ZnO層 7のェ ツチング速度よりも小さ!/、材料である。
[0032] また、本実施形態では、図 1および図 2に示すように、 ZnO層 7およびシリコン酸ィ匕 膜 8の所定の部分には、後述するウエットエッチングにより、膜厚方向(図 1の Y方向) に延びる約 0. 5 μ m〜約 3 μ mの内径を有する多数の貫通孔 7aおよび 8aがそれぞ れ形成されている。なお、貫通孔 7aは、本発明の「第 1の孔」の一例であり、貫通孔 8 aは、本発明の「第 2の孔」の一例である。この貫通孔 7aおよび 8aの表面の内径は、 太陽電池により光電変換される光の波長 (約 1. 2 m以下)をホイヘンスの原理 (光 の回折効果)により拡散させるために、約 1. 2 m以下であることが望ましい。なお、 ホイヘンスの原理 (光の回折効果)とは、図 5に示すように、開口部 Aに入射した平行 光力 矢印 Bに示すように回折するという原理である。また、貫通孔 7aと貫通孔 8aと は、図 1および図 2に示すように、上下方向(図 1の Y方向)に連続するように形成され ている。また、 ZnO層 7およびシリコン酸ィ匕膜 8は、約 10%以上約 50%以下のヘイズ 率を有する拡散層として機能する。なお、ヘイズ率は、次の式(1)を用いて算出する ことができる。
[0033] ヘイズ率(%) = [拡散光 Z (直達光 +拡散光) ] X 100 (%) · · · (1)
なお、ヘイズ率の測定装置としては、 Tokyo Denshoku社の TC— ΗΙΠを用いた 。具体的には、図 6に示すように、ヘイズ率の測定装置には、内面に図示しないセン サが設けられた積分球 Cと、反射板 Dまたは吸収板 Eとが設けられている。そして、直 達光 (矢印 F)および拡散光 (矢印 G)の合計を測定する場合には、積分球 Cに試料 Hおよび反射板 Dを取り付ける。そして、試料 Hを透過した直達光 (矢印 F)を反射板 Dにより積分球 Cの内面に反射させるとともに、試料 Hを透過した拡散光 (矢印 G)を 積分球 Cの内面に入射させる。そして、積分球 Cの内面に設けられたセンサにより、 試料 Hを透過した直達光 (矢印 F)および拡散光 (矢印 G)の合計を測定する。また、 拡散光 (矢印 G)を求める場合には、反射板 Dの替わりに吸収板 Eを積分球 Cに取り 付ける。そして、試料 Hを透過した直達光 (矢印 F)を吸収板 Eに吸収させることにより 、試料 Hを透過した拡散光 (矢印 G)のみを測定する。
[0034] なお、上記式(1)から明らかなように、ヘイズ率(%)は、拡散する光の量が多いほど 、大きくなる。
[0035] また、 n型単結晶シリコン基板 2の下面上には、図 1に示すように、実質的に真性の i 型非晶質シリコン層 9および n型非晶質シリコン層 10がこの順番で形成されて 、る。 なお、 i型非晶質シリコン層 9は、本発明の「半導体層」の一例であり、 n型非晶質シリ コン層 10は、本発明の「半導体層」の一例である。また、 n型非晶質シリコン層 10の 下面上には、 ITO膜からなる透明導電膜 11が形成されている。また、透明導電膜 11 の下面上の所定の領域には、 Agと有機材料とを含む裏面側集電極 12が形成されて いる。
[0036] また、図 3に示すように、本実施形態による光起電力モジュール 21は、複数の光起 電力素子 1を含んでいる。この複数の光起電力素子 1の各々は、銅箔力 なるタブ電 極 22を介して、隣接する他の光起電力素子 1と接続されている。また、タブ電極 22に より接続された複数の光起電力素子 1は、 EVA (Ethylene Vinyl Acetate :ェチ レンビニールアセテート)力もなる充填材 23により覆われている。なお、充填材 23は、 本発明の「榭脂層」の一例である。
[0037] また、本実施形態では、図 4に示すように、 EVAからなる充填材 23は、 ZnO層 7お よびシリコン酸ィ匕膜 8の貫通孔 7aおよび 8aに入り込んでいる。また、充填材 23の上 面上には、図 3に示すように、ガラス基板力もなる表面保護材 24が設けられている。 また、充填材 23の下面上には、約 25 mの厚みを有する PVF (Poly Vinyl Fluo ride:ポリフッ化ビニール)力もなる裏面保護材 25が設けられて 、る。
[0038] 本実施形態では、上記のように、光が入射する側に、膜厚方向(図 1の Y方向)に延 びる貫通孔 7aを有する ZnO層 7を設けることによって、 ZnO層 7の貫通孔 7aに入射 した光を、膜厚方向に延びる貫通孔 7aにより ZnO層 7の下方の n型単結晶シリコン基 板 2側に導くことができ、かつ、光の回折効果により ZnO層 7の下方の n型単結晶シリ コン基板 2側に拡散させることができる。これにより、 n型単結晶シリコン基板 2に入射 する光の量を増加させることができるとともに、拡散により n型単結晶シリコン基板 2に 入射する光の光路長を大きくすることができるので、光電変換効率を十分に向上させ ることができる。また、 ZnO層 7は、透光性材料であり、拡散した光が ZnO層 7により 吸収されるのを抑制することができるので、これによつても、 n型単結晶シリコン基板 2 に入射する光の量を増カロさせることができる。また、 ZnO層 7の光が入射する側に、 膜厚方向に延びる貫通孔 7aを設けることによって、貫通孔 7aを設けない場合に比べ て、 ZnO層 7の表面での反射率が低くなるので、 ZnO層 7を反射防止膜として機能さ せることができる。これによつても、 n型単結晶シリコン基板 2に入射する光の量を増 カロさせることができるので、光電変換効率をより向上させることができる。
[0039] また、本実施形態では、 ZnO層 7を、表面側集電極 6を覆うように形成するとともに、 導電性を有する透光性材料により形成することによって、 ZnO層 7も電極として機能 させることができるので、集電特性を向上させることができる。
