WO2006075488A1 - 可動盤の駆動装置及びプレス機械のスライド駆動装置 - Google Patents

可動盤の駆動装置及びプレス機械のスライド駆動装置 Download PDF

Info

Publication number
WO2006075488A1
WO2006075488A1 PCT/JP2005/023411 JP2005023411W WO2006075488A1 WO 2006075488 A1 WO2006075488 A1 WO 2006075488A1 JP 2005023411 W JP2005023411 W JP 2005023411W WO 2006075488 A1 WO2006075488 A1 WO 2006075488A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
movable platen
hydraulic cylinder
signal
detected
Prior art date
Application number
PCT/JP2005/023411
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Kohno
Minoru Somukawa
Original Assignee
Aida Engineering, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering, Ltd. filed Critical Aida Engineering, Ltd.
Priority to CA2594644A priority Critical patent/CA2594644C/en
Priority to US11/813,783 priority patent/US7401548B2/en
Priority to EP05820057.7A priority patent/EP1837169B1/en
Publication of WO2006075488A1 publication Critical patent/WO2006075488A1/ja
Priority to HK08104488.3A priority patent/HK1110037A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • B30B1/186Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/32Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/22Control arrangements for fluid-driven presses controlling the degree of pressure applied by the ram during the pressing stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • B30B15/287Arrangements for preventing distortion of, or damage to, presses or parts thereof preventing unintended ram movement, e.g. using blocking devices

