WO2006085541A1 - タンニンのゲル及び高粘性溶液の製造方法 - Google Patents

タンニンのゲル及び高粘性溶液の製造方法 Download PDF

Info

Publication number
WO2006085541A1
WO2006085541A1 PCT/JP2006/302133 JP2006302133W WO2006085541A1 WO 2006085541 A1 WO2006085541 A1 WO 2006085541A1 JP 2006302133 W JP2006302133 W JP 2006302133W WO 2006085541 A1 WO2006085541 A1 WO 2006085541A1
Authority
WO
WIPO (PCT)
Prior art keywords
tannin
gel
concentration
salt
solution
Prior art date
Application number
PCT/JP2006/302133
Other languages
English (en)
French (fr)
Inventor
Tomoaki Matsuo
Original Assignee
Kagoshima University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University filed Critical Kagoshima University
Priority to JP2007502617A priority Critical patent/JP4677567B2/ja
Publication of WO2006085541A1 publication Critical patent/WO2006085541A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0056Preparation of gels containing inorganic material and water

Definitions

  • the present invention relates to a method for producing a tannin gel and a highly viscous solution.
  • Tannins are natural products that are extracted from plant trunks, skins, leaves, fruits, etc., and are environmentally friendly substances that are generally used as skin tanning agents. Tannins include pyrogallol-based hydrolyzable tannins and catechol-based condensed tannins. With the help of hydrolyzed tannin, which is a relatively small molecule, many plant materials such as herbal medicines have been isolated and identified, and basic research has been done using only this type of tannin. . On the other hand, condensed tannin was not clearly identified. In 1989 Weinges named proanthocyanidin a substance that produces anthocyanin when a colorless plant extract is heated with acid.
  • a substance consisting of a plurality of linked flavonoid units with a component strength of 3 ⁇ 4avan-3-ols was defined as open anthocyanin.
  • condensed tannins it has been clarified that many fruit components are proanthocyanidin polymers, and many studies on condensed tannins (proanthocyanin polymers) have been conducted.
  • the plant that is the raw material of the tannin can be supplied by afforestation or the like, and the afforestation site is said to be a 10-year cycle in the case of a black wattle in South Africa, for example. Therefore, the tannin can be supplied continuously without burdening the global environment like logging of southern ocean timber, and consideration is given to resource depletion such as synthetic resin produced from petroleum products. There is no need.
  • tannin is an aqueous solution of an aqueous solution of tannin, a natural resin extracted from wood, as an alternative to formaldehyde-based adhesives that have problems such as sick house syndrome and chemical sensitivity. It is known to be used as an adhesive (see Non-Patent Document 1, for example).
  • Non-patent document 1 Yoshikazu Yazaki, "Natural products for wood (tannin) -based adhesives", Journal of the Adhesion Society of Japan, 2001, No. 37, No. 12, pp. 25-30
  • An object of the present invention is to impart new physical properties to tannin and to effectively use tannin.
  • the present invention includes the following inventions.
  • a tannin aqueous solution at least one selected from boric acid, phosphoric acid and water-soluble salts thereof as a first gelling agent is added and mixed, and then an alkali as a second gelling agent.
  • a method for producing a gel or highly viscous solution comprising adding a metal salt or an alkaline earth metal salt and stirring.
  • alkali metal or alkaline earth metal halide is at least one selected from potassium chloride, calcium chloride, and magnesium chloride.
  • a tannin gel and a highly viscous solution are provided, which can be used in various applications.
  • Tannin is a natural product extracted from plant trunks, skins, leaves, fruits, etc., and is an environmentally friendly material. Tannin includes pyrogallol-based hydrolyzable tannin and catechol-based condensed tannin.
  • the tannin used in the present invention is not particularly limited.
  • tropical 'subtropical fruits' tannin from which mosquitoes such as apples are extracted, kakitannin from which repulsive force is also extracted ((+)-powered textiles) , (+) -Epicatechin polymers), wattle tannin, quebrachio (kebraco) tannin, radiata pine tannin, gallic tan, pentaploid tan, etc.
  • tannins extracted from eucalyptus, mangroves and Japanese larch The tannin may have increased solubility in water by chemical modification such as sulfone.
  • the tannin is usually dried and used as a powder after extraction from the raw material.
  • the powdered tannin dissolved in water is used as the tannin aqueous solution V.
  • the extract from the raw material may be used as it is as the tannin aqueous solution.
  • the raw materials for tannin (for example, oyster astringent for oyster tannin) contain organic acids, amino acids, etc. in addition to tannin. May be.
  • the tannin concentration in the tannin aqueous solution is usually 0.5 to : LO weight
  • the amount is preferably 1 to 4% by weight, more preferably 1.5 to 3% by weight
  • the pH is usually 4 to 10, preferably 6 to 9.
  • the borate used as the first gelling agent includes, for example, sodium borate, potassium borate, ammonium borate, triethanolamine borate, preferably sodium borate, phosphoric acid.
  • Examples include potassium acid.
  • the concentration of boric acid or its water-soluble salt in the solution is usually 0.5 to 5% by weight, preferably 1 to 3% by weight.
  • an alkali metal salt or alkaline earth metal salt other than the alkali metal salt of boric acid or phosphoric acid is used.
  • examples include metal or alkaline earth metal halides (eg, sodium chloride, potassium salt, calcium salt, magnesium salt), and lactate salts (eg, calcium lactate).
  • the alkali metal salt or alkaline earth metal salt used as the second gelling agent is preferably a water-soluble calcium salt or magnesium salt (for example, calcium chloride, magnesium chloride, calcium lactate).
  • a natural polymer solution such as milk containing a magnesium salt can be used.
  • the concentration of the alkali metal salt or alkaline earth metal salt in the solution is usually 0.05 to 5% by weight, preferably 0.25 to 1% by weight.
  • the weight ratio of boric acid or its water-soluble salt used as the first gelling agent to the alkali metal salt or alkaline earth metal salt used as the second gelling agent is usually 1 to: LO: l, preferably 2-4: 1.
  • tannin gel or a highly viscous solution can be produced as appropriate.
  • a gel of tannin can be produced by adding 0.25 to 4% by weight of an alkali metal salt or alkaline earth metal salt as the gelling agent 2 and stirring.
  • the pH is adjusted beforehand to hydrochloric acid, sulfuric acid, acetic acid, citrate.
  • the tannin concentration is usually 3 to 8% by weight, preferably 4 to 6% by weight.
  • the tannin concentration is adjusted to slightly alkaline, preferably pH 7.2 to: LO. 0, more preferably around pH 9, using a 1M aqueous sodium bicarbonate solution or other buffer.
  • Thereto is added at least one aqueous solution selected from phosphoric acid, which is the first gelling agent, and a water-soluble salt thereof, while gradually stirring.
  • the final concentration is 50 ⁇ : LOOmM is appropriate.
  • the phosphoric acid and its water-soluble salt used here are not particularly limited, but those that are recognized as food additives are preferred when applied to foods and the like.
  • phosphoric acid or “phosphate”
  • phosphoric acid or “phosphate” in a broad sense, that is, polyphosphoric acid such as orthophosphoric acid, pyrophosphoric acid, metapyrophosphoric acid, or These water-soluble salts are shown.
  • Phosphoric acid and its water-soluble salts recognized as food additives include, for example, phosphoric acid (orthophosphoric acid), dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium trihydrogen phosphate, phosphoric acid.
  • examples thereof include disodium hydrogen, sodium dihydrogen phosphate, sodium trihydrogen phosphate, sodium dihydrogen pyrophosphate, tetrapotassium pyrophosphate, and potassium polyphosphate.
