WO2006057285A1 - 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法 - Google Patents

高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法 Download PDF

Info

Publication number
WO2006057285A1
WO2006057285A1 PCT/JP2005/021557 JP2005021557W WO2006057285A1 WO 2006057285 A1 WO2006057285 A1 WO 2006057285A1 JP 2005021557 W JP2005021557 W JP 2005021557W WO 2006057285 A1 WO2006057285 A1 WO 2006057285A1
Authority
WO
WIPO (PCT)
Prior art keywords
flocculant
sludge
wastewater
powdery polymer
coagulating
Prior art date
Application number
PCT/JP2005/021557
Other languages
English (en)
French (fr)
Inventor
Masaru Taki
Toshiaki Komido
Hideaki Onishi
Masao Matsushita
Original Assignee
Dia-Nitrix Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia-Nitrix Co., Ltd. filed Critical Dia-Nitrix Co., Ltd.
Priority to EP05809198A priority Critical patent/EP1845066A1/en
Priority to US11/720,002 priority patent/US20080053916A1/en
Priority to AU2005308142A priority patent/AU2005308142A1/en
Publication of WO2006057285A1 publication Critical patent/WO2006057285A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • sludge generated during wastewater treatment is usually subjected to agglomeration and dehydration treatment in which the solid content is agglomerated with a polymer flocculant for dehydration.
  • polymer flocculants with different molecular weights and ionic properties, and usually the properties of sludge to be treated (for example, solid content concentration, surface charge amount of sludge particles, organic component content, etc.). The most suitable one is selected and used.
  • polymer flocculants are sold in the form of powder or wZo type emulsion. However, the powder type is superior in terms of product stability and ease of transportation, and is widely used as a product. It is used.
  • the polymer flocculant is usually dissolved and stored in a powdered polymer flocculant and added to sludge or wastewater in the form of an aqueous solution.
  • the powdered polymer flocculant it takes time to dissolve the powdered polymer flocculant. Therefore, it is difficult to adjust the amount of flocculant yet to adjust the amount of aqueous solution added.
  • Patent Document 1 discloses a water treatment method in which an inorganic flocculant is added to raw water and then a polymer flocculant is added to form a floc and then subjected to filtration, depending on the filtration characteristics of the raw water after floc formation.
  • a treatment method for controlling the amount of flocculant added is shown, and this method can be applied to sludge treatment.
  • only the amount of flocculant added is adjusted by this treatment method, and it is difficult to cope with sludge treatment with large property fluctuations only by adjusting the amount of flocculant added.
  • Patent Documents 2 and 3 show a method for dewatering sludge using a flocculant obtained by blending a cationic flocculant and an amphoteric flocculant.
  • Patent Document 4 discloses a method of dewatering sludge using a flocculant having two or more amphoteric polymer forces having different ion equivalents. These methods may be applicable to a wide variety of sludges compared to the case of using a single flocculant.
  • Patent Document 5 discloses a method in which two types of cationic flocculants having different cation degrees are dissolved separately, and each solution is added at a ratio that gives a cation degree suitable for sludge aggregation. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-25109
  • Patent Document 2 Japanese Patent No. 2933627
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-177706
  • Patent Document 5 Japanese Patent Laid-Open No. 57-63200
  • the present invention has been made in view of the above circumstances, and is capable of widely dealing with fluctuations in the properties of sludge or wastewater, and has excellent practicality with little deterioration of the flocculant and wastewater It aims at providing the coagulation sedimentation processing method.
  • a first aspect of the present invention that solves the above-mentioned problem is a method for coagulating and dewatering sludge in which an aqueous flocculant solution containing a flocculant is added to sludge, and comprising at least two powdery polymer flocculants
  • the sludge coagulation dehydration treatment method is characterized in that the above-mentioned aqueous solution of coagulant is prepared by independently adjusting the amount of each added, mixing and dissolving the powdery polymer coagulant and water.
  • a second aspect of the present invention is a method for coagulating and precipitating wastewater in which an aqueous flocculant solution containing a flocculant is added to the wastewater, and each of the addition amounts of at least two powdery polymer flocculants.
  • a method for coagulating and precipitating wastewater characterized in that the aqueous flocculant solution is prepared by independently adjusting, mixing and dissolving the powdery polymer flocculant and water.
  • the sludge coagulation dewatering method and wastewater coagulation sedimentation treatment method of the present invention can cope with a wide range of sludge or wastewater property fluctuations and have excellent practicality with little deterioration of the coagulant. That is, when preparing an aqueous flocculant solution containing two or more kinds of flocculants, At least two kinds of powdery polymer flocculants, and each of these powdery polymer flocculants is added to water by independently adjusting the amount of each of the powdery polymer flocculants.
  • the addition amount and addition ratio of the flocculant can always be set to the optimum conditions that are most suitable for coagulation dewatering of sludge or coagulation sedimentation of wastewater.
  • the sludge coagulation dehydration method of the present invention is a method of adding a flocculant aqueous solution containing a flocculant to sludge.
  • the method for coagulating and precipitating wastewater according to the present invention comprises a coagulant aqueous solution containing a coagulant. It is a method of adding to wastewater.
  • the time of the solution state can be shortened by dissolving and using the powdery polymer flocculant at the time of use, the deterioration of the performance of the flocculant aqueous solution can be suppressed. Furthermore, because it is a powder, it has the advantage of requiring less storage space and lower storage costs.
  • any polymer flocculant conventionally used for sludge or wastewater flocculation and dehydration treatment can be used as long as it is powdery.
  • the average particle size of the powdery polymer flocculent to be used is 50-3000 111 m, preferably 100-2000 m.
  • Cationic polymer flocculants include: (co) polymers of attayllooxychetyltrimethylammonium chloride, (co) polymers of methacryloyloxychetyltrimethylammonium chloride, and (meth) atalyloylo. Examples thereof include attalyloyl-based cationic polymer flocculants such as (co) polymers of xetylbenzyldimethylammonum chloride, amidine-based cationic polymer flocculants such as polyamidine, and polyburamine.
  • the ionic polymer flocculants include copolymers of acrylamide and acrylic acid (salt), copolymers of acrylamide and acrylamide-2-methylpropanesulfonic acid, acrylic amide, acrylate and acrylamide. -Examples include 2-methylpropanesulfonic acid copolymer.
  • nonionic polymer flocculants include acrylamide polymers. Examples include acrylamide-acrylic acid ternary or quaternary copolymers.
  • a low cationic high molecular weight type polymer flocculant having a low cationic degree and a high molecular weight type, and a high cationic degree and a low cationic degree.
  • examples thereof include a combination with a high-cationic low-molecular-weight type polymer flocculant that is a molecular weight type, and a combination of an allyloyl-based cationic polymer flocculant and an amidine-based cationic polymer flocculant.
  • the combination of the cationic polymer flocculant and the amphoteric polymer flocculant is a combination of two or more cationic polymer flocculants as described above and an amphoteric polymer flocculant.
  • Examples of the combination of a system flocculant and an amidine-based cationic polymer flocculant and a combination of two or more amphoteric polymer flocculants having different compositions are not limited to these combinations. It is also possible to combine a third component with two or more types of coagulants formulated with great strength!
  • the sludge is an organic sludge containing an organic substance
  • a combination of two or more cationic polymer flocculants and a combination of a cationic polymer flocculant and an amphoteric polymer flocculant are particularly preferable.
  • combinations include, for example, methacryloyl cationic polymer coagulant and amidine cationic polymer flocculant for dewatering of sewage mixed sludge (mixed sludge of primary sludge and surplus sludge) with a belt press dehydrator.
  • the combination is preferred.
  • the initial sludge mixing ratio is high, the drainage speed is large, the filter cloth force is good and the methacryloyl type cationic flocculant is increased, and the excess sludge mixing ratio is difficult to dehydrate.
  • by increasing the ratio of the amidine flocculant having a low polymer viscosity and a high cation density it is possible to maintain good drainage and the like.
  • an effective amidine-based flocculant is not used excessively, it is economically superior.
  • the properties of sludge to be considered at the time of combination are usually properties to be considered when selecting a polymer coagulant to be added to sludge, for example, moisture content of sludge, floc diameter at the time of aggregation, at the time of dewatering And the water content of the dehydrated cake.
  • amphoteric polymer flocculants and char-on polymer flocculants In order to enhance solubility, an acid or the like for adjusting pH may be added.
  • the concentration of the polymer flocculant (the total of the powdered polymer flocculant and the liquid or emulsion polymer flocculant optionally added) in the flocculant aqueous solution is preferably 0.5% by mass or less. A concentration of 0.05 to 0.5% by mass is more preferable. If the concentration exceeds 0.6% by mass, the liquid viscosity is too high and the mixing with sludge or waste water may be reduced. When the concentration of the polymer flocculant is low, the polymer flocculant is more likely to deteriorate.
  • the material of the filter member is not particularly limited as long as it can withstand the pressure when the dispersion is passed through, but a wire mesh is usually used. Further, the filtering member may be a single layer or a multilayer, but a multilayer is preferable in terms of strength. In the case of multiple layers, several layers having the same opening may be stacked, or layers having different openings may be stacked.
  • the speed at which the dispersion is passed through the filtration member is preferably not more than lm 3 Z per filtration surface lm 2 of the filtration member, although it depends on the method of applying pressure to the dispersion. If the filtration speed is lm 3 Z per lm 2 or less of the filtration surface of the filter member, the polymer flocculant can be further prevented from degrading, but if it exceeds lm 3 Z per lm 2 , it tends to deteriorate.
  • hopper 1 has a hopper (storage tank) 2 for storing powdery polymer flocculant A and a hopper 3 for storing powdered polymer flocculant B.
  • This is equipped with feeders 4 and 5 that can adjust the supply amount, respectively, and the powdered polymer flocculants A and B in the hoppers 1 and 2 are mixed in the mixing tank 6 while adjusting the supply amount.
  • feeders 4 and 5 can adjust the supply amount, respectively, and the powdered polymer flocculants A and B in the hoppers 1 and 2 are mixed in the mixing tank 6 while adjusting the supply amount.
  • the floc diameter during sludge aggregation, drainage speed during dewatering, moisture content of dewatered cake, etc., or turbidity of wastewater, SS content, PH, etc. are observed for treatment.
  • the amount of both flocculants added is adjusted so as to achieve the optimum yarn formation.
  • the above items are automatically measured and controlled based on the results.
  • the continuous dissolution and supply device 1 includes a slab, a cylindrical outer portion 7, a cylindrical filter 8 accommodated in the outer portion 7, and a sliding plate 9 disposed in the filter 8. And a filtering device 11 having a motor 10 for sliding the sliding plate 9.
  • the mixing tank 6 and the filtration device 11 are communicated with each other through a dispersion feed line 12, and the dispersion is supplied to the inside of the filter 8 through the dispersion feed line 12. By passing the dispersion thus supplied through the filter 8, an aqueous flocculant solution is obtained.
  • the undissolved flocculant in the dispersion does not pass through the filter 8, but by sliding the sliding plate 9, the dispersion is pressed against the filter 8, and the undissolved flocculant and Since the water is efficiently mixed and swollen, the flocculant can be dissolved quickly.
  • it took time to dissolve the powdery polymer flocculant and the deterioration of the flocculant aqueous solution was large.
  • the powdered polymer flocculant can be rapidly dissolved by using a large apparatus. Therefore, deterioration of the flocculant aqueous solution can be reduced.
  • the deterioration of the flocculant can be further prevented, and a large-scale sludge treatment or wastewater treatment can be performed.
  • the sludge and wastewater to be treated by the treatment method of the present invention are not particularly limited. Since the treatment method of the present invention can respond widely to changes in the properties of sludge or wastewater, for example, mixed raw sludge whose mixing ratio of primary sludge and surplus sludge changes, or comparatively small-scale treatment that draws sludge intermittently. For sludge that changes the degree of sludge decay depending on the time of withdrawal at the site, sludge whose degree of spoilage changes depending on the season, sludge generated by treatment of wastewater whose concentration changes greatly due to the inflow of rainwater, wastewater whose pH varies, etc. The utility of the processing method of the invention is remarkable.
  • the continuous dissolution and supply device 1 shown in Fig. 1 the sludge generated at the A treatment site (Oxidation Ditch) was treated.
  • the filter 8 a mesh plate (100 micron opening) was used.
  • Flocculant AZ flocculant B 75Z25 (mass%) powdered polymer flocculant with a blend ratio was dissolved in water to prepare 0.2 mass% flocculant aqueous solution, The flocculant aqueous solution was added to the sludge in an amount of 200 mg ZL to the liquid, and the sludge was dehydrated using a centrifugal dehydrator.
  • the dehydration capacity S was the best at the start of operation, and the moisture content of the sludge after dehydration was 83.9%.
  • flocculant A is KP7000 made by Diatrix
  • Example 3 Under the same conditions as in Example 3, the sludge was treated using only the flocculant soot, and the water content was 82% on average.
  • the polymer flocculant addition amount was 60ppm and the dehydration was good, but when the fiber content ZSS was 10 to 24%, the polymer flocculant addition amount Force 0 ⁇ : Outflow of SS from the dehydrator occurred in the range of LOOppm.
  • flocculant 10790 (mass ratio)
  • the addition amount and addition ratio of various high molecular flocculants in the aqueous flocculant solution are always set to the optimum conditions most suitable for sludge coagulation dehydration or waste water coagulation sedimentation. can do.
  • the polymer flocculant since the polymer flocculant is held in powder form and dissolved during use, it can quickly respond to sudden changes in sludge or wastewater, where the performance of the flocculant is small, and it is powerful. A simple device is not necessary and is highly practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽2,3と、該貯留槽2,3に接続された供給量調節可能なフィーダー4,5と、給水ポンプを備えた混合槽6と、濾過部材8を備えた連続溶解供給装置1を用い、貯留槽2,3に貯留される粉末状高分子凝集剤を、フィーダー4,5を介して混合槽6に供給し、該混合槽6内で水と混合して分散液を調製し、該分散液を前記濾過部材8を通過させることにより凝集剤水溶液を調製し、該凝集剤水溶液を汚泥または廃水に添加する。