Definitions

  • the present invention relates to a drive device for a movable platen and a slide drive device for a press machine, and more particularly to an industrial machine or a construction machine that requires a slide of a press machine and various thrusts by using an electric motor and a hydraulic cylinder in combination.
  • the present invention relates to a technique for driving a movable platen.
  • Patent Document 1 discloses an electric press that drives a slide directly or indirectly (via a speed reducer or the like) only by an electric motor (electric servomotor).
  • this electric press can achieve high slide control and controllability, it cannot secure work capability (energy capability), which is an important capability element of press machines and molding machines (it becomes insufficient). This is because the drive by the electric motor does not have a function to store energy, and it is impossible to continuously release a large output due to heat generation inside the motor, and the amount of energy that can be obtained by the motor during molding is limited. It is the power to be.
  • Patent Document 2 discloses a slide drive device of a press machine that drives a slide with a variable discharge capacity hydraulic pump + hydraulic motor + screw. When the slide is driven by the slide drive device of this press machine, there is a problem in the controllability of the slide (responsiveness and static [speed and position] accuracy).
  • the force required to drive the slide is compressed in the pipe connected to the hydraulic motor as the load is generated due to the amount of oil discharged per unit time discharged by the variable discharge capacity pump. Since this is proportional to the generated pressure (load pressure), the dynamic characteristics of the slide are reduced due to the response delay associated with the compression (responsiveness, speed, and position feedback gain are reduced). In addition, pressure oil leakage proportional to the load pressure occurs in the variable discharge capacity hydraulic pump, hydraulic motor, and valves, and the speed and position accuracy during molding at which the load pressure increases is greatly reduced.
  • the driving force is based on oil volume control by a variable displacement pump motor, a large amount of oil is required to flow within a unit time, and there is a risk that the equipment will increase.
  • Patent Document 4 discloses a hydraulically driven plastic working apparatus that rotates a fixed discharge capacity pump with an electric motor and drives a movable platen with a hydraulic cylinder and a hydraulic motor connected to the pump. Has been.
  • This device has a problem that the controllability of the electric motor is remarkably lowered by interposing the hydraulic medium in the middle of the drive unit (due to the compressibility of hydraulic oil and the leakage of pressure oil).
  • it has inherited the problems of not having an energy storage function and coil heat generation, which are problems specific to electric motor control. For this reason, the press work force and the work required for press forming are limited by the maximum instantaneous output of the electric motor. The advantage is limited to where the system can be easily configured.
  • Patent Document 1 Specification of Patent No. 2506657
  • Patent Document 2 US Patent No. 4563889
  • Patent Document 3 Japanese Patent Laid-Open No. 1-309797
  • Patent Document 4 JP-A-10-166199
  • Patent Document 6 Japanese Patent Laid-Open No. 7-266086
  • a hydraulic motor driven by a constant pressure source has low energy efficiency due to a large amount of hydraulic oil leakage in the hydraulic motor and a large friction loss.
  • the fixed displacement hydraulic pump Z motor is expensive in terms of marketability and parts count.
  • Fixed displacement hydraulic pump Z motor generates high and low pressure switching pulsation noise proportional to the rotation speed, and becomes a noise source.
  • the ram drive device in the plate material processing machine described in Patent Document 6 uses a hydraulic cylinder, and therefore does not have the problems (1) to (4).
  • the pressure control during the processing of the plate material is performed by the hydraulic device.
  • the hydraulic device also supplies the hydraulic oil directly to the upper chamber of the hydraulic cylinder for the variable displacement pump or the constant discharge pump force. ing. others Therefore, the pressurizing force and energy can be secured freely, but the controllability is remarkably impaired due to the compression of hydraulic oil and the leakage of pressure oil, and it is difficult to control the pressurizing force with high accuracy and responsiveness. There is a problem.
  • the hydraulic device described in Patent Document 6 needs to supply a hydraulic oil to a hydraulic cylinder by driving a pressure variable displacement pump or a constant discharge pump when processing a plate material, and also outputs a motor that drives the pump. I need something big.
  • the present invention has been made in view of such circumstances.
  • the electric motor and the hydraulic cylinder are used together to provide a large pressurizing capability, and as a whole, the motor can be moved with high accuracy due to the characteristics of the electric motor. It is an object of the present invention to provide a movable plate driving device and a press driving device for a press machine, which can drive the plate and are excellent in energy efficiency.
  • a movable platen driving apparatus includes an electric motor and an output torque of the electric motor as a thrust for moving the movable platen.
  • a screw-nut mechanism that transmits to the fluid, a constant high pressure source that generates hydraulic fluid at a substantially constant pressure, and one or more hydraulic cylinders connected to the low pressure source via a valve, and the thrust of the hydraulic cylinder Thrust transmission means for transmitting to the movable platen, wherein the force transmission unit is connected so as to be able to transmit thrust at any stroke position of the screw nut mechanism, and the speed of the movable platen or the electric motor.
  • Speed detecting means for detecting the angular speed of any rotating part from the drive shaft to the screw nut mechanism, and the electric motor and hydraulic pressure system based on the speed or angular speed detected by the speed detecting means.
  • Control means for controlling the motor, wherein the control means causes at least one hydraulic cylinder of the hydraulic cylinder to act as a pump during a predetermined period when the load on the movable plate is reduced, and from the electric motor
  • the low pressure source force and the constant high pressure source are charged with hydraulic fluid by the thrust transmitted to the hydraulic cylinder through the screw nut mechanism, the movable platen, and the thrust transmission means.
  • the output torque of the electric motor is applied to the movable plate as a linear driving force via a screw nut mechanism.
  • the thrust of one or more hydraulic cylinders connected to the constant high pressure source and the low pressure source via a valve is transmitted to any screw of the screw nut mechanism via the thrust transmission means.
  • the torque can be transmitted to the movable plate at any time at the trolley position, and the output torque and cylinder pressure are combined in the force dimension.
  • the operation of the movable platen is controlled by controlling the electric motor and the hydraulic cylinder based on the speed of the movable platen or the angular velocity of any rotating part from the drive shaft of the electric motor to the screw nut mechanism. It relies on the controllability of the electric motor to enable highly accurate control.
  • the insufficient pressure applied by the electric motor is assisted by the pressure of the hydraulic cylinder.
  • the surplus torque of the electric motor is charged to the constant high pressure source as hydraulic fluid energy, and the kinetic energy of the movable platen during deceleration of the movable platen is used as the hydraulic fluid energy. It can charge (regenerate) a constant high pressure source.
  • a second aspect of the present invention is a fluid circulating circuit for a working fluid configured to include the constant high pressure source, the low pressure source, and the hydraulic cylinder in the movable disk drive device according to the first aspect.
  • the pressure device is characterized by being isolated from the atmosphere. This prevents impurities from entering the hydraulic fluid.
  • a third aspect of the present invention is the movable platen driving apparatus according to the first aspect, wherein the constant high pressure source includes an accumulator that holds the hydraulic fluid at a substantially constant high pressure. It is characterized by The hydraulic fluid discharged when the hydraulic cylinder is operated as a pump is charged in the accumulator.
  • a fourth aspect of the present invention is the movable platen driving apparatus according to the first aspect, wherein the low pressure source includes an atmospheric pressure tank or an accumulator that maintains a substantially constant low pressure. It is characterized by being.
  • the constant high pressure source is connected to hydraulic fluid auxiliary supply means for supplying hydraulic fluid at a substantially constant pressure. It is characterized by this.
  • the hydraulic fluid can be charged to a constant high pressure source by operating the hydraulic cylinder as a pump, but the hydraulic fluid auxiliary supply means is a hydraulic fluid used for starting the operation or pressurizing the movable platen. Supply hydraulic fluid to a constant high pressure source when the volume is insufficient.
  • the electric motor includes a plurality of electric motors including at least one servo motor. It is a sign.
  • a seventh aspect of the present invention is the drive device for the movable platen according to the first aspect, wherein the output torque of the electric motor is transmitted to the screw nut mechanism via a speed reducer. It is a feature.
  • the hydraulic cylinder includes a pair of hydraulic cylinders having the same cylinder diameter, and the pair of hydraulic sill
  • the solder is disposed at a position symmetrical to the center of the movable platen, and the hydraulic fluid connection ports of the pair of hydraulic cylinders are connected so that hydraulic fluid can be supplied simultaneously.
  • the movable platen can be pressed in a balanced manner by the pair of hydraulic cylinders, and the control system for the pair of hydraulic cylinders can be made one.
  • the hydraulic cylinder is configured such that at least one hydraulic cylinder has a pressure connection port on a piston rod side of the low pressure. Connected to the source at all times! / Speak.
  • An eleventh aspect of the present invention is the movable platen driving apparatus according to the first aspect, wherein the movable platen is guided so as to be movable in the vertical direction, and the hydraulic cylinder has a cylinder lower chamber side pressure.
  • a pilot operated check valve is connected to the liquid connection port, and supports the weight of the movable platen when not driven.
  • a twelfth aspect of the present invention is the movable platen driving apparatus according to the first aspect, comprising speed command means for commanding a target speed of the movable plate or a target angular velocity of the rotating unit, and the control The means controls the electric motor and the hydraulic cylinder on the basis of the target speed or target angular speed commanded by the speed command means and the speed or angular speed detected by the speed detection means. That is, the electric motor and hydraulic cylinder are controlled by speed feedback! /
  • a thirteenth aspect of the present invention is the movable disk drive device according to the first aspect, in which the position command means for commanding the target position of the movable board or the target angle of the rotating part, Position detecting means for detecting the position of the moving plate or the angle of the rotating part, and the control means is a target position or target angle commanded by the position command means, and a position detected by the position detection means.
  • the electric motor and the hydraulic cylinder are controlled based on the angle and the speed or angular velocity detected by the speed detecting means. That is, the electric motor and the hydraulic cylinder are controlled by position feedback with speed minor loop feedback.
  • the control means includes a target position or a target angle commanded by the position command means, Composite motor torque command calculation for calculating a composite motor torque command signal for controlling the electric motor based on the position or angle detected by the detection means and the speed or angular velocity detected by the speed detection means. And motor control means for controlling the electric motor based on the composite motor torque command signal.
  • position command means for commanding a target position of the movable platen or a target angle of the rotating unit
  • the movable unit A position detection means for detecting the position of the panel or the angle of the rotating part, and the control means is a target position or target angle commanded by the position command means, a position detected by the position detection means or Motion base calculation means for calculating a motion base signal for controlling the hydraulic cylinder based on the angle and the speed detected by the speed detection means or the angular velocity, and V based on the motion base signal
  • cylinder control means for controlling the hydraulic cylinder.
  • a position command means for commanding a target position of the movable platen or a target angle of the rotating unit, and the movable unit
  • a position detection means for detecting the position of the panel or the angle of the rotating part
  • the control means is a target position or target angle commanded by the position command means, a position detected by the position detection means or
  • a combined motor torque command calculating means for calculating a combined motor torque command signal for controlling the electric motor based on an angle and a speed detected by the speed detecting means or an angular speed; and the combined motor torque command signal; and Based on the speed or angular velocity detected by the speed detection means, the disturbance torque accompanying the driving of the movable platen is estimated, and a disturbance torque estimation signal indicating the disturbance torque is generated.
  • Disturbance torque estimation means for calculating, and motor control means for controlling the electric motor based on the combined motor torque command signal and the disturbance torque estimation signal.
  • disturbance torque associated with driving the movable platen is estimated based on the composite motor torque command signal and the detected velocity of the movable platen or the angular velocity of the rotating part. is doing.
  • the cylinder control means controls the hydraulic cylinder based on the motion base signal and the disturbance torque estimation signal.
  • the motor control means uses the combined motor torque command signal and the disturbance torque estimation signal. The electric motor is controlled.
  • control means controls the hydraulic cylinder by controlling an opening amount of the valve.
  • the control means can control the electric motor in consideration of the responsiveness of the hydraulic cylinder, thereby generating a continuous thrust in response to a continuously changing thrust command.
  • a twentieth aspect of the present invention is the movable platen driving apparatus according to the eighteenth aspect, further comprising position command means for commanding the target position of the movable platen or the target angle of the rotating unit,
  • the control means is based on the target position or target angle commanded by the position command means, the position or angle detected by the position detection means, and the speed or angular velocity detected by the speed detection means.
  • Pressure of the hydraulic cylinder from the generation of the composite motor torque command calculation means for calculating the composite motor torque command signal for controlling the motor, the composite motor torque command signal, and the command signal for commanding the opening amount of the valve; Based on the first response until the motor reaches a predetermined value and the second response until the commanded torque or current is reached. ! /,
  • And motor control means for controlling said electric motor Te, ⁇ Ru characterized by having a.
  • the control means controls the electric motor in consideration of both the first responsiveness of the hydraulic cylinder and the second responsiveness of the electric motor.
  • the position command means for commanding the target position of the movable plate or the target angle of the rotating unit
  • Pressure detection means for detecting the pressure of the hydraulic cylinder
  • the control means is a target position or target angle commanded by the position command means, a position or angle detected by the position detection means, and the speed detection Speed or angle detected by means
  • a composite motor torque command calculation means for calculating a composite motor torque command signal for controlling the electric motor based on the speed; the composite motor torque command signal; and the pressure detected by the pressure detection means.
  • Motor control means for controlling the electric motor.
  • a pressure detection means for detecting the pressure of the hydraulic cylinder, and an opening amount of the valve are detected.
  • An opening amount detection means, and the control means calculates a hydraulic cylinder control signal for controlling the hydraulic cylinder based on a speed or an angular velocity detected by the speed detection means, and And cylinder control means for controlling the hydraulic cylinder based on the hydraulic cylinder control signal, the pressure detected by the pressure detection means, and the opening amount detected by the opening amount detection means. Speak.
  • the control means controls the hydraulic cylinder (valve opening) so that the pressure detected by the pressure detection means follows the hydraulic cylinder control signal (pressure command). ing.
  • a twenty-fourth aspect of the present invention is the movable platen drive apparatus according to the first aspect, wherein
  • the valve comprises a first valve interposed between the constant high pressure source and the hydraulic cylinder, and a second valve interposed between the low pressure source and the hydraulic cylinder, and the control
  • the means opens the second valve after blocking the first valve, or opens the first valve after blocking the second valve, and opens the first valve and the second valve. It is characterized by controlling.
  • the control means is configured to perform two operations of a substantially constant low pressure state (P0) and a substantially constant high pressure state (P1).
  • Calculation means for calculating a hydraulic cylinder control signal indicating a cylinder pressure changing between two steady states; and valve control means for controlling the valve based on the hydraulic cylinder control signal;
  • the valve has an opening amount and responsiveness capable of changing at least 50% or more of I P1 -P0 I between two steady states within 60 ms at the latest from the change point of the hydraulic cylinder control signal. It is characterized by that. That is, the rise of the pressure of the hydraulic cylinder is proportional to the amount of hydraulic fluid supplied through the valve, and in order to increase this amount, the responsiveness of the valve is increased and the opening amount of the valve is increased. Must be increased.
  • a twenty-seventh aspect of the present invention is the movable platen driving apparatus according to the twenty-sixth aspect, wherein the acceleration detecting means is based on the speed or angular velocity detected by the speed detecting means. It is characterized by calculating acceleration or angular acceleration.
  • the control means is based on a target speed or a target angular speed commanded by the speed command means.
  • acceleration calculation means for calculating angular acceleration, and at least one hydraulic cylinder of the hydraulic cylinder is provided based on the calculated angular velocity or angular acceleration. Characterized by acting as a pump! /
  • the twenty-ninth aspect of the present invention is characterized in that in the movable platen driving device according to the first aspect, two or more of the electric motors are connected to one screw nut driving mechanism. It is.
  • a thirtyth aspect of the present invention is the movable platen driving apparatus according to the first aspect, wherein a plurality of the screw 'nut drive mechanisms are provided for one movable platen, and the electric motor is It is provided for each screw / nut drive mechanism.
  • the hydraulic cylinder has a plurality of independent pressure receiving surfaces operable in the same direction. It is a feature.
  • a position command means for commanding a target position of the movable plate or a target angle of the rotating unit;
  • the first position detecting means for detecting the position of the movable board or the angle of the rotating part and the position different from the position detected by the first position detecting means of the movable board, or arranged on the movable board.
  • a thirty-third aspect of the present invention is the movable platen driving apparatus according to the thirty-second aspect, wherein the control means is a target position or target angle commanded by the position command means. Controlling the first electric motor among the plurality of electric motors based on the position or angle detected by the first position detecting means and the speed or angular velocity detected by the first speed detecting means. First composite motor torque command calculation means for calculating a first composite motor torque command signal for detecting the target position or target angle commanded by the position command means, and the second position detection means. In order to control a second electric motor that drives a screw nut driving mechanism different from the first electric motor based on the position or angle and the speed or angular velocity detected by the second speed detecting means.
  • control means since the control means according to the thirty-second or thirty-third aspect individually controls the electric motors provided for each screw and nut drive mechanism, external loads and disturbances eccentric to the movable platen are generated. Even if it adds, the thrust control of the electric motor corresponding to it can be performed.
  • the movable platen driving device includes a position command means for commanding a target position of the movable plate or a target angle of the rotating unit, and the movable platen.
  • a position detecting means for detecting the position of the panel or the angle of the rotating part, and a plurality of the hydraulic cylinders are arranged for one movable board, and the speed detecting means is configured to detect the speed of the movable board or the electric motor.
  • the first speed detecting means for detecting the angular speed of any rotating part from the drive shaft of the motor to the screw nut mechanism, and the first speed detecting means of the movable platen.
  • the first disturbance torque associated with the driving of the movable platen is estimated to obtain the first disturbance torque.
  • Second disturbance torque estimating means for estimating a disturbance torque of 2 and calculating a disturbance torque estimation signal indicating the second disturbance torque, and the motion
  • a first cylinder control means for controlling a first hydraulic cylinder of the plurality of hydraulic cylinders based on a base signal and the first disturbance torque estimation signal; and the motion base signal
  • second cylinder control means for controlling a second hydraulic cylinder of the plurality of hydraulic cylinders based on the second disturbance torque estimation signal.
  • the calculation means is based on the target position or target angle commanded by the position command means, the position or angle detected by the first position detection means, and the speed or angular velocity detected by the first speed detection means.
  • a first combined motor torque command calculating means for calculating a first combined motor torque command signal for controlling the first electric motor of the plurality of electric motors, and the position command means Target position or target angle, position or angle detected by the second position detecting means, and speed or angular velocity detected by the second speed detecting means
  • a second combined motor torque command calculating means for calculating a second combined motor torque command signal for controlling a second electric motor of the plurality of electric motors based on
  • the disturbance torque estimation means is based on the first combined motor torque command signal and the speed or angular velocity detected by the first speed detection means!
  • the disturbance torque estimation signal indicating the first disturbance torque is calculated, and the second disturbance torque estimation means includes the second combined motor torque command signal and the second speed detection means.
  • the second disturbance torque associated with the driving of the movable platen is estimated based on the speed or the angular velocity detected by the above, and a disturbance torque estimation signal indicating the second disturbance torque is calculated.
  • the control means separately controls a plurality of hydraulic cylinders arranged with respect to one movable plate, so that an external load eccentric to the movable plate is provided. Even if a disturbance is applied, the thrust control of the hydraulic cylinder corresponding to the disturbance can be performed.
  • a slide drive device for a press machine includes the drive device for the movable platen according to any one of the first to thirty-fifth aspects of the present invention, and the movable platen Is characterized by a slide of a press machine.
  • the drive torque of the electric motor is transmitted to the movable platen (slide) as a linear drive force via the screw nut mechanism, and the thrust of the hydraulic cylinder can be transmitted to the movable platen.
  • the movable platen can be driven with high accuracy by the characteristics of the electric motor as a whole while having a large pressurizing capacity.
  • the hydraulic cylinder has less hydraulic fluid leakage and less friction loss, so it is more energy efficient.
  • the excess torque of the electric motor is charged to the constant high pressure source as hydraulic fluid energy, and when the movable platen is decelerated.
  • the kinetic energy of the movable platen can be charged (regenerated) to the constant high pressure source as pressure fluid energy.
  • FIG. 1 is a schematic diagram showing an overall configuration of a first embodiment of a slide drive device for a press machine according to the present invention
  • FIG. 2 is a diagram used to explain the static assisting action of large and small hydraulic cylinders on an electric motor
  • Fig. 3 is a schematic diagram of a controller that outputs commands to the electric motor and hydraulic cylinder;
  • Fig. 4 Figs. 4A and 4B show the electric motor thrust, the large and small hydraulic cylinder thrusts, and It is a graph showing the relationship with the combined thrust that combines the thrust;
  • FIG. 5 is a hydraulic circuit diagram showing the internal configuration of the hydraulic cylinder driving device and auxiliary pressure oil supply device shown in FIG. 1;
  • FIG. 7 is a block diagram showing the internal configuration of the slide control device shown in FIG. 1;
  • FIG. 8 is a block diagram showing the internal configuration of the slide position controller shown in FIG.
  • FIGS. 9A to 9C are diagrams showing the output timing of each command when the hydraulic cylinder assist is ON in the hydraulic cylinder controller shown in FIG. 7;
  • FIG. 10 is a circuit diagram showing a part of the hydraulic cylinder controller shown in FIG. 7 when the hydraulic cylinder assist is ON;
  • FIGS. 11A to 11C are diagrams showing the output timing of each command when the assist of the hydraulic cylinder in the hydraulic cylinder controller shown in FIG. 7 is OFF;
  • FIG. 13 shows the CYL1JDN command for assisting the hydraulic cylinder.
  • FIG. 13B is a graph showing the pressure response of the hydraulic cylinder, and
  • FIG. 13B is a graph showing the torque response when a stepped torque command is given to the electric motor;
  • FIG. 15 is a diagram used to explain the hydraulic cylinder controller shown in FIG. 7 for calculating the CYL1JDN adjustment signal and the CYL2JDN adjustment signal and the combined motor controller for torque adjustment;
  • FIG. 16 is a diagram used for explaining a hydraulic cylinder controller of another embodiment for calculating a CYL1JDN adjustment signal and a CYL2_ON adjustment signal and a composite motor controller for torque adjustment;
  • FIG. 17 is a graph showing a slide target position and a slide position in one cycle
  • FIG. 20 is a graph showing the head side pressure, the rod side pressure, and the head side pressure of a large hydraulic cylinder in one cycle of a small hydraulic cylinder;
  • FIG. 21 is a graph showing head-side thrust, rod-side thrust, and head-side thrust of a large hydraulic cylinder in one cycle of a small hydraulic cylinder;
  • FIG. 22 is a graph showing a head side oil amount, a rod side oil amount of a small hydraulic cylinder, and a head side oil amount of a large hydraulic cylinder in one cycle;
  • FIG. 23 is a graph showing the pressure of a constant high pressure source in one cycle
  • FIG. 25 is a graph showing the press load of one cycle.
  • FIG. 26 is a graph showing one cycle of slide acceleration command
  • FIG. 27 is a schematic diagram showing the overall configuration of a second embodiment of a slide drive device for a press machine according to the present invention.
  • FIG. 28 is a block diagram showing the internal configuration of the slide control device shown in FIG. 27;
  • FIG. 29 shows a third embodiment of the slide drive device of the press machine according to the present invention. Form It is the schematic which shows the principal part structure.
  • FIG. 1 is a schematic diagram showing the overall configuration of a first embodiment of a slide drive device for a press machine according to the present invention.
  • the slide drive device of this press machine mainly comprises a press machine 100, a hydraulic cylinder drive device 200, an auxiliary pressure oil supply device 230, a self-weight fall prevention device 250, a charge drive device 270, The slide control device 300 and the motor drive device 390 are configured.
  • a frame is constituted by a bed 102, a column 104, and a crown 106, and a slide (movable platen) 110 is guided by a guide portion 108 provided on the column 104 so as to be movable in the vertical direction.
  • a driving means for driving the slide 110 two large and small hydraulic cylinders SYLl (SYLla, SYLlb), SYL2 (SYL2a, SYL2b), and a screw nut to which the output torque of the electric (servo) motor SM is transmitted. And a mechanism is provided.
  • the hydraulic cylinders SYLl are a pair of hydraulic cylinders having a small cylinder diameter, and are disposed at positions symmetrical with respect to the center of the slide 110.
  • the hydraulic cylinders SY L2 are a pair of hydraulic cylinders having a large cylinder diameter, and are disposed at symmetrical positions with respect to the center of the slide 110.
  • the cylinder body is fixed to the crown 106, and the piston rod is fixed to the slide 110, so that thrust can be transmitted to the slide 110 over the entire stroke of the slide 110! / ⁇
  • a slide position detector 130 for detecting the position of the slide 110 is provided on the base 102 side of the press machine 100.
  • the electric motor SM has a drive shaft angular velocity detector 132 for detecting the angular velocity of the drive shaft. Is provided.
  • the slide position detector 130 can be constituted by various sensors such as an incremental type or absolute type linear encoder, potentiometer, and magnet scale.
  • the drive shaft angular velocity detector 132 is an incremental type or absolute type rotary. It can be configured with an encoder or tacho generator.
  • the thrust F of the hydraulic cylinder can be expressed by the following equation.
  • the hydraulic pressure is generated by compressing the amount of oil Q supplied through the valve.
  • V Hydraulic cylinder head side pipe volume [m 3 ]
  • the rise of pressure P acting on the head side of the hydraulic cylinder is supplied via a valve.
  • thrust F is proportional to the response of current I. From command to electric motor to drive current
  • the response (current response) is excellent, and the response delay of the thrust generation by the electric motor to the command as a whole is small.
  • the slide controller automatically recognizes the overall thrust (required for acceleration / deceleration, molding, viscosity, friction, etc.) and combines the thrust of one or more hydraulic cylinders when the thrust of the electric servo motor is insufficient.
  • the maximum thrust of only the electric motor SM is considered as the maximum thrust (100%) of the combined motor, and the total thrust of 0 to + 25% is covered by the thrust of the electric motor alone.
  • the total thrust is in the range of + 25% to + 50%, the small hydraulic cylinder 3 ⁇ 1 ⁇ 1 is set to 0? ⁇ And the electric motor SM is offset by 25% (the thrust of the small hydraulic cylinder SYL1). To do.
  • each hydraulic cylinder SYL1 and SYL2 operates ONZOFF to secure the magnitude of the thrust, and the electric motor SM adjusts so that the thrust continuously acts on the composite thrust command.
  • the proper thrust characteristics In the range where the total thrust exceeds + 75%, in addition to the large cylinder hydraulic cylinder SYL2, the cylinder small hydraulic cylinder SYL1 is turned ON again, and the electric motor SM is driven offset by 25%. After all, each hydraulic cylinder SYL1 and SYL2 operates ONZOFF to secure the magnitude of the thrust, and the electric motor SM adjusts so that the thrust continuously acts on the composite thrust command. The proper thrust characteristics.
  • FIG. 3 is a schematic diagram of a controller that outputs commands to the electric motor SM and the hydraulic cylinder SYL (SYL1, SYL2).
  • GCYL (S) indicates a transfer function from the control command to the hydraulic cylinder SYL to the pressure generation of the hydraulic cylinder SYL
  • GMOT (S) indicates the electric motor SM.
  • Torque command or current command force Indicates the transfer function up to the torque output or drive current of the electric motor SM.
  • the hydraulic cylinder SYL is required to have high responsiveness (dead band within 10ms, rise within 20ms).
  • the valve with a large opening is driven ONZOFF.
  • FIG. 4A and FIG. 4B are graphs showing the relationship between the thrusts of the electric motor and the hydraulic cylinder and the combined thrust obtained by combining these thrusts.
  • FIG. 4A shows a thrust composite that takes static only into consideration when the thrust command is increased or decreased in a ramp shape. Is shown, but it turns out that the compound thrust without dynamic consideration has discontinuity
  • FIG. 4B shows a force compound that shows a static and dynamic consideration when the thrust command is increased or decreased in a ramp shape.
  • the compound thrust is the ONZOF F of the hydraulic cylinder. It turns out that it changes continuously regardless.
  • This hydraulic cylinder driving apparatus 200 includes a constant high pressure source 204 mainly including an accumulator 202 that holds hydraulic oil at a substantially constant high pressure, and an accumulator 206 that holds hydraulic oil at a substantially constant low pressure.
  • Low pressure source 208 valve drive 210, a pair of valves V1_D (V1_D_H, V1_D ⁇ ) for driving the hydraulic cylinder SYL1, and a pair of valves V2_D (V2_D_H, V2_D ⁇ for driving the hydraulic cylinder SYL2)
  • a high pressure relief valve 220 disposed between the high pressure side pipe P connected to the accumulator 202 and the low pressure side pipe T connected to the accumulator 206, and the accumulator 202 accumulates pressure.
  • Pressure detector P_H that detects the hydraulic oil pressure