  • the alkali metal salt or alkaline earth metal salt preferably calcium salt, magnesium salt, more preferably calcium salt, especially salt calcium salt is terminated.
  • a gel is obtained when the concentration is increased to 50-500 mM.
  • Addition of an acidic polymer compound having an acidic group such as a carboxyl group, such as bectinic acid, polygalacturonic acid, or alginic acid, as a gel-forming auxiliary agent results in a highly viscous solution having a different viscosity or a gel having a different strength. Can be made.
  • the treatment temperature in the present invention is usually 10 to 40 ° C, preferably 15 to 25 ° C.
  • tannin gels or highly viscous solutions can be produced as appropriate.
  • the tangyungel produced in this way is reversibly converted into an aqueous tannin solution by treatment with a chelating agent such as EDTA, EGTA, DTPA, HBED, HDTA, or HEDTA. It can also be made into a solution by an appropriate heat treatment or an organic solvent such as DMF or DMSO.
  • a highly viscous solution of tannin can be produced by reducing the concentration of boric acid, phosphoric acid or their water-soluble salts and alkali metal salts or alkaline earth metal salts.
  • FIG. 1 is a diagram showing a standard curve of catechin.
  • FIG. 2 is a graph showing the relationship between tannin concentration and viscosity of a purified oyster tannin solution.
  • FIG. 3 is a graph showing the relationship between pH and viscosity of a purified oyster tannin solution.
  • FIG. 4 is a graph showing the relationship between the salt concentration and viscosity of a purified oyster tannin solution.
  • FIG. 5 is a graph showing the relationship between tannin concentration and turbidity change. The arrow indicates the point where the gelation occurs.
  • FIG. 6 is a graph showing the relationship between sodium borate concentration and turbidity change. The arrow indicates the point where the gelling occurs.
  • FIG. 7 is a graph showing the relationship between calcium chloride concentration and turbidity change. The arrow indicates the point where the gelling occurs.
  • FIG. 8 is a graph showing the relationship between tannin concentration and gel strength.
  • FIG. 9 is a graph showing the relationship between sodium borate concentration and gel strength.
  • FIG. 10 is a graph showing the relationship between calcium chloride concentration and gel strength.
  • FIG. 11 A graph showing changes in turbidity when calcium chloride, magnesium chloride, and potassium chloride are used.
  • FIG. 12 is a graph showing gel strength when using calcium chloride, magnesium chloride, and potassium chloride.
  • the polyphenol concentration was measured using the Folin—Chioalteu method.
  • a commercially available catechin was dissolved in distilled water to make a catechin solution (g / ml). As shown in Table 1, the catechin concentration was changed, and the absorbance was measured by the Folin-Chiocalteu method.
  • the purified oyster tannin solution was diluted to an appropriate concentration (400, 500, 600 times), the absorbance was measured by the procedure of Folin-Chiocalteu method, and the catechin standard curve force was also determined as the polyphenol concentration (tannin concentration).
  • Tannin solutions with various salt concentrations were prepared.
  • the NaCl concentration was adjusted to 0.5%, 1%, 2%, and 5% and dissolved in the oyster tannin solution.
  • the conditions for gelation were examined using the purified oyster tannin solution obtained in Production Example 1, sodium borate and calcium chloride.
  • Calcium chloride dihydrate was prepared in distilled water with various concentrations.
  • the cachytannin solution and sodium borate were mixed. Add the salty calcium solution and mix well.
  • Table 2 shows the reaction conditions for gelation when the tannin concentration was changed, the sodium borate concentration was changed, and the salt calcium concentration was changed.
  • tannin concentration As shown in Table 2, the gelling speed changes when the conditions are changed.
  • tannin concentration As shown in Table 2, the gelling speed changes when the conditions are changed.
  • tannin concentration As shown in Table 2, tannin concentration
  • One of the measures for measuring the gelation rate is a method for examining turbidity.
  • the gely reaction of kakitannin with sodium borate and calcium salt is accompanied by a change in turbidity. Therefore, the gelation reaction rate was clarified by measuring the change in turbidity.
  • gels there are various types of gels such as soft pudding, pudding, gels, solids like plastic, and gels.
  • the gel strength is one of the properties. Gel strength is a very important part of determining the use of the gel. Therefore, the gel strength of the kakitannin gel prepared with sodium borate and calcium chloride was measured.
  • Kakitannin gel Kerkitannin solution, sodium borate, calcium chloride salt), cutter, grid underlay, fruit hardness tester (Fujiwara Seisakusho KM type)
  • a gel was prepared by the method (1), and the resulting gel was cut into a cube of 1 cm square.
  • the gel strength was measured using a fruit hardness tester (Fujiwara Seisakusho KM type). Vertical, horizontal, and length are all placed on a cube gel cut to 1 cm, and a 1 cm 2 cm thin underlay is placed on the fruit hardness tester. Read memory.
  • Kakitan Yungel made with sodium borate and calcium chloride was expected to be a reversible gel.
  • Kakitannin gel (Kakitannin solution, sodium borate, calcium chloride), EDTA [0088] Method:
  • Kakitan Yungel was prepared. (Tannin concentration 1.6%, sodium borate concentration 2.5%, salty calcium concentration 0.5%)
  • Kakitannin solution sodium borate, magnesium chloride, barium chloride, salted iron (11), potassium chloride, sodium chloride
  • Purified oyster tannin solution obtained in Production Example 1 (tannin concentration 5%) 3 ml of 4M dipotassium hydrogen phosphate aqueous solution 0.1 ml was added and stirred, and then 4M saline-calcium aqueous solution (pH 7.65) was added. When the mixture was mixed with 0.05 to 0.4 ml and stirred, a soft gel was formed in 10 minutes to 1 hour. Optionally, add 1% acidic polymer water solution before adding calcium chloride. 1 to 0.6 ml was added.
  • the gel thus produced could be made into a solution by an appropriate heat treatment, a chelating agent treatment, an organic solvent such as DMF or DMSO.
  • the equipment used was Leonard RE-3305 from Yamaden Co., Ltd.
  • agar powder As a comparative control, commercially available agar (Nakarai Testa Co., Ltd .: agar powder; gel strength 600-700 gZcm 2 ) was dissolved by heating to 0.5%, and a plastic cylindrical container (diameter 14 mm, length 45 mm) The gel was prepared by pouring it into the flask and cooling it. 3. A 75% oyster tannin solution (extracted and purified from astringent oysters) was charged with 10 ml of 1M dipotassium hydrogen phosphate (2.6%). After mixing well, 40 ml of a commercial aqueous formaldehyde solution was added and mixed quickly and poured into a plastic cylindrical container. Measurements were taken after 5 hours.
  • a similar gel could be made by adding 1M calcium salt.
  • the gel was made by quickly pouring into a container (final concentration: about 0.9%).
  • the gel obtained by the method of the present invention is finely crushed and added to the feed.
  • Anti-acidic feed with a high polyphenol content can be given to poultry, livestock and pets, and it can be expected to reduce stress, lower blood pressure and recover from fatigue.
  • the high-viscosity solution obtained by the method of the present invention can be used as a paint on paper or wood, or as a dye on yarn or cloth, and is superior in durability to the case of using a conventional tannin aqueous solution. I can do things. In addition, it is expected to be waterproof, insect-proof, bacteriostatic, abrasion-resistant, deodorant, etc., so it can be used as a coating agent for various containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 タンニンに新たな物性を付与し、タンニンの有効利用を図る。  本発明は、タンニン水溶液に、第1のゲル化剤としてホウ酸、リン酸及びそれらの水溶性塩から選ばれる少なくとも1種を加え、混合した後、第2のゲル化剤としてアルカリ金属塩又はアルカリ土類金属塩を加え、撹拌することを特徴とするゲル又は高粘性溶液の製造方法に関する。