Description

高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿 処理方法
技術分野
[0001] 本発明は、高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿 処理方法に関する。
本願は、 2004年 11月 25日に出願された特願 2004— 340162号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 従来、廃水に高分子凝集剤を添加し固形分を凝集沈殿させる処理方法が広く用い られている。
また、廃水処理の際に生じる汚泥については、通常、高分子凝集剤でその固形分 を凝集させて脱水する凝集脱水処理が行われて!/ヽる。
これらの処理方法にぉ 、ては、高分子凝集剤の希薄水溶液を廃水または汚泥に 添加する方法が広く採られて 、る。
高分子凝集剤は、その分子量やイオン性等が異なる様々な種類のものがあり、通 常、処理する汚泥の性状 (たとえば固形分濃度、汚泥粒子の表面荷電量、有機成分 の含量等)に応じて最適なものが選択して用いられている。また、高分子凝集剤は、 粉末もしくは wZo型エマルシヨン等の形態で販売されて 、るが、粉末型の方が製品 の安定性や輸送方法の容易さ等の点で優れており製品としても広く使われている。
[0003] 一方、汚泥の性状は、その元となって!/、る廃水の種類や処理方法等によって千差 万別である。また、汚泥の性状は、腐敗等のため時間に応じて変動することが知られ ている。さらに、汚泥は、 2種以上の汚泥を集めて処理する場合にも、上記と同様、汚 泥の混合比率の変化に応じて性状変動の問題に直面する。たとえば、都市下水の 処理等では、初沈汚泥と余剰汚泥とを混合し、混合生汚泥として処理することが通常 行われているが、その場合、それら 2種の汚泥の混合比率が変わることで汚泥性状が 大きく変動する。また、廃水の凝集沈殿処理においても廃水の性状が大きく変化する [0004] そのため、汚泥または廃水の性状変動に応じて、処理に最適な高分子凝集剤の種 類や添加量を調節する必要がある。しかし、高分子凝集剤は、通常、粉末の高分子 凝集剤を溶解して貯留しておき、水溶液の形態で汚泥または廃水に添加されるが、 粉末の高分子凝集剤を溶解するには時間が力かるため、水溶液の添加量の調節は まだしも、凝集剤の種類の調節は困難である。
たとえば、特許文献 1には、原水に無機凝集剤を添加し、次いで高分子凝集剤を 添加してフロックを形成させた後濾過処理する水処理方法として、フロック形成後の 原水の濾過特性に応じて凝集剤の添加量を制御する処理方法が示されており、この 方法を汚泥処理に適用することが考えられる。しかし、この処理方法で調節するのは 凝集剤の添加量のみであり、凝集剤の添加量調節のみでは、性状変動の大きい汚 泥処理に対応することは困難である。
[0005] このような問題に対応するために、各種の方法が提案されて 、る。
たとえば特許文献 2, 3には、カチオン凝集剤と両性凝集剤をブレンドした凝集剤を 用いて汚泥を脱水する方法が示されている。また、特許文献 4には、イオン当量の異 なる 2種以上の両性高分子力もなる凝集剤を用いて汚泥を脱水する方法が示されて いる。これらの方法は、それぞれ単独の凝集剤を使用している場合に比較し、幅広く 各種の汚泥に対応できる可能性がある。
また、特許文献 5には、カチオン度の異なる 2種のカチオン性凝集剤を別々に溶解 し、各溶解液を、汚泥の凝集に適したカチオン度になるような割合で添加する方法が 示されている。
[0006] しかし、特許文献 2〜4に記載の方法においては、あら力じめ複数の凝集剤を特定 比率でブレンドした凝集剤を用いるため、汚泥の性状変動に充分に対応できない。 そのため、汚泥の性状変動に対応するためには、結局、各種のブレンド比率の凝集 剤を用意しておき、性状変動に応じて使うことが必要となり、実用性が低い。
また、特許文献 5に記載の方法では、溶解液の使用比率によっては両凝集剤の使 用量が異なるため、使用量が少ない凝集剤の溶解液の保持時間が延び、凝集剤の 性能が劣化する問題がある。そのため、各溶解液の使用比率を極端に変えることは 難しぐ汚泥の性状変動への対応に限界がある。また、それぞれの凝集剤を溶解し、 保持するための溶解槽が 2基必要であることなど、設備が大がカゝりになる問題もあり、 実用的ではない。
特許文献 1:特開 2004— 25109号公報
特許文献 2:特許第 2933627号公報
特許文献 3:特許第 3183809号公報
特許文献 4:特開 2002— 177706号公報
特許文献 5:特開昭 57— 63200号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、前記事情を鑑みてなされたものであり、汚泥または廃水の性状変動に 幅広く対応でき、凝集剤の劣化が少なぐ実用性に優れた汚泥の凝集脱水処理方法 および廃水の凝集沈殿処理方法を提供することを目的とする。
課題を解決するための手段
[0008] 上記課題を解決する本発明の第一の態様は、凝集剤を含有する凝集剤水溶液を 汚泥に添加する汚泥の凝集脱水処理方法であって、少なくとも 2種の粉末状高分子 凝集剤の添加量をそれぞれ独立に調節し、該粉末状高分子凝集剤と水とを混合し、 溶解することにより前記凝集剤水溶液を調製することを特徴とする汚泥の凝集脱水 処理方法である。
本発明の第二の態様は、凝集剤を含有する凝集剤水溶液を廃水に添加する廃水 の凝集沈殿処理方法であって、少なくとも 2種の粉末状高分子凝集剤の添加量をそ れぞれ独立に調節し、該粉末状高分子凝集剤と水とを混合し、溶解することにより前 記凝集剤水溶液を調製することを特徴とする廃水の凝集沈殿処理方法である。 発明の効果
[0009] 本発明の汚泥の凝集脱水処理方法および廃水の凝集沈殿処理方法は、汚泥また は廃水の性状変動に幅広く対応でき、凝集剤の劣化が少なぐ実用性にも優れてい る。すなわち、 2種以上の凝集剤を含有する凝集剤水溶液を調製する際に、凝集剤 として少なくとも 2種の粉末状高分子凝集剤を用い、該粉末状高分子凝集剤を、それ ぞれ独立に添加量を調節して水に添加することにより、該凝集剤水溶液中の各種高 分子凝集剤の添加量や添加比率を、常に、汚泥の凝集脱水または廃水の凝集沈殿 に最も適した最適条件とすることができる。さらに、高分子凝集剤を粉末状で保持し、 使用時に溶解して用いることから、凝集剤の性能劣化が少なぐ汚泥または廃水の急 激な変動に対しても迅速に対応できまた大が力りな装置も不要であり実用性が高い。 図面の簡単な説明
[0010] [図 1]本発明に好適に用いられる連続溶解供給装置の概略図である。
符号の説明
1 連続溶解供給装置
2 ホッノ一
3 ホッノ一
4 フィーダ一
5 フィーダ一
6 混合槽
7 外とう部
8 フイノレター
9 摺動プレート
10 モーター
11 濾過装置
12 分散液フィードライン
