WO2006082932A1 - 欠陥粒子測定装置および欠陥粒子測定方法 - Google Patents

欠陥粒子測定装置および欠陥粒子測定方法 Download PDF

Info

Publication number
WO2006082932A1
WO2006082932A1 PCT/JP2006/301882 JP2006301882W WO2006082932A1 WO 2006082932 A1 WO2006082932 A1 WO 2006082932A1 JP 2006301882 W JP2006301882 W JP 2006301882W WO 2006082932 A1 WO2006082932 A1 WO 2006082932A1
Authority
WO
WIPO (PCT)
Prior art keywords
defective
particle
scattered light
positional deviation
sample
Prior art date
Application number
PCT/JP2006/301882
Other languages
English (en)
French (fr)
Inventor
Kazuo Moriya
Original Assignee
Raytex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytex Corporation filed Critical Raytex Corporation
Priority to EP06713025A priority Critical patent/EP1862790A1/en
Publication of WO2006082932A1 publication Critical patent/WO2006082932A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • the present invention relates to a defective particle measuring apparatus and a defective particle for irradiating a sample with a focused laser beam, imaging scattered light from the sample, and measuring defective particles in the sample based on the imaging result It relates to a measurement method.
  • Patent Document 1 Japanese Patent No. 2604607
  • Patent Document 2 Japanese Patent No. 2832269
  • a defect particle scattering image having a large scattering intensity can be determined to be a defective particle having a large size.
  • the laser beam incident on the sample has a light intensity distribution in a plane perpendicular to the incident axis of the laser beam, even if it is a defective particle having the same size, it is near the incident axis. Compared to the scattering intensity from a certain defective particle, the scattering intensity from the defective particle located away from the incident axial force is lower. For this reason, the size of the defective particle cannot be determined by measuring only the scattering intensity of the defective particle scattering image. In other words, the defect particle scattering image and the size of the defect particle do not directly correspond.
  • Fig. 18 shows the scattering intensity distribution when the beam diameter of the incident laser beam is 8 ⁇ m. ing.
  • the defective particle SB exists on the incident axis
  • the defective particle SA exists at a position 8 m away from the incident axis
  • the size of the defective particle SA is 100 times that of the larger defective particle SB.
  • Curve LA is the scattering intensity distribution of defect particle SA
  • curve LB is the scattering intensity distribution of defect particle SB.
  • the measured scattering intensity is about 7, which is the same scattering intensity, and the size of the defective particle cannot be determined only by the scattering intensity.
  • Patent Document 2 has a problem that it takes a long time to measure because it is necessary to obtain a plurality of tomographic images.
  • the present invention has been made in view of the above, and it is possible to determine the size of defective particles with high accuracy in a short time with a simple configuration and to obtain the density distribution of defective particles.
  • An object is to provide an apparatus and a method for measuring defective particles.
  • a defect particle measuring apparatus irradiates a sample with a focused laser beam, images the scattered light of the sample force, and performs the imaging
  • a defect particle measuring apparatus for measuring defect particles in the sample based on the results, and based on the in-plane intensity distribution of each image of the defect particle scattered light on the image point side of each defect particle scattered light.
  • a positional deviation calculating means for obtaining a focal position deviation and calculating a positional deviation amount in the depth direction of the defect particle corresponding to the focal position deviation is provided, and based on the positional deviation amount calculated by the positional deviation calculating means. The characteristics of the defective particles are measured.
  • the defect particle measuring apparatus irradiates a sample with a focused laser beam, images the scattered light of the sample force, and detects defective particles in the sample based on the imaging result.
  • This is a defective particle measuring device that measures the focal point deviation on the image point side of each defective particle scattered light based on the in-plane intensity distribution of each imaged defective particle scattered light, and corresponds to this focal position deviation.
  • a positional deviation calculating means for calculating a positional deviation amount in the depth direction of the defect particles, and the depth
  • a light intensity correcting means for correcting the light intensity of the defective particle scattered light corresponding to the amount of positional deviation in the direction, and the size of the defective particle is specified based on the light intensity corrected by the light intensity correcting means.
  • a size specifying means is provided.
  • the defective particle measuring apparatus irradiates a sample with focused laser light, images the in-plane intensity distribution of scattered light from within the sample, and measures defective particles in the sample
  • a defect particle measuring apparatus that determines a focal position shift on the image point side of each defective particle scattered light based on an in-plane intensity distribution of each captured defective particle scattered light, and corresponds to the focal position shift.
  • the positional deviation calculating means for calculating the positional deviation amount in the depth direction of the defective particles, the positional deviation amount in the depth direction are divided into a plurality of ranges, the number of defective particles existing in each range is obtained, and imaging optics
  • the object point side focal position force of the system comprises density calculating means for calculating the distribution density of the defective particles in the depth direction.
  • the positional deviation calculating means obtains the in-plane intensity distribution of the scattered light by approximating the Gaussian distribution.
  • the sample is irradiated with the focused laser beam, the scattered light of the sample force is imaged, and the defective particle in the sample is detected based on the imaging result.
  • This is a method for measuring defective particles, and based on the in-plane intensity distribution of each image of defective particle scattered light, the focal position deviation on the image point side of each defective particle scattered light is obtained, and this focal position deviation is handled.
  • a positional deviation calculation step for calculating a positional deviation amount in the depth direction of the defect particles, and measuring the characteristics of the defective particles based on the positional deviation amount calculated by the positional deviation calculation step.
  • the defective particle measurement method irradiates a sample with focused laser light, images scattered light from the sample force, and detects defective particles in the sample based on the imaging result.
  • This is a defect particle measurement method that calculates the focal position shift of each defect particle scattered light on the image point side based on the in-plane intensity distribution of each captured defect particle scattered light, and copes with this focal position shift.
  • a positional shift calculation step for calculating a positional shift amount in the depth direction of the defective particles; a light intensity correction step for correcting the light intensity of the defective particle scattered light in accordance with the positional shift amount in the depth direction; , Based on the light intensity corrected by the light intensity correction step.
  • a size specifying step for specifying the size of the recessed particles.
  • the defective particle measurement method is a method for irradiating a sample with focused laser light, imaging an in-plane intensity distribution of scattered light from within the sample, and measuring defective particles in the sample.
  • a method of measuring a fallen particle wherein a focal position shift on the image point side of each defective particle scattered light is obtained based on an in-plane intensity distribution of each captured defective particle scattered light, and the defect corresponding to this focal position shift