Description

明 細 書
タンニンのゲル及び高粘性溶液の製造方法
技術分野
[0001] 本発明は、タンニンのゲル及び高粘性溶液の製造方法に関する。
背景技術
[0002] タンニンは、植物の幹、皮、葉、実等力 抽出される天然物であり、一般に皮なめし 剤として用いられている環境に優しい物質である。タンニンには、ピロガロール系の加 水分解型タンニンとカテコール系の縮合型タンニンがある。加水分解型タン-ンは比 較的低分子であることも手伝って、漢方薬など多くの植物材料力 単離、同定が進み 、基礎的な研究がほとんどこの型のタンニンだけを用いてなされていた。一方、縮合 型タンニンは明確には同定されていなかった。 1989年 Weingesは無色の植物抽出物 を酸で加熱した際にアントシァ-ジンを生じる物質をプロアントシァ-ジンと名づけた 。そして構成成分力 ¾avan-3-olsで複数の連結したフラボノイド単位カゝらなる物質をプ 口アントシァ-ジンと定義づけた。従来縮合型タンニンと呼ばれて 、た多くの果実成 分の実体がプロアントシァ-ジンポリマーであることが明らかにされ、縮合型タン-ン( プロアントシァ-ジンポリマー)に関する研究が多くなされて 、る。
[0003] 前記タンニンの原料となる植物は植林等により供給することができ、前記植林のサ イタルは、例えば、南アフリカのブラックワットルの場合、 10年サイクルといわれている 。従って、前記タンニンは、南洋材の伐採のように地球環境に負荷をかけることなく永 続的に供給することができ、石油製品から製造される合成樹脂等のように資源の枯 渴を顧慮する必要もない。
[0004] タンニンの用途としては、シックハウス症候群、化学物質過敏症等の問題があるホ ルムアルデヒド系接着剤に代わる接着剤として、木材から抽出される天然樹脂の 1種 であるタンニンの水溶液を水性接着剤として用いることが知られている(例えば、非特 許文献 1参照)。
[0005] し力しながら、前記タンニンの水溶液自体を前記水性接着剤として用いるときには、 被着材に対して十分な接着力を得ることが難しいという不都合がある。 [0006] また、これまでのタンニンの用途は限られており、資源の豊富なタンニンの有効利 用が望まれている。
非特許文献 1 :矢崎義和、「木質用天然物 (タンニン)系接着剤」、 日本接着学会誌、 2001年、第 37卷、第 12号、第 25〜30頁
発明の開示
発明が解決しょうとする課題
[0007] 本発明の課題は、タンニンに新たな物性を付与し、タンニンの有効利用を図ること である。
課題を解決するための手段
[0008] 前記課題に鑑み研究を重ねた結果、本発明者らは、タンニンのゲルィ匕及び高粘度 化に成功し、本発明を完成した。
[0009] 即ち、本発明は以下の発明を包含する。
[0010] (1)タンニン水溶液に、第 1のゲル化剤としてホウ酸、リン酸及びそれらの水溶性塩か ら選ばれる少なくとも 1種を加え、混合した後、第 2のゲル化剤としてアルカリ金属塩 又はアルカリ土類金属塩を加え、撹拌することを特徴とするゲル又は高粘性溶液の 製造方法。
[0011] (2)タンニンが縮合型タンニンである前記(1)に記載の方法。
[0012] (3)縮合型タンニンがカキタンニンである前記(2)に記載の方法。
[0013] (4)第 1のゲル化剤がホウ酸塩である前記(1)〜(3)の 、ずれかに記載の方法。
[0014] (5)第 1のゲル化剤カ^ン酸塩である前記(1)〜(3)の 、ずれかに記載の方法。
[0015] (6)リン酸塩がリン酸水素二カリウムである前記(5)に記載の方法。
[0016] (7)アルカリ金属塩又はアルカリ土類金属塩がアルカリ金属又はアルカリ土類金属の ハロゲンィ匕物から選ばれる少なくとも 1種である前記(1)〜(6)のいずれかに記載の 方法。
[0017] (8)アルカリ金属又はアルカリ土類金属のハロゲン化物が塩化カリウム、塩化カルシ ゥム及び塩ィ匕マグネシウム力 選ばれる少なくとも 1種である前記(7)に記載の方法。
[0018] (9)第 2のゲル化剤が水溶性のカルシウム塩又はマグネシウム塩である前記(1)〜( 6)の 、ずれかに記載の方法。 [0019] (10)水溶性のカルシウム塩が塩ィ匕カルシウムである前記(9)に記載の方法。
[0020] (11)前記(1)〜(10)のいずれかに記載の方法によって得られるゲル。
[0021] (12)キレート剤で処理することによって可逆的にタンニン水溶液に変換される前記( 11)に記載のゲル。
[0022] (13)前記(1)〜( 10)のいずれかに記載の方法によって得られる高粘性溶液。
発明の効果
[0023] 本発明によれば、タンニンのゲル及び高粘性溶液が提供され、これらは種々の用 途に利用することができる。
発明を実施するための最良の形態
[0024] 以下、本発明を詳細に説明する。
[0025] タンニンは、植物の幹、皮、葉、実等力 抽出される天然物であり、環境に優しい物 質である。タンニンには、ピロガロール系の加水分解型タンニンとカテコール系の縮 合型タンニンがある。
[0026] 本発明に用いるタンニンとしては、特に制限はなぐ例えば、熱帯'亜熱帯果実ゃブ ドウ.リンゴ等カも抽出されるタンニン、柿力も抽出されるカキタンニン(( + )—力テキ ン類、(+ )—ェピカテキン類の重合体)、ワットルタンニン、ケブラチヨ(ケブラコ)タン ニン、ラジアタパインタンニン、没食子タン-ン、五倍子タン-ン等の他、ミモザ、ゲン ノショウコ、ダイォゥ、マオゥ、チヤ、ユーカリ、マングローブ、 日本産カラマツ等カも抽 出されるタンニン等が挙げられる。前記タンニンは、スルホンィ匕等の化学変性により、 水に対する溶解性を高めたものであってもよい。
[0027] 前記タンニンは、原料から抽出後、通常は乾燥して粉末として用いられる。下記の 実施例では、前記粉末のタンニンを水に溶解したものを前記タンニン水溶液として用 V、たが、原料からの抽出液をそのままタンニン水溶液として用いてもょ 、。
[0028] タンニンの原材料 (例えば、カキタンニンでは柿渋)には、タンニン以外に有機酸、 アミノ酸等が含まれているため、必要に応じて精製して、これらの不純物を除去したも のを用いてもよい。
