WO2006070683A1 - スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子 - Google Patents

スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子 Download PDF

Info

Publication number
WO2006070683A1
WO2006070683A1 PCT/JP2005/023579 JP2005023579W WO2006070683A1 WO 2006070683 A1 WO2006070683 A1 WO 2006070683A1 JP 2005023579 W JP2005023579 W JP 2005023579W WO 2006070683 A1 WO2006070683 A1 WO 2006070683A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion conductive
conductive layer
switching element
contact
Prior art date
Application number
PCT/JP2005/023579
Other languages
English (en)
French (fr)
Inventor
Toshitsugu Sakamoto
Hisao Kawaura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006550722A priority Critical patent/JP5135797B2/ja
Priority to US11/813,075 priority patent/US7964867B2/en
Publication of WO2006070683A1 publication Critical patent/WO2006070683A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making

Definitions

  • Switching element switching element manufacturing method, rewritable logic integrated circuit, and memory element
  • the present invention relates to a switching element using an electrochemical reaction and a method for manufacturing the same, a rewritable logic integrated circuit, and a memory element.
  • LSIs for special applications are provided with a plurality of logic cells serving as basic logic circuits, and the logic cells to be operated according to user specifications are selected.
  • ASIC Application Specific Integrated Circuits
  • programmable logic rewritable logic integrated circuits
  • the conventional ASIC has the advantage of lowering the unit price of the product due to mass production, but has the disadvantage of higher development costs and longer development periods.
  • Programmable logic on the other hand, has the advantage of lower development costs and shorter development time, although the product price is higher and the operating speed is slower than conventional ASICs.
  • the switching elements for selecting programming logic cells must be made smaller and the operation performance improved. Development is underway.
  • a programmable logic is provided with a plurality of logic cells, and each logic cell is connected to the switching element between a signal line. It is conceivable to apply the programmable device disclosed in JP 2002-536840 A (hereinafter referred to as Patent Document 1) to this switching element.
  • the present invention has been made to solve the above-described problems of the prior art, and uses a switching element that reduces off-state leakage current, a manufacturing method thereof, and the switching element.
  • An object is to provide a rewritable logic integrated circuit and a memory element.
  • a switching element of the present invention for achieving the above object is a switching element including an ion conductive layer capable of conducting metal ions, and includes a first electrode and a first electrode provided in contact with the ion conductive layer. Two electrodes and a third electrode provided in contact with the ion conductive layer and capable of supplying metal ions, and the area of the first electrode in contact with the ion conductive layer is larger than the area of the second electrode in contact with the ion conductive layer It is a small configuration.
  • the first electrode in contact with the ion conductive layer is smaller than the area of the second electrode in contact with the ion conductive layer, the first electrode flows between the first electrode and the second electrode when the switching element is in the OFF state. Leakage current is further reduced. Therefore, in the switching element of the present invention, even when an ion conductive layer having high electrical conductivity is used, the leakage current flowing between the electrodes in the off state can be reduced as compared with the conventional case.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a two-terminal switch of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing one structural example of a two-terminal switch of the present embodiment.
  • FIG. 3 is a graph showing the relationship between voltage and current in the two-terminal switch of this example.
  • FIG. 4A is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of this example.
  • FIG. 4B is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of this example.
  • FIG. 4C is a schematic cross-sectional view showing the manufacturing method of the two-terminal switch of this example.
  • FIG. 5 is a schematic cross-sectional view showing an example of the configuration of a three-terminal switch according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing one structural example of the three-terminal switch of this example.
  • FIG. 7 is a schematic cross-sectional view showing one structural example of a three-terminal switch in another embodiment.
  • FIG. 8 is a schematic diagram showing a configuration example of programmable logic using the switch of the second embodiment.
  • FIG. 9 is a schematic diagram showing a configuration example of a programmable logic using the switch of the first embodiment.
  • FIG. 10 is a circuit schematic diagram showing a configuration example of a memory element using the switch of the second embodiment.
  • FIG. 11 is a circuit schematic diagram showing a configuration example of a memory element using the switch of the first embodiment.
  • the switching element of the present invention is provided with an insulating layer for minimizing the path of current between the electrodes in the on state and reducing the leakage current in the off state. (Embodiment 1)
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a two-terminal switch of the present embodiment.
  • the two-terminal switch includes a first electrode 11, an ion conductive layer 40 provided in contact with the first electrode 11, and a second electrode provided in contact with the ion conductive layer 40.
  • the ion conduction layer 40 is a medium for conducting metal ions.
  • the first electrode 11 and the ion conductive layer 40 are connected to each other through an opening 60 provided in the insulating layer 50 and serving as a current path. Opening The part 60 is a current path formed by dielectric breakdown in a portion of the insulating layer 50 having low pressure resistance.
  • the opening 60 may be an opening as small as possible, as long as a necessary current flows at least in the ON state.
  • the area of the first electrode 11 in contact with the ion conductive layer 40 is the area of the second electrode 13 in contact with the ion conductive layer 40. Smaller than. If the opening 60 is circular, the diameter of the opening 60 can be reduced to 0.1 lxm or less so that the leakage current at the off time allowed by the programmable logic can be reduced to ⁇ or less.
  • the shape of the opening 60 is not limited to a circle, and may be an ellipse or a polygon. In the case of an ellipse, the length of the major axis is 0.:1 zm or less, and in the case of a polygon, the maximum diagonal is 0.1 lxm or less.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the two-terminal switch of the present embodiment.
  • the two-terminal switch includes a second electrode 14 made of copper, an ion conductive layer 42 made of copper sulfide, and a silicon oxide film 100 made of an insulating material formed on the surface of the silicon substrate.
  • a first insulating layer 52 made of copper oxide is provided.
  • a second insulating layer 54 having an opening with a diameter of 0.2 ⁇ m is formed on the first insulating layer 52, and a first electrode 12 made of platinum is formed on the second insulating layer 54.
  • the first electrode 12 is in contact with the first insulating layer 52 through the opening of the second insulating layer 54. Also, as shown in FIG.
  • an opening is formed in the first insulating layer 52, and a metal dendrite 80 that penetrates the opening from the first electrode 12 and reaches the ion conductive layer 42 is formed. ing. The first electrode 12 and the second electrode 14 are electrically connected by the metal dendrite.
  • the first electrode 12 and the second electrode 14 are electrically connected via a copper metal dendrite 80 penetrating the opening.
  • the initial state of the 2-terminal switch is on.
  • a positive voltage is applied to the first electrode 12 with respect to the second electrode 14. Due to the positive voltage applied to the first electrode 12, the metal dendrite 80 becomes copper ions and dissolves in the ion conductive layer 42, and the dissolved copper ions are deposited on the surface of the second electrode. Deposited as copper.
  • part of the metal dendrite 80 is electrically disconnected, and the two-terminal switch transitions to the off state. It should be noted that the electrical characteristics changed from the stage before the electrical connection was completely broken, such as the resistance between the first electrode 12 and the second electrode 14 increased, or the capacitance between the electrodes changed. Connection is lost.
  • the second electrode 14 supplies copper ions to the ion conductive layer 42.
  • copper ions from the ion conductive layer 42 are deposited as copper in the electrically cut portions of the metal dendrites 80. Then, the metal dendrite 80 connects the first electrode 12 and the second electrode 14, and the two-terminal switch transitions to the on state.
  • a voltage for transitioning the switch from the on state to the off state or from the off state to the on state is referred to as a switching voltage.
  • FIG. 3 is a graph showing the relationship between the voltage applied to the first electrode and the current.
  • the horizontal axis shows the voltage applied to the first electrode, and the vertical axis shows the current flowing between the electrodes.
  • the operating characteristics of the conventional 2-terminal switch are indicated by black circles, and the operating characteristics of the 2-terminal switch of this embodiment are indicated by white circles.