  • pressure detector P ⁇ ⁇ D that detects the circuit pressure of the pipe 222 connected to the cylinder upper chamber side of the hydraulic cylinder SYL1, and the cylinder upper chamber of the hydraulic cylinder SYL2 Detects circuit pressure in line 2 24 connected to the side
  • a pressure detector P_2_D that, the valve V1_D_H, V1_D ⁇ , V2_D_H, and V2_D ⁇ spool position detector for detecting respectively the spool position of S1_D ⁇ , S1_D_H, S2_D ⁇ , and is configured S2_D_H and power.
  • the low pressure source 208 may be an atmospheric pressure tank.
  • the high-pressure side pipe P is connected to pipes 222 and 224 via valves V1_D_H and V2_D_H, respectively, and the low-pressure side pipe T is connected to pipes 222 and 224 via valves 1_0 ⁇ and V2_D, respectively. Connected to 224.
  • the high-pressure side pipe P and the low-pressure side pipe T are respectively connected to the charge driving device 250.
  • the low pressure side pipe T is connected directly to the cylinder lower chamber of the hydraulic cylinder SYL2 (SYL2a, SYL2b) (see Fig. 1).
  • the valve driving device 210 is based on valve command signals LLL_SLV, Ll_H_SLV, L2_SLV, and L2_H_SLV that are applied from a hydraulic cylinder controller 350 in the slide control device 300 to be described later! /, And four valves 1_0_! Drive “[, ⁇ 1_0 ⁇ , ⁇ 2_0_1" [, and ⁇ 2_0 ⁇ .
  • the auxiliary pressure oil supply device 230 includes an electric motor 231, a hydraulic pump 232, a filter 233, an electromagnetic direction switching valve 234, and a check valve 235.
  • the pressure detector P_H outputs a substantially constant high pressure signal indicating the pressure of the hydraulic oil accumulated in the accumulator 202 to the slide control device 300.
  • the slide control device 300 operates when the substantially constant high pressure signal to be input is in operation.
  • the accumulated pressure lower limit set pressure for example, 21.5 MPa
  • a pressure oil supply signal is output to the auxiliary pressure oil supply device 230 (see FIG. 1).
  • the electromagnetic directional switching valve 234 of the auxiliary pressure oil supply device 230 is switched by the pressure oil supply signal, and the discharge line (holding side of the check valve 235) of the hydraulic pump 232 driven by the electric motor 231 is on-loaded. As a result, the pressure oil is accumulated in the constant high pressure source 204. During operation, the actuator will unload when it reaches a predetermined pressure (operational pressure accumulation upper limit set pressure: 22.5 MPa, for example).
  • the self-weight fall prevention device 250 prevents the slide 110 from dropping due to its own weight, and is arranged in two lines connected to the hydraulic fluid connection port on the cylinder lower chamber side of the hydraulic cylinders CYLla and CYLlb.
  • the pilot operated check valves 251 and 252, the electromagnetic direction switching valves 253 and 254, and the relief valves 255 and 256 are configured.
  • the brake control signal Bl, B2 is output from the slide control device 300 to the electromagnetic direction switching valves 253, 254, and the electromagnetic direction switching valves 253, 254 are shown in FIG.
  • the position force shown is also switched.
  • pilot pressure is applied from the electromagnetic direction switching valves 253 and 254 to the pilot operation check valves 251 and 252, thereby enabling the flow of pressure oil in the reverse direction through the pilot operation check valves 251 and 25 2.
  • the charge driving device 270 operates the hydraulic cylinders SYLla and SYLlb as a pump and charges the constant high pressure source 204 with pressure oil.
  • the charge driving device 270 is a check valve 271, a pilot operated check valve 2 72, an electromagnetic It consists of a direction switching valve (charge valve) 273.
  • the slide control device 300 outputs a charge valve command signal to the charge valve 273 for a predetermined period during which charging is performed, and the charge valve 273 also switches the position force shown in FIG. As a result, pilot pressure is not applied to the pilot check valve 272, and there is a flow path from the cylinder lower chamber side of the hydraulic cylinders SYLla, S YLlb to the low pressure side pipe T via the self-weight fall prevention device 250.
  • the slide 110 is lowered, the pressure oil discharged from the lower chambers of the hydraulic cylinders SYLla and SYLlb is charged to the constant high-pressure force source 204 via the check valve 271 via the high-pressure line P.
  • the Details of the predetermined period during which the pressure oil is charged will be described later.
  • the slide control device 300 includes a slide overall controller 310, a slide position controller 320, a speed controller 330, a pressure oil charge controller 340, a hydraulic cylinder controller 350, and a composite motor controller. 360, a disturbance torque estimator 370, and a motor controller 380.
  • the slide control unit 310 controls the operation of the press machine 100, and outputs the slide control signal and the brake OFF signals Bl and B2 during the operation of the press machine 100.
  • the slide general controller 310 is supplied with a substantially constant high pressure signal indicating the pressure of the constant high pressure source 204 from the pressure detector P_H in the hydraulic cylinder driving device 200.
  • the vessel 310 outputs a pressure oil supply signal for driving the auxiliary pressure oil supply device 230 when the substantially constant high pressure signal to be input becomes lower than the operating pressure accumulation lower limit set pressure (for example, 21 MPa).
  • the slide overall controller 310 outputs the brake OFF signals Bl and B2 to the self-weight fall prevention device 250, thereby canceling the self-weight fall function (brake function) of the slide 110 when the operation is stopped.
  • the slide control signal output from the slide control unit 310 is stored in the slide position control unit 320.
  • a slide position signal indicating the position of the slide 110 is added to the other input of the slide position controller 320 from the slide position detector 130 that detects the position of the slide 110 via the position signal processing device 131.
  • the slide overall control signal input from the slide overall controller 310 is a slide speed signal that changes stepwise. This slide speed signal is filtered through the filter 321, and then the differentiator 322 and the integrator. Added to 323.
  • the slide speed signal time-differentiated by the differentiator 322 is supplied to the charge signal generator 324 as a slide acceleration command amount.
  • the charge signal generator 324 determines when the slide acceleration region that requires a relatively large torque, such as the slide acceleration command amount, has passed, and generates a charge base signal as a basis for controlling the charge driving device 270. Output.
  • the charge signal generator 324 generates the acceleration command signal force charge base signal calculated by calculation without using the actual acceleration signal, etc.
  • the chattering due to noise containing a lot of high frequency components it is also possible to generate a charge base signal from an actual acceleration signal, a result obtained by differentiating an actual speed, or an actual motor torque signal.
  • a speed command signal is applied to one input of the speed controller 330 from the slide position controller 320, and the drive shaft is connected to the other input of the speed controller 330.
  • a motor angular velocity signal is applied from the angular velocity detector 132 via the motor driving device 390.
  • the speed controller 330 calculates a motion base signal for controlling the position and speed and a composite motor torque command signal.
  • the motion base signal is output to the hydraulic cylinder controller 350, and the composite motor torque command signal is output to the composite motor controller 360 and the disturbance torque estimator 370.
  • the motion base signal is based on the feedback amount of the position and speed in order to control the hydraulic cylinder in a stable and high response with the composite motor torque command signal as the backbone. It is calculated by performing some kind of (multiple) processing on the composite motor torque command signal. For example, the composite motor torque command signal is converted into a motion base signal via a primary filter, or the composite motor torque command signal is multiplied by a constant to be converted into a motion base signal via a saturation element that saturates at a certain upper and lower limit value. Depending on the constants and saturation factors, the combined motor torque command signal and motion base signal may be included.
  • the disturbance torque is calculated and estimated based on the sum of the difference between the calculation amount multiplied by a delay element filter and the correction calculation amount based on the motor torque signal.
  • a disturbance torque estimation signal indicating the estimated disturbance torque is output to the hydraulic cylinder controller 350 and the composite motor controller 360.
  • the hydraulic charge controller 340 receives a charge base signal indicating that the vehicle has entered the constant velocity region from the acceleration region while descending, and sends a charge valve command signal and the like to the charge driving device 270. Outputs a charge base signal from the slide position controller 320 and a substantially constant high voltage signal from the pressure detector P_H.
  • the hydraulic charge controller 340 outputs a charge valve command signal for turning on the charge valve 273 in the charge driving device 270, while hydraulic cylinder control is performed.
  • a signal indicating that hydraulic cylinder SYL1 has been driven for assist is applied from device 350, the output of the charge valve command signal is stopped.
  • the output of the charge valve command signal is also stopped when the substantially constant high-pressure signal input from the pressure detector P_H reaches the accumulated pressure upper limit set pressure (for example, 22.5 MPa).
  • a cylinder 1 rise ON adjustment signal (Fig. 7) is output to correct the thrust response proportional to the pressure response predicted in advance and the torque response difference between the servo motor SM predicted in advance.
  • the combined motor controller 360 adds this adjustment signal to the SM torque command amount, so that the thrust through the servo motor + screw 'nut mechanism and the hydraulic cylinder thrust can be adjusted dynamically (even in combined transient conditions). ), Composite smoothly.
  • the hydraulic cylinder controller 350 has four command signals LLL_SLV, Ll_H_SLV, L2 _SLV, and four valves 1_0 _! "[, ⁇ 1_0 ⁇ , ⁇ 2_0_1" [, and ⁇ 2_0 ⁇ .
  • L2_H_SLV the SYL1JDN adjustment signal and SY L2_ON adjustment signal corresponding to the thrust generated by the hydraulic cylinders SYL1 and SYL2 are output to the composite motor controller 360.
  • -A disturbance base signal is added, and a disturbance torque estimation signal is added from the disturbance torque estimator 370.
  • the hydraulic cylinder controller 350 includes pressure signals L1_P and L2_P detected by the pressure detectors P ⁇ D and P_2_D, and spool position detectors S1_D ⁇ , S1_D_H, S2_D ⁇ , and S2_D_I "[ The spool position signals LLL_POS, Ll_H_POS, L2_POS, and L2—H_POS detected by.
  • the hydraulic cylinder controller 350 determines whether the sum of the input motion base signal and the disturbance torque estimation signal can be covered by the thrust of the electric motor SM alone, and when the hydraulic cylinder assist is required. Determines whether one or both of the hydraulic cylinders SYL1 and SYL2 needs to be assisted, assists the hydraulic cylinder SYL1 to turn on and assists OF F, and turns on and turns on the hydraulic cylinder SYL2 Generate CYL2JDN command and CYL2JDFF command to make OF.
  • a rising ON charge signal is added from the pressure oil charge controller 340 to the CYL1JDN command and the CYL1JDFF command as needed during the rising.
  • valve Vl_D leading to the low pressure source 208 is fully closed in synchronization with the rise of the CYL1_0N command.
  • the valve command signal LLL_SLV is output (Fig. 9C), and then the valve command signal L1_H_SLV according to the assist boost pressure algorithm described later is output to open the valve V1_D_H that leads to the constant high pressure source 204 after a predetermined delay time. ( Figure 9B).
  • the assist pressure boosting algorithm is performed only for a predetermined assist pressure boosting time (between several meters to several tens of milliseconds) (transition period of cylinder pressure).
  • FIG. 10 is a circuit diagram showing a part of the hydraulic cylinder controller 350 that outputs the valve command signal L1_H_SLV.
  • the CYL1 pressure command CYL1REF during boost is output during the boost control time during assist.
  • the hydraulic cylinder controller 350 calculates a spool position command of the valve V1_D_H based on a deviation between the pressure command CYL1REF and the pressure signal L1_P detected by the pressure detector P_1_D.
  • the spool position command and the spool position detector The valve command signal L1_H_SLV is calculated based on the deviation from the spool position signal Ll_H_POS detected by S1_D_H, and the spool position (opening) of the valve V1_D_H is calculated by the valve command signal L1_H_SLV. Control).
  • valve V1_D_H is controlled so as to have a certain amount for steady ON (substantially full opening). This is to increase the valve opening so that the oil flow is not throttled after the pressurization process is completed, and to prevent energy efficiency from being reduced.
  • the hydraulic cylinder controller 350 performs the same control as when the assist is turned on even when the assist of the hydraulic cylinder is turned off.
  • valve command signal L2_H_SLV to be closed is output (Fig. 11C), and the valve command signal L2 _SLV according to the depressurization algorithm at the time of assisting to open the valve 2_0 ⁇ leading to the low pressure source 208 after a predetermined delay time is output.
  • Output Figure 11B.
  • the assist pressure release algorithm is performed only for a predetermined assist pressure release control time (between several meters to several tens of milliseconds) (transition period of cylinder pressure).
  • the valve command signal L2_SLV is calculated based on the deviation from the spool position signal L2_POS detected by the device S2_D, and the valve command signal is given as 2 ⁇ _31 ⁇ to the spool position (opening amount) of the valve 2_0 ⁇ . To control.
  • valve 2_0 ⁇ By controlling the valve 2_0 ⁇ with the valve command signal L2_SLV calculated according to the assist pressure release algorithm, the pressure in the hydraulic cylinder SYL2 follows the pressure command CYL2REF. [0137] After the depressurization by the assist-time depressurization algorithm, the valve 2_0 ⁇ ⁇ is controlled so as to have a certain amount for steady-off (substantially full opening). This is to prevent the oil flow from being throttled after the depressurization step is finished, so that the valve opening is increased and the energy efficiency is not lowered.
  • the hydraulic cylinder controller 350 when the rising charge ON signal is input from the hydraulic charge controller 340, the hydraulic cylinder controller 350 generates a valve command signal for operating the hydraulic cylinder SYL1 as a pump in the same manner as described above. Calculate and output.
  • Fig. 13A is a graph showing the pressure response of the hydraulic cylinder SYL1 when the CYL1JDN command for assisting the hydraulic cylinder SYL1 is given.
  • Fig. 13B shows a stepped torque command for the electric motor SM. It is a graph which shows a torque response when given.
  • FIG. 14A shows the transfer function up to the pressure response of the CYL1JDN command force hydraulic cylinder SYL1
  • FIG. 14B shows the transfer function of the torque command force up to the torque response of the electric motor SM.
  • the hydraulic cylinder controller 350 uses the transfer function shown in Figs. 14A and 14B to generate a CYL1-ON command when a CYL1-ON command or CYL2-ON command is generated. Then, adjustment signals (CYL1_0N adjustment signal, CYL2_ON adjustment signal) corresponding to the amount of cylinder thrust based on the CYL2_ON command added to the slide 110 are output to the composite motor controller 360.
  • the compound motor controller 360 subtracts the CYL1_0N adjustment signal and the CYL2JDN adjustment signal from the compound motor torque command signal, and calculates the motor torque command signal to the electric motor SM. The signal is matched even excessively.
  • FIG. 16 shows another embodiment of the hydraulic cylinder controller that calculates the CYLl_ON adjustment signal and the CYL2JDN adjustment signal for simpler dynamic matching.
  • the hydraulic cylinder controller 350 'shown in Fig. 16 subtracts the torque corresponding to the cylinder thrust in accordance with the pressure response of the hydraulic cylinders SYL1 and SYL2, which is sufficiently slower than the torque response of the electric motor SM.
  • An adjustment signal (the pressure signal L1_P, L2_P (pressure response) indicating the pressure in cylinders SYL1, SYL2 multiplied by the transfer function GPC1 (S), GPC 2 (S) that improves the phase of the delay of the electric motor SM response.
  • CYL1_0N adjustment signal, CYL2_ON adjustment signal are output to the composite motor controller 360.
  • the compound motor controller 360 receives a compound motor torque command signal from the speed controller 33 and a disturbance torque estimate signal from the disturbance torque estimator 370 to the compound motor controller 360.
  • the cylinder rise ON adjustment signal is added from 340, and the SYL1JDN adjustment signal and SYL2JDN adjustment signal are added from the hydraulic cylinder controller 350.
  • the composite motor controller 360 adds the input composite motor torque command signal and the disturbance torque estimation signal to obtain a composite motor torque command signal that takes into account the disturbance torque including the press load and the like.
  • Command signal force As shown in Fig. 15 and Fig. 16, the adjustment signal (CYLl_ON adjustment signal, CYL2_ON adjustment signal) is subtracted and the subtraction result is output as the motor torque command signal.
  • the motor controller 380 receives a motor torque command signal from the composite motor controller 360, and receives a motor torque signal and a motor angular velocity signal from the motor driving device 390. The motor controller 380 also calculates a motor driving signal with these signal forces, and outputs this motor driving signal to the motor driving device 390.
  • the motor angular velocity signal input to the motor controller 380 in this example is for correcting the motor torque decrease accompanying the command voltage decrease due to the counter electromotive force. That is, the motor angular velocity signal is used to correct (add) the voltage of the counter electromotive force generated in proportion to the speed by the command voltage PWM (pulse width modulation control unit) in the motor controller 380.
  • Various forms of motor controllers are known and not limited to this example.
  • the motor drive device 390 (Fig. 1) is a motor drive signal input from the slide control device 300. Based on! /, The electric motor SM is driven.
  • Figures 17 to 26 show the various state waveforms in one cycle when the slide 110 is driven (slide position, motor angular velocity, thrust by the motor (through the speed reducer, screw, nut mechanism), and each hydraulic cylinder pressure.
  • 4 is a graph showing the hydraulic cylinder thrust, the amount of oil flowing into and out of the hydraulic cylinder from the constant high pressure source, the constant high pressure source pressure, the constant high pressure source oil amount, the press load, and the slide acceleration command).
  • the solid line and the dotted line in Fig. 17 indicate the slide target position command and the slide position, respectively.
  • the upper limit position command for the slide target position command is 300 mm, and the lower limit position command is Omm (the upward direction is the positive direction).
  • the slide target position command is generated by integrating the slide speed command with the integrator 323 in the slide position controller 320, and in this embodiment, the slide speed command of 200 mmZs is generated. Time integrated.
  • the constant high pressure source 204 does not accumulate pressure oil for driving the cylinder.
  • the slide general controller 310 (Fig. 7) of the slide control device 300 is configured so that the pressure oil pressure is less than the stop pressure accumulation lower limit set pressure (for example, 21 MPa) based on a substantially constant high pressure signal that also receives the pressure detector P_H force.
  • a pressure oil supply signal is output to the auxiliary pressure oil supply device 230.
  • the auxiliary pressure oil supply device 230 charges the constant high pressure source 204 with the pressure oil supply signal, and secures the initial pressure oil in the constant high pressure source 204.
  • Brake OFF signals Bl and B2 are output from the slide control controller 310 of the slide control device 300 to the self-weight fall prevention device 250. The brake function is released.
  • the integrator 322 (FIG. 8) of the slide position controller 320 calculates a slide acceleration command.
  • FIG. 26 shows the slide acceleration command.
  • the charge signal generator 324 determines when the slide acceleration command force has passed the slide acceleration region that requires a relatively large torque (when the absolute torque value on the negative side near 0 seconds shown in FIG. 26 becomes small). Then, the charge base signal is output to the charge driving device 270.
  • the pressure oil charge controller 340 Upon receiving the charge base signal, the pressure oil charge controller 340 turns on the charge valve 273 in the charge driving device 270 until a signal indicating that the hydraulic cylinder SYL1 is driven for assistance is applied.
  • the valve command signal for charging is output.
  • the charge drive device 270 (Fig. 6) turns on the charge valve 273 and shuts off the low pressure side pipe line T with the pilot operation check valve 272.
  • the pressure oil discharged from the cylinder lower chambers of SYLla and SYLlb is charged to the constant high pressure source 204 via the check valve 271 and the high pressure side pipe P.
  • FIG. 23 and FIG. 24 show the pressure oil pressure and the amount of oil in the constant high pressure source 204, respectively, and the pressure rise portion between 0.4 s and l.15 s shown in FIG. 23 and FIG.
  • the oil increase part is due to the charge when the slide descends.
  • the molding force shown in Fig. 25 acts during the period when the slide position 100mm (elapsed time 1.1s) force reaches the slide bottom dead center position (0mm).
  • FIG. 18 shows the motor angular velocity (drive shaft angular velocity) of the electric motor SM. It can be seen that a stable speed curve is shown regardless of the load action, except when the molding force (press load) is excessive. This is because the disturbance torque estimator 370 in the slide control device 300 shown in FIG. 7 calculates and estimates the disturbance torque including the press load based on the speed signal, etc., and the disturbance torque is combined with the composite motor controller 360. The effect of outputting to kill is great.
  • the hydraulic cylinder controller 350 causes the motion base signal that controls the position and speed and the disturbance torque estimation signal (based on the sum (assist judgment amount) to Hydraulic cylinder SYL1 (small cylinder), hydraulic cylinder SYL2 (large cylinder)
  • Hydraulic cylinder SYL1 small cylinder
  • hydraulic cylinder SYL2 large cylinder
  • the valve command signal group to be driven is output, and the shortage of the thrust of the electric motor SM (from the screw nut mechanism) is compensated by the cylinder thrust.
  • the hydraulic cylinder controller 350 corrects the thrust response proportional to the pressure response predicted in advance and the torque response difference of the electric motor SM predicted in advance.
  • the adjustment signal (CYL1_0N adjustment signal, CYL2_ON adjustment signal) is output to the composite motor controller 360, and the composite motor controller 360 adds the adjustment signal to the composite motor torque command signal. 'The thrust through the nut mechanism and the hydraulic cylinder thrust are smoothly and dynamically compounded (even in complex excessive states).
  • the auxiliary pressure oil supply device 230 operates and the constant high pressure source 2 Pressure oil accumulates in 04.
  • a predetermined pressure operation pressure accumulation upper limit set pressure (for example, 22.5 MPa)
  • the supply of pressure oil by the auxiliary pressure oil supply device 230 stops.
  • slide 110 is based on slide controller 300 and slide position controller Control is performed so that the slide position follows the slide target position command generated in 320.
  • the hydraulic cylinder controller 350 outputs a valve command signal group that sequentially turns off the hydraulic cylinder SYL1 (small cylinder) and hydraulic cylinder SYL2 (large cylinder).
  • the hydraulic cylinder controller 350 when assisting OFF the hydraulic cylinders CYL1 and CYL2, the hydraulic cylinder controller 350 outputs an adjustment signal to the composite motor controller 360 in the same manner as when the assist is ON, and the composite motor controller 360 By adding the adjustment signal to the motor torque command signal, the electric motor SM can also dynamically change the thrust through the screw nut mechanism and the hydraulic cylinder thrust to V, even if (V Even) Smoothly compound.
  • the pressure oil charge controller 340 that has received the charge base signal outputs a rising charge ON signal to the hydraulic cylinder controller 350 in the slide ascending process.
  • the hydraulic cylinder controller 350 outputs a valve command signal group for driving the hydraulic cylinder SYL1 when the rising charge ON signal is input, and drives the hydraulic cylinder SYL1, and its pressure is preset in the same way as during assist. It is controlled based on the response.
  • the hydraulic cylinder SYL1 thrust is in the downward direction and is opposite to the operation direction of the electric motor SM, so the electric motor SM bears an extra torque corresponding to the thrust of the hydraulic cylinder SYL1.
  • the motor torque command corresponding to the torque increase corresponding to the thrust of the hydraulic cylinder SYL1 is calculated based on the CYLl_ON adjustment signal and the disturbance torque estimation signal as in the case of the assist operation.
  • the hydraulic cylinder SYL1 performs a pumping action, and charges the pressure oil from the low pressure source 208 to the constant high pressure source 204 with surplus power when the electric motor SM slides up. Note that the ascending charge is permitted only at a predetermined time at the beginning of the ascent, when the substantially constant high voltage signal is not more than the ascending charge starting set pressure (for example, 21.8 MPa).
  • the slide 110 is decelerated when approaching the top dead center position as a result of the slide controller 330 controlling the slide position to follow the slide target position command.
  • the torque of the electric motor SM is originally generated on the deceleration side (downward side), but the hydraulic cylinder SYL1 is driven (continuously) as a pump during upward charging (thrust is generated on the downward side). Therefore, it occurs on the acceleration side (upward side).
  • FIG. 27 is a schematic diagram showing the overall configuration of the second embodiment of the slide drive device of the press machine according to the present invention.
  • the parts common to the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the slide drive device for the press machine according to the second embodiment shown in FIG. 27 is the same as that shown in FIG.
  • the press machine 100 ′ and the slide control device 300 ′ are mainly different from those of the first embodiment.
  • a driving means for driving the slide 110 a double hydraulic cylinder SYL and a pair of screw nut mechanisms to which output torques of the electric motors SM1a, SM2a and SMlb, SM2b are transmitted are provided.
  • the double hydraulic cylinder SYL has the same force as the hydraulic cylinder SYL1 including the oil chamber 140 with a small pressure receiving area and the hydraulic cylinder SYL2 including the oil chambers 141 and 142 with a large pressure receiving area.
  • the main body is fixed to the crown 106, and the piston rod is fixed to the slide 110, so that thrust can be transmitted to the slide 110 over the entire stroke of the slide 110.
  • the oil chambers 140 and 141 are connected to the pipelines 222 and 224, respectively, and the oil chamber 142 is connected to the dead weight fall prevention device 250.
  • the pair of screw nut mechanisms are a drive screw 120a, 120b that is rotatably fixed to the crown 106 via bearings 112a, 112b, and a drive screw 120a, 120b that is fixed to the slide 110, respectively.
  • the drive screws 120a and 120bb are connected to the drive screws 120a and 122b so that the output torque of the electric motors S Mla, SM2a and SMlb, SM2b can be transmitted to the drive screws 120a, 120bb. It has become.
  • the pair of screw / nut mechanisms are disposed at symmetrical positions with respect to the center of the slide 110.
  • Slide position signals 130a and 130b output slide position signals a and b indicating the left and right slide positions of the slide 110 to the slide control device 300 'through the position signal processing devices 131a and 131b.
  • angular velocity signals (motor angular velocity signals a and b) of the respective drive shafts are output to the slide control device 300 'through the motor drive devices 390a and 390b.
  • Motor torque signals a and b are output from the motor drive devices 390a and 390b to the slide control device 300 ′, respectively.
  • the slide control device 300 includes a slide overall controller 310, a slide position controller 320', a speed controller 330 ', a pressure oil charge controller 340, and a hydraulic cylinder controller.
  • the controller 350, the composite motor controller 360 ', the disturbance torque estimators 370a and 370b, and the motor controllers 380a and 380b are configured as power! /.
  • the slide position controller 320 has the same configuration as the slide position controller 320 shown in FIG. Therefore, the left and right speed command signals a and b of the slide 110 are individually calculated and output. Also, the charge base signal is not output from the slide position controller 320 ′, but the motor angular velocity signals a and b are input, and the charge base signal is input from the acceleration calculator 326 to the pressure oil charge controller 340. Output.
  • This acceleration calculator 326 calculates the average acceleration left and right of the slide 110 from the motor angular velocity signals a and b, generates a charge base signal based on the acceleration, and outputs it to the pressure oil charge controller 340. Yes.
  • Speed command signals a and b and motor angular speed signals a and b are added to speed controller 330 '.
  • Speed controller 330' determines position and speed based on these input signals.
  • Control The motion base signal and composite motor torque command signals a and b are calculated.
  • the motion base signal is output to the hydraulic cylinder controller 350, and the composite motor torque command signals a and b are output to the composite motor controller 360 ′ and the disturbance torque estimators 370a and 370b.
  • a disturbance torque estimator 370a is added with a motor torque signal (effective current signal) a and a motor angular velocity signal a. Based on the motor angular velocity signal a, etc., the disturbance torque including the press load is calculated and estimated.
  • a disturbance torque estimator 370b is added with a motor torque signal (effective current signal) b and a motor angular velocity signal b in addition to the composite motor torque command signal b. Based on the motor angular velocity signal b, etc., the disturbance torque including the press load is calculated and estimated.
  • the disturbance torque estimators 370a and 370b output disturbance torque estimation signals a and b indicating the calculated disturbance torques to the hydraulic cylinder controller 350 and the composite motor controller 360 ′, respectively.
  • Motor torque command signals a and b are added to the motor controllers 380a and 380b from the composite motor controller 360, respectively, and the motor torque signals a and b and the motor angular velocity signal a from the motor driving devices 390a and b are respectively added. , b are added, and the motor controllers 380a, b also calculate the motor drive signals a, b, and output the motor drive signals a, b to the motor drive devices 390a, b.
  • Motor drive devices 390a, 390b (FIG. 27) drive electric motors SMla, SM2a and electric motors SMlb, SM2b based on motor drive signals a, b input from slide control device 300 ′.
  • the slide drive device for the press machine drives the electric motors SMla, SM 2a and the electric motors SMlb, SM2b individually, via a pair of left and right screw nut mechanisms.
  • thrust can be individually applied to the left and right sides of the slide 110, so that even when an eccentric press load is applied to the slide 110, a thrust corresponding to the eccentric press load can be applied. 110 parallelism can be maintained with high accuracy.
  • FIG. 29 is a schematic view showing the main configuration of a third embodiment of a slide drive device for a press machine according to the present invention.
  • the parts common to the first and second embodiments shown in FIGS. 1 and 27 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the slide drive device of the press machine of the third embodiment shown in FIG. 29 is different from that of the first and second embodiments shown in FIG. 1 and FIG. Hydraulic cylinder drive 200 'is different.
  • the electric motors SMa and SMb that drive the pair of screw * nut mechanisms are individually driven and controlled by a slide control device similar to the slide control device 300 'of the second embodiment shown in FIG.
  • the hydraulic cylinder driving device 200 ′ of the third embodiment is composed of a first hydraulic cylinder driving device 200a and a second hydraulic cylinder driving device 200b. Each hydraulic cylinder driving device is shown in FIG.
  • the hydraulic cylinder driving device 200 is configured in the same manner.
  • the first hydraulic cylinder drive device 200a is connected to the left hydraulic cylinders S YLla and SYL2a in FIG. 29 via the pipelines 222a and 224a, and the second hydraulic cylinder drive device 200b is connected to the pipeline.
  • the right hydraulic cylinders SYLlb and SYL2b in FIG. 29 are connected via 222b and 224b.
  • valve command signals L1 ⁇ -SLVa, Ll- H- SLVa, L2_SLVa, and L2_H_SLVa are added to the first hydraulic cylinder driving device 200a, and the second hydraulic cylinder driving device 200b has Valve command signals LLL_SLVb, Ll_H_SLVb, L2_SLVb, and L2_H_SLVb are added.
  • Valve command signals LI— L— SLVa, Ll— H— SLVa, L2— L— SLVa, and L2— H— SLVa and valve command signals LI— L— SLVb, Ll— H— SLVb, L2 ⁇ — SLVb, and L2-H-SLVb is not shown! It is generated individually by the hydraulic cylinder controller in the slide controller.
  • the hydraulic cylinder driving device 200 ′ includes a left hydraulic cylinder SYLla, SYL2a and a right hydraulic cylinder SYLlb, by a first hydraulic cylinder driving device 200a and a second hydraulic cylinder driving device 200b.
  • SYL2b is driven individually.
  • the slide drive device for the press machine of the third embodiment controls the left and right electric motors SMa and SMb of the press machine 100 "individually and controls the left and right hydraulic cylinders SYLla, SYL2a. And the hydraulic cylinders SYLlb and SYL2b are controlled separately, so that even when an eccentric press load is applied to the slide 110, a thrust corresponding to the eccentric press load can be applied. 110 parallelism can be maintained with high accuracy.
  • the present invention can be applied to a movable plate driving device and a slide driving device of a press machine.
  • the present invention can be applied to a technology for driving a movable plate of an industrial machine or construction machine that requires a slide of a press machine or various thrusts by using an electric motor and a hydraulic cylinder in combination.

