WO2006077795A1 - サンプリング周波数変換装置 - Google Patents

サンプリング周波数変換装置 Download PDF

Info

Publication number
WO2006077795A1
WO2006077795A1 PCT/JP2006/300449 JP2006300449W WO2006077795A1 WO 2006077795 A1 WO2006077795 A1 WO 2006077795A1 JP 2006300449 W JP2006300449 W JP 2006300449W WO 2006077795 A1 WO2006077795 A1 WO 2006077795A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
sampling
sampling frequency
signal
digital
Prior art date
Application number
PCT/JP2006/300449
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Toki
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2006553878A priority Critical patent/JP4449007B2/ja
Publication of WO2006077795A1 publication Critical patent/WO2006077795A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0628Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing the input and output signals being derived from two separate clocks, i.e. asynchronous sample rate conversion

Definitions

  • the present invention relates to a sampling frequency conversion device that converts a sampling frequency of a digital signal.
  • Sampling rate conversion sampling frequency conversion
  • digital signals are resampled and frequency converted
  • sampling rate converter for performing such sampling frequency conversion (sampling rate converter) ⁇ sampling frequency converter]
  • sampling frequency converter a conversion device called sampling frequency converter
  • the sampling rate conversion device disclosed in Japanese Patent Laid-Open No. 11-17498 includes an oversampling unit, a conversion filter unit, a low-pass filter, and a downsampling unit as shown in FIG.
  • the output signal DOUT is generated by performing sampling frequency conversion with a rational number ratio (L / M) by L-sampling up and 1 / M times downsampling.
  • the conversion filter unit and the low-pass filter force function as an interpolation / decimation filter for removing imaging and aliasing components that occur during upsampling and downsampling. .
  • each filter coefficient of each filter is determined in advance in association with each specific sampling rate.
  • each filter coefficient is determined based on the predetermined filter coefficient.
  • An output signal DOUT in which the filter characteristics of the filter are exhibited and the imaging component and aliasing component are reduced, that is, an output signal DOUT that can restore the input signal DIN is generated.
  • sampling frequency converter disclosed in Japanese Patent Laid-Open No. 2003-324337 As shown in FIG. 1 of the same publication, an input signal data sequence A (n) discretized at a sampling frequency fl is input, a shift register that shifts in time and outputs, and the sampling frequency fl And a phase comparison circuit that calculates the phase difference at the sampling time between the sampling frequency f2 and the desired sampling frequency f2 to be converted, and an interpolation circuit that interpolates the output of the shift register with a coefficient corresponding to the phase difference. It has been.
  • the interpolation circuit performs a product-sum operation on the predetermined coefficient corresponding to the above-described phase difference and the amplitude value of the input signal data sequence A (n) output by shifting the shift register force, A data string at the sampling time at the sampling frequency f2, that is, a data string B (n) frequency-converted to the sampling frequency f2 is generated.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-17498
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-324337
  • the conventional sampling rate conversion device disclosed in Japanese Patent Application Laid-Open No. 11-17498 discloses that the filter coefficients of the filters 3 and 4 are determined in advance in association with each specific sampling rate. Therefore, there is a problem that frequency conversion cannot be performed at a sampling rate other than a specific sampling rate.
  • an incoming radio wave from a broadcast station is received by a digital broadcast receiver, and frequency fluctuations occur due to fading, etc., and the baseband signal is resampled to synchronize with the broadcast station side.
  • the conventional sampling rate converter has a limitation that it can only perform the frequency conversion function for a specific sampling rate. There has been a problem that it becomes impossible to demodulate a demodulated signal having a desired specified frequency in synchronization.
  • this sampling rate conversion device has to increase the number of necessary filter coefficients as the time resolution increases, so that, for example, filter coefficient data is stored in advance. It is necessary to greatly increase the capacity of storage means such as RAM and ROM. For this reason, if sampling frequency conversion is to be performed with so-called high resolution, there is a problem that it is difficult to realize due to an increase in the size of the device configuration.
  • the sampling frequency conversion device disclosed in Japanese Patent Application Laid-Open No. 2003-324337 has a large divergence (error) between the input signal data string A (n) and the data string B (n) after the sampling frequency conversion.
  • the technology should be applied to technical fields that require so-called high-accuracy sampling frequency conversion, such as demodulation processing in digital broadcast receivers, and audio processing and image processing that require high quality. There is a problem that is difficult.
  • the sampling frequency can be adaptively converted according to a desired sampling rate, and the sampling frequency can be obtained with a desired time resolution. It is an object of the present invention to provide a sampling frequency conversion device that can perform conversion and can prevent the enlargement of the device configuration and the like from improving the functions.
  • the invention according to claim 1 is a sampling frequency converter for converting a sampling frequency of a digital signal, the digital filter for digitally filtering the digital signal, a signal having a target frequency, and the digital signal. Based on the phase difference detecting means for detecting the phase difference between the sampling times and the phase difference detected by the phase difference detecting means,
  • Filter coefficient calculating means for calculating a filter coefficient of the digital filter based on the calculated filter coefficient and setting a filter characteristic of the digital filter at a sampling time of the signal of the target frequency.
  • the digital signal is digitally filtered based on the set filter characteristic, thereby converting the digital signal into an output signal having a sample train force of a sampling frequency synchronized with the target frequency.
  • the invention according to claim 2 is the sampling frequency converter according to claim 1, wherein the digital signal is up-sampled and digital low-pass filtering is performed based on a predetermined low-pass filter characteristic. And a rate conversion means for generating an intermediate generation signal having a sampling frequency higher than that of the digital signal and supplying the intermediate generation signal to the digital filter, wherein the phase difference detection means includes the intermediate generation signal and the target frequency. It is characterized in that a phase difference between sampling times with the signal of is detected.
  • the invention according to claim 3 is the sampling frequency conversion device according to claim 1 or 2, wherein the filter coefficient calculated by the filter coefficient calculating means is weighted by a window function. And a window function calculating means for calculating a filter coefficient for setting a filter characteristic of the digital filter.
  • FIG. 1 is a block diagram showing a configuration of a sampling frequency conversion device according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a sampling frequency conversion process of the sampling frequency converter shown in FIG. 1.
  • FIG. 3 is a block diagram showing a configuration of a sampling frequency converter according to the first embodiment.
  • FIG. 4 is a diagram for explaining the sampling frequency conversion process of the sampling frequency converter shown in FIG. 3.
  • FIG. 5 is a block diagram illustrating a configuration of a sampling frequency converter according to a second embodiment.
  • FIG. 1 A preferred embodiment of the present invention will be described with reference to FIG. 1 and FIG.
  • Fig. 1 (a) and (b) are block diagrams showing the configurations of the two aspects of the sampling frequency converter of this embodiment, and Figs. 2 (a) and (b) are the sampling frequency conversion processes in this sampling frequency converter. It is a figure for demonstrating.
  • a sampling frequency conversion device 1 shown in FIG. 1 (a) includes a first rate conversion unit 2, a second rate conversion unit 6 including a phase difference detection unit 3, a filter coefficient calculation unit 4, and a digital filter 5. It is comprised.
  • the first rate conversion unit 2 generates an intermediate generation signal U having a sampling frequency fa that is an integer a times from the input signal X of the sampling frequency fs, and the second rate conversion unit 6 generates the intermediate generation signal U.
  • the output signal Y having the desired sampling frequency fb is generated by low-pass filtering to convert the input signal X having the sampling frequency fs into the output signal Y having the sampling frequency fb.
  • the first rate conversion unit 2 inputs an input signal X, which is a sample string discretized at the sampling frequency fs, in synchronization with the clock signal CKs, and inputs each sample of the input signal X.
  • the imaging component is removed by low-pass filtering the up-sampling signal, and an intermediate generation signal U having a sampling frequency fa that is a times the sampling frequency fs is generated and output.
  • the phase difference detection unit 3 of the second rate conversion unit 6 includes a clock signal CKb determined as a frequency fb equal to the sampling frequency fb of the output signal Y (hereinafter referred to as "target frequency"), and the first
  • the clock signal CKa indicating the sampling frequency fa (that is, a X fs) of the intermediate generation signal U set by the rate conversion unit 2 during upsampling is input.
  • the sampling times tb, ts and ta of the clock signal CKb, the input signal X and the intermediate generation signal U are detected, and further, the sampling time ta is used as a reference.
  • the time difference between the sampling times ta and tb (hereinafter referred to as “phase difference” t) is detected.