  • the two-terminal switch transitions from the on state to the off state.
  • an on / off ratio of one digit or more is obtained.
  • the 2-terminal switch of this example is about an order of magnitude smaller than the conventional one.
  • FIG. 4A to FIG. 4C are schematic cross-sectional views showing a method for manufacturing a two-terminal switch.
  • a silicon oxide film 100 having a thickness of 300 nm is formed on the surface of the silicon substrate.
  • a resist pattern is formed on a portion of the silicon oxide film 100 where the second electrode 14 is not formed by a conventional lithography technique.
  • a film thickness of 10 is formed thereon by vacuum deposition.
  • the resist pattern is lifted off by lift-off technology to form the remaining copper as the second electrode 14.
  • copper sulfide to be the ion conductive layer 42 is formed to a thickness of 40 nm by a laser ablation method so as to cover the upper surface and side surfaces of the second electrode 14. Thereafter, the surface of the copper sulfide is oxidized by an oxygen plasma ashing method to form copper oxide that becomes the first insulating layer 52. The ashing time was 1 minute. It is assumed that the thickness of the copper oxide formed by this ashing is about several nanometers.
  • a force-like arene that becomes the second insulating layer 54 is applied onto the first insulating layer 52 by spin coating to a thickness of 120 nm, and the diameter is applied to the second insulating layer 54 by lithography.
  • a pattern having an opening of 0.2 zm is formed. At that time, an opening is formed in the pattern located on the second electrode 14. Thereafter, formation of a resist pattern, vacuum deposition, and lift-off are sequentially performed to form platinum with a thickness of 40 nm to be the first electrode 12.
  • the second electrode 14 is grounded, and a voltage of about IV is applied to the first electrode 12.
  • a voltage of about IV is applied to the first electrode 12.
  • a part of the first insulating layer 52 in contact with the first electrode 12 is broken, and an opening 60 that connects the first electrode 12 and the ion conductive layer 42 is formed.
  • a copper metal dendrite 80 grows from the first electrode 12 to the second electrode 14, and the two electrodes are electrically connected as shown in FIG.
  • the opening of the second insulating layer 54 may be formed by a lithography technique and a dry etching technique.
  • the two-terminal switch of the present embodiment sufficiently secures a current flowing between the electrodes via the opening and the metal dendrite when in the on state, and the first electrode and the ion conductive layer.
  • the second insulating layer between the first and second electrodes By providing the second insulating layer between the first and second electrodes, the area where the first electrode contacts the ion conductive layer can be minimized, and the leakage current flowing between the electrodes in the off state can be reduced.
  • FIG. 5 is a schematic cross-sectional view showing a configuration example of the three-terminal switch of the present embodiment.
  • the three-terminal switch is provided in contact with the first electrode 21 and the first electrode 21.
  • the ion conductive layer 40 has a second electrode 31 and a third electrode 35 provided in contact with the ion conductive layer 40.
  • the foot separation between the second electrode 31 and the third electrode 35 is 0.2 / im, and the second electrode 31 and the third electrode 35 are arranged apart by that distance.
  • the first electrode 21 and the ion conductive layer 40 are in contact with each other through an opening 60 provided in the insulating layer 50 and serving as a current path.
  • the opening 60 is provided at a position facing the second electrode with the ion conductive layer 40 interposed therebetween.
  • the opening 60 only needs to have a current as small as possible at least when it is in the ON state. If the opening 60 is circular, the diameter of the opening 60 can be reduced to 0. or less, so that it can be set to 1 OnA or less, which is the leakage current at the time of OFF allowed by the programmable logic.
  • the shape of the opening 60 is not limited to a circle as in the first embodiment, and may be an ellipse or a polygon. Since the first electrode 21 is in contact with the ion conductive layer 40 through the opening 60, the area of the first electrode 21 in contact with the ion conductive layer 40 is the area of the second electrode 31 in contact with the ion conductive layer 40. Smaller than.
  • FIG. 6 is a schematic cross-sectional view showing an example of the configuration of the three-terminal switch of this example.
  • a second electrode 32 and a third electrode 34 made of copper are provided on a silicon oxide film 100 formed on the surface of a silicon substrate.
  • the distance between the second electrode 32 and the third electrode 34 is 0.
  • the second electrode 32 and the third electrode 34 are spaced apart by that distance.
  • An ion conductive layer 42 made of copper sulfide is provided so as to cover the upper surface and side surfaces of the second electrode 32 and the third electrode 34.
  • a first insulating layer 52 made of copper oxide is provided on the ion conductive layer 42, and a second insulating layer 56 having an opening with a diameter of 0.0 is formed on the first insulating layer 52.
  • This opening is provided at a position facing the second electrode 32 with the first insulating layer 52 and the ion conductive layer 42 interposed therebetween.
  • a first electrode 26 made of platinum is formed on the second insulating layer 56. The first electrode 26 is in contact with the first insulating layer 52 through the opening of the second insulating layer 56.
  • the opening 60 is formed in the first insulating layer 52, and the metal reaches the ion conductive layer 42 from the first electrode 26 through the opening 60.
  • Dendrite 82 Is formed.
  • the first electrode 26 and the second electrode 32 are electrically connected via a copper metal dendrite 82 that penetrates the opening 60.
  • the initial state of the 3-terminal switch is on.
  • a negative voltage is applied to the third electrode 34 with respect to the first electrode 26 and the second electrode 32 having the same potential. Due to the negative voltage of the third electrode 34, the copper of the metal dendrite 82 becomes copper ions and dissolves in the ion conductive layer 42, and the dissolved copper ions precipitate as copper on the surface of the third electrode. As a result, a part of the metal dendrite 82 is electrically disconnected, and the three-terminal switch transitions to the off state.
  • the third electrode 34 supplies copper ions to the ion conductive layer 42. Further, copper ions from the ion conductive layer 42 are deposited as copper in the electrically cut portions of the metal dendrites 82. Then, the metal dendrite 82 connects the first electrode 26 and the second electrode 32, and the three-terminal switch transitions to the on state.
  • a silicon oxide film 100 having a thickness of 300 nm is formed on the surface of the silicon substrate.
  • a resist pattern is formed on a portion of the silicon oxide film 100 where the second electrode 32 and the third electrode 34 are not formed by the conventional lithography technique.
  • copper having a thickness of lOOnm is formed thereon by plating, and then the resist pattern is lifted off by lift-off technology to form the remaining portions of copper as the second electrode 32 and the third electrode 34.
  • 0.2 ⁇ m of the distance between the second electrode 32 and the third electrode 34 is set by the resist pattern dimension of the lithography technique.
  • copper sulfide to be the ion conductive layer 42 is formed to a thickness of 40 nm by the laser ablation method so as to cover the upper surface and side surfaces of the second electrode 32 and the third electrode 34. Thereafter, the surface of the copper sulfide is oxidized by an oxygen plasma ashing method to form copper oxide that becomes the first insulating layer 52.
  • the ashing time is 1 minute, and the film thickness of copper oxide is estimated to be several nanometers.
  • a calixarene film which becomes the second insulating layer 56, is applied to the first insulating layer 52 by spin coating to a thickness of 120 nm, and an opening having a diameter of 0.2 ⁇ is formed in the second insulating layer 56 by lithography. A pattern having a portion 60 is formed. At that time, an opening 60 is formed in a portion of the second insulating layer 56 located on the second electrode 32. After that, resist pattern formation, vacuum deposition, and lift-off are sequentially performed to form platinum with a film thickness of 40 nm.
  • the second electrode 32 and the third electrode 34 are grounded, and a voltage of about 1 IV is applied to the first electrode 26.
  • a voltage of about 1 IV is applied to the first electrode 26.
  • a part of the first insulating layer 52 in contact with the first electrode 26 is broken, and an opening 60 that connects the first electrode 26 and the ion conductive layer 52 is formed.
  • a copper metal dendrite 82 grows from the first electrode 26 to the second electrode 32, and the electrodes are electrically connected.
  • the three-terminal switch of the present embodiment sufficiently secures a current flowing between the first electrode and the second electrode via the opening and the metal dendrite when in the on state, By providing the second insulating layer between the first electrode and the ion conductive layer, the area where the first electrode contacts the ion conductive layer is minimized, and the first electrode and the second electrode are in the off state. Leak current flowing between them can be reduced.
  • This example has a configuration in which no opening is formed in the first insulating layer.
  • FIG. 7 is a schematic cross-sectional view showing a configuration example of the three-terminal switch of the present embodiment.
  • symbol is attached
