WO2006080523A1 - 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂 - Google Patents

自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂 Download PDF

Info

Publication number
WO2006080523A1
WO2006080523A1 PCT/JP2006/301543 JP2006301543W WO2006080523A1 WO 2006080523 A1 WO2006080523 A1 WO 2006080523A1 JP 2006301543 W JP2006301543 W JP 2006301543W WO 2006080523 A1 WO2006080523 A1 WO 2006080523A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
adhesive
molecular weight
weight
amino group
Prior art date
Application number
PCT/JP2006/301543
Other languages
English (en)
French (fr)
Inventor
Naoki Nakajima
Suong-Hyu Hyon
Masakazu Konda
Original Assignee
Bmg Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bmg Incorporated filed Critical Bmg Incorporated
Priority to CN2006800036346A priority Critical patent/CN101111272B/zh
Priority to JP2007500647A priority patent/JP4092512B2/ja
Priority to EP06712686.2A priority patent/EP1849486B1/en
Priority to KR1020077019753A priority patent/KR101201056B1/ko
Publication of WO2006080523A1 publication Critical patent/WO2006080523A1/ja
Priority to US11/881,941 priority patent/US7834065B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/108Specific proteins or polypeptides not covered by groups A61L24/102 - A61L24/106
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J103/00Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/26Natural polymers, natural resins or derivatives thereof according to C08L1/00 - C08L5/00, C08L89/00, C08L93/00, C08L97/00 or C08L99/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Definitions