  • a position shift calculating step for calculating a position shift amount in the depth direction of the particles, and a position shift amount in the depth direction are divided into a plurality of ranges, and the number of defective particles existing in each range is obtained to obtain an imaging optical system.
  • a density calculating step of calculating a distribution density of the defective particles in the depth direction are divided into a plurality of ranges, and the number of defective particles existing in each range is obtained to obtain an imaging optical system.
  • the positional deviation calculating step obtains the in-plane intensity distribution of the scattered light by approximating a Gaussian distribution.
  • the positional deviation calculating means has an image of each defective particle scattered light based on the in-plane intensity distribution of each imaged defective particle scattered light. A focal position shift on the point side is obtained, a positional shift amount in the depth direction of the defect particle corresponding to the focal position shift is calculated, and a light intensity correction unit corresponds to the positional shift amount in the depth direction.
  • the light intensity of the defective particle scattered light is corrected
  • the size specifying means specifies the size of the defective particle based on the light intensity corrected by the light intensity correcting means
  • the density calculating means further includes the density calculating means
  • the amount of positional deviation in the depth direction is divided into a plurality of ranges, the number of defective particles existing in each range is obtained, and the distribution density of the defective particles in the depth direction is calculated. So, so for example one When only a two-dimensional defect particle image is acquired, there is an effect that with a simple configuration, the size of the defect particle can be specified with high accuracy in a short time and the density distribution of the defect particle can be obtained.
  • FIG. 1 is a block diagram showing a configuration of a defective particle measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the principle of the 90-degree scattering method.
  • FIG. 3 is a diagram showing an example of a two-dimensional defect particle image in which defect particles are distributed almost uniformly.
  • FIG. 4 is a diagram showing an example of a two-dimensional defect particle image in which foreign defect particles exist.
  • FIG. 5 is a diagram showing the relationship between the spread of the point image at the image point side focal length and the distance of the object point side focal length force of the defective particle.
  • FIG. 6 is a schematic diagram for explaining the relationship between the spread of a point image at the image point side focal length and the distance of the object point side focal length force of the defective particle.
  • FIG. 7 is a diagram showing a scattering intensity distribution when the positional deviation is 2.4 / z m.
  • FIG. 8 is a diagram showing a scattering intensity distribution when the positional deviation is 4 m.
  • FIG. 9 is a diagram showing the scattering intensity distribution when the positional deviation is 8 ⁇ m.
  • FIG. 10 is a diagram showing the scattering intensity distribution when the positional deviation is 20 m.
  • FIG. 11 is a diagram showing a fitting result of a scattering intensity distribution and a Gaussian distribution of a defective particle image on a two-dimensional defective particle image.
  • FIG. 12 is a diagram showing the relationship between the intensity distribution of incident laser light and the correction of scattering intensity.
  • FIG. 13 is a diagram showing an example of a position shift table.
  • FIG. 14 is a flowchart showing a size specifying process procedure by the control unit.
  • FIG. 15 is a detailed flowchart showing the positional deviation calculation processing procedure shown in FIG.
  • FIG. 16 is a diagram for explaining processing for obtaining a density distribution of defective particles with respect to positional deviation from a two-dimensional defective particle image.
  • FIG. 17 is a flowchart showing a density distribution calculation processing procedure by the control unit.
  • FIG. 1 is a block diagram showing a configuration of a defective particle measuring apparatus according to an embodiment of the present invention.
  • this defective particle measuring apparatus 10 has an XYZ stage 12 placed on a seismic proof base 11, and a sample 14 such as a semiconductor wafer is placed on the XYZ stage 13 via a specimen stage 14. .
  • the sample 14 is irradiated from the Y direction through the laser light mirrors 16 and 17 and the focusing lens 18 emitted from the laser light source 15.
  • the irradiated laser light is scattered by defective particles in the sample 14, and a defective particle image is captured by the imaging unit 22 through an optical system realized by the microscope 21 arranged in the ⁇ Z direction.
  • FIG. 2 laser light 41 focused from the Y direction is input to the sample 14, and the laser light scattered by the defective particles is captured as a defective particle image 43.
  • the XYZ stage 12 moves in the X direction and relatively scans the sample 14 with the laser beam 41 for one line.
  • the XYZ stage 12 is moved in the Z direction in units of beam diameter, and scanning of the next line is sequentially repeated.
  • a two-dimensional defect particle image 42 obtained by scanning the XZ plane is obtained.
  • 3 and 4 are diagrams showing examples of two-dimensional defect particle images. In Fig. 3, there are evenly uniform defect particle images, and in Fig. 4, there are two different types of large defect particles.
  • the control unit C is realized by a CPU or the like, controls the imaging by the imaging unit 22, and controls the drive control unit 23 of the drive unit 23 that drives the XYZ stage 12.
  • the control unit C is connected to the monitor 24, the input unit 25, and the storage unit 26, and the monitor 24 realized by a liquid crystal display or the like displays and outputs the measurement result by the control unit C, and the input unit 25 Realized by a mouse, keyboard, etc., inputs various information and instructions to the control unit C, and the storage unit 26 stores various types of information used for control processing of the control unit C, especially the position shift table 26a and intensity correction. Table 26b is stored.
  • the control unit C includes an image processing unit 30.
  • the image processing unit 30 acquires a two-dimensional defective particle image obtained by capturing a defective particle image in units of pixels corresponding to the scan, and performs various image processing.
  • the positional deviation calculation unit 31 calculates the object point side focal position force of the microscope 21 based on the spread of the point image at the image point side focal position of the microscope 21 and the distance to the defective particle.
  • the size of defective particles in the sample 14 is about several tens of meters, and the resolution of the microscope 21 is several hundred nm. Therefore, the defective particle can be considered as a point light source. Therefore, the size of the point light source can be obtained by obtaining the spread of the point image at the focal point position on the image point side.
  • FIG. 5 is a diagram showing the relationship between the spread of the point image and the image point side focal position force and the distance to the defect particle
  • FIG. 6 shows the object point side focus position, the defect particle, and the image point side focus.
  • It is a schematic diagram showing the relationship of the spread of point images at positions. 5 and 6, the defect particle 50 in the sample 14 is a force for forming a point image on the image sensor 52 by the optical system 51 of the microscope 21.
  • This point image has a spread L1.
  • the relationship between the spread L1 and the distance between the defective particle 50 and the focal point P1 is as shown in FIG. 5, and as the point image spreads, the defective particle 50 is displaced in the Z direction from the focal position. !
  • the spread of the point image corresponds to the intensity distribution of the defective particle image, as shown in FIGS.