  • a metal dendrite 84 is formed in the ion conductive layer 42 under the first insulating layer 52 at the portion where the first electrode 26 is in contact with the first insulating layer 52. Yes.
  • the distance between the second electrode 32 and the third electrode 34 is 0.2 ⁇ m, and the second electrode 32 and the third electrode 34 are arranged apart by that distance.
  • the diameter of the opening provided in the second insulating layer 56 is 0.
  • the metal dendrite 84 under the first insulating layer 52 is connected to the second electrode 32. This state is the ON state of the 3-terminal switch.
  • the resistance between the first electrode 26 and the second electrode 32 is the sum of the resistances of the metal dendrite 84 and the first insulating layer 52.
  • the first insulating layer 52 needs to be thin enough to obtain an electron or hole tunnel current. Therefore, about lnm to lOOnm is desirable.
  • a negative voltage is applied to the third electrode 34 with respect to the first electrode 26 and the second electrode 32 having the same potential. Due to the negative voltage of the third electrode 34, the copper of the metal dendrite 84 becomes copper ions and dissolves in the ion conductive layer 42, and the dissolved copper ions precipitate as copper on the surface of the third electrode. As a result, a part of the metal dendrite 84 is cut, and the three-terminal switch transitions to the off state.
  • the third electrode 34 supplies copper ions to the ion conductive layer 42.
  • copper ions from the ion conductive layer 42 are deposited as copper in the cut portions of the metal dendrite 84. The three-terminal switch then transitions to the on state described above.
  • the second electrode 32, the third electrode 34, the first insulating layer 52, the second insulating layer 56, and the first electrode 26 are formed on the silicon oxide film 100 formed on the surface of the silicon substrate. Form. Then, the formation method of a metal dendrite is demonstrated.
  • the second electrode 32 and the third electrode 34 are grounded, and a negative voltage of about 0.5 V is applied to the first electrode 26.
  • a tunnel current flows from the portion of the first electrode 26 in contact with the first insulating layer 52 to the ion conductive layer 42 through the first insulating layer 52.
  • Copper is deposited in the ion conductive layer 42 from the bottom of the first insulating layer 52 to the second electrode 32 at the portion where the first electrode 26 is in contact, and a metal dendrite 84 as shown in FIG. 7 is formed.
  • the three-terminal switch of the present embodiment reduces the leakage current flowing between the first electrode and the second electrode in the second insulating layer when the switch is in the off state, and the first electrode and the second through the metal dendrite.
  • the leakage current flowing between the electrodes can be reduced by the first insulating layer. Note that this embodiment may be applied to a two-terminal switch.
  • platinum is the only material constituting the electrodes (first electrode and some second electrodes) that do not supply metal ions to the ion conductive layers 40, 42.
  • refractory metals W, Ta, Ti, Mo
  • silicide titanium silicide, cobalt silicide, molybdenum silicide
  • Ag, Pb, etc. are not the only metals that make up the electrodes that supply metal ions to the ion conductive layers 40, 42 (third electrode and some second electrodes).
  • a chalcogen element (0, S, Se, Te) and a metal compound other than copper sulfide alone
  • an insulator containing silicon silicon oxide, silicon nitride, Silicon oxynitride
  • perovskite oxides ABO, A: Mg, Ca, Sr, Ba, B: Ti
  • the switching element of Embodiment 2 is applied to programmable logic.
  • FIG. 8 is a schematic diagram showing a configuration example of programmable logic.
  • the programmer logic 90 includes a number of logic cells 92 arranged in a two-dimensional array, wiring for connecting the logic cells, and connection / disconnection between the wirings. It consists of a number of switches 94 for switching. By changing the connection state (connected 'not connected') of the 2-terminal switch, it is possible to set the wiring configuration between logic cells, the function of the logic cell, etc., and obtain a logic integrated circuit that meets the specifications.
  • the switch is a transistor element including a drain electrode D, a source electrode S, and a gate electrode G.
  • the first electrode corresponds to the drain electrode D
  • the second electrode corresponds to the source electrode S
  • the third electrode corresponds to the gate electrode G.
  • the source electrode S is connected to the logic cell 92
  • the drain electrode D is connected to the signal line 96 in the programmable logic 90.
  • the three-terminal switch set to the on state maintains the state where the source electrode S and the drain electrode D are electrically connected.
  • the logic signal reaches the drain electrode D via the signal line 96, it enters the logic cell 92 via the source electrode S.
  • the three-terminal switch set to the off state maintains the state where the source electrode S and the drain electrode D are electrically disconnected. In this case, even if the logic signal reaches the drain electrode D via the signal line 96, it cannot enter the logic cell 92 connected to the source electrode S.
  • the programmable logic 90 allows the user to connect the logic cells to each other. You can set the state. The leakage current in the OFF state of the H is reduced, and the current consumption of the entire programmable logic is smaller than before.
  • FIG. 9 shows the case where the two-terminal switch of Embodiment 1 is applied to programmable logic.
  • the same components as those in the programmable logic shown in Fig. 8 are denoted by the same reference numerals.
  • the two-terminal switch of Embodiment 1 is applied to the switch 97 shown in FIG. As described in the first embodiment, the switch 97 can be turned on or off to connect or disconnect the logic cell 92.
  • an effect similar to that of the programmable logic shown in FIG. 8 can be obtained.
  • the switching element of the present invention can also be applied to a switch of force wiring used to switch connection / disconnection to / from a logic cell or a switch of function switching of a logic cell. It is.
  • FPu-A Field—Programmable Gate Array
  • DRP Dynamic Reconf igurable Processor
  • the switching element of the second embodiment is applied to a memory element.
  • FIG. 10 is a schematic diagram showing a configuration example of the memory element.
  • the memory element includes a switching element 71 for holding information and a transistor element 72 for reading information of the switching element 71.
  • the three-terminal switch of the above embodiment is applied to the switching element 71.
  • the switching element 71 has the same configuration as that of a transistor composed of a drain electrode, a source electrode, and a gate electrode, and each electrode is a first electrode, a second electrode, and a third electrode of the three-terminal switch of the above embodiment. It corresponds to each.
  • the transistor element 72 has a source electrode connected to the bit line 73 and a gate electrode connected to the word line.
  • the switching element 71 has a source electrode connected to the bit line 76, The gate electrode is connected to the word line 75.
  • the drain electrode of the switching element 71 is connected to the drain electrode of the transistor element 72.
  • the on state of the switching element is “:! The off state is “0”, the switching voltage of the switching element is Vt, and the operating voltage of the transistor element 72 is VR.
  • the voltage Vt is applied to the word line 75 connected to the gate electrode of the switching element 71, and the voltage of the bit line 76 connected to the source electrode is set to 0V. To. Then, a voltage (VtZ2) is applied to the bit line 73. The switching element 71 is turned on, and information “1” is written therein.
  • the voltage of the word line 75 connected to the gate electrode of the switching element 71 is set to 0 V, and the voltage Vt is applied to the bit line 76 connected to the source electrode. Apply. Then, a voltage (Vt / 2) is applied to the bit line 73. The switching element 71 is turned off, and information “0” is written therein.
  • a voltage VR is applied to the word line 74 to turn on the transistor element 72, and a resistance value between the bit line 73 and the bit line 76 is obtained.
  • This resistance value is a combined resistance value of the ON resistance of the transistor element 72 and the switching element 71.
  • this combined resistance value is too large to be measured, it can be determined that the switching element 71 is in an off state, and the information held in the memory element is “0”.
  • the combined resistance value is smaller than the predetermined value, it can be determined that the switching element 71 is in the on state, and the information force S "l" held in the memory element is found.
  • the leakage current in the OFF state of the switch is reduced. Therefore, if the memory element of this embodiment is used for a memory device in which a plurality of memory elements are arranged in an array, the current consumption of the entire memory device is smaller than that of the conventional device.
  • FIG. 11 shows the case where the two-terminal switch of Embodiment 1 is applied to a memory element.
  • the same configuration as that of the memory element shown in FIG. 10 is given the same reference numeral.
  • Shown in Figure 11 The two-terminal switch of Embodiment 1 is applied to the switching element 77.
  • the switching element 77 As described in the first embodiment, by setting the switching element 77 to the on state or the off state, the switching element 77 can hold information.
  • the two-terminal switch of Embodiment 1 as a memory element, the same effect as the memory element shown in FIG. 10 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