13 水溶液フィードライン
14 給水ライン
発明を実施するための最良の形態
[0012] 以下、本発明をより詳細に説明する。
本発明の汚泥の凝集脱水処理方法は、凝集剤を含有する凝集剤水溶液を汚泥に 添加する方法である。
また、本発明の廃水の凝集沈澱処理方法は、凝集剤を含有する凝集剤水溶液を 廃水に添加する方法である。
以下、これらをまとめて本発明の処理方法と!/、うことがある。
凝集剤水溶液は、少なくとも 2種の粉末状高分子凝集剤の添加量を調節し、該粉 末状高分子凝集剤と水とを混合し、溶解すること〖こより調製されるものである。 2種以 上の粉末状高分子凝集剤の添加量を調節して凝集剤水溶液を調製することにより、 汚泥または廃水の性状変動に対する幅広い対応が容易に可能になる。また、高分子 凝集剤としては、一般に、粉末状のほか、液状、ェマルジヨン状等の形態のものが巿 販されているが、粉末状高分子凝集剤は、液状のものゃェマルジヨン状のものに比 ベて保存安定性が良ぐ保存時に性能が劣化しにくい利点を有している。また、使用 時に粉末状高分子凝集剤を溶解して用いることにより溶液状態の時間を短くできるた め、凝集剤水溶液の性能の劣化を抑制できる。さらに、粉末であるため、輸送費が安 ぐ貯蔵に要する場所も少なくてすむ等の利点もある。
[0013] 粉末状高分子凝集剤としては、従来、汚泥または廃水の凝集脱水処理に用いられ て 、る高分子凝集剤のうち、粉末状のものであれば任意のものが使用できる。
使用する粉末状高分子凝集剤の平均粒子径としては、特に制限はない。水への溶 解'性を考慮すると平均粒径、 50〜3000 111カ 子ましく、 100〜2000 m力 Sより好ま しい。
[0014] 高分子凝集剤としては、カチオン性、ァ-オン性、ノ-オン性、両性等があり、本発 明にお 、ては 、ずれのものも使用できる。
カチオン性高分子凝集剤としては、アタリロイルォキシェチルトリメチルアンモ -ゥム クロリドの(共)重合体、メタクリロイルォキシェチルトリメチルアンモ -ゥムクロリドの(共 )重合体、(メタ)アタリロイルォキシェチルベンジルジメチルアンモ -ゥムクロライドの( 共)重合体等のアタリロイル系カチオン性高分子凝集剤、ポリアミジン等のアミジン系 カチオン性高分子凝集剤、ポリビュルァミンなどが例示される。
ァ-オン性高分子凝集剤としては、アクリルアミドとアクリル酸 (塩)の共重合体、ァク リルアミドとアクリルアミドー 2—メチルプロパンスルホン酸との共重合体、アクリルアミ ドとアクリル酸塩とアクリルアミドー 2—メチルプロパンスルホン酸の共重合体等が例 示される。 ノ-オン性高分子凝集剤としては、アクリルアミドの重合体等が例示される。 アクリルアミドーアクリル酸の 3元あるいは 4元系の共重合体等が例示される。
[0015] また、高分子凝集剤の分子量は特に制限されない。高分子凝集剤は、分子量が 1 000万以上の高分子量型のものと、分子量が数百万の比較的低分子量型のものま で各種種類があるが、本発明は、両者に効果がある。高分子凝集剤は、通常、分子 量が高!、程溶解に時間を要する力 本発明にお 、ては高分子量のものでも迅速に 溶解でき、ママコと呼ばれる未溶解分を残すことがな 、。
[0016] 本発明にお 、て用いられる 2種以上の粉末状高分子凝集剤の組み合わせとしては 、その性質、たとえば分子構造や分子量、イオン性等が全く同一でないものの組み 合わせであれば特に限定されな!、。
具体的な組み合わせとしては、たとえばカチオン性高分子凝集剤の 2種以上の組 み合わせ、カチオン性高分子凝集剤と両性高分子凝集剤の組み合わせ、ァ-オン 性高分子凝集剤とカチオン性高分子凝集剤の組み合わせ、ァニオン性高分子凝集 剤と両性高分子凝集剤の組み合わせ等が挙げられる。また、高分子量型高分子凝 集剤と比較的低分子量型高分子凝集剤の組み合わせ等が挙げられる。
カチオン性高分子凝集剤の 2種以上の組み合わせとして、より具体的には、カチォ ン度が低くかつ高分子量型である低カチオン高分子量型の高分子凝集剤と、カチォ ン度が高くかつ低分子量型である高カチオン低分子量型の高分子凝集剤との組み 合わせ、アタリロイル系カチオン性高分子凝集剤とアミジン系カチオン性高分子凝集 剤との組み合わせ等が挙げられる。
また、カチオン性高分子凝集剤と両性高分子凝集剤との組み合わせとしては、上 述のような 2種以上のカチオン性高分子凝集剤の組み合わせと両性高分子凝集剤と を組み合わせたもの、両性系凝集剤とアミジン系カチオン性高分子凝集剤の組み合 わせ、組成の異なる 2種以上の両性高分子凝集剤の組み合わせ等が例示されるが、 これらの組み合わせに限られる物ではな 、。またあら力じめ配合された 2種以上の凝 集剤に第三の成分を組み合わせても良!、。
[0017] これらの組み合わせは、処理対象である汚泥または廃水の種類や性状を考慮して 適宜決定すれば良い。
たとえば汚泥が有機物を含有する有機汚泥の場合、カチオン性高分子凝集剤の 2 種以上の組み合わせ、カチオン性高分子凝集剤と両性高分子凝集剤との組み合わ せが特に好ましい。
組み合わせの具体例としては、たとえば下水混合汚泥 (初沈汚泥と余剰汚泥の混 合汚泥)のベルトプレス脱水機による脱水にはメタクリロイル系カチオン性高分子凝 集剤とアミジン系カチオン性高分子凝集剤の組み合わせが好ま 、。初沈汚泥の混 合比率が高い時は濾水速度が大きぐ濾布力 の剥離性が良いメタクリロイル系カチ オン性凝集剤を多くしておき、脱水の困難な余剰汚泥の混合比率が高くなる場合は ポリマーの粘性が低くカチオン密度の高いアミジン系凝集剤の比率を増やすことで、 濾水性等を良好に保つことができる。また効果なアミジン系凝集剤を過剰に使うこと が無 、ので経済的にも優れて 、る。
[0018] 組み合わせの際に考慮する汚泥の性状としては、通常、汚泥に添加する高分子凝 集剤を選択する際に考慮する性状、たとえば汚泥の含水率、凝集時のフロック径、脱 水時の濾水速度、脱水ケーキの含水率等が挙げられる。
組み合わせの際に考慮する廃水の性状としては、通常、廃水に添加する高分子凝 集剤を選択する際に考慮する性状、たとえば廃水の濁度、 SS分、 PH等が挙げられ る。
これらの性状を観測して、凝集剤水溶液の組成 (凝集剤の種類や配合比)が、凝集 効果が最も発揮される組成 (最適組成)になるように粉末状高分子凝集剤の添加量 等を調節する。
[0019] 凝集剤水溶液の調製にお!、ては、粉末状高分子凝集剤のほか、液状またはエマ ルジョン状の高分子凝集剤を添加してもよ 、。
また、凝集剤水溶液には、従来、汚泥の凝集脱水処理または廃水の凝集沈殿処理 に用いられて 、る任意の無機凝集剤を添加してもよ 、。力かる無機凝集剤としては、 硫酸バンド、ポリ硫酸アルミ、硫酸第一鉄、塩化第二鉄、ポリ硫酸第二鉄等が挙げら れる。
また、両性高分子凝集剤ゃァ-オン性高分子凝集剤を用いる場合には、それらの 溶解性を高めるため、 pHを調節するための酸等を配合しても良い。