  • the phase difference detection unit 3 detects the frequency difference (fb ⁇ fa) between the target frequency fb and the sampling frequency fa of the intermediate generation signal U as the phase difference p between the sampling times ta and tb. It becomes.
  • adjacent samples of the input signal X in every sampling period (1 / fs) are represented by black circles ( ⁇ ) X (0), X (l), ..., and each sample of the intermediate generation signal U that has been rate-converted to an integer a times (for example, 3 times) is indicated by a black circle ( ⁇ ) U (0), U (l), U (2), U (3), U (4), ..., the sampling time that is the start time of each sampling period (1 / fs) is ts, and the sampling time of the clock signal CKb is tbl, tb2, When tb3, ...
  • the phase difference detector 3 detects each sampling time of the clock signals CKa, CKb one by one.
  • the sampling time tbl is detected, the sampling time ts in the sampling period (1 / fs) to which the sampling time tbl belongs and the sampling time tal of the sample U (l) located at the forefront from the sampling time tbl are detected.
  • sampling time ts The difference (tsb ⁇ tsa) between the time tsb between the sampling times ts and tbl and the time tsa between the sampling times ts and tal is detected as the phase difference p.
  • phase difference detection unit 3 detects the sampling time tb2 of the clock signal CKb
  • the phase difference detection unit 3 detects the phase difference p based on the sampling times tb2, ts, and ta2, and calculates the sampling time tb3.
  • the phase difference P is detected based on the sampling times tb3, ts, and ta3, and the same detection process is repeated thereafter.
  • the filter coefficient calculation unit 4 introduces the detected phase difference p into the calculation formula represented by the following formula (1) and performs calculation processing, thereby performing an nth-order (N-first-order) digital filter.
  • ⁇ ⁇ is derived and supplied to the digital filter 5 and its filter coefficient an (0 ⁇ —1
  • the coefficient p in the above equation (1) is the above-described phase difference.
  • the coefficient m is the sampling frequency conversion resolution.
  • the coefficient N is the number of filter coefficients an (1 ⁇ n ⁇ N—1) that take a cyclic value for the sample sequence of the intermediate generation signal U.
  • the coefficients H and H (l ⁇ k ⁇ N— 1) are
  • the frequency characteristic of the digital filter 5 is set to a predetermined low-pass filter characteristic H (e ifflT ).
  • the sampling frequency fs of the input signal X is an unknown variable
  • the reciprocal (1 / fs) of the sampling frequency fs is the sampling period T
  • the angular frequency is co s
  • the conversion ratio of the first rate conversion unit 2 Determine a as a predetermined value (for example, 2) and pass the signal component of the input signal X generated on the low frequency band side with the angular frequency (co s / 2) as the boundary (0 ⁇ I ⁇ I ⁇ co s / 2), and the high frequency band side with the angular frequency (a—1 / 2) co s as the boundary is the stopband (a—1 / 2) co s ⁇
  • the standard low-pass filter characteristic H (e jfflT ) is determined as I ⁇ I ⁇ m co s / 2).
  • the digital filter 5 performs low-pass filtering on the intermediate generation signal U that has a sampling frequency fa that is an integer a times the sampling frequency fs at a high sampling frequency including the phase difference p.
  • the filter coefficient an (1 ⁇ n) is obtained by performing an inverse discrete Fourier transform (IDFT) on the low-pass filter characteristic H (e ifflT ) under the frequency (0 ⁇ I ⁇ I ⁇ m co s / 2).
  • IDFT inverse discrete Fourier transform
  • the digital filter 5 is formed of an nth-order digital low-pass filter that exhibits a predetermined frequency characteristic (low-pass filter characteristic) by the filter coefficient of the above formula (1), and is synchronized with the clock signal CKa.
  • the intermediate generation signal U is input and low-pass filtering is performed.
  • the digital filter 5 varies its low-pass filter characteristic according to the filter coefficient ⁇ ⁇ (0 ⁇ —1) calculated by the filter coefficient calculation unit 4 at the sampling time tb, and the intermediate generation signal U Generate and output an interpolated sample at sampling time tb by finite dissipative convolution with the sample sequence and filter coefficient ⁇ ⁇ (0 ⁇ —1).
  • the digital filter 5 corresponds to the respective phase differences p detected at the sampling times tbl, tb2, tb3, etc. shown in FIG. 2 (a), and the sampling times tbl, tb2, ⁇ 3,.
  • Samples Y (0), Y (l) synchronized with the sampling frequency fb are generated as shown in Fig. 2 (a) and (b).
  • Y (2), ⁇ (3), ... Outputs an output signal ⁇ ⁇ that has equal force. Since an output signal ⁇ with a sampling frequency fb is output, sampling frequency conversion with a conversion ratio (fb / fs) is realized.
  • the phase difference detection unit 3 the filter coefficient calculation unit 4, and the interpolation sample of the output signal Y are obtained.
  • the second rate converter 6 having the digital filter 5 for generating, the sampling times ta and tm between the clock signal CKb having the target frequency fb and the intermediate generation signal U having the sampling frequency fa higher than the input frequency fs.
  • the phase difference p is detected, the phase difference p is derived from the above equation (1) corresponding to the inverse discrete Fourier transform of the predetermined Rhonofilter characteristic H (e jfflT ).
  • the sampling frequency conversion device 1 of the present embodiment specifies that the target frequency fb of the clock signal CKb is not limited to the sampling frequency conversion only at a specific sampling rate determined in advance. Or, if adjusted, etc., the calculation process for deriving the filter coefficient a;
  • an arbitrary sampling rate can be freely designated for the user or the like.
  • a digital broadcast receiver receives an incoming radio wave from a broadcasting station, and re-samples a baseband signal that has a frequency variation due to fading or the like to synchronize with the broadcasting station side.
  • the sampling frequency converter 1 of this embodiment is used in a demodulator circuit for demodulating a demodulated signal having a desired specified frequency
  • the baseband signal is obtained by matching the target frequency fb of the clock signal CKb with the specified frequency.
  • the input signal X it is possible to generate a demodulated signal (ie, output signal) Y having a specified frequency.
  • the sampling frequency conversion device 1 of the present embodiment has the first rate conversion unit 1 before the second rate conversion unit 6 to increase the sampling rate of the input signal X! Then, digital filtering is performed to generate an intermediate generation signal U having a high sampling frequency fa, so that the order n of the digital filter 5 provided in the second rate conversion unit 6 can be reduced. Therefore, the configuration of the digital filter 5 can be simplified, and the configuration of the filter coefficient calculation unit 4 for calculating the filter coefficient of the digital filter 5 can be simplified and the amount of calculation can be reduced. .
  • sampling frequency converters generally require low-pass filtering in order to remove image components and aliasing and suppress generation during rate conversion, and the configuration of a digital low-pass filter that performs the low-pass filtering. Simplification and reduction of computational complexity are extremely important.
  • the first rate conversion unit 2 is provided in the previous stage of the second rate conversion unit 6 so that the signal component occupying the low frequency band and the image occupying the high frequency band are obtained.
  • Intermediate generated signal in which unwanted noise components such as jing components are separated through a wide frequency range Since U can be generated, the filter characteristic of the digital filter 5 is such that the low frequency band occupied by the signal component of the intermediate generated signal U is the pass band, and the high frequency band occupied by the imaging component is the stop band. ! With a low-pass filter characteristic with a frequency range as the transition region, it is no longer necessary to sharpen the cutoff characteristic in that transition region.
  • sampling frequency conversion device 1 having a basic configuration provided with one second rate conversion unit 6 has been described. As shown in the block diagram of FIG. By connecting a plurality of rate conversion units 6 (1), 6 (2), ..., 6 (j) having the same configuration as the second rate conversion unit 6 in parallel, V A sampling frequency converter having a polyphase structure may be configured.
  • the intermediate generation signal U is input in parallel to the rate conversion units 6 (1), 6 (2),..., 6 (j), and the rate conversion units 6 (1), 6 (2 ), ..., 6 (j)
  • the clock signals CKbl, CKb2, ..., CKbj to be supplied to the phase difference detector are set to different target frequencies fbl, fb2, ..., fbj as appropriate.
  • each output signal Yl, Y2,..., Yj output from each rate converter 6 (1), 6 (2),..., 6 (j) is output through a rotator (commutator) 7. In this way, the final output signal Yout can be generated to construct a polyphase-structured sampling frequency converter.
  • each rate conversion unit 6 (1), 6 (6) is compared with the case where only one second rate conversion unit 6 shown in FIG. 1 (a) is provided. (2),..., 6 (j) can be processed at a low speed and can reduce the amount of calculation.
  • each of the two sampling frequency conversion devices 1 described with reference to FIGS. 1 (a) and 1 (b) has a so-called hardware structure using a semiconductor integrated circuit device such as an IC, MSI, or LSI.
  • DSP digital signal processor
  • MPU microprocessor.
  • FIG. 3 is a block diagram showing the configuration of the sampling frequency converter of the present embodiment, and the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals.
  • FIG. 4 is a diagram for explaining the sampling frequency conversion process in the sampling frequency conversion apparatus of the present embodiment.
  • the sampling frequency conversion device 1 has a first rate conversion unit 2 and a second rate conversion unit 6, and each conversion unit 2, 6 has a function by executing a predetermined computer program. It is formed by a digital signal processor (DSP) that performs its functions.
  • DSP digital signal processor
  • the first rate conversion unit 2 includes an interpolator 2a and an interpolation filter 2b