  • the intensity distributions shown in Fig. 7 to Fig. 10 show that when the displacement force of the defect particle is 0, 4 / ⁇ ⁇ , 8 ⁇ ⁇ , 20 ⁇ m, the wide force of the observed image is 2.4 m, 5 m, respectively. This indicates that the distance is 6 m, 13 m, or 34 m. Therefore, the positional deviation calculation unit 31 uses the fact that this intensity distribution approximates the Gaussian distribution, performs fitting between the intensity distribution and the Gaussian distribution, specifies the intensity distribution, and corresponds to the specified intensity distribution. It is possible to identify the displacement of defective particles.
  • the relationship between the intensity distribution and the positional deviation of the defective particles is stored as a positional deviation table 26a, and the positional deviation calculating unit 31 identifies the intensity distribution and then refers to the positional deviation table 26a to detect the defective particles. Find the position shift.
  • FIG. 11 shows a difference result between each fitting result and fitting in the X direction and the Z direction with respect to one defective particle image on the two-dimensional defective particle image.
  • the intensity distribution is well fitted to the Gaussian distribution, and the resulting force in the X direction is defective.
  • the focal point force is 5.3 m in the Y direction (depth direction) and in the Z direction. Fitting result force It is determined that the defective particles are displaced by 3.72 m in the focal position force Y direction (depth direction). Note that this difference in position shift is also considered to be affected by the aberration of the optical system 51.
  • the incident laser light has an intensity distribution in a plane perpendicular to the incident axis, and this intensity distribution causes the scattering intensity to vary even for defective particles of the same size. Therefore, it is not possible to specify the defect particle size only by the scattering intensity. It was.
  • the positional deviation calculation unit calculates the positional deviation amount of the object side focal position force for each defective particle image, as shown in FIG. Based on the relationship with the light intensity distribution, the intensity correction unit 32 has the same scattering intensity as when the defect particles are irradiated with the same incident light intensity as when the defect particles existed on the incident axis, regardless of the positional deviation amount.
  • the detected scattering intensity is corrected so that The correction of the scattering intensity by this positional deviation amount is performed with reference to the intensity correction table 26b shown in FIG.
  • the intensity correction table 26b stores a correction coefficient for correcting the scattering intensity corresponding to the positional deviation amount. By correcting such scattering intensity, the difference in scattering intensity due to positional deviation can be removed, so the size specifying unit 33 specifies the size of the missing particle only by the corrected scattering intensity alone. can do.
  • the defect particle size specifying process will be described with reference to the flowchart shown in FIG. In FIG. 14, first, the image processing unit 30 acquires a two-dimensional defect particle image (step S101). Thereafter, the positional deviation calculation unit 31 performs a positional deviation calculation process for calculating the positional deviation amount of the defective particle for each defective particle image of the two-dimensional defective particle image (step S102). Thereafter, based on this positional deviation amount, the scattering intensity is corrected so that the incident light intensity is independent of the positional deviation (step S103). Thereafter, the size specifying unit 33 specifies the size of the defective particle based on the corrected scattering intensity (step S104), and the process is terminated. In order to specify the size of the defect particles, a table storing the relationship between the scattering intensity and the defect lattice size may be used.
  • FIG. 15 is a flowchart showing the procedure of the positional deviation calculation process in step S102.
  • one defect particle image is selected from the two-dimensional defect particle image (step S 201), and the in-plane intensity distribution and Gaussian distribution of the selected defect particle image are subjected to the fitting process. (Step S202). Thereafter, the positional deviation amount with respect to the fitted Gaussian distribution is acquired from the positional deviation table 26a (step S203). Thereafter, it is determined whether or not all the defective particle images have been processed (step S204).
  • step S204 If all the defective particle images have not been processed (step S204, No), step The process proceeds to S201, the next defective particle image is selected, the above processing is repeated, and if all the defective particle images are processed (step S204, Yes), the process returns to step S102.
  • the positional deviation of the defective particles obtained by the positional deviation calculating unit 31 described above is also used for calculating the density distribution of the defective particles.
  • each of the defect particle images on the two-dimensional defect particle image 42 has a positional deviation amount. Therefore, depending on the range of the positional deviation amount, a plurality of sub-dimensional defect particle images 42-1 to 42-4 Can be classified. The number of defect particles for each of the classified sub-two-dimensional defect particle images 42-1 to 42-4 can be measured. As shown in FIG. 16, the distribution of the number of defect lattices corresponding to the displacement amount, That is, a density distribution can be obtained.
  • the image processing unit 30 acquires a two-dimensional defect particle image (step S301). Thereafter, as in step S102, the positional deviation calculation unit 31 performs a positional deviation calculation process for calculating the positional deviation amount of the defective particles for each defective particle image of the two-dimensional defective particle image (step S302). Thereafter, the density distribution calculation unit 34 classifies each defective particle in a plurality of positional deviation ranges based on this positional deviation amount (step S303), obtains the number of defective particles for the positional deviation amount, and calculates the density distribution. Calculate (step S304) and end the process. The density distribution obtained in step S304 can be displayed and output on the monitor 24.
  • the defective particle is regarded as a point light source, and the relationship between the spread of the point image at the image point side focal position and the positional deviation of the defective particle at the object point side focal position is used to obtain a two-dimensional defect particle.
  • the intensity distribution of the defect particle image is fitted to the Gaussian distribution based on the image, the positional deviation amount of the defective particle is obtained, and based on this positional deviation amount, the scattering intensity is corrected to reduce the size of the defective particle. Since it is specified or the density distribution is obtained, it is possible to obtain a high-precision defect particle size in a simple configuration and in a short time without acquiring tomographic images, which are multiple two-dimensional defect particle images. ⁇ can measure the density distribution of defective particles.
  • the size of the defective particles and the density distribution of the defective particles are obtained based on only one two-dimensional defective particle image. 3D images obtained by applying the embodiment of the present invention to each tomographic image. You can get a statue.
  • a semiconductor wafer is shown as an example of the sample 14.
  • the sample 14 is not limited to such a solid, and the sample 14 may be a fluid such as a liquid or a gas.
  • the defective particle measuring apparatus and the defective particle measuring method according to the present invention are useful for a defective particle measuring apparatus and a defective particle measuring method for measuring defective particles in a sample such as a solid or a fluid.
  • it is suitable for a defective particle measuring apparatus and a defective particle measuring method for measuring defective particles in a semiconductor wafer!