[0020] 凝集剤水溶液中、高分子凝集剤 (粉末状高分子凝集剤と、任意に添加される液状 またはェマルジヨン状の高分子凝集剤との合計)の濃度は 0. 5質量%以下が好まし ぐ 0. 05〜0. 5質量%濃度がより好ましい。濃度が 0. 6質量%を越えると、液粘性 が高すぎて汚泥または廃水との混合性が低下するおそれがある。高分子凝集剤の 濃度が低いと高分子凝集剤がより劣化しやすくなる。
[0021] 本発明にお 、ては、粉末状高分子凝集剤の性能の劣化を防止するために、粉末 状高分子凝集剤を溶解してから、凝集剤水溶液を汚泥または廃水に添加するまでの 平均滞留時間が、 3時間以下であることが好ましぐ 10秒以上 1時間以下がより好ま しぐ 1分以上 30分以下がさらに好ましい。該平均滞留時間が 3時間を超えると高分 子凝集剤の劣化が大きくなるおそれがある。なお、高分子凝集剤の劣化は溶解した 初期から生じて 、ると考えられる。
ここで、「平均滞留時間」とは、回分式の溶解をする場合は粉末状高分子凝集剤の 溶解開始力 調製した凝集剤水溶液を汚泥または廃水に添加開始するまでの時間 と、粉末状高分子凝集剤の溶解開始から凝集剤水溶液を汚泥または廃水に添加終 了するまでの時間との平均時間のことである。なお、粉末状高分子凝集剤は略一定 速度(単位;体積 Z時間)で水に添加するものとする。連続式の溶解設備を用いる場 合は装置内の滞留時間であり、溶解装置、供給ライン等のホールドアップ量を単位 時間あたりの流量で除することで計算できる。
従来形式の回分式の場合はバッチ毎の溶解量を少なくすることで平均滞留時間を 短くできるが操作が煩雑になる傾向にある。
また、高分子凝集剤の溶解時間を短くするためには、粉末状高分子凝集剤の粒径 を小さくして溶解速度を上げ、かつ溶解後の貯留槽を小さくし平均滞留時間を短縮 する必要がある。
[0022] 本発明の処理方法では、凝集剤水溶液の調製および供給に連続溶解供給装置を 用いることが好ましい。連続溶解供給装置では、上記のような制約が少なぐ工業的 規模に適している。
ここで、連続溶解供給装置としては、特に制限されないが、凝集剤の劣化を低減す るためには、粉末状高分子凝集剤を迅速に溶解できる装置を利用することが好まし い。かかる装置としては、粉末状高分子凝集剤が迅速に溶解できるものであればそ の形式は制限があるわけではないが、たとえば、特許第 3184729号公報、特許 318 4797号公報等に示された装置が称揚される。該装置は、粉末高分子凝集剤を水に 分散、膨潤させ、膨潤ゲルを網目状の濾過部材に擦りつけゲルを微細化し、溶解さ せる形式であり、凝集剤の溶解劣化が少ない長所がある。
[0023] 本発明の処理方法は、特に、 2種以上の粉末状高分子凝集剤をそれぞれ独立に 貯留するための 2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィー ダ一と、給水ポンプを備えた混合槽と、濾過部材とを備えた装置を用い、前記貯留槽 に貯留される粉末状高分子凝集剤を、フィーダ一を介して混合槽に供給し、該混合 槽内で水と混合して分散液を調製し、該分散液を濾過部材に通過させることにより凝 集剤水溶液を調製することにより行うことが好ましい。
[0024] 濾過部材は、目開きが 10〜500 μ mであることが好ましぐ 50〜200 μ mであるこ とがより好ましい。目開きが 500 mを超えると、高分子凝集剤の溶解効率が低下し 、 10 m未満であると濾過に時間を要すると共に濾過の際に高分子凝集剤に力が 力かりすぎて劣化しやすくなる。
濾過部材の材質としては、分散液を通す際の圧力に耐える材質であれば特に制限 されないが、通常は金網が用いられる。また、濾過部材は一層であってもよいし多層 であってもよいが、強度の点では多層の方が好ましい。多層の場合、同じ目開きのも のを数層重ねてもよいし、目開きの異なるものを重ねあわせてもよい。
分散液を濾過部材に通過させる際の速度 (濾過速度)は、分散液への圧力付与方 法にもよるが、濾過部材の濾過面 lm2当たり lm3Z分以下であることが好ましい。濾 過速度が濾過部材の濾過面 lm2当たり lm3Z分以下であれば高分子凝集剤の劣化 をより防ぐことができるが、 lm2当たり lm3Z分を超えると劣化する傾向にある。
濾過部材に分散液を通過させる際には、流動抵抗が生じるため、分散液に圧力を 付与してもよい。圧力を付与する方法としては、たとえば、周面が網状になっている 筒状濾過部材に分散液を、摺動式のプレートやローラーで押し付ける方法などが挙 げられる。 [0025] 力かる装置を用いた本発明の処理方法の一例を図 1を用いて説明する。
図 1に示す連続溶解供給装置 1は、粉末状高分子凝集剤 Aを貯留するホッパー( 貯留槽 ) 2、粉末状高分子凝集剤 Bを貯留するホッパー 3を有し、該ホッパー 2, 3〖こ は、それぞれ、供給量の調節が可能なフィーダ一 4, 5が取り付けられており、ホッパ 一 2, 3内の粉末状高分子凝集剤 A, Bが、供給量を調節しながら混合槽 6に供給で きるようになつている。
各粉末状高分子凝集剤の供給量は、フィーダ一 4, 5で供給量を設定することによ り、それぞれ独立に調節できる。供給量の設定は手動によって行っても良いし、汚泥 または廃水、もしくは凝集処理後の液の何らかの物性を測定し、その物性値に基づ き自動的に設定が変更されるようにしても良 、。
手動で調節する際には、汚泥の凝集時のフロック径、脱水時の濾水速度、脱水ケ ーキの含水率等、または廃水の濁度、 SS分、 PH等を観測して、処理に最適な糸且成 になるように両凝集剤の添加量等が調節される。自動制御の場合は上記の項目など を自動測定し、その結果に基づいて制御される。
[0026] 混合槽 6内には、撹拌装置 6aが配されている。また、混合槽 6には、水を供給する 給水ポンプ(図示せず)が取り付けられており、該給水ポンプ力 水を水供給ライン 1 4を通じて供給し、該水に、フィーダ一 4, 5で供給量を調節しながら粉末状高分子凝 集剤 A, Bを供給し、撹拌、混合して粉末状高分子凝集剤を膨潤させることにより、凝 集剤を含有する分散液が調製される。
[0027] 連続溶解供給装置 1は、さら〖こ、円筒状の外とう部 7と該外とう部 7内に収容された 円筒状のフィルター 8と、該フィルター 8内に配置された摺動プレート 9と、該摺動プレ ート 9を摺動させるためのモーター 10とを備えた濾過装置 11を備えている。そして、 混合槽 6と濾過装置 11とが分散液フィードライン 12により連絡されており、該分散液 フィードライン 12により、フィルター 8の内側に分散液が供給されるようになって!/、る。 このようにして供給された分散液をフィルター 8に通過させることにより、凝集剤水溶 液が得られる。
