WO2006056435A1 - Verfahren zur herstellung von menthol - Google Patents

Verfahren zur herstellung von menthol Download PDF

Info

Publication number
WO2006056435A1
WO2006056435A1 PCT/EP2005/012563 EP2005012563W WO2006056435A1 WO 2006056435 A1 WO2006056435 A1 WO 2006056435A1 EP 2005012563 W EP2005012563 W EP 2005012563W WO 2006056435 A1 WO2006056435 A1 WO 2006056435A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
geraniol
menthol
isopulegol
citronellol
Prior art date
Application number
PCT/EP2005/012563
Other languages
English (en)
French (fr)
Inventor
Eike Johannes Bergner
Klaus Ebel
Thorsten Johann
Oliver LÖBER
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AT05810891T priority Critical patent/ATE433434T1/de
Priority to DE502005007475T priority patent/DE502005007475D1/de
Priority to EP05810891A priority patent/EP1819654B1/de
Priority to JP2007541841A priority patent/JP5312792B2/ja
Priority to US11/720,279 priority patent/US7709688B2/en
Priority to CN2005800406156A priority patent/CN101065344B/zh
Publication of WO2006056435A1 publication Critical patent/WO2006056435A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/172Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with the obtention of a fully saturated alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/002Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a process for the preparation of optically active menthol starting from geraniol or nerol or mixtures of geraniol and nerol.
  • Menthol is one of the most important aroma chemicals, the bulk of which is still isolated from natural sources.
  • Menthol in particular the naturally occurring enantiomer L-menthol on an industrial scale, there is therefore a constant need for optimization with regard to the economic viability of the process.
  • the synthesis of L-menthol starting from inexpensive achiral starting materials is therefore still a challenge.
  • racemic menthol which is obtainable, for example, by hydrogenation of thymol, can be obtained after esterification by racemate resolution (by crystallization or enzymatic resolution), as for example in EP -A 0 743 295, EP-A 0
  • JP-A 53-116348 discloses the preparation of L-isopulegol, a precursor of menthol, by cyclization of L-isopulegol by selective cyclization of D-citronellal in the presence of zinc bromide as a catalyst.
  • the object has been achieved by providing a process for the preparation of optically active menthol starting from geraniol or nerol or mixtures of geraniol and nerol by
  • geraniol or nerol or mixtures of geraniol and nerol are hydrogenated enantioselectively to optically active citronellol
  • the optically active citronellol thus obtained is converted into optically active citronellal
  • the resulting optically active citronellal is cyclized to an optically active isopulegol-containing mixture of substances and d) optically active isopulegol is separated off from the mixture of substances obtained and hydrogenated to optically active menthol or the optically active isopulegol contained in the mixture thus obtained is hydrogenated to optically active menthol and the resulting optically active menthol is separated from the mixture obtained as the product of the hydrogenation ,
  • the starting materials or starting substances for carrying out the process according to the invention are the compounds geraniol of the formula (I) and / or nerol of the formula (II)
  • a preferred starting material is geraniol, especially those having a purity of at least 95% by weight, which contains nerol as an impurity to the major amount.
  • geraniol is used which contains about 0.1 to about 5% by weight of nerol.
  • Such mixtures of the compounds mentioned are obtained, for example, in the industrial synthesis of geraniol by selective hydrogenation of citral and subsequent purification by distillation, as described, for example, in EP-A 1 317 959, EP-A 1 318 129, DE-A 31 38 423 or DE-A 101 60 143 is described.
  • nerol i. Nerol containing about 0.1 to about 10 wt .-% geraniol or use pure nerol as the starting material.
  • the starting materials mentioned are hydrogenated enantioselectively in a first step of the process according to the invention to optically active citronellol of the formula (III).
  • optically active citronellol is to be understood as meaning citronellol which for the most part consists of one of the two possible enantiomers of
  • Citronellols exists.
  • optically active citronellol is preferably to be understood as meaning citronellol which has an enantiomeric excess (ee) of at least 90% ee, preferably from about 95 to about 99% ee.
  • the asymmetric carbon atom labeled with (*) in formula (III) may be present either in the R or the S configuration.
  • the enantioselective hydrogenation is carried out in a manner known to those skilled in the art in the presence of a suitable catalyst and in the presence of hydrogen.
  • Suitable catalysts are those which are capable of enantioselectively hydrogenating threefold substituted ethylenic double bonds, in particular those in the vicinity of a hydroxyl group.
  • the said enantioselective hydrogenation according to step a) is carried out in the presence of a homogeneous transition metal catalyst containing Ru, Rh or Ir and at least one chiral, at least one phosphorus, arsenic and / or antimony atom a phosphorus atom-containing ligand comprises.
  • a homogeneous transition metal catalyst containing Ru, Rh or Ir and at least one chiral, at least one phosphorus, arsenic and / or antimony atom a phosphorus atom-containing ligand comprises Such catalyzers are, as mentioned in the introduction, known and described, for example, in T. Ohkuma et al. Asymmetry synth. (2nd Ed.) 1999, 1-110; Dep. Chem., Res. Cent. Mater. See, Nagoya 464, Japan or W. Tang et al. Chem. Rev. 2003, 103, 3029-3069.
  • Particularly preferred ligands are phosphorus-containing compounds having the ability to form atropisomeria with respect to two aryl or hetaryl systems according to the following general formulas (IV) to (VI):
  • R1, R2 may be the same or different and are halogen, C 1 - to C 6 -alkyl or d- to C 6 alkoxy, substituted or unsubstituted aryl, heteroaryl, alkyl, cycloalkyl having 1 to 20 carbon atoms;
  • R 3 may be identical or different and are aryl, heteroaryl, alkyl, cycloalkyl having 1 to 20 carbon atoms substituted or unsubstituted by halogen, C 1 - to C 6 -alkyl or C 1 - to C 6 -alkoxy;
  • R5, R5 1 may be the same or different and are hydrogen, halogen, C 1 - to C 6 -alkyl, C 6 - to C-
  • R 6, R 6 1 may be identical or different and are hydrogen, halogen, C 1 - to C 6 -alkyl, C 6 - to C 10 -aryl, C 1 - to C 6 -alkoxy, amino or thio;
  • R 7, R 7 1 may be identical or different and are hydrogen, halogen, C 1 - to C 6 -AlkVl, C 6 - to C 10 -ArVl, C 1 - to C ⁇ -alkoxy, amino or thio;
  • R6 and R7 (if both exist) and / or R6 ' and R7 1 (if both exist) each together have one or more rings, the further 1 or 2 double bonds and / or one or more heteroatoms selected from the group of heteroatoms N, O, S may contain;
  • R 8, R 8 ' may be identical or different and are hydrogen, halogen, C 1 - to C 6 -
  • Alkyl C 6 - to Ci ⁇ -aryl, C 1 - to C 6 alkoxy, amino or thio;
  • X, X 1 may be the same or different and represent S 1 O or NR 9, where
  • R 9 is hydrogen, C 1 - to C ⁇ -alkyl, C 6 - to C 1o -aryl, C 1 - to C 6 -acyl or SO 2 RIO be ⁇ interpret, wherein
  • R 10 is C 6 - to C 1 o -aryl, C 1 - to C 6 -alkyl, C 1 - to C 6 -fluoroalkyl, in particular CF 3 meaning tet and halogen, fluorine, chlorine, bromine or iodine, in particular fluorine or chlorine understand is.
  • C 1 -C 6 -alkyl includes straight-chain, branched or cyclic alkyl radicals having 1 to 6 carbon atoms, for example methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl , Isopentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl.
  • C 1 - to C 6 -alkoxy are straight-chain or branched alkoxy substituents having 1 to 6 carbon atoms, for example methoxy, ethoxy, propoxy, isopropoxy.