Abstract

 プレス機械のスライドは、電動(サーボ)モータSM(からスクリュ・ナット機構を介した)推力と、定高圧力源から圧油が供給される油圧シリンダSYL1、SYL2の推力との複合推力で駆動される。スライド制御装置は、スライド位置信号及びモータ角速度信号に基づいて電動モータSM及び油圧シリンダSYL1、SYL2を制御するとともに、スライドの負荷が小さくなる期間に油圧シリンダSYL1をポンプとして作用させ、電動モータSMからスクリュ・ナット機構及びスライドを介して油圧シリンダSYL1に伝達される推力により定高圧力源に圧油をチャージさせる。

Description

明 細 書
可動盤の駆動装置及びプレス機械のスライド駆動装置
技術分野
[0001] 本発明は可動盤の駆動装置及びプレス機械のスライド駆動装置に係り、特に電動 モータと液圧シリンダとを併用してプレス機械のスライドや各種の推力を要する産業 機械や建設機械等の可動盤を駆動する技術に関する。
背景技術
[0002] (a)電動サーボモータ駆動のプレスのスライド駆動装置
特許文献 1には、電動モータ (電動サーボモータ)のみで直接又は間接的に (減速 機等を介して)スライドを駆動する電動プレスが開示されている。この電動プレスは、 スライドの高 、制御性は得られるものの、プレス機械や成形機の重要な能力要素とな る仕事能力(エネルギ能力)が確保できな ヽ (不十分となる)。これは電動モータによ る駆動において、エネルギを貯える機能を有さないため、及びモータ内部の発熱によ り大きな出力の連続放出が不能なためであり、成形時にモータ力 得られるエネルギ 量が限られて 、る力 である。
[0003] これを解決するためには、力なり出力(W)の大き 、電動モータを準備する必要があ り、それに対応する使用者側の受電容量 (設備)が莫大になる。また、スライドの加減 速、成形を伴わない等速動作時には、電動モータは極めて低い負荷トルクに伴う小 さい仕事量にとどまり、電動モータの剰余トルク(エネルギ)を有効に活用できない。
[0004] (b)可変吐出容量ポンプ + (複数の)油圧モータ(の閉回路接続) +スクリュウで駆 動されるプレス機械のスライド駆動装置
特許文献 2には、可変吐出容量油圧ポンプ +油圧モータ +スクリュウでスライドを駆 動するプレス機械のスライド駆動装置が開示されて 、る。このプレス機械のスライド駆 動装置によってスライドを駆動する場合は、スライドの制御性 (応答性や静的な [速度 や位置の]精度)に問題を有する。
[0005] 即ち、スライドを駆動するために必要な力は、可変吐出容量ポンプが吐出する単位 時間当たりに流れる油量が負荷発生に伴い油圧モータに接続される管路内で圧縮 されて発生する圧力(負荷圧)に比例するため、その圧縮に伴う応答遅れによりスライ ドの動特性が低下する (応答性や速度、位置のフィードバックゲインが低下する)。ま た、前記負荷圧に比例した圧油の漏れが可変吐出容量油圧ポンプや油圧モータ、 弁類で発生し、特に負荷圧が高くなる成形中の速度、位置精度を大きく低下させる。 し力も、可変容量ポンプモータによる油量制御を基幹とした駆動のため、単位時間内 に流れる油量が大量に必要となり、設備が増大化する危惧がある。
[0006] 反面、電動モータと可変容量ポンプ Zモータの間にフライホイールを有すことが可 能であり、エネルギの蓄積機能を有すため、エネルギ的な制約は受けない。また、同 様な油圧回路で、機械プレスのクランク軸を駆動するタイプの装置 (特許文献 3等)も あるが、前記の問題の他に、油圧モータによる駆動軸力 スライドに至る特性が非線 型であり、スライド加圧力値に制約が加わる等、更に制御上の問題が加わる。
[0007] (c) 特許文献 4には、電動モータで固定吐出容量ポンプを回転駆動し、ポンプに接 続された油圧シリンダや油圧モータによって可動盤を駆動する液圧駆動式塑性加工 装置が開示されている。この装置は、油圧媒体を駆動部の途中に介在させることで( 作動油の圧縮性、圧油の漏れの影響で)、電動モータの持つ制御性を著しく低下さ せる問題点を有する。更に電動モータ制御特有の問題であるエネルギの蓄積機能を 有さない点やコイル発熱の問題をそのまま引き継いでいる。そのため、プレス加圧力 及びプレス成形に伴う必要仕事量は、電動モータの最大瞬間出力で制限される。利 点は、簡単にシステムを構成可能なところに限られる。
[0008] (d)特許文献 5には、電動モータと固定容量式油圧ポンプ Zモータの並列駆動によ りスクリュ ·ナット機構を介してスライドを駆動するスライド駆動装置が開示されて 、る。 この装置は、電動モータと固定容量式油圧ポンプ Zモータとの両者の回転力を複合 してスクリュ ·ナット機構に伝達するようにして 、る。
[0009] (e)特許文献 6には、サーボモータで駆動されるねじ加圧装置の直動駆動力と、可 変容量ポンプ又は定吐出ポンプを動力源とする油圧シリンダ (油圧装置)の直動駆 動力とをそれぞれスライドに伝達可能した板材加工機におけるラム駆動装置が開示 されている。このラム駆動装置は、ラム往復駆動時の位置決めを主にねじ加圧装置 で行い、板材加工時の加圧を主に油圧装置で行うことにより、位置決め精度が高精 度で、大なる加圧力で板材加工を行うことができるようにしている(特許文献 6の段落 [0056])。
特許文献 1:特許第 2506657号明細書
特許文献 2:米国特許第 4563889号明細書
特許文献 3:特開平 1― 309797号公報
特許文献 4:特開平 10— 166199号公報
特許文献 5:特開 2002— 172499号公報
特許文献 6:特開平 7 - 266086号公報
発明の開示
発明が解決しょうとする課題
[0010] 特許文献 5に記載のプレス機械のスライド駆動装置は、以下の問題点がある。
[0011] (1)エネルギ効率
一定圧力源によって駆動される油圧モータは、油圧モータ内での作動油の漏れ量 が多ぐまた摩擦損失も大きいため、エネルギ効率が悪い。
[0012] (2)制御性
電動モータと固定容量式油圧ポンプ Zモータとの両者の回転力を複合してスクリュ
•ナット機構に伝達するため、スクリュ 'ナット機構及び駆動軸の剛性増加を伴い、電 動モータ軸換算の慣性モーメントが増大し、制御性の低下 (応答性低下やフィードバ ック制御における比例ゲイン確保の制約)を伴う。
[0013] (3)コスト
固定容量式油圧ポンプ Zモータは、市場性や部品点数の観点力も高価である。
[0014] (4)騒音
固定容量式油圧ポンプ Zモータは、回転数に比例した高圧 低圧切換の脈動音 が発生し、騒音源となる。
[0015] 一方、特許文献 6に記載の板材加工機におけるラム駆動装置は、油圧シリンダを使 用しているため、上記 (1)〜(4)の問題点はない。この駆動装置では、前述したように 板材加工時の圧力制御を油圧装置で行っているが、当該油圧装置は、可変容量ポ ンプ又は定吐出ポンプ力も直接作動油を油圧シリンダの上室に供給している。このた め、加圧力やエネルギを自在に確保可能となるが、作動油の圧縮や圧油の漏れによ り著しく制御性を損ない、また、加圧力を高精度にかつ応答性よく制御することが難 しいという問題がある。
[0016] 更に、特許文献 6に記載の油圧装置は、板材加工時に加圧可変容量ポンプ又は 定吐出ポンプを駆動して作動油を油圧シリンダに供給する必要があり、ポンプを駆動 するモータも出力の大きなものが必要になる。
[0017] 本発明はこのような事情に鑑みてなされたもので、電動モータと液圧シリンダとを併 用して大きな加圧能力を有するとともに、全体として電動モータの特性で高精度に可 動盤を駆動することができ、またエネルギ効率に優れた可動盤の駆動装置及びプレ ス機械のスライド駆動装置を提供することを目的とする。
課題を解決するための手段
[0018] 前記目的を達成するために、本発明の第一の態様に係る可動盤の駆動装置は、 電動モータと、前記電動モータの出力トルクを可動盤を移動させるための推力として 該可動盤に伝達させるスクリュ 'ナット機構と、略一定圧力の作動液を発生する定高 圧力源と低圧力源に弁を介して接続された単数又は複数の液圧シリンダと、前記液 圧シリンダの推力を前記可動盤に伝達する推力伝達手段であって、前記スクリュ 'ナ ット機構の任意のストローク位置で随時推力が伝達可能なように連結する推力伝達 手段と、前記可動盤の速度又は前記電動モータの駆動軸からスクリュ 'ナット機構ま でのいずれかの回転部の角速度を検出する速度検出手段と、前記速度検出手段に よって検出された速度又は角速度に基づいて前記電動モータ及び液圧シリンダを制 御する制御手段と、を備え、前記制御手段は、前記可動盤の負荷が小さくなる所定 の期間に前記液圧シリンダの少なくとも 1つの液圧シリンダをポンプとして作用させ、 前記電動モータから前記スクリュ'ナット機構、可動盤及び推力伝達手段を介して前 記液圧シリンダに伝達される推力により前記低圧力源力 前記定高圧力源に作動液 をチャージさせることを特徴として 、る。
[0019] 即ち、電動モータの出力トルクは、スクリュ 'ナット機構を介して直線駆動力として可 動盤に加わる。また、定高圧力源と低圧力源に弁を介して接続された単数又は複数 の液圧シリンダの推力は、推力伝達手段を介して前記スクリュ'ナット機構の任意のス トローク位置で前記可動盤に随時伝達可能になっており、出力トルクとシリンダの圧 力は力次元で複合される。そして、前記可動盤の速度又は前記電動モータの駆動軸 からスクリュ 'ナット機構までのいずれかの回転部の角速度に基づいて前記電動モー タ及び液圧シリンダを制御することにより、可動盤の動作を電動モータの制御性に依 存させて高精度な制御を可能にしている。一方、電動モータによる加圧力の不足分 は、液圧シリンダの圧力により行うことでアシストするようにしている。また、液圧シリン ダをポンプとして作用させることにより、電動モータの剰余トルクを圧液エネルギとして 定高圧力源にチャージし、更に可動盤の減速時の可動盤の運動エネルギを圧液ェ ネルギとして定高圧力源にチャージ(回生)することができる。
[0020] 本発明の第二の態様は、第一の態様に係る可動盤の駆動装置において、前記定 高圧力源、低圧力源及び液圧シリンダを含んで構成される作動液が循環する液圧装 置は、大気と遮断されていることを特徴としている。これにより、作動液に不純物が混 入することを防止できるようにして 、る。
[0021] 本発明の第三の態様は、第一の態様に係る可動盤の駆動装置において、前記定 高圧力源は、作動液を略一定高圧に保持するアキュムレータを含んで構成されるこ とを特徴として 、る。前記液圧シリンダをポンプとして作用させたときに吐出される圧 液は、前記アキュムレータにチャージされる。
[0022] 本発明の第四の態様は、第一の態様に係る可動盤の駆動装置において、前記低 圧力源は、作動液を大気圧のタンク又は略一定低圧に保持するアキュムレータを含 んで構成されることを特徴として 、る。
[0023] 本発明の第五の態様は、第一の態様に係る可動盤の駆動装置において、前記定 高圧力源は、略一定圧力の作動液を供給する作動液補助供給手段が接続されるこ とを特徴として 、る。前記液圧シリンダをポンプとして作用させることにより作動液を定 高圧力源にチャージすることができるが、前記作動液補助供給手段は、運転開始時 や可動盤の加圧に使用する作動液の液量が不足する場合に作動液を定高圧力源 に供給する。
[0024] 本発明の第六の態様は、第一の態様に係る可動盤の駆動装置において、前記電 動モータは、少なくとも 1つのサーボモータを含む複数の電動モータを含むことを特 徴としている。
[0025] 本発明の第七の態様は、第一の態様に係る可動盤の駆動装置において、前記電 動モータの出力トルクは、減速機を介して前記スクリュ 'ナット機構に伝達されることを 特徴としている。
[0026] 本発明の第八の態様は、第一の態様に係る可動盤の駆動装置において、前記液 圧シリンダは、シリンダ径の異なる 2種類以上のシリンダが用いられていることを特徴 としている。
[0027] 本発明の第九の態様は、第一の態様に係る可動盤の駆動装置において、前記液 圧シリンダは、シリンダ径の同一な一対の液圧シリンダを含み、前記一対の液圧シリ ンダは前記可動盤の中心に対して対称の位置に配置されるとともに、前記一対の液 圧シリンダの圧液接続ポート間は、作動液が同時に供給可能に接続されていることを 特徴として ヽる。前記一対の液圧シリンダによって可動盤をバランスよく加圧すること ができるとともに、一対の液圧シリンダの制御系を 1つにすることができる。
[0028] 本発明の第十の態様は、第一の態様に係る可動盤の駆動装置において、前記液 圧シリンダは、少なくとも 1つの液圧シリンダのピストロッド側の圧液接続ポートが前記 低圧力源に常時通じるように接続されて!ヽることを特徴として!/ヽる。
[0029] 本発明の第十一の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤は鉛直方向に移動可能に案内され、前記液圧シリンダはシリンダ下室側の圧 液接続ポートにパイロット操作逆止弁が接続され、非駆動時に前記可動盤の自重を 支えることを特徴として 、る。
[0030] 本発明の第十二の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤の目標速度又は前記回転部の目標角速度を指令する速度指令手段を備え、 前記制御手段は、前記速度指令手段によって指令された目標速度又は目標角速度 、及び前記速度検出手段によって検出された速度又は角速度に基づいて前記電動 モータ及び液圧シリンダを制御することを特徴としている。即ち、前記電動モータ及 び液圧シリンダは、速度フィードバックによる制御が行われて!/、る。
[0031] 本発明の第十三の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記可 動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、前記制御手 段は、前記位置指令手段によって指令された目標位置又は目標角度、前記位置検 出手段によって検出された位置又は角度、及び前記速度検出手段によって検出さ れた速度又は角速度に基づいて前記電動モータ及び液圧シリンダを制御することを 特徴としている。即ち、前記電動モータ及び液圧シリンダは、速度マイナーループフ イードバック付き位置フィードバックによる制御が行われている。
[0032] 本発明の第十四の態様は、第十三の態様に係る可動盤の駆動装置において、前 記制御手段は、前記位置指令手段によって指令された目標位置又は目標角度、前 記位置検出手段によって検出された位置又は角度、及び前記速度検出手段によつ て検出された速度又は角速度に基づいて前記電動モータを制御するための複合モ 一タトルク指令信号を演算する複合モータトルク指令演算手段と、前記複合モータト ルク指令信号に基づ 、て前記電動モータを制御するモータ制御手段と、を有するこ とを特徴としている。
[0033] 本発明の第十五の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記可 動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、前記制御手 段は、前記位置指令手段によって指令された目標位置又は目標角度、前記位置検 出手段によって検出された位置又は角度、及び前記速度検出手段によって検出さ れた速度又は角速度に基づいて前記液圧シリンダを制御するためのモーションベー ス信号を演算するモーションベース演算手段と、前記モーションベース信号に基づ V、て前記液圧シリンダを制御するシリンダ制御手段と、を有することを特徴として 、る
[0034] 本発明の第十六の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記可 動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、前記制御手 段は、前記位置指令手段によって指令された目標位置又は目標角度、前記位置検 出手段によって検出された位置又は角度、及び前記速度検出手段によって検出さ れた速度又は角速度に基づいて前記液圧シリンダを制御するためのモーションベー ス信号を演算するモーションベース演算手段と、前記位置指令手段によって指令さ れた目標位置又は目標角度、前記位置検出手段によって検出された位置又は角度 、及び前記速度検出手段によって検出された速度又は角速度に基づいて前記電動 モータを制御するための複合モータトルク指令信号を演算する複合モータトルク指令 演算手段と、前記複合モータトルク指令信号、及び前記速度検出手段によって検出 された速度又は角速度に基づいて前記可動盤の駆動に伴う外乱トルクを推定して該 外乱トルクを示す外乱トルク推定信号を演算する外乱トルク推定手段と、前記モーシ ヨンベース信号及び前記外乱トルク推定信号に基づいて前記液圧シリンダを制御す るシリンダ制御手段と、を有することを特徴として 、る。
[0035] 本発明の第十七の態様は、第一の態様に係る可動盤の駆動装置において、前記 可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記可 動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、前記制御手 段は、前記位置指令手段によって指令された目標位置又は目標角度、前記位置検 出手段によって検出された位置又は角度、及び前記速度検出手段によって検出さ れた速度又は角速度に基づいて前記電動モータを制御するための複合モータトルク 指令信号を演算する複合モータトルク指令演算手段と、前記複合モータトルク指令 信号、及び前記速度検出手段によって検出された速度又は角速度に基づいて前記 可動盤の駆動に伴う外乱トルクを推定して該外乱トルクを示す外乱トルク推定信号を 演算する外乱トルク推定手段と、前記複合モータトルク指令信号及び前記外乱トルク 推定信号に基づ 、て前記電動モータを制御するモータ制御手段と、を有することを 特徴としている。
[0036] 第十六及び第十七の態様に示すように、複合モータトルク指令信号、及び検出さ れた可動盤の速度又は回転部の角速度に基づいて可動盤の駆動に伴う外乱トルク を推定している。そして、前記シリンダ制御手段は、前記モーションベース信号及び 外乱トルク推定信号に基づ 、て液圧シリンダを制御し、同様にモータ制御手段は、 前記複合モータトルク指令信号及び外乱トルク推定信号に基づいて電動モータを制 御するようにしている。
[0037] 本発明の第十八の態様は、第一の態様に係る可動盤の駆動装置において、前記 制御手段は、前記弁の開口量を制御することにより前記液圧シリンダを制御すること を特徴としている。
[0038] 本発明の第十九の態様は、第十八の態様に係る可動盤の駆動装置において、前 記制御手段は、前記弁の開口量を指令する指令信号の発生時から前記液圧シリン ダの圧力が所定値に達するまでの応答性に基づいて前記電動モータを制御すること を特徴としている。
[0039] 前記液圧シリンダには、定高圧力源から略一定圧力の作動液が加えられるため、 前記弁を開く指令が与えられると、前記液圧シリンダの圧力は、所要の応答遅れをも つて所定値に達する。前記制御手段は、前記液圧シリンダの応答性を考慮して電動 モータを制御し、これにより連続的に変化する推力指令に対して連続的な推力を発 生させることができる。
[0040] 本発明の第二十の態様は、第十八の態様に係る可動盤の駆動装置において、前 記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段を備え、 前記制御手段は、前記位置指令手段によって指令された目標位置又は目標角度、 前記位置検出手段によって検出された位置又は角度、及び前記速度検出手段によ つて検出された速度又は角速度に基づいて前記電動モータを制御するための複合 モータトルク指令信号を演算する複合モータトルク指令演算手段と、前記複合モータ トルク指令信号、前記弁の開口量を指令する指令信号の発生時から前記液圧シリン ダの圧力が所定値に達するまでの第 1の応答性、及び前記電動モータへのトルク指 令又は電流指令力 前記指令されたトルク又は電流に達するまでの第 2の応答性に 基づ!/、て前記電動モータを制御するモータ制御手段と、を有することを特徴として ヽ る。前記制御手段は、前記液圧シリンダの第 1の応答性とともに、電動モータの第 2の 応答性の両方を考慮して前記電動モータを制御するようにして!/、る。
[0041] 本発明の第二十一の態様は、第一の態様に係る可動盤の駆動装置において、前 記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記 液圧シリンダの圧力を検出する圧力検出手段とを備え、前記制御手段は、前記位置 指令手段によって指令された目標位置又は目標角度、前記位置検出手段によって 検出された位置又は角度、及び前記速度検出手段によって検出された速度又は角 速度に基づいて前記電動モータを制御するための複合モータトルク指令信号を演算 する複合モータトルク指令演算手段と、前記複合モータトルク指令信号、及び前記圧 力検出手段によって検出された圧力に基づいて前記電動モータを制御するモータ 制御手段と、を有することを特徴としている。
[0042] 前記制御手段は、前記液圧シリンダの応答性を考慮して電動モータを制御するが 、前記圧力検出手段が検出した液圧シリンダの圧力 (圧力応答)に合わせて電動モ ータを制御するようにして 、る。
[0043] 本発明の第二十二の態様は、第一の態様に係る可動盤の駆動装置において、前 記液圧シリンダの圧力を検出する圧力検出手段と、前記弁の開口量を検出する開口 量検出手段とを備え、前記制御手段は、前記速度検出手段によって検出された速度 又は角速度に基づ 、て前記液圧シリンダを制御するための液圧シリンダ制御信号を 演算する演算手段と、前記液圧シリンダ制御信号、前記圧力検出手段によって検出 された圧力、及び前記開口量検出手段によって検出された開口量に基づいて前記 液圧シリンダを制御するシリンダ制御手段と、を有することを特徴として ヽる。
[0044] 前記制御手段は、前記圧力検出手段によって検出される圧力が、前記液圧シリン ダ制御信号 (圧力指令)に追従するように前記液圧シリンダ (弁の開口量)を制御する ようにしている。
[0045] 本発明の第二十三の態様は、第二十一の態様に係る可動盤の駆動装置において 、前記演算手段は、略一定低圧状態と略一定高圧状態の 2つの定常状態の間で変 化するシリンダ圧力を示す液圧シリンダ制御信号を算出し、前記シリンダ制御手段は 、前記液圧シリンダが 2つの定常状態の間で変化するシリンダ圧力の過渡期に限り、 前記液圧シリンダ制御信号、前記圧力検出手段によって検出された圧力、及び前記 開口量検出手段によって検出された開口量に基づいて前記液圧シリンダを制御する ことを特徴としている。
[0046] 前記シリンダ制御手段は、前記液圧シリンダの圧力を所定の圧力(定高圧力源の 略一定高圧力、又は低圧力源の略一定低圧力)に昇圧又は減圧させるまでの過渡 応答期間だけ前記液圧シリンダ (弁の開口量)を制御する。
[0047] 本発明の第二十四の態様は、第一の態様に係る可動盤の駆動装置において、前 記弁は、前記定高圧力源と前記液圧シリンダとの間に介在する第 1の弁と、前記低圧 源と前記液圧シリンダとの間に介在する第 2の弁とからなり、前記制御手段は、前記 第 1の弁を遮断した後に前記第 2の弁を開き、又は前記第 2の弁を遮断した後に前 記第 1の弁を開くように前記第 1の弁及び第 2の弁を制御することを特徴としている。
[0048] 本発明の第二十五の態様は、第一の態様に係る可動盤の駆動装置において、前 記制御手段は、略一定低圧状態 (P0)と略一定高圧状態 (P1)の 2つの定常状態の間 で変化するシリンダ圧力を示す液圧シリンダ制御信号を算出する演算手段と、前記 液圧シリンダ制御信号に基づ!/、て前記弁を制御する弁制御手段とを有し、前記弁は 、前記液圧シリンダ制御信号の変化時点から遅くとも 60ms以内に 2つの定常状態の 間で少なくとも I P1 -P0 Iの 50%以上の変化が可能な開口量及び応答性を有する ものであることを特徴としている。即ち、液圧シリンダの圧力の立ち上がりは、弁を介し て供給される作動液の液量に比例し、この液量を大きくするためには、弁の応答性を 高めることと、弁の開口量を大きくすることが必要である。
[0049] 本発明の第二十六の態様は、第一の態様に係る可動盤の駆動装置において、前 記可動盤の加速度又は前記回転部の角加速度を検出する加速度検出手段を備え、 前記制御手段は、前記加速度検出手段によって検出された角速度又は角加速度に 基づ ヽて前記液圧シリンダの少なくとも 1つの液圧シリンダをポンプとして作用させる ことを特徴としている。即ち、前記加速度検出手段の検出出力に基づいて比較的大 きなトルクを要する可動盤の加速領域でない期間 (前記可動盤の駆動負荷が小さく なる期間)を検知し、この期間に液圧シリンダをポンプとして作用させ、電動モータの 剰余トルクを圧液エネルギとして定高圧力源にチャージさせる。