このとき、分散液中の未溶解の凝集剤はフィルター 8を通過しないが、摺動プレート 9を摺動させることにより、フィルター 8に分散液が押し付けられ、未溶解の凝集剤と 水とが効率よく混合し、膨潤するため、該凝集剤を迅速に溶解することができる。従 来は粉末状高分子凝集剤の溶解に時間がかかり、凝集剤水溶液の劣化が大きかつ たが、カゝかる装置を用いることにより、粉末状高分子凝集剤を迅速に溶解することが できるため、凝集剤水溶液の劣化を低減できる。
[0028] さらに、連続溶解供給装置 1においては、濾過装置 11の外とう部 7とフィルター 8と の間に水溶液フィードライン 13が接続されており、該水溶液フィードライン 13にはポ ンプ(図示せず)が取り付けられており、得られた凝集剤水溶液を、汚泥または廃水 の凝集処理槽に連続的に供給できるようになって!/ヽる。
このような連続溶解供給装置によれば、凝集剤の劣化をより防止できる上に、大規 模な汚泥処理または廃水処理を行うことができる。
[0029] 上述のようにして得られた凝集剤水溶液を汚泥または廃水に添加、混合することで 、汚泥または廃水中の固形分を凝集させることができる。凝集した汚泥については、 脱水機等で脱水処理を施す。また、固形分が凝集し、沈殿した廃水については、重 力による固形分の分離処理を施す。
汚泥の脱水に使用される脱水機の形式に特に制限はなぐプレス脱水機、遠心脱 水機、多重円盤型脱水機等が例示される。
[0030] 本発明の処理方法の対象となる汚泥および廃水は、特に制約はな 、。本発明の処 理方法が汚泥または廃水の性状変動に幅広く対応できることから、たとえば初沈汚 泥と余剰汚泥の混合比率の変わる混合生汚泥や、間けつ式に汚泥を引き抜く比較 的小規模な処理場で引き抜き時期により汚泥の腐敗の程度が変化する汚泥、季節 により腐敗度が変わる汚泥、雨水の流入などにより濃度が大きく変化する廃水の処理 により生じる汚泥、 pHの変動する廃水等に対し、本発明の処理方法の効用が顕著で ある。
[0031] なお、上記連続溶解供給装置 1にお!/、ては、貯留槽およびフィーダ一の数が 2であ る力 本発明はこれに限定されず、 3以上としてもよい。
また、連続溶解供給装置 1においては、粉末状高分子凝集剤の種類に応じた数の 貯留槽およびフィーダ一と、ひとつの混合槽 6と、 1台の濾過装置 11とを具備してい るが、必要に応じ、混合槽 6、濾過装置 11を複数台装備しても良い。省スペース化し やす!/、ことから、粉末状高分子凝集剤の種類に応じた数の貯留槽およびフィーダ一 と、ひとつの混合槽 6と、 1台の濾過装置 11とを備えた装置を用いるのがもっとも簡易 である。
さらに、本発明においては、場所などの制約のない場合、上記のような連続溶解供 給装置を 2台以上用い、それぞれ独立に凝集剤水溶液を調製した後、それらをライ ンミキシングしてもよい。また、上記のような連続溶解供給装置と単一もしくは複数の 凝集剤を自由に混合溶解できる装置を複数用いてさらに多種の凝集剤水溶液をライ ンミキシングしてもよい。
実施例
以下、本発明について、実施例を用いて更に詳細に説明するが、本特許の趣旨を 超えない限り、この範囲に限定されるものではない。
(実施例 1)
図 1に示す連続溶解供給装置 1を用い、 A処理場 (ォキシデーシヨンディツチ)で発 生する汚泥の処理を行った。フィルター 8としては、メッシュプレート(100ミクロン目開 き)を用いた。
連続溶解供給装置 1のホッパー 2内に、凝集剤 Aとしてダイヤ-トリックス社製 KP7
000 (粉末状カチオン性高分子凝集剤 (ポリアミジン系)、カチオン当量 6meqZg、分 子量 300万)、凝集剤 Bとして粉末状両性高分子凝集剤 (アタリロイルォキシェチルト リメチルアンモ -ゥムクロライド Zアクリルアミド Zアクリル酸 =27. 0/44. 0/29. 0 (モル%)の共重合体、分子量 400万)を装備し、下記の操作を行った。
9月 24日:凝集剤 AZ凝集剤 B = 75Z25 (質量%)のブレンド比率の粉末状高分 子凝集剤を水に溶解して 0. 2質量%の凝集剤水溶液を調製しを調製し、該凝集剤 水溶液を、汚泥に対し、凝集剤を 200mgZL対液の添加量で添加し、該汚泥を遠心 脱水機用いて脱水した。運転開始時が脱水性能力 Sもっとも良好であり、脱水後の汚 泥の含水率が 83. 9%であった。
そのまま数日運転したところ、汚泥含水率が 85. 6%に上昇した (脱水性能が低下 した)ので、ブレンド比率を 50Z50 (質量%)に調節した (濃度は同じ)ところ、汚泥含 水率は 84%まで低下した。 さらに 11月 12日になると、再び含水率の上昇が観測されたので、ブレンド比率を 6 0/40とし、 11月 15日までの間に、ブレンド it率を 60/40力ら 70/30 (質量0 /0)に 変化させた (濃度は同じ)。この間の汚泥含水率が 83. 2%であった。
9月 24日から 11月 15日までの間で上記の様にブレンド比率を調節した結果、処理 された汚泥の含水率は平均 84. 5%であった。
なお、上記処理においては、粉末状高分子凝集剤を水に溶解してから 3時間以内 の凝集剤水溶液を用いた。
[0033] (比較例 1)
A処理場において、実施例 1と同様の装置と凝集剤を用い、 11Z17日より 1ヶ月間 、凝集剤 AZ凝集剤 B = 50Z50の凝集剤水溶液 (濃度 200mgZL)を、ブレンド比 率を変化させずに用いて汚泥処理を行ったところ、 11Z17日より 1ヶ月間に処理さ れた汚泥の含水率は 84. 2%〜88. 2%の範囲内で変化し、その平均は 86. 1%で めつに。
[0034] (実施例 2)
B浄ィ匕センター(ォキシデーシヨンディツチ)で 10日間、実施例 1と同様の装置を用 い、凝集剤 Aにダイヤ-トリックス社製 KP7000、凝集剤 Βに粉末状両性高分子凝集 剤 (メタクリロイルォキシェチルトリメチルアンモ -ゥムクロライド/アクリルアミド/ァク リル酸 = 18. 6/71. 3/10. 1 (モル%)の共重合体、分子量 400万)を用い、脱水 後のケーキの含水率が最も低くなるように、ブレンド比率を凝集剤 ΑΖ凝集剤 Β = 60 Ζ40から 70Ζ30まで順次変化させて汚泥処理を行ったところ、 10日間に処理され た汚泥の含水率の平均は 81 %であった。
[0035] (比較例 2)
Β浄ィ匕センターで 5日間、実施例 2と同様の装置と凝集剤を用い、凝集剤 ΑΖ凝集 剤 Β = 60Ζ40の 0. 2%凝集剤水溶液 (濃度 200mgZL)を、ブレンド比率を変化さ せずに用いて汚泥処理を行ったところ、 5日間に処理された汚泥の含水率の平均は 82. 8%であった。
[0036] (実施例 3)
C処理場 (混合生汚泥)で、実施例 1と同様の装置を用い、凝集剤 Aにダイヤ-トリ ックス社製 KP201G (粉末状カチオン性高分子凝集剤、メタクリロイルォキシェチルト リメチルアンモ -ゥムクロライド 100%)、凝集剤 Bにダイヤ-トリックス社製 KP7000を 用いて汚泥処理を行った。
初沈汚泥 Z余剰汚泥 = 60Z40 (質量比)の組成の混合生汚泥については、凝集 剤 ΑΖ凝集剤 B= 100Z0にて処理を行った場合が最も良好で、汚泥の平均含水率 は 78. 4%であった。