  • the second rate conversion unit 6 includes a phase difference detection unit 3, a filter coefficient calculation unit 4, and Constructed with digital filter 5!
  • the interpolator 2a receives the input signal X discretized at the sampling frequency fs and the clock signal CKs indicating the sampling frequency fs, and inputs the input signal X based on the value of the integer a specified externally.
  • Generate sampling signal Su [0053]
  • Interpolation filter 2b is formed of a digital low-pass filter for removing imaging components mixed in upsampling signal Su as a result of upsampling, and is schematically shown in FIG.
  • the interpolation filter 2b may be created by a generally known method that exhibits the low-pass filter characteristics. Thus, when the interpolation filter 2b is created, the interpolation filter 2b generates and outputs an intermediate generation signal U from which the imaging component has been removed from the sampling signal Su.
  • the phase difference detection unit 3 uses the clock frequency CKb determined by the target frequency fb, and the sampling frequency of the intermediate generation signal U set by the interpolator 2a and the interpolation filter 2b during upsampling.
  • a clock signal CKa indicating fa ie, a X fs
  • FIG. 2 (a) the sampling times ta, ts, and tb of the clock signal CKa, the input signal X, and the intermediate generation signal U are detected based on these clock signals CKa and CKb. Further, the time difference (phase difference) P between the sampling times ta and tb is detected with reference to the sampling time ta.
  • the filter coefficient calculation unit 4 interpolates the detected phase difference p into the calculation expression represented by the following expression (2) and performs calculation processing, thereby interpolating the clock signal CKb at the sampling time tb.
  • the filter coefficients a to a of the nth-order digital filter 5 for generating the sample are derived and
  • the low-pass filter characteristics of digital filter 5 are updated and set with the filter coefficients an (0 ⁇ n ⁇ N— 1) derived from.
  • the above equation (2) is determined as follows. First, considering the sampling rate conversion for the up-sampling signal Su, the low-pass filter characteristic Ha (e ifflT ) of the digital filter 5 is determined as in the following equation (3).
  • the sampling frequency fs of the input signal X is an unknown variable
  • the reciprocal (1 / fs) of the sampling frequency fs is the sampling period T
  • the angular frequency is co s
  • Standard low-pass filter characteristic Ha e jfflT with frequency (a— 1/2) co s as the boundary and high frequency band side becomes stop band (a— 1/2) ⁇ s ⁇ I ⁇
  • the interpolation filter 2b performs low-pass filtering on the up-sampled signal Su having a sampling frequency fa that is an integer a times the sampling frequency fs, the frequency (m X fs )
  • the frequency (m X fs ) To calculate m XN impulse responses hn by inverse discrete Fourier transform (IDFT) of the low-pass filter characteristics Hm (e i ⁇ uT )
  • the inverse discrete Fourier transform is performed on the frequency sample H.
  • the unknown phase difference p is set as a variable within a range represented by 0 ⁇ p ⁇ m, and the phase difference p is set to the impulse response hn (that is, h to h) shown in the above equation (5).
  • the filter coefficient an of the digital filter 5 (ie, ⁇ to ⁇ ) is obtained.
  • the digital filter 5 includes a shift register 5a including N—one delay element, in which the time of the reciprocal (1 / fa) of the sampling frequency fa is a unit sample delay (z— 1 ), and each delay element Multiplying the input / output by the filter coefficients ⁇ to ⁇ calculated by the filter coefficient calculator 4
  • the intermediate generation signal U is low-pass filtered based on the filter characteristics shown in Fig. 4 (d) to generate an interpolation sample at the sampling time ti e, and the output signal Y Output as.
  • the filter coefficient calculation unit 4 uses the filter coefficient ⁇ of the digital filter 5 based on the phase difference p as in the above-described embodiment. Since ⁇ is calculated, the problem of inability to convert the sampling frequency at a predetermined sampling rate can be solved, and the sampling rate can be freely specified. Thus, an output signal Y having a desired sampling frequency fa can be generated.
  • the sampling frequency conversion device 1 provided with one second rate conversion unit 6 has been described.
  • the second rate conversion unit 6 and A so-called polyphase structure sampling frequency converter may be configured by connecting a plurality of rate converters having the same configuration in parallel. If the polyphase structure is profitable, it is possible to realize a sampling frequency converter that can enjoy more benefits from the polyphase structure.
  • FIG. 5 is a block diagram showing the configuration of the sampling frequency converter of the present embodiment, and the same or corresponding parts as those in FIG. 1 (a) are indicated by the same reference numerals.
  • the sampling frequency conversion device 1 is formed by a rate conversion unit 6 having a window function calculation unit 7 in addition to a phase difference detection unit 3, a filter coefficient calculation unit 4, and a digital filter 5.
  • the direct input signal X without the first rate conversion unit 2 shown in FIG. 1A is input, and the rate-converted output signal Y is generated and output.
  • phase difference detection unit 3 Similarly to the phase difference detection unit 3 shown in FIG.
  • the sampling time tb of the lock signal CKb and the sampling time ts of the input signal X at the sampling frequency fs are detected, and the difference (tb-ts) between the sampling times ts and tb is detected as the phase difference p.
  • the sampling frequency conversion device 1 of the present embodiment includes the first rate conversion unit 2 shown in FIG. 1 (a), so that the sampling of the input signal X and the clock signal CKb is performed.
  • the difference (tb-ts) between time ts and tb is detected as phase difference p.
  • the filter coefficient calculation unit 4 performs calculation processing by introducing the phase difference P supplied from the phase difference detection unit 3 in synchronization with the sampling time ta into the calculation expression represented by the following equation (6).
  • the impulse response ⁇ ⁇ for deriving the filter coefficient ⁇ ⁇ of the nth-order digital filter 5 is calculated and supplied to the window function calculation unit 7.
  • n 0, 1, 2 ' ⁇ ', M— 1 ⁇ (6)
  • Equation (6) is determined as follows. First, a part of the impulse response gn of the ideal filter with a negative phase expressed by the following equation (7) is used as the filter coefficient of the nth-order digital filter 5.
  • n 0, 1, 2 '-', N-1 ⁇ (9)
  • the window function calculator 7 generates an impulse response ⁇ ⁇ (0
  • the filter coefficient an (0 ⁇ ) of the digital filter 5 is obtained by performing a weighting operation using the window function Wn of the hamming window expressed by the following equation (10): n ⁇ N — Calculate 1).
  • the window function calculation unit 7 weights the window function Wn shown in the above equation (10) to the impulse response ⁇ ⁇ generated by the filter coefficient calculation unit 4 shown in the above equation (6).
  • the filter coefficient an expressed by the following equation (11) is generated and supplied to the digital filter 5.
  • the digital filter 5 is formed of an nth-order (N-first-order) FIR type digital filter, and an impulse response ex n supplied from the window function calculation unit 7 in synchronization with the sampling time tb. And the sample sequence of the input signal X are subjected to a finite discrete convolution operation to generate an interpolation sample at the sampling time tb and output it as the output signal Y.
  • the filter coefficient calculation unit 4 adds the phase difference p to hn that is a part of the impulse response of the zero-phase ideal filter. , The impulse response ⁇ ⁇ is calculated, and the window function calculation unit 7 Then, the impulse response an of the digital filter 5 is calculated by weighting the Hamming window function Wn to the impulse response ⁇ . Then, the digital filter 5 performs a finite discrete convolution operation between the impulse response an and the sample sequence of the input signal X, thereby synchronizing with the sampling time tb of the clock signal CKb having the target frequency fb. By generating samples, the input signal X with sampling frequency fs is converted to sampling frequency with output signal Y with sampling frequency fb.
  • the filter coefficient calculation unit 3 and the window function calculation unit 7 calculate the filter coefficient an of the digital filter 5 based on the phase difference p. Therefore, the problem that the sampling frequency can only be converted at a predetermined sampling rate can be solved, and the output signal Y of the desired sampling frequency fb can be generated by freely specifying the sampling rate.
  • the window function computing unit 7 weights the impulse response j8 n (0 ⁇ n ⁇ N—1) based on the Hamming window window function Wn expressed by the above equation (10).
  • the force described in the case of performing weighting may be weighted by other window functions, such as a hanning window.
  • the first rate conversion unit 2 is provided in the previous stage of the rate conversion unit 6 in the same manner as shown in FIG. 1 (a), and the input signal X of the sampling frequency fs is provided by the first rate conversion unit 2. May be generated as an intermediate generation signal U having a sampling frequency fa that is an integer a times, and the intermediate generation product number U may be supplied to the rate conversion unit 6 as an input signal.
  • the phase difference detection unit 3 shown in FIG. 5 detects the phase difference p from the sampling time of the intermediate generation signal U and the sampling time tb of the clock signal CK b, and It may be supplied to the filter coefficient calculation unit 4 and the window function calculation unit 7.
  • sampling frequency converter 1 provided with one rate converter 6 As shown in Fig. 1 (b), a plurality of rate converters having the same configuration as the rate converter 6 A so-called polyphase sampling frequency converter may be configured by connecting the units in parallel. With a powerful polyphase structure, it is possible to realize a sampling frequency converter that can enjoy more of the benefits of the polyphase structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