[0040] また、本実施形態では、光が入射する側に ZnO力 なる ZnO層 7を形成することに よって、 ZnOは紫外線を吸収する機能を有するので、 ZnO層 7の下方に、有機材料 を含む表面側集電極 6および裏面側集電極 12に紫外線が入射するのを抑制するこ とができる。これにより、表面側集電極 6および裏面側集電極 12の有機材料部分が 紫外線により変色するのを抑制することができる。
[0041] また、本実施形態では、 ZnO層 7に膜厚方向に貫通する貫通孔 7aを複数設けるこ とによって、 ZnO層 7の貫通孔 7aに入射した光をより n型単結晶シリコン基板 2に到達 しゃすくできるので、 n型単結晶シリコン基板 2に入射する光の量をより増加させること ができる。
[0042] また、本実施形態では、エッチング液 (HC1 (約 0. 5質量%) )に対する ZnO層 7の エッチング速度よりも小さいエッチング速度を有するシリコン酸ィ匕膜 8を ZnO層 7の上 面上に形成することによって、エッチング液 (HC1 (約 0. 5質量%) )を用いてシリコン 酸ィ匕膜 8および ZnO層 7をエッチングすることにより、貫通孔 8aおよび貫通孔 7aを形 成する際に、シリコン酸化膜 8に形成される貫通孔 8aが ZnO層 7に形成される貫通 孔 7aよりも大きくなりすぎるのを抑制しながら、シリコン酸ィ匕膜 8の貫通孔 8aに対応す る ZnO層 7の部分に貫通孔 7aを形成することができる。
[0043] また、本実施形態では、光が入射する面に、 SiOなどの屈折率が比較的に小さい
2
シリコン酸ィ匕膜 8を用いることによって、シリコン酸ィ匕膜 8に入射する光がシリコン酸ィ匕 膜 8の表面で反射するのを抑制することができる。
[0044] また、本実施形態では、貫通孔 7aを有する ZnO層 7および貫通孔 8aを有するシリ コン酸ィ匕膜 8を、約 10%以上約 50%以下のヘイズ率を有する拡散層として機能させ ることによって、シリコン酸ィ匕膜 8および ZnO層 7に入射した光を十分に拡散させるこ とがでさる。
[0045] また、本実施形態では、充填材 23を ZnO層 7の膜厚方向に設けられた貫通孔 7a に入り込むように形成することによって、 ZnO層 7の貫通孔 7aによるアンカー効果を 増加させることができる。これにより、充填材 23と光起電力素子 1との接合強度を向 上させることがでさる。
[0046] 次に、図 1、図 3、図 4および図 7〜図 9を参照して、一実施形態による光起電力素 子 1および光起電力素子 1を含む光起電力モジュール 21の製造プロセスについて 説明する。
[0047] 図 1に示した光起電力素子 1を作製する際には、まず、 n型単結晶シリコン基板 2を 洗浄することにより不純物を除去する。そして、図 7に示すように、 RFプラズマ CVD( Chemical Vapor Deposition)法を用いて、 n型単結晶シリコン基板 2上に、 i型 非晶質シリコン層 3および p型非晶質シリコン層 4を順次形成する。その後、 RFプラズ マ CVD法を用いて、 n型単結晶シリコン基板 2の下面上に、 i型非晶質シリコン層 9お よび n型非晶質シリコン層 10を順次形成する。これら i型非晶質シリコン層 3、 p型非晶 質シリコン層 4、 i型非晶質シリコン層 9および n型非晶質シリコン層 10の形成条件を、 以下の表 1に示す。
[0048] [表 1] 形成条件
処理
ガ ,·) 更 圧力(Pa) RFパヮ一(W)
H2: lOOsccm
i型非晶質シリコン層 20 150
SiH4: 40sccm
表面側 H2: 40sccm
P型非晶質シリコン層 SiH4: 40sccm 20 150
B2H6(2%) :20sccm
H2: 1 OOsccm
i型非晶質シリコン層 20 150
SiH4 : 40sccm
裏面側 H2: 40sccm
n型非晶質シリコン層 SiH4.40sccm 20 150
PH3(1%) :40sccm [0049] 上記表 1を参照して、 i型非晶質シリコン層 3を形成する際には、反応圧力および R Fパワーを、それぞれ、 20Paおよび 150Wに設定する。また、 i型非晶質シリコン層 3 を形成する際のガス流量を、 H : 100sccm、 SiH :40sccmに設定する。また、 p型
2 4
非晶質シリコン層 4を形成する際には、反応圧力および RFパワーを、それぞれ、 20P aおよび 150Wに設定する。また、 p型非晶質シリコン層 4を形成する際のガス流量を 、 H :40sccm、 SiH :40sccm、 B H (2% :H希釈): 20sccmに設定する。
2 4 2 6 2
[0050] また、 i型非晶質シリコン層 9を形成する際には、反応圧力および RFパワーを、それ ぞれ、 20Paおよび 150Wに設定する。また、 i型非晶質シリコン層 9を形成する際の ガス流量を、 H : 100sccm、 SiH :40sccmに設定する。また、 n型非晶質シリコン層
2 4
10を形成する際には、反応圧力および RFパワーを、それぞれ、 20Paおよび 150W に設定する。また、 n型非晶質シリコン層 10を形成する際のガス流量を、 H :40scc
2 m、 SiH :40sccm、 PH (1% :H希釈):40sccmに設定する。
4 3 2
[0051] 次に、スパッタリング法を用いて、 p型非晶質シリコン層 4上に、 ITO膜からなる透明 導電膜 5を形成する。そして、スパッタリング法を用いて、 n型非晶質シリコン層 10の 下面上に、 ITO膜からなる透明導電膜 11を形成する。その後、スクリーン印刷法を用 いて、透明導電膜 5の上面上の所定の領域に、 Agと有機材料とを含む表面側集電 極 6を形成する。そして、スクリーン印刷法を用いて、透明導電膜 11の下面上の所定 の領域に、 Agと有機材料とを含む裏面側集電極 12を形成する。