  • the present invention relates to a medical adhesive used for adhesion, filling, and adhesion prevention of living tissue, and hemostasis at the time of surgical operation and others, and a medical grease.
  • a medical adhesive particularly a surgical adhesive, (1) a cyanoacrylate adhesive, and
  • Fibrin glue (fibrin 'glue) has been mainly used.
  • This type of adhesive utilizes the fact that cyanoacrylate monomer is polymerized and solidified using a small amount of moisture as a polymerization initiator, and is fast in polymerization and solidification, and has high adhesion to living tissue.
  • the solidified material is inflexible and hard, wound healing may be hindered, and since it is difficult to decompose in vivo, it is easily encapsulated and becomes a foreign substance.
  • formaldehyde is produced in the process of decomposition, there are reports that it shows cytotoxicity and tissue damage.
  • Fibrin glue is widely used for the purpose of preventing force bleeding such as a sutured part after a surgical operation, which is highly compatible and convenient for living bodies, and enhances tissue adhesion and closure.
  • this adhesive has a rather low adhesive strength, the resulting fibrin clot may peel off the tissue strength.
  • it is a blood product, there is a concern about virus infection.
  • the molar ratio of the aldehyde group Z amino group was about 13.6 ("DA6" in Table 3), and the mixture A two-component reactive adhesive with a ratio of 1Z1 is said to be effective as a hemostatic agent for rat liver.
  • the curing time for this adhesive is about 15 seconds according to Table 2.
  • Polymer micelle aqueous solution having a structure of terminal aldehyde group (polyethylene glycol chain segment with molecular weight of 5500) (polylactic acid segment with molecular weight of 4000) is the first solution, and an aqueous solution of polyallylamine with a high molecular weight (over 60,000)
  • a two-component reactive type “adhesive for animal tissue” is disclosed in which is used as the second solution.
  • the second solution uses an aqueous solution of poly-L-lysine (Table 3, and RUN13-14, 16 in Table 1-5) or an aqueous chitosan solution (Table 1 4). It has been shown to be possible.
  • acid starch can be used as the first liquid (paragraph number 0031).
  • poly-L-lysine has a relatively molecular weight of 30,000. It is shown that it is necessary to use a high molecular weight compound with a molecular weight of 700,000 (RUN13-14, 16 in Table 1).
  • the pH of the aqueous solution of poly-L-lysine as the second liquid should be 9.0 or higher (RUN12-16 in Table 3 and Table 5).
  • the molecular weight of soluble starch is assumed to be “variable in the range of 1 to 200,000 daltons” (Example 1). Although there is no mention of the molecular weight of collagen, it is considered to be about 300,000, which is the same as the general case.
  • This adhesive can be used as a biological tissue adhesive and has an anti-adhesion effect (Examples 3 to 6).
  • a medical adhesive in which an aqueous solution containing gelatin obtained by heat denaturation of collagen is used as a first solution, and an aqueous solution containing succinimidized poly-L-glutamic acid is used as a second solution.
  • Patent Document 6 an adhesive having an additional strength of polyol and polyisocyanate has been disclosed (see Patent Document 6).
  • this adhesive has disadvantages such as being difficult to handle due to its high viscosity, having many blood and body fluids, and difficult to adhere at the site.
  • Patent Document 1 WO 2003/035122 (corresponding to AESCULAP AG & CO KG (DE), US2005 / 0002893 Al and EP1438079 Bl)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-21454 “Tissue adhesive containing polymer micelle as active ingredient” Hiroshi Nishida, Masayuki Yokoyama
  • Patent Document 3 W098 / 15299 (“Macromolecular polyaldehyde-based adhesive composition and collagen cross-linking method”, corresponding to Japanese Patent 323871)
  • Patent Document 4 Japanese Patent Laid-Open No. 9 (1997) -103479 “Medical Materials and Manufacturing Method Thereof”
  • Patent Document 5 Japanese Patent Laid-Open No. 11 (1999) -239610 “Biomedical tissue-adhesive medical material and method for producing the same”
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-261590 “Medical Adhesive”
  • the fibrin glue When the fibrin glue is used, the physical properties of the cured product cannot be changed or adjusted appropriately when it is made more flexible. In addition, the period of degradation in vivo (generally 1 to 3 days) can be extended. I can't. There is also a report that when cyanoacrylate resin is used, the time required to be completely decomposed and absorbed in the living body is considerably longer than one year. Therefore, for example, it is practically impossible to design such that it is completely decomposed and absorbed in 1 to 2 weeks.
  • the obtained cured product maintains an adhesive force, etc., that does not proceed rapidly after a predetermined period of time when there is decomposition or disintegration in vivo. If a sufficient period of time is taken, an undesired resin layer or resin composition may remain for a very long time, which is a problem.
  • the desired retention period or degradation start period varies depending on the type of disease and the type of treatment, but it was practically impossible to control the degradation period to meet such detailed requirements.
  • the present invention has been made in view of the above. While sufficiently satisfying general properties required for medical adhesives, the present invention rapidly disintegrates after a design collapse time, and the design period is reduced. It provides a medical adhesive that can be adjusted and controlled relatively freely and a water-containing gel-like resin for medical use.
  • the medical two-component reactive adhesive of the present invention comprises a first liquid consisting of an aqueous solution of an aldehyde ⁇ -glucan having a weight average molecular weight of 1,000 to 200,000 and a chain of amino group-containing units.
  • is 5.0 to 8.0.
  • the water-containing gel-like medical resin of the present invention comprises a first liquid consisting of an aqueous solution of an aldehyde ⁇ -glucan having a weight average molecular weight of 1,000 to 200,000 and a chain of amino group-containing units.
  • a water-containing gel-like medical resin obtained by mixing an aqueous solution of an amino group-containing polymer having a weight average molecular weight of 1000 to 20,000, which also has an aqueous solution power, and comprising a reaction mole of aldehyde group and amino group. If the ratio is 0.2 to 2.0 and stored in a water-containing state, after a gel state retention period that can be arbitrarily set between 1 day and 1 month, it is converted into a sol state by autolysis. It is characterized by changing.
  • the system quickly collapses and the design period can be adjusted and controlled relatively freely.
  • it has excellent adhesion to living tissues and the like that are free from toxicity and other adverse effects on the living body, and the hydrated gel-like greaves layer is flexible after solidification.
  • the time required for the solidification reaction can be adjusted and controlled to some extent as desired.
  • Aldehyde a-glucan forming the first liquid is an a-glucan oxidized to introduce an aldehyde group, and has a weight average molecular weight in the range of 1,000 to 200,000.
  • A-glucan is a sugar chain in which glucose is dehydrated and condensed through an ⁇ bond, and the molecular weight of a sugar residue (anhydrous glucose 'unit) in glucan is 162.14.
  • the a-glucan used in the present invention includes dextran, dextrin, and pullulan, and these can be used in combination. Starch and amylose can also be used if they are decomposed appropriately. High molecular weight pullulan products can also be used after being appropriately decomposed.
  • the introduction of the aldehyde group can be carried out by a general periodate method, and it is preferable to provide appropriate self-degradability per anhydroglucose unit.
  • 0.1 to 1.0 aldehyde groups more preferably 0.2 to 0.9, and even more preferably 0.3 to 0.8 aldehyde groups are introduced.
  • the degree of aldehyde formation is relatively low.
  • 0.2 to 0.4 aldehyde groups are introduced per anhydroglucose unit.
  • aldehyde-modified dextran and aldehyde-modified dextrin are particularly preferable for reasons such as stability of adhesive performance.
  • the weight average molecular weight of the dextran used to obtain the aldehyded dextran is preferably 2000 to 200,000, more preferably 2000 to 100,000.
  • medical grade Dextran 40, Dextran 60, Dextran 70 and T-Dextran series Dextran T10 to Dextran T2000 commercially available from Pharmacosmos A / S can be used.
  • dextrin used to obtain aldehyded dextrin dextrin sold by Wako Pure Chemicals can be used.
  • the weight average molecular weight of dextrin is, for example, 1000 to 10,000.
  • the optimal molecular weight of aldehyde ⁇ -glucan varies depending on the specific application, and by selecting a specific molecular weight or molecular weight distribution, it is possible to adjust the time period until the liquid is dissolved by autolysis. it can. If the molecular weight of the aldehyde ⁇ -dulcan is excessively large, the liquid due to self-decomposition is excessively delayed. Moreover, when the molecular weight of the aldehyde-ized ⁇ -dulcan is excessively small, the time for maintaining the gelled state becomes too short.
  • the weight average molecular weight and molecular weight distribution of a-glucan can be easily determined by general aqueous GPC (gel filtration chromatography; formally size exclusion chromatography (SEC)) measurement. Specifically, cross-linked water-soluble polymer (TOSOH TSK gel The GPC column consisting of G3000PW, G5000PW, and TSK guard column (PWH) is warmed to 40 ° C, and the buffer (10 mM KH2PO4 + 10 mM K2HPO4) is used as the eluent.
  • GPC gel filtration chromatography
  • SEC formally size exclusion chromatography
  • the amino group-containing polymer forming the second liquid is composed of a chain of amino group-containing units, and has a weight average molecular weight force S i000 to 20,000, preferably 1000 to 10,000, more preferably 1500 to 800,000. is there. Further, it preferably contains substantially no high molecular weight fraction having a molecular weight of 30,000 or more.
  • a particularly preferred amino group-containing polymer has a molecular weight fraction of 1000 or more and less than 30,000, and more preferably 100000 to 250,000, when the molecular weight is measured by SDS gel electrophoresis. From the molecular weight fraction alone, more preferably, only the molecular weight fraction of 1000 to 20,000 is obtained.
  • “substantially” means that the molecular weight fraction V-stained dyed dot pattern whose weight fraction is 5% or less is ignored!
  • the molecular weight distribution (polymerization degree distribution) and average molecular weight of polylysine and other amino-containing polymers can be determined easily and with high accuracy by any of the following methods.
  • Ion association chromatography Measured using a reversed-phase column (TSKgel ODS-80Ts) by high performance liquid chromatography (HPLC) ion association chromatography. At this time, measurement is performed while applying a gradient using acetonitrile as a non-aqueous solvent.
  • GPC-LALLS low-angle laser light scattering method
  • amino group-containing polymer used in the second liquid ⁇ -poly-L-lysine produced using a microorganism or an enzyme and having a molecular weight of 1000 to 20,000, particularly 1000 to 6000 is preferable. It may be mentioned. However, ⁇ -poly-L-lysine may also be used. Also suitable Chitosan oligomer or decomposed chitosan may be used if it has a proper molecular weight and molecular weight distribution. In some cases, polyglycerin or polybulualcohol into which a large number of amino group side chains are introduced may be used.
  • ⁇ -poly-L-lysine may be obtained, for example, as follows.
  • the strain described in Japanese Patent No. 3525190 or Japanese Patent No. 3653766 is Streptomyces albulus subspecies' lysinopolymeras.
  • the amino group-containing polymer in a predetermined molecular weight range can be partially replaced by a higher molecular weight or lower molecular weight amino group-containing polymer.
  • chitosan having a high molecular weight for example, a molecular weight of 200,000
  • polylysine having only a molecular weight fraction of 1000 to 20,000 up to an equal weight can be blended with polylysine having only a molecular weight fraction of 1000 to 20,000 up to an equal weight.
  • PEG-NH aminated polyethylene glycol
  • LOOO aminated polyethylene glycol
  • a particularly large functional number starting from sucrose or the like is preferable for blending.
  • the second liquid is added with an acid or an acid salt as a rhodium regulator.
  • is a value in the range of 5.0 to 8.0, preferably a value in the range of 5.5 to 7.5. More preferably, the value is in the range of 6.5 to 7.5.
  • the ⁇ of the second liquid is preferably 7.0 to 9.0.
  • carboxylic acid or anhydride thereof is preferably added.
  • carboxylic acid include naturally occurring carboxylic acids such as acetic acid, succinic acid, succinic acid, glutaric acid, malic acid, fumaric acid, and maleic acid. Can be mentioned. Such carboxylic acids are not harmful to the living body because of their large pH control ability due to buffering action. However, it is possible to use inorganic acids or inorganic salts such as hydrochloric acid and sulfuric acid as long as the pH reaches an appropriate value of 5.0 to 8.0, and use in combination with the carboxylic acid or anhydride thereof. You can also. It is also possible to use phosphate buffer salts.
  • the gel strength after curing until liquidity is obtained by autolysis under water-containing conditions.
  • the period can be adjusted. This is thought to be due to the formation of pseudo-crosslinks in polylysine and other amino group-containing polymers when polyvalent carboxylic acids are used, thereby delaying liquids due to autolysis.
  • the molar ratio of the aldehyde group Z amino group in the mixed state of the first liquid and the second liquid is 0.1 or more and less than 3, preferably 0.2 to 2.0, more preferably 0.5 to 1. .5. Closer to the molar ratio power s l of aldehyde group Z an amino group, eliminating the residual aldehyde group or Amino groups small, in further reducing the toxicity, is meaningful.
  • the concentration of aldehyde ⁇ -glucan in the first liquid is usually 5 to 50% by weight, and preferably 15 to 25% by weight.
  • the concentration of the amino group-containing polymer in the second liquid is usually 0.5 to 60% by weight, preferably 5 to 50% by weight, more preferably 5 to 20% by weight. If the concentration of the first liquid or the second liquid is too low, there is a problem that the curing reaction becomes insufficient. If it is too high, the viscosity of the adhesive liquid becomes high, which leads to handling.
  • the first liquid and the second liquid can be easily sterilized by radiation sterilization, and are preferably sterilized by irradiation with an electron beam of 10 to 50KGy, more preferably an electron beam of 20 to 30KGy.
  • Such a sterilization treatment can be performed by setting conditions so that the curing time and other adhesive performance are not adversely affected.
  • the mixing and application of the first liquid and the second liquid can be performed by various methods. For example, mixing can be performed by applying one of the first and second adhesive stock solutions to the adherend surface and then applying the other. Alternatively, after the first liquid and the second liquid are mixed in the mixing chamber of the coating apparatus, spraying may be performed by spraying from the nozzle cover. It may be done. In some cases, in addition to use as an adhesive, It can also be used for the purpose of preventing adhesions, etc.
  • the mixing ratio (volume ratio) between the first liquid and the second liquid is usually set to 0.5 to 2.0, preferably about 1.0 (that is, about the same amount).
  • a Schiff bond is formed between the aldehyde group of the aldehyde a-glucan and the amino group of the amino group-containing polymer, which serves as a crosslinking point.
  • a hide-mouthed gel having a network structure is formed.
  • curing occurs between 2 and 150 seconds, preferably 3 to 100 seconds, more preferably 5 to 50 seconds after mixing.
  • the preferred time from mixing to curing varies slightly depending on the application, and in order to penetrate into living tissue and exert a high degree of adhesion, the curing time should be 10 seconds or more, especially 15 seconds or more. preferable.
  • the hydrated gel-like cured adhesive layer or the hydrated gel-like resin produced by such a curing reaction changes to a liquid state by self-decomposition after the design liquid period.
  • the design disassembly period is arbitrarily set within a range of several hours to 4 power months, usually 1 day to 1 power month, particularly 2 days to 2 weeks.
  • the decomposition period by self-decomposition is the selection or adjustment of the molecular weight or distribution of the aldehyde a-glucan and Z- or amino group-containing polymer, the use or non-selection of polyvalent carboxylic acid, and two-component mixing. It can be adjusted and set arbitrarily by adjusting the pH of the hour. In other words, the period of decomposition and absorption can be arbitrarily designed by adjusting the configuration of the two-component adhesive.
  • Patent Documents 1 to 3 Conventionally, as seen in the description of Patent Documents 1 to 3, it is necessary to use a high molecular weight aldehyde group-containing polymer in terms of the performance of the adhesive resin. It is thought that preconception prevails.
  • the medical adhesive and medical coagulant of the present invention include a bioadhesive, a tissue filler, a hemostatic agent, a vascular embolic agent, an aneurysm sealant, an antiadhesive material, and a drug delivery system (DDS). It can be suitably applied as a carrier for use.
  • DDS drug delivery system
  • the amount of aldehyde group introduced was measured by the oxidation-reduction titration method. Specifically, 20 ml of 0.05 molZl aqueous iodine solution, 10 ml of lOmgZml aqueous aldehyde dextran solution and 20 ml of ImolZl sodium hydroxide aqueous solution were placed in a 100 ml Meyer flask and stirred at 25 ° C. for 15 minutes. Then add 15ml of 6vZv% sulfuric acid aqueous solution, 0.1ml Titrated with an aqueous solution of sodium thiosulfate in Zi. The end point was when the reaction system became colorless and transparent, and the indicator was an aqueous starch solution.
  • the amount of aldehyde groups introduced increased linearly with respect to the amount of sodium periodate added!].
  • the amount of sodium periodate relative to the amount of sugar residues was 0.05 to: L
  • the amount of aldehyde groups was 0.1 to 2. Therefore, it was found that when an amount of sodium periodate equal to the sugar residue was added, two aldehyde groups were introduced per sugar residue, and the oxidation reaction proceeded efficiently. .
  • Aldehyde dextran was obtained according to the method of Section 2 by reacting 20 g of dextran having a molecular weight of 75000 (Wako Pure Chemical Industries, Ltd., Lot No. EWK3037) with 5 g of sodium periodate. Thereafter, a 20 wt% aqueous solution was prepared and used as the first solution.
  • the cytotoxicity test was performed using the mouse isolated cell line L929 according to the method described in J. Biomed. Mater. Res., 29, 829-835 (1995). Specifically, first, 0.1 ml of the cell suspension prepared to 10000 cellsZml was seeded on a 96-well culture plate and cultured at 37 ° C. for 3 days. Next, the above-mentioned various aqueous solutions were diluted to various concentrations with a medium, added with 0.1 ml each, and further cultured for 2 days. Subsequently, 0.1 ml each of the -eutralar red medium solution prepared to 150 / z gZml was added and cultured at 37 ° C for 3 hours.
  • the medium was removed, and finely fixed with a 1 wt% aqueous solution of dartalaldehyde and air-dried.
  • 0.1 ml each of water Z ethanol solution (same volume mixture) containing 1% by weight acetic acid was added to extract -eutralar red molecules taken up by viable cells.
  • the absorbance at 541 nm was measured, and the NR50 value was determined based on the measured value.
  • the NR50 value is the solution concentration required to kill 50% of the cells. The lower the value, the stronger the toxicity.
  • Table 3 summarizes the NR50 values of various compounds.
  • the NR50 value of aldehyde dextran is> 6000 ⁇ gZml, which is 1/3500, 1/1500 or less, respectively, compared with formaldehyde and glutaraldehyde.
  • the toxicity was found to be very slight.
  • polylysine has extremely low toxicity, and each component of the adhesive is considered extremely safe.
  • Section (added sodium periodate 10g against dextran in 20 g) obtained 20 weight 0/0 aldehyde dextran solution at 2 and 20 wt% of the neutral polylysine aqueous solution, the first and second, respectively Two liquids were used. That is, the two-part adhesive of Example 1 was employed. Then, about 0.5 ml (0.25 + 0.25 ml) of these adhesive stock solutions were applied to a laboratory rubber glove using a dedicated mixing device, and thinly stretched. After being allowed to cure for about 1 minute, air was put into the gloves using an air pump to expand the cured product.
  • Figure 2 shows the state of the cured adhesive before expansion (a) and after expansion (b). In the figure, the colored adhesive (Blue No. 1, Wako Pure Chemical Industries, Ltd., Lot No. KLN3789) is the cured adhesive gel.
  • the adhesive cured product was expanded about three times in diameter by the air injection. From this result, it was found that the adhesive of this example (Example 1) was very flexible even after curing. Although photos and data are omitted, when the molecular weight of dextran is 40000, the amount of sodium periodate added to 20 g of dextran is 3 g or 5 g, or when dextrin is used, Similarly, a flexible and tough gel-like resin layer was obtained. [0066] 5. Evaluation of Adhesive Strength Using Usagi Skin
  • 20 weight 0/0 aldehyde dextran aqueous solution obtained in Section 4 was first liquid. Also, 20% by weight neutral polylysine aqueous solution obtained in Section 2, 30% by weight and 50% by weight bifunctional PEG-NH aqueous solution, and 50% by weight tetrafunctional PEG-NH aqueous solution,
  • Second liquid Only the 20% by weight neutral polylysine aqueous solution in the second liquid is the adhesive of the example (Example 1).
  • Adhesive strength (gf / cm 2 ) A liquid 2nd liquid
  • the 75,000 molecular weight aldehyde dextran aqueous solution (20% by weight) used in Section 3 was used.
  • the same 10% by weight neutral polylysine solution as in Section 3 was prepared and used as the second solution. That is, the adhesive of Example 1 was employed.
  • the following experiment was conducted using rabbits (body weight 2.5-3.0 kg, female).
  • Fig. 4 shows the state of decomposition of the cured adhesive. It was confirmed that the degradation gradually started 3 days after implantation, and about 90% after 4 weeks. The tissue reaction also showed no adverse effects that were of particular concern from the tissue section images, indicating that safety was high. Furthermore, during the decomposition experiment, there was no particular decrease in the appetite of the rabbits, and no adverse effects due to the placement of the adhesive were confirmed.
  • the degradation rate of the cured adhesive was evaluated by the method described in Section 6.
  • the results are summarized in Figure 5.
  • the notation in the figure means the weight ratio of acetic acid to citrate, and the leftmost is the case where ⁇ is adjusted with acetic acid only on the left and chenic acid only on the right.
  • the acid species used for ⁇ adjustment of the polylysine aqueous solution was only acetic acid, it was completely decomposed after 4 days, whereas as the amount of citrate increased, the decomposition of the cured product was delayed.
  • the original shape was retained after 2 weeks, and complete disassembly took more than 2 months. From this, it was shown that the decomposition rate of the cured adhesive can be easily controlled by the type and amount of ⁇ adjuster.
  • ⁇ -poly-L-lysine powder having a molecular weight of 4000 (Chisso Corporation, Lot No. 20211023F) was subjected to vacuum drying (heat treatment) at 180 ° C.
  • the molecular weight of the obtained heat-treated ⁇ -poly-L-lysine was evaluated by gel electrophoresis. Here, 15% SDS is used as the electrophoresis gel, and the electrophoresis gel is used.
  • the running buffer solution (Nacalai Testa Co., 0.25 mol / KTris, 1.92 mol / kg glycine, 10 g / g SDS) was used as the moving fluid, and the measurement was performed at a current of 50 mA using a device from Nippon Aidichi Co.
  • the obtained heat-treated polylysine powder was dissolved in distilled water to 10 wt%, and 4 wt% acetic acid was contained to prepare a second liquid.
  • the first liquid used was an aldehyde-dextran aqueous solution (20 wt%) having a molecular weight of 75000 used in Section 3.
  • the first and second liquids were mixed and the decomposition rate of the cured adhesive was evaluated according to the method described in Section 6. The result is shown in FIG.
  • the degradation period increases with the treatment time (molecular weight), and degradation takes 2 days at treatment time 0, compared to 2 weeks at treatment time 1.5 hours, and more than 1 month when treated for another 6 hours. It cost.
  • the degradation time of the cured product can be easily delayed by the choice of ⁇ modifier (such as acetic acid or citrate), so low molecular weight ⁇ -poly-L-
  • ⁇ modifier such as acetic acid or citrate
  • the period of degradation can be freely adjusted from early to long, whereas when using polylysine after heat treatment for a long time, this adjustment will be difficult.
  • heat treatment at 180 ° C for about 0.5 hours or less can be used as a treatment for adjusting the decomposition period.
  • the molecular weight of the aldehyde group-containing polymer is tens of thousands or less, which is necessary for fully exhibiting the self-degradability of the present invention. Judgment can be made.
  • Each solution was filtered using a syringe filter (Dismic 25-AS020AS, manufactured by Advante c) having a pore size of 0.2 ⁇ m, and each solution was packed in a 5 ml glass ampule and sealed.
  • a syringe filter (Dismic 25-AS020AS, manufactured by Advante c) having a pore size of 0.2 ⁇ m, and each solution was packed in a 5 ml glass ampule and sealed.
  • the first and second liquids were used as a set, and sterilization was performed at 25 ° C under the conditions shown in Table 5, left end.
  • the 75,000 molecular weight aldehyde dextran aqueous solution (20% by weight) used in Section 3 was used.
  • the same 10% by weight neutral polylysine aqueous solution as in Section 3 was prepared and used as the second solution.
  • These were mixed using a dedicated mixing device, and 2 ml was poured into a cell culture 24-well plate (bottom area 2 cm 2 ). After 2 minutes at 25 ° C, tensile tester (Shimadzu Corporation The hardness of the cured product was evaluated by pressing a 6.6 mm diameter hemisphere against the cured adhesive product at a speed of lOmm / min using ADS-5D) and measuring the compressive stress.
  • fibrin glue Bolheel, Institute of Chemo- and Serum Therapy
  • the stress value (mN) at that time is plotted against the penetration amount (mm) of the hemisphere into the cured product.
  • the slope of the adhesive was about half that of the fibrin glue, while the penetration was about 1 mm. From this, it was shown that the hardened
  • the adhesive of the present invention has a strain-tail stress curve by a compression test by setting the amount of sodium periodate added to 20 g of dextran to 3 g and 10 g. I was able to change it. That is, by changing the degree of aldehyde formation of a-glucan and changing the molar ratio of aldehyde group and Z amino group, the crosslink density during curing can be freely changed, and the flexibility of the gel-like resin layer after curing can be changed. Can be adjusted freely.
  • the 75,000 molecular weight aldehyde dextran aqueous solution (20% by weight) used in Section 3 was used.
  • the same 10% by weight neutral polylysine solution as in Section 3 was prepared and used as the second solution. That is, the two-part adhesive of Reference Example 3 was used.
  • an adhesion test was conducted using cowhide as an adherend. Cut cowhide (TRUSCO's JT-5L, work floor leather sleeve long gloves) into 1 x 5cm strips, bond 2 skins with 1 x 1cm bonding area, 5 minutes under 100g load Allowed to cure.
  • fibrin glue Bolheel, Institute of Chemotherapy and Serum Therapy
  • the adhesive strength of this adhesive was 2024 ⁇ 563 gf / cm 2
  • that of fibrin glue was 519 ⁇ 136 gf / cm 2
  • the average value showed adhesive strength nearly four times that of fibrin glue, and many samples showed lkg / cm 2 or more, whereas fibrin glue was too short to cure, making it difficult to produce an adhesive.
  • the bond strength was also very large.
  • the method in section 2 The curing time measured with the adhesive was about 10 seconds for this adhesive, whereas it was less than 1 second for fibrin glue.
  • the second liquid corresponds to the adhesive of Example 1 (Section 2).
  • a midline incision was made on the abdomen of the sacrificed rabbit to expose the liver. Then, using a scalpel, the incision force was continuously bleeded by making a wound (cut) of about 2 cm in length and about 5 mm in depth. Subsequently, using a dedicated mixing device, equal volumes of the first and second adhesive stock solutions were mixed and applied to the incision.
  • FIG. 9 shows the liver before and after hemostasis when polylysine aqueous solution was used as the second solution, indicating that hemostasis was effectively achieved.
  • the adhesive film was firmly fixed to the liver. From this, it was found that the adhesive of this example exerted an excellent effect as a hemostatic agent in the digestive surgery field.
  • the 75,000 molecular weight aldehyde dextran aqueous solution (20%) used in Section 3 was used.
  • the same 10% by weight neutral polylysine aqueous solution as in Section 3 was prepared and used as the second solution. That is, the same two-component adhesive as in Reference Example 3 (Section 3) was prepared.
  • the scores were 2.4 ⁇ 0.5, 1.2 ⁇ 0.4, 3.2 ⁇ 0.4, 1.2 in the order of untreated, fibrin glue, adhesive of Reference Example 3 (section 3), and dextrin-type example, respectively. ⁇ 0.4 for the first time.
  • FIG. 10 shows a tissue section image of the affected area after 4 weeks of surgical force (Masson-Trichrome staining).
  • the remaining cured product can be confirmed on the core surface.
  • the epicardium on the surface of the heart is scratched with gauze to create an adhesion-inducing site.
  • the epicardium is almost peeled off due to abrasion, and the myocardial tissue is exposed and applied to the site.
  • the tissue surrounding the adhesive is the tissue that was created later.
  • the amount of adhesive applied is the same.
  • the amount of the cured product remaining was very small compared to the case of Reference Example 3 because it decomposed quickly. For this reason, it is thought that adhesion was also slight. From the above, it was shown that the adhesive of this example is effective as an anti-adhesion agent in the cardiovascular surgical field because the degradation rate can be easily controlled.
  • the 20% by weight aldehyde dextran aqueous solution used in Section 8 was prepared and used as the first solution.
  • the 20% by weight neutral A lysine aqueous solution was prepared and used as the second solution (taenoic acid content 4%). That is, a two-component adhesive corresponding to Reference Example 3 (Section 3) was prepared.
  • the adhesive of Reference Example 3 exhibits the same properties and performance as the adhesive of each Example, except that the decomposition is somewhat slow.
  • Anesthesia was performed by inhalation of isoflurane by intubation after leaving in an ether atmosphere for about 30 seconds. Blood flow was stopped by suturing the left ventricular free wall of the rat, and puncture was made by puncturing with a 19 gauge needle. After confirming that the suture was temporarily loosened and bleeding in a pulsatile manner, it was sutured again to completely stop blood flow. The surrounding blood was removed, and a paper with a hole slightly larger than 19 gauges was placed on the heart to prevent the adhesive and blood from leaking out.
  • the 75,000 molecular weight aldehyde dextran aqueous solution (20% by weight) used in Section 3 was used.
  • the same 10% by weight neutral polylysine aqueous solution as in Section 3 was prepared and used as the second solution. That is, a two-component adhesive corresponding to Reference Example 3 (Section 3) was prepared.
  • Fig. 11 shows the lung surface before and after application of the adhesive, and it can be seen that the defect site is coated with the cured adhesive by application. The post-operative course was good with both the adhesive and fibrin glue, and no dogs were allowed to leak again. From this result, it was shown that this adhesive is highly effective for embolizing lung air leakage in the field of respiratory surgery.
  • the second component bifunctional PEG-NH, has a molecular weight of 3000 but has amino groups only at both ends, so it reacts only at the ends.
  • reaction force was the same as in Reference Example 1.
  • the force did not cure even after 7 hours.
  • 1 ml of the first solution was added to the test tube, and lOO mg of Y.H. chitosan oligosaccharide powder was added and mixed in place of the second solution.
  • 3 ml of phosphate buffer solution (PBS) was added, and after sealing the tube, the adhesive cured product was observed over time. As a result, it completely liquidated in 6 hours.
  • PBS phosphate buffer solution
  • YH chitosan oligosaccharide has one amino group per sugar residue, but its molecular weight is too low so that no gel is formed at 50% by weight, and an effective gel network structure even when powder is used. Is not formed, so it is considered that it was quickly decomposed
  • FIG. 1 is a graph showing the relationship between the amount of sodium periodate added and the amount of aldehyde groups introduced. (Section 1)
  • FIG. 2-1 Photo (1) showing the appearance of the cured adhesive when the glove is expanded after applying the adhesive to rubber gloves.
  • FIG. 2-2 Photo (2) showing the appearance of the cured adhesive when the gloves are expanded after the adhesive is applied to rubber gloves. (Section 4)
  • FIG. 4-1 Photograph (1) showing how the cured adhesive is broken down on the rabbit liver.
  • FIG. 4-2 Photograph (2) showing how the cured adhesive is broken down on the rabbit liver. (Section 7)
  • Photograph (5) showing the state of decomposition of the cured adhesive prepared using polylysine whose pH was adjusted with a mixture of acetic acid and citrate.
  • Photograph (6) showing the state of decomposition of a cured product of an adhesive prepared using polylysine adjusted to pH with a mixture of acetic acid and citrate.
  • FIG. 6-1 is an electrophoresis pattern (1) of heat-treated polylysine. (Section 9)
  • FIG. 7-1 A photograph (1) showing the state of degradation over time of a cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 7-2 is a photograph (2) showing the state of degradation over time of a cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 7-3 is a photograph (3) showing the state of degradation over time of a cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 7-4 is a photograph (4) showing the state of degradation over time of the cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 7-5 is a photograph (5) showing the state of degradation over time of the cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 7-6 is a photograph (6) showing the state of degradation over time of the cured adhesive prepared using heat-treated polylysine. (Section 9)
  • FIG. 10-1 A tissue section image (1) of the affected area 4 weeks after application to the adhesion-inducing site. (Section 14)
  • FIG. 10-2 A tissue section image (2) of the affected area 4 weeks after application to the adhesion-inducing site. (Section 14)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】医療用接着剤及び医療用の含水ゲル状樹脂において、医療用の接着剤や樹脂に求められる一般的な性質を充分に満たしつつ、設計崩壊時間を経過した後に速やかに崩壊するとともに、該設計期間を比較的自由に調整・制御できるものを提供する。 【解決手段】重量平均分子量が1000~20万であるアルデヒド化α-グルカンの水溶液を第1液とし、アミノ基含有ユニットの連鎖よりなるアミノ基含有ポリマーの水溶液を第2液とする。前記アミノ基含有ポリマーの重量平均分子量が1000~2万であって、前記の第1液及び第2液を混合した際には、pHが5.0~8.0となる。