  • C6 to C10 aryl are phenyl or naphthyl;
  • heteroaryl is meant in particular pyridyl or thiophenyl.
  • amino means -NH 2 , -NHR 11 or -NR 11 R 12, where R 11, R 12 independently of one another can each denote C r C 6 -alkyl.
  • thio includes both free thiol groups -SH and thioethers -SR11.
  • Particularly suitable ligands for the in step a) of the inventive procedural ⁇ Rens preferred to use catalyst systems are the following of the Lite ⁇ temperature known ligand (1) to (43):
  • suitable ligands are also the aminophosphine ligands according to the following general structure (VII):
  • R 1, R 2 may have the abovementioned meaning and Ar is C 6 - to C 10 -aryl or -heteroaryl.
  • the ligands mentioned are preferably used in enantiomerically pure form. Particularly preferred is a catalyst of Ru and a ligand selected from the group of ligands 2,2'-bis (diphenylphosphino-1, 1'-binaphthyl (BINAP), 2,2'-bis [di (p-tolyl ) phosphino] -1, 1'-binaphthyl (p-Tol-BINAP), 2,2'-bis (diphenylphosphinoH ⁇ ', ⁇ . ⁇ '-tetramethyl-S.S'-bibenzo-thiophene (tetraMetianp), 2, 2'-bis (diphenylphosphino) -3,3'-tetramethyl-3,3'-bibenzo [b] thiophene (bitianp) is also preferred, and a catalyst of Ru and BINAP (2,2'-bis (diphenylphosphino 1,1'-bin
  • the two enantiomers of the citronellal can be obtained in a targeted manner.
  • hydrogenation of geraniol in the presence of a catalyst containing Ru and (S) -BINAP preferably gives D- (R) -citronellol.
  • iridium complexes with the abovementioned aminophosphine ligands such as 2-amino-2'-diarylphosphino-1-1'-binaphthyl (SMAP), 2-amino-2'-diarylphosphinyl-1 -1 '-binaphthyl or 2 -Carbamoyl-2'-diarylphosphinyl-1 -1 '-binaphthyl used for the asymmetric hydrogenation of geraniol or nerol, so you can work with either pure nerol or geraniol or even a 1: 1 mixture of both terpene alcohols, as in the EP A 1 013 658.
  • SMAP 2-amino-2'-diarylphosphino-1-1'-binaphthyl
  • the cited catalysts can be used as ready-made, partially commercially available compounds or can be prepared initially from precursor compounds in a manner known per se to the person skilled in the art.
  • Suitable precursor compounds for the preparation of Ru-containing complexes are, for example, [RuCl 2 (benzene)] 2 , Ru (acac) 3 , (RuCl 2 (COD)], where acac is acetylacetonate and COD is cyclooctadiene.
  • the chiral ruthenium complexes to be used as catalysts in the process according to the invention are prepared in situ by reacting the selected precursor compound with the chosen chiral ligand in a suitable organic solvent and excluding oxygen, ie. vor ⁇ preferably under inert gas atmosphere, brings into contact. It may be advantageous to add alkali or alkaline earth metal salts of acetic acid or of trifluoroacetic acid or else acetic acid or trifluoroacetic acid as such to the mixture.
  • the molar ratio of ruthenium used (based on the Ru atoms contained in the precursor compounds) to chiral ligand used is usually about 1: 1 to about 2: 1, preferably about 1: 1, 05 to about 1: 1 ; 5.
  • Particularly suitable solvents for the in-situ preparation of the catalyst as well as for carrying out the enantioselective hydrogenation according to the invention are alkanols, such as, for example Methanol, ethanol and / or isopropanol, but also alkanediols, e.g. Ethylene glycol, diethylene glycol, triethylene glycol and or tripropylene glycol.
  • the hydrogenation can be carried out with good results even without the addition of solvents, i. in the pure starting compound.
  • the enantioselective hydrogenation according to step a) is carried out by using methanol as solvent.
  • methanol as solvent.
  • the hydrogenation mentioned is usually carried out in a temperature range from 1 to 60 ° C., preferably from 20 to 50 ° C. and more preferably from 35 to 45 ° C. and under a hydrogen pressure of from 10 to 150 bar, preferably from 70 to 120 bar ,
  • a hydrogen pressure of from 10 to 150 bar, preferably from 70 to 120 bar
  • the enantioselective hydrogenation of geraniol or nerol according to the invention to the optically active citronellal can be carried out in a particularly economical manner, in particular in industrial scale reactions. Tumors were converted depending on the choice of starting compounds, catalysts and reaction conditions Numbers (TON) of up to 10,000 achieved.
  • citronellal obtained as described above can be further purified by all methods and processes known to those skilled in the art, in particular by distillation.
  • step b) of the process according to the invention the optically active citronellol obtained as described above and obtained in step a) is converted into optically active citronellal of the formula (VIII).
  • Suitable reactions for effecting the oxidation or dehydrogenation of optically active citronellal according to the invention to optically active citronellol are, for example, oxidation with atmospheric oxygen under Fe (NO 3 ) 3 -FeBr 3 catalysis, as described, for example, by SE Martin et al. in Tetrahedron Lett. 2003, 44, 549-552; TEMPO oxidation in ionic liquids as described, for example, by IA Ansari et al. in Organic Letters, 2002, 4, 1507-1509; the copper-catalyzed aerobic oxidation with TEMPO in a two-phase system with fluorinated solvents, as described, for example, by G. Ragagnin et al.
  • a process preferred in the context of the present invention for reacting optically active citronellol to optically active citronellal in step b) is the hydrogenation of optically active citronellal in the presence of a catalyst in the gas phase, as described in the international application with the file reference PCT / EP / 05/002288, the entirety of which is incorporated herein by reference.
  • a large variety of catalysts is suitable, in particular those catalysts which contain at least one of the elements selected from the group consisting of zinc, calcium and copper, in each case as such or in the form of suitable compounds contain.
  • the catalysts which can be used according to the invention in step b) may also contain one or more elements of groups 1, 2, 3, 4, 13 and / or 14, e.g. Na, K, Mg, Ti, Zr, C, Si, and / or Ge.
  • catalysts which contain zinc and calcium, preferably in oxidic form and / or in the form of their carbonates.
  • those catalysts are preferred which contain zinc oxide and calcium carbonate.
  • Preferred catalysts for carrying out the dehydrogenation process are those whose active component consists of 30 to 60% by weight, preferably 40 to 50% by weight of zinc oxide and 40 to 70, preferably 50 to 60% by weight of calcium carbonates , Furthermore preferred are those whose calcium carbonate component is present in the calcite modification.
  • the stated proportions are to be determined from the calcined catalyzer mass in which zinc and calcium are each present in the form of their oxides.
  • catalysts which can be used for the dehydrogenation of optically active citronellol are copper-containing catalysts, in particular those which contain copper in an oxidation state> O in a form deposited on an oxidic support, as described in DE-A 197 57 297.
  • a further carrier material for example, calcium carbonate and other suitable carrier materials are also suitable.
  • the catalysts which can be used according to the invention have a BET specific surface area of from 5 to 50, preferably from 10 to 30, m 2 / g.
  • Such a catalyst is obtainable, for example, by precipitating sparingly soluble zinc and calcium compounds from water-soluble zinc and calcium compounds with a base and subsequent workup in a manner known per se, wherein
  • the sparingly soluble zinc and calcium compounds are filtered after precipitation,
  • step IV The washed zinc and calcium compounds from step III. dries to obtain a powder, and then
  • step IV the powder from step IV. Calcined at temperatures of not more than 600 0 C, and
  • the calcined powder is pressed into shaped bodies.