 本発明のスイッチング素子は、金属イオンが伝導可能なイオン伝導層40と、イオン伝導層40に接するように設けられた第1電極21および第2電極31と、イオン伝導層40に接して設けられ、金属イオンを供給可能な第3電極35とを有し、第1電極21のイオン伝導層40に接する面積が第2電極31のイオン伝導層40に接する面積よりも小さい構成である。このような構成にすることで、オフ状態のリーク電流が低減する。

Description

明 細 書
スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集 積回路、およびメモリ素子
技術分野
[0001] 本発明は、電気化学反応を利用したスィッチング素子およびその製造方法、書き 換え可能な論理集積回路、ならびにメモリ素子に関する。
背景技術
[0002] 特殊用途向け LSI (ASIC : Application Specific Integrated Circuit)は、基本 的な論理回路となるロジックセルが複数設けられ、ユーザの仕様に合わせて動作さ せるロジックセルが選択される。製造過程の配線パターユング段階でロジックセルが 決定される従来型 ASICと、製品出荷後にユーザ側でロジックセルが決定されるプロ グラマブルロジック(書き換え可能な論理集積回路)とがある。従来型 ASICでは、量 産化により製品単価が安くなるというメリットがある反面、開発コストが高くなり、開発期 間が長くなるというデメリットがある。一方、プログラマブルロジックの場合には、従来 型 ASICに比べて製品単価が高ぐ動作速度が遅ぐ消費電力が増えるものの、開発 コストが安く開発期間が短いというメリットがある。そして、プログラマブルロジックの製 品単価をより安くし、高速動作化、低消費電力化するためには、プログラム用ロジック セルを選択するためのスイッチング素子をより小さくするとともに、動作性能を向上さ せるための開発が行われている。
[0003] プログラマブルロジックには、複数のロジックセルが設けられ、各ロジックセルには上 記スイッチング素子が信号線との間に接続されている。このスイッチング素子に、特 表 2002— 536840号公報(以下、特許文献 1と称する)に開示されたプログラマブル デバイスを適用することが考えられる。
発明の開示
[0004] プログラマブルロジックの装置の性能を示すものの 1つに消費電力がある。装置の 消費電力を小さくするには、装置内に複数設けられたスィッチのオフ時の電流を低 減することが重要である。 [0005] 特許文献 1に開示された 2端子のスイッチング素子では、硫化銅のような比較的電 気伝導度の高レ、イオン伝導層が用いられてレ、ると、動作電圧のロジック信号が一方 の電極に入力されたとき、オフ状態であってもイオン伝導層を介して微小な電流が他 方の電極との間に流れてしまう。これがスイッチング素子のリーク電流となる。従来の スイッチング素子では、リーク電流が充分に小さいとは言えず、よりリーク電流の小さ レ、スイッチング素子が求められている。 1つのスイッチング素子のリーク電流を、動作 電圧のロジック信号が入力されたときで ΙΟηΑ以下にするのが望ましいとされている。
[0006] 本発明は上述したような従来の技術が有する問題点を解決するためになされたも のであり、オフ状態のリーク電流を低減したスイッチング素子およびその製造方法と、 そのスイッチング素子を用いた書き換え可能な論理集積回路およびメモリ素子を提 供することを目的とする。
[0007] 上記目的を達成するための本発明のスイッチング素子は金属イオンが伝導可能な イオン伝導層を備えたスイッチング素子であって、イオン伝導層に接するように設けら れた第 1電極および第 2電極と、イオン伝導層に接して設けられ、金属イオンを供給 可能な第 3電極とを有し、第 1電極のイオン伝導層に接する面積が第 2電極のイオン 伝導層に接する面積よりも小さい構成である。
[0008] 本発明では、第 1電極のイオン伝導層に接する面積が第 2電極のイオン伝導層に 接する面積よりも小さいため、スイッチング素子のオフ状態のとき第 1電極と第 2電極 間に流れるリーク電流がより低減する。したがって、本発明のスイッチング素子では、 電気伝導度の高いイオン伝導層を用いてもオフ状態のときに電極間に流れるリーク 電流を従来よりも低減することができる。
図面の簡単な説明
[0009] [図 1]図 1は実施形態 1の 2端子スィッチの一構成例を示す断面模式図である。
[図 2]図 2は本実施例の 2端子スィッチの一構成例を示す断面模式図である。
[図 3]図 3は本実施例の 2端子スィッチにおける電圧と電流との関係を示すグラフであ る。
[図 4A]図 4Aは本実施例の 2端子スィッチの製造方法を示す断面模式図である。
[図 4B]図 4Bは本実施例の 2端子スィッチの製造方法を示す断面模式図である。 [図 4C]図 4Cは本実施例の 2端子スィッチの製造方法を示す断面模式図である。
[図 5]図 5は実施形態 2の 3端子スィッチの一構成例を示す断面模式図である。
[図 6]図 6は本実施例の 3端子スィッチの一構成例を示す断面模式図である。
[図 7]図 7は他の実施例における 3端子スィッチの一構成例を示す断面模式図である
[図 8]図 8は実施形態 2のスィッチを用いたプログラマブルロジックの一構成例を示す 模式図である。
[図 9]図 9は実施形態 1のスィッチを用いたプログラマブルロジックの一構成例を示す 模式図である。
[図 10]図 10は実施形態 2のスィッチを用いたメモリ素子の一構成例を示す回路模式 図である。
[図 11]図 11は実施形態 1のスィッチを用いたメモリ素子の一構成例を示す回路模式 図である。
符号の説明
[0010] 11、 12、 21、 26 第 1電極
13、 14、 31、 32 第 2電極
34、 35 第 3電極
40、 42 イオン伝導層
発明を実施するための最良の形態
[0011] 本発明のスイッチング素子は、オン状態における電極間の電流の通り道を極力小さ くするとともに、オフ状態のリーク電流を低減するための絶縁層を設けたものである。 (実施形態 1)
本実施形態の 2端子スィッチの構成について説明する。
[0012] 図 1は本実施形態の 2端子スィッチの一構成例を示す断面模式図である。
[0013] 図 1に示すように、 2端子スィッチは、第 1電極 11と、第 1電極 11と接して設けられた イオン伝導層 40と、イオン伝導層 40に接して設けられた第 2電極 13とを有する。ィォ ン伝導層 40は金属イオンを伝導するための媒体となる。第 1電極 11とイオン伝導層 4 0は、絶縁層 50に設けられた電流の通り道となる開口部 60で接続されている。開口 部 60は絶縁層 50において耐圧性の低い部位に絶縁破壊によって形成される電流 路である。この開口部 60は、少なくともオン状態のときに必要な電流が流れればよい ため、極力小さい開口でよい。第 1電極 11はこの開口部 60を介してイオン伝導層 40 と接触しているので、第 1電極 11のイオン伝導層 40に接触する面積は第 2電極 13の イオン伝導層 40に接触する面積よりも小さい。開口部 60が円形とすると、開口部 60 の直径を 0. l x m以下にすることによって、プログラマブルロジックで許容されるオフ 時のリーク電流である ΙΟηΑ以下とすることができる。なお、開口部 60の形状は、円 に限らず、楕円や多角形であってもよい。楕円の場合には長軸の長さが 0.: 1 z m以 下であり、多角形の場合には対角線の最大値が 0. l x m以下である。
[0014] この 2端子スィッチの動作および製造方法について、実施例で詳細に説明する。
実施例 1
[0015] 本実施例の 2端子スィッチの構成について説明する。
[0016] 図 2は本実施例の 2端子スィッチの一構成例を示す断面模式図である。