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Biochemistry (AREA)
  • Power Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 集束したレーザ光を試料14に照射し、試料14からの散乱光を撮像し該撮像結果をもとに試料14内の欠陥粒子を測定する欠陥粒子測定装置であって、撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出部31と、前記深さ方向の位置ズレ量に対応して前記欠陥粒子散乱光の光強度を補正する強度補正部32と、強度補正部32によって補正された光強度をもとに前記欠陥粒子のサイズを特定するサイズ特定部33とを備え、簡易な構成で短時間に精度の高い欠陥粒子のサイズを特定できるとともに欠陥粒子の密度分布を求めることができる。

Description

明 細 書
欠陥粒子測定装置および欠陥粒子測定方法
技術分野
[0001] この発明は、集束したレーザ光を試料に照射し、該試料からの散乱光を撮像し該 撮像結果をもとに該試料内の欠陥粒子を測定する欠陥粒子測定装置および欠陥粒 子測定方法に関するものである。
背景技術
[0002] 従来から、集束したレーザ光を試料に照射し、該試料力 の散乱光を撮像し、撮像 した画像に対して所定の画像処理を施し、この画像処理結果をもとに試料内の欠陥 粒子の密度分布などを測定するものがある (特許文献 1参照)。この方法によれば、 図 3あるいは図 4に示したように、 90度散乱法によって試料内の欠陥粒子によって散 乱されたレーザ光を撮像することによって欠陥粒子の二次元配置を知ることができる 二次元画像が得られる。
[0003] 特許文献 1:特許第 2604607号公報
特許文献 2:特許第 2832269号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、大きなサイズの欠陥粒子は入射したレーザ光を散乱させる有効散乱断面 積が大きいため、散乱強度は大きくなる。このため、一般に散乱強度が大きな欠陥粒 子散乱像は、大きなサイズをもつ欠陥粒子であると判定することができる。
[0005] し力しながら、試料に入射するレーザ光はレーザ光の入射軸に対して垂直な面内 で光強度分布をもっため、同じサイズをもつ欠陥粒子であっても、入射軸近傍にある 欠陥粒子からの散乱強度に比して、入射軸力 離れたところに位置する欠陥粒子か らの散乱強度は低くなる。このため、欠陥粒子散乱像の散乱強度のみを測定しても、 欠陥粒子のサイズを判定することができない。すなわち、欠陥粒子散乱像と欠陥粒 子のサイズとは直接対応しな 、。
[0006] たとえば、図 18は、入射レーザ光のビーム径が 8 μ mのときの散乱強度分布を示し ている。欠陥粒子 SBは入射軸上に存在し、欠陥粒子 SAは入射軸から 8 m離れた 位置に存在するとともに、欠陥粒子 SAのサイズは大きぐ欠陥粒子 SBの 100倍の散 乱効率をもっている。曲線 LAは欠陥粒子 SAの散乱強度分布であり、曲線 LBは欠 陥粒子 SBの散乱強度分布である。この場合、欠陥粒子 SA, SBのサイズは 100倍 違うのに、測定される散乱強度は約 7であり、同じ散乱強度となり、散乱強度だけでは 欠陥粒子のサイズを判定できな 、ことになる。
[0007] このため、特許文献 2に記載された三次元粒子検出方法では、試料を深さ方向に ずらし、特許文献 1で得られる欠陥粒子散乱像を断層像として複数求め、これら複数 の断層像を 3次元画像処理することによって、入力される光強度分布の不均一性を 補正し、各欠陥粒子のサイズを決定するようにして 、る。
[0008] し力しながら、特許文献 2に記載されたものでは、複数の断層像を得る必要がある ため、測定時間が力かるという問題点があった。
[0009] この発明は、上記に鑑みてなされたものであって、簡易な構成で短時間に精度の 高い欠陥粒子のサイズを特定できるとともに欠陥粒子の密度分布を求めることができ る欠陥粒子測定装置および欠陥粒子測定方法を提供することを目的とする。
課題を解決するための手段
[0010] 上述した課題を解決し、目的を達成するために、この発明にかかる欠陥粒子測定 装置は、集束したレーザ光を試料に照射し、該試料力ゝらの散乱光を撮像し該撮像結 果をもとに該試料内の欠陥粒子を測定する欠陥粒子測定装置であって、撮像された 各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点側の焦点位 置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の位置ズレ量 を算出する位置ズレ算出手段を備え、この位置ズレ算出手段が算出した位置ズレ量 をもとに前記欠陥粒子の特性を測定することを特徴とする。
[0011] また、この発明にかかる欠陥粒子測定装置は、集束したレーザ光を試料に照射し、 該試料力ゝらの散乱光を撮像し該撮像結果をもとに該試料内の欠陥粒子を測定する 欠陥粒子測定装置であって、撮像された各欠陥粒子散乱光の面内強度分布をもと に各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応し た前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出手段と、前記深さ 方向の位置ズレ量に対応して前記欠陥粒子散乱光の光強度を補正する光強度補正 手段と、前記光強度補正手段によって補正された光強度をもとに前記欠陥粒子のサ ィズを特定するサイズ特定手段と、を備えたことを特徴とする。
[0012] また、この発明に力かる欠陥粒子測定装置は、集束したレーザ光を試料に照射し、 該試料内からの散乱光の面内強度分布を撮像し該試料内の欠陥粒子を測定する欠 陥粒子測定装置であって、撮像された各欠陥粒子散乱光の面内強度分布をもとに 各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応した 前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出手段と、前記深さ方 向の位置ズレ量を複数の範囲に分け、各範囲内に存在する欠陥粒子の数を求め、 撮像光学系の物点側焦点位置力 深さ方向における前記欠陥粒子の分布密度を算 出する密度算出手段と、を備えたことを特徴とする。
[0013] また、この発明に力かる欠陥粒子測定装置は、上記の発明にお 、て、前記位置ズ レ算出手段は、前記散乱光の面内強度分布をガウシアン分布に近似して求めること を特徴とする。
[0014] また、この発明にかかる欠陥粒子測定方法は、集束したレーザ光を試料に照射し、 該試料力ゝらの散乱光を撮像し該撮像結果をもとに該試料内の欠陥粒子を測定する 欠陥粒子測定方法であって、撮像された各欠陥粒子散乱光の面内強度分布をもと に各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応し た前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出ステップを含み、 この位置ズレ算出ステップによって算出された位置ズレ量をもとに前記欠陥粒子の特 性を測定することを特徴とする。
[0015] また、この発明に力かる欠陥粒子測定方法は、集束したレーザ光を試料に照射し、 該試料力ゝらの散乱光を撮像し該撮像結果をもとに該試料内の欠陥粒子を測定する 欠陥粒子測定方法であって、撮像された各欠陥粒子散乱光の面内強度分布をもと に各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応し た前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出ステップと、前記 深さ方向の位置ズレ量に対応して前記欠陥粒子散乱光の光強度を補正する光強度 補正ステップと、前記光強度補正ステップによって補正された光強度をもとに前記欠 陥粒子のサイズを特定するサイズ特定ステップと、を含むことを特徴とする。