次 ヽで処理を行った初沈汚泥 Ζ余剰汚泥 = 20Ζ80 (質量比)の組成の混合生汚 泥については、凝集剤 ΑΖ凝集剤 Β=75Ζ25 (質量比)にて処理を行った場合が最 も良好で、汚泥の平均含水率は 79. 1%であった。
[0037] (比較例 3)
実施例 3と同一条件下で、凝集剤 Αのみを用いて汚泥の処理を行ったところ、含水 率は平均 82%であった。
[0038] 上記結果から、汚泥の含水率や初沈汚泥 Z余剰汚泥比のような組成の変化に応じ て粉末状高分子凝集剤の添加量を調節してブレンド比率を変えた実施例 1〜3は、 含水率が低ぐ脱水効率が高力つた。
[0039] (実施例 4)
汚泥中の SS分が 2. 5%で、汚泥 SS分中の繊維分の比率が 10%〜35%の範囲 で変動する D製紙工場廃水汚泥の処理を下記の手順で行った。
5日間、実施例 1と同様の装置を用い、凝集剤 Aに粉末状カチオン性高分子凝集 剤(アタリロイルォキシェチルトリメチルアンモ -ゥムクロライド/アクリルアミド = 30/ 70 (モル%)の共重合体、分子量 500万)、凝集剤 Bに粉末状両性高分子凝集剤 (ァ クリロイルォキシェチルトリメチルアンモ -ゥムクロライド zアクリルアミド zアクリル酸ソ ーダ = 25. 0/50. 0/25. 0 (モル0 /0)の共重合体、分子量 400万)を用い、これら の凝集剤を、汚泥の SS分中の繊維分の比率 (繊維分 ZSS、質量%)に応じ、最適 な処理が可能なように下記の混合比率にて混合し、固形分濃度が 0. 2質量%となる よう水に溶解させた高分子凝集剤を汚泥に添加し、混合後、スクリュープレス脱水機 にて脱水処理を行った。その結果、高分子凝集剤の添加量が 60ppmで、脱水後の ケーキ含水率が 65%以下であり、脱水機力 の SS分のリークの無い状況を 5日間維 持することができた。
繊維分 ZSSが 10%以上 25%未満:凝集剤 AZ凝集剤 B=70Z30 (質量比) 繊維分 ZSSが 25%以上 35%以下:凝集剤 ΑΖ凝集剤 Β= 95Ζ5 (質量比) [0040] (比較例 4)
実施例 4と同一の汚泥に対して、高分子凝集剤として、凝集剤 Αを単独で、または 凝集剤 AZ凝集剤 B= 70Z30 (質量比)にブレンド比率を固定した混合物を用いて 脱水を行ったところ、下記に示すように、安定した脱水が得られな力つた。
[高分子凝集剤が凝集剤 A単独の例]
汚泥の繊維分 ZSSが 25〜35%の場合、高分子凝集剤添加量が 60ppmで脱水 性が良好であったものの、繊維分 ZSSが 10〜24%の場合、高分子凝集剤添加量 力 0〜: LOOppmの範囲において、脱水機からの SS分の流出が発生した。
[高分子凝集剤が凝集剤 AZ凝集剤 B = 70Z30の例]
汚泥の繊維分 ZSSが 10〜24%の場合、高分子凝集剤添加量が 60ppmで脱水 性が良好であったものの、繊維分/ SSが 25〜35%の場合、高分子凝集剤添加量 を 90ppmまで増加させないとケーキ含水率を 65%以下に維持できな力つた。
[0041] (実施例 5)
高分子凝集剤添加前の pHが 5. 7〜7. 2の範囲で変動する下記性状の製紙工場 廃水の処理を下記の手順で行った。
[廃水の性状]
SS分: 1400〜1500ppm
硫酸バンド添カ卩量: 70ppm
pH変動: 5. 7〜7. 2
実施例 1と同様の装置を用い、凝集剤 Aに粉末状低ァ-オン性高分子凝集剤 (ァク リルアミド Zアクリル酸ソーダ = 95. 0/5. 0 (モル0 /0)分子量 1000万)、凝集剤 Bに 粉末状中ァ-オン性高分子凝集剤(アクリルアミド Zアクリル酸ソーダ = 88. 0/12. 0 (モル%)分子量 1000万)を用い、最適な凝集が得られるようにこれらの凝集剤を、 廃水の pHに応じ、下記に示す混合比率により混合し、固形分濃度 0. 1質量%となる よう水に溶解させた高分子凝集剤を 0. 6ppmの濃度となるよう廃水に添加し、混合後 、凝集沈殿処理を行った。
廃水の pHが 5. 7〜6. 1 :凝集剤 AZ凝集剤 B = 90Z10 (質量比) 廃水の ρΗが 6. 2〜6. 6 :凝集剤八7凝集剤 = 50750 (質量比) 廃水の pHが 6. 7〜7. 2:凝集剤八7凝集剤 = 10790 (質量比) その結果、安定した凝集沈殿処理が維持できた。たとえば、混合直後の廃水の一 部を採取し、ジャーテスター (製品名:ジャーテスター MJS— 4Ρ ;株式会社宫本製作 所製)によりフロックの沈降時間(フロックの沈降が見られなくなるまでの時間)を測定 し、その沈降時間測定後 (凝集沈殿後)の当該廃水の上澄みの濁度を濁度計 (製品 名:濁度計 2100N;セントラル科学株式会社製)により測定したところ、沈降時間は全 て 30秒以内、濁度は 50NTU以下であった。
[0042] (比較例 5)
実施例 5と同じ廃水に対し、高分子凝集剤として、凝集剤 Αまたは Βを単独で、また は凝集剤 AZ凝集剤 B = 50Z50 (質量比)にブレンド比率を固定した混合物を用い て凝集沈殿処理を実施したところ、それぞれ、下記の問題点が発生した。
凝集剤 A単独で用いた場合、 pH6. 2以上の廃水において、凝集沈殿後の上澄み の濁度が大き力つた (たとえば PH7. 2の廃水の場合、沈降時間は 30秒以内、濁度 は 110NTUであった)。
凝集剤 B単独で用いた場合、 pH6. 6以下の廃水においてフロックの沈降時間が長 力つた(たとえば pH5. 7の廃水の場合、沈降時間は 60秒、濁度は 50NTU以下であ つた)。
凝集剤 AZ凝集剤 B = 50Z50の混合物を用いた場合、 pH5. 7〜6. 1の領域で フロックの沈降時間が長くなつた (たとえば PH5. 7の廃水の場合、沈降時間は 47秒 、濁度は 50NTU以下であった)。また、 pH6. 7〜7. 2の領域で凝集沈殿後の上澄 みの濁度が大きくなつた (たとえば PH7. 2の廃水の場合、沈降時間は 30秒以内、濁 度は 80NTUであった)。
産業上の利用可能性
[0043] 本発明の汚泥の凝集脱水処理方法および廃水の凝集沈殿処理方法は、汚泥また は廃水の性状変動に幅広く対応でき、凝集剤の劣化が少なぐ実用性にも優れてい る。すなわち、 2種以上の凝集剤を含有する凝集剤水溶液を調製する際に、凝集剤 として少なくとも 2種の粉末状高分子凝集剤を用い、該粉末状高分子凝集剤を、それ ぞれ独立に添加量を調節して水に添加することにより、該凝集剤水溶液中の各種高 分子凝集剤の添加量や添加比率を、常に、汚泥の凝集脱水または廃水の凝集沈殿 に最も適した最適条件とすることができる。さらに、高分子凝集剤を粉末状で保持し、 使用時に溶解して用いることから、凝集剤の性能劣化が少なぐ汚泥または廃水の急 激な変動に対しても迅速に対応できまた大が力りな装置も不要であり実用性が高い。