[0050] 本発明の第二十七の態様は、第二十六の態様に係る可動盤の駆動装置において 、前記加速度検出手段は、前記速度検出手段によって検出された速度又は角速度 に基づいて前記加速度又は角加速度を算出することを特徴としている。
[0051] 本発明の第二十八の態様は、第十二の態様に係る可動盤の駆動装置において、 前記制御手段は、前記速度指令手段によって指令された目標速度又は目標角速度 に基づいて角速度又は角加速度を算出する加速度演算手段を有し、前記算出した 角速度又は角加速度に基づいて前記液圧シリンダの少なくとも 1つの液圧シリンダを ポンプとして作用させことを特徴として!/、る。
[0052] 本発明の第二十九の態様は、第一の態様に係る可動盤の駆動装置において、前 記電動モータは、 1つのスクリュ 'ナット駆動機構に 2個以上接続されることを特徴とし ている。
[0053] 本発明の第三十の態様は、第一の態様に係る可動盤の駆動装置において、前記 スクリュ 'ナット駆動機構は 1つの可動盤に対して複数配設され、前記電動モータは 各スクリュ ·ナット駆動機構別に設けられて 、ることを特徴として!/、る。
[0054] 本発明の第三十一の態様は、第一の態様に係る可動盤の駆動装置において、前 記液圧シリンダは、同一方向に動作可能な独立した複数の受圧面を有することを特 徴としている。
[0055] 本発明の第三十二の態様は、第三十の態様に係る可動盤の駆動装置において、 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前 記可動盤の位置又は前記回転部の角度を検出する第 1の位置検出手段と、前記可 動盤の前記第 1の位置検出手段によって検出される位置とは異なる位置、又は前記 可動盤に配設された複数のスクリュ 'ナット駆動機構のうちの前記回転部と異なるスク リュ 'ナット駆動機構に係わる回転部の角速度を検出する第 2の位置検出手段と、を 備え、前記速度検出手段は、前記可動盤の位置の速度又は前記電動モータの駆動 軸からスクリュ'ナット機構までの!/ヽずれかの回転部の角速度を検出する第 1の速度 検出手段と、前記可動盤の前記第 1の速度検出手段によって速度検出される位置と は異なる位置の速度、又は前記可動盤に配設された複数のスクリュ 'ナット駆動機構 のうちの前記回転部と異なるスクリュ 'ナット駆動機構に係わる回転部の角加速度を 検出する第 2の速度検出手段とを有し、前記制御手段は、前記位置指令手段によつ て指令された目標位置又は目標角度、前記第 1及び第 2の位置検出手段によって検 出された位置又は角度、及び前記第 1及び第 2の速度検出手段によって検出された 速度又は角速度に基づいて前記複数の電動モータ及び液圧シリンダを制御すること を特徴としている。
[0056] 本発明の第三十三の態様は、第三十二の態様に係る可動盤の駆動装置において 、前記制御手段は、前記位置指令手段によって指令された目標位置又は目標角度 、前記第 1の位置検出手段によって検出された位置又は角度、及び前記第 1の速度 検出手段によって検出された速度又は角速度に基づいて前記複数の電動モータの うちの第 1の電動モータを制御するための第 1の複合モータトルク指令信号を演算す る第 1の複合モータトルク指令演算手段と、前記位置指令手段によって指令された目 標位置又は目標角度、前記第 2の位置検出手段によって検出された位置又は角度 、及び前記第 2の速度検出手段によって検出された速度又は角速度に基づいて前 記第 1の電動モータとは異なるスクリュ 'ナット駆動機構を駆動する第 2の電動モータ を制御するための第 2の複合モータトルク指令信号を演算する第 2の複合モータトル ク指令演算手段と、前記第 1の複合モータトルク指令信号、及び前記第 1の速度検出 手段によって検出された速度又は角速度に基づいて前記可動盤の駆動に伴う第 1 の外乱トルクを推定して該第 1の外乱トルクを示す第 1の外乱トルク推定信号を演算 する第 1の外乱トルク推定手段と、前記第 2の複合モータトルク指令信号、及び前記 第 2の速度検出手段によって検出された速度又は角速度に基づいて前記可動盤の 駆動に伴う第 2の外乱トルクを推定して該第 2の外乱トルクを示す第 2の外乱トルク推 定信号を演算する第 2の外乱トルク推定手段と、前記第 1の複合モータトルク指令信 号、及び前記第 1の外乱トルク推定信号に基づいて前記第 1の電動モータを制御す る第 1のモータ制御手段と、前記第 2の複合モータトルク指令信号、及び前記第 2の 外乱トルク推定信号に基づいて前記第 2の電動モータを制御する第 2のモータ制御 手段と、を有することを特徴としている。
[0057] 第三十二又は第三十三の態様に係る制御手段は、各スクリュ 'ナット駆動機構別に 設けられた電動モータをそれぞれ個別に制御するため、可動盤に偏心した外部負荷 や外乱が加わっても、それに対応した電動モータの推力制御を行うことができる。
[0058] 本発明の第三十四の態様は、第一の態様に係る可動盤の駆動装置は、前記可動 盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、前記可動盤 の位置又は前記回転部の角度を検出する位置検出手段とを備え、前記液圧シリンダ は 1つの可動盤に対して複数配設され、前記速度検出手段は、前記可動盤の速度 又は前記電動モータの駆動軸からスクリュ 'ナット機構までのいずれかの回転部の角 速度を検出する第 1の速度検出手段と、前記可動盤の前記第 1の速度検出手段によ つて速度検出される位置とは異なる位置の速度、又は前記可動盤に配設された複数 のスクリュ 'ナット駆動機構のうちの前記回転部と異なるスクリュ 'ナット駆動機構に係 わる回転部の角加速度を検出する第 2の速度検出手段とを有し、前記制御手段は、 前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手段 によって検出された位置又は角度、及び前記第 1及び第 2の速度検出手段によって それぞれ検出された速度又は角速度のうちの少なくとも一方の速度又は角速度に基 づいて前記電動モータを制御するための複合モータトルク指令信号を演算する複合 モータトルク指令演算手段と、前記位置指令手段によって指令された目標位置又は 目標角度、前記位置検出手段によって検出された位置又は角度、及び前記第 1及 び第 2の速度検出手段によってそれぞれ検出された速度又は角速度のうちの少なく とも一方の速度又は角速度に基づいて前記液圧シリンダを制御するためのモーショ ンベース信号を演算するモーションベース演算手段と、前記複合モータトルク指令信 号、及び前記第 1の速度検出手段によって検出された速度又は角速度に基づいて 前記可動盤の駆動に伴う第 1の外乱トルクを推定して該第 1の外乱トルクを示す外乱 トルク推定信号を演算する第 1の外乱トルク推定手段と、前記複合モータトルク指令 信号、及び前記第 2の速度検出手段によって検出された速度又は角速度に基づい て前記可動盤の駆動に伴う第 2の外乱トルクを推定して該第 2の外乱トルクを示す外 乱トルク推定信号を演算する第 2の外乱トルク推定手段と、前記モーションベース信 号、及び前記第 1の外乱トルク推定信号に基づ 、て前記複数の液圧シリンダのうち の第 1の液圧シリンダを制御する第 1のシリンダ制御手段と、前記モーションベース信 号、及び前記第 2の外乱トルク推定信号に基づ 、て前記複数の液圧シリンダのうち の第 2の液圧シリンダを制御する第 2のシリンダ制御手段と、を有することを特徴とし ている。
本発明の第三十五の態様は、第三十四の態様に係る可動盤の駆動装置において 、前記スクリュ 'ナット駆動機構は 1つの可動盤に対して複数配設され、前記電動モー タは各スクリュ'ナット駆動機構別に設けられ、前記位置検出手段は、前記可動盤の 位置又は前記回転部の角度を検出する第 1の位置検出手段と、前記可動盤の前記 第 1の位置検出手段によって検出される位置とは異なる位置、又は前記可動盤に配 設された複数のスクリュ 'ナット駆動機構のうちの前記回転部と異なるスクリュ 'ナット駆 動機構に係わる回転部の角速度を検出する第 2の位置検出手段とを有し、前記複合 モータトルク指令信号演算手段は、前記位置指令手段によって指令された目標位置 又は目標角度、前記第 1の位置検出手段によって検出された位置又は角度、及び 前記第 1の速度検出手段によって検出された速度又は角速度に基づいて複数の電 動モータのうちの第 1の電動モータを制御するための第 1の複合モータトルク指令信 号を演算する第 1の複合モータトルク指令演算手段と、前記位置指令手段によって 指令された目標位置又は目標角度、前記第 2の位置検出手段によって検出された 位置又は角度、及び前記第 2の速度検出手段によって検出された速度又は角速度 に基づいて複数の電動モータのうちの第 2の電動モータを制御するための第 2の複 合モータトルク指令信号を演算する第 2の複合モータトルク指令演算手段とを有し、 前記第 1の外乱トルク推定手段は、前記第 1の複合モータトルク指令信号、及び前記 第 1の速度検出手段によって検出された速度又は角速度に基づ!/、て前記可動盤の 駆動に伴う第 1の外乱トルクを推定して該第 1の外乱トルクを示す外乱トルク推定信 号を演算し、前記第 2の外乱トルク推定手段は、前記第 2の複合モータトルク指令信 号、及び前記第 2の速度検出手段によって検出された速度又は角速度に基づいて 前記可動盤の駆動に伴う第 2の外乱トルクを推定して該第 2の外乱トルクを示す外乱 トルク推定信号を演算することを特徴として 、る。
[0060] 第三十四又は第三十五の態様に係る制御手段は、 1つの可動盤に対して複数配 設された液圧シリンダをそれぞれ個別に制御するため、可動盤に偏心した外部負荷 や外乱が加わっても、それに対応した液圧シリンダの推力制御を行うことができる。
[0061] 本発明の第三十六の態様に係るプレス機械のスライド駆動装置は、本発明の第一 乃至第三十五の態様のいずれかに係る可動盤の駆動装置を含み、前記可動盤はプ レス機械のスライドであることを特徴として 、る。
発明の効果
[0062] 本発明では、電動モータの駆動トルクをスクリュ 'ナット機構を介して直線駆動力とし て可動盤 (スライド)に伝達し、また、液圧シリンダの推力を前記可動盤に伝達可能に して力次元で複合し、更に電動モータ及び液圧シリンダを少なくとも速度制御するよ うにしている。このため、大きな加圧能力を有するとともに、全体として電動モータの 特性で高精度に可動盤を駆動することができる。また、液圧シリンダは作動液の漏れ 量が少なぐ摩擦損失も少ないためエネルギ効率がよぐ更に電動モータの剰余トル クを圧液エネルギとして定高圧力源にチャージし、可動盤の減速時の可動盤の運動 エネルギを圧液エネルギとして定高圧力源にチャージ(回生)することができる。
図面の簡単な説明
[図 1]図 1は、本発明に係るプレス機械のスライド駆動装置の第 1の実施の形態の全 体構成を示す概略図であり;
[図 2]図 2は、電動モータに対する大小の油圧シリンダの静的なアシスト作用を説明 するために用いた図であり;
[図 3]図 3は、電動モータ及び油圧シリンダに指令を出力する制御器の概略図であり; [図 4]図 4A及び図 4Bは、電動モータ推力と大小の油圧シリンダ推力と、これらの推 力を複合させた複合推力との関係を示すグラフであり;
[図 5]図 5は、図 1に示した油圧シリンダ駆動装置及び補助圧油供給装置の内部構成 を示す油圧回路図であり;
[図 6]図 6は、図 1に示した自重落下防止装置及びチャージ駆動装置の内部構成を 示す油圧回路図であり;
[図 7]図 7は、図 1に示したスライド制御装置の内部構成を示すブロック図であり; [図 8]図 8は、図 7に示したスライド位置制御器の内部構成を示すブロック図であり; [図 9]図 9A乃至図 9Cは、図 7に示した油圧シリンダ制御器における油圧シリンダのァ シスト ON時の各指令の出力タイミングを示す図であり;
[図 10]図 10は、油圧シリンダのアシスト ON時における図 7に示した油圧シリンダ制御 器の一部を示す回路図であり;
[図 11]図 11A乃至図 11Cは、図 7に示した油圧シリンダ制御器における油圧シリンダ のアシスト OFF時の各指令の出力タイミングを示す図であり;
[図 12]図 12は、油圧シリンダのアシスト OFF時における図 7に示した油圧シリンダ制 御器の一部を示す回路図であり;
[図 13]図 13Aは、油圧シリンダをアシスト ONする CYL1JDN指令が与えられたときの 油圧シリンダの圧力応答を示すグラフであり、図 13Bは電動モータに対してステップ 状のトルク指令が与えられたときのトルク応答を示すグラフであり;
[図 14]図 14Aは、 CYL1_0N指令力も油圧シリンダの圧力応答に至るまでの伝達関数 を示す図であり、図 14Bはトルク指令力も電動モータのトルク応答に至るまでの伝達 関数を示す図であり;
[図 15]図 15は、 CYL1JDN調整信号及び CYL2JDN調整信号を演算する図 7に示した 油圧シリンダ制御器及びトルク調整を行う複合モータ制御器を説明するために用い た図であり;
[図 16]図 16は、 CYL1JDN調整信号及び CYL2_ON調整信号を演算する他の実施の 形態の油圧シリンダ制御器及びトルク調整を行う複合モータ制御器を説明するため に用いた図であり;
[図 17]図 17は、 1サイクルのスライド目標位置及びスライド位置を示すグラフであり;
[図 18]図 18は、 1サイクルの電動モータのモータ角速度を示すグラフであり;
[図 19]図 19は、 1サイクルの電動モータによる推力を示すグラフであり;
[図 20]図 20は、 1サイクルの小油圧シリンダのヘッド側圧、ロッド側圧、及び大油圧シ リンダのヘッド側圧を示すグラフであり;
[図 21]図 21は、 1サイクルの小油圧シリンダのヘッド側推力、ロッド側推力、及び大油 圧シリンダのヘッド側推力を示すグラフであり;
[図 22]図 22は、 1サイクルの小油圧シリンダのヘッド側油量、ロッド側油量、及び大油 圧シリンダのヘッド側油量を示すグラフであり;
[図 23]図 23は、 1サイクルの定高圧力源の圧力を示すグラフであり;
[図 24]図 24は、 1サイクルの定高圧力源の油量を示すグラフであり;
[図 25]図 25は 1サイクルのプレス荷重を示すグラフである。
[図 26]図 26は、 1サイクルのスライド加速度指令を示すグラフであり;
[図 27]図 27は、本発明に係るプレス機械のスライド駆動装置の第 2の実施の形態の 全体構成を示す概略図であり;
[図 28]図 28は、図 27に示したスライド制御装置の内部構成を示すブロック図であり; [図 29]図 29は、本発明に係るプレス機械のスライド駆動装置の第 3の実施の形態の 要部構成を示す概略図である。
符号の説明
100、 100'、 100,,···プレス機械
110· "スライド
120、 120a, 120b…駆動スクリュウ 122、 122a, 122b…従動ナツ卜
130, 130a, 130b…スライド位置検出器 132、 132a, 132b…駆動軸角速度検出器
200、 200'…油圧シリンダ制御器
202, 206···アキュムレータ
204·' '·定高圧力源
208·· '·低圧力源
210·· •弁駆動装置
200a …第 1の油圧シリンダ制御器
200b …第 2の油圧シリンダ制御器
230·· •補助圧油供給装置
231·· '電動機
232·· '油圧ポンプ
234、 253、 254···電磁方向切換弁
235、 271···逆止弁
250·· -自重落下防止装置
251、 252、 272…ノィロット操作逆止弁
270·· -チャージ駆動装置
300、 300'…スライド制御装置
310·· 'スライド統括制御器
320、 320'···スライド位置制御器
322·· '微分器
323·· '積分器 324…チャージ信号生成器
325…制御演算器
326…加速度演算器
330、 330,· ··速度制御器
340…圧油チャージ制御器
350、 350,· ··油圧シリンダ制御器
360、 360,· ··複合モータ制御器
370、 370a, 370b…外舌 L卜ルク推定器
380、 380a, 380b…モータ制御器
390、 390a, 390b…モータ駆動装置
SM、 SMlaゝ SM2a、 SMlbゝ SM2b、 SMaゝ SMb…電動モータ
SYL、 SYL1、 SYL2、 SYLla、 SYLlb、 SYL2a、 SYL2b…油圧シリンダ
P_H、 P_1_D、 P_2_D…圧力検出器
V1_D_H、 V1_D丄、 V2_D_H、 2_0丄…の弁
S1_D丄、 S1_D_H、 S2_D丄、 S2_D_…スプール位置検出器
発明を実施するための最良の形態
[0065] 以下、添付図面に従って本発明に係る可動盤の駆動装置及びプレス機械のスライ ド駆動装置の好ま 、実施の形態にっ 、て詳説する。
[0066] 〈第 1の実施の形態〉
図 1は本発明に係るプレス機械のスライド駆動装置の第 1の実施の形態の全体構 成を示す概略図である。同図に示すように、このプレス機械のスライド駆動装置は、 主としてプレス機械 100と、油圧シリンダ駆動装置 200と、補助圧油供給装置 230と、 自重落下防止装置 250と、チャージ駆動装置 270と、スライド制御装置 300と、モー タ駆動装置 390とから構成されて 、る。
[0067] [プレス機械の構成]
このプレス機械 100は、ベッド 102、コラム 104及びクラウン 106でフレームが構成さ れ、スライド (可動盤) 110は、コラム 104に設けられたガイド部 108により鉛直方向に 移動自在に案内されている。 [0068] スライド 110を駆動する駆動手段として、大小 2本ずつの油圧シリンダ SYLl(SYLla , SYLlb)、 SYL2(SYL2a, SYL2b)と、電動(サーボ)モータ SMの出力トルクが伝達さ れるスクリュ ·ナット機構とが設けられて 、る。
[0069] 油圧シリンダ SYLl(SYLla,SYLlb)は、シリンダ径の小さな一対の油圧シリンダであり 、スライド 110の中心に対して対称の位置に配設されている。同様に油圧シリンダ SY L2(SYL2a, SYL2b)は、シリンダ径の大きな一対の油圧シリンダであり、スライド 110の 中心に対して対称の位置に配設されている。これらの油圧シリンダ SYL1、 SYL2は、シ リンダ本体がクラウン 106に固定され、ピストンロッドがスライド 110に固定されており、 スライド 110の全ストロークにわたって推力をスライド 110に伝達できるようになって!/ヽ る。
[0070] スクリュ 'ナット機構は、軸受け 112を介してクラウン 106に回転自在に固定された駆 動スクリュウ 120と、スライド 110に固定されるとともに前記駆動スクリュウ 120と螺合す る従動ナット 122とから構成されており、駆動スクリュウ 120には減速機 124を介して 電動モータ SMの出力トルクが伝達されるようになって!/、る。
[0071] 尚、プレス機械 100のベース 102側には、スライド 110の位置を検出するスライド位 置検出器 130が設けられ、電動モータ SMには駆動軸の角速度を検出する駆動軸 角速度検出器 132が設けられている。スライド位置検出器 130は、インクリメンタル型 又はアブソリュート型のリニアエンコーダ、ポテンショメータ、マグネスケール等の種々 のセンサによって構成することができ、また、駆動軸角速度検出器 132は、インクリメ ンタル型又はアブソリュート型のロータリエンコーダや、タコジェネレータによって構成 することができる。
[0072] [電動モータと油圧シリンダの力次元における複合化]
〔複合化を可能にする基本原理〕
次に、上記油圧シリンダ SYL1、 SYL2の推力と、電動モータ SM (からスクリュ'ナット 機構を介した)推力とを複合化させる基本原理につ ヽて説明する。
[0073] まず、油圧シリンダの推力 F は、次式で表すことができる。
CYL
[0074] [数 1]
F =S ·Ρ - S ·Ρ · ·· (!) ただし、 F :油圧シリンダ推力 [N]
CYL
S :シリンダヘッド側断面積 [m2 ]
H
S :シリンダロッド側断面積 [m2 ]
R
P :油圧シリンダの
A ヘッド側に作用する圧力 [Pa]
P :油圧シリンダのロッド側に作用する圧力 [Pa] =0
T
油圧は、弁を介して供給される油量 Q が圧縮されて発生するため、前記圧力 P
A A
は、次式で表すことができる。
[0075] [数 2]
P = J K(Q /V ) dt …(2)
A A A
ただし、 K:油の体積弾性係数 [Pa]
Q :油圧シリンダに供給される油量 [m3 Zs]
A
V :油圧シリンダのヘッド側管路体積 [m3 ]
A
油圧シリンダのヘッド側に作用する圧力 P の立ち上がりは、弁を介して供給される
A
油量 Q
Aに比例し、油量 Q
Aを大きくとるためには、弁の応答性を高めることと、弁の 開口量を大きくすること (流量係数を大きくとる =流れやすくすること)、及び弁差圧が 高いこと (定高圧力源を有すること)が重要になる。また、高圧力源から供給される作 動油の圧力を略一定にすることにより、推力応答の変動を抑える(一定ィ匕する)意義 も有する。
[0076] 具体的には、弁への指令力も所望のシリンダ推力が発生までに要す時間を、 30ms 程度以下にすることが充分に可能である。
[0077] 一方、電動(サーボ)モータの出力トルク TEは、次式で表すことができる。
[0078] [数 3]
T =k ·Ι - -- (3)
Ε Ε
ただし、 k :トルク定数 [NmZA]
E
I:電流 [A]
また、スクリュ 'ナット機構を介してスライドに伝達される推力 F は、次式で表すこと
E
ができる。
[0079] [数 4] F = k ·Τ - -- (4)
E S E
ただし、 T:電動(サーボ)モータトルク [Nm]
E
k:スクリュ 'ナット機構に依存する比例定義 [m
S
推力 F の応答は、電流 Iの応答に比例する。電動モータへの指令から駆動電流に
E
至る応答性 (電流応答)は良好であり、全体として指令に対する電動モータによる推 力発生の応答遅れは少な 、。
[0080] このように、油圧シリンダ推力と電動モータ (からスクリュ 'ナット機構を介した)推力を 複合させるには、 2者の推力の応答性 (動的特性)が良いことが非常に重要である。
[0081] 〔静的な複合〕
スライド制御装置は、全体の (加減速、成形、粘性、摩擦等に要す)推力を自動認 識し、電動サーボモータによる推力では不足する時に油圧シリンダ単数または複数 のシリンダの推力を複合させる。
[0082] 図 1に示したように、大小 2個(又は 2系統:ただし、配管で結合されているものは同 系統とする)の油圧シリンダ SYL1、 SYL2のうちのシリンダ小の油圧シリンダ SYL1が、 電動モータ SM (からスクリュ 'ナット機構を介して伝達される)サーボ制御用の推力の うちの最大推力と同等の推力を有し、シリンダ大の油圧シリンダ SYL2が、電動モータ SMの最大推力の 2倍の推力を有するものとした場合、これらの電動モータ SM、及 び油圧シリンダ SYL1、 SYL2の各推力、及び複合した総推力は、図 2に示すように複 合される。ただし、図 2の原理図には、油圧シリンダを両方向に駆動した場合の各推 力が示されているが、後述の実施の形態の油圧シリンダは、 1方向のみ推力が発生 するように駆動するようにして 、る。
[0083] 即ち、電動モータ SMのみの最大推力の 4倍を複合モータの総推力の最大推力(1 00%)と考え、総推力が 0〜+ 25%までは電動モータ単体の推力で賄う。総推力が + 25%〜+ 50%の範囲ではシリンダ小の油圧シリンダ3丫1^1を0?^にし、電動モー タ SMは 25%分 (シリンダ小の油圧シリンダ SYL1の推力分)オフセット駆動する。
[0084] 総推力が + 50%〜+ 75%の範囲ではシリンダ小の油圧シリンダ SYL1を OFFにし 、シリンダ大の油圧シリンダ SYL2を ONにし、電動モータ SMが 25%分(シリンダ大の 油圧シリンダ SYL2の推力とシリンダ小の油圧シリンダ SYL1の推力の差分)オフセット 駆動する。
[0085] 総推力が + 75%を超える範囲ではシリンダ大の油圧シリンダ SYL2に加えてシリン ダ小の油圧シリンダ SYL1を再度 ONにし、電動モータ SMは 25%分オフセット駆動す る。結局、各油圧シリンダ SYL1、 SYL2は ONZOFF動作することにより推力の大きさ を確保し、電動モータ SMが複合推力指令に対して推力が連続作用するように調整 作用し、全体として複合モータの静的な推力特性を機能させる。