[0016] また、この発明にかかる欠陥粒子測定方法は、集束したレーザ光を試料に照射し、 該試料内からの散乱光の面内強度分布を撮像し該試料内の欠陥粒子を測定する欠 陥粒子測定方法であって、撮像された各欠陥粒子散乱光の面内強度分布をもとに 各欠陥粒子散乱光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応した 前記欠陥粒子の深さ方向の位置ズレ量を算出する位置ズレ算出ステップと、前記深 さ方向の位置ズレ量を複数の範囲に分け、各範囲内に存在する欠陥粒子の数を求 め、撮像光学系の物点側焦点位置力 深さ方向における前記欠陥粒子の分布密度 を算出する密度算出ステップと、を含むことを特徴とする。
[0017] また、この発明にかかる欠陥粒子測定方法は、上記の発明において、前記位置ズ レ算出ステップは、前記散乱光の面内強度分布をガウシアン分布に近似して求める ことを特徴とする。
発明の効果
[0018] この発明に力かる欠陥粒子測定装置および欠陥粒子測定方法では、位置ズレ算 出手段が、撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱 光の像点側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の 深さ方向の位置ズレ量を算出し、光強度補正手段が、前記深さ方向の位置ズレ量に 対応して前記欠陥粒子散乱光の光強度を補正し、サイズ特定手段が、前記光強度 補正手段によって補正された光強度をもとに前記欠陥粒子のサイズを特定するよう にし、さらに、密度算出手段が、前記深さ方向の位置ズレ量を複数の範囲に分け、各 範囲内に存在する欠陥粒子の数を求め、撮像光学系の物点側焦点位置力 深さ方 向における前記欠陥粒子の分布密度を算出するようにして 、るので、たとえば 1つの 二次元の欠陥粒子画像のみを取得すると!、う簡易な構成で、短時間に精度の高 、 欠陥粒子のサイズを特定できるとともに欠陥粒子の密度分布を求めることができると いう効果を奏する。
図面の簡単な説明
[0019] [図 1]図 1は、この発明の実施の形態である欠陥粒子測定装置の構成を示すブロック 図である。 [図 2]図 2は、 90度散乱法の原理を説明する図である。
[図 3]図 3は、欠陥粒子がほぼ均一に分布した二次元欠陥粒子画像の一例を示す図 である。
[図 4]図 4は、異質な欠陥粒子が存在する二次元欠陥粒子画像の一例を示す図であ る。
[図 5]図 5は、像点側焦点距離における点像の広がりと欠陥粒子の物点側焦点距離 力 の距離との関係を示す図である。
[図 6]図 6は、像点側焦点距離における点像の広がりと欠陥粒子の物点側焦点距離 力 の距離との関係を説明する模式図である。
[図 7]図 7は、位置ズレが 2. 4 /z mのときの散乱強度分布を示す図である。
[図 8]図 8は、位置ズレが 4 mのときの散乱強度分布を示す図である。
[図 9]図 9は、位置ズレが 8 μ mのときの散乱強度分布を示す図である。
[図 10]図 10は、位置ズレが 20 mのときの散乱強度分布を示す図である。
[図 11]図 11は、 2次元欠陥粒子画像上の欠陥粒子像の散乱強度分布とガウシアン 分布とのフィッティング結果を示す図である。
[図 12]図 12は、入射レーザ光の強度分布と散乱強度の補正との関係を示す図であ る。
[図 13]図 13は、位置ズレテーブルの一例を示す図である。
[図 14]図 14は、制御部によるサイズ特定処理手順を示すフローチャートである。
[図 15]図 15は、図 14に示した位置ズレ算出処理手順を示す詳細フローチャートであ る。
[図 16]図 16は、二次元欠陥粒子画像から位置ズレに対する欠陥粒子の密度分布を 求める処理を説明する図である。
[図 17]図 17は、制御部による密度分布算出処理手順を示すフローチャートである。
[図 18]図 18は、位置ズレを考慮しない場合における散乱強度と欠陥粒子のサイズと の関係を示す図である。
符号の説明
10 欠陥粒子測定装置 11 防震台
12 XYZステージ
13 試料台
14 試料
15 レーザ光源
16, 17 ミラー
18 集束レンズ
21 顕微鏡
22 撮像部
23 駆動制御部
24 モニタ
25 入力部
26
26a 位置ズレテ一
26b ' 強度補正テ
30 画像処理部
31 位置ズレ算出部
32 強度補正部
33 サイズ特定部
34 密度分布算出部
42 二次元欠陥粒子画像
43 欠陥粒子像
50 欠陥粒子
51 光学系
52 撮像素子
C 制御部
発明を実施するための最良の形態
以下、この発明を実施するための最良の形態である欠陥粒子測定装置および欠陥 粒子測定方法について説明する。
[0022] 図 1は、この発明の実施の形態である欠陥粒子測定装置の構成を示すブロック図 である。図 1において、この欠陥粒子測定装置 10は、防震台 11上に XYZステージ 1 2を配置し、この XYZステージ 13上に、試料台 14を介して、半導体ウェハなどの試 料 14が配置される。試料 14の Y方向からは、レーザ光源 15から出射されたレーザ光 力 ミラー 16, 17および集束レンズ 18を介して照射される。この照射されたレーザ光 は試料 14内の欠陥粒子によって散乱され、—Z方向に配置された顕微鏡 21によつ て実現される光学系を介して撮像部 22によって欠陥粒子像が撮像される。
[0023] 図 2に示すように、試料 14には Y方向から集束されたレーザ光 41が入力され、欠陥 粒子によって散乱されたレーザ光は、欠陥粒子像 43として撮像される。ここで、 XYZ ステージ 12は、 X方向に移動し、相対的に試料 14に対してレーザ光 41を 1ライン分 スキャンする。 X方向の 1ラインのスキャンが終了すると、ビーム径単位で XYZステー ジ 12を Z方向に移動し、次のラインのスキャンを順次繰り返し行う。これによつて XZ面 をスキャンした二次元欠陥粒子画像 42が得られる。図 3および図 4は、二次元欠陥粒 子画像の一例を示す図である。図 3では、ほぼ均一なサイズの欠陥粒子像が均等に 存在し、図 4では、異種の大きな欠陥粒子が 2つ存在する。
[0024] 制御部 Cは、 CPUなどによって実現され、撮像部 22による撮像を制御するとともに 、 XYZステージ 12を駆動する駆動部 23の駆動制御部 23を制御する。また、制御部 Cは、モニタ 24,入力部 25,記憶部 26が接続され、液晶ディスプレイなどによって実 現されるモニタ 24は、制御部 Cによる測定結果などを表示出力し、入力部 25は、マ ウスやキーボードなどによって実現され、制御部 Cに対する各種情報や指示を入力し 、記憶部 26は、制御部 Cの制御処理に用いる各種情報が記憶されおり、特に位置ズ レテーブル 26aおよび強度補正テーブル 26bが記憶されている。
[0025] 制御部 Cは、画像処理部 30を有する。画像処理部 30は、前記スキャンに対応して 画素単位で欠陥粒子像を撮像した二次元欠陥粒子画像を取得し、各種の画像処理 を施す。位置ズレ算出部 31は、顕微鏡 21の像点側焦点位置における点像の広がり をもとに顕微鏡 21の物点側焦点位置力も欠陥粒子までの距離を算出する。試料 14 内の欠陥粒子のサイズは数十 m程度であり、顕微鏡 21の分解能は数百 nmである ため、欠陥粒子は点光源と考えることができる。そこで、像点側焦点位置における点 像の広がりを求めることによって点光源の大きさを求めることができる。