[0029] 本発明にお 、て、第 1のゲル化剤としてホウ酸及びその水溶性塩カゝら選ばれる少な くとも 1種を用いる場合、タンニン水溶液におけるタンニン濃度は、通常 0. 5〜: LO重 量%、好ましくは 1〜4重量%、更に好ましくは 1. 5〜3重量%であり、 pHは、通常 4 〜10、好ましくは 6〜9である。必要に応じて、緩衝液や、薄い塩酸、硫酸、酢酸、ク ェン酸等の酸、又は薄い水酸ィ匕ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、アンモ- ァ等の塩基により PHを調整してもよ 、。
[0030] 第 1のゲル化剤として用いるホウ酸塩としては、例えばホウ酸ナトリウム、ホウ酸カリ ゥム、ホウ酸アンモ-ゥム、ホウ酸トリエタノールァミン、好ましくはホウ酸ナトリウム、ホ ゥ酸カリウムが挙げられる。ホウ酸又はその水溶性塩の溶液中の濃度は、通常 0. 5 〜5重量%、好ましくは 1〜3重量%である。
[0031] 第 2のゲル化剤として用いるアルカリ金属塩又はアルカリ土類金属塩としては、ホウ 酸又はリン酸のアルカリ金属塩以外のアルカリ金属塩又はアルカリ土類金属塩が用 いられ、例えばアルカリ金属又はアルカリ土類金属のハロゲンィ匕物(例えば塩ィ匕ナト リウム、塩ィ匕カリウム、塩ィ匕カルシウム、塩ィ匕マグネシウム)、乳酸塩 (例えば乳酸カル シゥム)が挙げられる。第 2のゲル化剤として用いるアルカリ金属塩又はアルカリ土類 金属塩としては、水溶性のカルシウム塩又はマグネシウム塩(例えば塩化カルシウム 、塩化マグネシウム、乳酸カルシウム)が好ましぐまた、水溶性のカルシウム塩又は マグネシウム塩を含む牛乳等の天然高分子溶液を用いることもできる。アルカリ金属 塩又はアルカリ土類金属塩の溶液中の濃度は、通常 0. 05〜5重量%、好ましくは 0 . 25〜1重量%でぁる。
[0032] 第 1のゲル化剤として用いるホウ酸又はその水溶性塩と第 2のゲル化剤として用 ヽ るアルカリ金属塩又はアルカリ土類金属塩との重量比は、通常 1〜: LO : l、好ましくは 2〜4 : 1である。
[0033] タンニン、ホウ酸又はその水溶性塩、及びアルカリ金属塩又はアルカリ土類金属塩 の濃度を調整することによって、タンニンのゲル又は高粘性溶液を適宜製造すること ができる。
[0034] 例えば、 0. 8〜4重量%のタンニン水溶液を用いて、第 1のゲル化剤として 1〜3重 量%のホウ酸又はその水溶性塩をカ卩え、混合した後、第 2のゲル化剤として 0. 25〜 4重量%のアルカリ金属塩又はアルカリ土類金属塩をカ卩え、撹拌することによって、タ ンニンのゲルを製造することができる。 [0035] 本発明にお 、て、第 1のゲル化剤としてリン酸及びその水溶性塩カゝら選ばれる少な くとも 1種を用いる場合、事前に pHを塩酸、硫酸、酢酸、クェン酸等の酸などを用い て、 3〜4に調整した後、エバポレーターなどの濃縮装置、あるいは、透析膜を用いた 濃縮方法により、タンニン濃度を予め高めておくことが好ましい。タンニン濃度は、通 常 3〜8重量%、好ましくは 4〜6重量%である。ゲル化、あるいは、粘性を高める際 には、 1M炭酸水素ナトリウム水溶液や他の緩衝液を用いて、微アルカリ性、好ましく は pH7. 2〜: LO. 0、更に好ましくは pH9前後に調整し直す。そこに、第 1のゲル化剤 であるリン酸及びその水溶性塩カゝら選ばれる少なくとも 1種の水溶液を徐々に撹拌し ながら加える。終濃度は 50〜: LOOmMが適当である。
[0036] ここで用いるリン酸及びその水溶性塩としては、特に制限はないが、食品等に適用 する場合には、食品添加物として認められているものが好ましい。本発明において、 単に「リン酸」又は「リン酸塩」と記載した場合には、広義の「リン酸」又は「リン酸塩」、 即ちオルトリン酸、ピロリン酸、メタピロリン酸等のポリリン酸、又はそれらの水溶性塩を 示す。
[0037] 食品添加物として認められているリン酸及びその水溶性塩としては、例えばリン酸( オルトリン酸)、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三水素カリウム、リ ン酸水素ニナトリウム、リン酸二水素ナトリウム、リン酸三水素ナトリウム、ピロリン酸二 水素ナトリウム、ピロリン酸四カリウム、ポリリン酸カリウム等が挙げられる。
[0038] 次 、で、第 2のゲル化剤として前記のアルカリ金属塩又はアルカリ土類金属塩、好 ましくはカルシウム塩、マグネシウム塩、更に好ましくはカルシウム塩、特に塩ィ匕カル シゥムを終濃度 50〜500mMカ卩えるとゲルが得られる。ゲル形成補助剤として、カル ボキシル基のような酸性基を持つ酸性高分子化合物、例えばべクチン酸、ポリガラク ッロン酸やアルギン酸などを加えると粘性の異なった高粘性溶液又は強度の異なつ たゲルを作ることができる。
[0039] 本発明における処理温度は、通常 10〜40°C、好ましくは 15〜25°Cである。
[0040] タンニン、ホウ酸、リン酸又はそれらの水溶性塩、及びアルカリ金属塩又はアルカリ 土類金属塩の濃度を調整することによって、タンニンのゲル又は高粘性溶液を適宜 製造することができる。 [0041] このように製造されたタンユンゲルは、キレート剤、例えば EDTA、 EGTA、 DTPA 、 HBED、 HDTA、 HEDTAで処理することによって可逆的にタンニン水溶液に変 換される。また、適当な加熱処理、 DMF、 DMSOなどの有機溶剤などによっても溶 液にすることができる。
[0042] また、ホウ酸、リン酸又はそれらの水溶性塩及びアルカリ金属塩又はアルカリ土類 金属塩の濃度を下げることによって、タンニンの高粘性溶液を製造することができる。
[0043] 本発明には、必要に応じ本発明の効果を損なわない範囲で、各種添加剤を用いる ことができる。
図面の簡単な説明
[0044] [図 1]カテキンの標準曲線を示す図である。
[図 2]精製したカキタンニン溶液のタンニン濃度と粘度の関係を示す図である。
[図 3]精製したカキタンニン溶液の pHと粘度の関係を示す図である。
[図 4]精製したカキタンニン溶液の塩濃度と粘度の関係を示す図である。
[図 5]タンニン濃度と濁度変化の関係を示す図である。矢印はゲルイ匕した点を示す。
[図 6]ホウ酸ナトリウム濃度と濁度変化の関係を示す図である。矢印はゲルイ匕した点を 示す。
[図 7]塩ィ匕カルシウム濃度と濁度変化の関係を示す図である。矢印はゲルイ匕した点を 示す。
[図 8]タンニン濃度とゲル強度の関係を示す図である。