[0052] 次に、本実施形態では、図 8に示すように、スパッタリング法を用いて、室温で、透 明導電膜 5および表面側集電極 6を覆うように、約 lOnm〜約 140nmの厚みを有す る ZnO層 7を形成する。そして、図 9に示すように、スパッタリング法を用いて、 ZnO層 7の上面を覆うように、約 5nmの厚みを有するシリコン酸化膜 8を形成する。このとき、 シリコン酸ィ匕膜 8には、多数の結晶粒界 8bが形成される。そして、エッチング液 (HC1 (約 0. 5質量%) )に約 lOsec間浸すことによりウエットエッチングすることによって、図 1に示すように、 ZnO層 7およびシリコン酸ィ匕膜 8に膜厚方向(図 1の Y方向)に延びる 約 0. 5 μ m〜約 3 μ mの内径を有する多数の貫通孔 7aおよび 8aが形成される。なお 、 ZnO層 7およびシリコン酸化膜 8が HC1 (約 0. 5質量0 /0)によりエッチングされるのは 、 HC1 (約 0. 5質量%)がシリコン酸ィ匕膜 8の結晶粒界 8bから染み込むことによって、 ZnO層 7がエッチングされるとともに、シリコン酸ィ匕膜 8が除去されるためであると考え られる。このようにして、図 1に示した本実施形態による光起電力素子 1が形成される
[0053] また、本実施形態による光起電力素子 1を用いた光起電力モジュール 21を形成す る際には、図 3に示すように、隣接する複数の光起電力素子 1を、銅箔力 なるタブ 電極 22を介して接続する。そして、ガラス基板カゝらなる表面保護材 24の上に、後に 充填材 23となる EVAシート、タブ電極 22により接続した複数の光起電力素子 1、後 に充填材 23となる EVAシートおよび約 25 μ mの厚みを有する PVFからなる裏面保 護材 25を順次積層する。この後、加熱しながら真空ラミネート処理を行うことによって 、本実施形態による光起電力素子 1を用 、た光起電力モジュール 21が形成される。 このとき、本実施形態では、図 4に示すように、 ZnO層 7およびシリコン酸ィ匕膜 8には 多数の貫通孔 7aおよび 8aが形成されているので、充填材 23が ZnO層 7およびシリコ ン酸ィ匕膜 8の多数の貫通孔 7aおよび 8aに入り込むように形成される。
[0054] 次に、上記した本実施形態の効果を確認するために行った実験について説明する 。まず、本実施形態による光起電力素子 1の光電変換効率を調べた実験について説 明する。この実験では、本実施形態に対応する実施例 1による光起電力素子 1と、比 較例 1〜3による光起電力素子 31、 41および 51とを作製した。
[0055] (実施例 1)
この実施例 1では、まず、上記した実施形態のプロセスを用いて、図 1に示した光起 電力素子 1の裏面側集電極 12までを形成した。この際、透明導電膜 5は、約 50nm の厚みで形成した。この後、スパッタリング法を用いて、透明導電膜 5および表面側 集電極 6を覆うように、室温において、約 50nmの厚みを有する ZnO層 7を形成した。 そして、スパッタリング法を用いて、 ZnO層 7の上面を覆うように、約 5nmの厚みを有 するシリコン酸ィ匕膜 8を形成した。そして、エッチング液 (HC1 (約 0. 5質量0 /0) )に約 1 Osec間浸すことによりウエットエッチングを行うことによって、 ZnO層 7およびシリコン 酸ィ匕膜 8に膜厚方向に延びる多数の貫通孔 7aおよび 8aを形成した。このようにして、 実施例 1による光起電力素子 1を作製した。
[0056] (比較例 1) この比較例 1では、まず、上記した実施形態のプロセスと同様のプロセスを用いて、 図 10に示した光起電力素子 31の裏面側集電極 12までを形成した。この際、透明導 電膜 5は、約 50nmの厚みで形成した。この後、スパッタリング法を用いて、透明導電 膜 5および表面側集電極 6を覆うように、 180°Cの温度条件下で、約 50nm以上の厚 みを有する ZnO層 37を形成した。そして、 ZnO層 37をエッチング液 (HC1 (約 0. 5質 量%) )に約 20sec間浸すことによりウエットエッチングすることによって、光を拡散する ためのクレータ形状の表面を有する ZnO層 37を約 50nmの厚みになるように形成し た。このようにして、比較例 1による光起電力素子 31を作製した。なお、 ZnO層 37の 形成温度を 180°Cとしたのは、 ZnO層 37の表面をウエットエッチングによりクレータ形 状に形成するためには、 ZnO層 37が高い結晶性を有することが必要であるとともに、 高 、結晶性を有する ZnO層 37を得るためには高温で形成する必要があるためであ る。
[0057] (比較例 2)
この比較例 2では、まず、上記した実施形態のプロセスと同様のプロセスを用いて、 図 11に示した光起電力素子 41の裏面側集電極 12までを形成した。この際、透明導 電膜 5aは、約 lOOnmの厚みで形成した。この後、透明導電膜 5aおよび表面側集電 極 6を覆うように、約 lOOnmの厚みを有する反射防止膜としての MgF層 47を形成し
2
た。このようにして、比較例 2による光起電力素子 41を作製した。
[0058] (比較例 3)
この比較例 3では、上記した実施形態のプロセスと同様のプロセスを用いて、図 12 に示した光起電力素子 51の裏面側集電極 12までを形成した。この際、透明導電膜 5aは、約 lOOnmの厚みで形成した。このようにして、比較例 3による光起電力素子 5 1を作製した。なお、この比較例 3による光起電力素子 51では、透明導電膜 5aおよ び表面側集電極 6の上面上には層を形成しな力つた。
[0059] 次に、上記実施例 1および比較例 1〜3による光起電力素子 1、 31、 41、および 51 の開放電圧 (Voc)、短絡電流 (Isc)、セル出力(Pmax)および曲線因子 (F. F. )を それぞれ測定した。その結果を以下の表 2に示す。なお、実施例 比較例 1および 2の開放電圧 (Voc)、短絡電流 (Isc)、セル出力(Pmax)および曲線因子 (F. F. ) は、透明導電膜 5および表面側集電極 6の上面上に層を形成して 、な 、比較例 3を 基準(「1」)として規格化を行った。