  • Acetate, sulfates, nitrates, chlorides, preferably nitrates, such as zinc nitrate, zinc acetate, zinc sulfate, calcium acetate, calcium nitrate, preferably zinc nitrate and calcium nitrate, may be used as the water-soluble zinc and calcium salts.
  • aqueous solutions of the corresponding salts are used in concentrations in the range from 3 to 25, preferably from 10 to 25, in particular 20% by weight.
  • the molar ratio of zinc to calcium is preferably chosen such that, after calcination, the active component of the catalyst comprises from 30 to 60% by weight of zinc oxide and from 40 to 70% by weight of calcium carbonate, which is preferably present in the calcite. Modification exists.
  • the base used is water-soluble basic carbonates such as alkali metal carbonates such as sodium carbonate, potassium carbonate, alkali metal bicarbonates such as sodium bicarbonate, potassium bicarbonate, ammonium carbonate or ammonium bicarbonate and mixtures thereof, preferably sodium carbonate, more preferably in the form of their aqueous solutions in concentrations generally in the range of 0.5 to 30, preferably from 10 to 25 grams base / 100 grams solution.
  • the precipitation is generally carried out at temperatures in the range from 10 to 90 ° C., preferably from 40 to 80 ° C. After precipitation, if desired, the precipitate can be filtered off.
  • the optionally filtered precipitate is washed usually with water, preferably until no nitrate ratringprobe more means of Nit is detectable, and dried and then preferably at a Tempe ⁇ temperature in the range of 90 to 150 0 C to obtain a dried powder. Drying can take place in a quiescent or moving layer, preferably by spray drying.
  • the dried powder is then heated at temperatures not higher than
  • 600 0 C preferably in the range of 300 to 600 0 C, in particular from 400 to 475 0 C, be ⁇ preferably in air, calcined. Observations to date have prolonged heating over 600 0 C for the formation of aragonite modification of CaCO 3. A short-term wetting Erhit ⁇ above 600 0 C is then not so long as to form a hindrance for the preparation of the invention permits one settable catalysts are not aragonite (detection by X-ray diffractometry).
  • the calcined powder can be pressed into shaped articles such as tablets, rings, cylinders, etc., preferably tablets.
  • the calcined powder is compressed together with graphite, preferably with 0.1 to 5, more preferably with 1 to 2.5, in particular 2 wt .-%, based on the total mass, of graphite.
  • the uncalcined powder from step III is compressed. (see above) to molded articles, preferably into tablets, ring tablets, calcinated tablets, as described in US Pat. No. 6,518,220, or triols, and calcines the resulting shaped articles as described above.
  • the calcined powders and shaped bodies thus obtained can be used as catalysts, these catalysts being able to contain as active components zinc oxide and calcium carbonate (in the calcite modification) and, if desired, as a passive component, graphite.
  • a dehydrogenation catalyst which has a pore volume in the range from 0.10 to 0.50, in particular from 0.20 to 0.35 cm 3 / g, with a pore diameter in the range from 5 nm to 300 mm auf ⁇ , wherein more preferably at least 85%, preferably more than 90% of this pore volume with a pore diameter in the range of 0.01 to 0.5 mm ver ⁇ is connected.
  • Particularly preferred catalysts of the type mentioned are those which have a compressive strength in the range from 500 to 4000 N / cm 2 , in particular from 1000 to 2500 N / cm 2 and a lateral compressive strength of 30 to 300 N, preferably 50 to 200 N.
  • the BET specific surface area is generally from 5 to 50 m 2 / g, preferably from 10 to 30 m 2 / g.
  • the pore volume in the pore diameter range between 0.1 nm and 300 nm has values usually between 0.1 and 0.5 cm 3 / g, preferably 0.2 to 0.35 cm 3 / g, with the proviso that at least 85% , Preferably more than 90% of this pore volume in the pore diameter range of 0.01 to 0.5 mm.
  • the forehead compressive strength of the tablets is preferably 500 to 4000 N / cm 2 , in particular 1000 to 2500 N / cm 2 and the lateral compressive strength of the pills is preferably between 30 and 300 N, preferably 50 to 200 N.
  • the precipitate of sparingly soluble zinc and calcium compounds is washed on filter presses, the water cake obtained is masticated with water, and the mash is sprayed in a spray tower for drying.
  • the dried spray powder obtained in this way can then be further processed as described above.
  • the vaporized, gaseous, optically active citronellol is contacted in a conventional manner with the dehydrogenation catalyst used, for example in a fixed bed reactor, tubular reactor, tube bundle reactor or in a fluidized bed reactor in a tubular reactor in which the catalyst is firmly an ⁇ ordered.
  • the dehydrogenation catalyst used, for example in a fixed bed reactor, tubular reactor, tube bundle reactor or in a fluidized bed reactor in a tubular reactor in which the catalyst is firmly an ⁇ ordered.
  • Particularly preferred are tube bundle reactors.
  • the discharge is usually worked up by distillation.
  • the employed optically active citronellol is evaporated in a manner known per se, for example in a suitable evaporator.
  • the dehydrogenation process provided in the preferred embodiment is usually carried out at elevated temperature.
  • the temperature of the gas phase in the reaction zone is usually selected in the range of 350 to 450 C.
  • the pressure of the gas phase in the reaction zone is generally selected in the range of 0.3 to 10 bar.
  • the loading of the catalyst is generally chosen in the range of 0.5 to 3.0, preferably 0.6 to 2.0 liters of optically active citronellol per liter of catalyst and per hour.
  • Suitable reactor forms are the fixed bed pipe or Rohrbü ⁇ delreaktor.
  • the selected catalyst is present as a fixed bed in a reaction tube or in a bundle of reaction tubes.
  • the reaction tubes are usually indirectly heated in that in the space surrounding the reaction tubes, a gas, such as a hydrocarbon such as methane, is burned or a heat transfer medium (salt bath, rolling gas, etc.) is used. It is also possible to electrically heat the reaction tubes with heating sleeves. Usual reaction tube internal diameters are about 2.5 to 15 cm.
  • a typical Dehydrierrohrbündelreaktor comprises about 10 to 32,000 reaction tubes, preferably about 10 to 200 reaction tubes.
  • the temperature in the reaction tubes varies typically in the range of 250 to 600 0 C, preferably upstream in the range of 300 to 600 0 C.
  • the operating pressure is usually zwi ⁇ rule 0.5 to 8 bar, frequently from 1 to 2 bar.
  • the preferred dehydrogenation process can also be carried out as described in Chem. Eng. Be. 1992 b, 47 (9-11) 2313, heterogeneously catalyzed in a fluidized bed. Conveniently, two fluidized beds are operated side by side, one of which is usually in the state of regeneration.
  • the Hä ⁇ pressure is typically from 1 to 2 bar
  • the dehydrogenation temperature is generally 250 to 600 0 C.
  • the inventively preferred catalytic dehydrogenation can be carried out with or without sau ⁇ erstoff ambiencem gas as a co-feed and optionally with the addition of water vapor, nitrogen, methane and / or argon.
  • the selected reactor may comprise one or more consecutive catalyst beds.
  • the number of catalyst beds can be 1 to 20, advantageously 1 to 6, preferably 1 to 4 and in particular 1 to 3.
  • the catalyst beds are preferably flowed through radially or axially from the reaction gas.
  • such a tray reactor is operated with a fixed catalyst bed.
  • the fixed catalyst beds are arranged in a shaft furnace reactor axially or in the annular gaps of concentrically arranged cylindrical gratings.
  • a shaft furnace reactor corresponds to a horde.
  • step b) sets optically active citronellol with an enantiomeric excess of at least 90% ee, preferably 95% ee on a catalyst whose Aktivkomponenete 54 to 57 wt .-% zinc oxide and 43 bis Contains 46 wt .-% calcium carbonate (in each case determined in the form of the oxides of the annealed Katalysa ⁇ tormasse) in a suitable reactor, for example a tubular reactor to.