[0017] 図 2に示すように、 2端子スィッチは、シリコン基板表面に形成された絶縁材料から なるシリコン酸化膜 100上に銅からなる第 2電極 14、硫化銅からなるイオン伝導層 42 、および酸化銅からなる第 1絶縁層 52が設けられている。この第 1絶縁層 52の上に は直径 0. 2 x mの開口を有する第 2絶縁層 54が形成され、第 2絶縁層 54の上には 白金からなる第 1電極 12が形成されている。第 1電極 12は第 2絶縁層 54の開口を介 して第 1絶縁層 52と接触している。また、図 2に示すように、本実施例では、第 1絶縁 層 52に開口部が形成され、第 1電極 12から開口部を貫通してイオン伝導層 42中に 達する金属デンドライト 80が形成されている。金属デンドライトによって、第 1電極 12 と第 2電極 14が電気的に接続される。
[0018] 次に、図 2に示した 2端子スィッチの動作について説明する。
[0019] 電圧を印加する前の状態において、第 1電極 12と第 2電極 14は開口部を貫く銅の 金属デンドライト 80を介して電気的に接続されている。 2端子スィッチの初期状態が オン状態にある。 2端子スィッチをオフさせるには、第 2電極 14に対して第 1電極 12 に正の電圧を印加する。第 1電極 12に印加された正電圧によって金属デンドライト 8 0は銅イオンとなってイオン伝導層 42に溶解し、溶解した銅イオンは第 2電極表面に 銅となって析出する。その結果、金属デンドライト 80の一部が電気的に切断され、 2 端子スィッチはオフ状態へ遷移する。なお、電気的接続が完全に切れる前の段階か ら第 1電極 12および第 2電極 14間の抵抗が大きくなつたり、電極間容量が変化したり するなど電気特性が変化し、最終的に電気的接続が切れる。
[0020] 一方、 2端子スィッチがオフ状態にあるとき、負の電圧を第 1電極 12に印加すると、 第 2電極 14は銅イオンをイオン伝導層 42に供給する。また、金属デンドライト 80の電 気的に切断された部分にイオン伝導層 42からの銅イオンが銅になって析出する。そ して、金属デンドライト 80が第 1電極 12と第 2電極 14を接続し、 2端子スィッチはオン 状態へ遷移する。
[0021] なお、以下では、スィッチをオン状態からオフ状態、またはオフ状態からオン状態に 遷移するための電圧をスイッチング電圧と称する。
[0022] 次に、本実施例の 2端子スィッチの動作特性を従来の場合と比較した結果につい て説明する。
[0023] 図 3は第 1電極に印加する電圧と電流との関係を示すグラフである。横軸が第 1電 極に印加する電圧を示し、縦軸が電極間に流れる電流を示す。従来の 2端子スイツ チの動作特性を黒丸で示し、本実施例の 2端子スィッチの動作特性を白丸で示す。
[0024] 図 3に示すように、第 1電極に正の電圧を印加することにより、 2端子スィッチはオン 状態からオフ状態へ遷移する。本実施例の 2端子スィッチでは、オン/オフ比が 1桁 以上得られている。従来の 2端子スィッチと本実施例の 2端子スィッチとで、オフ状態 の電流を比較すると、本実施例の 2端子スィッチは従来の場合に比べて 1桁程度小 さい。
[0025] 図 3に示す結果から、酸化銅による第 1絶縁層を設けた方が従来よりもオフ電流が 1 桁小さくなり、リーク電流が低減していることがわかる。
[0026] 次に、図 2に示した 2端子スィッチの製造方法について説明する。
[0027] 図 4Aから図 4Cは 2端子スィッチの製造方法を示す断面模式図である。
[0028] 図 4Aに示すように、シリコン基板の表面に膜厚 300nmのシリコン酸化膜 100を形 成する。従来技術のリソグラフィー技術でシリコン酸化膜 100上の第 2電極 14を形成 しない部位にレジストパターンを形成する。続いて、その上から真空蒸着法で膜厚 10 Onmの銅を形成した後、リフトオフ技術によりレジストパターンをリフトオフして銅の残 つた部分を第 2電極 14として形成する。
[0029] 続いて、第 2電極 14の上面および側面を覆うようにイオン伝導層 42となる硫化銅を レーザーアブレーシヨン法で膜厚 40nm形成する。その後、酸素プラズマアツシング 法により硫化銅の表面を酸化して第 1絶縁層 52となる酸化銅を形成する。アツシング 時間は 1分間であった。このアツシングにより形成される酸化銅の膜厚は数ナノメート ル程度であると推察する。
[0030] さらに、図 4Bに示すように、第 1絶縁層 52上にスピンコートにより第 2絶縁層 54とな る力リックスアレーンを膜厚 120nm塗布し、リソグラフィー技術により第 2絶縁層 54に 直径 0. 2 z mの開口を有するパターンを形成する。その際、第 2電極 14上に位置す るパターン内に開口を形成する。その後、レジストパターンの形成、真空蒸着、およ びリフトオフを順次行レ、、膜厚 40nmの白金を形成し、第 1電極 12とする。
[0031] 次に、金属デンドライトの形成方法について説明する。
[0032] 第 1電極 12を形成した後、第 2電極 14を接地し、第 1電極 12に IV程度の電圧を 印加する。第 1電極 12に電圧を印加することによって第 1電極 12が接触する第 1絶 縁層 52の一部が破壊され、第 1電極 12とイオン伝導層 42とをつなぐ開口部 60が形 成される(図 4C)。さらに、第 1電極 12から第 2電極 14にかけて銅の金属デンドライト 80が成長し、図 2に示したように両電極間が電気的に接続される。
[0033] なお、第 2絶縁層 54の開口をリソグラフィー技術とドライエッチング技術で形成して あよい。
[0034] 本実施形態の 2端子スィッチは、上述したように、オン状態のときに開口部と金属デ ンドライトを介して電極間に流れる電流を充分に確保するとともに、第 1電極とイオン 伝導層との間に第 2絶縁層を設けることで第 1電極がイオン伝導層に接触する面積を 極力小さくし、オフ状態のときに電極間に流れるリーク電流を低減できる。
(実施形態 2)
本実施形態の 3端子スィッチの構成について説明する。
[0035] 図 5は本実施形態の 3端子スィッチの一構成例を示す断面模式図である。
[0036] 図 5に示すように、 3端子スィッチは、第 1電極 21と、第 1電極 21と接して設けられた イオン伝導層 40と、イオン伝導層 40に接して設けられた第 2電極 31および第 3電極 35とを有する。第 2電極 31と第 3電極 35間の足巨離は 0. 2 /i mであり、第 2電極 31と 第 3電極 35はその距離だけ離れて配置されている。第 1電極 21とイオン伝導層 40は 、絶縁層 50に設けられた電流の通り道となる開口部 60で接している。開口部 60はィ オン伝導層 40を挟んで第 2電極と対向する位置に設けられている。この開口部 60は 、実施形態 1と同様に、少なくともオン状態のときに必要な電流が流れればよいため、 極力小さい開口でよレ、。開口部 60が円形とすると、開口部 60の直径を 0. 以下 にすることによって、プログラマブルロジックで許容されるオフ時のリーク電流である 1 OnA以下とすることができる。なお、開口部 60の形状は、実施形態 1と同様に、円に 限らず、楕円や多角形であってもよい。第 1電極 21はこの開口部 60を介してイオン 伝導層 40と接触しているので、第 1電極 21のイオン伝導層 40に接触する面積は第 2 電極 31のイオン伝導層 40に接触する面積よりも小さい。
[0037] この 3端子スィッチの動作および製造方法について、実施例で詳細に説明する。
実施例 2
[0038] 本実施例の 3端子スィッチの構成について説明する。
[0039] 図 6は本実施例の 3端子スィッチの一構成例を示す断面模式図である。
[0040] 図 6に示すように、 3端子スィッチは、シリコン基板表面に形成されたシリコン酸化膜 100上に銅からなる第 2電極 32と第 3電極 34が設けられている。第 2電極 32と第 3電 極 34間の距離は 0. であり、第 2電極 32と第 3電極 34はその距離だけ離れて 配置されている。第 2電極 32および第 3電極 34の上面および側面を覆うようにして硫 化銅からなるイオン伝導層 42が設けられている。イオン伝導層 42の上には、酸化銅 力 なる第 1絶縁層 52が設けられ、第 1絶縁層 52の上には直径が 0. の開口を 有する第 2絶縁層 56が形成されている。この開口は第 1絶縁層 52およびイオン伝導 層 42を挟んで第 2電極 32と対向する位置に設けられている。第 2絶縁層 56の上に 白金からなる第 1電極 26が形成されている。第 1電極 26は第 2絶縁層 56の開口を介 して第 1絶縁層 52と接触している。