Description

明 細 書
自己分解性を有する医療用 2液反応型接着剤、及び医療用樹脂 技術分野
[0001] 本発明は、外科手術時その他における生体組織の接着、充填、及び癒着防止、及 び止血などに用いられる医療用接着剤、並びに医療用榭脂に関する。特には、第 1 液と第 2液とを混合することで反応して硬化し、一定期間経過後に、分解 ·流動化す るものに関する。
背景技術
[0002] 医療用、特には外科手術用の接着剤として、(1)シァノアクリレート系接着剤、及び
(2)フイブリン糊(フイブリン 'グルー)が主に使用されてきた。
[0003] (1)シァノアクリレート系接着剤
元来、金属、プラスチック、ゴム、木材、セラミックスなどを瞬間的に接着する目的で 工業用または家庭用に使用されてきた接着剤であるが、医療用としても 1968年まで に約 10種類が開発されている。この種の接着剤では、シァノアクリレートモノマーが微 量の水分を重合開始剤として重合 ·固化することを利用しており、重合,固化が速や かで、生体組織との接着力が高い。しかし、固化物が柔軟性に乏しく硬いために創 傷治癒を妨げる場合があり、また、生体内で分解しにくいために被包化されて異物と なりやすい。さらに、分解の過程でホルムアルデヒドが生成するため、細胞毒性や組 織傷害性を示すとの報告もある。
[0004] (2)フイブリン糊
フイブリノ一ゲンがトロンビンの働きによって不溶性のフイブリン塊を形成するという 生体内での血液凝固機構を利用した接着剤である。フイブリン糊は、生体への適合 性や利便性が高ぐ外科手術後の縫合部など力 の出血を防止し、組織の接着'閉 鎖を高める目的で汎用されている。しかし、この接着剤は接着力がかなり低いため、 生成したフイブリン塊が組織力も剥がれる場合がある。さらに、血液製剤であるためゥ ィルス感染が懸念される。
[0005] 一方、近年、下記(3)〜(6)のような外科用の 2液反応型接着剤が提案されている。 [0006] (3)アルデヒドィ匕デキストラン—高分子量キトサン (特許文献 1)
アルデヒドィ匕デキストランの 15重量0 /0水溶液を第 1液とし、高分子量キトサン (protas an™ UPCL213, FMC Biopolymers)の 2重量%または 4重量%の水溶液を第 2液とする 外科用の 2液反応型接着剤が提案されている。ここでは、アルデヒド基 Zアミノ基のモ ル比は、少なくとも 3であるとしており(唯一の独立クレーム 1)、 Table 2及び Table 1の データによると、アルデヒド基 Zアミノ基のモル比を 6以上 (Table 2及び 1からの計算 値)とすることで、 150秒以内での硬化を実現している。また、 Table 3等によると、せん 断接着力も充分な値であったとしており、 Table 8によると、平均分子量が 40万以上の 高分子量のデキストランを用いた場合に、より優れた接着力が得られることを示してい る。
[0007] さらには、明細書本文の最後のセクション(4. Stoppage of Liver Bleeding)の記載に よると、アルデヒド基 Zアミノ基のモル比を約 13.6とし (Table 3の" DA6")、混合液比を 1Z1とした 2液反応型接着剤が、ラット肝臓の止血剤として有効であったとしている。 この接着剤の硬化時間は、 Table 2によると約 15秒である。
[0008] また、 Table 6及び 7、及びその関連説明によると、キトサン水溶液に代えて、ポリ'ビ -ルアルコール.ビュルアミングラフト共重合体 (PVALNH )の 20重量%水溶液を用い
2
た場合にも、充分な接着力が得られたとしている。但し、用いた共重合体の分子量や 組成は不明である。また、硬化時間も不明である。
[0009] (4)ミセル形成性の末端アルデヒドポリマ一一高分子量のポリアリルアミン (特許文 献 2)
末端アルデヒド基 (分子量 5500のポリエチレングリコール鎖セグメント) (分子量 4000のポリ乳酸セグメント)、という構造をもつポリマーのミセル水溶液 (pH 5.0)を第 1 液とし、高分子量 (6万以上)のポリアリルァミンの水溶液を第 2液とする、 2液反応型 の「動物組織用の接着剤」が開示されて ヽる。
[0010] 第 2液として、ポリアリルアミン水溶液に代えて、ポリ- L-リジンの水溶液 (表— 3、及 び、表一 5の RUN13-14, 16)やキトサン水溶液 (表一 4)を使用可能であることが示さ れている。また、第 1液として、酸ィ匕デンプンゃ酸ィ匕セルロースが使用可能であるとの 言及がある(段落番号 0031)。ところが、ポリ- L-リジンは、分子量 3万の比較的分子量 の低いものは採用できず、分子量 70万といった高分子量のものを使用する必要があ ることが示されている(表一 5の RUN13-14, 16)。また、第 2液としてのポリ- L-リジン水 溶液の pHを 9.0以上とすべきことが示されている(表 3、及び、表 5の RUN12-16)
[0011] (5)アルデヒドィ匕デンプン一コラーゲン (特許文献 3)
アルデヒドィ匕可溶性デンプン溶液の 5%水溶液 0.5mlを第 1液とし、コラーゲンの 15 %水溶液 2mlを第 2液としている(実施例 3の第 1文)。ここで、可溶性デンプンの分子 量は、「1〜20万ダルトンの範囲で可変」としている(実施例 1)。コラーゲンの分子量 の言及はないが、一般の場合と同様の約 30万であると考えられる。この接着剤は、生 体組織接着剤として使用可能で、癒着防止効果を有していたとされている(実施例 3 〜実施例 6)。
[0012] (6)ゼラチン一スクシンイミドィ匕ポリ- L-グルタミン酸 (特許文献 4)
コラーゲンを熱変性させて得られるゼラチンを含む水溶液を第 1液とし、スクシンイミ ド化ポリ- L-グルタミン酸を含む水溶液を第 2液とする医療用接着剤が開示されてい る。
[0013] 他方、上記のような 2液反応型のものの他、下記(7)〜(8)のような医療用接着剤も 提案されている。
[0014] (7)ゼラチンージカルボン酸無水物
ゼラチンとジカルボン酸無水物とを反応させることで、ゼラチンのアミノ基をカルボキ シル基に変換させる接着剤が開示されている (特許文献 5参照)。しかし、これらゼラ チン系の医療用接着剤は、牛の「危険部位」由来であるため BSE等を発生させる恐れ があり、医療の現場から敬遠されている。
[0015] (8)ウレタンプレポリマー
例えば、ポリオールとポリイソシァネートとの付加体力もなる接着剤が開示されて ヽ る(特許文献 6参照)。しかし、この接着剤は、粘性が高いために取り扱いにくい、血 液や体液が多 、部位では接着しにくい等の欠点がある。
特許文献 1: WO 2003/035122 (AESCULAP AG & CO KG (DE), US2005/0002893 A-l及び EP1438079 Blに対応) 特許文献 2:日本特開 2005-21454「高分子ミセルを有効成分とする組織接着剤」西田 博、横山昌幸
特許文献 3: W098/15299 (「マクロモレキュラーポリアルデヒドベースの接着剤組成物 及びコラーゲンの架橋方法」、日本特許 323871に対応)
特許文献 4:日本特開平 9(1997)-103479「医用材料及びその製造法」
特許文献 5:日本特開平 11(1999)-239610「生体組織接着性医用材料及びその製造 法」
特許文献 6:日本特開 2004-261590「医療用接着剤」
発明の開示
発明が解決しょうとする課題
[0016] フイブリン糊であると、硬化物の物性について、より柔軟にするといつた適宜の変更 や調整ができな 、他、生体内で分解する期間(一般に 1〜3日)を引き延ばすこともで きない。また、シァノアクリレート榭脂を用いた場合、生体内で完全に分解されて吸収 されるのに要する期間は、かなり長ぐ 1年以上を要するという報告もある。したがって 、例えば 1〜2週間で完全に分解されて吸収されるように設計することは、事実上不 可能である。
[0017] 前述した、いずれの従来の医療用接着剤も、得られる硬化物は、生体内での分解 ないし崩壊がある所定期間の経過後に速やかに進行するというものでなぐ接着力 等を維持する期間を充分にとると、不所望の榭脂層ゃ榭脂成形物が、かなり長期に わたって残留するということがあり問題となっていた。また、疾病の種類や施術の種類 によって、所望の保持期間ないし分解開始期間はそれぞれ異なるが、このような細か い要求に合わせて分解期間をコントロールするということは事実上不可能であった。
[0018] 設計崩壊時間を経過した後に速やかに崩壊する榭脂の設計を試みようとしても、生 体内に用いられるものであることから高度の安全性が求められ、細胞毒性、組織傷害 性あるいは発癌性などを有しないようにする必要があり、力なりの制約を受けることと なる。しかも、医療用接着剤に一般に求められる性質として、(1)生体という水分を含 んだ被着体に対する高!、接着性、(2)生体組織表面における常温常圧下での比較的 速やかな固化反応性、及び、(3)創部が治癒するまでの間、皮膚、血管又は臓器など の被着体に密着しつつ、被着体の物理的な運動を阻害しない程度の柔軟性、などを 満たす必要がある。
[0019] 本発明は、上記に鑑みなされたものであり、医療用接着剤に求められる一般的な 性質を充分に満たしつつ、設計崩壊時間を経過した後に速やかに崩壊するとともに 、該設計期間を比較的自由に調整 '制御できる医療用接着剤及び医療用の含水ゲ ル状榭脂を提供するものである。
課題を解決するための手段
[0020] 本発明の医療用 2液反応型接着剤は、重量平均分子量が 1000〜20万であるァ ルデヒド化 α—グルカンの水溶液カゝらなる第 1液と、アミノ基含有ユニットの連鎖よりな るァミノ基含有ポリマーの水溶液力もなる第 2液とよりなり、前記アミノ基含有ポリマー の重量平均分子量が 1000〜2万であって、前記の第 1液及び第 2液を混合した際に は、 ρΗが 5. 0〜8. 0となることを特徴とする。
[0021] 本発明の含水ゲル状の医療用榭脂は、重量平均分子量が 1000〜20万であるァ ルデヒド化 α—グルカンの水溶液カゝらなる第 1液と、アミノ基含有ユニットの連鎖よりな り重量平均分子量が 1000〜2万であるアミノ基含有ポリマーの水溶液力もなる第 2液 とを混合して得られる含水ゲル状の医療用榭脂であって、アルデヒド基 Ζアミノ基の 反応モル比が 0. 2〜2. 0であり、含水状態で保存されたならば、 1日〜 1力月の間で 任意に設定可能なゲル状態保持期間を経た後には、自己分解によってゾル状態に 変化することを特徴とする。
発明の効果
[0022] 設計崩壊時間を経過した後に速やかに崩壊するとともに、該設計期間を比較的自 由に調整 '制御できる。し力も、生体に対する毒性その他の悪影響がなぐ生体組織 等に対する接着力に優れ、固化後の含水ゲル状の榭脂層に柔軟性がある。また、固 化反応に要する時間についても、所望の程度に、ある程度調整,制御することができ る。
発明を実施するための最良の形態
[0023] 第 1液をなすアルデヒドィ匕 aーグルカンは、 aーグルカンを酸化してアルデヒド基を 導入したものであって、重量平均分子量が 1000〜20万の範囲内にあるものである。 a—グルカンとは、グルコース同士が脱水縮合して α結合により結合した形の糖鎖 であり、グルカンにおける糖残基(無水グルコース'ユニット)の分子量は 162.14である 。本発明で用いる a—グルカンには、デキストラン、デキストリン、及びプルランが含ま れ、これらを混合して用いることもできる。でんぷんやアミロースも適度に分解すれば 使用可能である。また、高分子量のプルラン製品も適度に分解して用いることができ る。なお、アルデヒド基の導入は、一般的な過ヨウ素酸酸ィ匕法により行うことができ、 無水グルコース ·ユニットあたり、適当な自己分解性の付与等のためには、好ましくは
0. 1〜1. 0個のァノレデヒド基、より好ましくは 0. 2〜0. 9個、さらに好ましくは 0. 3〜 0. 8個のアルデヒド基が導入される。第 1液の保存安定性を高めるためには、アルデ ヒド化の程度が比較的低いのが良ぐ例えば、無水グルコース'ユニットあたり 0. 2〜 0. 4個のアルデヒド基が導入される。
[0024] アルデヒド化 α—グルカンの中でもアルデヒド化デキストラン及びアルデヒド化デキ ストリンが、接着剤性能の安定性などの理由で特に好ましい。アルデヒド化デキストラ ンを得るのに用いるデキストランは、重量平均分子量が、好ましくは 2000〜20万で あり、より好ましくは 2000〜10万である。例えば、 Pharmacosmos A/Sにより市販され ている、医療用グレードの Dextran 40、 Dextran 60、 Dextran 70の他、 T- Dextranシリ ーズの Dextran T10〜Dextran T2000を使用することができる。一方、アルデヒド化デ キストリンを得るのに用いるデキストリンとしては、和光純薬により巿販されているデキ ストリン等を用いることができる。デキストリンの重量平均分子量は、例えば 1000〜1 万である。なお、アルデヒドィ匕 α—グルカンの最適分子量は、具体的な用途によって 異なり、特定の分子量ないし分子量分布のものを選択することにより、自己分解により 液ィ匕するまでの期間を、調整することができる。アルデヒドィ匕 α—ダルカンの分子量 が過度に大きい場合、自己分解による液ィ匕が過度に遅延してしまう。また、アルデヒド 化 α—ダルカンの分子量が過度に小さい場合、ゲル化状態を維持する時間が短くな りすぎる。
[0025] aーグルカンの重量平均分子量及び分子量分布は、一般的な水系の GPC (ゲル 濾過クロマトグラフィー;正式にはサイズ排除クロマトグラフィー (SEC))測定により、容 易に求めることができる。具体的には、水溶性ポリマー架橋体 (TOSOH TSK gel G3000PW及び G5000PW、 TSK guard column PWH)からなる GPC用カラム を 40°Cにカロ温し、緩衝液(10mM KH2PO4+ 10mMK2HPO4)を溶離液とする 測定により求めることができる。
[0026] 第 2液をなすァミノ基含有ポリマーは、アミノ基含有ユニットの連鎖よりなるもので、 重量平均分子量力 S i000〜2万、好ましくは 1000〜1万、より好ましくは 1500〜800 0である。また、好ましくは分子量 3万以上の高分子量分画を実質上含まないもので ある。
[0027] 特に好ましいアミノ基含有ポリマーは、 SDSゲル電気泳動により分子量を測定した 場合に、実質上、 1000以上かつ 3万未満の分子量分画のみから、より好ましくは 10 00〜2. 5万の分子量分画のみから、さらに好ましくは 1000〜2万の分子量分画の み力もなる。ここで、「実質上」とは、重量分率が全体の 5%以下である分子量分画な Vヽし染色ドットパターンを無視すると!/、う意味とする。
[0028] ポリリジンその他のァミノ含有ポリマーの分子量分布 (重合度分布)及び平均分子 量は、下記のいずれかの方法により、容易かつ高精度に求めることができる。
[0029] (1) SDS- PAGE (ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動)
アト一 (株)製の電気泳動装置及びデンシトグラフ (AE-6920V型)を用いて容易に測 定することができる。このとき、標準タンパクマーカーを用いる。
[0030] (2)イオン会合クロマトグラフィー:高性能液体クロマトグラフィー(HPLC)のイオン会 合クロマトグラフィー法によって逆相カラム (TSKgel ODS-80Ts)を用いて測定する。こ のとき、非水溶媒としてァセトニトリルを用いてグラジェントをかけながら測定する。
[0031] (3)水系 GPC : GPCグレードの蒸留水にリン酸緩衝液及びァセトニトリルを添カロし た溶離液(5% Ammonium Biphosphate/ 3% Acetonitrile (pH = 4.0))を用い、例えば 上記水系 GPCカラムを 40°Cに加温して測定を行うことができる。このとき、絶対分子 量の測定のためには、低角度レーザー光散乱法との組み合わせ (GPC-LALLS)を 用!/、ることができる。
[0032] 第 2液に用いるアミノ基含有ポリマーとしては、微生物または酵素を用いて生産され た、分子量が 1000〜2万、特には 1000〜6000の ε -ポリ- L-リジンを、好ましいもの として挙げることであっても良い。しかし、 α -ポリ- L-リジンであっても良い。また、適 当な分子量及び分子量分布を有するならばキトサンオリゴマーないしは分解キトサン でも良い。場合によっては、ポリグリセリンまたはポリビュルアルコールに多数のァミノ 基側鎖を導入したもの等であっても良い。