[表 2]
Figure imgf000017_0001
[0061] 上記表 2を参照して、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を含む実施例 1では、膜厚方向に延びる貫通孔 7aを有しない比較例 1〜3に比べて、開放電圧 (V oc)が大きくなることが判明した。特に、形成温度が 180°Cでかつ光拡散のためのク レータ形状の表面を有する ZnO層 37を含む比較例 1の開放電圧が小さくなることが 判明した。具体的には、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を形成した実 施例 1では、規格化開放電圧が 1. 001であった。これに対して、形成温度が 180°C でかつ光拡散のためのクレータ形状の表面を有する ZnO層 37を含む比較例 1では 、規格化開放電圧が 0. 996であった。また、反射防止膜としての MgF層 47を含む
2
比較例 2では、規格化開放電圧が 0. 999であった。なお、表 2には記載していない が、実施例 1の ZnO層 7を室温ではなく 180°Cで形成した光起電力素子においても、 開放電圧が若干低下した。
[0062] この結果から、形成温度が 180°Cでかつ光拡散のためのクレータ形状の表面を有 する ZnO層 37を含む比較例 1では、 ZnO層 37の形成時の熱により、光起電力素子 31がダメージを受けたために開放電圧が低下したと考えられる。
[0063] また、形成温度が 180°Cでかつ光拡散のためのクレータ形状の表面を有する ZnO 層 37を含む比較例 1、および、反射防止膜としての MgF層 47を含む比較例 2では
2
、透明導電膜 5aおよび表面側集電極 6の上面上に層を形成していない比較例 3より も短絡電流が大きくなることが判明した。また、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を含む実施例 1では、形成温度が 180°Cでかつ光拡散のためのクレータ形 状の表面を有する ZnO層 37を含む比較例 1および反射防止膜としての MgF層 47 を含む比較例 2よりもより短絡電流が大きくなることが判明した。具体的には、膜厚方 向に延びる貫通孔 7aを有する ZnO層 7を含む実施例 1では、規格化短絡電流が 1. 053であった。これに対して、形成温度が 180°Cでかつ光拡散のためのクレータ形状 の表面を有する ZnO層 37を含む比較例 1では、規格化短絡電流が 1. 021であり、 反射防止膜としての MgF層 47を含む比較例 2では、規格化短絡電流が 1. 032で
2
めつに。
[0064] この結果から、形成温度が 180°Cでかつ光拡散のためのクレータ形状の表面を有 する ZnO層 37を含む比較例 1では、 ZnO層 37の表面のクレータ形状により光を拡 散させる機能を有するので、入射した光の n型単結晶シリコン基板 2 (光電変換層)に おける光路長を大きくすることが可能となり、透明導電膜 5aおよび表面側集電極 6の 上面上に層を形成していない比較例 3よりも短絡電流が大きくなつたと考えられる。ま た、反射防止膜としての MgF層 47を含む比較例 2では、光が入射する面に形成し
2
た反射防止膜としての MgF層 47により光が反射するのを抑制することが可能となる
2
ので、透明導電膜 5aおよび表面側集電極 6の上面上に層を形成して 、な 、比較例 3よりも短絡電流が大きくなつたと考えられる。また、膜厚方向に延びる貫通孔 7aを有 する ZnO層 7を含む実施例 1は、光が入射する面に膜厚方向に延びる貫通孔 7aを 有する ZnO層 7およびシリコン酸ィ匕膜 8を形成したことにより、光を拡散させるとともに 、光が反射するのを抑制することが可能となり、その結果、光を拡散させる機能のみ を有する比較例 1、および、光が反射するのを抑制する機能のみを有する比較例 2よ りも短絡電流が大きくなつたと考えられる。
[0065] なお、上記実験とは別に、実施例 1のように膜厚方向に延びる貫通孔 7aを有する Z ηθ層 7と、比較例 1のようにクレータ形状の表面を有する ZnO層 37との透過率に関 する比較実験を行った。まず、実施例 1のように貫通孔 7aを有する ZnO層 7と、比較 例 1のようにクレータ形状の表面を有する ZnO層 37とをヘイズ率が同程度になるよう に作製した。そして、実施例 1のように膜厚方向に延びる貫通孔 7aを有する ZnO層 7 と、比較例 1のようにクレータ形状の表面を有する ZnO層 37とについて、光の透過率 を比較した。なお、入射する光の波長を 400nm、 700nmおよび lOOOnmとして実験 を行った。その結果、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を含む実施例 1 の透過率は、クレータ形状の表面を有する ZnO層 37を含む比較例 1の透過率よりも 、 400nm、 700nmおよび lOOOnmの波長の光にお!/、て、約 3. 5%大き!/、こと力半 IJ 明した。この結果から、実施例 1による光起電力素子 1は、比較例 1による光起電力 素子 31よりも入射した光の n型単結晶シリコン基板 2に到達する量を増加させること ができると考えられる。これにより、 ZnO層 7の貫通孔 7aにより透過率が大きくなつた ことも、実施例 1による光起電力素子 1の短絡電流が大きくなつた原因と考えられる。