[0041] また、図 6に示すように、本実施例では、第 1絶縁層 52に開口部 60が形成され、第 1電極 26から開口部 60を貫通してイオン伝導層 42中に達する金属デンドライト 82が 形成されている。
[0042] 次に、図 6に示した 3端子スィッチの動作について説明する。
[0043] 電圧を印加する前の状態において、第 1電極 26と第 2電極 32は開口部 60を貫く銅 の金属デンドライト 82を介して電気的に接続されている。 3端子スィッチの初期状態 がオン状態にある。 3端子スィッチをオフさせるには、電位を等しくした第 1電極 26お よび第 2電極 32に対して第 3電極 34に負の電圧を印加する。第 3電極 34の負電圧 によって金属デンドライト 82の銅は銅イオンとなってイオン伝導層 42に溶解し、溶解 した銅イオンは第 3電極表面に銅となって析出する。その結果、金属デンドライト 82 の一部が電気的に切断され、 3端子スィッチはオフ状態へ遷移する。
[0044] 一方、 3端子スィッチがオフ状態にあるとき、正の電圧を第 3電極 34に印加すると、 第 3電極 34は銅イオンをイオン伝導層 42に供給する。また、金属デンドライト 82の電 気的に切断された部分にイオン伝導層 42からの銅イオンが銅になって析出する。そ して、金属デンドライト 82が第 1電極 26と第 2電極 32を接続し、 3端子スィッチはオン 状態へ遷移する。
[0045] 次に、図 6に示した 3端子スィッチの製造方法について説明する。なお、第 2電極 3 2が形成される部位から第 1電極 26までの構成における製造過程は図 4Aから図 4B に示したものと同様になる。
[0046] シリコン基板の表面に膜厚 300nmのシリコン酸化膜 100を形成する。従来技術のリ ソグラフィー技術でシリコン酸化膜 100上の第 2電極 32および第 3電極 34を形成しな い部位にレジストパターンを形成する。続いて、その上からめっき法で膜厚 lOOnmの 銅を形成した後、リフトオフ技術によりレジストパターンをリフトオフして銅の残った部 分を第 2電極 32と第 3電極 34として形成する。このとき、第 2電極 32と第 3電極 34間 の距離の 0. 2 μ mはリソグラフィー技術のレジストパターンの寸法で設定される。
[0047] 続いて、第 2電極 32および第 3電極 34の上面および側面を覆うようにしてイオン伝 導層 42となる硫化銅をレーザーアブレーシヨン法で膜厚 40nm形成する。その後、 酸素プラズマアツシング法により硫化銅の表面を酸化して第 1絶縁層 52となる酸化銅 を形成する。アツシング時間は 1分間で、酸化銅の膜厚は数ナノメートノレ程度であると 推察する。 [0048] さらに、第 1絶縁層 52上にスピンコートにより第 2絶縁層 56となるカリックスァレーン を膜厚 120nm塗布し、リソグラフィー技術により第 2絶縁層 56に直径 0. 2 μ ΐηの開 口部 60を有するパターンを形成する。その際、第 2絶縁層 56の第 2電極 32上に位 置する部位に開口部 60を形成する。その後、レジストパターンの形成、真空蒸着、お よびリフトオフと順次行い、膜厚 40nmの白金を形成し、第 1電極 26とする。
[0049] 次に、金属デンドライトの形成方法について説明する。
[0050] 第 2電極 32および第 3電極 34を接地して第 1電極 26に一 IV程度の電圧を印加す る。第 1電極 26に電圧を印加することによって第 1電極 26が接触する第 1絶縁層 52 の一部が破壊され、第 1電極 26とイオン伝導層 52とをつなぐ開口部 60が形成される 。さらに、第 1電極 26から第 2電極 32にかけて銅の金属デンドライト 82が成長し、両 電極間が電気的に接続される。
[0051] 本実施例の 3端子スィッチは、上述したように、オン状態のときに開口部と金属デン ドライトを介して第 1電極と第 2電極間とに流れる電流を充分に確保するとともに、第 1 電極とイオン伝導層との間に第 2絶縁層を設けることで第 1電極がイオン伝導層に接 触する面積を極力小さくし、オフ状態のときに第 1電極と第 2電極との間に流れるリー ク電流を低減できる。
実施例 3
[0052] 本実施例は、第 1絶縁層に開口部を形成しない構成である。
[0053] 図 7は本実施例の 3端子スィッチの一構成例を示す断面模式図である。なお、実施 例 2と同様な構成については同一の符号を付し、その詳細な説明を省略する。
[0054] 本実施例では、図 7に示すように、第 1電極 26が第 1絶縁層 52と接触する部位の第 1絶縁層 52下のイオン伝導層 42中に金属デンドライト 84が形成されている。第 2電 極 32と第 3電極 34間の距離は 0. 2 x mであり、第 2電極 32と第 3電極 34はその距離 だけ離れて配置されている。第 2絶縁層 56に設けられた開口の直径は 0. であ る。
[0055] 次に、図 7に示した 3端子スィッチの動作について説明する。
[0056] 電圧を印加する前の状態において、第 1絶縁層 52下の金属デンドライト 84が第 2 電極 32に接続されている。この状態が 3端子スィッチのオン状態である。オン状態の 第 1電極 26と第 2電極 32との間の抵抗は、金属デンドライト 84と第 1絶縁層 52の抵 抗の和になる。第 1絶縁層 52は電子またはホールのトンネル電流が得られる程度に 薄い必要がある。そのため lnmから lOOnm程度が望ましい。
[0057] 3端子スィッチをオフさせるには、電位を等しくした第 1電極 26および第 2電極 32に 対して第 3電極 34に負の電圧を印加する。第 3電極 34の負電圧によって金属デンド ライト 84の銅は銅イオンとなってイオン伝導層 42に溶解し、溶解した銅イオンは第 3 電極表面に銅となって析出する。その結果、金属デンドライト 84の一部が切断され、 3端子スィッチはオフ状態へ遷移する。
[0058] 一方、 3端子スィッチがオフ状態にあるとき、正の電圧を第 3電極 34に印加すると、 第 3電極 34は銅イオンをイオン伝導層 42に供給する。また、金属デンドライト 84の切 断された部分にイオン伝導層 42からの銅イオンが銅になって析出する。そして、 3端 子スィッチは上述のオン状態へ遷移する。
[0059] 次に、図 7に示した 3端子スィッチの製造方法について説明する。なお、実施例 2と 同様な工程についてはその詳細な説明を省略する。
[0060] 実施例 2と同様にして、シリコン基板表面に形成されたシリコン酸化膜 100上に第 2 電極 32、第 3電極 34、第 1絶縁層 52、第 2絶縁層 56および第 1電極 26を形成する。 続いて、金属デンドライトの形成方法について説明する。
[0061] 第 2電極 32および第 3電極 34を接地して第 1電極 26に 0. 5V程度の負の電圧を 印加する。第 1電極 26に電圧を印加することによって第 1電極 26の第 1絶縁層 52に 接触した部位から第 1絶縁層 52を介してイオン伝導層 42にトンネル電流が流れる。 第 1電極 26が接触する部位の第 1絶縁層 52下から第 2電極 32へのイオン伝導層 42 中に銅が析出し、図 7に示したような金属デンドライト 84が形成される。
[0062] 本実施例の 3端子スィッチは、オフ状態のときに第 2絶縁層で第 1電極と第 2電極間 に流れるリーク電流を低減するとともに、金属デンドライトを介して第 1電極と第 2電極 との間に流れるリーク電流を第 1絶縁層で小さくすることができる。なお、本実施例を 2端子スィッチに適用してもよい。