[0026] 図 5は、点像の広がりと像点側焦点位置力も欠陥粒子までの距離との関係を示す 図であり、図 6は、物点側焦点位置、欠陥粒子、および像点側焦点位置における点 像の広がりの関係を示す模式図である。図 5および図 6において、試料 14内の欠陥 粒子 50は、顕微鏡 21の光学系 51によって撮像素子 52上に点像を形成する力 この 点像は、広がり L1をもつ。この広がり L1と、欠陥粒子 50と焦点 P1との距離との関係 は、図 5に示すような関係を有し、点像が広がるにつれて欠陥粒子 50が焦点位置か ら Z方向に位置ズレして!/、ることがわ力る。
[0027] この点像の広がりは、図 7〜図 10に示すように、欠陥粒子像の強度分布に対応す る。図 7〜図 10に示した強度分布は、それぞれ欠陥粒子の位置ズレ力 0、 4 /ζ πι、 8 μ ι, 20 μ mのとき、観察像の広力り力 それぞれ 2. 4 m、 5. 6 m、 13 m、 34 mになっていることを示している。そこで、位置ズレ算出部 31は、この強度分布が ガウシアン分布に近似することを用い、強度分布とガウシアン分布とのフィッティング を行って強度分布の特定を行 ヽ、この特定された強度分布に対応した欠陥粒子の位 置ズレを特定することができる。この強度分布と欠陥粒子の位置ズレとの関係は、位 置ズレテーブル 26aとして記憶されており、位置ズレ算出部 31は、強度分布を特定し た後、位置ズレテーブル 26aを参照して欠陥粒子の位置ズレを求める。
[0028] 図 11は、二次元欠陥粒子画像上の 1つの欠陥粒子像に対する X方向と Z方向とに おける各フィッティング結果とフィッティングとの差分結果を示して 、る。図 11に示す ように、強度分布は、ガウシアン分布に、よくフィッティングしており、 X方向のフイツテ イング結果力 欠陥粒子は焦点位置力 Y方向(深さ方向)に 5. 3 m、 Z方向のフィ ッティング結果力 欠陥粒子は焦点位置力 Y方向(深さ方向)に 3. 72 m、それぞ れ位置ズレしていると判定される。なお、この位置ズレの違いは、光学系 51の収差も 影響していると考えられる。
[0029] ところで、図 12に示すように、入射するレーザ光は、入射軸に垂直な面内で強度分 布をもっており、この強度分布によって同じサイズの欠陥粒子であっても散乱強度が 異なってしまうため、散乱強度のみでは欠陥粒子サイズを特定することができなかつ た。この実施の形態では、位置ズレ算出部が、各欠陥粒子像毎に、物点側焦点位置 力もの位置ズレ量を算出しているので、図 12に示したように、この位置ズレ量と入射 光強度分布との関係から、強度補正部 32は、位置ズレ量にかかわらず、入射軸上に 欠陥粒子が存在していた場合と同じ入射光強度が欠陥粒子に照射されたときと同じ 散乱強度となるように、検出した散乱強度を補正する。この位置ズレ量による散乱強 度の補正は、図 13に示した強度補正テーブル 26bを参照して行う。強度補正テープ ル 26bは、位置ズレ量に対応し、散乱強度を補正する補正係数が記憶されている。こ のような散乱強度を補正を行うことによって、位置ズレに伴う散乱強度の違いを除去 できるため、サイズ特定部 33は、補正された散乱強度のみの大きさのみによって欠 陥粒子のサイズを特定することができる。
[0030] ここで、図 14に示したフローチャートを参照して欠陥粒子のサイズ特定処理につい て説明する。図 14において、まず、画像処理部 30は二次元欠陥粒子画像を取得す る (ステップ S101)。その後、位置ズレ算出部 31は、この二次元欠陥粒子画像の欠 陥粒子像毎に欠陥粒子の位置ズレ量を算出する位置ズレ算出処理を行う (ステップ S102)。その後、この位置ズレ量をもとに、入射光強度が位置ズレに無関係となるよ うに、散乱強度の補正を行う(ステップ S103)。その後、サイズ特定部 33は、この補 正した散乱強度の大きさをもとに欠陥粒子のサイズを特定し (ステップ S104)、本処 理を終了する。なお、欠陥粒子のサイズ特定は、散乱強度と欠陥格子サイズとの関 係が記憶されたテーブルを用いるようにしてもょ ヽ。
[0031] 図 15は、ステップ S102における位置ズレ算出処理の処置手順を示すフローチヤ ートである。図 15に示すように、まず二次元欠陥粒子画像の中から 1つの欠陥粒子 像を選択し (ステップ S 201)、この選択した欠陥粒子像の面内強度分布とガウシアン 分布とのフィッティング処理を行う(ステップ S202)。その後、フィットしたガウシアン分 布に対する位置ズレ量を、位置ズレテーブル 26aから取得する(ステップ S 203)。そ の後、全ての欠陥粒子像に対して処理したか否かを判断し (ステップ S204)、全ての 欠陥粒子像に対して処理をしていない場合 (ステップ S 204, No)には、ステップ S20 1に移行し、つぎの欠陥粒子像を選択し、上述した処理を繰り返し、全ての欠陥粒子 像に対して処理をした場合 (ステップ S204, Yes)には、ステップ S 102にリターンす る。
[0032] つぎに、位置ズレ量を用いた欠陥粒子の密度分布算出処理について説明する。上 述した位置ズレ算出部 31が求めた欠陥粒子の位置ズレは、欠陥粒子の密度分布算 出にも用いられる。図 16に示すように、二次元欠陥粒子画像 42上の欠陥粒子像は、 それぞれ位置ズレ量をもっているため、位置ズレ量の範囲によって複数のサブ二次 元欠陥粒子画像 42— 1〜42— 4に分類できる。この分類した各サブ二次元欠陥粒 子像 42— 1〜42— 4毎の欠陥粒子の数を測定することができ、図 16に示すように位 置ズレ量に対応した欠陥格子数の分布、すなわち密度分布を得ることができる。
[0033] ここで、図 17に示したフローチャートをもとに、密度分布算出処理手順について説 明する。図 17において、まず、画像処理部 30は二次元欠陥粒子画像を取得する (ス テツプ S301)。その後、位置ズレ算出部 31は、ステップ S102と同様に、この二次元 欠陥粒子画像の欠陥粒子像毎に欠陥粒子の位置ズレ量を算出する位置ズレ算出 処理を行う(ステップ S302)。その後、密度分布算出部 34は、この位置ズレ量をもと に、複数の位置ズレ範囲で各欠陥粒子を分類し (ステップ S303)、位置ズレ量に対 する欠陥粒子数を求め、密度分布を算出し (ステップ S304)、本処理を終了する。な お、ステップ S304で求められた密度分布は、モニタ 24で表示出力することができる
[0034] この実施の形態では、欠陥粒子を点光源とみなし、像点側焦点位置における点像 の広がりと物点側焦点位置における欠陥粒子の位置ズレとの関係を用い、二次元欠 陥粒子画像をもとに、欠陥粒子像の強度分布をガウシアン分布にフィッティングする ことによって欠陥粒子の位置ズレ量を求め、この位置ズレ量をもとに、散乱強度を補 正して欠陥粒子のサイズを特定し、あるいは密度分布を求めるようにしているので、 複数の二次元欠陥粒子画像である断層像を取得しなくても、簡易な構成でかつ短時 間で精度の高 ヽ欠陥粒子のサイズある ヽは欠陥粒子の密度分布を測定することが できる。
[0035] なお、上述した実施の形態では、 1枚の二次元欠陥粒子画像のみをもとに欠陥粒 子のサイズや欠陥粒子の密度分布を求めるようにしていたが、比較的間隔を大きくと つた複数の断層像をとり、各断層像毎にこの発明の実施の形態を適用した 3次元画 像を得るようにしてもよ 、。
[0036] また、上述した実施の形態では、試料 14として半導体ウェハを一例として示したが 、このような固体に限らず、試料 14は、液体や気体などの流体であってもよい。 産業上の利用可能性
[0037] 以上のように、本発明にかかる欠陥粒子測定装置および欠陥粒子測定方法は、固 体や流体などの試料内の欠陥粒子を測定する欠陥粒子測定装置および欠陥粒子 測定方法に有用であり、特に、半導体ゥ ハ内の欠陥粒子を測定する欠陥粒子測定 装置および欠陥粒子測定方法に適して!/、る。