[0066] また、上記表 2に示すように、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を含む 実施例 1 (規格化セル出力: 1. 053)では、形成温度が 180°Cでかつ光拡散のため のクレータ形状の表面を有する ZnO層 37を含む比較例 1 (規格ィ匕セル出力:1. 018 )、反射防止膜としての MgF層 47を含む比較例 2 (規格ィ匕セル出力: 1. 032)、透
2
明導電膜 5aおよび表面側集電極 6の上面上に層を形成していない比較例 3 (規格ィ匕 セル出力:1. 000)に比べて、セル出力が大きくなることが判明した。
[0067] また、上記表 2に示すように、膜厚方向に延びる貫通孔 7aを有する ZnO層 7を含む 実施例 1 (規格化曲線因子: 0. 999)では、形成温度が 180°Cでかつ光拡散のため のクレータ形状の表面を有する ZnO層 37を含む比較例 1 (規格ィ匕曲線因子: 1. 001 )、反射防止膜としての MgF層 47を含む比較例 2 (規格ィ匕曲線因子:1. 001)、透
2
明導電膜 5aおよび表面側集電極 6の上面上に層を形成していない比較例 3 (規格ィ匕 曲線因子: 1. 000)と同程度の曲線因子になることが判明した。
[0068] 次に、光起電力モジュールにおける耐湿性を調べた実験について説明する。この 実験では、本実施形態に対応する実施例 2による光起電力モジュール 21と、比較例 4および 5による光起電力モジュール 61および 71とを作製した。なお、実施例 2によ る光起電力モジュール 21の作製には、上記実施例 1による光起電力素子 1を用いる とともに、比較例 4による光起電力モジュール 61の作製には、上記比較例 1による光 起電力素子 31を用いた。また、比較例 5による光起電力モジュール 71の作製には、 上記比較例 2による光起電力素子 41を用 、た。
[0069] (実施例 2、比較例 4および 5共通)
まず、上記実施例 1、比較例 1および 2による光起電力素子 1 (31、 41)をそれぞれ 複数準備した。この後、図 3に示したように、それぞれの複数の光起電力素子 1 (31、 41)を、銅箔力もなるタブ電極 22を介して、隣接する他の光起電力素子 1 (31、 41) と接続した。
[0070] そして、ガラス基板力もなる表面保護材 24の上に、充填材 23となる EVAシート、タ ブ電極 22により接続した複数の光起電力素子 1 (31、 41)、充填材 23となる EVAシ ートおよび約 25 mの厚みを有する PVF力もなる裏面保護材 25を順次積層した。こ の後、加熱しながら真空ラミネート処理を行うことによって、複数の光起電力素子 1 (3 1、 41)を含む光起電力モジュール 21 (61、 71)を形成した。
[0071] 次に、上記実施例 2、比較例 4および 5による光起電力モジュール 21、 61、 71を、 高湿度条件下で、 2000時間放置した。そして、充填材 23と光起電力素子 1、 31、 4 1との間で剥離が発生するかどうかを調べた。その結果を表 3に示す。
[0072] [表 3]
Figure imgf000020_0001
[0073] 上記表 3を参照して、膜厚方向に貫通孔 7aを有する ZnO層 7を含む実施例 2による 光起電力モジュール 21では、充填材 23と光起電力素子 1との間で剥離が発生しな いことが判明した。また、クレータ形状の表面を有する ZnO層 37を含む比較例 4によ る光起電力モジュール 61、および、反射防止膜としての MgF層 47を含む比較例 5
2
による光起電力モジュール 71では、充填材 23と光起電力素子 31および 41の上面と の間で、それぞれ、一部剥離が発生するものがあることが判明した。
[0074] この結果から、貫通孔 7aを有する ZnO層 7を含む実施例 2の光起電力モジュール 2 1では、図 4に示すように、充填材 23が ZnO層 7の貫通孔 7aに入り込むことにより、充 填材 23と光起電力素子 1との間のアンカー効果が大きくなることによって、充填材 23 と光起電力素子 1との接合強度が大きくなつたと考えられる。
[0075] なお、今回開示された実施形態および実施例は、すべての点で例示であって制限 的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態およ び実施例の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等など の意味および範囲内でのすべての変更が含まれる。
[0076] たとえば、上記実施形態では、膜厚方向に延びる孔 (貫通孔)を有する第 1の層とし て、 ZnO層を用いたが、本発明はこれに限らず、膜厚方向に延びる孔 (貫通孔)を有 する層であれば、 ZnO層以外の透光性材料力もなる層を用いてもよい。
[0077] また、上記実施形態では、 ZnO層の上層として、エッチング液 (HC1 (約 0. 5質量% ) )に対する ZnO層のエッチング速度よりも小さいエッチング速度を有する SiO力 な
2 るシリコン酸ィ匕膜 8を用いた例を示したが、本発明はこれに限らず、 ZnO層の上層と して、 ZnO層よりもエッチング速度の小さい TiO、 SiO、 SiON、 SiN、 Al Oまたは I
2 n 2 3
TO (Indium Tin Oxide)などからなる層を用いてもよい。
[0078] また、上記実施形態では、 ZnO層上に形成したシリコン酸化膜を残す構造を示した 力 本発明はこれに限らず、 ZnO層に貫通孔を形成した後に、シリコン酸化膜を除去 するようにしてちょい。
[0079] また、上記実施形態では、光電変換層に n型単結晶シリコン基板を用いた例を示し たが、本発明はこれに限らず、光電変換層に p型単結晶シリコン基板を用いてもよい し、 n型または p型の多結晶シリコン基板を用いてもよい。
[0080] また、上記実施形態では、半導体層の上面上に形成された透明導電膜上に、膜厚 方向に延びる貫通孔を有する ZnO層を形成した例を示したが、本発明はこれに限ら ず、 ZnO層を設けることなぐ半導体層の上面上に形成された透明導電膜に膜厚方 向に延びる貫通孔を形成してもよい。この場合、マスクを用いてエッチングを行うこと により透明導電膜に膜厚方向に延びる貫通孔を形成してもよ 、。