[0033] ε -ポリ- L-リジンは、具体的には、例えば、次のようにして得られらるものを用いるこ とができる。 日本特許第 3525190号または日本特許第 3653766号に記載の菌株であ るストレプトマイセス ·アルブラス ·サブスピーシーズ'リジノポリメラスを用いる。そして、 グルコース 5重量%、酵母エキス 0. 5重量%、硫酸アンモ-ゥム 1重量%、リン酸水 素二カリウム 0. 08重量%、リン酸二水素カリウム 0. 136重量%、硫酸マグネシウム · 7水和物 0. 05重量%、硫酸亜鉛 · 7水和物 0. 004重量%、硫酸鉄 · 7水和物 0. 03 重量%、 ρΗ6. 8に調整した培地にて培養し、得られた培養物から ε ポリリジンを 分離 '採取する。
[0034] ポリリジンその他のアミノ基含有ポリマーの分子量が大きすぎる力、または、分子量 の大きすぎる区画を過度に含むならば、自己分解により液ィ匕するまでの期間が過度 に長くなる。
[0035] 所定の分子量範囲のアミノ基含有ポリマーは、部分的に、より高分子量または、より 低分子量のアミノ基含有ポリマーでもって置き換えることが可能である。例えば、高分 子量 (例えば分子量 20万)のキトサンを、 1000〜2万の分子量分画のみ力もなるポリ リジンに、等重量程度まで配合することができる。また、分子量が約 500〜: LOOOで多 官能 (水酸基の数が 2〜8)のポリエチレングリコールに末端アミノ基を導入したァミノ 化ポリエチレングリコール (PEG-NH )を同様に配合することも可能である。この場合、
2
ショ糖等を出発物質とした官能数の特に大きなものが、配合する上で好ましい。
[0036] 第 2液には、 ρΗ調節剤としての酸または酸性塩等が添加される。このようにして、第 1液と第 2液とが混合された際には、 ρΗが 5. 0〜8. 0の範囲内の値、好ましくは 5. 5 〜7. 5の範囲内の値、より好ましくは 6. 5〜7. 5の範囲内の値になるようにする。な お、第 2液の ρΗは、好ましくは 7. 0〜9. 0である。
[0037] ρΗ調節剤として、好ましくは、一価または多価のカルボン酸またはその無水物が添 カロされる。このカルボン酸としては、天然に存在するカルボン酸である、酢酸、クェン 酸、コハク酸、グルタル酸、リンゴ酸、フマル酸、マレイン酸などを好ましいものとして 挙げることができる。このようなカルボン酸は、緩衝作用により pH調節能が大きぐま た、生体に無害である。しかし、 pHが 5. 0〜8. 0の適当な値となるならば、塩酸、硫 酸などの無機酸または無機塩を用いることも可能であり、上記カルボン酸またはその 無水物と併用することもできる。また、リン酸緩衝塩を用いることも可能である。
[0038] pH調節剤としてのカルボン酸は、モノカルボン酸、ジカルボン酸、及びトリカルボン 酸のいずれを選択するかによって、硬化後のゲル体力 含水条件下にて自己分解に より液ィ匕するまでの期間を調整することができる。これは、多価カルボン酸を用いる場 合に、ポリリジンその他のアミノ基含有ポリマーに擬似的な架橋を生成し、自己分解 による液ィ匕を遅延させるためと考えられる。
[0039] 第 1液及び第 2液を混合した状態におけるアルデヒド基 Zアミノ基のモル比は、 0.1 以上 3未満であり、好ましくは 0. 2〜2. 0、より好ましくは 0. 5〜1. 5である。アルデヒ ド基 Zアミノ基のモル比力 slに近づくほど、残留するアルデヒド基またはァミノ基が少 なくなり、毒性をさらに低下させる上で、有意義である。
[0040] 第 1液におけるアルデヒドィ匕 α—グルカンの濃度は、通常 5〜50重量%であり、好ま しくは 15〜25重量%である。一方、第 2液におけるアミノ基含有ポリマーの濃度は、通 常 0.5〜60重量%であり、好ましくは 5〜50重量%、より好ましくは 5〜20重量%である 。第 1液または第 2液の濃度が低すぎる硬化反応が不十分になるなどの問題があり、 高すぎると接着剤液の粘度が高くなるため取り扱いに《なる。
[0041] 第 1液及び第 2液は、放射線滅菌により容易に滅菌を行うことができ、好ましくは 10 〜 50KGyの電子線、さらに好ましくは 20〜 30KGyの電子線を照射して滅菌を行う 。このような滅菌処理は、硬化時間その他の接着剤の性能には、全く悪影響を及ぼさ な 、ように条件を設定して行うことができる。
[0042] 本発明の 2液反応型接着剤を使用する際、第 1液と第 2液との混合及び塗布は種々 の方法により行うことができる。例えば、第 1及び第 2の接着剤原液の一方を被着体表 面に塗布し、続けてもう一方を塗布することで混合を行うことができる。また、第 1液と 第 2液とが塗布装置の混合室中で混合された後に、ノズルカゝら噴出してスプレー塗布 を行うのであっても良ぐまた、アプリケーターのスリットから送り出されて塗布を行うの であっても良い。場合によっては、接着剤としての利用の他、ゲル状榭脂からなるシ ート等として、癒着防止などの目的で使用することも可能である。なお、第 1液と第 2液 との混合比 (体積比)は、通常 0.5〜2.0、好ましくは約 1.0 (即ち、同量程度)に設定さ れる。
[0043] 第 1液と第 2液とが混合されると、アルデヒドィ匕 aーグルカンのアルデヒド基と、ァミノ 基含有ポリマーのァミノ基との間でシッフ結合が形成され、これが架橋点となって網 目構造を有するハイド口ゲルが形成される。その結果、硬化が、混合から 2〜150秒、 好ましくは 3〜100秒、より好ましくは 5〜50秒の間に生じる。混合から硬化までの好ま しい時間は、用途によって多少異なり、生体組織内にまで浸透して高度の接着力を 発揮するためには、硬化時間が 10秒以上、特には 15秒以上であるのが好ましい。
[0044] このような硬化反応により生成する含水ゲル状の硬化接着剤層、または含水ゲル 状の榭脂は、設計液ィ匕期間を経たならば、自己分解によって液体状態に変化する。 すなわち、生体内での酵素分解等を経ずとも、含水状態にあるならば、自然に分解 を生じ液体状態 (流動可能なゾル状態)に変換される。したがって、生体内にあって は、ある所定の期間を経過時に、速やかに吸収あるいは排泄されて消滅されるように することができる。設計分解期間は、数時間〜 4力月、通常は 1日〜1力月の範囲、特 には 2日〜2週間の範囲内で任意に設定される。
[0045] これに対して、生体内で酵素分解のみによって分解吸収される既存の生体分解榭 脂の場合には、分解期間にばらつきが大きぐ必要な接着力保持期間を経た後に速 やかに分解されるようにするのは困難であつたのである。
[0046] 自己分解による分解期間は、アルデヒドィ匕 a—グルカン及び Zまたはアミノ基含有 ポリマーの分子量ないしその分布の選択ないしは調整、多価カルボン酸の使用'不 使用もしくは選択、及び、 2液混合時の pHの調整などによって、任意に調整し、設定 することができる。すなわち、分解され吸収される期間を、 2液接着剤の構成の調整に より、任意に設計しておくことができる。
[0047] 自己分解の機構は、明らかでな!、が、アルデヒド化 aーグルカンのアルデヒド基が 、ァミノ基と結合してシッフ塩基を形成した場合、シッフ塩基に隣接する a—ダルコシ ド結合が分解を受けやすくなつたものと考えている。
[0048] シッフ塩基生成反応を利用した接着剤が従来より用いられていたにも関わらず、自 己分解性の接着剤が開発されな力つた理由は、アルデヒド基含有ポリマー及びアミノ 基含有ポリマーとして、高分子量のものが用いられ、特には、アミノ基含有ポリマーと して、必ず、数万以上の分子量のものが用いられていたためと考えられる。アミノ基含 有ポリマーには分解が生じないため、アミノ基含有ポリマーに分子量の大きいものを 用いた場合、アルデヒドィ匕 α—ダルカンに分解が生じても、硬化物の崩壊は生じない 。また、一方では、アミノ基含有ポリマーの分子量がたとえ比較的小さいものであって も、アルデヒドィ匕 α—グルカンの分子量が大きいと、 1力月以内に硬化物の自己崩壊 力生じることちない。
[0049] 従来は、上記特許文献 1〜3の記述に見られるように、高分子量のアルデヒド基含 有ポリマーとして高分子量のものを用いることが、接着剤榭脂の性能上必要であると の先入観が支配して 、たと考えられる。
[0050] 本発明の医療用接着剤及び医療用榭脂は、生体接着剤、組織充填剤、止血剤、 血管塞栓剤、動脈瘤の封止剤、癒着防止材、及びドラッグデリバリーシステム (DDS) 用担体として、好適に適用されうる。
実施例
[0051] 1.過ヨウ素酸ナトリウムによるアルデヒド導入量の制御
重量平均分子量 200000のデキストラン (和光純薬工業株式会社、 Lot No.EWN07 78)5gを 100mlの蒸留水に溶解させた。次に、種々量の過ヨウ素酸ナトリウム (分子量 213. 89)を添加し、 40°Cで 5時間撹拌しながら反応させた。そして、反応後の溶液を 蒸留水で 24時間透析 (分画分子量 14000の透析膜使用)した後、凍結乾燥した。こ れにより、アルデヒドィ匕デキストランが得られた。
[0052] 得られた各アルデヒドィ匕デキストランについて、導入されたアルデヒド基の量を測定 した。そして、デキストランの糖残基量 (モル)に対する過ヨウ素酸ナトリウムの添加量( モル)とアルデヒド基の導入量 (モル)との関係を求めた。結果を図 1に示す。
[0053] 尚、アルデヒド基の導入量の測定は、酸化還元滴定法によって行った。具体的には 、 0. 05molZlのヨウ素水溶液 20ml、 lOmgZmlのアルデヒド化デキストラン水溶液 10ml及び ImolZlの水酸化ナトリウム水溶液 20mlを、 100mlマイヤーフラスコに入 れ、 25°Cで 15分間攪拌した。そして、 6vZv%硫酸水溶液 15mlを添加し、 0. lmol Ziのチォ硫酸ナトリウム水溶液にて滴定した。終点は反応系が無色透明化した時点 とし、指示薬はでんぷん水溶液とした。
[0054] 図 1に示すように、アルデヒド基の導入量は過ヨウ素酸ナトリウムの添カ卩量に対して 直線的に増力!]した。また、糖残基量に対する過ヨウ素酸ナトリウム量が 0. 05〜: L 0 の場合には、アルデヒド基量は 0. 1〜2であった。よって、糖残基と等量の過ヨウ素酸 ナトリウムを添加した場合には、糖残基当たり 2ケのアルデヒド基が導入されることとな り、効率的に酸化反応が進行することが分かった。
[0055] 2.硬化(固化)時間の測定
重量平均分子量 40000のデキストラン (和光純薬工業株式会社、 Lot No.EWR5671 、)20gを 100mlの蒸留水に溶解させた。次に、 10gまたは 5gの過ヨウ素酸ナトリウム を添加し、 50°Cで 3時間撹拌しながら反応させた。そして、反応後の溶液を蒸留水で 24時間透析 (分画分子量 14000の透析膜使用)した後、凍結乾燥することで、アル デヒド化デキストランを得た。さら〖こ、各アルデヒド化デキストランを蒸留水に溶解する ことにより、 20重量%水溶液を調製し、これらを 2液反応型接着剤の第 1液とした。
[0056] 次!、で、 25重量%の≡ -ポリリジン水溶液 (分子量 4000、チッソ株式会社、 Lot No.2 050506、フリーアミン)に酢酸 lml及び蒸留水 1. 5mlを添カ卩することにより、 20重量 %の中性ポリリジン水溶液を調製した。また、両末端に 1ケずつのアミノ基を有する重 量平均分子量 3000のポリエチレングリコールァミン (2官能 PEG— NH、フリーアミン
2
)を蒸留水に溶解することにより、 30及び 50重量%の水溶液 (フリーアミン)を調製した 。さらに、 4分岐端にアミノ基を有する重量平均分子量 5000のポリエチレングリコー ルァミン (4官能 PEG— NH、フリーアミン)を蒸留水に溶解することにより、 50重量0 /0
2
の水溶液を調製した。そして、これらのァミノ化合物水溶液をそれぞれ、 2液反応型 接着剤の第 2液とした。
[0057] 続いて、 2液反応型接着剤の第 1液 0. 5mlを直径 16mmのガラス製試験管に採取 し、直径 4mm、長さ 10mmの磁気攪拌子を入れて 37°Cに加温し lOOrpmの速度で攪 拌した。そして、予め 37°Cに加温した第 2液 0. 5mlをマイクロピペットにて添加し、接 着剤の硬化により攪拌子が停止するまでの時間をストップウォッチにて計測した。 2液 反応型接着剤の第 1液における過ヨウ素酸ナトリウムの添加量が 10gである場合の結 果を表 1に、添加量が 5gである場合の結果を表 2に、それぞれ示す。表 1及び 2にお V、て 20重量%の中性ポリリジン水溶液との組み合わせのみが実施例の接着剤であ る(それぞれ実施例 1及び実施例 2)。第 2液を、末端にァミノ基が導入されたポリェチ レンダリコールの溶液とする場合、ゲル状接着層の強度などが不充分であった他、 1 日から 1〜2力月での自己分解性を達成することができな力 た。
[表 1] 第 1液における N3I04添加量が 10 gである ί昜合
(1 Oq Nal〇4 / 20g Dextran 40K、 20重量%水溶液〕
ァミノ化合物 濃度 (%) 液性 硬化時間 (秒) ポリリジン 25 塩基性 <1
(20wt% polylysine-2% acetic) 20 中性 4.55 士 0.12
2官能 PEG-NH2 50 塩基性 10.51 士 0.19
2官能 PEG-NH2 30 塩基性 16.35 ± 0.58
4官能 PEG-NH2 50 塩基性 6.30 土 0.21
[表 2]
第 1液における NalCU添加量が 5 gである場合
(5q NalO4/20g Dextran 40K, 20重量%水溶液)
ァミノ化合物 液性 硬化時間 (秒り
(%)
ポリリジン 25 塩基性 1.31 土 0.04
(20wt% polylysine-2% acetic) 20 中性 10.57 + 0.03
2官能 PEG-NH2 50 塩基性 23.38 + 2.59
2官能 PEG-NH2 30 塩基性 33.92 + 0.34
4官能 PEG-NH2 50 塩基性 18.51 + 0.31 表 1及び表 2に示すように、ァミノ化合物が 2官能 PEG— NHである接着剤に比べ
2
て、これよりもァミノ基数の多い 4官能 PEG— NHの接着剤では、ゲル化時間が短か
2
つた。さらに、 1残基あたり 1ケのァミノ基を有するポリリジンでは、ゲルィ匕時間がより短 かった。また、ァミノ化合物の濃度が高い方が速く硬化した。さらに、過ヨウ素酸ナトリ ゥムの添加量が lOgの接着剤では、 5gの接着剤と比べてゲルィ匕時間が半分程度に なる傾向が見られた。これらの結果より、アルデヒド基の数、及びアミノ化合物の種類 や濃度を変えることによって、硬化時間を制御できることが分力 た。
[0059] 3.細胞毒性試験
分子量 75000のデキストラン (和光純薬工業株式会社、 Lot No.EWK3037)20gに 5g の過ヨウ素酸ナトリウムを反応させて、セクション 2の方法に従ってアルデヒドィ匕デキス トランを得た。この後、 20重量%の水溶液を調製し、第 1液とした。
[0060] 次いで、セクション 2で用いた 25重量%のポリリジン水溶液 10mlに無水こはく酸 0.5 ml及び蒸留水 14.5mlを添加することにより、 10重量%の中性ポリリジン水溶液を調製 し、第 2液とした (参考例 3)。一方、 30重量%のホルムアルデヒド水溶液及び 25重量 %のダルタルアルデヒド水溶液約 0. 5gを精秤し、それぞれ 25ml水溶液を調製した 。得られた各々の水溶液を用いて、以下に示す方法に従って細胞毒性試験を実施し た。
[0061] 細胞毒性試験は、 J. Biomed. Mater. Res. , 29, 829— 835 (1995)に記された 方法に従って、マウス榭立細胞株 L929を用いて行った。具体的には、まず、 10000 cellsZmlに調製した細胞懸濁液を 0. 1mlずつ 96ゥエル培養プレートに播種し、 37 °Cで 3日間培養した。次に、上記の各種水溶液を培地で種々の濃度に希釈し、それ らを 0. 1mlずつ添加して、さら〖こ 2日間培養を続けた。続いて、 150 /z gZmlに調製 した-ユートラルレッドの培地溶液を 0. 1mlずつ添カ卩し、 37°Cで 3時間培養した。培 養後、培地を除いて、 1重量%ダルタルアルデヒド水溶液で細を固定し、風乾した。 次いで、 1重量%酢酸を含む水 Zエタノール溶液(同体積混合物)を 0. 1mlずつ添 加し、生存細胞に取り込まれた-ユートラルレッド分子を抽出した。そして、 541nmに おける吸光度を測定し、その測定値に基づいて NR50値を求めた。 NR50値は、細 胞を 50%死滅させるのに必要な溶液濃度であり、この値が低いほど毒性が強いこと を示す。