Claims

請求の範囲
[1] 集束したレーザ光を試料に照射し、該試料力ゝらの散乱光を撮像し該撮像結果をも とに該試料内の欠陥粒子を測定する欠陥粒子測定装置であって、
撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出手段を備え、この位置ズレ算出手段が算出した 位置ズレ量をもとに前記欠陥粒子の特性を測定することを特徴とする欠陥粒子測定 装置。
[2] 前記位置ズレ算出手段は、前記散乱光の面内強度分布をガウシアン分布に近似し て求めることを特徴とする請求項 1に記載の欠陥粒子測定装置。
[3] 集束したレーザ光を試料に照射し、該試料力ゝらの散乱光を撮像し該撮像結果をも とに該試料内の欠陥粒子を測定する欠陥粒子測定装置であって、
撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出手段と、
前記深さ方向の位置ズレ量に対応して前記欠陥粒子散乱光の光強度を補正する 光強度補正手段と、
前記光強度補正手段によって補正された光強度をもとに前記欠陥粒子のサイズを 特定するサイズ特定手段と、
を備えたことを特徴とする欠陥粒子測定装置。
[4] 前記位置ズレ算出手段は、前記散乱光の面内強度分布をガウシアン分布に近似し て求めることを特徴とする請求項 3に記載の欠陥粒子測定装置。
[5] 集束したレーザ光を試料に照射し、該試料内力 の散乱光の面内強度分布を撮像 し該試料内の欠陥粒子を測定する欠陥粒子測定装置であって、
撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出手段と、
前記深さ方向の位置ズレ量を複数の範囲に分け、各範囲内に存在する欠陥粒子 の数を求め、撮像光学系の物点側焦点位置力 深さ方向における前記欠陥粒子の 分布密度を算出する密度算出手段と、
を備えたことを特徴とする欠陥粒子測定装置。
[6] 前記位置ズレ算出手段は、前記散乱光の面内強度分布をガウシアン分布に近似し て求めることを特徴とする請求項 5に記載の欠陥粒子測定装置。
[7] 集束したレーザ光を試料に照射し、該試料力ゝらの散乱光を撮像し該撮像結果をも とに該試料内の欠陥粒子を測定する欠陥粒子測定方法であって、
撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出ステップを含み、この位置ズレ算出ステップによ つて算出された位置ズレ量をもとに前記欠陥粒子の特性を測定することを特徴とする 欠陥粒子測定方法。
[8] 前記位置ズレ算出ステップは、前記散乱光の面内強度分布をガウシアン分布に近 似して求めることを特徴とする請求項 7に記載の欠陥粒子測定方法。
[9] 集束したレーザ光を試料に照射し、該試料力ゝらの散乱光を撮像し該撮像結果をも とに該試料内の欠陥粒子を測定する欠陥粒子測定方法であって、
撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出ステップと、
前記深さ方向の位置ズレ量に対応して前記欠陥粒子散乱光の光強度を補正する 光強度補正ステップと、
前記光強度補正ステップによって補正された光強度をもとに前記欠陥粒子のサイ ズを特定するサイズ特定ステップと、
を含むことを特徴とする欠陥粒子測定方法。
[10] 前記位置ズレ算出ステップは、前記散乱光の面内強度分布をガウシアン分布に近 似して求めることを特徴とする請求項 9に記載の欠陥粒子測定方法。
[11] 集束したレーザ光を試料に照射し、該試料内力 の散乱光の面内強度分布を撮像 し該試料内の欠陥粒子を測定する欠陥粒子測定方法であって、 撮像された各欠陥粒子散乱光の面内強度分布をもとに各欠陥粒子散乱光の像点 側の焦点位置ズレを求め、この焦点位置ズレに対応した前記欠陥粒子の深さ方向の 位置ズレ量を算出する位置ズレ算出ステップと、
前記深さ方向の位置ズレ量を複数の範囲に分け、各範囲内に存在する欠陥粒子 の数を求め、撮像光学系の物点側焦点位置力 深さ方向における前記欠陥粒子の 分布密度を算出する密度算出ステップと、
を含むことを特徴とする欠陥粒子測定方法。
前記位置ズレ算出ステップは、前記散乱光の面内強度分布をガウシアン分布に近 似して求めることを特徴とする請求項 11に記載の欠陥粒子測定方法。
PCT/JP2006/301882 2005-02-03 2006-02-03 欠陥粒子測定装置および欠陥粒子測定方法 WO2006082932A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06713025A EP1862790A1 (en) 2005-02-03 2006-02-03 Defective particle measuring apparatus and defective particle measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-027941 2005-02-03
JP2005027941A JP4313322B2 (ja) 2005-02-03 2005-02-03 欠陥粒子測定装置および欠陥粒子測定方法