[0063] なお、本発明のスイッチング素子において、イオン伝導層 40、 42に金属イオンを供 給しない電極(第 1の電極と、一部の第 2の電極)を構成する材料としては、白金だけ ではなぐ高融点金属(W、 Ta、 Ti、 Mo)、シリサイド(チタンシリサイド、コバルトシリ サイド、モリブデンシリサイド)などでもよい。また、イオン伝導層 40、 42に金属イオン を供給する電極(第 3の電極と、一部の第 2の電極)を構成する金属としては、銅だけ ではなぐ Ag、 Pbなどでもよレ、。さらに、イオン伝導層 40、 42を構成するイオン伝導 体としては、硫化銅だけではなぐカルコゲン元素(0、 S、 Se、 Te)と金属の化合物、 シリコンを含む絶縁物(酸化シリコン、窒化シリコン、酸窒化シリコン)、ぺロブスカイト 型酸化物(ABO、 A: Mg、 Ca、 Sr、 Ba、 B :Ti)などでもよレヽ。
3
(実施形態 3)
本実施形態は、実施形態 2のスイッチング素子をプログラマブルロジックに適用した ものである。
[0064] 図 8はプログラマブルロジックの一構成例を示す模式図である。
[0065] 図 8に示すように、プログラマブノレロジック 90は、 2次元配列状に配置された多数の ロジックセル 92と、ロジックセル間を接続するための配線、配線間の接続'非接続を 切り替えるための多数のスィッチ 94から構成される。 2端子スィッチの接続状態 (接続 '非接続)を変えることにより、ロジックセル間の配線の構成、ロジックセルの機能等を 設定し、仕様に合わせた論理集積回路を得ることが可能となる。
[0066] スィッチは、ドレイン電極 D、ソース電極 S、およびゲート電極 Gからなるトランジスタ 素子である。上記実施例の 3端子スィッチをスィッチに適用することで、第 1電極がド レイン電極 Dに相当し、第 2電極がソース電極 Sに相当し、第 3電極がゲート電極 Gに 相当する。そして、図 8に示すようにソース電極 Sがロジックセル 92に接続され、ドレイ ン電極 Dがプログラマブルロジック 90内の信号線 96に接続されている。
[0067] オン状態に設定された 3端子スィッチは、ソース電極 Sとドレイン電極 Dが電気的に 接続された状態を維持する。そして、ロジック信号が信号線 96を介してドレイン電極 Dに到達すると、ソース電極 Sを経由してロジックセル 92に入る。その反対に、オフ状 態に設定された 3端子スィッチは、ソース電極 Sとドレイン電極 Dが電気的に接続が切 れた状態を維持する。この場合、ロジック信号は、信号線 96を介してドレイン電極 D に到達しても、ソース電極 Sに接続されたロジックセル 92に入ることはできなレ、。この ようにして、プログラマブルロジック 90では、ユーザによりロジックセル同士の接続状 態を設定できる。 チのオフ状態のリーク電流が低減し、プログラマブルロジック全体の消費電流が従来 よりも小さくなる。
[0069] なお、実施形態 1の 2端子スィッチをプログラマブルロジックに適用した場合を図 9 に示す。図 8に示したプログラマブルロジックと同様な構成については同一の符号を 付している。図 9に示すスィッチ 97に実施形態 1の 2端子スィッチを適用する。実施形 態 1で説明したように、スィッチ 97をオン状態またはオフ状態にすることで、ロジックセ ル 92との接続'非接続を設定できる。実施形態 1の 2端子スィッチをプログラマブル口 ジックのスィッチに適用することで、図 8に示したプログラマブルロジックと同様の効果 が得られる。
[0070] また、本実施形態では、本発明のスイッチング素子をロジックセルへの接続 ·非接 続を切り替えるために用いた力 配線の切り替えやロジックセルの機能の切り替えの スィッチに適用することも可能である。このようにして、電子信号により回路構成を変 更し、 1つのチップで多くの機能を提供できるプログラマブルロジックとしては、例えば FPu-A (Field— Programmable Gate Arrayノゃ DRP (Dynamically Reconf igurable Processor)力め c>。
(実施形態 4)
本実施形態は、実施形態 2のスイッチング素子をメモリ素子に適用したものである。
[0071] 図 10はメモリ素子の一構成例を示す模式図である。
[0072] 図 10に示すように、メモリ素子は、情報を保持するためのスイッチング素子 71と、ス イッチング素子 71の情報を読み出すためのトランジスタ素子 72とを有する。このスィ ツチング素子 71に上記実施例の 3端子スィッチを適用する。スイッチング素子 71はド レイン電極、ソース電極およびゲート電極からなるトランジスタの構成と同様であり、そ れぞれの電極が上記実施例の 3端子スィッチの第 1電極、第 2電極および第 3電極の それぞれに対応している。
[0073] トランジスタ素子 72は、ソース電極がビット線 73に接続され、ゲート電極がワード線
74に接続されている。スイッチング素子 71は、ソース電極がビット線 76に接続され、 ゲート電極がワード線 75に接続されている。そして、スイッチング素子 71のドレイン電 極はトランジスタ素子 72のドレイン電極に接続されている。
[0074] 次に、メモリ素子への情報の書き込み方法について説明する。なお、保持する情報 "1"ど' 0"のうち、スイッチング素子のオン状態を":!"とし、オフ状態を" 0"とする。また 、スイッチング素子のスイッチング電圧を Vtとし、トランジスタ素子 72の動作電圧を V Rとする。
[0075] メモリ素子に情報 "1"を書き込む場合には、スイッチング素子 71のゲート電極に接 続されたワード線 75に電圧 Vtを印加し、ソース電極に接続されたビット線 76の電圧 を 0Vにする。そして、ビット線 73に電圧 (VtZ2)を印加する。スイッチング素子 71は 、オン状態になり、情報" 1 "が書き込まれる。
[0076] メモリセ素子に情報" 0"を書き込む場合には、スイッチング素子 71のゲート電極に 接続されたワード線 75の電圧を 0Vにして、ソース電極に接続されたビット線 76に電 圧 Vtを印加する。そして、ビット線 73に電圧 (Vt/2)を印加する。スイッチング素子 7 1は、オフ状態になり、情報" 0"が書き込まれる。
[0077] 次に、メモリ素子に保持された情報の読み出し方法について説明する。
[0078] ワード線 74に電圧 VRを印加してトランジスタ素子 72をオンさせ、ビット線 73とビット 線 76との間の抵抗値を求める。この抵抗値はトランジスタ素子 72のオン抵抗とスイツ チング素子 71との合成抵抗値となる。この合成抵抗値が測定できないほど大きい場 合にはスイッチング素子 71がオフ状態と判定でき、メモリ素子に保持された情報が" 0 "であることがわかる。一方、合成抵抗値が所定の値より小さい場合にはスイッチング 素子 71がオン状態と判定でき、メモリ素子に保持された情報力 S"l "であることがわか る。
[0079] 本発明の 3端子スィッチをメモリ素子の情報保持のためのスイッチング素子に用い ることで、スィッチのオフ状態のリーク電流が低減する。そのため、メモリ素子がアレイ 状に複数配置されたメモリデバイスに本実施形態のメモリ素子を用いれば、メモリデ バイス全体の消費電流が従来よりも小さくなる。
[0080] なお、実施形態 1の 2端子スィッチをメモリ素子に適用した場合を図 11に示す。図 1 0に示したメモリ素子と同様な構成にっレ、ては同一の符号を付してレ、る。図 11に示す スイッチング素子 77に実施形態 1の 2端子スィッチを適用する。実施形態 1で説明し たように、スイッチング素子 77をオン状態またはオフ状態に設定することで、スィッチ ング素子 77に情報を保持させることが可能となる。実施形態 1の 2端子スィッチをメモ リ素子に用いることで、図 10に示したメモリ素子と同様の効果が得られる。
また、本発明は上記実施例に限定されることなぐ発明の範囲内で種々の変形が可 能であり、それらも本発明の範囲内に含まれることはいうまでもない。