 本発明は、サンプリング周波数を適宜に調整することができ、より機能の向上を図ったサンプリング周波数変換装置を提供することを目的とする。  中間生成信号Uとしてのディジタル信号をディジタルフィルタリングするディジタルフィルタ5と、目標周波数fbのクロック信号CKbとサンプリング周波数faの中間生成信号Uとのサンプリング時刻ta,tb間の位相差pを検出する位相差検出部3と、位相差pに基づいてディジタルフィルイタ5のフィルタ係数α0~αN-1を演算し、クロック信号CKbのサンプリング時刻tbにおけるディジタルフィルタ5のフィルタ特性を設定するフィルタ係数演算部4を備え、更に、入力信号Xを整数a倍にアップサンプリングして所定のローパスフィルタ特性に基づいてディジタルローパスフィルタリングを行うことで中間生成信号Uを生成するレート変換部2を設ける。ディジタルフィルタ5がフィルタ係数α0~αN-1で設定されるフィルタ特性に基づいて中間生成信号Uをディジタルフィルタリングすることで、サンプリング周波数fsの入力信号Xをサンプリング周波数fbの出力信号Yへとサンプリング周波数変換する。

Description

明 細 書
サンプリング周波数変換装置
技術分野
[0001] 本発明は、ディジタル信号のサンプリング周波数を変換するサンプリング周波数変 換装置に関する。
背景技術
[0002] ディジタル放送をはじめとする通信分野や、音声処理、画像処理等の分野では、デ イジタル信号を再サンプリングして周波数変換するサンプリングレートコンバージョン( サンプリング周波数変換)技術が基盤技術として重要となって 、る。
[0003] 従来、こうしたサンプリング周波数変換を行うためのサンプリングレート変換装置 (sa mpling rate convertor) Λサンプリング周波数変換装]^、 sampling frequency converto r)と称されている変換装置として、特開平 11-17498号公報、特開 2003-324337 号公報に開示されたものがある。
[0004] 特開平 11-17498号公報に開示されているサンプリングレート変換装置は、同公 報の図 1に示されているように、オーバーサンプリング部と変換フィルタ部、ローパス フィルタ及びダウンサンプリング部を有して構成され、 L倍のアップサンプリングと 1/ M倍のダウンサンプリングにより、有理数比(L/M)でのサンプリング周波数変換を行 つて出力信号 DOUTを生成するようになって 、る。
[0005] また、変換フィルタ部とローパスフィルタ力 アップサンプリングとダウンサンプリング に際して生じるイメージイング (imaging)とエイリアシング (aliasing)成分を除去するた めのインターポレーシヨン/デシメーシヨンフィルタとして機能している。
[0006] そして、特定のサンプリングレート毎に対応付けて、各フィルタのフィルタ係数が予 め決められており、所望のサンプリングレートを指定すると、その予め決められている フィルタ係数に基づ 、て各フィルタのフィルタ特性が発揮され、イメージイング(imagin g)成分とエイリアシング (aliasing)成分を低減した出力信号 DOUT、すなわち、入力 信号 DINを復元し得る出力信号 DOUTを生成するようにして ヽる。
[0007] 特開 2003-324337号公報に開示されているサンプリング周波数変換装置は、 同公報の図 1に示されて 、るように、サンプリング周波数 flで離散化された入力信号 データ列 A(n)を入力し、時間的にシフトして出力するシフトレジスタと、該サンプリング 周波数 flと周波数変換しょうとする所望のサンプリング周波数 f2とのサンプリング時 刻における位相差を求める位相比較回路と、位相差に対応した係数でシフトレジスタ の出力に補間処理を行う補間回路とを有して構成されて 、る。
[0008] そして、補間回路が、上述の位相差に対応した所定の係数とシフトレジスタ力 シフ トして出力される入力信号データ列 A(n)の振幅値とを積和演算することにより、サン プリング周波数 f 2でのサンプリング時刻におけるデータ列、すなわち、サンプリング周 波数 f2に周波数変換したデータ列 B(n)を生成している。
[0009] 特許文献 1 :特開平 11-17498号公報
特許文献 2:特開 2003- 324337号公報
発明の開示
発明が解決しょうとする課題
[0010] ところで、特開平 11-17498号公報に開示されている従来のサンプリングレート変 換装置は、上述したように各フィルタ 3, 4のフィルタ係数が特定のサンプリングレート 毎に対応付けて予め決められているため、特定のサンプリングレート以外でのサンプ リングレートで周波数変換をすることができないという課題がある。
[0011] 例えば具体的事例として、放送局からの到来電波をディジタル放送受信機で受信 し、フェージング等の影響により周波数変動を生じて 、るベースバンド信号を再サン プリングして放送局側と同期した所望の規定周波数の復調信号を復調しょうとする場 合、従来のサンプリングレート変換装置では、特定のサンプリングレートに対してのみ 周波数変換の機能を発揮し得るという制限があるため、放送局側と同期した所望の 規定周波数の復調信号を復調等することができなくなるという課題があった。
[0012] また、このサンプリングレート変換装置は、時間分解能が細力べなるほど、必要とす るフィルタ係数の数を多くしなければならな!/、ため、例えばフィルタ係数のデータを予 め記憶しておくための RAMや ROM等の記憶手段の容量を大幅に増大させる必要 がある。このため、いわゆる高分解能でサンプリング周波数変換を行おうとすると、装 置構成の大型化等により実現が困難となるという問題がある。 [0013] 特開 2003-324337号公報に開示されているサンプリング周波数変換装置は、 入力信号データ列 A(n)とサンプリング周波数変換後のデータ列 B(n)との乖離 (誤差) が大きくなるという課題があり、いわゆる高精度のサンプリング周波数変換が必要とさ れる技術分野、例えばディジタル放送受信機での復調処理や、ハイクオリティが要求 される音声処理や画像処理等の技術分野に適用することが難しいという問題がある。
[0014] 本発明はこうした従来の課題に鑑みてなされたものであり、例えば所望のサンプリン グレートに応じて適応的にサンプリング周波数変換を行うことができ、また、所望の時 間分解能でのサンプリング周波数変換を行うことができ、また、装置構成の大型化等 を未然に防止することができる等、従来より機能の向上を図ったサンプリング周波数 変換装置を提供することを目的とする。
課題を解決するための手段
[0015] 請求項 1に記載の発明は、ディジタル信号のサンプリング周波数を変換するサンプ リング周波数変換装置であって、前記ディジタル信号をディジタルフィルタリングする ディジタルフィルタと、 目標周波数の信号と前記ディジタル信号とのサンプリング時刻 間の位相差を検出する位相差検出手段と、前記位相差検出手段が検出した前記位 相差に基づいて、
前記ディジタルフィルタのフィルタ係数を演算し、演算したフィルタ係数に基づ 、て前 記目標周波数の信号のサンプリング時刻における前記ディジタルフィルタのフィルタ 特性を設定するフィルタ係数演算手段とを備え、前記ディジタルフィルタが、前記設 定されるフィルタ特性に基づいて前記ディジタル信号をディジタルフィルタリングする ことによって、前記ディジタル信号を前記目標周波数に同期したサンプリング周波数 のサンプル列力も成る出力信号にサンプリング周波数変換することを特徴する。
[0016] 請求項 2に記載の発明は、請求項 1に記載のサンプリング周波数変換装置におい て、前記ディジタル信号をアップサンプリングして所定のローパスフィルタ特性に基づ V、てディジタルローパスフィルタリングを行うことで、前記ディジタル信号より高 、サン プリング周波数の中間生成信号を生成して、前記ディジタルフィルタに供給するレー ト変換手段を更に備え、前記位相差検出手段は、前記中間生成信号と前記目標周 波数の信号とのサンプリング時刻間の位相差を検出することを特徴とする。 [0017] 請求項 3に記載の発明は、請求項 1又は 2に記載のサンプリング周波数変換装置 にお 1、て、前記フィルタ係数演算手段で演算される前記フィルタ係数の窓関数によ る重み付けを行うことにより、前記ディジタルフィルタのフィルタ特性を設定するための フィルタ係数を演算する窓関数演算手段を更に備えることを特徴とする。
図面の簡単な説明
[0018] [図 1]本発明の好適な実施形態に係るサンプリング周波数変換装置の構成を表した ブロック図である。
[図 2]図 1に示したサンプリング周波数変換装置のサンプリング周波数変換過程を説 明するための図である。
[図 3]実施例 1に係るサンプリング周波数変換装置の構成を表したブロック図である。
[図 4]図 3に示したサンプリング周波数変換装置のサンプリング周波数変換過程を説 明するための図である。
[図 5]実施例 2に係るサンプリング周波数変換装置の構成を表したブロック図である。 発明を実施するための最良の形態
[0019] 本発明の好適な実施の形態について、図 1及び図 2を参照して説明する。
図 1 (a) (b)は、本実施形態のサンプリング周波数変換装置の 2態様の各構成を表 したブロック図、図 2 (a) (b)は、本サンプリング周波数変換装置におけるサンプリング 周波数変換過程を説明するための図である。
[0020] 図 1 (a)に示すサンプリング周波数変換装置 1は、第 1レート変換部 2の他、位相差 検出部 3とフィルタ係数演算部 4及びディジタルフィルタ 5を備えた第 2レート変換部 6 を有して構成されている。
[0021] 第 1レート変換部 2が、サンプリング周波数 fsの入力信号 Xから整数 a倍のサンプリン グ周波数 faとなる中間生成信号 Uを生成し、第 2レート変換部 6が、中間生成信号 U をローパスフィルタリングして所望のサンプリング周波数 fbとなる出力信号 Yを生成す ることにより、サンプリング周波数 fsの入力信号 Xをサンプリング周波数 fbの出力信号 Yへとサンプリング周波数変換する。