[0062] 表 3に各種化合物の NR50値をまとめる。
[表 3] l□ lll 成分 NR50値 ( g/ml)
M
第 1液 アルデヒド化デキス卜ラン 6,019 土 91
¾ 2液 ポリリジン >聊 0
ホルムアルデヒド 1.7 土 0.2 グルタルアルデヒド 3.9 土 0.7
[0063] 表に示すように、アルデヒド化デキストランの NR50値は、〉6000 μ gZmlであり、そ の値はホルムアルデヒド及びグルタルアルデヒドと比較して、それぞれ 1/3500、 1/15 00以下であり、同じアルデヒドィ匕合物であるにもかかわらず、毒性は極めて軽微であ ることが分かった。一方、ポリリジンの毒性も極めて低く接着剤の各成分は安全性が 極めて高!、ものと考えられる。
[0064] 4.ゴム手袋を用いた硬化物の柔軟性評価
セクション 2で得られた 20重量0 /0のアルデヒド化デキストラン水溶液(20gのデキスト ランに対して 10gの過ヨウ素酸ナトリウムを添加)及び 20重量%の中性ポリリジン水溶 液を、それぞれ第 1及び第 2液とした。すなわち、実施例 1の 2液接着剤を採用した。 そして、これらの接着剤原液を専用ミキシングデバイスを用いて実験用ゴム手袋に約 0. 5ml(0.25+0.25ml)塗布し、薄く伸ばした。約 1分間放置して硬化させた後、ェアポ ンプを用いて手袋内に空気を入れ、硬化物を拡張させた。図 2に、拡張前 (a)及び拡 張後 (b)の接着剤硬化物の状態を示す。図において、着色 (青色 1号、和光純薬株式 会社、 Lot No.KLN3789)されているものが接着剤硬化物ゲルである。
[0065] 図に示すように、空気の注入によって接着剤硬化物は直径で約 3倍に拡張された 力 亀裂や破壊は認められな力つた。この結果から、本実施例(実施例 1)の接着剤 は硬化後においても非常に柔軟であることが分力つた。なお、写真やデータは省略 するが、デキストランの分子量を 40000とした場合や、 20gのデキストランに対する過 ヨウ素酸ナトリウムの添加量を 3gまたは 5g等とした場合、またデキストリンを用いた場 合にも、同様に柔軟で靭性のあるゲル状榭脂層が得られた。 [0066] 5.ゥサギ皮膚を用いた接着力の評価
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液を第 1液とした。 また、セクション 2で得られた 20重量%の中性ポリリジン水溶液、 30重量%及び 50重 量%の 2官能 PEG— NH水溶液、並びに 50重量%の 4官能 PEG— NH水溶液を、
2 2 第 2液とした。第 2液に 20重量%の中性ポリリジン水溶液を用いたものだけが実施例 (実施例 1)の接着剤である。
[0067] 脱脂した家兎背部皮膚(l X 6cm)を用意し、その表面に 2液接着剤の第 1液及び 第 2液を約 10 1ずつ順次塗布した (塗布面積 I X lcm)。十分に混和した後、同じ 大きさの家兎背部皮膚 (接着剤原液未塗布)と貼り合わせ、 200gの荷重を掛けて 5 分間放置した。そして、直ちに引張試験機 (オートグラフ AGS— 5KNG、島津製)に よって、皮膚が剥離するまで lOmmZminの速度で剪断力を負荷し続け、剥離時の 負荷荷重を接着強度とした。また、比較のために、フイブリン糊 (「ボルヒール」、化学 及血清療法研究所)についても同様に試験した。表 4に結果を示す。
[表 4]
ゥサギ皮膚を用し、た接着力評価結果
Figure imgf000017_0001
接着強度 (gf/cm2) A液 第 2液
ポリリジン 144.8 + 7.6 アルデヒド化デキス卜ラン 2官能 PEG-NH2, 30% 10.6 0.8
(5g NalO4 / 20g Dextran 40K,
2官能 PEG-NH2, 50% 14.9 +
20wt%) 0.7
4官能 PEG-NH2, 50% 160.5 0.9 ン糊 28.7 土 1.3
[0068] 表 4に見られるように、第 2の接着剤原液として中性ポリリジン水溶液又は 4官能 PE G-NH水溶液を用いた場合、従来のフイブリン糊と比べて遙かに高い接着強度を
2
示した。
[0069] 6.キトサン添加による硬化物の分解制御
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液を第 1液とした。 次に、重量平均分子量 100000のキトサン (ヤエガキ発酵発酵技研株式会社、脱ァ セチルイ匕度 80%)を 5%酢酸水溶液に溶解することよって調製された 5重量%のキトサ ン溶液とセクション 4で得られた 20重量%の中性ポリリジン水溶液とを種々の体積比 で混合させ、これらの混合溶液を第 2液とした。すなわち、実施例 1の接着剤につき、 第 2液を部分的にキトサン水溶液で置き換えた。
[0070] 続いて、 16mmガラス試験管内に第 1及び第 2の接着剤原液を lmlずつ入れて、そ れらを硬化させた後、 3mlのリン酸緩衝溶液 (PBS)を添加し封管した。そして、試験 管を 37°Cの乾燥機に入れ、接着剤が分解する様子を経時的に観察した。図 3に、硬 化後 5日間経過時における接着剤の状態を示す。図 3における試験管下の表記は、 5重量%キトサン水溶液と 20重量%中性ポリリジン水溶液との体積比を表す。
[0071] 図 3に示すように、キトサン含量が少ない場合 (体積比 OZlO、 1Z9)の実施例では 、接着剤は 5日間で完全に分解した。それに対し、キトサン含量が多くなると硬化物 の残存量は多くなり、体積比 5Ζ5の接着剤では 3週間を経ても分解は観察されなか つた。このことから、ァミノ化合物の種類や混合比により、接着剤の分解速度、ないし は含水状態で流動化するまでの期間を容易に制御できることが分力つた。
[0072] なお、以上の結果から見てとれるように、分子量 10万と 、う比較的低分子量のキト サンを単独で用いて、 2液接着剤の第 2液とした場合に、本発明の自己分解性は全く 見られない。すなわち、アミノ基含有ユニットの直鎖状重合体であっても、分子量が数 万以下、特には 2万以下の場合にのみ、本発明の効果が得られるであろうことが裏付 けられる。
[0073] 7.接着剤硬化物の生体内での分解速度の評価
第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 (2 0重量 %)を使用した。また、セクション 3と同じ 10重量%の中性ポリリジン水溶液を調製 し、第 2液とした。すなわち実施例 1の接着剤を採用した。接着剤硬化物の生体内で の分解速度を評価するため、家兎 (体重 2.5〜3.0kg、雌)を用いて以下の実験を実施 した。
[0074] 体重 lkg当たり 0.6mlのネンブタールを耳静脈から注射後、体重 lkg当たり 0.1mlのセ ラクタールを足筋肉内に注射する事により麻酔処置を施した。開腹後、 φ 10mmの大 きさに穴を開けた濾紙 (No.2)を肝臓表面に貼り付け、専用ミキシングデバイスを用い て 2液を混合し、約 ΙπιΓ塗布した。硬化後に閉腹し、経時的に硬化物の分解状況を調 ベた。
[0075] 図 4に接着剤硬化物の分解の様子を示した。埋入 3日後から徐々に分解が起こり、 4 週間後には 90%程度分解していることが確認できた。また、組織反応も組織切片像か ら特に懸念されるような悪影響も認められず、安全性も高いことが示された。さらに分 解実験中、ゥサギの食欲の低下等も特に認められず、接着剤の埋入による悪影響は 何ら確認されなかった。
[0076] 8.クェン酸添加による硬化物の分解制御
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液を第 1液とした。 また、セクション 2で用いた 25重量%の塩基性ポリリジン水溶液 10mlに、酢酸とタエ ン酸を併せて lgになるように種々の比率で添カ卩し、更に蒸留水 1. 5mlを添加するこ とにより、 20重量%の中性ポリリジン水溶液を調製し、第 2液とした。すなわち、実施 例 1の 2液接着剤と、参考例 3 (セクション 3)の 2液接着剤とを、 8/2, 6/4, 4/6, 及び 2Z8の各重量比で混合した形の実施例の接着剤を調製した。また、酢酸のみ( 10ZO)を用いたもの(実施例 1に同じ)、及び、クェン酸のみ (0Z10)を用いたもの( 参考例 3に同じ)を同様に調製し、比較した。
[0077] 続いて、セクション 6に記した方法により接着剤硬化物の分解速度を評価した。その 結果を図 5にまとめた。図中の表記は酢酸とクェン酸の重量比を意味しており、最も 左が酢酸のみ、右がクェン酸のみで ρΗ調整した場合である。ポリリジン水溶液の ρΗ 調整に使用した酸種が酢酸のみの場合は、 4日後には完全に分解したのに対し、ク ェン酸量が増すにつれて硬化物の分解は遅延され、クェン酸のみで ρΗ調整した場 合には、 2週間経過しても元の形状を保持しており、完全分解には 2ヶ月以上を要し た。このことから、 ρΗ調整剤の種類や量により、接着剤硬化物の分解速度を容易に 制御できることが示された。
[0078] 9.ポリリジンの熱処理による高分子量化と硬化物の分解速度への影響
分子量 4000の ε -ポリ- L-リジン粉末 (チッソ株式会社、 Lot No. 20211023F)を、 180 °Cの真空乾燥 (熱処理)に供した。得られた熱処理 ε -ポリ- L-リジンの分子量を、ゲル 電気泳動法により評価した。ここで、電気泳動用ゲルとしては 15%SDSを用い、電気泳 動液として Running buffer solution (ナカライテスタ社、 0.25mol/KTris、 1.92mol/卜グリ シン、 10g/ト SDS)を用い、日本エイド一株式会社の装置を用いて 50mAの電流で測定 を行った。マーカーはペプチド分子量マーカー (第一化学薬品株式会社、 Mw=2,51 2〜16,950 ; Lot No.024RJZ)及び Protein Ladder(invitrogenゝ Mw=6,000〜181,800 ; Lo t No. l283301A)を用い、染色液は、 Coomassie brilliant blue(invitrogen、 R- 250)を用 いた。その結果、図 6の写真の様な泳動パターンが得られた。未処理系 (処理時間 0) では 2.5〜6Kの間に主成分が認められ、チッソ株式会社のカタログ値分子量 4000と 一致していた。その他の成分は不連続であり、分子量 4000の成分が会合したことによ るものと考えられる。熱処理によりスポットは消失するが、分子量は顕著に増加し、処 理時間 1.5時間を越えると分子量マーカーの最大値 182Kを越える成分が出現し、さら に時間とともに高分子量成分が増カロした。
[0079] 得られた熱処理ポリリジン粉末を蒸留水に溶かし、 10重量%とし、 4重量%の酢酸を 含有させ、第 2液を調製した。
[0080] 第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 (2 0重量 %)を使用した。第 1液及び第 2液を混合しセクション 6に記載の方法に従い、接 着剤硬化物の分解速度を評価した。その結果が図 7に示されている。処理時間 (分子 量)とともに分解期間が長くなり、処理時間 0では 2日間で分解されるのに対し、処理時 間 1.5時間では 2週間、さらに 6時間処理した場合には 1ヶ月以上の時間を要した。
[0081] セクション 8に記載したように、硬化物の分解期間は ρΗ調整剤の選択 (酢酸またはク ェン酸など)により容易に遅延できるため、分子量が低い熱処理前の ε -ポリ- L-リジ ンを用いる場合には分解の期間を早期から長期へと自由に調節出来るのに対し、長 時間の熱処理後のポリリジンを用いた場合にはこの調節は困難になるものと考えられ る。しかし、例えば 180°Cで 0. 5時間程度またはそれ以下の熱処理については、分 解期間を調節するための処理として利用可能であると考えられる。
[0082] セクション 6における分子量 10万のキトサンの結果と考え合わせると、アルデヒド基 含有ポリマーの分子量が数万以下であるのが、本発明の自己分解性を充分に発揮 する上で必要であると判断することができる。
[0083] 10.電子線滅菌の適用 第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 20 %)を使用した。また、セクション 3と同じ 10重量%の中性ポリリジン水溶液を調製し、第 2液とした。
[0084] 各溶液は、 0.2 μ mの孔径を有するシリンジフィルター (Dismic 25-AS020AS、 Advante c製)を用いて濾過後、それぞれ 5mlガラスアンプルに詰め、封管した。
[0085] 第 1液及び第 2液をセットとして、 25°Cで表 5左端に示す条件で滅菌処理を実施した。
滅菌処理後、セクション 2に示した方法に従って硬化時間を調べ、滅菌処理の影響を 調べた。その結果を表 5にまとめる。
[表 5]
放射線照射による硬ヒ時間の変ィ匕
滅菌法 硬化時間 Z秒 差 Z秒 未処理 (未処置) 13.04 土 0.20 0 ガンマ線(25kGy) 13.65 土 0.06 0.62 電子線 (20kGy) 10.66 土 0.26 -2.38 電子線 (40kGy) 8.25 土 0.07 -4.79
*ソ data=average ± S . D.(n =3)
表より、ガンマ線照射により若干の硬化時間遅延が認められるが、電子線照射では 逆に未処置より硬化時間が短くなつた。従って、各成分の分子量低下や変性は起こ つておらず、電子線照射法は本接着剤の滅菌方法としての適用可能性が高いと考え られる。
[0086] 11.圧縮試験による接着剤硬化物の柔軟性評価
第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 (2 0重量 %)を使用した。また、セクション 3と同じ 10重量 %の中性ポリリジン水溶液を調製し 第 2液とした。これらを専用ミキシングデバイスを用いて混合し、細胞培養用 24wellプ レート (底面積 2cm2)に 2ml量流し込んだ。 25°Cで 2分間後、引張試験機 (島津製作所 製 ADS-5D)を用いて直径 6.6mmの半球を lOmm/minの速度で接着剤硬化物に押し 付け、圧縮応力を測定することにより硬化物の柔軟性を評価した。なお、比較対象と してフイブリン糊 (ボルヒール、化学及血清療法研究所)についても調べた。図 8に応 力-歪み曲線の結果を示す。
[0087] 図では硬化物への半球の貫入量 (mm)に対して、その時の応力値 (mN)がプロットさ れている。初期勾配はあまり差がないが、貫入量が lmm付近カもフイブリン糊の場合 は傾きが大きくなるのに対し、本接着剤はその半分程度の傾きであった。このことから 、本接着剤の硬化物はフイブリン糊より柔軟であることが示された。
[0088] なお、データは省略する力 本発明の接着剤は、 20gのデキストランに対して添カロ する過ヨウ素酸ナトリウムの量を 3g及び 10gとすることにより、圧縮試験による歪-尾 応力曲線を変化させることができた。すなわち、 aーグルカンのアルデヒド化の程度 を変化させ、アルデヒド基 Zアミノ基のモル比を変化させることで、硬化時の架橋密 度を自由に変化させ、硬化後のゲル状榭脂層の柔軟性を自由に調整することができ る。
[0089] 12.牛皮を用いた接着力の評価
第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 (2 0重量 %)を使用した。また、セクション 3と同じ 10重量%の中性ポリリジン水溶液を調製 し、第 2液とした。すなわち、参考例 3の 2液接着剤を採用した。接着剤の接着強度を 調べるために牛皮を被着体として接着試験を実施した。牛皮 (TRUSCO社の JT-5L、 作業用床革袖長手袋)を 1 X 5cmの短冊状に裁断し、 1 X 1cmの接着面積で 2枚の皮 を接着させ、 100gの荷重下で 5分間静置硬化させた。得られた接着体はセクション 11 で用いた引張試験機で lOmm/minの引張速度で剪断させ、剥離時の接着力を求め た (n=5)。なお、比較対象としてフイブリン糊 (ボルヒール、化学及血清療法研究所)に ついても調べた。
[0090] その結果、本接着剤の接着強度は 2024±563gf/cm2、フイブリン糊のそれは 519± 1 36gf/cm2であった。平均値でフイブリン糊の 4倍近い接着強度を示し、 lkg/cm2以上を 示す試料が多かったのに対し、フイブリン糊は硬化時間が短すぎ、接着体作製が困 難であったため、ノ ラツキも大きぐ低い接着強度であった。なお、セクション 2の方法 により測定した硬化時間は、本接着剤で約 10秒であったのに対し、フイブリン糊では 1秒以下であった。