  • a suitable reactor for example a tubular reactor to.
  • the Reactor can be heated by any suitable method, preferably by a Salzschmel ⁇ ze, to temperatures in the range of about 350 to about 450 0 C. The reaction takes place in the gas phase.
  • a substance mixture containing the starting material to be dehydrogenated is passed, for example, in an inert gas stream, for example a stream of nitrogen, over the selected catalyst.
  • an autothermal procedure by partial H 2 combustion after prior introduction of a H 2 -containing substance mixture is possible.
  • the isolation of the reaction products can be carried out by any suitable methods known to the person skilled in the art. Obtained in this way at a conversion of preferably about 30 to about 60% d. Th. Optically active citronal IaI in a selectivity of usually about 60 to about 95%.
  • the optically active citronellal obtained according to step b) of the process according to the invention is converted into an optically active isopulegol of the formula (IX)
  • step c) of the process according to the invention is usually carried out in the presence of an acid or Lewis acid as cyclization catalyst, for example by Y. Nakatani and K. Kawashima using zinc halides in Synthesis, 1978, 147-148 and the citations mentioned therein.
  • an acid or Lewis acid as cyclization catalyst
  • the thermal cyclization with, however, moderate stereoselectivities is also possible (KH Schulte-Elte et al., HeIv. Chim. Acta, 1976, 50, 153-165).
  • Useful cyclization catalysts are, for example, ZnBr 2 , as disclosed, for example, in JP-A 53116348, scandium triflate, as described in EP-A 0 926 117, SiO 2 (silica gel), as described in US Pat. No. 2,117,414, mixed oxide catalysts such as, for example, SiO 2 -Al 2 O 3 , montmorillonite, aluminosilicates, iron (III) chloride, zinc chloride, tin tetrachloride and Trisdiarylphenoxyaluminium complexes, as known from EP-A 1 225 163 or zeolites.
  • mixed oxide catalysts such as, for example, SiO 2 -Al 2 O 3 , montmorillonite, aluminosilicates, iron (III) chloride, zinc chloride, tin tetrachloride and Trisdiarylphenoxyaluminium complexes, as known from EP-A 1 225 163
  • the cyclization of optically active citronellal to mixtures containing optically active isopulegol can be carried out under a wide variety of reaction conditions.
  • the choice of a suitable solvent, the concentration of the substrate in the reaction mixture and the reaction time and temperature can be varied widely.
  • thermal energy and other forms of energy in particular microwave energy or ultrasound can be supplied.
  • the person skilled in the art preferably selects the reaction conditions in such a way that he obtains by the cyclization of the optically active citronellal according to step c) of the process according to the invention (after removal of the solvents) a substance mixture which is at least 60% by weight, preferably at least 75% Wt% consists of isopulegol.
  • the mixtures of substances obtained according to step c) generally also contain the other three abovementioned diastereomers of isopulegol in variable proportions and small amounts of further impurities or solvent residues.
  • the mixtures thus obtained are subjected to a separation and a hydrogenation, whereby either optically active isopulegol is separated off from the mixture of substances obtained and hydrogenated to optically active menthol or in the hydrogenating the optically active menthol containing optically active menthol thus obtained and thus separating off the optically active menthol thus obtained from the mixture of substances obtained as a product of the hydrogenation.
  • the mixtures of substances obtained according to step c) can be subjected to a separation in which the optically active isopulegol contained in the mixture of the remaining components of the Stoff ⁇ , in particular of the three other diastereomers of isopulegol , separates off.
  • Suitable methods for separating the optically active isopulegol include, for example, crystallization if appropriate, after prior derivatization of the resulting isopulegol diastereomers, distillation processes and chromatographic processes.
  • preferred separation method for the separation of the optically active isopulegol obtained according to the invention is the distillation or the crystallization.
  • An increase in the optical purity of the isopulegol obtained in the invention in> 99.7% ee is structures example, by crystallization at low Tempera ⁇ , possible, for example at -40 0 C as described in US 5,663,460.
  • optically active isopulegol separated according to this first alternative according to step d) of the process according to the invention is subsequently hydrogenated to optically active methylthol.
  • the mixtures obtained according to step c) are also initially subjected to hydrogenation, wherein the optically active isopulolate present in the mixture is hydrogenated to give optically active menthol and thus obtained optically active menthol from the product mixture obtained by hydrogenation.
  • the separation processes mentioned above for the separation of optically active isopulegol are suitable.
  • the hydrogenation of the ethylenic double bond of the optically active isopulegol or its diastereomers to be carried out in both alternatives are suitable for all hydrogenation processes which appear suitable to the person skilled in the art, in particular processes for the catalytic hydrogenation of ethylenic double bonds on suitable transition metal-containing catalysts in the presence of hydrogen or hydrogen donato
  • homogeneous and heterogeneous catalytic processes are equally suitable, with heterogeneous catalytic methods being preferred for reactions on an industrial scale.
  • Particularly suitable catalysts are those which contain at least one transition metal of groups 7 to 9 of the Periodic Table of the Elements, in particular Pd, Pt, Ni, Ir, Rh and / or Ru.
  • Suitable heterogeneous catalysts can be used in supported or unsupported form. Possible configurations, process variants or catalysts belong to the knowledge of the person skilled in the art.
  • step d) of the process according to the invention is carried out by first hydrogenating the substance mixture obtained in step c) and then separates optically active menthol from the mixture obtained by hydrogenation. It is particularly preferable to separate the optically active menthol obtained by hydrogenation by crystallization from the other components of the mixture of substances obtained by hydrogenation.
  • step a) of the process according to the invention an enantioselective hydrogenation of geraniol of the formula (I), preferably those containing from about 0.1 to about 5% by weight of neral to D- ( R) -citronellol of the formula (X).
  • Preference is given to using a catalyst containing Ru and (S) -BINAP and preferably obtains D- (R) -citronellol with a purity of 90 to 99% ee.
  • the D- (R) -citronellol thus obtained is then converted, in the particularly preferred embodiment, by de hydrogenation into D- (R) -citronellal of the formula (XI), with particular preference being given to dehydrogenation as described above in the gas phase.
  • the D- (R) -citronellal thus obtained is subsequently cyclized in the context of the preferred embodiment in the presence of ZnBr 2 or Al 2 CVSiO 2 as catalyst to form L-isopulegol of the formula (IX).
  • the L-isopulegol obtained by cyclization is subsequently hydrogenated to the L-menthol of the formula (XII) as described above and finally separated by a suitable separation process, in particular by crystallization.
  • the inventive method is characterized by the combination of the individual steps a) to d).
  • This combination opens up an advantageous, technically feasible and commercially acceptable total yields rov ⁇ access to optically active menthol. It is of particular importance that the disclosed synthetic route is independent of source materials or intermediates to be isolated from natural sources which, if chiral, are generally available only in the form of one of their enantiomers. As a further advantage, the process according to the invention therefore offers the possibility of optionally providing both enantiomers of menthol on an industrial scale.
  • Example 1 Enantioselective hydrogenation of geraniol with the catalyst system Ru / (S) -BINAP
  • a tube reactor heatable by molten salt was mixed with 10.8 g of a catalyst consisting of 55% by weight of ZnO and 45% by weight of CaCO 3 in the calcite.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktivem Menthol ausgehend von Geraniol oder Nerol oder Gemischen von Geraniol und Nerol indem man a) Geraniol oder Nerol oder Gemische von Geraniol und Nerol zu optisch aktivem Citronellol enantioselektiv hydriert, b) das so erhaltene optisch aktive Citronellol zu optisch aktivem Citronellal umsetzt, c) das so erhaltene optisch aktive Citronellal zu einem optisch aktives Isopulegol enthaltenden Stoffgemisch cyclisiert und d) optisch aktives Isopulegol aus dem so erhaltenen Stoffgemisch abtrennt und zu optisch aktivem Menthol hydriert oder das in dem so erhaltenen Stoffgemisch enthaltene optisch aktive Isopulegeol zu optisch aktivem Menthol hydriert und das so erhaltene optisch aktive Menthol aus dem als Produkt der Hydrierung erhaltenen Stoffgemisch abtrennt.