[0022] 更に詳述すると、第 1レート変換部 2は、サンプリング周波数 fsで離散化されたサン プル列である入力信号 Xをクロック信号 CKsに同期して入力し、入力信号 Xの各サン プル間に a— 1個ずつゼロ値サンプル (振幅 0のサンプル)を挿入することで、入力信 号 Xのサンプリングレートを整数 a倍に増加させたアップサンプリング信号 (符号略)を 内部で生成する。更に、そのアップサンプリング信号に混入することとなるイメージン グ成分が生じる高周波数帯域を阻止域、入力信号 Xの信号成分が生じる低周波数 帯域を通過域とする所定のローパスフィルタ特性に基づ 、て、アップサンプリング信 号をローパスフィルタリングすることによって、イメージング成分を除去し、且つサンプ リング周波数 fsの a倍のサンプリング周波数 faの中間生成信号 Uを生成して出力する
[0023] 第 2レート変換部 6の位相差検出部 3は、出力信号 Yのサンプリング周波数 fbと等し い周波数 (以下「目的周波数」という。)fbに決められたクロック信号 CKbと、第 1レート 変換部 2がアップサンプリングの際に設定した中間生成信号 Uのサンプリング周波数 fa (すなわち、 a X fs)を示すクロック信号 CKaとを入力する。そして、これらのクロック 信号 CKa, CKbに基づいて、クロック信号 CKbと入力信号 Xと中間生成信号 Uとの各 々のサンプリング時刻 tb, ts, taを検知し、更に、サンプリング時刻 taを基準にしてサ ンプリング時刻 taと tbの時間差 (以下「位相差」 t 、う。) pを検出する。
[0024] これにより、位相差検出部 3は、 目的周波数 fbと中間生成信号 Uのサンプリング周 波数 faとの周波数差 (fb— fa)を、サンプリング時刻 ta, tbの位相差 pとして検出するこ ととなる。
[0025] すなわち、図 2 (a)に例示するように、例えば、サンプリング周期(1/fs)毎に隣接す る入力信号 Xのサンプルが、黒丸印(參)で示す X(0), X(l),…であり、整数 a倍 (例え ば、 3倍)にレート変換された中間生成信号 Uの各サンプルが、黒丸印(參)で示す U (0), U(l), U(2), U(3), U(4),…であり、各サンプリング周期(1/fs)の開始時刻であ るサンプリング時刻が tsであり、クロック信号 CKbのサンプリング時刻が tbl, tb2, tb3 ,…であり、クロック信号 CKaのサンプリング時刻が tal, ta2, ta3,…であった場合、 位相差検出部 3は、クロック信号 CKa, CKbの各サンプリング時刻を逐一検知してい く。そして、サンプリング時刻 tblを検知すると、そのサンプリング時刻 tblが属するサ ンプリング周期(1/fs)におけるサンプリング時刻 tsと、サンプリング時刻 tblから最前 に位置するサンプル U(l)のサンプリング時刻 talを検出し、更に、サンプリング時刻 ts を基準とするサンプリング時刻 ts, tbl間の時間 tsbとサンプリング時刻 ts, tal間の時 間 tsaとの差 (tsb— tsa)を位相差 pとして検出する。
[0026] また、位相差検出部 3は、クロック信号 CKbのサンプリング時刻 tb2を検知した場合 にも同様に、サンプリング時刻 tb2, ts, ta2に基づいて位相差 pを検出し、サンプリン グ時刻 tb3を検知した場合にも同様に、サンプリング時刻 tb3, ts, ta3に基づいて位 相差 Pを検出し、以下同様の検出処理を繰り返す。
[0027] フィルタ係数演算部 4は、検出された位相差 pを次式 (1)で表される演算式に導入し て演算処理を行うことにより、 n次(N— 1次)のディジタルフィルタ 5のフィルタ係数 α
0
〜 α を導出し、ディジタルフィルタ 5に供給してそのフィルタ係数 a n (0≤η≤Ν—1
N-l
)と中間生成信号 Uのサンプル列との有限離散的たたみ込み演算処理を行わせるこ とにより、クロック信号 CKaのサンプリング時刻 taに同期した新たなサンプル (以下「内 揷サンプル」 t 、う)を生成させる。
[0028] [数 1]
Qf n = -LrJ Ho +2 ∑ Hk cos ^ 2 7r (m(n^/2)+P)k ) - . . ( 1 )
[0029] ここで、上記式 (1)中の係数 pは上述の位相差である。係数 mは、サンプリング周波 数変換の分解能である。係数 Nは、中間生成信号 Uのサンプル列に対し巡回的な値 をとるフィルタ係数 a n (l≤n≤N— 1)の個数である。係数 Hと H (l≤k≤N— 1)は
0 k 所望のディジタルフィルタの各周波数特性の周波数サンプル (スペクトル値)である。
[0030] 更に、上記式 (1)は、次のようにして決められている。
まず、サンプリング周波数変換装置 1を設計等する際、ディジタルフィルタ 5の周波 数特性を所定のローパスフィルタ特性 H (eifflT)とする。
[0031] すなわち、入力信号 Xのサンプリング周波数 fsを未知の変数、そのサンプリング周 波数 fsの逆数(1/fs)をサンプリング周期 T、その角周波数を co s、第 1レート変換部 2 の変換比 aを所定値 (例えば、 2)と決め、角周波数(co s/2)を境にして低周波数帯域 側に生じる入力信号 Xの信号成分を通過させる通過域 (0≤ I ω I < co s/2)を有し 、且つ角周波数 (a— 1/2) co sを境にして高周波数帯域側が阻止域 (a— 1/2) co s≤ I ω I く m co s/2)となる標準のローノ スフィルタ特性 H (ejfflT)を決めるのである。
[0032] し力る後、サンプリング周波数 fsの整数 a倍のサンプリング周波数 faとなる中間生成 信号 Uに対して、ディジタルフィルタ 5が位相差 pを含めた高 ヽサンプリング周波数で ローパスフィルタリングを行うことを考慮して、周波数(0≤ I ω I < m co s/2)の下で ローパスフィルタ特性 H (eifflT)を逆離散フーリエ変換 (IDFT)すること〖こよってフィル タ係数 a n (1≤n≤N— 1)を演算するための演算式を作成し、その演算式を上記式 ( 1)に決める。
[0033] そして、上記式 (1)で表される演算処理を行うフィルタ係数演算部 4を形成している。
[0034] ディジタルフィルタ 5は、上記式 (1)のフィルタ係数により所定の周波数特性(ローバ スフィルタ特性)を発揮する n次のディジタルローパスフィルタで形成されており、クロ ック信号 CKaに同期して中間生成信号 Uを入力し、ローパスフィルタリングを行う。
[0035] つまり、ディジタルフィルタ 5は、サンプリング時刻 tbにおいてフィルタ係数演算部 4 で演算されたフィルタ係数 α η (0≤η≤Ν— 1)に従ってそのローパスフィルタ特性を 可変し、中間生成信号 Uのサンプル列とフィルタ係数 α η (0≤η≤Ν—1)との有限離 散的たたみ込み演算によってサンプリング時刻 tbでの内挿サンプルを生成して出力 する。
[0036] したがって、ディジタルフィルタ 5は、図 2 (a)に示したサンプリング時刻 tbl, tb2, tb 3…等において検出された各位相差 pに対応するかたちで、各サンプル時刻 tbl, tb2 , Λ3· ··等の夫々の時刻での内挿サンプルを順に生成していき、図 2 (a) (b)に例示 するように、サンプリング周波数 fbに同期したサンプル列 Y(0), Y(l), Y(2), Υ(3),… 等力も成る出力信号 Υを出力する。そして、サンプリング周波数 fbの出力信号 Υが出 力されることとなるため、変換比 (fb/fs)でのサンプリング周波数変換が実現される。
[0037] 以上説明したように、図 1 (a)に示す本実施形態のサンプリング周波数変換装置 1 によれば、位相差検出部 3とフィルタ係数演算部 4、及び出力信号 Yの内挿サンプル を生成するためのディジタルフィルタ 5を有する第 2レート変換器 6において、 目的周 波数 fbのクロック信号 CKbと、入力周波数 fsより高いサンプリング周波数 faの中間生 成信号 Uとのサンプリング時刻 ta, tmの位相差 pを検出すると、所定のローノ スフィル タ特性 H (ejfflT)の逆離散フーリエ変換に相当する上記演算式 (1)にその位相差 pを導 入することで、ディジタルフィルタ 5のフィルタ係数 a; 〜 α を演算するので、所望の
0 N-1
サンプリングレートでのサンプリング周波数変換を自在に実現することができる。
[0038] すなわち、本実施形態のサンプリング周波数変換装置 1は、予め決められた特定の サンプリングレートでのサンプリング周波数変換しかできないというものではなぐクロ ック信号 CKbの目的周波数 fbが任意の周波数に指定又は調整等されると、ディジタ ルフィルタ 5のフィルタ係数 a; 〜 α を導出するための演算処理を行うことから、例
0 N-1
えばユーザ等に対して任意のサンプリングレートを自在に指定させることができる。
[0039] また、具体的事例として、放送局力 の到来電波をディジタル放送受信機で受信し 、フェージング等の影響により周波数変動を生じているベースバンド信号を再サンプ リングして放送局側と同期した所望の規定周波数の復調信号を復調するための復調 回路に、本実施形態のサンプリング周波数変換装置 1を用いることとすると、クロック 信号 CKbの目標周波数 fbを規定周波数に合わせて、ベースバンド信号を入力信号 Xとすることにより、規定周波数の復調信号 (すなわち、出力信号) Yを生成することが できる。
[0040] 更に、本実施形態のサンプリング周波数変換装置 1は、第 2レート変換部 6の前段 に第 1レート変換部 1を有し、入力信号 Xのサンプリングレートを増力!]させてディジタ ルフィルタリングを施すことで高 、サンプリング周波数 faの中間生成信号 Uを生成す るので、第 2レート変換部 6に設けられているディジタルフィルタ 5の次数 nを下げるこ とができる。このため、ディジタルフィルタ 5の構成を簡素化することができると共に、 そのディジタルフィルタ 5のフィルタ係数を演算するためのフィルタ係数演算部 4の構 成の簡素化や演算量の低減を図ることができる。
[0041] つまり、サンプリング周波数変換装置では一般に、レート変換に際して、イメージン グ成分やエイリアシングの除去及び発生の抑制を図るためにローパスフィルタリング が必要であり、そのローパスフィルタリングを行うディジタルローパスフィルタの構成の 簡素化や演算量の低減ィ匕が極めて重要となって 、る。