[図 9]ホウ酸ナトリウム濃度とゲル強度の関係を示す図である。
[図 10]塩ィ匕カルシウム濃度とゲル強度の関係を示す図である。
[図 11]塩ィ匕カルシウム、塩化マグネシウム、塩ィ匕カリウムを用いたときの濁度変化を示 す図である。
[図 12]塩ィ匕カルシウム、塩化マグネシウム、塩ィ匕カリウムを用いたときのゲル強度を示 す図である。
[0045] 本明細書は、本願の優先権の基礎である特願 2005— 34366及び特願 2005— 2 14235の明細書及び Z又は図面に記載された内容を包含する。
実施例 [0046] 以下、実施例を挙げて本発明を更に具体的に説明する力 本発明の範囲はこれら の実施例に限定されるものではない。
[0047] (製造例 1)
(1)怖渋力もカキタンニン溶液の精製
[0048] くカキタンニン溶液の精製〉
材料:柿渋 (株式会社トミャマ製 2. OLペットボトル冷蔵保存)、透析チューブ(Spct ra/Pro フナコシ株式会社)
[0049] 方法:
(a)柿渋を lOOOOrpmで 20分間遠心分離を行った。
(b)脱気した蒸留水で、(a)で得られた上澄みを透析した。 2時間、 5時間、 12時間の 間隔で蒸留水を交換しながら透析を行った。
(c) (b)を lOOOOrpmで 20分間遠心分離を行い、上澄みを得た。これをカキタンニン 溶液として実験に用いた。
[0050] <タンニン濃度の測定 >
Folin— Chiocalteu法を用いてポリフエノール濃度を測定した。
[0051] Folin—Chiocalteu法
[0052] 材料:ポリフエノール濃度を測定した 、サンプル、フエノール試薬 (ナカライテスタ株式 会社)、炭酸ナトリウム
[0053] 手順:
1.サンプル溶液 lmlに、市販のフエノール試薬を 2倍希釈したものを lml加えた。
2.よく撹拌し、室温で 5分放置した後、 10%炭酸ナトリウムを lml加えた。
3.よく撹拌した後、室温で 15分放置し、分光光度計で 765nmの吸光度を測定した
[0054] <カテキンの標準曲線の作成 >
市販のカテキンを蒸留水に溶かし、カテキン溶液を g/ml)作った。表 1のように カテキン濃度を変え、 Folin—Chiocalteu法の手順で吸光度を測定した。
[表 1] Control I Π m W
力テキン溶液 0ml 0f 25ml 0. 5ml 0. 75ml I. Oml
R O水 1. OmL 0. 75ml 0. 5ml 0. 25ml 0ml
[0055] 縦軸に吸光度を測定した値 (OD765)、横軸に濃度 gZml)をとり、グラフにし た。標準曲線を図 1に示した。
[0056] くカキタンニン溶液のタンニン濃度の測定 >
精製したカキタンニン溶液は適当な濃度 (400、 500、 600倍)に希釈し、 Folin-C hiocalteu法の手順で吸光度を測定し、カテキン標準曲線力もポリフエノール濃度( タンニン濃度)を求めた。柿渋カゝら精製したカキタンニン溶液はタンニン濃度 3%〜4 %であった。
[0057] (2)精製したカキタンニン溶液の物性
ゲルの利用を考えたとき、物性というのが非常に重要になる。現在商品化されてい る天然高分子ゲルは多糖類を骨格にしたものがほとんどで、その種類は非常に多い 。多糖類の天然高分子ゲルは食品としての利用が多いが、その物性により用途も異 なるが、一般的に pHや塩などの影響を受けな 、ことが望ま U、とされて 、る。
[0058] ここではカキタンニン溶液のタンニン濃度と粘度の関係を調べるとともに、 pHや塩 が精製したカキタンニン溶液の物性に与える影響を明らかにするために、 pHと塩濃 度を変化させたときのカキタンニン溶液の粘度変化を測定した。
[0059] 〈カキタンニン濃度と粘度の関係〉
材料:カキタンニン溶液、 RO水
[0060] 方法:
(a)カキタンニン溶液を RO水で希釈して、様々な濃度のタンニン溶液を調製した。
(b)粘度計 BM型で粘度を測定した。
[0061] 〈カキタンニン溶液 PHと粘度の関係〉
材料:カキタンニン溶液、 pH9 0. 25M トリス塩酸緩衝液、 pH8 0. 25M トリス塩 酸緩衝液、 pH7 0. 25M トリス塩酸緩衝液、 pH6 0. 25M ビストリス塩酸緩衝液 、 pH5 0. 25Mリン酸緩衝液 [0062] 方法:
[0063] (a)各 pHの緩衝液を pHメーターを用いて調製した。
(b)タンニン溶液と各 pHの緩衝液を 9: 1の割合で混合した。
(c)粘度計 BM型で粘度を測定した。
[0064] 〈カキタンニン溶液塩濃度と粘度の関係〉
材料:カキタンニン溶液、 NaCl
[0065] 方法:
(a)各塩濃度のタンニン溶液を調製した。 NaCl濃度 0. 5%、 1%、 2%、 5%になるよ うに、カキタンニン溶液にカ卩え、溶解した。
(b)粘度計 BM型で粘度を測定した。
[0066] 結果:
タンニン濃度が低くなるにつれて、粘度は低くなつた(図 2)。タンニン溶液の粘性は pHにはそれほど影響は受けな力つた(図 3)力 pHがアルカリになると溶液の色が変 色して、黒っぽい色になった。タンニン溶液は塩濃度が高くなると、少し粘性が上が つた(図 4)。塩濃度はカキタンニン溶液の粘性に影響するということがわ力 た。
[0067] (実施例 1)
(1)ホウ酸ナトリウムと塩ィ匕カルシウムによるカキタンニンのゲルィ匕
製造例 1で得た精製したカキタンニン溶液とホウ酸ナトリウムと塩ィ匕カルシウムで、ゲ ル化する条件を検討した。
[0068] 材料:
(a)カキタンニン溶液 (タンニン濃度 3. 25%)
(b)ホウ酸ナトリウム (ホウ酸、水酸ィ匕ナトリウム)
(c)塩化カルシウム · 2水和物
[0069] 方法:
[0070] 〈ホウ酸ナトリウムの調製〉
1. 5. Ogのホウ酸を少量の蒸留水、約 50mlで溶解した。
2. pHメーターを用いて、 1M水酸ィ匕ナトリウムを用いて、 pH7. 0に調整した。
3.ホウ酸濃度が 5%になるように、蒸留水で 100mlに定量した。 [0071] 〈塩化カルシウム溶液の調製〉
塩化カルシウム · 2水和物を蒸留水で様々な濃度の塩ィ匕カルシウム溶液を調製した
[0072] 〈ゲル化反応〉
カキタンニン溶液とホウ酸ナトリウムを混合した。これに塩ィ匕カルシウム溶液をカロえ、 よく混合した。
[0073] カキタンニン溶液、ホウ酸ナトリウム、塩化カルシウム溶液の割合を変えて、それぞ れの濃度を変化させて混合した。