[0081] また、上記実施形態では、第 1の層に形成される孔として、膜厚方向に形成される 貫通孔を示したが、本発明はこれに限らず、第 1の層に形成される孔として、膜厚方 向に延びる孔であれば、貫通して 、なくてもょ 、。
[0082] また、上記実施形態では、 ZnO層をノンドープ層として設けた例を示した力 本発 明はこれに限らず、 ZnO層に A1や Gaをドープしてもよ!、。

Claims

請求の範囲
[1] 光電変換層 (2)を含む半導体層(2〜4、 9および 10)と、
前記半導体層上に形成され、光が入射する側に、膜厚方向に延びる第 1の孔(7a) を有する透光性材料力もなる第 1の層(7)とを備えた、光起電力素子(1)。
[2] 前記半導体層上に形成された集電極 (6)をさらに備え、
前記第 1の層は、前記集電極を覆うように形成されるとともに、導電性を有する透光 性材料からなる、請求項 1に記載の光起電力素子。
[3] 前記透光性材料からなる第 1の層は、前記膜厚方向に延びる第 1の孔を有する Zn
O層である、請求項 1または 2に記載の光起電力素子。
[4] 前記第 1の層の第 1の孔は、前記第 1の層を膜厚方向に貫通するように複数設けら れている、請求項 1〜3のいずれか 1項に記載の光起電力素子。
[5] 前記透光性材料力 なる第 1の層上に形成され、前記第 1の層の第 1の孔に対応 する部分に第 2の孔 (8a)を有する透光性材料力もなる第 2の層(8)をさらに備え、 所定のエッチング液に対する前記第 2の層のエッチング速度は、前記所定のエッチ ング液に対する前記第 1の層のエッチング速度よりも小さい、請求項 1〜4のいずれ 力 1項に記載の光起電力素子。
[6] 前記第 2の層は、 Oおよび Nの少なくとも一方を含む Siィ匕合物力もなる、請求項 5に 記載の光起電力素子。
[7] 前記第 1の孔を有する第 1の層および前記第 2の孔を有する第 2の層は、 10%以上 50%以下のヘイズ率を有する拡散層として機能する、請求項 5または 6に記載の光 起電力素子。
[8] 前記第 1の孔は、 1. 2 m以下の内径を有する、請求項 1〜7のいずれか 1項に記 載の光起電力素子。
[9] 光電変換層 (2)を含む半導体層(2〜4、 9および 10)と、前記半導体層上に形成さ れ、光が入射する側に、膜厚方向に延びる第 1の孔(7a)を有する透光性材料力 な る第 1の層(7)とを含む複数の光起電力素子(1)と、
前記複数の光起電力素子を相互に接続するタブ電極とを備えた、光起電力モジュ ール(21)。
[10] 前記光起電力素子の上面を覆う榭脂層(23)をさらに備え、
前記榭脂層は、前記透光性材料力 なる第 1の層の膜厚方向に設けられた前記第 1の孔の少なくとも一部に入り込むように形成されている、請求項 9に記載の光起電 カモジユーノレ。
[11] 光電変換層 (2)を含む半導体層(2〜4、 9および 10)上に透光性材料からなる第 1 の層(7)を形成するステップと、
前記第 1の層上に、所定のエッチング液に対する前記第 1の層のエッチング速度よ りも小さいエッチング速度を有するとともに、結晶粒界(8b)を有する透光性材料から なる第 2の層(8)を形成するステップと、
前記第 2の層の表面力 前記所定のエッチング液によりエッチングを行うことにより、 前記第 1の層および前記第 2の層のうちの前記第 2の層の結晶粒界に対応する部分 に、それぞれ、膜厚方向に延びる第 1の孔(7a)および第 2の孔 (8a)を形成するステ ップとを備える、光起電力素子(1)の製造方法。
[12] 前記半導体層上に第 1の層を形成するステップに先立って、前記半導体層上に集 電極 (6)を形成するステップをさらに備え、
前記半導体層上に第 1の層を形成するステップは、前記集電極を覆うように、導電 性を有する透光性材料からなる前記第 1の層を形成するステップを含む、請求項 11 に記載の光起電力素子の製造方法。
[13] 前記透光性材料からなる第 1の層は、前記膜厚方向に延びる第 1の孔を有する Zn
O層である、請求項 11または 12に記載の光起電力素子の製造方法。
[14] 前記膜厚方向に延びる第 1の孔および第 2の孔を形成するステップは、前記第 1の 層を膜厚方向に貫通する第 1の孔を複数設けるステップを含む、請求項 11〜13の いずれか 1項に記載の光起電力素子の製造方法。
[15] 前記第 2の層は、 Oおよび Nの少なくとも一方を含む Siィ匕合物力もなる、請求項 11
〜14のいずれか 1項に記載の光起電力素子の製造方法。
[16] 前記膜厚方向に延びる第 1の孔および第 2の孔を形成するステップは、前記第 1の 孔を有する第 1の層および前記第 2の孔を有する第 2の層を、 10%以上 50%以下の ヘイズ率を有する拡散層として機能するように形成するステップを含む、請求項 11〜 15のいずれか 1項に記載の光起電力素子の製造方法。
[17] 前記第 1の孔は、 1. 2 /z m以下の内径を有する、請求項 11〜16のいずれか 1項に 記載の光起電力素子の製造方法。
PCT/JP2006/302137 2005-02-14 2006-02-08 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法 WO2006085543A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06713280A EP1850397B1 (en) 2005-02-14 2006-02-08 Photovoltaic device, photovoltaic module comprising photovoltaic device, and method for manufacturing photovoltaic device