Claims

請求の範囲
[1] 金属イオンが伝導可能なイオン伝導層を備えたスイッチング素子であって、
前記イオン伝導層に接するように設けられた第 1電極および第 2電極と、 前記イオン伝導層に接して設けられ、前記金属イオンを供給可能な第 3電極とを有 し、
前記第 1電極の前記イオン伝導層に接する面積が前記第 2電極の該イオン伝導層 に接する面積よりも小さレ、スイッチング素子。
[2] 前記第 1電極と第 2電極の間に設けられ、直径 0. 1 / m以下の開口部が形成され た絶縁層を有し、
前記第 1電極は前記開口部を介して前記イオン伝導層と接する請求項 1記載のス イッチング素子。
[3] 金属イオンが伝導可能なイオン伝導層を備えたスイッチング素子であって、
前記イオン伝導層に接するように設けられた絶縁層と、
前記絶縁層に接するように設けられた第 1電極と、
前記イオン伝導層に接するように設けられた第 2電極と、
前記イオン伝導層に接して設けられ、前記金属イオンを供給可能な第 3電極とを有 し、
前記第 1電極の前記絶縁層に接する面積が前記第 2電極の該イオン伝導層に接 する面積よりも小さレ、スイッチング素子。
[4] 前記第 1電極が前記絶縁層に接する部位と前記第 2電極との間に前記金属イオン による金属析出物が設けられた請求項 3項記載のスイッチング素子。
[5] 金属イオンが伝導可能なイオン伝導層を備えたスイッチング素子であって、
前記イオン伝導層に接するように設けられた第 1電極と、
前記イオン伝導層に接して設けられ、前記金属イオンを供給可能な第 2電極と、 前記イオン伝導層と第 1電極の間に設けられ、直径 0. 1 / m以下の開口部が形成 された絶縁層とを有し、
前記開口部を介して前記第 1電極の前記イオン伝導層に接する面積が、前記第 2 電極の該イオン伝導層に接する面積よりも小さレ、スイッチング素子。
[6] 前記第 1電極が前記イオン伝導層に接する部位と前記第 2電極との間に前記金属 イオンによる金属析出物が設けられた請求項 1記載のスイッチング素子。
[7] 前記第 1電極が前記イオン伝導層に接する部位と前記第 2電極との間に前記金属 イオンによる金属析出物が設けられた請求項 2記載のスイッチング素子。
[8] 前記第 1電極が前記イオン伝導層に接する部位と前記第 2電極との間に前記金属 イオンによる金属析出物が設けられた請求項 5記載のスイッチング素子。
[9] 請求項 1から 8のいずれ力、 1項記載のスイッチング素子をスィッチに用いた書き換え 可能な論理集積回路。
[10] 請求項 1から 8のいずれ力、 1項記載のスイッチング素子と、
前記スイッチング素子がオン状態およびオフ状態のいずれの状態であるかを読み 出すためのトランジスタ素子と、
を有するメモリ素子。
[11] 第 1電極および第 2電極を有するスィッチング素子の製造方法であって、
絶縁材料上に金属イオンを供給可能な前記第 2電極を形成する工程と、 前記第 2電極を覆う、前記金属イオンを伝導するためのイオン伝導層を形成するェ 程と、
前記イオン伝導層上に第 1絶縁層を形成する工程と、
開口を有する第 2絶縁層を前記第 1絶縁層上に形成する工程と、
前記開口を坦め込む前記第 1電極を形成する工程と、
前記第 2電極および前記第 1電極の間に電圧を印加することで、該第 1電極および 該第 2電極間の電流の通り道となる開口部を前記第 1絶縁層に形成する工程と、 を有するスイッチング素子の製造方法。
[12] 前記第 2電極および前記第 1電極の間に電圧を印加する工程において、
該第 2電極に対して該第 1電極に負電圧を印加することで、前記開口部が形成され た部位と前記第 2電極との間に前記金属イオンによる金属析出物を形成する請求項 11記載のスイッチング素子の製造方法。
PCT/JP2005/023579 2004-12-28 2005-12-22 スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子 WO2006070683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550722A JP5135797B2 (ja) 2004-12-28 2005-12-22 スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子
US11/813,075 US7964867B2 (en) 2004-12-28 2005-12-22 Switching element, switching element fabriction method, reconfigurable logic integrated circuit, and memory element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-378700 2004-12-28
JP2004378700 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070683A1 true WO2006070683A1 (ja) 2006-07-06

Family

ID=36614800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023579 WO2006070683A1 (ja) 2004-12-28 2005-12-22 スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子

Country Status (3)

Country Link
US (1) US7964867B2 (ja)
JP (1) JP5135797B2 (ja)
WO (1) WO2006070683A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066500A1 (ja) * 2007-11-21 2009-05-28 Nec Corporation 半導体装置のコンフィギュレーション方法
JP2009535793A (ja) * 2006-03-31 2009-10-01 サンディスク スリーディー,エルエルシー 抵抗率切り換え酸化物または窒化物およびアンチヒューズを含む不揮発性の書き換え可能なメモリセル
US8809114B2 (en) 2007-06-29 2014-08-19 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US8913417B2 (en) 2007-06-29 2014-12-16 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US9059082B2 (en) 2010-06-16 2015-06-16 Nec Corporation Semiconductor device and operation method for same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548115B2 (en) * 2012-03-16 2017-01-17 Nec Corporation Variable resistance element, semiconductor device having variable resistance element, semiconductor device manufacturing method, and programming method using variable resistance element
FR3003401B1 (fr) * 2013-03-15 2016-12-09 Altis Semiconductor Snc Dispositif microelectronique a memoire programmable
EP3391426B1 (en) * 2015-12-14 2021-08-11 Shih-Yuan Wang Resistive random-access memory with protected switching layer
KR101948638B1 (ko) * 2017-03-15 2019-02-15 고려대학교 산학협력단 단일 나노 공극 구조를 이용한 산화물 기반 저항 스위칭 메모리 소자 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761115A (en) * 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
DE60034663D1 (de) 1999-02-11 2007-06-14 Univ Arizona Programmierbare mikroelektronische struktur sowie verfahren zu ihrer herstellung und programmierung
WO2003079463A2 (en) * 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US7750332B2 (en) * 2002-04-30 2010-07-06 Japan Science And Technology Agency Solid electrolyte switching device, FPGA using same, memory device, and method for manufacturing solid electrolyte switching device
JP4608875B2 (ja) * 2003-12-03 2011-01-12 ソニー株式会社 記憶装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535793A (ja) * 2006-03-31 2009-10-01 サンディスク スリーディー,エルエルシー 抵抗率切り換え酸化物または窒化物およびアンチヒューズを含む不揮発性の書き換え可能なメモリセル
US8809114B2 (en) 2007-06-29 2014-08-19 Sandisk 3D Llc Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US8913417B2 (en) 2007-06-29 2014-12-16 Sandisk 3D Llc Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
WO2009066500A1 (ja) * 2007-11-21 2009-05-28 Nec Corporation 半導体装置のコンフィギュレーション方法
US8189365B2 (en) 2007-11-21 2012-05-29 Nec Corporation Semiconductor device configuration method
JP5212378B2 (ja) * 2007-11-21 2013-06-19 日本電気株式会社 半導体装置のコンフィギュレーション方法
US9059082B2 (en) 2010-06-16 2015-06-16 Nec Corporation Semiconductor device and operation method for same
JP5783174B2 (ja) * 2010-06-16 2015-09-24 日本電気株式会社 半導体装置及びその動作方法
US9754998B2 (en) 2010-06-16 2017-09-05 Nec Corporation Semiconductor device and operation method for same

Also Published As

Publication number Publication date
US20080212259A1 (en) 2008-09-04
US7964867B2 (en) 2011-06-21
JP5135797B2 (ja) 2013-02-06
JPWO2006070683A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006070683A1 (ja) スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子
JP5066918B2 (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
JP5135798B2 (ja) スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路、およびメモリ素子
JP2006319028A (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
US7875883B2 (en) Electric device using solid electrolyte
US9735352B2 (en) Phase change memory element
US10312288B2 (en) Switching element, semiconductor device, and semiconductor device manufacturing method
US7981760B2 (en) Method for manufacturing nonvolatile storage element and method for manufacturing nonvolatile storage device
KR20030085015A (ko) 분자 전자 장치 제조 방법, 분자 전자 장치 및 시스템
JP5417709B2 (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
WO2016203751A1 (ja) 整流素子、スイッチング素子および整流素子の製造方法
JP5135796B2 (ja) スイッチング素子、および書き換え可能な論理集積回路
US6730930B2 (en) Memory element and method for fabricating a memory element
JP4224149B2 (ja) 非揮発性半導体素子の製造方法
JP2012216724A (ja) 抵抗記憶装置およびその書き込み方法
KR100785032B1 (ko) 저항성 메모리 소자 및 그 제조방법
CN114824069A (zh) 一种高速低电压导电桥式阻变存储器件的制作方法
KR20040056958A (ko) 반도체 소자의 mim 커패시터 형성 방법
KR20040056956A (ko) 반도체 소자의 min 커패시터 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550722

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11813075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05819845

Country of ref document: EP

Kind code of ref document: A1