[0074] 結果:
タンニン濃度を変えたとき、ホウ酸ナトリウム濃度を変えたとき、塩ィ匕カルシウム濃度 を変えたときのそれぞれのゲルィ匕する反応条件を表 2に示した。
[0075] タンニン濃度に関してはタンニン濃度が 0. 8%より小さくなると、ゲル化しなカゝつた。
またホウ酸ナトリウムにおいてはホウ酸ナトリウムが 0. 5%より小さくなると、ゲル化しな いと考えられた。塩ィ匕カルシウムに関しては塩ィ匕カルシウム濃度力 より大きくなる と沈殿を引き起こすため、ゲルイ匕が起こらな力 た。
[表 2]
タン-ン濃度を変化させたときの反応条件
Figure imgf000012_0001
ホウ酸ナトリゥム濃度を変化させたときの反応条件
Figure imgf000012_0002
CaCL濃度を変化させたときの反応条件
Figure imgf000012_0003
[0076] (2)ゲル化反応速度
表 2のように条件を変化させたときゲルィ匕する速度が変わる。ここではタンニン濃度
、ホウ酸ナトリウム濃度、塩ィ匕カルシウム濃度をそれぞれ変化させたとき、ゲル化の反 応速度がどのように変化するかを検討した。
[0077] ゲル化速度をみる尺度の一つとして、濁度を調べる方法がある。ホウ酸ナトリウムと 塩ィ匕カルシウムによるカキタンニンのゲルィ匕反応は濁度変化を伴う。そのため、濁度 変化を測定することで、ゲル化反応速度を明らかにした。
[0078] 方法:
分光光度計(Shimadzu UV minil240)を用いて吸光度 600nmで時間ごとの濁度を 測定した。また、ゲルイ匕までの時間 (試験管をひっくり返したとき、動かなくなるまでの 時間)を測定した。
[0079] 結果:
タンニン濃度、ホウ酸ナトリウム濃度、塩ィ匕カルシウム濃度をそれぞれ変えたときの 濁度変化を図 5〜7に示した。
[0080] タンニン濃度は高ければ高 、ほど、反応速度が速 、ことがわかった(図 5)。ホウ酸 ナトリウム濃度に関しては、ホウ酸ナトリウム濃度が 1%以上だと反応速度はほとんど 変化がみられないけれど、 0. 5%になると反応速度が何倍も遅くなることがわかった ( 図 6)。塩ィ匕カルシウム濃度は高ければ高いほど反応速度は高ぐ塩化カルシウム濃 度 4%では瞬時にゲルイ匕が起こった。塩ィ匕カルシウム濃度 0. 25%では濁度は変化 がないように見える力 ほんの少しずつ濁度は上がっており、 3日後にはゲルイ匕した( 図 7)。
[0081] (3)ゲル強度
ゲルにはプリンのような柔らカ 、ゲルからプラスチックのような固 、ゲルまで様々な ものがある。その性質を表すのにゲル強度がある。ゲル強度はそのゲルの用途を決 めるのに非常に重要な部分を占める。そこでホウ酸ナトリウムと塩ィ匕カルシウムにより 作成したカキタンニンゲルのゲル強度を測定した。
[0082] 材料:
カキタンニンゲル (カキタンニン溶液、ホウ酸ナトリウム、塩ィ匕カルシウム)、カッター、 方眼下敷き、果実硬度計 (株式会社藤原製作所 KM型)
方法:
(1)の方法でゲルを調製し、できたゲルを一センチ角の立方体にカットした。果実 硬度計 (株式会社藤原製作所 KM型)を用いて、ゲル強度を測定した。縦、横、長 さすべて 1センチにカットした立方体のゲルの上に、 1センチ平方センチの薄い下敷 きを敷き、果実硬度計を垂直に押し当て、ゲルが壊れた点の、果実硬度計のメモリを 読み取った。
[0083] 結果:
タンニン濃度、ホウ酸ナトリウム濃度、塩化カルシウム濃度をそれぞれ変化させたと きの濁度変化を図 8〜: LOに示した。
[0084] タンニン濃度は高ければ高いほどゲル強度は高力つた(図 8)。ホウ酸ナトリウム濃 度に関しては、 2. 5%で、一番ゲル強度が高力つた力 1%でもそれほど違いはみら れな力つた。しかし 0. 5%になると、ゲル強度は低すぎて測定不能であった。(2)の 濁度測定の結果でもホウ酸ナトリウム濃度が 0. 5%になると極端にゲルィヒ反応速度 が遅くなつたので、ホウ酸ナトリウム濃度は 1%以上が適していると考えられる(図 9)。 塩ィ匕カルシウム濃度に関しては 0. 5%の時が最もゲル強度が高力つた。 1%は 0. 5 %とさほど変わりはないが、塩ィ匕カルシウム濃度が 2%、 4%と上昇するにつれてゲル 強度は小さくなつた。また 0. 25%ではゲル強度が低すぎて測定不能であった。塩ィ匕 カルシウム濃度もタンニン濃度と同じように高 、ほうが、ゲル強度が高 、と予想して ヽ たが、意外にも塩ィ匕カルシウム濃度が高くなるとゲル強度は低くなつた。塩化カルシ ゥム濃度が高すぎるとゲルはもろくなるようである(図 10)。
[0085] (4)ホウ酸ナトリウムと塩ィ匕カルシウムによるカキタンニンのゲルィ匕反応の可逆性
一般的に非共有結合の配位結合で架橋したゲルは可逆的であるという特性を示す 。そのためホウ酸ナトリウムと塩ィ匕カルシウムにより作成したカキタンユンゲルは可逆 的なゲルであることが予想された。
[0086] そこで、ホウ酸ナトリウムと塩ィ匕カルシウムによるカキタンニンのゲルィ匕反応が実際 に可逆的かどうかを確かめる実験を行った。 EDTAはカルシウムイオンのキレート剤 でカルシウムイオンと結合することで、カルシウムイオンを奪うという性質を有する。し たがって、 EDTAと作成したカキタンユンゲルを撹拌することで、このゲル化反応が 可逆性かどうかを調べた。
[0087] 材料:
カキタンニンゲル(カキタンニン溶液、ホウ酸ナトリウム、塩化カルシウム)、 EDTA [0088] 方法:
1.カキタンユンゲルを調製した。 (タンニン濃度 1. 6%、ホウ酸ナトリウム濃度 2. 5% 、塩ィ匕カルシウム濃度 0. 5%)
2. 0. 1M EDTA溶液を調製した。
3.調製したカキタンユンゲルを適当な大きさにばらし、一つには RO水を、もう一つに は 0. 1MEDTA溶液をカ卩え、スターラーで 5分間撹拌した。
[0089] 結果:
RO水で撹拌したものはゲルの形がくずれるだけであった力 0. 1M EDTA溶液 で撹拌したほうは、ゲルが消失した。後者では、オレンジ色の溶液になったことから、 EDTAにカキタンニンゲルが溶解したと考えられた。この結果力もホウ酸ナトリウムと 塩ィ匕カルシウムで調製したカキタンユンゲルは可逆性のゲルで、キレート結合の部分 を EDTAなどのキレート剤で切ることでゲルは壊れてしまうことがわかった。このゲル 化反応は可逆的であることが証明できた。