[0091] 13.消化器外科領域での使用例 (肝臓での止血効果)
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液を第 1液とした。 また、セクション 2で得られた 20重量%の中性ポリリジン水溶液、及び 50重量%の 2 官能 PEG— NH水溶液 (フリーアミン)をそれぞれ第 2液とした。中性ポリリジン水溶液
2
を第 2液としたものは、実施例 1 (セクション 2)の接着剤に相当する。
[0092] 犠牲死させた家兎の腹部を正中切開し、肝臓を露出させた。そして、手術用メスを 用いて、肝臓に長さ約 2cm、深さ約 5mm程度の傷 (切れ込み)をつけることによって 、切開部力も絶え間なく出血させた。続けて、専用ミキシングデバイスを用いて、第 1 及び第 2の接着剤原液を等容量混合し、それを切開部に塗布した。
[0093] その結果、第 2液が中性ポリリジン水溶液である 2液接着剤(実施例 1)の場合には 10秒以内に、 2官能 PEG— NH水溶液の接着剤では 30秒以内に、確実な止血が
2
確認された。図 9〖こは第 2液としてポリリジン水溶液を用いた場合の止血前後の肝臓 を示しており、効果的に止血が成されているのが分かる。また、接着剤の膜は、肝臓 に強固に固定されていた。このことから、本実施例の接着剤は、消化器外科領域で 止血剤としても優れた効果を発揮することが分力つた。
[0094] 14.心臓血管外科領域での使用例 (癒着防止効果)
第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 20 %)を使用した。また、セクション 3と同じ 10重量%の中性ポリリジン水溶液を調製し、第 2液とした。すなわち、参考例 3 (セクション 3)に同一の 2液接着剤を調製した。
[0095] 次いで、分子量 7000のデキストリン (和光純薬工業株式会社、 Lot No.EWQ7180)20 gに 5gの過ヨウ素酸ナトリウムを反応させて、セクション 2の方法に従ってアルデヒドィ匕 デキストリンを得た。この後、 20重量 %水溶液を調製し、 2液接着剤の第 1液とした。ま た、セクション 2で用いた 25重量%のポリリジン水溶液 10mlに無水酢酸 0.5ml及び蒸留 水 14.5mlを添加することにより、 10重量 %の中性ポリリジン水溶液を調製し、 2液接着 剤の第 2液とした。このようにして、デキストリンタイプの実施例の 2液接着剤を得た。
[0096] 心臓血管外科領域での癒着防止効果を確認するため、ラットの心膜を切開し、左 室表面をガーゼで 100回擦過することにより癒着惹起環境を作製した。そこに各種組 成に調製した接着剤を塗布し閉胸した。 4週間後、開胸して癒着状況を 5段階のスコ ァー (0, 1, 2, 3, 4の 5段階、数字が大きいほど癒着傾向が高い)を設けて判定した (n= 5)。なお、比較対象は臨床で癒着防止剤として使用されているフイブリン糊 (ボルヒー ル、化学及血清療法研究所)を用いた。
[0097] スコア一は未処置、フイブリン糊、参考例 3 (セクション 3)の接着剤、デキストリンタイ プの実施例の接着剤の順に、それぞれ、 2.4±0.5、 1.2 ±0.4、 3.2 ±0.4、 1.2 ±0.4で めつに。
[0098] 参考例 3 (セクション 3)の接着剤、及び、デキストリンタイプの実施例の接着剤をセク シヨン 6に示した方法に従って硬化物の分解速度評価に供したところ、前者は約 1ケ 月、後者は 2〜3日という結果であった。このことから、デキストリンタイプの実施例の接 着剤は分解速度が極めて早いことが示された。このことと、上記の結果とを併せて考 えると、ゲルの分解が遅い場合 (参考例 3)は未処置より癒着がひどぐ早い場合 (デキ ストリンタイプの実施例)はフイブリン糊と同程度の癒着であり、早期に分解する接着 剤を用いることにより心臓の癒着防止に高い効果を示すことが分力つた。
[0099] 図 10に手術力 4週間を経た患部の組織切片像を示す (Masson-Trichrome染色)。
図中の矢印で示した様に心表面に硬化物の残存が確認出来る。手術時には心表面 にある心外膜をガーゼで擦過することにより傷を付け癒着惹起部位を作製している。 この時には擦過により心外膜は殆ど剥がれているものと思われ、心筋組織が露出し その部位に塗布している。接着剤の周りを取り囲んでいる組織は後から出来た組織 である。接着剤の塗布量は同じである力 デキストリンタイプの実施例接着剤の場合 は分解が早いため、参考例 3の場合と比べて、残存している硬化物の量は非常に少 なかった。このため、癒着も軽微であったと考えられる。以上のことから、本実施例の 接着剤は、分解速度を容易に制御出来るため、心臓血管外科領域で癒着防止剤と しても有効であることが示された。
[0100] 15.心臓血管外科領域での使用例 (止血効果)
分子量 40000のデキストランを用い、セクション 8で使用した 20重量%のアルデヒドデ キストラン水溶液を調製し、第 1液とした。また、セクション 8で用いた 20重量 %の中性ポ リリジン水溶液を調製し、第 2液とした (タエン酸含有量 4%)。すなわち、参考例 3 (セク シヨン 3)に相当する 2液接着剤を調製した。なお、参考例 3の接着剤は分解が多少 遅いことを除くと、各実施例の接着剤と同様の性質及び性能を示す。
[0101] 心臓血管外科領域における止血効果を確認するために以下の実験を行った。
[0102] 麻酔はエーテル雰囲気下に 30秒程度放置後、気管内挿管してイソフルレンの吸入 麻酔を行う方法により実施した。ラットの左室自由壁を縫合することにより血流を止め 、 19ゲージ針で穿刺して穿孔を作成した。一時的に縫合を緩めて拍動性に出血する ことを確認した後再び縫合して完全に血流を止めた。周囲の血液を除去し、 19ゲー ジよりやや大きな穴を開けた紙を心臓に被せて、接着剤と血液が周囲に流出しない よつにした。
[0103] インスリン注入用のシリンジを用いて穿孔部に接着剤を 0.4πιΓ塗布した。 3分後ガー ゼをのせ、出血した血液がガーゼに吸収されるようにし、縫合を 3分間緩めた (ガーゼ の重量をあら力じめ測定しておき、前後の重量差を出血量とした)。実験は、比較対 象として、未処理とフイブリン糊 (ベリプラスト、化学及血清療法研究所)についても実 施した。なお、実験に使用したラットの数は未処置群、本接着剤群、フイブリン糊群の 順に 6、 5、 5である。
[0104] 各出血量は未処理、本接着剤、フイブリン糊の順に l.l ±0.5g、 0.4±0.1g、 0.9±0.5 gであり、本接着剤はフイブリン糊と比べて有意に出血量は少な力つた (p=0.02)。なお 、出血のパターンはフイブリン糊では硬化物を突き破っての出血の他に硬化物周囲 と組織との間隙力もの出血が認められたに対し、本接着剤は後者のみでそれも少量 であったことが、この出血量の差に至ったと考えられた。以上のことから、本接着剤は 、心臓血管外科領域で止血剤としても有効であることが示された。
[0105] 16.呼吸器外科領域での使用例 (肺の空気漏れ閉塞)
第 1液には、セクション 3で用いた分子量 75000のアルデヒドィ匕デキストラン水溶液 (2 0重量 %)を使用した。次いで、セクション 3と同じ 10重量%の中性ポリリジン水溶液を調 製し、第 2液とした。すなわち、参考例 3 (セクション 3)に相当する 2液接着剤を調製し た。
[0106] 肺の空気漏れ閉塞の効果を確認するため、ビーグル犬を用いて以下の実験を行つ た。常法に従って麻酔、気管内挿管を経て開胸し、右肺に電気メスを用いて 3 X 3cm の面積の胸膜欠損部位を作製した。患部に生理食塩水をかけて人工呼吸器の圧力 を上げることにより空気漏れを確認した。その後、専用ミキシングデバイスを用いて患 部に約 2mlの接着剤を滴下して指塗り (10秒)し、 2分後胸腔内を生理食塩水で満たし てリークテストを行った。比較対象としてフイブリン糊 (ボルヒール、化学及血清療法研 究所)を用い、フイブリノ一ゲン溶液を患部に滴下して指塗りし、スプレーキットを用い てその上力も塗布した (rub&spray法)。フイブリン糊の場合は文献に従って塗布力も 5 分後にリークテストを行った。
[0107] 空気漏れが認められた圧力は本接着剤、ボルヒールの順にそれぞれ 35.4±6.8、 33 •3±4.8cmH 0であり、大きな差は認められな力つた。しかし、空気漏れの仕方は両者
2
で大きく異なり、フイブリン糊の場合はフイブリン塊全体が肺力 剥離し、欠損部がむ き出しになって漏れ始める (気泡は大きい)のに対し、本接着剤の場合、欠損部自身 はしつ力り保持されており、その周辺部位力もピンホール程度の穴があき、極めて小 さい気泡が確認されたにすぎなカゝつた。図 11は本接着剤塗布前後の肺表面を示して おり、塗布により欠損部位が接着剤硬化物でコートされているのが分かる。術後の経 過は本接着剤、フイブリン糊とも良好で再びリークする犬は認められな力つた。この結 果から、本接着剤は呼吸器外科領域で肺の空気漏れを塞栓する目的でも効果が高 いことが示された。
[0108] 17.参考例 1 末端アミノ基ポリエチレングリコール
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液(分子量 40000 )を第 1液とした。また、セクション 2で得られた両末端に 1ケずつのアミノ基を有する重 量平均分子量 3000のポリエチレングリコールァミン (2官能 PEG— NH、フリーアミン
2
)を蒸留水に溶解することにより、 50重量%の水溶液 (フリーアミン)を調製し第 2液とし た。
[0109] 続いて、セクション 6に記載した方法に従って接着剤硬化物が分解する様子を経時 的に観察した。その結果、 3時間でに完全に液ィ匕した。第 2液成分の 2官能 PEG— N Hは分子量は 3000であるが両末端にしかアミノ基を持たないため、末端でしか反応
2
は起こらず、架橋密度が極めて低くなるため速やかに分解したものと考えられる。 [0110] 本セクションの結果、及びセクション 2のポリエチレングリコールァミンの結果から、ァ ミノ基含有ポリマーは、アミノ基含有ユニットの連鎖よりなるものでなければならないこ とが裏付けられる。
[0111] 18.参考例 2—キトサンオリゴ糖
セクション 4で得られた 20重量0 /0のアルデヒド化デキストラン水溶液(分子量 40000 )を第 1液とした。また、低分子量キトサン粉末 (「Y.H.キトサンオリゴ糖」、ヤエガキ発 酵技研株式会社、 Lot. 000522、乳酸塩、 2〜6糖の混合物であり平均分子量は 70 0)を蒸留水に溶解することにより、 50重量%の水溶液を調製し第 2液とした。
[0112] 続いて、参考例 1と同様に反応させた力 7時間を経ても硬化しな力つた。このため 、試験管に第 1液を lml加え、第 2液の代わりに Y.H.キトサンオリゴ糖の粉末 lOOmgを 添加し混和した。 30分後、硬化が確認され、 3mlのリン酸緩衝溶液 (PBS)を添加し 封管後、接着剤硬化物が分解する様子を経時的に観察した。その結果、 6時間で完 全に液ィ匕した。 Y.H.キトサンオリゴ糖は、糖 1残基あたり 1ケのァミノ基を有するが、分 子量が低すぎるため 50重量%ではゲルが形成されず、粉末を使用した場合でも効 果的なゲル網目構造が形成されないため、速やかに分解'液ィ匕したものと考えている
[0113] キトサンオリゴ糖の結果から、約 1日またはそれ以上の適当な自己崩壊期間を達成 するためには、アルデヒド基含有ユニットの鎖状重合体の分子量が 1000以上は必要 であることが知られる。また、キトサンオリゴ糖の結果から、低分子量キトサンが、低分 子量ポリリジン等と同様の挙動をとるであろうことを知ることができる。すなわち、セクシ ヨン 6のキトサン添加の結果と考え合わせると、アルデヒド基含有ユニット鎖状重合体 の分子量が 1000〜2万であるときに、はじめて、本発明の特有の効果が得られること が知られる。
図面の簡単な説明
[0114] [図 1]過ヨウ素酸ナトリウムの添加量とアルデヒド基の導入量との関係を示すグラフで ある。(セクション 1)
[図 2-1]接着剤をゴム手袋に塗布した後に手袋を拡張させたときの接着剤硬化物の 様子を示す写真(1)である。(セクション 4) [図 2-2]接着剤をゴム手袋に塗布した後に手袋を拡張させたときの接着剤硬化物の 様子を示す写真(2)である。(セクション 4)
圆 3-1]キトサンを添加した接着剤硬化物の硬化後 3週間までの分解の様子を示す写 真(1)である。(セクション 6)
圆 3-2]キトサンを添加した接着剤硬化物の硬化後 3週間までの分解の様子を示す写 真(2)である。(セクション 6)
圆 3-3]キトサンを添加した接着剤硬化物の硬化後 3週間までの分解の様子を示す写 真(3)である。(セクション 6)
[図 4-1]接着剤硬化物が家兎肝臓上で分解されてゆく様子を示す写真(1)である。 ( セクション 7)
[図 4-2]接着剤硬化物が家兎肝臓上で分解されてゆく様子を示す写真 (2)である。 ( セクション 7)
[図 4-3]接着剤硬化物が家兎肝臓上で分解されてゆく様子を示す写真 (3)である。 ( セクション 7)
[図 4-4]接着剤硬化物が家兎肝臓上で分解されてゆく様子を示す写真 (4)である。 ( セクション 7)
[図 4-5]接着剤硬化物が家兎肝臓上で分解されてゆく様子を示す写真 (5)である。 ( セクション 7)
圆 5-1]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真(1)である。(セクション 8)
圆 5-2]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真(2)である。(セクション 8)
圆 5-3]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真(3)である。(セクション 8)
圆 5-4]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真 (4)である。(セクション 8)
圆 5-5]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真(5)である。(セクション 8) 圆 5-6]酢酸及とクェン酸の混合物で pH調整したポリリジンを用いて調製した接着剤 硬化物の分解の様子を示す写真 (6)である。(セクション 8)
[図 6-1]熱処理したポリリジンの電気泳動パターン(1)である。(セクション 9)
[図 6-2]熱処理したポリリジンの電気泳動パターン(2)である。(セクション 9)
[図 7-1]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真(1)である。(セクション 9)
[図 7-2]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真(2)である。(セクション 9)
[図 7-3]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真(3)である。(セクション 9)
[図 7-4]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真 (4)である。(セクション 9)
[図 7-5]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真(5)である。(セクション 9)
[図 7-6]熱処理したポリリジンを用いて調製した接着剤硬化物の経時的な分解の様子 を示す写真(6)である。(セクション 9)
[図 8]接着剤硬化物の応力―ひずみ曲線を表して 、る。(セクション 11)
圆 9-1]実施例の接着剤によるゥサギ肝臓の止血の様子を示す写真(1)である。(セク シヨン 13)
圆 9-2]実施例の接着剤によるゥサギ肝臓の止血の様子を示す写真(2)である。(セク シヨン 13)
[図 10-1]癒着惹起部位に塗布して 4週間後の患部の組織切片像(1)である。 (セクシ ヨン 14)
[図 10-2]癒着惹起部位に塗布して 4週間後の患部の組織切片像(2)である。 (セクシ ヨン 14)
圆 11-1]人工的に作成した肺欠損部位力もの空気漏れを、実施例の接着剤を用い て閉塞した状況を示す写真(1)である。(セクション 16)
圆 11- 2]人工的に作成した肺欠損部位力もの空気漏れを、実施例の接着剤を用い て閉塞した状況を示す写真(2)である。(セクション 16)