Description

Verfahren zur Herstellung von Menthol
Beschreibung
Technisches Gebiet der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktivem Menthol ausgehend von Geraniol oder Nerol oder Gemischen von Geraniol und Nerol.
Menthol stellt eine der wichtigsten Aromachemikalien dar, deren Hauptmenge nach wie vor aus natürlichen Quellen isoliert wird. Für totalsynthetische Zugänge zum Menthol, insbesondere dem natürlich vorkommenden Enantiomeren L-Menthol in technischem Maßstab besteht daher ständiger Optimierungsbedarf bezüglich der Wirtschaftlichkeit des Verfahrens. Insbesondere die Synthese von L-Menthol ausgehend von wohlfeilen achiralen Edukten stellt deshalb nach wie vor eine Herausforderung dar.
Zur Synthese von L-Menthol können zwei Strategien verfolgte werden: Zum einen lässt sich racemisches Menthol, das beispielsweise durch Hydrierung von Thymol zugäng¬ lich ist, nach Veresterung durch Racematspaltung (durch Kristallisation oder enzymati- sehe resolution) erhalten, wie beispielsweise in der EP-A 0 743 295, der EP-A 0
563611 oder der EP-A 1 223 223 beschrieben. Andererseits lassen sich auch asym¬ metrische Synthesestrategien verfolgen, die einen enantioselektiven Syntheseschritt beinhalten.
Stand der Technik
K. Tani et al. beschreiben in J. Chem. Soc. Chem. Comm. 1982, 11, 600-601 die a- symmetrische Synthese von L-Menthol ausgehend von Diethylgeranylamin. Dabei wird Diethylgeranylamin in Gegenwart eines kationischen Rh(l)-Komplexes als Katalysator zu dem entsprechenden optisch aktiven Enamin isomerisiert.
Die JP-A 53-116348 offenbart die Herstellung von L-Isopulegol, einem Vorläfer des Menthols, durch Cyclisierung von L-Isopulegol durch selektive Cyclisierung von D- Citronellal in Gegenwart von Zinkbromid als Katalysator.
S. Akutagawa beschreibt in Topics in Catalysis 4 (1997) 271- 274 die Synthese von L- Menthol durch enatioselektive Isomerisierung von Allylaminen zu Enaminen mit Rh- BINAP (2,2'-Bis(diphenylphoshino)-1 ,1'-binaphtyl) als Katalysator.
R. Noyori et al. beschreiben in J. Am. Chem. Soc. 1987, 109, 1596-1597 und in Orga- nic Synthses 1995, 72, 74-85 die asymmetrische Hydrierung von Geraniol mittels eines Ru-BINAP Katalysators. Die US 6,342,644 offenbart ein Verfahren zur asymmetrischen Synthese von L- Menthol durch enantioselektive Hydrierung von Piperitenon als Schlüsselschritt.
Aufgabe der Erfindung
Der vorliegenden Erfindung lag die Aufgabe zu Grunde, ein Verfahren zur asymmetri¬ sche Synthese von optisch aktivem Menthol ausgehend von einem wohlfeilen, achira- len und seinerseits gut synthetisch zugänglichem, d.h. nicht notwendigerweise aus natürlichen Quellen zu isolierenden Ausgangsstoff bzw. Ausgangstoffen bereitzustel¬ len.
Beschreibung der Erfindung sowie der bevorzugten Ausführungsformen
Die Aufgabe wurde erfindungsgemäß gelöst durch die Bereitstellung eines Verfahrens zur Herstellung von optisch aktivem Menthol ausgehend von Geraniol oder Nerol oder Gemischen von Geraniol und Nerol indem man
a) Geraniol oder Nerol oder Gemische von Geraniol und Nerol zu optisch aktivem Citronellol enantioselektiv hydriert, b) das so erhaltene optisch aktive Citronellol zu optisch aktivem Citronellal umsetzt, c) das so erhaltene optisch aktive Citronellal zu einem optisch aktives Iso- pulegol enthaltenden Stoffgemisch cyclisiert und d) optisch aktives Isopulegol aus dem so erhaltenen Stoffgemisch abtrennt und zu optisch aktivem Menthol hydriert oder das in dem so erhaltenen Stoffgemisch enthaltene optisch aktive Isopulegol zu optisch aktivem Menthol hydriert und das so erhaltene optisch aktive Menthol aus dem als Produkt der Hydrierung erhaltenen Stoffgemisch abtrennt.
Als Ausgangssubstanz bzw. Ausgangssubstanzen zur Durchführung des erfindungs¬ gemäßen Verfahren dienen die Verbindungen Geraniol der Formel (I) und/oder Nerol der Formel (II)
Figure imgf000003_0001
(I) (M) jeweils als solche oder in Form von Gemischen derselben. Dabei können die einzuset¬ zenden einzelnen Verbindungen oder die einzusetzenden Gemische derselben noch geringe Mengen, üblicherweise bis zu etwa 5 Gew.-%, bevorzugt bis zu etwa 3 Gew.-% weiterer Verbindungen bzw. Verunreinigungen wie beispielsweise Lösemit- telrückstände, Wasser oder Nebenprodukte vorausgeschalteter Syntheseschritte ent¬ halten.
Ein bevorzugter Ausgangsstoff ist Geraniol, insbesondere solches mit einer Reinheit von mindestens 95 Gew.-%, das als Verunreinigung zur Hauptmenge Nerol enthält. Typischerweise setzt man Geraniol ein, das zu etwa 0,1 bis etwa 5 Gew.-% Nerol ent¬ hält. Solche Gemische der genannten Verbindungen fallen beispielsweise bei der technischen Synthese von Geraniol durch selektive Hydrierung von Citral und an¬ schließender destillativer Aufreinigung an, wie sie beispielsweise in der EP- A 1 317 959, EP-A 1 318 129, DE-A 31 38 423 oder der DE-A 101 60 143 beschrieben ist.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens lassen sich auch dementsprechende Gemische von Nerol, d.h. Nerol das zu etwa 0.1 bis etwa 10 Gew.-% Geraniol enthält oder auch reines Nerol als Ausgangsstoff einsetzen.
Beschreibung Schritt a): Enantioselektive Hydrierung
Die genannten Ausgangsstoffe, bevorzugt Geraniol, werden in einem ersten Schritt des erfindungsgemäßen Verfahrens zu optisch aktivem Citronellol der Formel (III) enantio- selektiv hydriert.
Figure imgf000004_0001
(III)
Unter dem Begriff optisch aktives Citronellol ist dabei solches Citronellol zu verstehen, das zum überwiegenden Teil aus einem der beiden möglichen Enantiomeren des
Citronellols besteht. Bevorzugt ist unter optisch aktivem Citronellol im Rahmen der vor¬ liegenden Erfindung solches Citronellol zu verstehen, das einen Enantiomerenüber- schuss (ee) von mindestens 90% ee, bevorzugt von etwa 95 bis etwa 99% ee aufweist. Dabei kann in Abhängigkeit von den gewählten Reaktionsbedingungen, insbesondere in Abhängigkeit des eingesetzten Katalysators, das mit (*) in Formel (III) gekennzeich¬ nete asymmetrische Kohlenstoffatom entweder in der R- oder der S-Konfiguration vor¬ liegen. Die enantioselektive Hydrierung führt man in dem Fachmann bekannter Weise in Ge¬ genwart eines geeigneten Katalysators sowie in Gegenwart von Wasserstoff durch. Als geeignete Katalysatoren sind solche zu betrachten, die in der Lage sind, dreifach sub¬ stituierte ethylenische Doppelbindungen, insbesondere solche in Nachbarschaft einer Hydroxylgruppe, enantioselektiv zu hydrieren.