[0090] (5)塩化カルシウム以外の塩化物を用いた場合のカキタンニンのゲル化
塩化カルシウムの変わりに他の二価の塩化物(塩化マグネシウム、塩化バリウム、塩 化鉄 (II))又は一価の塩ィ匕物 (塩ィ匕ナトリウム、塩ィ匕カリウム)を用いて、塩化カルシゥ ムを用いたときと同じ条件でゲルイ匕が起こるかどうかを試みた。
[0091] 材料:
カキタンニン溶液、ホウ酸ナトリウム、塩化マグネシウム、塩化バリウム、塩ィ匕鉄 (11)、塩 化カリウム、塩化ナトリウム
[0092] 方法:
1.前記塩化物を用いて(1)の方法でゲル化反応を行った。いずれも最終の濃度が 0 . 5%になるように加えた。この時タンニン濃度は 1. 6%、ホウ酸ナトリウム濃度は 2. 5
%であった。
2.ゲルイ匕したものに関しては、塩ィ匕カルシウムと同じように、濁度変化とゲル強度を 測定した。
[0093] 結果:
1.塩ィ匕マグネシウムと塩ィ匕カリウムを用いたときだけ、ゲル化した。塩化バリウムは沈 殿がおこった。塩ィ匕鉄は濃い青の沈殿ができた。塩ィ匕ナトリウムは変化がみられなか つた o
[0094] 二価の陽イオンでは塩ィ匕マグネシウムだけ力 唯一ゲルィ匕した力 ゲルの特徴が塩 化カルシウムを用いたときのゲルと似て!/、た。ノ リウムはカルシウムやマグネシウムと 同じアルカリ土類金属に分類されるので、ゲルイ匕するのではないかと期待していたが 、ゲルィ匕は起こらな力つた。また、一価の陽イオンの塩ィ匕物である塩ィ匕カリウムを用い たとき、反応は非常にゆっくりである力 ゲルィ匕がおこった。
[0095] 2.濁度変化及びゲル強度の測定
塩ィ匕マグネシウムを用いたとき、ゲルイ匕には約 2時間を要し、濁度は 6時間を越えた とき一定になった (図 11)。塩ィ匕カリウムを用いた場合では、ゲルイ匕に非常に時間を 要した。図 11では見にくいが、濁度は徐々に上がっていき、 48時間後に濁度が一定 となった。
[0096] 塩化マグネシウムを用いて作成したゲル強度は塩化カルシウムの半分くら 、のゲル 強度であった(図 12)。塩ィ匕カリウムを用いて作成したゲルは非常に柔らかぐゲル強 度は小さ力つた(図 12)。
[0097] (実施例 2)
製造例 1で得た精製したカキタンニン溶液 (タンニン濃度 5%) 3mlに 4Mリン酸水素 二カリウム水溶液 0. 1mlをカ卩えて撹拌し、そこへ 4M塩ィ匕カルシウム水溶液 (pHを 7 . 65に事前に調整したもの)を 0. 05〜0. 4ml添カ卩して撹拌すると 10分から 1時間で ソフトゲルができた。場合により、塩ィ匕カルシウムを添加する前に、 1%酸性高分子水 溶液を。. 1〜0. 6ml加えた。
[0098] このように製造されたゲルは、適当な加熱処理、キレート剤処理、 DMF、 DMSOな どの有機溶剤などによって溶液にすることができた。
[0099] (実施例 3)デジタルレオメーターによるゲル強度の測定
機器は (株)山電のレオナー RE— 3305を用いた。
[0100] 比較対照として、市販の寒天 (ナカライテスタ株式会社:寒天粉末;ゲル強度 600〜 700gZcm2)を 0. 5%に加熱溶解して、プラスチックの円筒状容器 (直径 14mm,長 さ 45mm)に流し込み冷却してゲルを作製した。 3. 75%カキタンニン水溶液 (渋ガキ 力も抽出精製したもの) 200mlに 1Mリン酸水素二カリウム(2. 6%)を 10ml添カロした 。よく混合した後、市販のホルムアルデヒド水溶液を 40ml加えて素早く混ぜて、プラ スチックの円筒状容器に流し込んだ。 5時間後に測定した。
[0101] リン酸 Zカルシウムによる可食性タンニンゲル(PO · Ca/KT)の調製
1. 3. 75%の高分子タンニン(カキタンニンなど)水溶液 200mlに 0. 05M の濃度 になるように塩化カルシウム · 2水和物を溶解した (反応液中の最終濃度:約 0. 73%
) o
[0102] 2. 0. 5M (1. 3%)のリン酸水素二カリウム水溶液を攪拌しながら静かに滴下した(9
Oml)。ある量以上添加すると白濁が見られた。素早く容器に流し込んでゲルを作成 した (最終濃度:約 0. 40%) o
[0103] 3. 白濁した柔らかいゲルが生成できたので、測定を試みた力 柔らかすぎて、測定 できず、そのため、表 3にはデータを示していない。
[0104] 4.このゲルは、先に 0. 1Mになるようにリン酸水素二カリウムを溶解しておき、そこに
、 1M塩ィ匕カルシウムをカ卩えても同様のゲルが作成できた。
[0105] ホウ酸 カルシウムによる可逆件タンニンゲル (SB' CaZKT)の調製
1. 3. 75%の高分子タンニン(カキタンニンなど)水溶液 200mlに 0. 05Mの濃度に なるように塩ィ匕カルシウム · 2水和物を溶解した (最終濃度:約 0. 73%)。
[0106] 2. 0. 5M (3. 1%)のホウ酸水溶液 (pH7. 7)を攪拌しながら静かに滴下した(80ml
)。素早く容器に流し込んでゲルを作成した (最終濃度:約 0. 9%)。
[0107] 3. 3時間力 ー晚室温で静置しておくと、透明がかった白いゲルが生成できたので、 測定に供した。
[表 3]
Figure imgf000017_0001
[0108] 架橋方法の異なる高分子ゲルの強度をレオメーターで比較したところ、荷重に対す る歪みの関係はゲルの種類によって測定波形が大きく異なった。今回作製した 3種 のゲルの中では、ホルムアルデヒドで架橋したゲルがもっとも硬かった。
[0109] 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本 明細書中にとり入れるものとする。
産業上の利用可能性 [0110] 本発明の方法によって得られるゲルは、細カゝく砕いて飼料に添加することによって
、ポリフエノール含量の高い抗酸ィ匕性飼料を家禽、家畜、ペットに与えることができ、 ストレスの軽減化、血圧降下作用や疲労回復効果が期待できる。
[0111] 本発明の方法によって得られる高粘性溶液は、紙や木材への塗料として、又は糸 や布への染料などとして利用でき、従来のタンニン水溶液を用いた場合よりも耐久性 に優れたものができる。また、防水、防虫、静菌、耐摩耗性、消臭効果などが期待さ れることから、各種容器へのコーティング剤としても利用できる。