Claims

請求の範囲
[1] 重量平均分子量が 1000〜20万であるアルデヒド化 aーグルカンの水溶液からな る第 1液と、アミノ基含有ユニットの連鎖よりなるアミノ基含有ポリマーの水溶液力 な る第 2液とよりなり、
前記アミノ基含有ポリマーの重量平均分子量が 1000〜2万であって、 前記の第 1液及び第 2液を混合した際には、 pHが 5. 0〜8. 0となることを特徴とす る医療用 2液反応型接着剤。
[2] 前記の第 1液及び第 2液を混合した状態におけるアルデヒド基 Zアミノ基のモル比 が 0. 2〜2. 0であることを特徴とする請求項 1に記載の医療用 2液反応型接着剤。
[3] 前記第 2液には、酢酸、クェン酸、コハク酸、ダルタル酸、リンゴ酸、フマル酸、マレ イン酸、またはその他の 1価または多価のカルボン酸ィ匕合物、または、これらの少なく とも一つに対応する無水酸ィ匕合物力 1〜: LO重量%添加されていることを特徴とする 請求項 1に記載の医療用 2液反応型接着剤。
[4] 前記アルデヒド化 aーグルカンは、重量平均分子量が 2000〜10万のデキストラン
、またはデキストリンを過ヨウ素酸または過ヨウ素酸塩で酸ィ匕して、無水グルコース 'ュ ニットあたり 0. 1〜1. 0個のアルデヒド基を導入したものであることを特徴とする請求 項 1または 2に記載の医療用 2液反応型接着剤。
[5] 前記の第 1液及び第 2液について、 10〜50KGyの電子線を照射して滅菌したこと を特徴とする請求項 1または 2に記載の医療用 2液反応型接着剤。
[6] 前記アミノ基含有ポリマーが、微生物または酵素を用いて生産された ε -ポリ- L-リ ジンであることを特徴とする請求項 1または 2に記載の医療用 2液反応型接着剤。
[7] 重量平均分子量が 1000〜20万であるアルデヒド化 aーグルカンの水溶液からな る第 1液と、アミノ基含有ユニットの連鎖よりなり重量平均分子量が 1000〜2万である アミノ基含有ポリマーの水溶液力 なる第 2液とを混合して得られる含水ゲル状の医 療用榭脂であって、
アルデヒド基 Zアミノ基の反応モル比が 0. 2〜2. 0であり、
含水状態で保存されたならば、 1日〜 1力月の間で任意に設定可能なゲル状態保 持期間を経た後には、自己分解によってゾル状態に変化することを特徴とする自己 分解性の医療用榭脂。
PCT/JP2006/301543 2005-01-31 2006-01-31 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂 WO2006080523A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800036346A CN101111272B (zh) 2005-01-31 2006-01-31 具有自分解性的医疗用2液反应型粘合剂及医疗用树脂
JP2007500647A JP4092512B2 (ja) 2005-01-31 2006-01-31 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂
EP06712686.2A EP1849486B1 (en) 2005-01-31 2006-01-31 Self-degradable two-component reactive adhesive for medical use and resin for medical use
KR1020077019753A KR101201056B1 (ko) 2005-01-31 2006-01-31 자기 분해성을 갖는 의료용 2액 반응형 접착제 및 의료용수지
US11/881,941 US7834065B2 (en) 2005-01-31 2007-07-30 Medical-use two part reactive adhesive and medical-use resin having self-degradation property

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-054577 2005-01-31
JP2005054577 2005-01-31
JP2005128610 2005-03-29
JP2005-128610 2005-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/881,941 Continuation-In-Part US7834065B2 (en) 2005-01-31 2007-07-30 Medical-use two part reactive adhesive and medical-use resin having self-degradation property

Publications (1)

Publication Number Publication Date
WO2006080523A1 true WO2006080523A1 (ja) 2006-08-03

Family

ID=39509622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301543 WO2006080523A1 (ja) 2005-01-31 2006-01-31 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂

Country Status (5)