Bevorzugt führt man die genannte enantioselektive Hydrierung gemäß Schritt a) in Ge¬ genwart eines homogenen Übergangsmetallkatalysators durch, der Ru, Rh oder Ir so¬ wie einen chiralen, mindestens ein Phosphor-, Arsen- und/oder Antimon-Atom, bevor- zugt mindestens ein Phosphor-Atom aufweisenden Liganden umfasst. Derartige Kata¬ lysatoren sind, wie Eingangs erwähnt, bekannt und beispielsweise in T. Ohkuma et al. Asymmetrie Synth. (2nd Ed.) 1999, 1-110; Dep. Chem., Res. Cent. Mater. Sei., Nagoya 464, Japan oder W. Tang et al. Chem. Rev. 2003, 103, 3029-3069 beschrieben.
Insbesondere bevorzugt als Liganden sind phosphorhaltige Verbindungen mit der Fä¬ higkeit, Atropisomerie bezüglich zweier Aryl- bzw. Hetarylsysteme auszubilden gemäß der folgenden allgemeinen Formeln (IV) bis (VI):
Figure imgf000005_0001
IV V VI wobei die Reste R1 bis R10, R5' bis R8' sowie X und X' folgende Bedeutungen besit¬ zen:
R1 , R2 können gleich oder verschieden sein und durch Halogen, C1- bis C6-Alkyl oder d- bis C6-Alkoxy substituiertes oder unsubstituiertes Aryl, Heteroaryl, Alkyl, Cycloalkyl mit 1 bis 20 Kohlenstoffatomen bedeuten;
R3, R4 können gleich oder verschieden sein und durch Halogen, C1- bis C6-Alkyl oder C1- bis C6-Alkoxy substituiertes oder unsubstituiertes Aryl, Heteroaryl, Alkyl, Cycloalkyl mit 1 bis 20 Kohlenstoffatomen bedeuten;
R5, R51 können gleich oder verschieden sein und Wasserstoff, Halogen, C1- bis C6-Alkyl, C6- bis C-|0-Aryl, C1- bis C6-Alkoxy, Amino oder Thio bedeuten; R6, R61 können gleich oder verschieden sein und Wasserstoff, Halogen, C1- bis C6-Alkyl, C6- bis C10-Aryl, C1- bis C6-Alkoxy, Amino oder Thio bedeuten;
R7, R71 können gleich oder verschieden sein und Wasserstoff, Halogen, C1- bis C6-AIkVl, C6- bis C10-ArVl, C1- bis Cβ-Alkoxy, Amino oder Thio bedeuten;
wobei R6 und R7 (falls beide vorhanden) und/oder R6' und R71 (falls beide vorhanden) jeweils gemeinsam einen oder mehrere Ringe, die weitere 1 oder 2 Doppelbindungen und/oder eines oder mehrere Heteroatome ausgewählt aus der Gruppe der Hetero- atome N, O, S enthalten können, bilden können;
R8, R8' können gleich oder verschieden sein und Wasserstoff, Halogen, C1- bis C6-
Alkyl, C6- bis Ciθ-Aryl, C1- bis C6-Alkoxy, Amino oder Thio bedeuten;
X, X1 können gleich oder verschieden sein und S1 O oder NR9 bedeuten, wobei
R9 Wasserstoff, C1- bis Cβ-Alkyl, C6- bis C1o-Aryl, C1- bis C6-Acyl oder SO2RIO be¬ deuten, wobei
R10 C6- bis C1o-Aryl, C1- bis C6-Alkyl, C1- bis C6-Fluoroalkyl, insbesondere CF3 bedeu¬ tet und unter Halogen Fluor, Chlor, Brom oder Jod, insbesondere Fluor oder Chlor zu verstehen ist.
Unter dem Begriff C-ι-C6-Alkyl sind dabei geradkettige, verzweigte oder cyclische Alkyl- reste mit 1 bis 6 Kohlenstoffatomen wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl, Isopentyl, Neopentyl, Cyclopentyl, n-Hexyl, Cyc- lohexyl zu verstehen.
Unter C1- bis C6-Alkoxy sind geradkettige oder verzweigte Alkoxysubstituenten mit 1 bis 6 Kohlenstoffatomen zu verstehen, wie beispielsweise Methoxy, Ethoxy, Propoxy, Isopropoxy.
C6- bis C10-Aryl bedeuten Phenyl oder Naphtyl; unter Heteroaryl ist insbesondere Py- ridyl oder Thiophenyl zu verstehen.
Der Begriff Amino bedeutet -NH2, -NHR11 oder -NR11 R12, wobei R11 , R12 unab¬ hängig voneinander jeweils CrC6-Alkyl bedeuten können.
Unter dem Begriff Thio sind sowohl freie Thiolgruppen -SH als auch Thioether -SR11 zu verstehen. Besonders gut geeignete Liganden für die in Schritt a) des erfindungsgemäßen Verfah¬ rens bevorzugt zu verwendenden Katalysatorsysteme sind die folgenden aus der Lite¬ ratur bekannten Liganden (1) bis (43) :
Figure imgf000007_0001
(1) (2) (3)
Figure imgf000007_0002
(4) (5) (6)
Figure imgf000007_0003
Figure imgf000008_0001
(10) (11) (12)
Figure imgf000008_0002
(13) (14) (15)
Figure imgf000008_0003
(16) (17) (18)
Figure imgf000009_0001
Figure imgf000009_0002
(22) (23) (24)
Figure imgf000009_0003
(25) (26) (27)
Figure imgf000010_0001
(28) (29) (30)
Figure imgf000010_0002
(31) (32) (33)
Figure imgf000010_0003
(34) (35) (36)
Figure imgf000011_0001
(37) (38) (39)
Figure imgf000011_0002
(43)
Dabei steht "ToI" für ToIyI, "XyI" für XyIyI und "Cy" für Cyclohexyl.
Darüber hinaus kommen als Liganden auch die Aminophosphinliganden gemäß der folgenden allgemeinen Struktur (VII) in Betracht:
Figure imgf000012_0001
VII
wobei
R1 , R2 die oben angegebene Bedeutung besitzen kann und Ar C6- bis C10-Aryl oder -Heteroaryl bedeutet.
Die genannten Liganden werden dabei bevorzugt in enantiomerenreiner Form einge¬ setzt. Insbesondere bevorzugt ist ein Katalysator der Ru und einen Liganden, ausge- wählt aus der Gruppe der Liganden 2,2'-Bis(diphenylphosphino-1 ,1 '-binaphtyl (BINAP), 2,2'-Bis[di(p-tolyl)phosphino]-1 ,1'-binaphthyl (p-Tol-BINAP), 2,2'-Bis(diphenylphos- phinoH^'.β.δ'-tetramethyl-S.S'-bibenzomthiophen (tetraMetianp), 2,2'-Bis- (diphenylphosphino)-3,3'-tetramethyl-3,3'-bibenzo[b]thiophen (bitianp) enthält. Darüber hinaus bevorzugt ist ein Katalysator der Ru und BINAP (2,2'-Bis(diphenylphosphino- . 1,1'-binaphtyl) (Struktur (1)) oder p-Tol-BINAP (2,2'-Bis[di(p-tolyl)phosphino]-1,1'-bi- naphthyl) (Struktur (2)), insbesondere (S)-BINAP enthält.