[0086] 〔動的な複合〕
図 3は電動モータ SM及び油圧シリンダ SYL (SYL1、 SYL2)に指令を出力する制御 器の概略図である。
[0087] 前記のように電動モータ SMの推力に対して油圧シリンダ SYLの推力を複合させる 場合に、図 3に示すように油圧シリンダ SYLの応答性を考慮した制御器を構成する。
[0088] 即ち、電動モータ SMの応答性と油圧シリンダ SYLの応答性とは差異があるため、 図 3に示す制御器では、複合時は動的 (過度的に)に (各々の推力の立ち上がり時定 数に合わせて)釣り合 、がとれるように、電動モータ SM (+スクリュ機構)とシリンダ推 力の立ち上がり応答差フィルタ (伝達関数)を利用し、応答性の高い電動モータ SM を油圧シリンダ SYLの応答に合わせるようにして 、る。
[0089] 尚、図 3上で、 GCYL(S)は、油圧シリンダ SYLへの制御指令から油圧シリンダ SYLの 圧力発生に至るまでの伝達関数を示し、 GMOT(S)は、電動モータ SMへのトルク指 令又は電流指令力 電動モータ SMのトルク出力又は駆動電流に至るまでの伝達関 数を示している。
[0090] また、油圧シリンダ SYLは、高応答性 (デッドバンド 10ms以内程度、立ち上がり 20 ms以内程度)が要求されるが、動力(粘性)損失を避けるために開口量の大きな弁を ONZOFF駆動し、略一定高圧源下で駆動される弁の (スプールゃポペットの)応答 性のよいものを使用することで、供給油量による油の圧縮 (油圧の発生)時間を考慮 した理論上及び実験上の確認においても要求値を満足させることができる。
[0091] 図 4A及び図 4Bはそれぞれ電動モータ及び油圧シリンダの各推力と、これらの推 力を複合させた複合推力との関係を示すグラフである。
[0092] 図 4Aには、ランプ状に推力指令を増減させた場合に、静的のみ考慮した推力複合 が示されているが、動的に考慮しない場合の複合推力は不連続性を有すことが判る
[0093] 一方、図 4Bには、ランプ状に推力指令を増減させた場合に、静的及び動的に考慮 した推力複合が示されている力 この場合には複合推力は油圧シリンダの ONZOF Fにかかわらず連続的に変化することが判る。
[0094] 即ち、推力指令に対して推力が連続的に応答可能な複合モータを構成するために は、昇圧に伴うシリンダ推力発生の動特性と、サーボモータ(+スクリュ 'ナット機構) による推力発生の動特性とを基にした動的な考慮が不可欠である。
[0095] 〔油圧シリンダ駆動装置及び補助圧油供給装置〕
次に、図 1に示した油圧シリンダ駆動装置 200及び補助圧油供給装置 230につい て、図 5を参照しながら説明する。
[0096] この油圧シリンダ駆動装置 200は、主として略一定高圧の作動油を保持するアキュ ムレータ 202を含んで構成される定高圧力源 204と、略一定低圧の作動油を保持す るアキュムレータ 206を含んで構成される低圧力源 208と、弁駆動装置 210と、油圧 シリンダ SYL1駆動用の一対の弁 V1_D(V1_D_H,V1_D丄)と、油圧シリンダ SYL2駆動用 の一対の弁 V2_D(V2_D_H,V2_D丄)と、アキュムレータ 202に接続された高圧側の管 路 Pとアキュムレータ 206に接続された低圧側の管路 Tとの間に配設された高圧用リ リーフ弁 220と、アキュムレータ 202に蓄圧された作動油の圧力を検出する圧力検出 器 P_Hと、油圧シリンダ SYL1のシリンダ上室側に接続された管路 222の回路圧を検 出する圧力検出器 P丄 Dと、油圧シリンダ SYL2のシリンダ上室側に接続された管路 2 24の回路圧を検出する圧力検出器 P_2_Dと、弁 V1_D_H,V1_D丄, V2_D_H,及び V2_D 丄のスプール位置をそれぞれ検出するスプール位置検出器 S1_D丄, S1_D_H,S2_D丄, 及び S2_D_Hと力 構成されている。尚、低圧力源 208は、大気圧のタンクであっても よい。
[0097] 高圧側の管路 Pは、弁 V1_D_H及び V2_D_Hを介してそれぞれ管路 222、 224に接 続され、低圧側の管路 Tは、弁 1_0丄及び V2_D を介してそれぞれ管路 222、 224 に接続されている。
[0098] また、高圧側の管路 P及び低圧側の管路 Tは、それぞれチャージ駆動装置 250に 接続され、低圧側の管路 Tは、油圧シリンダ SYL2(SYL2a,SYL2b)のシリンダ下室に 直接接続されて ヽる(図 1参照)。
[0099] 弁駆動装置 210は、後述するスライド制御装置 300内の油圧シリンダ制御器 350か ら加えられる弁指令信号 LLL_SLV,Ll_H_SLV,L2 _SLV,及び L2_H_SLVに基づ!/、て 4つの弁 1_0_!"[,¥1_0丄,¥2_0_1"[,及び ¥2_0丄を駆動する。
[0100] 補助圧油供給装置 230は、電動機 231と、油圧ポンプ 232と、フィルタ 233と、電磁 方向切換弁 234と、逆止弁 235とから構成されている。
[0101] 圧力検出器 P_Hは、アキュムレータ 202に蓄圧された作動油の圧力を示す略一定 高圧信号をスライド制御装置 300に出力し、スライド制御装置 300は、入力する略一 定高圧信号が動作時蓄圧下限設定圧 (例えば 21.5MPa)以下になると、補助圧油供 給装置 230に圧油供給信号を出力する(図 1参照)。
[0102] 前記圧油供給信号によって補助圧油供給装置 230の電磁方向切換弁 234が切り 替えられ、電動機 231で駆動される油圧ポンプ 232の吐出ライン (逆止弁 235の保持 側)がオンロードすることにより、定高圧力源 204に圧油が蓄積される。尚、動作中は 所定の圧力(動作時蓄圧上限設定圧:例えば 22.5MPa)に達するとアンロードする。
[0103] 〔自重落下防止装置及びチャージ駆動装置〕
次に、図 1に示した自重落下防止装置 250及びチャージ駆動装置 270につ 、て、 図 6を参照しながら説明する。
[0104] 自重落下防止装置 250は、スライド 110が自重によって落下しないようにするもので 、油圧シリンダ CYLla,CYLlbのシリンダ下室側の圧液接続ポートに接続された 2系統 の管路に配設されたパイロット操作逆止弁 251、 252と、電磁方向切換弁 253、 254 と、リリーフ弁 255、 256とから構成されている。
[0105] プレス機械 100を運転していない非駆動時には、スライド制御装置 300は、電磁方 向切換弁 253、 254にブレーキ OFF信号 Bl, B2を出力せず、その結果、電磁方向 切換弁 253、 254は、図 6に示す位置に切り替えられており、電磁方向切換弁 253、 254からはパイロット操作逆止弁 251、 252にパイロット圧が出力されない。図 1に示 すように、スライド 110の自重により油圧シリンダ SYLla,SYLlbのピストンロッドが下方 に引っ張られ、油圧シリンダ SYLla,SYLlbのシリンダ下室の圧力が上昇する力 CYL la,CYLlbのシリンダ下室側の圧油接続ポートに接続された 2系統の管路に配設され たパイロット操作逆止弁 251、 252によって管路が遮断されるため、スライド 110の自 重による下降は阻止される。
[0106] 一方、プレス機械 100を運転する場合には、スライド制御装置 300から電磁方向切 換弁 253、 254にブレーキ OFF信号 Bl, B2を出力し、電磁方向切換弁 253、 254 を、図 6に示す位置力も切り替える。これにより、電磁方向切換弁 253、 254からパイ ロット操作逆止弁 251、 252にパイロット圧が加えられ、パイロット操作逆止弁 251、 2 52での逆方向の圧油の流れを可能にする。
[0107] チャージ駆動装置 270は、油圧シリンダ SYLla,SYLlbをポンプとして作用させ、定 高圧力源 204に圧油をチャージさせるもので、逆止弁 271と、パイロット操作逆止弁 2 72と、電磁方向切換弁 (チャージ弁) 273とから構成されて 、る。
[0108] スライド制御装置 300は、チャージを行う所定の期間、チャージ用弁指令信号をチ ヤージ弁 273に出力し、チャージ弁 273を図 6に示す位置力も切り替える。これにより 、パイロット操作逆止弁 272にはパイロット圧が加わらなくなり、油圧シリンダ SYLla,S YLlbのシリンダ下室側から自重落下防止装置 250を経由して低圧側の管路 Tに流 れる流路が遮断され、スライド 110の下降時に油圧シリンダ SYLla,SYLlbのシリンダ 下室から吐出される圧油は、逆止弁 271を介して高圧側の管路 Pを経由して定高圧 力源 204にチャージされる。尚、圧油のチャージを行う所定の期間の詳細について は後述する。
[0109] 〔スライド制御〕
次に、図 1に示したスライド制御装置 300について、図 7を参照しながら説明する。
[0110] スライド制御装置 300は、スライド統括制御器 310と、スライド位置制御器 320と、速 度制御器 330と、圧油チャージ制御器 340と、油圧シリンダ制御器 350と、複合モー タ制御器 360と、外乱トルク推定器 370と、モータ制御器 380とから構成されている。
[0111] スライド統括制御器 310は、プレス機械 100の運転を統括するもので、プレス機械 1 00の運転中にスライド統括制御信号、及びブレーキ OFF信号 Bl, B2を出力する。 スライド統括制御器 310には、油圧シリンダ駆動装置 200内の圧力検出器 P_Hから 定高圧力源 204の圧力を示す略一定高圧信号が加えられており、スライド統括制御 器 310は、入力する略一定高圧信号が動作時蓄圧下限設定圧 (例えば 21MPa)以 下になると、補助圧油供給装置 230を駆動するための圧油供給信号を出力する。
[0112] また、スライド統括制御器 310は、ブレーキ OFF信号 Bl, B2を自重落下防止装置 250に出力することにより、運転停止時のスライド 110の自重落下機能 (ブレーキ機 能)を解除する。
[0113] スライド統括制御器 310から出力されるスライド統括制御信号は、スライド位置制御 器 320にカ卩えられる。スライド位置制御器 320の他の入力には、スライド 110の位置 を検出するスライド位置検出器 130から位置信号処理装置 131を介してスライド 110 の位置を示すスライド位置信号が加えられて 、る。
[0114] 図 8はスライド位置制御器 320の内部構成を示す図であり、このスライド位置制御器 320は、フィルタ 321、積分器 322、チャージ信号生成器 323、積分器 324及び制御 演算器 325から構成されて 、る。
[0115] スライド統括制御器 310から入力するスライド統括制御信号は、ステップ的に変化 するスライド速度信号であり、このスライド速度信号はフィルタ 321を介してフィルタリ ングされた後、微分器 322及び積分器 323に加えられる。
[0116] 微分器 322によって時間微分されたスライド速度信号は、スライド加速度指令量とし てチャージ信号生成器 324にカ卩えられる。チャージ信号生成器 324は、スライド加速 度指令量カゝら比較的大きなトルクを必要とするスライド加速領域を過ぎた時点を判断 し、チャージ駆動装置 270を制御するための基礎となるチャージベース信号を出力 する。尚、チャージ信号生成器 324が、実際の加速度信号等を使用せずに、演算に よって算出した加速度指令信号力 チャージベース信号を生成しているのは、高周 波成分を多く含むノイズによるチャタリングを防止するためであるが、実際の加速度 信号や実際の速度を微分処理したもの、あるいは実際のモータトルク信号からチヤ一 ジベース信号を生成することも可能である。
[0117] 一方、積分器 323によって時間積分されたスライド速度信号は、スライド目標位置 指令信号として制御演算器 325に加えられる。制御演算器 325の他の入力にはスラ イド位置信号が加えられており、制御演算器 325は 2入力信号の偏差を求め、その 偏差信号に基づ 、て操作量信号 (速度指令信号)を決定し、この速度指令信号を出 力する。
[0118] 図 7に戻って、速度制御器 330の一方の入力には、前記スライド位置制御器 320か ら速度指令信号が加えられており、速度制御器 330の他の入力には、駆動軸角速度 検出器 132からモータ駆動装置 390を介してモータ角速度信号が加えられている。 速度制御器 330は、これらの 2入力信号に基づいて位置、速度の制御を司るモーシ ヨンベース信号と複合モータトルク指令信号とを演算する。前記モーションベース信 号は、油圧シリンダ制御器 350に出力され、複合モータトルク指令信号は複合モータ 制御器 360及び外乱トルク推定器 370に出力される。
[0119] 尚、モーションベース信号は、複合モータトルク指令信号が基幹にあって、油圧シリ ンダを安定かつ高応答に制御するために、位置、速度のフィードバック量を基にした (実質的にモーションを司る)複合モータトルク指令信号に、ある種 (複数)の処理を 行うことによって算出される。例えば、複合モータトルク指令信号に一次フィルタを介 してモーションベース信号にしたり、複合モータトルク指令信号に定数を乗じ、ある上 下限値で飽和させる飽和要素を介してモーションベース信号にしたりする。尚、定数 や飽和要素によっては、複合モータトルク指令信号とモーションベース信号とが同じ 場合も含む。
[0120] 外乱トルク推定器 370には、前記複合モータトルク指令信号の他に、モータ駆動装 置 390から電動モータ SMのトルク(電流)を検出するトルク検出器力もモータトルク 信号 (有効電流信号)と、モータ角速度信号とが加えられており、外乱トルク推定器 3 70は、モータ角速度信号等を基にプレス荷重等を含む外乱トルクを演算推定する。 即ち、外乱トルク推定器は、モータ速度信号の微分演算処理信号と複合モータトルク 信号に遅れ要素等のフィルタを乗じた演算量との差や前記モータ速度信号の微分 演算処理信号と複合モータトルク信号に遅れ要素等のフィルタを乗じた演算量との 差とモータトルク信号を基にした補正演算量との和に基づいて外乱トルクを演算推定 する。この推定された外乱トルクを示す外乱トルク推定信号は、油圧シリンダ制御器 3 50及び複合モータ制御器 360に出力される。
[0121] 油圧チャージ制御器 340は、下降中に加速領域から等速領域に入ったことを示す チャージベース信号を受けて、チャージ用弁指令信号等をチャージ駆動装置 270に 出力するもので、スライド位置制御器 320からチャージベース信号を入力するととも に、圧力検出器 P_Hから略一定高圧信号を入力している。油圧チャージ制御器 340 は、スライド位置制御器 320からチャージベース信号を入力すると、チャージ駆動装 置 270内のチャージ弁 273を ONさせるためのチャージ用弁指令信号を出力し、一 方、油圧シリンダ制御器 350から油圧シリンダ SYL1がアシスト用に駆動されたことを 示す信号が加えられると、チャージ用弁指令信号の出力を停止する。また、圧力検 出器 P_Hから入力する略一定高圧信号が、蓄圧上限設定圧 (例えば 22.5MPa)に 達する場合もチャージ用弁指令信号の出力を停止する。
[0122] このとき(下降中にチャージ駆動装置を駆動する場合)は、圧油チャージ制御器 34 0力もチャージ駆動装置 270を介してチャージ用弁 273により CYL1 (ロッド側 =上昇 側)が駆動されたことと同期して、その予め予測される圧力応答に比例する推力応答 と予め予測されるサーボモータ SMのトルク応答差を補正するようなシリンダ 1上昇 O N調整信号(図 7)が出力され、複合モータ制御器 360では SMトルク指令量に本調 整信号を加算することによって、サーボモータ +スクリュ 'ナット機構を介した推力と油 圧シリンダ推力が、動的においても (複合の過度状態においても)、滑らかに複合す る。
[0123] また、油圧チャージ制御器 340は、スライド 110下降時と同様にスライドの上昇時に も加速領域力も等速領域に入ったことを示すチャージベース信号を受けて、略一定 高圧信号が所定の範囲内であるとき、油圧シリンダ制御器 350に上昇中チャージ O N信号を出力する。尚、油圧シリンダ制御器 350は、上昇中チャージ ON信号を受入 すると、油圧シリンダ SYL1が下降する方向に圧油が加わるように弁 ¥1_0_!"1,¥1_0丄 を制御する。これにより、スライド 110の上昇中に油圧シリンダ SYL1をポンプとして作 用させ、圧油を定高圧力源 204にチャージさせることができる。
[0124] 次に、油圧シリンダ制御器 350について説明する。
[0125] 油圧シリンダ制御器 350は、 4つの弁 1_0_!"[,¥1_0丄,¥2_0_1"[,及び ¥2_0丄を駆動( 開閉)するための弁指令信号 LLL_SLV,Ll_H_SLV,L2 _SLV,及び L2_H_SLVを出力 するとともに、油圧シリンダ SYL1,SYL2の発生推力に相当する SYL1JDN調整信号, SY L2_ON調整信号を複合モータ制御器 360に出力するもので、速度制御器 330からモ ーシヨンベース信号が加えられ、外乱トルク推定器 370から外乱トルク推定信号が加 えられている。
[0126] また、油圧シリンダ制御器 350には、圧力検出器 P丄 D及び P_2_Dによって検出さ れた圧力信号 L1_P及び L2_Pと、スプール位置検出器 S1_D丄, S1_D_H,S2_D丄,及び S2_ D_I" [によって検出されたスプール位置信号 LLL_POS,Ll_H_POS,L2 _POS,及び L2— H_POSとが加えられて!/、る。
[0127] 油圧シリンダ制御器 350は、入力するモーションベース信号と外乱トルク推定信号 との総和力も電動モータ SM単体の推力で賄うことができるかどうか、また、油圧シリ ンダのアシストが必要な場合には、油圧シリンダ SYL1, SYL2のうちのいずれか一方、 又は両方のアシストが必要かを判断し、油圧シリンダ SYL1をアシスト ON、アシスト OF Fさせるための CYL1JDFF指令、及び油圧シリンダ SYL2をアシスト ON、アシスト OF Fさせるための CYL2JDN指令、 CYL2JDFF指令を発生する。
[0128] また、 CYL1JDN指令、 CYL1JDFF指令には、上昇時に必要に応じて圧油チャージ 制御器 340から上昇 ONチャージ信号が加算される。
[0129] いま、図 9Aに示すように油圧シリンダ SYL1をアシスト ONする CYL1JDN指令(0→1 )を発生する場合、 CYL1_0N指令の立ち上がりに同期して低圧力源 208に通じる弁 Vl_D を全閉させる弁指令信号 LLL_SLVを出力し (図 9C)、続いて所定の遅延時間 後に定高圧力源 204に通じる弁 V1_D_Hを開くための、後述のアシスト時昇圧ァルゴ リズムにしたがった弁指令信号 L1_H_SLVを出力する (図 9B)。尚、アシスト時昇圧ァ ルゴリズムは、所定のアシスト時昇圧制御時間(数 m〜数 10msec間)(シリンダ圧力の 過渡期)だけ行われる。
[0130] 図 10は前記弁指令信号 L1_H_SLVを出力する油圧シリンダ制御器 350の一部を示 す回路図である。同図に示すように、アシスト時昇圧制御時間に昇圧時 CYL1圧力指 令 CYL1REFを出力する。油圧シリンダ制御器 350は、前記圧力指令 CYL1REFと圧 力検出器 P_1_Dによって検出された圧力信号 L1_Pとの偏差に基づいて弁 V1_D_Hのス プール位置指令を演算し、このスプール位置指令とスプール位置検出器 S 1_D_Hによ つて検出されたスプール位置信号 Ll_H_POSとの偏差に基づいて前記弁指令信号 L1 _H_SLVを演算し、この弁指令信号 L1_H_SLVによって弁 V1_D_Hのスプール位置 (開口 量)を制御する。
[0131] 上記アシスト時昇圧アルゴリズムにしたがって演算された弁指令信号 L1_H_SLVによ つて弁 V1_D_Hを制御することにより、油圧シリンダ SYL1の圧力は圧力指令 CYL1REF に追従するようになる。
[0132] また、このアシスト時昇圧アルゴリズムによる昇圧後、弁 V1_D_Hは、定常 ON用の一 定量 (略全開の開口量)になるように制御される。これは、昇圧工程が終了したら油流 が絞られな 、ように弁開度を大きくし、エネルギ効率を低下させな 、ようにするためで ある。
[0133] 油圧シリンダ制御器 350は、油圧シリンダをアシスト OFFする場合にもアシスト ON 時と同様な制御を行う。
[0134] 即ち、図 11Aに示すように油圧シリンダ SYL2をアシスト OFFする CYL2JDFF指令(1 →0)を発生する場合、 CYL2_OFF指令の立ち下がりに同期して定高圧力源 204に 通じる弁 V2_D_Hを全閉させる弁指令信号 L2_H_SLVを出力し (図 11C)、続いて所定 の遅延時間後に低圧力源 208に通じる弁 2_0丄を開くための、アシスト時脱圧アル ゴリズムにしたがった弁指令信号 L2 _SLVを出力する (図 11B)。尚、アシスト時脱圧 アルゴリズムは、所定のアシスト時脱圧制御時間(数 m〜数 10msec間)(シリンダ圧力 の過渡期)だけ行われる。
[0135] 図 12は前記弁指令信号 L2 _SLVを出力する油圧シリンダ制御器 350の一部を示 す回路図である。同図に示すように、アシスト時脱圧制御時間に脱圧時 CYL2圧力指 令 CYL2REFを出力する。油圧シリンダ制御器 350は、前記圧力指令 CYL2REFと圧 力検出器 P_2_Dによって検出された圧力信号 L2_Pとの偏差に基づいて弁 V2_D丄のス プール位置指令を演算し、このスプール位置指令とスプール位置検出器 S2_D によ つて検出されたスプール位置信号 L2 _POSとの偏差に基づいて前記弁指令信号 L2 _SLVを演算し、この弁指令信号し2丄_31^によって弁 2_0丄のスプール位置 (開口 量)を制御する。
[0136] 上記アシスト時脱圧アルゴリズムにしたがって演算された弁指令信号 L2 _SLVによ つて弁 2_0丄を制御することにより、油圧シリンダ SYL2の圧力は圧力指令 CYL2REF に追従するようになる。 [0137] また、このアシスト時脱圧アルゴリズムによる脱圧後、弁 2_0丄は、定常 OFF用の 一定量 (略全開の開口量)になるように制御される。これは、脱圧工程が終了したら油 流が絞られな 、ように弁開度を大きくし、エネルギ効率を低下させな 、ようにするため である。
[0138] 尚、上記のようにして制御される前記弁 1_0_!"[,¥1_0丄,¥2_0_1"[,及び ¥2_0丄は、弁 指令信号群の変化時点から遅くとも 60ms以内に 2つの定常状態 (略一定低圧状態( P0)と略一定高圧状態 (P1))の間で、少なくとも I P1 -P0 Iの 50%以上の変化が可 能な開口量及び応答性を有するものが適用される。
[0139] 更に、油圧シリンダ制御器 350は、油圧チャージ制御器 340から上昇中チャージ O N信号を入力した場合には、油圧シリンダ SYL1をポンプとして作用させるための弁指 令信号を上記と同様にして演算して出力する。
[0140] また、油圧シリンダ制御器 350は、油圧シリンダ SYL1や CYL2が駆動された時、予め 予測される圧力応答に比例する推力応答と、予め予測される電動モータ SMのトルク 応答の差を補正するような調整信号 (CYL1_0N調整信号、 CYL2_ON調整信号)を演 算し、この調整信号を複合モータ制御器 360に出力する。
[0141] 図 13Aは油圧シリンダ SYL1をアシスト ONする CYL1JDN指令が与えられたときの油 圧シリンダ SYL1の圧力応答を示すグラフであり、図 13Bは電動モータ SMに対してス テツプ状のトルク指令が与えられたときのトルク応答を示すグラフである。
[0142] 図 14Aは CYL1JDN指令力 油圧シリンダ SYL1の圧力応答に至るまでの伝達関数 を示し、図 14Bはトルク指令力も電動モータ SMのトルク応答に至るまでの伝達関数 を示している。
[0143] 油圧シリンダ制御器 350は、図 15に示すように図 14A及び図 14Bに示した伝達関 数を用いて、 CYL1— ON指令や CYL2— ON指令が発生した場合、その CYL1— ON指令 や CYL2_ON指令に基づくシリンダ推力がスライド 110に加算される分に相応する調 整信号 (CYL1_0N調整信号、 CYL2_ON調整信号)を複合モータ制御器 360に出力 する。複合モータ制御器 360では、複合モータトルク指令信号から CYL1_0N調整信 号、 CYL2JDN調整信号を減算して、電動モータ SMへのモータトルク指令信号を演 算しているが、このモータトルク指令信号は、過度的にも整合した信号となる。 [0144] 図 16は、より簡易的に動的な整合をとるための CYLl_ON調整信号、 CYL2JDN調整 信号を演算する油圧シリンダ制御器の他の実施の形態を示している。