Country Link
EP (1) EP1849486B1 (ja)
JP (1) JP4092512B2 (ja)
KR (1) KR101201056B1 (ja)
CN (1) CN101111272B (ja)
WO (1) WO2006080523A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054858A (ja) * 2006-08-30 2008-03-13 Toyobo Co Ltd 2液型接着剤
JP2008093230A (ja) * 2006-10-13 2008-04-24 Kanagawa Acad Of Sci & Technol ゲル形成用組成物
WO2008066182A1 (en) 2006-11-30 2008-06-05 Bmg Incorporated Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder
WO2009029443A2 (en) * 2007-08-24 2009-03-05 E. I. Du Pont De Nemours And Company Method for embolization using liquid embolic materials
WO2009057802A1 (ja) * 2007-11-01 2009-05-07 Osaka City University β-1,3-グルカン由来ポリアルデヒド/ポリアミンハイドロゲル
JP2010537711A (ja) * 2007-08-28 2010-12-09 アサナシアディス,セオドア 外科用ハイドロゲル
WO2011018844A1 (ja) * 2009-08-11 2011-02-17 オリンパスメディカルシステムズ株式会社 治療用処置具、治療用処置装置および治療処置方法
JP2011092699A (ja) * 2009-09-29 2011-05-12 Chemo-Sero-Therapeutic Research Inst 組織癒着防止剤
JP2012509706A (ja) * 2008-12-01 2012-04-26 シン・プーン・ファーマシューティカル・カンパニー・リミテッド 癒着防止用組成物
US8282959B2 (en) 2006-11-27 2012-10-09 Actamax Surgical Materials, Llc Branched end reactants and polymeric hydrogel tissue adhesives therefrom
US8426492B2 (en) 2007-11-14 2013-04-23 Actamax Surgical Materials, Llc Oxidized cationic polysaccharide-based polymer tissue adhesive for medical use
US8431114B2 (en) 2004-10-07 2013-04-30 Actamax Surgical Materials, Llc Polysaccharide-based polymer tissue adhesive for medical use
US8466327B2 (en) 2008-11-19 2013-06-18 Actamax Surgical Materials, Llc Aldehyde-functionalized polyethers and method of making same
US8551136B2 (en) 2008-07-17 2013-10-08 Actamax Surgical Materials, Llc High swell, long-lived hydrogel sealant
US8796242B2 (en) 2009-07-02 2014-08-05 Actamax Surgical Materials, Llc Hydrogel tissue adhesive for medical use
US8859705B2 (en) 2012-11-19 2014-10-14 Actamax Surgical Materials Llc Hydrogel tissue adhesive having decreased gelation time and decreased degradation time
US8951989B2 (en) 2009-04-09 2015-02-10 Actamax Surgical Materials, Llc Hydrogel tissue adhesive having reduced degradation time
US9044529B2 (en) 2008-11-19 2015-06-02 Actamax Surgical Materials, Llc Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether
JP2015113467A (ja) * 2013-12-11 2015-06-22 ローム アンド ハース カンパニーRohm And Haas Company 多糖類の酸化からのポリアルデヒドの水性組成物およびそれらの熱硬化性樹脂
US9254348B2 (en) 2011-12-30 2016-02-09 Samyang Biopharmaceuticals Corporation In situ crosslinking hydrogel comprising γ-polyglutamic acid and method for producing the same
US9561248B2 (en) 2008-04-24 2017-02-07 Medtronic, Inc. Method for rehydrating polysaccharide particles
US10207021B2 (en) 2013-07-29 2019-02-19 Actamax Surgical Materials, Llc Low sweel tissue adhesive and sealant formulations
KR20200001722A (ko) * 2018-06-28 2020-01-07 에스케이바이오랜드 주식회사 2액형 지혈제 조성물 및 그 제조방법
WO2020017651A1 (ja) * 2018-07-20 2020-01-23 国立大学法人北陸先端科学技術大学院大学 光分解性ハイドロゲル
CN110935058A (zh) * 2019-11-20 2020-03-31 山东百多安医疗器械有限公司 一种双组份快速止血医用胶及其制备方法
WO2020122007A1 (ja) * 2018-12-14 2020-06-18 株式会社ビーエムジー 2反応剤型のシート状組織接着補強材
JP2020122066A (ja) * 2019-01-30 2020-08-13 国立研究開発法人産業技術総合研究所 リグニンスルホン酸とε−ポリリジンを成分とする接着剤
JP2021506946A (ja) * 2017-12-20 2021-02-22 マグル ケモスウェッド ホールディング アーベー 体液漏出検出水性組成物
RU2768711C1 (ru) * 2018-08-31 2022-03-24 СиДжей ЧеилДжеданг Корпорейшн Клеевой состав и способ его получения
US11471141B2 (en) 2020-06-05 2022-10-18 Bmg Incorporated Powder spray device and medical adhesive excellent in self-decomposability and adhesiveness
CN115920120A (zh) * 2022-12-01 2023-04-07 江南大学附属医院 促进伤口再生性愈合的水凝胶复合物及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924719B1 (fr) * 2007-12-05 2010-09-10 Saint Gobain Isover Composition d'encollage pour laine minerale comprenant un monosaccharide et/ou un polysaccharide et un acide organique polycarboxylique, et produits isolants obtenus.
CN104136602B (zh) * 2011-06-23 2017-06-09 成功大学 细胞组织胶黏剂
KR101441539B1 (ko) * 2013-04-01 2014-09-18 재단법인 유타 인하 디디에스 및 신의료기술개발 공동연구소 흡습성이 개선된 접착제 조성물 및 이의 제조방법
CA2934530C (en) 2013-12-23 2022-03-01 Massachusetts Institute Of Technology Adhesive for biological tissue comprising a polymer having aldehyde groups and a dendrimer wherein the polymer and/or the dendrimer is substituted with a moiety capable of photoreversible dimerization
US11898005B2 (en) 2015-06-18 2024-02-13 Tissium Sa Sealant composition
EP3310403B1 (en) 2015-06-18 2022-03-09 Tissium SA Adhesive composition
CN108966654B (zh) 2017-03-21 2020-05-19 Cj第一制糖株式会社 粘合剂组合物、其制备方法及粘合产品
KR102280739B1 (ko) * 2018-08-31 2021-07-27 씨제이제일제당 주식회사 라벨용 점착 조성물, 이의 제조 방법, 이를 포함하는 점착 시트 및 물품
KR102284844B1 (ko) 2018-08-31 2021-08-03 씨제이제일제당 주식회사 먼지 생성을 억제하는 방법, 토양안정제 조성물, 및 이를 포함하는 분무 장치
WO2020046057A1 (ko) * 2018-08-31 2020-03-05 씨제이제일제당(주) 지대용 점착 조성물, 이의 제조 방법, 이를 포함하는 지대 용지 및 지대
KR102190916B1 (ko) * 2018-08-31 2020-12-15 씨제이제일제당 주식회사 점착 조성물, 및 이의 제조방법
WO2020046055A1 (ko) * 2018-08-31 2020-03-05 씨제이제일제당(주) 점착 조성물, 및 이의 제조방법
WO2020046061A1 (ko) * 2018-08-31 2020-03-05 씨제이제일제당(주) 점착 조성물, 및 이의 제조방법
KR102190918B1 (ko) * 2018-08-31 2020-12-15 씨제이제일제당 주식회사 점착 조성물, 및 이의 제조방법
FR3102184B1 (fr) * 2019-10-22 2022-04-29 Centre Nat Rech Scient Compositions adhésives biosourcées
CN111388741B (zh) * 2020-04-01 2021-09-07 东华大学 预载多肽的可注射自修复抗菌水凝胶敷料及其制备方法
CN118022043A (zh) * 2024-04-11 2024-05-14 上海汇禾医疗器械有限公司 一种微囊、其制备方法、血管粘合剂和血管粘合装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503883A (ja) * 1996-10-07 2000-04-04 ソシエテ アノニム ドゥ デベロプマン デ ウティリザシオン デュ コラジーン−エス.ア.デ.ユ.セ. マクロモレキュラーポリアルデヒドベースの接着剤組成物及びコラーゲンの架橋方法
US20050002893A1 (en) * 2001-10-24 2005-01-06 Helmut Goldmann Composition consisting of a polymer containing amino groups and an aldehyde containing at least three aldehyde groups
JP2005021454A (ja) * 2003-07-03 2005-01-27 Hiroshi Nishida 高分子ミセルを有効成分とする組織接着剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583114A (en) * 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503883A (ja) * 1996-10-07 2000-04-04 ソシエテ アノニム ドゥ デベロプマン デ ウティリザシオン デュ コラジーン−エス.ア.デ.ユ.セ. マクロモレキュラーポリアルデヒドベースの接着剤組成物及びコラーゲンの架橋方法
US20050002893A1 (en) * 2001-10-24 2005-01-06 Helmut Goldmann Composition consisting of a polymer containing amino groups and an aldehyde containing at least three aldehyde groups
JP2005021454A (ja) * 2003-07-03 2005-01-27 Hiroshi Nishida 高分子ミセルを有効成分とする組織接着剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MO X. ET AL.: "Kaishitsu Gelatin to Polysaccharide kara no Shiketsuzai, Gelatin to Tato o Mochiita Shiketsuzai no Kaihatsu. (Hemostatic Agent from Modified Gelatin and Polysaccharides)", POLYMER PREPRINTS, JAPAN, vol. 48, no. 3, 1999, pages 566, XP003001573 *
See also references of EP1849486A4 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771738B2 (en) 2004-10-07 2014-07-08 Actamax Surgical Materials, Llc Polysaccharide-based polymer tissue adhesive for medical use
US8715636B2 (en) 2004-10-07 2014-05-06 Actamax Surgical Materials, Llc Polysaccharide-based polymer tissue adhesive for medical use
US8431114B2 (en) 2004-10-07 2013-04-30 Actamax Surgical Materials, Llc Polysaccharide-based polymer tissue adhesive for medical use
JP2008054858A (ja) * 2006-08-30 2008-03-13 Toyobo Co Ltd 2液型接着剤
JP2008093230A (ja) * 2006-10-13 2008-04-24 Kanagawa Acad Of Sci & Technol ゲル形成用組成物
US8282959B2 (en) 2006-11-27 2012-10-09 Actamax Surgical Materials, Llc Branched end reactants and polymeric hydrogel tissue adhesives therefrom
CN101583383B (zh) * 2006-11-30 2013-12-25 Bmg株式会社 具有自分解性的粉末-液体及粉末-粉末的2反应剂型的医疗用粘接剂
JPWO2008066182A1 (ja) * 2006-11-30 2010-03-11 株式会社ビーエムジー 自己分解性を有する粉体−液体及び粉体−粉体の2反応剤型の医療用接着剤
JP4571693B2 (ja) * 2006-11-30 2010-10-27 株式会社ビーエムジー 自己分解性を有する粉体−液体及び粉体−粉体の2反応剤型の医療用接着剤
KR101307722B1 (ko) 2006-11-30 2013-09-11 가부시끼가이샤 비엠지 자기 분해성을 갖는 분체­액체 및 분체­분체의 2 반응제형 의료용 접착제
EP2100628A1 (en) * 2006-11-30 2009-09-16 BMG Incorporated Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder
WO2008066182A1 (en) 2006-11-30 2008-06-05 Bmg Incorporated Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder
EP2100628A4 (en) * 2006-11-30 2012-01-04 Bmg Inc SELF-DEGRADABLE MEDICAL ADHESIVE OF A TWO-COMPONENT REACTIVE SYSTEM COMPRISING POWDER-LIQUID OR POWDER-POWDER MIXTURE
US8241609B2 (en) 2007-08-24 2012-08-14 E I Du Pont De Nemours And Company Method for embolization using liquid embolic materials
WO2009029443A3 (en) * 2007-08-24 2010-03-11 E. I. Du Pont De Nemours And Company Method for embolization using liquid embolic materials
WO2009029443A2 (en) * 2007-08-24 2009-03-05 E. I. Du Pont De Nemours And Company Method for embolization using liquid embolic materials
US8809301B2 (en) 2007-08-28 2014-08-19 Adelaide Research & Innovation Pty Ltd Surgical hydrogel
JP2010537711A (ja) * 2007-08-28 2010-12-09 アサナシアディス,セオドア 外科用ハイドロゲル
WO2009057802A1 (ja) * 2007-11-01 2009-05-07 Osaka City University β-1,3-グルカン由来ポリアルデヒド/ポリアミンハイドロゲル
US8246992B2 (en) 2007-11-01 2012-08-21 Osaka City University β-1,3-glucan-derived polyaldehyde/polyamine hydrogel
JP5660781B2 (ja) * 2007-11-01 2015-01-28 公立大学法人大阪市立大学 β−1,3−グルカン由来ポリアルデヒド/ポリアミンハイドロゲル
US8426492B2 (en) 2007-11-14 2013-04-23 Actamax Surgical Materials, Llc Oxidized cationic polysaccharide-based polymer tissue adhesive for medical use
US10420794B2 (en) 2008-04-24 2019-09-24 Medtronic, Inc. Polysaccharide particle mixture
US9561248B2 (en) 2008-04-24 2017-02-07 Medtronic, Inc. Method for rehydrating polysaccharide particles
US8551136B2 (en) 2008-07-17 2013-10-08 Actamax Surgical Materials, Llc High swell, long-lived hydrogel sealant
US9044529B2 (en) 2008-11-19 2015-06-02 Actamax Surgical Materials, Llc Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether
US8466327B2 (en) 2008-11-19 2013-06-18 Actamax Surgical Materials, Llc Aldehyde-functionalized polyethers and method of making same
US8703740B2 (en) 2008-12-01 2014-04-22 Shin Poong Pharmaceutical Co., Ltd. Composition for preventing adhesion
JP2012509706A (ja) * 2008-12-01 2012-04-26 シン・プーン・ファーマシューティカル・カンパニー・リミテッド 癒着防止用組成物
US8951989B2 (en) 2009-04-09 2015-02-10 Actamax Surgical Materials, Llc Hydrogel tissue adhesive having reduced degradation time
US8796242B2 (en) 2009-07-02 2014-08-05 Actamax Surgical Materials, Llc Hydrogel tissue adhesive for medical use
JP5123435B2 (ja) * 2009-08-11 2013-01-23 オリンパスメディカルシステムズ株式会社 治療用処置具、治療用処置装置および治療処置方法
WO2011018844A1 (ja) * 2009-08-11 2011-02-17 オリンパスメディカルシステムズ株式会社 治療用処置具、治療用処置装置および治療処置方法
US9907605B2 (en) 2009-08-11 2018-03-06 Olympus Corporation Medical treatment device, medical treatment system, and medical treatment method
JP2011092699A (ja) * 2009-09-29 2011-05-12 Chemo-Sero-Therapeutic Research Inst 組織癒着防止剤
US9254348B2 (en) 2011-12-30 2016-02-09 Samyang Biopharmaceuticals Corporation In situ crosslinking hydrogel comprising γ-polyglutamic acid and method for producing the same
US8859705B2 (en) 2012-11-19 2014-10-14 Actamax Surgical Materials Llc Hydrogel tissue adhesive having decreased gelation time and decreased degradation time
US10207021B2 (en) 2013-07-29 2019-02-19 Actamax Surgical Materials, Llc Low sweel tissue adhesive and sealant formulations
JP2015113467A (ja) * 2013-12-11 2015-06-22 ローム アンド ハース カンパニーRohm And Haas Company 多糖類の酸化からのポリアルデヒドの水性組成物およびそれらの熱硬化性樹脂
JP7219770B2 (ja) 2017-12-20 2023-02-08 マグル ケモスウェッド ホールディング アーベー 体液漏出検出水性組成物
JP2021506946A (ja) * 2017-12-20 2021-02-22 マグル ケモスウェッド ホールディング アーベー 体液漏出検出水性組成物
KR20200001722A (ko) * 2018-06-28 2020-01-07 에스케이바이오랜드 주식회사 2액형 지혈제 조성물 및 그 제조방법
KR102112539B1 (ko) * 2018-06-28 2020-05-19 에스케이바이오랜드 주식회사 2액형 지혈제 조성물 및 그 제조방법
JPWO2020017651A1 (ja) * 2018-07-20 2021-08-02 国立大学法人北陸先端科学技術大学院大学 光分解性ハイドロゲル
WO2020017651A1 (ja) * 2018-07-20 2020-01-23 国立大学法人北陸先端科学技術大学院大学 光分解性ハイドロゲル
JP7433654B2 (ja) 2018-07-20 2024-02-20 国立大学法人北陸先端科学技術大学院大学 光分解性ハイドロゲル
RU2768711C1 (ru) * 2018-08-31 2022-03-24 СиДжей ЧеилДжеданг Корпорейшн Клеевой состав и способ его получения
WO2020122007A1 (ja) * 2018-12-14 2020-06-18 株式会社ビーエムジー 2反応剤型のシート状組織接着補強材
JP2020122066A (ja) * 2019-01-30 2020-08-13 国立研究開発法人産業技術総合研究所 リグニンスルホン酸とε−ポリリジンを成分とする接着剤
JP7090289B2 (ja) 2019-01-30 2022-06-24 国立研究開発法人産業技術総合研究所 リグニンスルホン酸とε-ポリリジンを成分とする接着剤
CN110935058A (zh) * 2019-11-20 2020-03-31 山东百多安医疗器械有限公司 一种双组份快速止血医用胶及其制备方法
US11471141B2 (en) 2020-06-05 2022-10-18 Bmg Incorporated Powder spray device and medical adhesive excellent in self-decomposability and adhesiveness
CN115920120A (zh) * 2022-12-01 2023-04-07 江南大学附属医院 促进伤口再生性愈合的水凝胶复合物及其制备方法

Also Published As

Publication number Publication date
JPWO2006080523A1 (ja) 2008-06-19
KR101201056B1 (ko) 2012-11-14
EP1849486A1 (en) 2007-10-31
EP1849486B1 (en) 2015-04-08
KR20070104446A (ko) 2007-10-25
JP4092512B2 (ja) 2008-05-28
CN101111272A (zh) 2008-01-23
CN101111272B (zh) 2010-09-29
EP1849486A4 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4092512B2 (ja) 自己分解性を有する医療用2液反応型接着剤、及び医療用樹脂
US7834065B2 (en) Medical-use two part reactive adhesive and medical-use resin having self-degradation property
Bhagat et al. Degradable adhesives for surgery and tissue engineering
Zhu et al. Bioadhesives for internal medical applications: a review
Rahimnejad et al. Mussel-inspired hydrogel tissue adhesives for wound closure
Scognamiglio et al. Adhesive and sealant interfaces for general surgery applications
KR101307722B1 (ko) 자기 분해성을 갖는 분체­액체 및 분체­분체의 2 반응제형 의료용 접착제
Bu et al. Cohesion mechanisms for bioadhesives
Bouten et al. The chemistry of tissue adhesive materials
Thi et al. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications
JP5053758B2 (ja) 急速ゲル化生体適合性ポリマー組成物
US20210338577A1 (en) Bio-inspired degradable tough adhesives for diverse wet surfaces
US20190083676A1 (en) Composite bioadhesive sealant
WO1997029715A1 (en) Compositions and methods for sealing tissue and preventing post-surgical adhesions
JP2019216755A (ja) 止血材
CN110801528A (zh) 一种硬脊膜封合水凝胶及其制备方法与应用
Vernengo Adhesive materials for biomedical applications
Shao et al. Laponite stabilized endogenous antibacterial hydrogel as wet-tissue adhesive
Grosjean et al. Degradable Bioadhesives Based on Star PEG–PLA Hydrogels for Soft Tissue Applications
KR102374219B1 (ko) 제어가능하게 분해가능한 조성물 및 방법
KR102188290B1 (ko) 접착력 및 응집력이 향상된 수화젤형 조직접착제의 제조방법 및 이에 의해 제조된 조직접착제
US10780195B2 (en) Controllably degradable compositions and methods
Liu Design of Robust Hydrogel Based on Mussel-Inspired Chemistry
Zhou et al. Using extracellular matrix as the bio-glue for wound repair in the surgery
WO2015088275A1 (ko) 생분해성 의료용 접착제 또는 실란트 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500647

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680003634.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077019753

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006712686

Country of ref document: EP