US11/816,240 US20090007955A1 (en) 2005-02-14 2006-02-08 Photovoltaic Device, Photovoltaic Module Comprising Photovoltaic Device, and Method for Manufacturing Photovoltaic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035336A JP4454514B2 (ja) 2005-02-14 2005-02-14 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
JP2005-035336 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085543A1 true WO2006085543A1 (ja) 2006-08-17

Family

ID=36793114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302137 WO2006085543A1 (ja) 2005-02-14 2006-02-08 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法

Country Status (4)

Country Link
US (1) US20090007955A1 (ja)
EP (1) EP1850397B1 (ja)
JP (1) JP4454514B2 (ja)
WO (1) WO2006085543A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571870B2 (ja) * 2007-09-21 2014-08-13 株式会社東芝 極微細構造を有する光透過型金属電極およびその製造方法
JP5475246B2 (ja) * 2008-03-24 2014-04-16 株式会社東芝 太陽電池
TWI373849B (en) * 2008-06-12 2012-10-01 Nexpower Technology Corp Stacked-layered thin film solar cell and manufacturing method thereof
JP2010219407A (ja) 2009-03-18 2010-09-30 Toshiba Corp メッシュ構造を有する電極を具備した太陽電池及びその製造方法
JP5667747B2 (ja) * 2009-03-18 2015-02-12 株式会社東芝 薄膜太陽電池およびその製造方法
JP5489859B2 (ja) 2009-05-21 2014-05-14 株式会社半導体エネルギー研究所 導電膜及び導電膜の作製方法
CN102460722B (zh) * 2009-06-05 2015-04-01 株式会社半导体能源研究所 光电转换装置及其制造方法
JP2011014884A (ja) * 2009-06-05 2011-01-20 Semiconductor Energy Lab Co Ltd 光電変換装置
WO2010140522A1 (en) * 2009-06-05 2010-12-09 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
CN102460721B (zh) * 2009-06-05 2015-07-01 株式会社半导体能源研究所 光电转换装置及其制造方法
JP5174966B2 (ja) * 2009-07-01 2013-04-03 三菱電機株式会社 薄膜太陽電池およびその製造方法
US8233919B2 (en) * 2009-08-09 2012-07-31 Hntb Holdings Ltd. Intelligently providing user-specific transportation-related information
FI20106004A0 (fi) * 2010-09-29 2010-09-29 Beneq Oy Aurinkokennon substraatti ja sen valmistusmenetelmä
JP2014241310A (ja) * 2011-10-18 2014-12-25 三菱電機株式会社 光電変換装置およびその製造方法
JP5710024B2 (ja) * 2011-12-21 2015-04-30 三菱電機株式会社 太陽電池の製造方法
JP6005269B2 (ja) * 2013-05-16 2016-10-12 三菱電機株式会社 太陽電池およびその製造方法、太陽電池モジュール
JP6520126B2 (ja) * 2015-01-08 2019-05-29 日立化成株式会社 太陽電池モジュール及びそれに用いられる太陽電池の封止樹脂
KR102253547B1 (ko) * 2018-11-29 2021-05-18 울산과학기술원 무색 투명 반도체 기판 및 이의 제조방법
US11094508B2 (en) 2018-12-14 2021-08-17 Applied Materials, Inc. Film stress control for plasma enhanced chemical vapor deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143569A (ja) * 1988-11-25 1990-06-01 Agency Of Ind Science & Technol 光電変換素子
JPH06204541A (ja) * 1992-12-28 1994-07-22 Canon Inc 光起電力装置
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JPH07326784A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池素子の製造方法