Publications (1)

Publication Number Publication Date
WO2006082932A1 true WO2006082932A1 (ja) 2006-08-10

Family

ID=36777314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301882 WO2006082932A1 (ja) 2005-02-03 2006-02-03 欠陥粒子測定装置および欠陥粒子測定方法

Country Status (5)

Country Link
US (1) US7633617B2 (ja)
EP (1) EP1862790A1 (ja)
JP (1) JP4313322B2 (ja)
KR (1) KR100926019B1 (ja)
WO (1) WO2006082932A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186964B1 (ko) * 2010-06-14 2012-09-28 건국대학교 산학협력단 미립자 분석 시스템 및 방법
CN106323809A (zh) * 2016-11-07 2017-01-11 浙江师范大学 一种等厚透明高聚物制品的密度连续分布测定装置
US10437036B2 (en) * 2017-10-02 2019-10-08 Arkray, Inc. Analysis apparatus
KR102138222B1 (ko) * 2019-04-11 2020-07-27 주식회사 제이에스티앤랩 배출가스 입자 측정 장치
US11353389B2 (en) 2020-09-25 2022-06-07 Applied Materials, Inc. Method and apparatus for detection of particle size in a fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964136A (ja) * 1995-08-25 1997-03-07 Toshiba Corp 半導体ウェーハの欠陥測定方法及び同装置
WO1997035162A1 (fr) * 1996-03-15 1997-09-25 Hitachi, Ltd. Procede et dispositif permettant de mesurer les defauts d'un cristal a partir de la surface de ce dernier
JP3190157B2 (ja) * 1993-03-05 2001-07-23 株式会社東芝 結晶欠陥検査方法
JP2002071564A (ja) * 2000-08-24 2002-03-08 Toshiba Ceramics Co Ltd シリコン単結晶ウエハ中の欠陥評価方法
JP3536203B2 (ja) * 1999-06-09 2004-06-07 東芝セラミックス株式会社 ウェーハの結晶欠陥測定方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844340A (ja) * 1981-09-10 1983-03-15 Kureha Chem Ind Co Ltd 電気泳動度測定装置
JP2604607B2 (ja) 1987-12-09 1997-04-30 三井金属鉱業株式会社 欠陥分布測定法および装置
JP2722362B2 (ja) * 1992-03-27 1998-03-04 三井金属鉱業株式会社 粒子または欠陥の大きさ情報の測定方法および装置
JP2832269B2 (ja) * 1992-09-14 1998-12-09 三井金属鉱業株式会社 三次元粒子検出方法及び装置
JP3366066B2 (ja) 1993-09-03 2003-01-14 ラトックシステムエンジニアリング株式会社 結晶欠陥検出装置における観察深度設定方法
JPH07286953A (ja) * 1994-04-19 1995-10-31 Toa Medical Electronics Co Ltd イメージングフローサイトメータ
JPH11148903A (ja) 1997-09-04 1999-06-02 Komatsu Electron Metals Co Ltd 半導体の欠陥密度測定装置および方法並びに半導体の欠陥散乱能測定装置および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190157B2 (ja) * 1993-03-05 2001-07-23 株式会社東芝 結晶欠陥検査方法
JPH0964136A (ja) * 1995-08-25 1997-03-07 Toshiba Corp 半導体ウェーハの欠陥測定方法及び同装置
WO1997035162A1 (fr) * 1996-03-15 1997-09-25 Hitachi, Ltd. Procede et dispositif permettant de mesurer les defauts d'un cristal a partir de la surface de ce dernier
JP3536203B2 (ja) * 1999-06-09 2004-06-07 東芝セラミックス株式会社 ウェーハの結晶欠陥測定方法及び装置
JP2002071564A (ja) * 2000-08-24 2002-03-08 Toshiba Ceramics Co Ltd シリコン単結晶ウエハ中の欠陥評価方法

Also Published As

Publication number Publication date
US20080111992A1 (en) 2008-05-15
US7633617B2 (en) 2009-12-15
JP2006214867A (ja) 2006-08-17
KR100926019B1 (ko) 2009-11-11
KR20070091236A (ko) 2007-09-07
EP1862790A1 (en) 2007-12-05
JP4313322B2 (ja) 2009-08-12

Similar Documents

Publication Publication Date Title
JP5331828B2 (ja) 荷電粒子線装置
JP5178079B2 (ja) 欠陥検査方法およびその装置
JP2006332296A (ja) 電子ビーム応用回路パターン検査における焦点補正方法
JP5164598B2 (ja) レビュー方法、およびレビュー装置
TWI776085B (zh) 用於監測束輪廓及功率的方法及設備
TWI613436B (zh) 缺陷判定方法、及x射線檢查裝置
JP2008529065A (ja) トラッキングオートフォーカスシステム
JP2010276487A (ja) テンプレートマッチング用テンプレート作成方法、及びテンプレート作成装置
TW201409021A (zh) 檢測樣品表面缺陷之檢測系統及其檢測方法
JP2006276454A (ja) 画像補正方法、およびこれを用いたパターン欠陥検査方法
KR100926019B1 (ko) 결함 입자 측정 장치 및 결함 입자 측정 방법
JP6559601B2 (ja) 検出装置及び検出方法
JP2010164377A (ja) 表面形状測定システム及び表面形状測定方法
KR101707842B1 (ko) 촬상 장치, 결함 검사 장치 및 결함 검사 방법
JP4594833B2 (ja) 欠陥検査装置
JP2008218259A (ja) 検査方法及び検査装置
KR100913508B1 (ko) 공초점을 이용한 3차원 스캐닝 장치 및 스캐닝 방법
JP2003322512A (ja) 供試体の寸法測定装置
JP5367292B2 (ja) 表面検査装置および表面検査方法
JP5768349B2 (ja) スリット光輝度分布設計方法および光切断凹凸疵検出装置
JP2019219295A (ja) ウエハ検査装置およびウエハ検査方法
JP2006003168A (ja) 表面形状の測定方法およびその装置
JP2008008804A (ja) 検査装置
JP4679995B2 (ja) 欠陥検出方法及び装置
JP2015055583A (ja) 検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11883510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006713025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006713025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018949

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006713025

Country of ref document: EP