Claims

請求の範囲
[1] 凝集剤を含有する凝集剤水溶液を汚泥に添加する汚泥の凝集脱水処理方法であ つて、
少なくとも 2種の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、該粉末 状高分子凝集剤と水とを混合し、溶解することにより前記凝集剤水溶液を調製するこ とを特徴とする汚泥の凝集脱水処理方法。
[2] 2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための 2以上の貯留 槽と、該貯留槽に接続された供給量調節可能なフィーダ一と、給水ポンプを備えた 混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記貯留槽に貯留される粉末状高分子凝集剤を、フィーダ一を介して混合槽に供 給し、該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過 させることにより凝集剤水溶液を調製する請求項 1記載の汚泥の凝集脱水処理方法
[3] 前記 2種以上の粉末状高分子凝集剤の添加量を、汚泥の性状に応じて調節する 請求項 1または 2記載の汚泥の凝集脱水処理方法。
[4] 前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を汚泥に添加する までの平均滞留時間が 3時間以内である請求項 1〜3のいずれか一項に記載の汚泥 の凝集脱水処理方法。
[5] 凝集剤を含有する凝集剤水溶液を廃水に添加する廃水の凝集沈殿処理方法であ つて、
少なくとも 2種の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、該粉末 状高分子凝集剤と水とを混合し、溶解することにより前記凝集剤水溶液を調製するこ とを特徴とする廃水の凝集沈殿処理方法。
[6] 2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための 2以上の貯留 槽と、該貯留槽に接続された供給量調節可能なフィーダ一と、給水ポンプを備えた 混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記貯留槽に貯留される粉末状高分子凝集剤を、フィーダ一を介して混合槽に供 給し、該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過 させることにより凝集剤水溶液を調製する請求項 5記載の廃水の凝集沈殿処理方法
[7] 前記 2種以上の粉末状高分子凝集剤の添加量を、廃水の性状に応じて調節する 請求項 5または 6記載の廃水の凝集沈殿処理方法。
[8] 前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を廃水に添加する までの平均滞留時間が 3時間以内である請求項 5〜7のいずれか一項に記載の廃水 の凝集沈殿処理方法。
PCT/JP2005/021557 2004-11-25 2005-11-24 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法 WO2006057285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05809198A EP1845066A1 (en) 2004-11-25 2005-11-24 Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating waste water with use of polymer coagulant
US11/720,002 US20080053916A1 (en) 2004-11-25 2005-11-24 Method For Coagulating And Dewatering Sludge With Use Of Polymer Coagulant And Method For Coagulating And Percipitating Waste Water With Use Of Polymer Coagulant
AU2005308142A AU2005308142A1 (en) 2004-11-25 2005-11-24 Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating waste water with use of polymer coagulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-340162 2004-11-25
JP2004340162 2004-11-25