[0042] 力かる課題に対して、本実施形態では、第 2レート変換部 6の前段に第 1レート変換 部 2を設けたことで、低周波数帯域に占める信号成分と高周波数帯域に占めるィメー ジング成分等の不要ノイズ成分とが広い周波数幅を介して分離された中間生成信号 Uを生成することができるため、ディジタルフィルタ 5のフィルタ特性は、中間生成信 号 Uの信号成分の占める低周波数帯域を通過域、イメージング成分等の占める高周 波帯域を阻止域、上述の広!、周波数幅を遷移域とするローパスフィルタ特性とすれ ばよぐその遷移域でのしゃ断特性を急峻にする必要がなくなる。このため、ディジタ ルフィルタ 5を高次のフィルタで形成する必要がなく、低次のフィルタで形成すること が可能となり、ディジタルフィルタ 5の構成の簡素化、及びフィルタ係数演算部 4の構 成の簡素化、演算量の低減等を実現することができる。
[0043] そして、ディジタルフィルタ 5とフィルタ係数演算部 4における演算等のための処理 量を大幅に低減することが可能となるため、高速処理を行うのに好適であり、且つ又 、設定可能なサンプリングレートを規定することとなるサンプリング時刻 ta, tbの時間 分解能の向上を図ることが可能なサンプリング周波数変換装置を提供することができ る。
[0044] また、以上の説明では、第 2レート変換部 6を 1個設けた基本的な構成のサンプリン グ周波数変換装置 1について説明したが、図 1 (b)のブロック図に示すように、第 2レ ート変換部 6と同様の構成を有する複数個のレート変換部 6(1), 6(2), · ··, 6(j)を並列 に接続することで、 V、わゆるポリフェーズ構造のサンプリング周波数変換装置を構成 してちよい。
[0045] つまり、各レート変換部 6(1), 6(2), · ··, 6(j)に中間生成信号 Uを並列入力し、更に 各レート変換部 6(1), 6(2), · ··, 6(j)内の位相差検出部に供給するクロック信号 CKbl , CKb2, · ··, CKbjの夫々の目的周波数 fbl, fb2, · ··, fbjを適宜異なった周波数にし 、更に各レート変換部 6(1), 6(2), · ··, 6(j)から出力される各出力信号 Yl, Y2, · ··, Yj を回転子 (commutator) 7を通じて出力することで最終的な出力信号 Youtを生成する 構成とすることにより、ポリフェーズ構造のサンプリング周波数変換装置を構成するこ とがでさる。
[0046] このように、ポリフェーズ構造とすると、図 1 (a)に示した第 2レート変換部 6を 1個だ け設けて構成する場合よりも、各レート変換部 6(1), 6(2), · ··, 6(j)は、低速での処理 が可能となり且つ演算量等の低減ィ匕を図ることができる。
[0047] そして、一般にポリフェーズ構造とすると、上述のメリット (低速での処理、演算量等 の低減化)を図ることができることが知られているが、本実施形態の第 2レート変換部 6と同様の構成を有する複数個のレート変換部 6(1), 6(2), · ··, 6(j)によってポリフエ一 ズ構造とすると、ポリフェーズ構造による上記メリットをより多く享受することが可能なサ ンプリング周波数変換装置を実現することができる。
[0048] なお、図 1 (a) (b)を参照して説明した 2態様の各サンプリング周波数変換装置 1は 、 IC、 MSI, LSI等の半導体集積回路装置等を用いて、いわゆるハードウェア構造の ディジタル回路で形成してもよ ヽし、そのディジタル回路と等価な機能を発揮するコ ンピュータプログラムを作成し、そのコンピュータプログラムで示される処理工程に従 つて、ディジタルシグナルプロセッサ(DSP)やマイクロプロセッサ (MPU)等を実行さ せるようにしてちょい。
実施例 1
[0049] 次に、上記実施形態に係るより具体的な実施例について、図 3及び図 4を参照して 説明する。図 3は、本実施例のサンプリング周波数変換装置の構成を表したブロック 図であり、図 1と同一又は相当する部分を同一符号で示している。図 4は、本実施例 のサンプリング周波数変換装置におけるサンプリング周波数変換過程を説明するた めの図である。
[0050] 図 3において、このサンプリング周波数変換装置 1は、第 1レート変換部 2と第 2レー ト変換部 6を有し、所定のコンピュータプログラムを実行することで各変換部 2, 6の機 能を発揮するディジタルシグナルプロセッサ(DSP)によって形成されている。
[0051] 第 1レート変換部 2は、インターポレータ 2aとインターポレーシヨンフィルタ 2bとを有 して構成され、第 2レート変換部 6は、位相差検出部 3とフィルタ係数演算部 4及びデ イジタルフィルタ 5を有して構成されて!、る。
[0052] インターポレータ 2aは、サンプリング周波数 fsで離散化された入力信号 Xと、サンプ リング周波数 fsを示すクロック信号 CKsを入力し、外部指定される整数 aの値に基づ いて入力信号 Xのサンプリングレートを整数 a倍に増加させるアップサンプリングを行 うことで、アップサンプリング信号 Suを生成する。すなわち、図 4 (a)に例示するように 、入力信号 Xの各サンプル間に、 a— 1個(例えば、 a = 4であれば、 3個)ずつゼロ値 サンプルを挿入することで、アップサンプリング信号 Suを生成する。 [0053] インターポレーシヨンフィルタ 2bは、アップサンプリングの結果、アップサンプリング 信号 Suに混入するイメージング成分を除去するためのディジタルローパスフィルタで 形成されており、図 4 (b)に模式的に示すように、角周波数(co s/2)を境にして低周 波数帯域に生じる入力信号 Xの信号成分を通過させる通過域と、角周波数(co s/2) を中心とする狭周波数幅の遷移域と、該遷移域より高周波数帯域の阻止域とが決め られたローノ スフィルタ特性を有している。そして、力かるローパスフィルタ特性に基 づいてアップサンプリング信号 Suにローパスフィルタリングを施すことにより、阻止域 に生じるイメージング成分を除去し、図 4 (c)に例示するようなサンプリングレートが整 数 a倍となる中間生成信号 Uを生成して出力する。
[0054] また、インターポレーシヨンフィルタ 2bは、上記ローパスフィルタ特性を発揮させるベ く一般に知られている方法で作成すればよい。こうして、インターポレーシヨンフィルタ 2bを作成すると、インターポレーシヨンフィルタ 2bは、サンプリング信号 Suからィメー ジング成分を除去した中間生成信号 Uを生成して出力する。
[0055] 位相差検出部 3は、 目的周波数 fbに決められたクロック信号 CKbと、インターポレ ータ 2aとインターポレーシヨンフィルタ 2bがアップサンプリングの際に設定した中間生 成信号 Uのサンプリング周波数 fa (すなわち、 a X fs)を示すクロック信号 CKaとを入力 する。そして、図 2 (a)に例示したように、これらのクロック信号 CKa, CKbに基づいて 、クロック信号 CKaと入力信号 Xと中間生成信号 Uとの各々のサンプリング時刻 ta, ts , tbを検知し、更に、サンプリング時刻 taを基準にしてサンプリング時刻 taと tbの時間 差 (位相差) Pを検出する。
[0056] フィルタ係数演算部 4は、検出された位相差 pを次式 (2)で表される演算式に導入し て演算処理を行うことにより、クロック信号 CKbのサンプリング時刻 tbでの内挿サンプ ルを生成するための n次のディジタルフィルタ 5のフィルタ係数 a 〜a を導出し、そ
0 N-1
の導出したフィルタ係数 a n (0≤n≤N— 1)によってディジタルフィルタ 5のローパス フィルタ特性を更新設定する。
[0057] Hk C0S ( 2兀 (m(:/2)+P)k
Figure imgf000013_0001
' [0058] ここで、上記式 (2)は、次のようにして決められている。まず、アップサンプリング信号 Suに対するサンプリングレート変換となることを考慮して、ディジタルフィルタ 5のロー パスフィルタ特性 Ha (eifflT)を次式 (3)のように決める。
[0059] [数 3] 」 ) for0< | ω | <a OJs/2
… )
Figure imgf000014_0001
fora 0Js /2く | ω | <m C(Js/2
[0060] ここで、上記式 (3)にお 、て、入力信号 Xのサンプリング周波数 fsを未知の変数、そ のサンプリング周波数 fsの逆数(1/fs)をサンプリング周期 T、その角周波数を co s、角 周波数( ω s/2)を境にして低周波数帯域側に生じる入力信号 Xの信号成分を通過さ せる通過域 (0≤ I ω I < co s/2)を有し、且つ角周波数 (a— 1/2) co sを境にして高 周波数帯域側が阻止域 (a— 1/2) ω s≤ I ω | < a co s)となる標準のローパスフィル タ特性 Ha(e jfflT)に決める。
[0061] しかる後、サンプリング周波数 fsの整数 a倍のサンプリング周波数 faのアップサンプ リング信号 Suに対して、インターポレーシヨンフィルタ 2bがローパスフィルタリングを行 うことを考慮して、周波数 (m X fs)の下でローパスフィルタ特性 Hm (ei<uT)を逆離散フ 一リエ変換(IDFT)することによって、 m X N個のインパルスレスポンス hnを演算する
[0062] より詳細には、上記式 (3)で表したローパスフィルタ特性 Hm ( の、 co k(k=0, 1 , 2, · ··, mN—l)毎の周波数サンプル H、すなわち、 mX N個の周波数サンプル H k k につ 、て逆離散フーリエ変換(IDFT)することによって、 m X N個のインパルスレスポ ンス h
0〜h を演算する。
mN-l
[0063] つまり、 m X N個の周波数サンプル Hは、次式 (4)の関係が成り立つことから、次式 ( k
5)で表されるように、周波数サンプル Hについて逆離散フーリエ変換することによつ k
て、 m X N個のインパルスレスポンス hn (すなわち、 h )を算出する。
0〜h
mN-l
[0064] [数 4]
Hk― H— k= Hmw - k ■■■(4)
[0065] [数 5] m -1
1
hn ∑ Hk e2j 7r nk/mN
mN
k=0
Figure imgf000015_0001
[0066] そして、未知の位相差 pを、 0≤p< mで表される範囲内の変数とし、上記式 (5)に示 したインパルスレスポンス hn (すなわち、 h〜h )に位相差 pを適用することで、ディ
0 mN-1