Die genannten und weitere geeignete Übergangsmetallverbindungen und -komplexe sind bekannt und in der Literatur beschrieben oder können vom Fachmann analog zu den bereits bekannten Verbindungen hergestellt werden.
Wie dem Fachmann bekannt, können je nach Wahl der enantiomeren Formen der ein¬ gesetzten chiralen Liganden sowie in Abhängigkeit von der Konfiguration der zu hydrie¬ renden Doppelbindung die beiden Enantiomere des Citronellals gezielt bevorzugt er- halten werden. So erhält man beispielsweise durch Hydrierung von Geraniol in Ge¬ genwart eines Ru und (S)-BINAP enthaltenden Katalysators bevorzugt D-(R)- Citronellol.
Werden Iridium-Komplexe mit den vorstehend genannten Aminophosphin-Liganden, wie beispielsweise 2-Amino-2'-diarylphosphino-1-1'-binaphthyl (SMAP), 2-Amino-2'- diarylphosphinyl-1 -1 '-binaphthyl oder 2-Carbamoyl-2'-diarylphosphinyl-1 -1 '-binaphthyl für die asymmetrische Hydrierung von Geraniol bzw. Nerol eingesetzt, so kann sowohl mit reinem Nerol oder Geraniol oder sogar einem 1 : 1 Gemisch beider Terpenalkohole gearbeitet werden, wie in der EP-A 1 013 658 beschrieben. Die genannten Katalysatoren können als fertige, teilweise kommerziell erhältliche Ver¬ bindungen eingesetzt werden oder in dem Fachmann an sich bekannter Weise zu¬ nächst aus Vorläuferverbindungen hergestellt werden. Geeignete Vorläuferverbindun¬ gen zur Herstellung von Ru-haltigen Komplexen sind beispielsweise [RuCI2(benzol)]2, Ru(acac)3, (RuCI2(COD)], wobei unter acac Acetylacetonat und unter COD Cycloocta- dien zu verstehen ist.
Üblicherweise werden die als Katalysatoren im Rahmen des erfindungsgemäßen Ver¬ fahrens einzusetzenden chiralen Rutheniumkomplexe in situ hergestellt, indem man die gewählte Vorläuferverbindung mit dem gewählten chiralen Liganden in einem ge¬ eigneten organischen Lösungsmittel und unter Ausschluss von Sauerstoff, d.h. vor¬ zugsweise unter Inertgasatmosphäre, in Kontakt bringt. Dabei kann es von Vorteil sein, dem Gemisch Alkali- oder Erdalkalimetallsalze der Essigsäure bzw. der Trifluoressig- säure oder auch Essigsäure oder Trifluoressigsäure als solche zuzusetzen.
Das molare Verhältnis von eingesetztem Ruthenium (bezogen auf die in den Vorläufer¬ verbindungen enthaltenen Ru-atome) zu eingesetztem chiralen Liganden beträgt übli¬ cherweise etwa 1 :1 bis etwa 2:1 , bevorzugt etwa 1 :1 ,05 bis etwa 1 :1 ,5.
Als besonders geeignete Lösemittel zur in-situ Herstellung des Katalysators wie auch zur Durchführung der erfindungsgemäßen enantioselektiven Hydrierung haben sich Alkanole wie z.B. Methanol, Ethanol und/oder Isopropanol, aber auch Alkandiole wie z.B. Ethylenglycol, Dietylenglycol, Triethylenglycol und oder Tripropylenglycol erwie¬ sen. Darüber hinaus kann die Hydrierung mit gutem erfolg auch ohne Zusatz von Lö- semitteln, d.h. in der reinen Ausgangsverbindung, durchgeführt werden.
Insbesondere bevorzugt führt man die enantioselektive Hydrierung gemäß Schritt a) so durch, dass man Methanol als Lösemittel einsetzt. Bei der erfindungsgemäßen enan¬ tioselektiven Hydrierung von Geraniol zu Citronellol setzt man vorteilhaft eine 1 bis 50 Gew.-%ige Lösung von Geraniol in Menthol ein. Bevorzugt setzt man eine 3 bis 20 Gew.-%ige, insbesondere bevorzugt eine 7 bis 12 Gew.-%ige Lösung von Geraniol in Methanol ein.
Die genannte Hydrierung wird üblicherweise in einem Temperaturbereich von 1 bis 60°C, bevorzugt von 20 bis 50°C und besonders bevorzugt von 35 bis 45°C und unter einem Wasserstoffdruck von 10 bis 150 bar, bevorzugt von 70 bis 120 bar durchge¬ führt. An die einzusetzenden Reaktionsgefäße bzw. Reaktoren sind keine besonderen Ansprüche zu stellen. Es eignen sich alle dem Fachmann zur Durchführung von Reak¬ tionen unter erhöhtem Druck und erhöhter Temperatur geeignet erscheinenden For- men, die eine gute Durchmischung des Reaktionsgemisches gewährleisten. Durch die genannten Maßnahmen lässt sich die erfindungsgemäße enantioselektive Hydrierung von Geraniol bzw. Nerol zur optisch aktivem Citronellal in besonders wirt¬ schaftlicher Weise, insbesondere bei Umsetzungen in technischem Maßstab, durchfüh¬ ren. Je nach Wahl der Ausgangsverbindungen, Katalysatoren und Reaktionsbedingun- gen wurden Tumover-Numbers (TON) von bis zu 10000 erzielt.
Das wie vorstehend beschrieben erhaltene Citronellal kann nach allen dem Fachmann bekannten Methoden und Verfahren, insbesondere durch Destillation weiter aufgerei¬ nigt werden.
Beschreibung Schritt b): Umsetzung zum optisch aktiven Citronellal
In einem zweiten Schritt b) des erfindungsgemäßen Verfahrens setzt man das wie vor¬ stehend beschriebene, in Schritt a) erhaltene optisch aktive Citronellol zu optisch akti- vem Citronellal der Formel (VIII) um.
Figure imgf000014_0001
(VIII)
Dazu eignen sich alle Verfahren, Methoden bzw. Reaktionen (in Folgenden Transfor- mationen) bei denen gewährleistet ist, dass der in der enantioselektiven Hydrierung gemäß Schritt a) erzielte Enantiomerenüberschuss (ee) des erhaltenen optisch aktiven Citronellols weitgehend erhalten bleibt. Demzufolge eignen sich zur Durchführung von Schritt b) des erfindungsgemäßen Verfahrens alle Transformationen, bei denen man Citronellal erhält, dessen Enantiomerenüberschuss (ee) mindestens 80%, bevorzugt mindestens 90%, insbesondere 95 bis 100% des Enantiomerenüberschusses des ein¬ gesetzten, in Schritt a) erhaltenen Citronellols entspricht.
Geeignete Reaktionen zur Bewerkstelligung der erfindungsgemäßen Oxidation bzw. Dehydrierung von optisch aktivem Citronellal zu optisch aktivem Citronellol sind bei- spielsweise die Oxidation mit Luftsauerstoff unter Fe(NO3)3-FeBr3-Katalyse wie z.B. von S. E. Martin et al. in Tetrahedron Lett. 2003, 44, 549-552 bebschrieben; die TEM- PO-Oxidation in ionischen Flüssigkeiten, wie beispielsweise von I. A. Ansari et al. in Organic Letters, 2002, 4, 1507-1509 beschreiben; die Kupfer-katalysierte aerobe Oxi¬ dation mit TEMPO im zweiphasigen System mit fluorierten Lösungsmitteln, wie z.B. beschrieben von G. Ragagnin et al. in Tetrahedron, 2002, 58, 3985-3991 ; die Rutheni- um-katalysierte aerobe Oxidation mit TEMPO, z.B. nach A. Dijksman et al., Chem. Commun., 1999, 1591-1591 ; die selektive Oxidation optisch aktiver Alkohole mit Di- methyldioxiran, wie z.B. von L. D'Accolti et al. in Org. Chem. 1998, 58, 3600-3601 be¬ schrieben oder die selektive Oxidation von Alkoholen mit NaOCI und katalytischen mengen TPAP, wie von L. Gonsalvi et al in Organic Letters, 2002, 4, 1659-1661 be¬ schrieben.