Publications (1)

Publication Number Publication Date
WO2006057285A1 true WO2006057285A1 (ja) 2006-06-01

Family

ID=36498021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021557 WO2006057285A1 (ja) 2004-11-25 2005-11-24 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法

Country Status (7)

Country Link
US (1) US20080053916A1 (ja)
EP (1) EP1845066A1 (ja)
KR (1) KR20070089154A (ja)
CN (1) CN101061072A (ja)
AU (1) AU2005308142A1 (ja)
TW (1) TW200621653A (ja)
WO (1) WO2006057285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059839A (ja) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 膜分離活性汚泥処理における固液分離方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119720A1 (ja) * 2006-04-12 2007-10-25 Dia-Nitrix Co., Ltd. 汚泥または廃水の処理方法
DE102008047427A1 (de) * 2008-09-15 2010-04-15 Bähr, Albert, Dipl.-Ing. Verfahren und Vorrichtung zur Fest-Flüssig-Trennung von Stoffgemischen und Suspensionen
US8562126B1 (en) 2012-03-29 2013-10-22 Eastman Kodak Company Pre-treatment composition for inkjet printing
JP6131465B2 (ja) * 2013-02-15 2017-05-24 三菱ケミカル株式会社 汚泥脱水処理方法
JP6088386B2 (ja) * 2013-08-22 2017-03-01 株式会社日立製作所 水処理方法及び有機酸の凝集剤
JP5731089B1 (ja) 2015-01-14 2015-06-10 巴工業株式会社 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
JP6878461B2 (ja) * 2016-04-11 2021-05-26 ケミラ・オーワイジェイKemira Oyj 廃水処理のスラッジ脱水性およびエネルギー収支の向上
CN106365411B (zh) * 2016-11-28 2023-07-21 浙江科力尔环保设备股份有限公司 一种污泥浓缩和脱水一体机
CN107902864A (zh) * 2017-11-09 2018-04-13 韩文雅 一种淤泥脱水装置
US11525022B2 (en) 2017-12-15 2022-12-13 Kemira Oyj Method for dewatering of biological sludge using a polymeric flocculant
KR102035971B1 (ko) 2019-04-26 2019-10-24 (주)에스엠엔지니어링 슬러지의 응집탈수 처리시스템
CN114315070A (zh) * 2022-01-19 2022-04-12 中信环境技术(广州)有限公司 一种制备聚合硫酸铁的方法与系统
CN114906925B (zh) * 2022-02-09 2024-03-12 湖北汉江益清环保科技有限公司 一种污水处理在线投料系统及方法
CN114735906A (zh) * 2022-03-14 2022-07-12 浙江迅犀建设有限责任公司 钻孔基础处理废弃泥浆固化施工工法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279812A (ja) * 1986-05-28 1987-12-04 Denki Kagaku Kogyo Kk 懸濁物質の凝集方法
JPH10249400A (ja) * 1997-03-14 1998-09-22 Nippon Shokubai Co Ltd 汚泥の脱水方法
JP2001026650A (ja) * 1999-07-15 2001-01-30 Kobayashi Eng Works Ltd ポリマー連続溶解装置
JP2003181466A (ja) * 2001-12-21 2003-07-02 Hymo Corp 製紙排水処理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655552A (en) * 1971-02-16 1972-04-11 Calgon Corp Method for removing phosphate from waste water
US4178243A (en) * 1975-11-10 1979-12-11 American Minechem Corporation Method and apparatus for controlled dewaterizing of coal treatment underflow
JPS58168792A (ja) * 1982-03-31 1983-10-05 日東化学工業株式会社 石油掃攻用水溶液を得るための粉体ポリアクリルアミドの溶解装置
US5614102A (en) * 1990-01-29 1997-03-25 Sakurada; Yasuyuki Method for purifying sewage
US5698109A (en) * 1990-06-29 1997-12-16 Allied Colloids Limited Purification of aqueous liquor
GB9021565D0 (en) * 1990-10-04 1990-11-21 Allied Colloids Ltd Dewatering compositions and processes
US5540836A (en) * 1994-06-16 1996-07-30 Coyne; Thomas J. Wastewater treatment system and method
JPH10216408A (ja) * 1996-12-02 1998-08-18 Kobayashi Seisakusho:Kk 凝集剤の溶解機
GB9801524D0 (en) * 1998-01-23 1998-03-25 Allied Colloids Ltd Thickening of aqueous mineral suspensions
HU226033B1 (en) * 2000-05-31 2008-03-28 Ciba Spec Chem Water Treat Ltd Treatment of mineral materials
US6454949B1 (en) * 2000-09-19 2002-09-24 Baffin, Inc. Highly accelerated process for removing contaminants from liquids
GB0109087D0 (en) * 2001-04-11 2001-05-30 Ciba Spec Chem Water Treat Ltd Treatment of suspensions
GB0111704D0 (en) * 2001-05-14 2001-07-04 Ciba Spec Chem Water Treat Ltd Apparatus and method for wetting powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279812A (ja) * 1986-05-28 1987-12-04 Denki Kagaku Kogyo Kk 懸濁物質の凝集方法
JPH10249400A (ja) * 1997-03-14 1998-09-22 Nippon Shokubai Co Ltd 汚泥の脱水方法
JP2001026650A (ja) * 1999-07-15 2001-01-30 Kobayashi Eng Works Ltd ポリマー連続溶解装置
JP2003181466A (ja) * 2001-12-21 2003-07-02 Hymo Corp 製紙排水処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059839A (ja) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 膜分離活性汚泥処理における固液分離方法

Also Published As

Publication number Publication date
AU2005308142A1 (en) 2006-06-01
CN101061072A (zh) 2007-10-24
US20080053916A1 (en) 2008-03-06
TW200621653A (en) 2006-07-01
EP1845066A1 (en) 2007-10-17
KR20070089154A (ko) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5037002B2 (ja) 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法
WO2006057285A1 (ja) 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法
JP6143835B2 (ja) 汚泥の凝集方法及び装置
WO2014038537A1 (ja) 水処理方法及び装置
JP5521272B2 (ja) 汚泥または廃水の処理方法
JP6378865B2 (ja) 汚泥の処理方法及び装置
SK288076B6 (sk) Method of using water soluble polymers in a membrane biological reactor
JP2011230038A (ja) 水処理装置
JP5837694B2 (ja) 汚泥の処理方法及び処理装置
JP5423256B2 (ja) 汚泥脱水方法及び汚泥脱水装置
JP4272122B2 (ja) 凝集沈殿水処理方法及び装置
JP2021186793A (ja) 浄水処理方法及び浄水処理装置
CN112358116A (zh) 一种强化磁混凝分离过程的高效污泥回流系统及其方法
JP3168608B2 (ja) 汚泥処理装置
JP6362304B2 (ja) 汚泥処理方法及び装置
JPH07256298A (ja) 汚泥の造粒濃縮による脱水方法
JP6824869B2 (ja) 被処理水の処理方法及び処理装置
JP4633770B2 (ja) 汚泥脱水システム
JP2004121997A (ja) 汚泥脱水剤及び汚泥脱水方法
WO2019130635A1 (ja) 水処理方法及び装置
JPH0938700A (ja) 有機汚泥の処理法
JP5723916B2 (ja) 有機性汚泥の脱水方法及び装置
JP2023107035A (ja) 有機性廃水の処理方法、有機性廃水の処理装置及び高分子凝集剤
Schwoyer Sludge Dewatering with Polyelectrolytes
JP2023033770A (ja) 含油排水の水処理方法および含油排水の水処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580039955.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11720002

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005809198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005308142

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077013317

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005308142

Country of ref document: AU

Date of ref document: 20051124

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005308142

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005809198

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11720002

Country of ref document: US