[0145] 図 16に示す油圧シリンダ制御器 350'は、電動モータ SMのトルク応答より十分に 遅い油圧シリンダ SYL1,SYL2の圧力応答に合わせて、シリンダ推力に相応するトル クを減算するため、油圧シリンダ SYL1,SYL2の圧力を示す圧力信号 L1_P, L2_P (圧 力応答)に電動モータ SM応答分の遅れを位相改善させる伝達関数 GPC1(S)、 GPC 2(S)を乗じたものを調整信号 (CYL1_0N調整信号、 CYL2_ON調整信号)として複合 モータ制御器 360に出力している。
[0146] 次に、複合モータ制御器 360について説明する。
[0147] 図 7に示すように複合モータ制御器 360には、速度制御器 33から複合モータトルク 指令信号が加えられ、外乱トルク推定器 370から外乱トルク推定信号が加えられ、圧 油チャージ制御器 340からシリンダ上昇 ON調整信号が加えられ、油圧シリンダ制御 器 350から SYL1JDN調整信号及び SYL2JDN調整信号が加えられている。
[0148] 複合モータ制御器 360は、入力する複合モータトルク指令信号と外乱トルク推定信 号とを加算してプレス荷重等を含む外乱トルクを考慮した複合モータトルク指令信号 を得、この複合モータトルク指令信号力 図 15及び図 16に示したように調整信号 (C YLl_ON調整信号、 CYL2_ON調整信号)を減算し、その減算結果をモータトルク指令 信号として出力する。
[0149] モータ制御器 380には、複合モータ制御器 360からモータトルク指令信号が加えら れ、モータ駆動装置 390からモータトルク信号及びモータ角速度信号が加えられて いる。モータ制御器 380はこれらの信号力もモータ駆動信号を演算し、このモータ駆 動信号をモータ駆動装置 390に出力する。本例におけるモータ制御器 380へ入力 するモータ角速度信号は、逆起電力による指令電圧低下に伴うモータトルク低下を 補正するためのものである。即ち、モータ角速度信号は、速度に比例して生じる逆起 電力分の電圧をモータ制御器 380内の指令電圧の PWM (パルス幅変調制御部)で 補正 (加算)操作するために使用される。尚、モータ制御器にはいろいろな形態が知 られており、本例には限らない。
[0150] モータ駆動装置 390(図 1)は、スライド制御装置 300から入力するモータ駆動信号 に基づ!/、て電動モータ SMを駆動する。
[0151] 次に、上記構成のプレス機械のスライド駆動装置の動作について説明する。
[0152] 〔作用説明〕
<状態波形 >
図 17乃至図 26はそれぞれスライド 110を駆動させる場合の 1サイクルにおける各 種の状態波形 (スライド位置、モータ角速度、モータによる(減速器、スクリュ、ナット機 構を介した)推力、各油圧シリンダ圧力、各油圧シリンダ推力、定高圧力源から各油 圧シリンダに流入出する油量、定高圧力源圧力、定高圧力源油量、プレス荷重及び スライド加速度指令)を示すグラフである。
[0153] 図 17の実線及び点線は、それぞれスライド目標位置指令及びスライド位置を示し ている。スライド目標位置指令の上限位置指令は 300mm、下限位置指令は Ommで ある(上方向を正方向としている)。図 8で説明したようにスライド目標位置指令は、ス ライド位置制御器 320内の積分器 323がスライド速度指令を時間積分して生成して おり、この実施の形態では、 200mmZsのスライド速度指令を時間積分したものであ る。
<スライド動作開始前 =スライド停止中 >
プレス機械 100の運転開始時 (運転開始前)には、定高圧力源 204にシリンダ駆動 用の圧油が蓄積されていない。スライド制御装置 300のスライド統括制御器 310 (図 7 )は、圧力検出器 P_H力も入力する略一定高圧力信号に基づいて圧油の圧力が、停 止時蓄圧下限設定圧 (例えば 21MPa)以下であることを検知すると、圧油供給信号 を補助圧油供給装置 230に出力する。補助圧油供給装置 230は、圧油供給信号の 入力により圧油を定高圧力源 204にチャージし、定高圧力源 204内の初期圧油を確 保する。
[0154] 図 23は定高圧力源 204の圧力を示しており、時間 Osにおける圧力が動作前に補 助圧油供給装置 230によりチャージされた圧油の圧力である。
[0155] <スライド下降開始 下方加速→一定速 (等速)、波形図の 0〜1.15秒 >
スライド制御装置 300のスライド統括制御器 310からはブレーキ OFF信号 Bl, B2 が自重落下防止装置 250に出力され、運転停止時のスライド 110の自重落下機能( ブレーキ機能)が解除される。
[0156] 一方、スライド位置制御器 320の積分器 322 (図 8)では、スライド加速度指令を演 算している。図 26はスライド加速度指令を示している。チャージ信号生成器 324は、 スライド加速度指令力も比較的大きなトルクを必要とするスライド加速領域を過ぎた時 点 (図 26に示す 0秒近傍の負側のトルク絶対値が小さくなつた時点)を判断して、チヤ ージベース信号をチャージ駆動装置 270に出力する。
[0157] チャージベース信号を受けた圧油チャージ制御器 340は、油圧シリンダ SYL1がァ シスト用に駆動されたことを示す信号が加えられるまで、チャージ駆動装置 270内の チャージ弁 273を ONさせるためのチャージ用弁指令信号を出力する。チャージ用 弁指令信号受けたチャージ駆動装置 270(図 6)は、チャージ弁 273を ONさせてパイ ロット操作逆止弁 272により低圧側の管路 Tを遮断させ、スライド 110の下降時に油 圧シリンダ SYLla,SYLlbのシリンダ下室から吐出される圧油を、逆止弁 271を介して 高圧側の管路 Pを経由して定高圧力源 204にチャージさせる。
[0158] 図 23及び図 24はそれぞれ定高圧力源 204内の圧油の圧力、及び油量を示してお り、図 23及び図 24に示す 0.4s〜l.15s間の圧力上昇部及び油量上昇部は、スライド 下降時のチャージによるものである。
[0159] <スライド下降後半 成形力負荷、アシスト作用 下死点停留 波形図の 1.1〜2.5 秒 >
スライド位置 100mm (経過時間 1.1s)力もスライド下死点位置(0mm)に至る期間 は、図 25に示すような成形力が作用する。
[0160] 図 18には、電動モータ SMのモータ角速度 (駆動軸角速度)を示す。成形力(プレス 荷重)が作用した瞬間の過度時を除いて、荷重作用によらず安定した速度曲線を示 していることが分かる。これは、図 7に示すスライド制御装置 300内の外乱トルク推定 器 370により、プレス荷重等を含む外乱トルクを、速度信号等を基に演算推定し、複 合モータ制御器 360に外乱トルクを相殺すべく出力することによる作用が大きい。
[0161] 成形力が作用した時、油圧シリンダ制御器 350では、位置、速度の制御を司るモー シヨンベース信号と外乱トルク推定信号 (これら総和 (アシスト判断量》に基づき、その 量の大小によって、油圧シリンダ SYL1 (シリンダ小)、油圧シリンダ SYL2(シリンダ大)を 駆動させるベく弁指令信号群を出力し、電動モータ SM (からスクリュ 'ナット機構を介 した)推力の不足分をシリンダ推力で補うようにして 、る。
[0162] 油圧シリンダ制御器 350は、油圧シリンダ CYL1や CYL2を駆動する時には、予め予 測される圧力応答に比例する推力応答と予め予測される電動モータ SMのトルク応 答差を補正するような調整信号 (CYL1_0N調整信号、 CYL2_ON調整信号)を複合モ ータ制御器 360に出力し、複合モータ制御器 360は複合モータトルク指令信号に調 整信号を加算することによって、電動モータ SMカもスクリュ 'ナット機構を介した推力 と油圧シリンダ推力とを、動的においても (複合の過度状態においても)滑らかに複合 させる。
[0163] また、この時は圧油が成形に消費され、略一定高圧信号が動作時蓄圧下限設定 圧 (例えば 21MPa)以下になると、補助圧油供給装置 230が動作して定高圧力源 2 04に圧油が蓄積される。尚、プレス機械 100の動作中は所定の圧力(動作時蓄圧上 限設定圧 (例えば 22.5MPa))に達すると、補助圧油供給装置 230による圧油の供給 は停止する。
[0164] <スライド上昇初期 (加速) 成形カ徐荷 アシスト解除 波形図の 2.5〜2.8秒 > 図 17に示すように下降時と同様に、スライド 110は、スライド制御装置 300に基づき スライド位置制御器 320で生成されたスライド目標位置指令にスライド位置が追従す るように制御される。
[0165] この時、上昇開始初期に成形力が解除され、位置、速度の制御を司るモーションべ ース信号と外乱トルク推定信号 (これら総和 (アシスト判断量》が小さくなるため、油圧 シリンダ制御器 350は、油圧シリンダ SYL1 (シリンダ小)、油圧シリンダ SYL2(シリンダ大 )を順次アシスト OFFさせる弁指令信号群を出力する。
[0166] また、油圧シリンダ制御器 350は、油圧シリンダ CYL1や CYL2をアシスト OFFする 時には、アシスト ON時と同様に調整信号を複合モータ制御器 360に出力し、複合モ ータ制御器 360は複合モータトルク指令信号に調整信号を加算することによって、電 動モータ SMカもスクリュ 'ナット機構を介した推力と油圧シリンダ推力とを、動的にお V、ても(複合の過度状態にぉ 、ても)滑らかに複合させる。
[0167] <スライド上昇中期(等速) 上昇中の圧油チャージ 波形図の 2.8〜4.0秒 > スライド下降時と同様に、スライド位置制御器 320の積分器 322 (図 8)では、スライ ド加速度指令を演算しており、チャージ信号生成器 324は、スライド加速度指令から 比較的大きなトルクを必要とする上昇時のスライド加速領域を過ぎた時点 (図 26に示 す 2.5秒近傍の正側のトルク絶対値が小さくなつた時点)を判断して、チャージベース 信号をチャージ駆動装置 270に出力する。
[0168] チャージベース信号を受けた圧油チャージ制御器 340は、スライド上昇工程におい ては、油圧シリンダ制御器 350に上昇中チャージ ON信号を出力する。油圧シリンダ 制御器 350は、上昇中チャージ ON信号を入力すると、油圧シリンダ SYL1を駆動す ベぐ弁指令信号郡を出力して油圧シリンダ SYL1を駆動し、その圧力はアシスト時と 同様に予め設定された応答性に基づいて制御される。
[0169] このときの油圧シリンダ SYL1推力は下方向であり、電動モータ SMの動作方向と反 対であるため、電動モータ SMは油圧シリンダ SYL1の推力に相当するトルクを余計に 担う。この油圧シリンダ SYL1の推力に相当するトルク増加分のモータトルク指令は、 アシスト作用時と同様に CYLl_ON調整信号や外乱トルク推定信号に基づいて演算さ れる。結局、油圧シリンダ SYL1はポンプ作用を行い、電動モータ SMのスライド上昇 時の余剰動力で、低圧力源 208から定高圧力源 204へ圧油をチャージする。尚、上 昇チャージは、上昇開始時の所定の時点で、略一定高圧信号が上昇チャージ起動 設定圧 (例えば 21.8MPa)以下に限り許可される。
[0170] <スライド上昇後期(減速) 制動時エネルギ回生 波形図の 4.0〜4.2秒 >
スライド 110は、スライド制御装置 330によりスライド目標位置指令にスライド位置を 追従させるように制御される結果、上死点位置に近づくと減速させられる。この時、電 動モータ SMのトルクは、本来減速側(下降側)に生じるが、上昇チャージ時のポンプ として油圧シリンダ SYL1を (継続して)駆動する(下降側に推力が発生している)ため 、加速側(上昇側)に生じている。即ち、油圧シリンダ SYL1による低圧力源 208から定 高圧力源 204にポンプ作用(圧油チャージ)を行う際の下降側の力からサーボモータ (+スクリュ機構)による上昇側の力を減じた力が制動力となり、結局、スライド 110の 保有している運動エネルギと電動モータ SMによる上昇側動力で圧油をチャージす ることになり、少なくても、スライド 110の保有する運動エネルギは全て、圧油として定 高圧力源 208に回生される。
[0171] 〈第 2の実施の形態〉
図 27は本発明に係るプレス機械のスライド駆動装置の第 2の実施の形態の全体構 成を示す概略図である。尚、図 1に示した第 1の実施の形態と共通する部分には同 一の符号を付し、その詳細な説明は省略する。
[0172] 図 27に示す第 2の実施の形態のプレス機械のスライド駆動装置は、図 1に示した第
1の実施の形態のものとは、主としてプレス機械 100'及びスライド制御装置 300'が 異なる。
[0173] [プレス機械の構成]
このプレス機械 100,は、ベッド 102、コラム 104及びクラウン 106でフレームが構成 され、スライド (可動盤) 110は、コラム 104に設けられたガイド部 108により鉛直方向 に移動自在に案内されて 、る。
[0174] スライド 110を駆動する駆動手段として、二重油圧シリンダ SYLと、電動モータ SM1 a,SM2a及び SMlb,SM2bの出力トルクが伝達される一対のスクリュ 'ナット機構とが設け られている。
[0175] 二重油圧シリンダ SYLは、受圧面積の小さい油室 140を含む油圧シリンダ SYL1と、 受圧面積の大きい油室 141、 142を含む油圧シリンダ SYL2と力もなり、この二重油圧 シリンダ SYLのシリンダ本体がクラウン 106に固定され、ピストンロッドがスライド 110 に固定されており、スライド 110の全ストロークにわたって推力をスライド 110に伝達で きるようになつている。尚、油室 140、 141は、それぞれ管路 222、 224に接続され、 油室 142は自重落下防止装置 250に接続されて 、る。
[0176] 一対のスクリュ 'ナット機構は、それぞれ軸受け 112a, 112bを介してクラウン 106に 回転自在に固定された駆動スクリュウ 120a, 120bと、スライド 110に固定されるととも に前記駆動スクリュウ 120a, 120bと螺合する従動ナット 122a, 122bとから構成され ており、駆動スクリュウ 120a, 120bbには減速機 124a, 124bを介して電動モータ S Mla,SM2a及び SMlb,SM2bの出力トルクが伝達されるようになっている。尚、一対のス クリュ ·ナット機構は、スライド 110の中心に対して対称の位置に配設されて 、る。
[0177] また、プレス機械 100,のベース 102側には、スライド 110の左右のスライド位置をそ れぞれ検出するスライド位置検出器 130a, 130bが設けられ、電動モータ SMla,SM2 aと、電動モータ SMlb,SM2bには、各駆動軸の角速度を検出する駆動軸角速度検出 器 132a, 132b力設けられている。
[0178] スライド位置検出器 130a, 130bからは、位置信号処理装置 131a, 131bを介して スライド 110の左右のスライド位置を示すスライド位置信号 a, bがスライド制御装置 30 0'に出力され、駆動軸角速度検出器 132a, 132bからは、モータ駆動装置 390a, 3 90bを介して各駆動軸の角速度信号 (モータ角速度信号 a, b)がスライド制御装置 3 00 'に出力されている。また、モータ駆動装置 390a, 390bからはそれぞれモータト ルク信号 a, bがスライド制御装置 300'に出力されている。
[0179] 〔スライド制御〕
次に、図 27に示したスライド制御装置 300'について、図 28を参照しながら説明す る。尚、図 7に示したスライド制御装置 300と共通する部分には同一の符号を付し、そ の詳細な説明は省略する。
[0180] 図 28に示すようにスライド制御装置 300'は、スライド統括制御器 310と、スライド位 置制御器 320'と、速度制御器 330'と、圧油チャージ制御器 340と、油圧シリンダ制 御器 350と、複合モータ制御器 360'と、外乱トルク推定器 370a, 370bと、モータ制 御器 380a、 380bと力ら構成されて!/、る。
[0181] スライド位置制御器 320'は、図 8に示したスライド位置制御器 320と同様な構成を 有する力 スライド位置検出器 130a, 130b力も位置信号処理装置 131a, 131bを 介してスライド 110の左右のスライド位置を示すスライド位置信号 a, bを入力して 、る ため、スライド 110の左右の速度指令信号 a, bを個別に演算して出力する。また、こ のスライド位置制御器 320'からはチャージベース信号は出力せず、モータ角速度信 号 a, bを入力して 、る加速度演算器 326からチャージベース信号を圧油チャージ制 御器 340に出力している。この加速度演算器 326は、モータ角速度信号 a, bからスラ イド 110の左右平均の加速度を演算し、その加速度に基づ 、てチャージベース信号 を生成して圧油チャージ制御器 340に出力している。
[0182] 速度制御器 330'には、速度指令信号 a, bと、モータ角速度信号 a, bとが加えられ ており、速度制御器 330'は、これらの入力信号に基づいて位置、速度の制御を司る モーションベース信号と、複合モータトルク指令信号 a, bとを演算する。前記モーショ ンベース信号は、油圧シリンダ制御器 350に出力され、複合モータトルク指令信号 a , bは複合モータ制御器 360'及び外乱トルク推定器 370a, 370bに出力される。
[0183] 外乱トルク推定器 370aには、前記複合モータトルク指令信号 aの他に、モータトル ク信号 (有効電流信号) aと、モータ角速度信号 aが加えられており、外乱トルク推定 器 370aは、モータ角速度信号 a等を基にプレス荷重等を含む外乱トルクを演算推定 する。同様に、外乱トルク推定器 370bには、前記複合モータトルク指令信号 bの他に 、モータトルク信号 (有効電流信号) bと、モータ角速度信号 bが加えられており、外乱 トルク推定器 370bは、モータ角速度信号 b等を基にプレス荷重等を含む外乱トルク を演算推定する。これらの外乱トルク推定器 370a, bは、それぞれ演算した外乱トル クを示す外乱トルク推定信号 a, bを、油圧シリンダ制御器 350及び複合モータ制御 器 360'に出力する。
[0184] 複合モータ制御器 360'は、入力する複合モータトルク指令信号 aと外乱トルク推定 信号 aとを加算してプレス荷重等を含む外乱トルクを考慮した複合モータトルク指令 信号を得、この複合モータトルク指令信号から調整信号 (CYL1_0N調整信号、 CYL2 —ON調整信号)を減算し、その減算結果をモータトルク指令信号 aとして出力するとと もに、入力する複合モータトルク指令信号 bと外乱トルク推定信号 bとを加算して複合 モータトルク指令信号を得、この複合モータトルク指令信号から調整信号を減算し、 その減算結果をモータトルク指令信号 bとして出力する。
[0185] モータ制御器 380a, 380bには、それぞれ複合モータ制御器 360からモータトルク 指令信号 a、 bが加えられ、モータ駆動装置 390a, bからモータトルク信号 a,b及びモ ータ角速度信号 a, bが加えられており、モータ制御器 380a、 bはこれらの信号カもモ ータ駆動信号 a, bを演算し、このモータ駆動信号 a, bをモータ駆動装置 390a, bに 出力する。モータ駆動装置 390a, 390b (図 27)は、スライド制御装置 300'から入力 するモータ駆動信号 a, bに基づいて電動モータ SMla,SM2aと、電動モータ SMlb,SM 2bとを駆動する。
[0186] 即ち、第 2の実施の形態のプレス機械のスライド駆動装置は、電動モータ SMla,SM 2aと、電動モータ SMlb,SM2bとを個別に駆動し、左右一対のスクリュ 'ナット機構を介 してスライド 110の左右に個別に推力を加えることができ、これによりスライド 110に対 して偏心したプレス荷重が力かる場合でも、その偏心したプレス荷重に対応した推力 を加えることができ、スライド 110の平行度を高精度に維持することができる。
[0187] 〈第 3の実施の形態〉
図 29は本発明に係るプレス機械のスライド駆動装置の第 3の実施の形態の要部構 成を示す概略図である。尚、図 1及び図 27に示した第 1及び第 2の実施の形態と共 通する部分には同一の符号を付し、その詳細な説明は省略する。
[0188] 図 29に示す第 3の実施の形態のプレス機械のスライド駆動装置は、図 1及び図 27 に示した第 1及び第 2の実施の形態のものとは、主としてプレス機械 100"及び油圧 シリンダ駆動装置 200'が異なる。
[0189] [プレス機械の構成]
このプレス機械 100"は、図 1に示したプレス機械 100と同様に大小 2本ずつの油圧 シリンダ SYLl(SYLla, SYLlb)、 SYL2(SYL2a, SYL2b)が設けられ、また、図 27に示し たプレス機械 100'と同様に電動モータの出力トルクが伝達される一対のスクリュ 'ナ ット機構が設けられている。
[0190] 尚、一対のスクリュ*ナット機構を駆動する電動モータ SMa, SMbは、図 28に示し た第 2の実施の形態のスライド制御装置 300 'と同様のスライド制御装置により個別に 駆動制御される。
[0191] 〔油圧シリンダ駆動装置〕
第 3の実施の形態の油圧シリンダ駆動装置 200'は、第 1の油圧シリンダ駆動装置 2 00aと、第 2の油圧シリンダ駆動装置 200bとから構成され、各油圧シリンダ駆動装置 は、図 5に示した油圧シリンダ駆動装置 200と同様に構成されている。第 1の油圧シリ ンダ駆動装置 200a〖こは、管路 222a, 224aを介して図 29上で左側の油圧シリンダ S YLla, SYL2aが接続され、第 2の油圧シリンダ駆動装置 200bには、管路 222b, 224 bを介して図 29上で右側の油圧シリンダ SYLlb, SYL2bが接続されている。
[0192] 一方、第 1の油圧シリンダ駆動装置 200aには、弁指令信号 L1丄— SLVa,Ll— H— SLVa, L2 _SLVa,及び L2_H_SLVaが加えられ、第 2の油圧シリンダ駆動装置 200bには、弁 指令信号 LLL_SLVb,Ll_H_SLVb,L2 _SLVb,及び L2_H_SLVbが加えられる。これらの 弁指令信号 LI— L— SLVa,Ll— H— SLVa,L2— L— SLVa,及び L2— H— SLVaと、弁指令信号 LI— L— SLVb,Ll— H— SLVb,L2丄— SLVb,及び L2— H— SLVbとは、図示しな!、スライド制御装置内 の油圧シリンダ制御器により個別に生成されている。
[0193] 即ち、この油圧シリンダ駆動装置 200'は、第 1の油圧シリンダ駆動装置 200aと、第 2の油圧シリンダ駆動装置 200bとにより、左側の油圧シリンダ SYLla, SYL2aと、右側 の油圧シリンダ SYLlb, SYL2bとを個別に駆動している。
[0194] 従って、第 3の実施の形態のプレス機械のスライド駆動装置は、プレス機械 100"の 左右の電動モータ SMaと電動モータ SMbとを個別に駆動制御するとともに、左右の 油圧シリンダ SYLla, SYL2aと油圧シリンダ SYLlb, SYL2bとを個別に制御しており、こ れによりスライド 110に対して偏心したプレス荷重が力かる場合でも、その偏心したプ レス荷重に対応した推力を加えることができ、スライド 110の平行度を高精度に維持 することができる。
[0195] 尚、この実施の形態では、スライド 110の位置を示すスライド位置信号を使用して ヽ るが、駆動軸角度信号を使用してもよぐまた、速度信号として駆動軸角速度を使用 しているが、スライド速度を使用してもよい。また、速度マイナーループフィードバック 付き位置フィードバックによる制御を行っている力 速度フィードバックのみによる制 御でもよい。更に、この実施の形態では、作動液として油を使用した場合について説 明したが、これに限らず、水やその他の液体を使用してもよい。また、本発明は、プレ ス機械のスライド (可動盤)に限らず、射出成形機のダイプレートなどの各種の推力を 要する産業機械や建設機械等の可動盤の駆動装置としても適用することができる。 産業上の利用の可能性
[0196] 本発明は可動盤の駆動装置及びプレス機械のスライド駆動装置に適用できる。特 に、電動モータと液圧シリンダとを併用してプレス機械のスライドや各種の推力を要 する産業機械や建設機械等の可動盤を駆動する技術に適用できる。