ジタルフィルタ 5のフィルタ係数 a n (すなわち、 ひ 〜ひ )を求めるのである。
0 N-1
つまり、 a n=h の関係を上記式 (5)に適用し、ディジタルフィルタ 5のフィルタ m(n-N/2)+p
係数 a nを演算するための前記式 (2)を決めて 、る。
[0067] ディジタルフィルタ 5は、サンプリング周波数 faの逆数(1/fa)の時間を単位サンプル 遅延 (z—1)とする N— 1個の遅延素子を備えたシフトレジスタ 5aと、各遅延素子の入出 力に対して、フィルタ係数演算部 4で演算されたフィルタ係数 α 〜 α を乗算する乗
0 N-1
算器 5bと、乗算器 5bの出力を加算する加算器 5cとを有する FIR形ディジタルフィル タで形成されている。そして、力かる構成により、図 4 (d)に示すフィルタ特性に基づ いて中間生成信号 Uをローパスフィルタリングすることにより、サンプリング時刻 ti e の内挿サンプルを生成し、加算器 5bから出力信号 Yとして出力する。
[0068] 以上説明したように、本実施例のサンプリング周波数変換器 1によれば、前述した 実施形態と同様に、フィルタ係数演算部 4が、位相差 pに基づいてディジタルフィルタ 5のフィルタ係数 α ηを演算するので、予め決められたサンプリングレートでのサンプリ ング周波数変換し力行えないという問題を解消し、サンプリングレートを自由に指定し て、所望のサンプリング周波数 faの出力信号 Yを生成することができる。
[0069] 更に、インターポレータ 2aとインターポレーシヨンフィルタ 2bにおいて、予め入力信 号 Xからサンプリングレートを整数 a倍に増加させた中間生成信号 Uを生成しておき、 その中間生成信号 Uに対して、第 2レート変換部 6のディジタルフィルタ 5がディジタ ルフィルタリングを施すことで出力信号 Yを生成するので、図 4 (d)に例示するように、 a = 2の場合には、ディジタルフィルタ 5のフィルタ特性である通過域(0≤ ω≤ co s/2) と阻止域(3 ω s/2≤ ω )との間の遷移領域を、帯域幅( ω s/2≤ ω≤ 3 ω s/2)に広げ ることがでさる。
[0070] このため、その遷移域での遮断特性を急峻にする必要がなくなることから、ディジタ ルフィルタ 5を高次のフィルタとする必要がない。このことから、ディジタルフィルタ 5の フィルタ長を大きくしなくともよぐ別言すればフィルタ係数の数を低減することができ るため、フィルタ係数演算部 4における演算量を大幅に低減することが可能である。 その結果、 DSPにおける負荷の軽減、高速処理等を実現することができる。
[0071] なお、以上の説明では、第 2レート変換部 6を 1個設けたサンプリング周波数変換装 置 1について説明したが、図 1 (b)に示したように、第 2レート変換部 6と同様の構成を 有する複数個のレート変換部を並列に接続することで、いわゆるポリフェーズ構造の サンプリング周波数変換装置を構成してもよい。カゝかるポリフェーズ構造とすれば、ポ リフェーズ構造によるメリットをより多く享受することが可能なサンプリング周波数変換 装置を実現することができる。
実施例 2
[0072] 次に、他の実施例について図 5を参照して説明する。図 5は、本実施例のサンプリ ング周波数変換装置の構成を表したブロック図であり、図 1 (a)と同一又は相当する 部分を同一符号で示して 、る。
[0073] 図 5において、このサンプリング周波数変換装置 1は、位相差検出部 3とフィルタ係 数演算部 4及びディジタルフィルタ 5の他、窓関数演算部 7を備えたレート変換部 6で 形成されており、図 1 (a)に示した第 1レート変換部 2を備えることなぐ直接入力信号 Xを入力して、レート変換した出力信号 Yを生成して出力する。
[0074] 位相差検出部 3は、図 1 (a)に示した位相差検出部 3と同様に、 目的周波数 fbのク ロック信号 CKbのサンプリング時刻 tbと、サンプリング周波数 fsの入力信号 Xのサン プリング時刻 tsを検知し、それらのサンプリング時刻 ts, tbの差 (tb— ts)を位相差 pと して検出する。
[0075] すなわち、本実施例のサンプリング周波数変換装置 1では、図 1 (a)に示した第 1レ ート変換部 2を備えて 、な 、ことから、入力信号 Xとクロック信号 CKbのサンプリング 時刻 ts, tbとの差 (tb— ts)を位相差 pとして検出する。
[0076] フィルタ係数演算部 4は、サンプリング時刻 taに同期して位相差検出部 3から供給さ れる位相差 Pを次式 (6)で表される演算式に導入して演算処理を行うことにより、 n次の ディジタルフィルタ 5のフィルタ係数 α ηを導出するための、インパルスレスポンス β η を算出し、窓関数演算部 7に供給する。
[0077] [数 6] β η = ( { ' 、 sin ( N/2)+P) )
7Um(n— /2)+p) m ノ
ただし, n=0,1 ,2 '■', M— 1 ■■■ (6)
[0078] ここで、上記式 (6)は、次のようにして決められている。 まず、次式 (7)で表されるゼ 口位相の理想フィルタのインパルスレスポンス gnの一部を、 n次のディジタルフィルタ 5 のフィルタ係数として使用するものとする。
[0079] [数 7] gn = sin { - ω 'う, η = -∞, . . . , - 1 ,0,1 ,2, · · ·,∞ (7)
[0080] 次に、上記式 (7)にお 、て、 ω c= ω s/ (2m)に置き換えて上記式 (7)を変形すること により、次式 (8)で表される次数 (mN— 1)のディジタルフィルタ 5のインパルスレスボン ス hnを求める。
[0081] [数 8] hn = ^ sln (^) , n=— mN/2,…, - 1 ,0,1,2,…, 2 … (8)
[0082] 次に、上記式 (8)に位相差 pを適用することにより、次式 (9)で表されるインパルスレス ポンス β ηを演算するための演算式を求め、該演算式を上記式 (6)に決めている。
[0083] [数 9]
Figure imgf000018_0001
ただし, n=0,1,2 ' - ', N-1 ■■■ (9)
[0084] 窓関数演算部 7は、フィルタ係数演算部 4で生成されたインパルスレスポンス β η (0
≤η≤Ν - 1)に対して、次式 (10)で表されるノ、ミング窓(hamming window)の窓関数 Wnによる重み付け演算を行うことにより、ディジタルフィルタ 5のフィルタ係数 a n (0≤ n≤N— 1)を演算する。
[0085] [数 10]
_ f 0.54~0.46cos(27r n/L) for 0<n<L
(_ 0 otherwise ·■■( "!。)
[0086] これにより、窓関数演算部 7は、上記式 (6)に示したフィルタ係数演算部 4で生成さ れるインパルスレスポンス β ηに、上記式 (10)に示した窓関数 Wnを重み付けすること で、次式 (11)で表されるフィルタ係数 a nを生成し、ディジタルフィルタ 5に供給する。
[0087] [数 11]
Figure imgf000018_0002
ただし, n=0,1,2 N— 1 " ' (1 1 )
[0088] ディジタルフィルタ 5は、 n次(N— 1次)の FIR形ディジタルフィルタで形成されてお り、サンプリング時刻 tbに同期して窓関数演算部 7から供給されるインパルスレスボン ス ex nと、入力信号 Xのサンプル列とを有限離散的たたみ込み演算をすることにより、 サンプリング時刻 tbでの内挿サンプルを生成し、出力信号 Yとして出力する。
[0089] 以上に説明したように、本実施例のサンプリング周波数変換装置 1によれば、フィル タ係数演算部 4が、ゼロ位相の理想フィルタのインパルスレスポンスの一部である hn に、位相差 pを導入することで、インパルスレスポンス β ηを演算し、窓関数演算部 7が 、インパルスレスポンス β ηにハミング窓の窓関数 Wnを重み付け演算することにより、 ディジタルフィルタ 5のインパルスレスポンス a nを演算する。そして、ディジタルフィル タ 5が、インパルスレスポンス a nと入力信号 Xのサンプル列との有限離散的たたみ込 み演算を行うことにより、 目的周波数 fbのクロック信号 CKbのサンプリング時刻 tbに同 期して、内挿サンプルを生成することにより、サンプリング周波数 fsの入力信号 Xをサ ンプリング周波数 fbの出力信号 Yにサンプリング周波数変換する。
[0090] このように、本実施例のサンプリング周波数変換装置 1によれば、フィルタ係数演算 部 3と窓関数演算部 7が、位相差 pに基づ 、てディジタルフィルタ 5のフィルタ係数 a n を演算するので、予め決められたサンプリングレートでのサンプリング周波数変換し か行えないという問題を解消し、サンプリングレートを自由に指定して、所望のサンプ リング周波数 fbの出力信号 Yを生成することができる。
[0091] なお、以上の説明では、窓関数演算部 7において、上記式 (10)で表されるハミング 窓の窓関数 Wnに基づいてインパルスレスポンス j8 n (0≤n≤N— 1)に重み付けを行 う場合について説明した力 他の窓関数、例えばノヽユング窓(hanning window)によつ て重み付けを行うようにしてもよ 、。
[0092] また、レート変換部 6の前段に、図 1 (a)に示したのと同様に第 1レート変換部 2を設 け、その第 1レート変換部 2でサンプリング周波数 fsの入力信号 Xを整数 a倍のサンプ リング周波数 faの中間生成信号 Uを生成して、その中間生成品号 Uを入力信号とし てレート変換部 6に供給するようにしてもよい。そして、力かる構成とする場合には、図 5に示した位相差検出部 3は、中間生成信号 Uのサンプリング時刻とクロック信号 CK bのサンプリング時刻 tbとから、位相差 pを検出して、フィルタ係数演算部 4と窓関数演 算部 7に供給すればよい。
[0093] また、レート変換部 6を 1個設けたサンプリング周波数変換装置 1について説明した 力 図 1 (b)に示したように、レート変換部 6と同様の構成を有する複数個のレート変 換部を並列に接続することで、いわゆるポリフェーズ構造のサンプリング周波数変換 装置を構成してもよい。力かるポリフェーズ構造とすれば、ポリフェーズ構造によるメリ ットをより多く享受することが可能なサンプリング周波数変換装置を実現することがで きる。