Claims

請求の範囲
[I] タンニン水溶液に、第 1のゲル化剤としてホウ酸、リン酸及びそれらの水溶性塩から 選ばれる少なくとも 1種を加え、混合した後、第 2のゲル化剤としてアルカリ金属塩又 はアルカリ土類金属塩を加え、撹拌することを特徴とするゲル又は高粘性溶液の製 造方法。
[2] タンニンが縮合型タンニンである請求項 1記載の方法。
[3] 縮合型タンニンがカキタンニンである請求項 2記載の方法。
[4] 第 1のゲル化剤がホウ酸塩である請求項 1記載の方法。
[5] 第 1のゲル化剤がリン酸塩である請求項 1記載の方法。
[6] リン酸塩がリン酸水素二カリウムである請求項 5記載の方法。
[7] アルカリ金属塩又はアルカリ土類金属塩がアルカリ金属又はアルカリ土類金属のハ ロゲン化物力 選ばれる少なくとも 1種である請求項 1〜6のいずれ力 1項に記載の方 法。
[8] アルカリ金属又はアルカリ土類金属のハロゲン化物が塩化カリウム、塩化カルシゥ ム及び塩ィ匕マグネシウム力 選ばれる少なくとも 1種である請求項 7記載の方法。
[9] 第 2のゲル化剤が水溶性のカルシウム塩又はマグネシウム塩である請求項 1記載の 方法。
[10] 水溶性のカルシウム塩が塩ィ匕カルシウムである請求項 9記載の方法。
[II] 請求項 1記載の方法によって得られるゲル。
[12] キレート剤で処理することによって可逆的にタンニン水溶液に変換される請求項 11 記載のゲル。
[13] 請求項 1記載の方法によって得られる高粘性溶液。
PCT/JP2006/302133 2005-02-10 2006-02-08 タンニンのゲル及び高粘性溶液の製造方法 WO2006085541A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007502617A JP4677567B2 (ja) 2005-02-10 2006-02-08 タンニンのゲル及び高粘性溶液の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005034366 2005-02-10
JP2005-034366 2005-02-10
JP2005-214235 2005-07-25
JP2005214235 2005-07-25

Publications (1)

Publication Number Publication Date
WO2006085541A1 true WO2006085541A1 (ja) 2006-08-17

Family

ID=36793112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302133 WO2006085541A1 (ja) 2005-02-10 2006-02-08 タンニンのゲル及び高粘性溶液の製造方法

Country Status (2)

Country Link
JP (1) JP4677567B2 (ja)
WO (1) WO2006085541A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184285A (ja) * 2011-03-03 2012-09-27 Kagoshima Univ 高分子タンニンの高粘性溶液及びゲルの製造方法
CN107125438A (zh) * 2016-02-29 2017-09-05 湖南晶天科技实业有限公司 一种饲料添加剂鞣酸生物碱及其制备方法以及一种复合添加剂和一种饲料
CN107312120A (zh) * 2017-06-05 2017-11-03 中国林业科学研究院林产化学工业研究所 一种植物单宁水凝胶及其制备方法和应用
JP2019099546A (ja) * 2017-12-07 2019-06-24 株式会社カミノ 消臭・除菌剤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881743A (ja) * 1981-11-09 1983-05-17 House Food Ind Co Ltd 紅茶ゼリ−の製造法
JPH08280327A (ja) * 1995-04-14 1996-10-29 Nisshin Flour Milling Co Ltd アミラーゼ阻害物質を含有する茶飲料
JP2000245362A (ja) * 1999-03-03 2000-09-12 House Foods Corp ゼリー食品及びその製造方法
JP2000245347A (ja) * 1999-02-26 2000-09-12 House Foods Corp 紅茶抽出物及びこれを含むゲル状食品
JP2001299297A (ja) * 2000-04-28 2001-10-30 Itoham Foods Inc ゼリー飲料
JP2002306126A (ja) * 2001-04-16 2002-10-22 Sanei Gen Ffi Inc タンニン含有組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881743A (ja) * 1981-11-09 1983-05-17 House Food Ind Co Ltd 紅茶ゼリ−の製造法
JPH08280327A (ja) * 1995-04-14 1996-10-29 Nisshin Flour Milling Co Ltd アミラーゼ阻害物質を含有する茶飲料
JP2000245347A (ja) * 1999-02-26 2000-09-12 House Foods Corp 紅茶抽出物及びこれを含むゲル状食品
JP2000245362A (ja) * 1999-03-03 2000-09-12 House Foods Corp ゼリー食品及びその製造方法
JP2001299297A (ja) * 2000-04-28 2001-10-30 Itoham Foods Inc ゼリー飲料
JP2002306126A (ja) * 2001-04-16 2002-10-22 Sanei Gen Ffi Inc タンニン含有組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184285A (ja) * 2011-03-03 2012-09-27 Kagoshima Univ 高分子タンニンの高粘性溶液及びゲルの製造方法
CN107125438A (zh) * 2016-02-29 2017-09-05 湖南晶天科技实业有限公司 一种饲料添加剂鞣酸生物碱及其制备方法以及一种复合添加剂和一种饲料
CN107312120A (zh) * 2017-06-05 2017-11-03 中国林业科学研究院林产化学工业研究所 一种植物单宁水凝胶及其制备方法和应用
CN107312120B (zh) * 2017-06-05 2020-02-21 中国林业科学研究院林产化学工业研究所 一种植物单宁水凝胶及其制备方法和应用
JP2019099546A (ja) * 2017-12-07 2019-06-24 株式会社カミノ 消臭・除菌剤

Also Published As

Publication number Publication date
JPWO2006085541A1 (ja) 2008-06-26
JP4677567B2 (ja) 2011-04-27

Similar Documents

Publication Publication Date Title
Robal et al. Monocationic salts of carrageenans: Preparation and physico-chemical properties
RU2584162C2 (ru) Гелевая композиция
JP4565745B2 (ja) カラゲナン組成物及びそれらの製造のための方法
TWI376205B (en) Calcium stable high acyl gellan gum for enhanced colloidal stability in beverages
Buchholt et al. Preparation and properties of enzymatically and chemically modified sugar beet pectins
Yoo et al. Monovalent salt-induced gelation of enzymatically deesterified pectin
JPH0473978B2 (ja)
De’Nobili et al. Hydrolytic stability of L-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces
WO2006085541A1 (ja) タンニンのゲル及び高粘性溶液の製造方法
JP2004503613A (ja) 低メトキシルペクチンとその製造方法、並びにそれを含んでなる安定化された水溶液系
JP2019143145A (ja) 耐酸性を有するクチナシ色素製剤
Ma et al. Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb. and its antioxidant activity
Oliveira et al. Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquum gum exudate
JP2008072961A (ja) 高分子タンニンの酵素的架橋反応
JPH0242460B2 (ja)
JP5649194B2 (ja) ジェラン水分散液
Kumar et al. Emulsification properties of sodium caseinate‐based conjugates with selected polysaccharides
Assoi et al. Palmyra palm (Borassus aethiopum Mart.) fruits: novel raw materials for the pectin industry
CN102051052B (zh) 一种提高鱼鳞明胶凝胶性能改性剂的制备方法
Salishcheva et al. A study of the complexing and gelling abilities of pectic substances
WO2014020717A1 (ja) 球状ゲルおよびその製造方法
Agoub et al. Effect of guar gum on “weak gel” rheology of microdispersed oxidised cellulose (MDOC)
Kurita et al. Chemical modification of polysaccharides by the use of intramolecular associations in polar organic solvents
RU2611830C1 (ru) Способ получения йодосодержащей биологически активной добавки к пище
Liu et al. Rheological properties of the polysaccharide–protein complex from longan (Dimocarpus longan Lour.) pulp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007502617

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713276

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713276

Country of ref document: EP