Claims

請求の範囲
[1] 電動モータと、
前記電動モータの出力トルクを可動盤を移動させるための推力として該可動盤に 伝達させるスクリュ'ナット機構と、
略一定圧力の作動液を発生する定高圧力源と低圧力源に弁を介して接続された 単数又は複数の液圧シリンダと、
前記液圧シリンダの推力を前記可動盤に伝達する推力伝達手段であって、前記ス クリュ 'ナット機構の任意のストローク位置で随時推力が伝達可能なように連結する推 力伝達手段と、
前記可動盤の速度又は前記電動モータの駆動軸からスクリュ'ナット機構までの 、 ずれかの回転部の角速度を検出する速度検出手段と、
前記速度検出手段によって検出された速度又は角速度に基づいて前記電動モー タ及び液圧シリンダを制御する制御手段と、を備え、
前記制御手段は、前記可動盤の負荷が小さくなる所定の期間に前記液圧シリンダ の少なくとも 1つの液圧シリンダをポンプとして作用させ、前記電動モータから前記ス クリュ 'ナット機構、可動盤及び推力伝達手段を介して前記液圧シリンダに伝達される 推力により前記低圧力源力 前記定高圧力源に作動液をチャージさせることを特徴 とする可動盤の駆動装置。
[2] 前記定高圧力源、低圧力源及び液圧シリンダを含んで構成される作動液が循環す る液圧装置は、大気と遮断されて 、ることを特徴とする請求項 1に記載の可動盤の駆 動装置。
[3] 前記定高圧力源は、作動液を略一定高圧に保持するアキュムレータを含んで構成 されることを特徴とする請求項 1に記載の可動盤の駆動装置。
[4] 前記低圧力源は、作動液を大気圧のタンク又は略一定低圧に保持するアキュムレ ータを含んで構成されることを特徴とする請求項 1に記載の可動盤の駆動装置。
[5] 前記定高圧力源は、略一定圧力の作動液を供給する作動液補助供給手段が接続 されることを特徴とする請求項 1に記載の可動盤の駆動装置。
[6] 前記電動モータは、少なくとも 1つのサーボモータを含む複数の電動モータを含む ことを特徴とする請求項 1に記載の可動盤の駆動装置。
[7] 前記電動モータの出力トルクは、減速機を介して前記スクリュ 'ナット機構に伝達さ れることを特徴とする請求項 1に記載の可動盤の駆動装置。
[8] 前記液圧シリンダは、シリンダ径の異なる 2種類以上のシリンダが用いられているこ とを特徴とする請求項 1に記載の可動盤の駆動装置。
[9] 前記液圧シリンダは、シリンダ径の同一な一対の液圧シリンダを含み、前記一対の 液圧シリンダは前記可動盤の中心に対して対称の位置に配置されるとともに、前記 一対の液圧シリンダの圧液接続ポート間は、作動液が同時に供給可能に接続されて
V、ることを特徴とする請求項 1に記載の可動盤の駆動装置。
[10] 前記液圧シリンダは、少なくとも 1つの液圧シリンダのピストロッド側の圧液接続ポー トが前記低圧力源に常時通じるように接続されていることを特徴とする請求項 1に記 載の可動盤の駆動装置。
[11] 前記可動盤は鉛直方向に移動可能に案内され、前記液圧シリンダはシリンダ下室 側の圧液接続ポートにパイロット操作逆止弁が接続され、非駆動時に前記可動盤の 自重を支えることを特徴とする請求項 1に記載の可動盤の駆動装置。
[12] 前記可動盤の目標速度又は前記回転部の目標角速度を指令する速度指令手段 を備え、
前記制御手段は、前記速度指令手段によって指令された目標速度又は目標角速 度、及び前記速度検出手段によって検出された速度又は角速度に基づいて前記電 動モータ及び液圧シリンダを制御することを特徴とする請求項 1に記載の可動盤の駆 動装置。
[13] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、 前記制御手段は、前記位置指令手段によって指令された目標位置又は目標角度 、前記位置検出手段によって検出された位置又は角度、及び前記速度検出手段に よって検出された速度又は角速度に基づいて前記電動モータ及び液圧シリンダを制 御することを特徴とする請求項 1に記載の可動盤の駆動装置。
[14] 前記制御手段は、 前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記電動モータを制御するための複合モータトルク指令 信号を演算する複合モータトルク指令演算手段と、
前記複合モータトルク指令信号に基づいて前記電動モータを制御するモータ制御 手段と、を有することを特徴とする請求項 13に記載の可動盤の駆動装置。
[15] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、 前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記液圧シリンダを制御するためのモーションベース信号 を演算するモーションベース演算手段と、
前記モーションベース信号に基づいて前記液圧シリンダを制御するシリンダ制御手 段と、を有することを特徴とする請求項 1に記載の可動盤の駆動装置。
[16] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、 前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記液圧シリンダを制御するためのモーションベース信号 を演算するモーションベース演算手段と、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記電動モータを制御するための複合モータトルク指令 信号を演算する複合モータトルク指令演算手段と、
前記複合モータトルク指令信号、及び前記速度検出手段によって検出された速度 又は角速度に基づいて前記可動盤の駆動に伴う外乱トルクを推定して該外乱トルク を示す外乱トルク推定信号を演算する外乱トルク推定手段と、
前記モーションベース信号及び前記外乱トルク推定信号に基づいて前記液圧シリ ンダを制御するシリンダ制御手段と、を有することを特徴とする請求項 1に記載の可 動盤の駆動装置。
[17] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、 前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記電動モータを制御するための複合モータトルク指令 信号を演算する複合モータトルク指令演算手段と、
前記複合モータトルク指令信号、及び前記速度検出手段によって検出された速度 又は角速度に基づいて前記可動盤の駆動に伴う外乱トルクを推定して該外乱トルク を示す外乱トルク推定信号を演算する外乱トルク推定手段と、
前記複合モータトルク指令信号及び前記外乱トルク推定信号に基づいて前記電動 モータを制御するモータ制御手段と、を有することを特徴とする請求項 1に記載の可 動盤の駆動装置。
[18] 前記制御手段は、前記弁の開口量を制御することにより前記液圧シリンダを制御す ることを特徴とする請求項 1に記載の可動盤の駆動装置。
[19] 前記制御手段は、前記弁の開口量を指令する指令信号の発生時から前記液圧シ リンダの圧力が所定値に達するまでの応答性に基づいて前記電動モータを制御する ことを特徴とする請求項 18に記載の可動盤の駆動装置。
[20] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段を 備え、
前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記電動モータを制御するための複合モータトルク指令 信号を演算する複合モータトルク指令演算手段と、
前記複合モータトルク指令信号、前記弁の開口量を指令する指令信号の発生時か ら前記液圧シリンダの圧力が所定値に達するまでの第 1の応答性、及び前記電動モ ータへのトルク指令又は電流指令力 前記指令されたトルク又は電流に達するまで の第 2の応答性に基づ 、て前記電動モータを制御するモータ制御手段と、を有する ことを特徴とする請求項 18に記載の可動盤の駆動装置。
[21] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記液圧シリンダの圧力を検出する圧力検出手段とを備え、
前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記速度検出手段によって検出された速 度又は角速度に基づいて前記電動モータを制御するための複合モータトルク指令 信号を演算する複合モータトルク指令演算手段と、
前記複合モータトルク指令信号、及び前記圧力検出手段によって検出された圧力 に基づ!/、て前記電動モータを制御するモータ制御手段と、を有することを特徴とする 請求項 1に記載の可動盤の駆動装置。
[22] 前記液圧シリンダの圧力を検出する圧力検出手段と、前記弁の開口量を検出する 開口量検出手段とを備え、
前記制御手段は、
前記速度検出手段によって検出された速度又は角速度に基づいて前記液圧シリン ダを制御するための液圧シリンダ制御信号を演算する演算手段と、
前記液圧シリンダ制御信号、前記圧力検出手段によって検出された圧力、及び前 記開口量検出手段によって検出された開口量に基づいて前記液圧シリンダを制御 するシリンダ制御手段と、を有することを特徴とする請求項 1に記載の可動盤の駆動 装置。
[23] 前記演算手段は、略一定低圧状態と略一定高圧状態の 2つの定常状態の間で変 化するシリンダ圧力を示す液圧シリンダ制御信号を算出し、
前記シリンダ制御手段は、前記液圧シリンダが 2つの定常状態の間で変化するシリ ンダ圧力の過渡期に限り、前記液圧シリンダ制御信号、前記圧力検出手段によって 検出された圧力、及び前記開口量検出手段によって検出された開口量に基づいて 前記液圧シリンダを制御することを特徴とする請求項 21に記載の可動盤の駆動装置
[24] 前記弁は、前記定高圧力源と前記液圧シリンダとの間に介在する第 1の弁と、前記 低圧源と前記液圧シリンダとの間に介在する第 2の弁とからなり、
前記制御手段は、前記第 1の弁を遮断した後に前記第 2の弁を開き、又は前記第 2 の弁を遮断した後に前記第 1の弁を開くように前記第 1の弁及び第 2の弁を制御する ことを特徴とする請求項 1に記載の可動盤の駆動装置。
[25] 前記制御手段は、略一定低圧状態 (P0)と略一定高圧状態 (P1)の 2つの定常状態 の間で変化するシリンダ圧力を示す液圧シリンダ制御信号を算出する演算手段と、 前記液圧シリンダ制御信号に基づいて前記弁を制御する弁制御手段とを有し、 前記弁は、前記液圧シリンダ制御信号の変化時点力 遅くとも 60ms以内に 2つの 定常状態の間で少なくとも I P1 -P0 Iの 50%以上の変化が可能な開口量及び応 答性を有するものであることを特徴とする請求項 1に記載の可動盤の駆動装置。
[26] 前記可動盤の加速度又は前記回転部の角加速度を検出する加速度検出手段を 備え、
前記制御手段は、前記加速度検出手段によって検出された角速度又は角加速度 に基づいて前記液圧シリンダの少なくとも 1つの液圧シリンダをポンプとして作用させ ることを特徴とする請求項 1に記載の可動盤の駆動装置。
[27] 前記加速度検出手段は、前記速度検出手段によって検出された速度又は角速度 に基づいて前記加速度又は角加速度を算出することを特徴とする請求項 26に記載 の可動盤の駆動装置。
[28] 前記制御手段は、前記速度指令手段によって指令された目標速度又は目標角速 度に基づいて角速度又は角加速度を算出する加速度演算手段を有し、前記算出し た角速度又は角加速度に基づいて前記液圧シリンダの少なくとも 1つの液圧シリンダ をポンプとして作用させことを特徴とする請求項 12に記載の可動盤の駆動装置。
[29] 前記電動モータは、 1つのスクリュ 'ナット駆動機構に 2個以上接続されることを特徴 とする請求項 1に記載の可動盤の駆動装置。
[30] 前記スクリュ 'ナット駆動機構は 1つの可動盤に対して複数配設され、前記電動モー タは各スクリュ ·ナット駆動機構別に設けられて 、ることを特徴とする請求項 1に記載 の可動盤の駆動装置。
[31] 前記液圧シリンダは、同一方向に動作可能な独立した複数の受圧面を有すること を特徴とする請求項 1に記載の可動盤の駆動装置。
[32] 前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する第 1の位置検出手段と、 前記可動盤の前記第 1の位置検出手段によって検出される位置とは異なる位置、 又は前記可動盤に配設された複数のスクリュ 'ナット駆動機構のうちの前記回転部と 異なるスクリュ 'ナット駆動機構に係わる回転部の角速度を検出する第 2の位置検出 手段と、を備え、
前記速度検出手段は、前記可動盤の位置の速度又は前記電動モータの駆動軸か らスクリュ 'ナット機構までのいずれかの回転部の角速度を検出する第 1の速度検出 手段と、前記可動盤の前記第 1の速度検出手段によって速度検出される位置とは異 なる位置の速度、又は前記可動盤に配設された複数のスクリュ 'ナット駆動機構のう ちの前記回転部と異なるスクリュ 'ナット駆動機構に係わる回転部の角加速度を検出 する第 2の速度検出手段とを有し、
前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記第 1及び第 2 の位置検出手段によって検出された位置又は角度、及び前記第 1及び第 2の速度検 出手段によって検出された速度又は角速度に基づいて前記複数の電動モータ及び 液圧シリンダを制御することを特徴とする請求項 30に記載の可動盤の駆動装置。
[33] 前記制御手段は、
前記位置指令手段によって指令された目標位置又は目標角度、前記第 1の位置 検出手段によって検出された位置又は角度、及び前記第 1の速度検出手段によって 検出された速度又は角速度に基づいて前記複数の電動モータのうちの第 1の電動 モータを制御するための第 1の複合モータトルク指令信号を演算する第 1の複合モー タトルク指令演算手段と、
前記位置指令手段によって指令された目標位置又は目標角度、前記第 2の位置 検出手段によって検出された位置又は角度、及び前記第 2の速度検出手段によって 検出された速度又は角速度に基づいて前記第 1の電動モータとは異なるスクリュ 'ナ ット駆動機構を駆動する第 2の電動モータを制御するための第 2の複合モータトルク 指令信号を演算する第 2の複合モータトルク指令演算手段と、
前記第 1の複合モータトルク指令信号、及び前記第 1の速度検出手段によって検 出された速度又は角速度に基づいて前記可動盤の駆動に伴う第 1の外乱トルクを推 定して該第 1の外乱トルクを示す第 1の外乱トルク推定信号を演算する第 1の外乱ト ルク推定手段と、
前記第 2の複合モータトルク指令信号、及び前記第 2の速度検出手段によって検 出された速度又は角速度に基づいて前記可動盤の駆動に伴う第 2の外乱トルクを推 定して該第 2の外乱トルクを示す第 2の外乱トルク推定信号を演算する第 2の外乱ト ルク推定手段と、
前記第 1の複合モータトルク指令信号、及び前記第 1の外乱トルク推定信号に基づ いて前記第 1の電動モータを制御する第 1のモータ制御手段と、
前記第 2の複合モータトルク指令信号、及び前記第 2の外乱トルク推定信号に基づ V、て前記第 2の電動モータを制御する第 2のモータ制御手段と、を有することを特徴 とする請求項 32に記載の可動盤の駆動装置。
前記可動盤の目標位置又は前記回転部の目標角度を指令する位置指令手段と、 前記可動盤の位置又は前記回転部の角度を検出する位置検出手段とを備え、 前記液圧シリンダは 1つの可動盤に対して複数配設され、
前記速度検出手段は、前記可動盤の速度又は前記電動モータの駆動軸からスクリ ュ ·ナット機構までの 、ずれかの回転部の角速度を検出する第 1の速度検出手段と、 前記可動盤の前記第 1の速度検出手段によって速度検出される位置とは異なる位置 の速度、又は前記可動盤に配設された複数のスクリュ 'ナット駆動機構のうちの前記 回転部と異なるスクリュ 'ナット駆動機構に係わる回転部の角加速度を検出する第 2 の速度検出手段とを有し、 前記制御手段は、 前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記第 1及び第 2の速度検出手段によつ てそれぞれ検出された速度又は角速度のうちの少なくとも一方の速度又は角速度に 基づいて前記電動モータを制御するための複合モータトルク指令信号を演算する複 合モータトルク指令演算手段と、
前記位置指令手段によって指令された目標位置又は目標角度、前記位置検出手 段によって検出された位置又は角度、及び前記第 1及び第 2の速度検出手段によつ てそれぞれ検出された速度又は角速度のうちの少なくとも一方の速度又は角速度に 基づいて前記液圧シリンダを制御するためのモーションベース信号を演算するモー シヨンベース演算手段と、
前記複合モータトルク指令信号、及び前記第 1の速度検出手段によって検出され た速度又は角速度に基づいて前記可動盤の駆動に伴う第 1の外乱トルクを推定して 該第 1の外乱トルクを示す外乱トルク推定信号を演算する第 1の外乱トルク推定手段 と、
前記複合モータトルク指令信号、及び前記第 2の速度検出手段によって検出され た速度又は角速度に基づいて前記可動盤の駆動に伴う第 2の外乱トルクを推定して 該第 2の外乱トルクを示す外乱トルク推定信号を演算する第 2の外乱トルク推定手段 と、
前記モーションベース信号、及び前記第 1の外乱トルク推定信号に基づ!、て前記 複数の液圧シリンダのうちの第 1の液圧シリンダを制御する第 1のシリンダ制御手段と 前記モーションベース信号、及び前記第 2の外乱トルク推定信号に基づ 、て前記 複数の液圧シリンダのうちの第 2の液圧シリンダを制御する第 2のシリンダ制御手段と 、を有することを特徴とする請求項 1に記載の可動盤の駆動装置。
前記スクリュ 'ナット駆動機構は 1つの可動盤に対して複数配設され、前記電動モー タは各スクリュ 'ナット駆動機構別に設けられ、
前記位置検出手段は、前記可動盤の位置又は前記回転部の角度を検出する第 1 の位置検出手段と、前記可動盤の前記第 1の位置検出手段によって検出される位置 とは異なる位置、又は前記可動盤に配設された複数のスクリュ 'ナット駆動機構のうち の前記回転部と異なるスクリュ 'ナット駆動機構に係わる回転部の角速度を検出する 第 2の位置検出手段とを有し、
前記複合モータトルク指令信号演算手段は、前記位置指令手段によって指令され た目標位置又は目標角度、前記第 1の位置検出手段によって検出された位置又は 角度、及び前記第 1の速度検出手段によって検出された速度又は角速度に基づい て複数の電動モータのうちの第 1の電動モータを制御するための第 1の複合モータト ルク指令信号を演算する第 1の複合モータトルク指令演算手段と、前記位置指令手 段によって指令された目標位置又は目標角度、前記第 2の位置検出手段によって検 出された位置又は角度、及び前記第 2の速度検出手段によって検出された速度又は 角速度に基づいて複数の電動モータのうちの第 2の電動モータを制御するための第 2の複合モー外ルク指令信号を演算する第 2の複合モー外ルク指令演算手段とを 有し、
前記第 1の外乱トルク推定手段は、前記第 1の複合モータトルク指令信号、及び前 記第 1の速度検出手段によって検出された速度又は角速度に基づ!/、て前記可動盤 の駆動に伴う第 1の外乱トルクを推定して該第 1の外乱トルクを示す外乱トルク推定 信号を演算し、
前記第 2の外乱トルク推定手段は、前記第 2の複合モータトルク指令信号、及び前 記第 2の速度検出手段によって検出された速度又は角速度に基づいて前記可動盤 の駆動に伴う第 2の外乱トルクを推定して該第 2の外乱トルクを示す外乱トルク推定 信号を演算することを特徴とする請求項 34に記載の可動盤の駆動装置。
請求項 1乃至 35のいずれかに記載の可動盤の駆動装置を含み、前記可動盤はプ レス機械のスライドであることを特徴とするプレス機械のスライド駆動装置。
PCT/JP2005/023411 2005-01-12 2005-12-20 可動盤の駆動装置及びプレス機械のスライド駆動装置 WO2006075488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2594644A CA2594644C (en) 2005-01-12 2005-12-20 Movable plate drive device and press slide drive device
US11/813,783 US7401548B2 (en) 2005-01-12 2005-12-20 Movable plate drive device and press slide drive device
EP05820057.7A EP1837169B1 (en) 2005-01-12 2005-12-20 Movable plate drive device and press slide drive device
HK08104488.3A HK1110037A1 (en) 2005-01-12 2008-04-23 Movable plate drive device and press slide drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005005384A JP4604288B2 (ja) 2005-01-12 2005-01-12 可動盤の駆動装置及びプレス機械のスライド駆動装置
JP2005-005384 2005-01-12

Publications (1)

Publication Number Publication Date
WO2006075488A1 true WO2006075488A1 (ja) 2006-07-20

Family

ID=36677519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023411 WO2006075488A1 (ja) 2005-01-12 2005-12-20 可動盤の駆動装置及びプレス機械のスライド駆動装置

Country Status (9)

Country Link
US (1) US7401548B2 (ja)
EP (1) EP1837169B1 (ja)
JP (1) JP4604288B2 (ja)
KR (1) KR100965456B1 (ja)
CN (1) CN100586707C (ja)
CA (1) CA2594644C (ja)
HK (1) HK1110037A1 (ja)
TW (1) TW200630211A (ja)
WO (1) WO2006075488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881903A (zh) * 2017-03-28 2017-06-23 广东华中科技大学工业技术研究院 一种伺服压力机控制系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496186B (zh) * 2007-11-09 2015-08-05 万科国际股份有限公司 用于冲压机器的驱动设备和方法
ITBS20080090A1 (it) * 2008-04-28 2009-10-29 Gauss Automazione S P A Dispositivo anticaduta particolarmente per presse idrauliche
FR2939420B1 (fr) * 2008-12-08 2011-02-11 Olivier Somville Installation de transfert d'articles par aspiration, et procede de desinfection.
JP5561459B2 (ja) * 2009-03-24 2014-07-30 株式会社安川電機 プレス機械装置およびそのモータ制御装置
GB2468913B (en) * 2009-03-27 2011-02-16 Siemens Vai Metals Tech Ltd Fully hydraulic edger for plate mills
JP2011062725A (ja) * 2009-09-17 2011-03-31 Aida Engineering Ltd プレス機械及び制御方法
WO2012011224A1 (ja) * 2010-07-21 2012-01-26 マツダ株式会社 ホットプレスによる鋼板の成形方法
CN101927578B (zh) * 2010-08-24 2014-01-08 东莞市得力仕机械科技有限公司 伺服电液复合压力方法及其压力机
JP5593992B2 (ja) * 2010-09-09 2014-09-24 村田機械株式会社 プレス機械
CN203391364U (zh) * 2012-04-13 2014-01-15 会田工程技术有限公司 用于机械压力机的滑动件运动控制设备
JP6173665B2 (ja) * 2012-08-22 2017-08-02 株式会社栗本鐵工所 クランク式鍛造プレス
CN104712616B (zh) * 2013-12-12 2017-04-12 上海旭恒精工机械制造有限公司 内循环高速液压系统、液压平台及液压平台组件
JP5769859B1 (ja) * 2014-11-03 2015-08-26 日本エアロフォージ株式会社 液圧鍛造プレス装置及びその制御方法
JP6823910B2 (ja) * 2015-02-24 2021-02-03 蛇の目ミシン工業株式会社 サーボプレス、制御方法およびプログラム
JP6002285B1 (ja) * 2015-07-10 2016-10-05 アイダエンジニアリング株式会社 スライドクッション装置兼用ダイクッション装置及びその制御方法
CN106584900B (zh) * 2016-11-08 2018-05-15 东莞市天合机电开发有限公司 一种旋转三位式固液分离器
JP7080612B2 (ja) * 2017-09-22 2022-06-06 コマツ産機株式会社 プレスシステム
JP7110667B2 (ja) * 2018-03-29 2022-08-02 村田機械株式会社 プレス機械及びプレス機械の制御方法
CN109263135A (zh) * 2018-08-24 2019-01-25 重庆艾格赛汽车用品有限公司 一种模压设备的液压控制系统
CN109570325B (zh) * 2018-11-30 2020-03-31 深圳市小机灵精密机械有限公司 一种龙门高速冲床
CN110077028B (zh) * 2019-04-30 2023-10-20 济宁科力光电产业有限责任公司 伺服压力机全闭环非线性预测控制方法与系统
JP7140728B2 (ja) 2019-09-02 2022-09-21 アイダエンジニアリング株式会社 プレス機械
CN110850813B (zh) * 2019-11-22 2021-08-20 山东省科学院激光研究所 一种伺服机压力位置控制方法、装置及伺服控制器
AT526048A1 (de) * 2022-04-05 2023-10-15 Trumpf Maschinen Austria Gmbh & Co Kg Umformmaschine zum Umformen von Werkstücken sowie ein Verfahren hierfür

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737484U (ja) * 1993-12-22 1995-07-11 アイダエンジニアリング株式会社 プレス機械のスライド駆動装置
JP2000254799A (ja) * 1999-03-09 2000-09-19 Aida Eng Ltd プレス機械
JP2001205495A (ja) * 2000-12-08 2001-07-31 Sumitomo Heavy Ind Ltd クランクプレス
JP2002172499A (ja) * 2000-12-05 2002-06-18 Aida Eng Ltd 駆動装置並びにプレス機械のスライド駆動装置及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563889A (en) 1983-03-17 1986-01-14 Sms Hasenclever Maschinenfabrik Gmbh Screw press
JP2506657B2 (ja) 1986-04-04 1996-06-12 蛇の目ミシン工業株式会社 電動プレス
JPH01309797A (ja) 1988-06-08 1989-12-14 Komatsu Ltd プレスのスライド駆動装置
JP3231536B2 (ja) * 1993-02-25 2001-11-26 トヨタ自動車株式会社 プレス機械の異常診断方法
JP2595450B2 (ja) * 1993-09-08 1997-04-02 日精樹脂工業株式会社 成形機における油圧系の異常検出方法およびその装置
JP3558679B2 (ja) 1994-03-31 2004-08-25 株式会社アマダ 板材加工機におけるラム駆動装置
JPH10166199A (ja) 1996-12-05 1998-06-23 Daiichi Denki Kk 液圧駆動式塑性加工装置
JP3433415B2 (ja) * 1997-04-21 2003-08-04 アイダエンジニアリング株式会社 プレス機械のスライド駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737484U (ja) * 1993-12-22 1995-07-11 アイダエンジニアリング株式会社 プレス機械のスライド駆動装置
JP2000254799A (ja) * 1999-03-09 2000-09-19 Aida Eng Ltd プレス機械
JP2002172499A (ja) * 2000-12-05 2002-06-18 Aida Eng Ltd 駆動装置並びにプレス機械のスライド駆動装置及び方法
JP2001205495A (ja) * 2000-12-08 2001-07-31 Sumitomo Heavy Ind Ltd クランクプレス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1837169A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881903A (zh) * 2017-03-28 2017-06-23 广东华中科技大学工业技术研究院 一种伺服压力机控制系统

Also Published As

Publication number Publication date
KR100965456B1 (ko) 2010-06-24
CA2594644A1 (en) 2006-07-20
EP1837169A1 (en) 2007-09-26
CN100586707C (zh) 2010-02-03
US7401548B2 (en) 2008-07-22
TWI367161B (ja) 2012-07-01
JP4604288B2 (ja) 2011-01-05
CA2594644C (en) 2011-11-22
US20080134909A1 (en) 2008-06-12
EP1837169B1 (en) 2013-05-01
CN101115613A (zh) 2008-01-30
HK1110037A1 (en) 2008-07-04
TW200630211A (en) 2006-09-01
KR20070088785A (ko) 2007-08-29
JP2006192458A (ja) 2006-07-27
EP1837169A4 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4604288B2 (ja) 可動盤の駆動装置及びプレス機械のスライド駆動装置
JP3941384B2 (ja) 駆動装置並びにプレス機械のスライド駆動装置及び方法
US9889621B2 (en) Press and method for pressing workpieces
JP3433415B2 (ja) プレス機械のスライド駆動装置
JP4021479B2 (ja) 少なくとも1本の液圧式軸を備えた装置
US8037735B2 (en) Die cushion apparatus of press machine
US11529664B2 (en) Press system
JP6208746B2 (ja) プレス機械
US20040033141A1 (en) Method and drive system for the control/regulation of linear pressure/cast movement
JP6899627B2 (ja) 流体回路および流体回路を有する機械
JP4756449B2 (ja) 射出成形機における型締装置の制御方法
JP2015514586A5 (ja)
CA2878144A1 (en) Actuator
JP5995918B2 (ja) プレス機械の横方向高剛性化装置
TWI633997B (zh) 機械壓床之滑塊動作控制裝置
JP2006297411A (ja) プレス機械
JP7140728B2 (ja) プレス機械
ITVI20130060A1 (it) Pressa per la lavorazione di componenti, in particolare componenti metallici.
JPH0448951B2 (ja)
JP5801830B2 (ja) 機械プレスのスライドモーション制御装置
US20220203643A1 (en) Die cushion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2594644

Country of ref document: CA

Ref document number: 200580046381.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005820057

Country of ref document: EP

Ref document number: 11813783

Country of ref document: US

Ref document number: 1020077015907

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005820057

Country of ref document: EP