Claims

請求の範囲
[1] ディジタル信号のサンプリング周波数を変換するサンプリング周波数変換装置であ つて、 目標周波数の信号と前記ディジタル信号とのサンプリング時刻間の位相差を検出 する位相差検出手段と、
前記位相差検出手段が検出した前記位相差に基づ ヽて、前記ディジタルフィルタ のフィルタ係数を演算し、演算したフィルタ係数に基づ 、て前記目標周波数の信号 のサンプリング時刻における前記ディジタルフィルタのフィルタ特性を設定するフィル タ係数演算手段とを備え、
前記ディジタルフィルタ力 前記設定されるフィルタ特性に基づ 、て前記ディジタル 信号をディジタルフィルタリングすることによって、前記ディジタル信号を前記目標周 波数に同期したサンプリング周波数のサンプル列力も成る出力信号にサンプリング 周波数変換することを特徴とするサンプリング周波数変換装置。
[2] 前記ディジタル信号をアップサンプリングして所定のローパスフィルタ特性に基づ!/ヽ てディジタルローパスフィルタリングを行うことで、前記ディジタル信号より高 、サンプ リング周波数の中間生成信号を生成して、前記ディジタルフィルタに供給するレート 変換手段を更に備え、
前記位相差検出手段は、前記中間生成信号と前記目標周波数の信号とのサンプ リング時刻間の位相差を検出することを特徴とする請求項 1に記載のサンプリング周 波数変換装置。
[3] 前記フィルタ係数演算手段で演算される前記フィルタ係数の窓関数による重み付 けを行うことにより、前記ディジタルフィルタのフィルタ特性を設定するためのフィルタ 係数を演算する窓関数演算手段を更に備えるを特徴とする請求項 1又は 2に記載の サンプリング周波数変換装置。
[4] 前記サンプリング周波数変換装置は、前記ディジタルフィルタと位相差検出手段及 びフィルタ係数演算手段と同等の構成を有するレート変換手段を複数備えたポリフエ ーズ構造であることを特徴とする請求項 1又は 2に記載のサンプリング周波数変換装 置。
前記サンプリング周波数変換装置は、前記ディジタルフィルタと位相差検出手段と フィルタ係数演算手段及び窓関数演算手段と同等の構成を有するレート変換手段を 複数備えたポリフェーズ構造であることを特徴とする請求項 3に記載のサンプリング周 波数変換装置。
PCT/JP2006/300449 2005-01-21 2006-01-16 サンプリング周波数変換装置 WO2006077795A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553878A JP4449007B2 (ja) 2005-01-21 2006-01-16 サンプリング周波数変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005014142 2005-01-21
JP2005-014142 2005-01-21

Publications (1)

Publication Number Publication Date
WO2006077795A1 true WO2006077795A1 (ja) 2006-07-27

Family

ID=36692185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300449 WO2006077795A1 (ja) 2005-01-21 2006-01-16 サンプリング周波数変換装置

Country Status (2)

Country Link
JP (1) JP4449007B2 (ja)
WO (1) WO2006077795A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191418A (ja) * 2011-03-10 2012-10-04 Ricoh Co Ltd データ受信回路、データ送受信システム及びデータ受信方法
US8346834B2 (en) 2006-12-07 2013-01-01 Sony Corporation Information processing device and information processing method
US9214921B2 (en) * 2012-08-23 2015-12-15 Ntt Electronics Corporation Sampling rate conversion device
EP3401643A1 (en) * 2017-05-12 2018-11-14 Siemens Aktiengesellschaft Encoder, electric machine, encoder data processing method and storage medium
CN110704792A (zh) * 2019-09-29 2020-01-17 广州海格通信集团股份有限公司 一种实时高效的采样率任意变换的实现方法
CN111769819A (zh) * 2019-12-26 2020-10-13 长安大学 一种采样频率自适应可调的数据采集方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234617A (ja) * 1987-03-23 1988-09-29 Matsushita Electric Ind Co Ltd フイルタ係数演算装置
JPS6477327A (en) * 1987-09-18 1989-03-23 Toshiba Corp Sample rate converting circuit
JP2002506603A (ja) * 1998-04-27 2002-02-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多項式補間を用いたサンプルレート変換器
JP2003234640A (ja) * 2001-11-20 2003-08-22 Koninkl Philips Electronics Nv デジタル信号変換器、変換方法およびビデオモニタ
JP2004214827A (ja) * 2002-12-27 2004-07-29 Sony Corp サンプリングレート変換装置およびその方法、並びに、オーディオ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234617A (ja) * 1987-03-23 1988-09-29 Matsushita Electric Ind Co Ltd フイルタ係数演算装置
JPS6477327A (en) * 1987-09-18 1989-03-23 Toshiba Corp Sample rate converting circuit
JP2002506603A (ja) * 1998-04-27 2002-02-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多項式補間を用いたサンプルレート変換器
JP2003234640A (ja) * 2001-11-20 2003-08-22 Koninkl Philips Electronics Nv デジタル信号変換器、変換方法およびビデオモニタ
JP2004214827A (ja) * 2002-12-27 2004-07-29 Sony Corp サンプリングレート変換装置およびその方法、並びに、オーディオ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346834B2 (en) 2006-12-07 2013-01-01 Sony Corporation Information processing device and information processing method
JP2012191418A (ja) * 2011-03-10 2012-10-04 Ricoh Co Ltd データ受信回路、データ送受信システム及びデータ受信方法
US9214921B2 (en) * 2012-08-23 2015-12-15 Ntt Electronics Corporation Sampling rate conversion device
EP3401643A1 (en) * 2017-05-12 2018-11-14 Siemens Aktiengesellschaft Encoder, electric machine, encoder data processing method and storage medium
CN108871385A (zh) * 2017-05-12 2018-11-23 西门子公司 编码器、电机、编码器数据处理方法及存储介质
CN110704792A (zh) * 2019-09-29 2020-01-17 广州海格通信集团股份有限公司 一种实时高效的采样率任意变换的实现方法
CN111769819A (zh) * 2019-12-26 2020-10-13 长安大学 一种采样频率自适应可调的数据采集方法及系统
CN111769819B (zh) * 2019-12-26 2023-08-04 长安大学 一种采样频率自适应可调的数据采集方法及系统

Also Published As

Publication number Publication date
JPWO2006077795A1 (ja) 2008-08-07
JP4449007B2 (ja) 2010-04-14

Similar Documents

Publication Publication Date Title
EP2652875B1 (en) Integrated demodulator, filter and decimator (dfd) for a radio receiver
WO2006077795A1 (ja) サンプリング周波数変換装置
KR100612594B1 (ko) 잔류 측파대역 수신기에 대하여 위상 검출 및 타이밍 복구를 수행하기 위한 방법 및 장치
JP2006345508A (ja) デジタル信号のサンプリング周波数を変換するための方法および装置
CN108763720B (zh) 采样率可任意下调的ddc的实现方法
JP2000504540A (ja) デシメーション方法及びデシメーションフィルタ
JP4063563B2 (ja) 直接検波回路
US7221718B2 (en) I/Q demodulator and I/Q signal sampling method thereof
EP2761749B1 (en) A novel efficient digital microphone decimation filter architecture
US20090245429A1 (en) Sample rate converter and receiver using the same
JP2010130185A (ja) サンプリングレート変換回路
WO2013094308A1 (ja) ディジタルフィルタ回路およびディジタルフィルタ処理方法
US7242326B1 (en) Sample rate conversion combined with filter
JP2002043965A (ja) 受信機
JPH0590897A (ja) オーバーサンプリングフイルタ回路
Mehra et al. Optimized design of decimator for alias removal in multirate DSP applications
JPH09135150A (ja) ディジタルフィルタと受信装置
JP4989575B2 (ja) フィルタ及びフィルタの構成方法
US7995690B2 (en) Digital filter
WO2005078924A1 (ja) 周波数成分分離フィルタ、方法およびプログラム
US7262717B2 (en) Sample rate conversion combined with filter
Mehra et al. Area Efficient Interpolator Using Half-Band Symmetric Structure
JP4098052B2 (ja) 直接検波回路
Gupta et al. A survey on efficient rational sampling rate conversion algorithms
EP1570574A1 (en) Multirate filter and a display system and a mobile telephone comprising said multirate filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006553878

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711730

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711730

Country of ref document: EP