JP2000294812A (ja) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd 光電変換素子及びその製造方法
JP2001156317A (ja) * 1999-11-29 2001-06-08 Canon Inc 光起電力素子及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536950A (en) * 1978-09-05 1980-03-14 Fuji Photo Film Co Ltd Manufacturing of thin film photocell
US4359487A (en) * 1980-07-11 1982-11-16 Exxon Research And Engineering Co. Method for applying an anti-reflection coating to a solar cell
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
US6184456B1 (en) * 1996-12-06 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143569A (ja) * 1988-11-25 1990-06-01 Agency Of Ind Science & Technol 光電変換素子
JPH06204541A (ja) * 1992-12-28 1994-07-22 Canon Inc 光起電力装置
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JPH07326784A (ja) * 1994-05-30 1995-12-12 Kyocera Corp 太陽電池素子の製造方法
JP2000294812A (ja) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd 光電変換素子及びその製造方法
JP2001156317A (ja) * 1999-11-29 2001-06-08 Canon Inc 光起電力素子及びその製造方法

Also Published As

Publication number Publication date
EP1850397B1 (en) 2012-12-19
EP1850397A4 (en) 2010-12-08
JP4454514B2 (ja) 2010-04-21
US20090007955A1 (en) 2009-01-08
EP1850397A1 (en) 2007-10-31
JP2006222320A (ja) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4454514B2 (ja) 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
JP5147818B2 (ja) 光電変換装置用基板
EP2110859B1 (en) Laminate type photoelectric converter and method for fabricating the same
TWI438904B (zh) 薄膜式太陽能電池及其製造方法
KR101247916B1 (ko) 텐덤 반도체 층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법
US11335818B2 (en) Solar cell and production method therefor, and solar cell module
US20080223436A1 (en) Back reflector for use in photovoltaic device
US20100147378A1 (en) Solar cell and method of manufacturing the same
JP2003273383A (ja) 太陽電池素子およびその製造方法
JPH08139347A (ja) 太陽電池モジュール及びその製造方法
WO2006057160A1 (ja) 薄膜光電変換装置
WO2015118935A1 (ja) 光電変換素子およびそれを備えた太陽電池モジュール
JP5001722B2 (ja) 薄膜太陽電池の製造方法
TW201131797A (en) Method for manufacturing a thin-film, silicon based solar cell device
JP2008305945A (ja) 薄膜太陽電池用基板とその製造方法および薄膜太陽電池の製造方法
CN114175278A (zh) 晶片太阳能电池、太阳能模块以及用于制造晶片太阳能电池的方法
US10340848B2 (en) I-V measurement device for solar cell, manufacturing method for solar cell, and solar cell module
WO2014050193A1 (ja) 光電変換モジュール
JP2003298090A (ja) 太陽電池素子およびその製造方法
WO2016163168A1 (ja) 光電変換素子
JP2003008036A (ja) 太陽電池及びその製造方法
JPS5994472A (ja) 光電変換半導体装置の作製方法
KR20200142379A (ko) 태양전지 및 태양전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006713280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006713280

Country of ref document: EP