Ein im Rahmen der vorliegenden Erfindung bevorzugtes Verfahren zur Umsetzung von optisch aktivem Citronellol zu optisch aktivem Citronellal gemäß Schritt b) ist die De¬ hydrierung von optisch aktivem Citronellal in Gegenwart eines Katalysators in der Gas¬ phase, wie sie in der internationalen Anmeldung mit dem Aktenzeichen PCT/EP/05/002288, auf die hiermit vollumfänglich Bezug genommen wird, beschrieben ist.
Zur Durchführung des erfindungsgemäß bevorzugten Dehydrierverfahrens gemäß Schritt b) eignet sich eine große Vielfalt von Katalysatoren, insbesondere solche Kata¬ lysatoren die mindestens eines der Elemente ausgewählt aus der Gruppe der Elemen¬ te Zink, Calzium und Kupfer, jeweils als solche oder in Form geeigneter Verbindungen enthalten.
Neben den genannten Elemente können die erfindungsgemäß in Schritt b) einsetzba¬ ren Katalysatoren noch eines oder mehrere Elemente der Gruppen 1 , 2, 3, 4, 13 und/oder 14, wie z.B. Na, K, Mg, Ti, Zr, C, Si, und/oder Ge enthalten.
Besonders geeignet zur Durchführung des bevorzugten Dehydrierverfahrens sind sol¬ che Katalysatoren, die Zink und Calcium enthalten, bevorzugt in oxidischer Form und/oder in Form ihrer Carbonate. Dabei sind insbesondere solche Katalysatoren zu bevorzugen, die Zinkoxid und Calciumcarbonat enthalten.
Bevorzugte Katalysatoren zur Durchführung des Dehydriererfahrens sind solche, deren aktive Komponente zu 30 bis 60 Gew.-%, bevorzugt zu 40 bis 50 Gew.-% aus Zinkoxid und zu 40 bis 70, bevorzugt zu 50 bis 60 Gew.-% aus Calciumcarbonaten bestehen. Weiterhin bevorzug sind darunter solche, deren Calciumcarbonat-Komponente in der Calcit-Modifikation vorliegt. Die genannten Mengenanteile sind aus der geglühten Kata¬ lysatormasse zu bestimmen, in der Zink und Calcium jeweils in Form ihrer Oxide vor¬ liegen.
Weitere zur Dehydrierung von optisch aktivem Citronellol einsetzbare Katalysatoren sind Kupfer enthaltende Katalysatoren, insbesondere solche, die Kupfer in einer Oxida- tionsstufe >O in auf einem oxidischen Träger abgeschiedener Form enthalten, wie sie in der DE-A 197 57 297 beschrieben sind. Als weiteres Trägermaterial kommen bei¬ spielsweise auch Calciumcarbonat sowie weitere geeignete Trägermaterialien in Be¬ tracht. In einer bevorzugten Ausführungsform weisen die erfindungsgemäß einsetzbaren Ka¬ talysatoren eine spezifische Oberfläche nach BET von 5 bis 50, vorzugsweise von 10 bis 30 m2/g auf.
Ein solcher Katalysator ist beispielsweise durch Ausfällen von schwerlöslichen Zink- und Calciumverbindungen aus wasserlöslichen Zink- und Calciumverbindungen mit einer Base und anschließender Aufarbeitung in an sich bekannter Weise erhältlich, wobei man
I. als Base ein wasserlösliches basisches Carbonat einsetzt,
II. gewünschtenfalls die schwerlöslichen Zink- und Calciumverbindungen nach dem Ausfällen filtriert,
III. die gewünschtenfalls filtrierten Zink- und Calciumverbindungen wäscht,
IV. die gewaschenen Zink- und Calciumverbindungen aus Schritt III. trocknet unter Erhalt eines Pulvers, und anschließend
V. das Pulver aus Schritt IV. bei Temperaturen von nicht über 6000C calciniert, und
VI. gewünschtenfalls das calcinierte Pulver zu Formkörpern verpresst.
Als wasserlösliche Zink- und Calciumsalze kann man Acetate, Sulfate, Nitrate, Chlori¬ de, bevorzugt Nitrate.wie Zinknitrat, Zinkacetat, Zinksulfat, Calciumacetat, Calciumnit- rat, bevorzugt Zinknitrat und Calciumnitrat, einsetzen. Üblicherweise setzt man wässri- ge Lösungen der entsprechenden Salze in Konzentrationen im Bereich von 3 bis 25, bevorzugt von 10 bis 25, insbesondere 20 Gew.-%, ein.
Das Molverhältnis von Zink zu Calcium wählt man bevorzugt so, dass nach dem Calci- nieren die aktive Komponente des Katalysators zu 30 bis 60 Gew.-% aus Zinkoxid und zu 40 bis 70 Gew.-% aus Calciumcarbonat, welches bevorzugt in der Calcit-Modifika- tion vorliegt, besteht.
Als Base verwendet man wasserlösliche basische Carbonate wie Alkalimetallcarbonate wie Natriumcarbonat, Kaliumcarbonat, Alkalimetallhydrogencarbonate wie Natrium- hydrogencarbonat, Kaliumhydrogencarbonat, Ammoniumcarbonat oder Ammonium- hydrogencarbonat sowie deren Mischungen, vorzugsweise Natriumcarbonat, beson- ders bevorzugt in Form ihrer wässrigen Lösungen in Konzentrationen im allgemeinen im Bereich von 0,5 bis 30, bevorzugt von 10 bis 25 Gramm Base/100 Gramm Lösung. Die Fällung führt man im allgemeinen bei Temperaturen im Bereich von 10 bis 900C, vorzugsweise von 40 bis 800C durch. Nach dem Ausfällen kann man gewünschtenfalls den Niederschlag abfiltrieren. Der gewünschtenfalls abfiltrierte Niederschlag wäscht man in der Regel mit Wasser, bevorzugt so lange, bis kein Nitrat mehr mittels der Nit- ratringprobe feststellbar ist, und trocknet ihn anschließend bevorzugt bei einer Tempe¬ ratur im Bereich von 90 bis 1500C unter Erhalt eines getrockneten Pulvers. Die Trock¬ nung kann in ruhender oder bewegter Schicht, vorzugsweise durch Sprühtrocknung, erfolgen.
Das getrocknete Pulver wird anschließend bei Temperaturen von nicht höher als
6000C, bevorzugt im Bereich von 300 bis 6000C, insbesondere von 400 bis 4750C, be¬ vorzugt in Luft, calciniert. Nach bisherigen Beobachtungen führt eine längere Erhitzung über 6000C zur Bildung der Aragonit-Modifikation von CaCO3. Eine kurzfristige Erhit¬ zung über 6000C ist dann nicht hinderlich für die Herstellung der erfindungsgemäß ein- setzbaren Katalysatoren, solange sich dabei kein Aragonit (Nachweis mittels Röntgen- diffraktometrie) bildet.
Nach dem Calcinieren kann man gewünschtenfalls das calcinierte Pulver zu Formkör- pern wie Tabletten, Ringe, Zylinder etc., bevorzugt Tabletten, verpressen.
In einer bevorzugten Ausführungsform verpresst man das calcinierte Pulver zusammen mit Graphit, bevorzugt mit 0,1 bis 5, besonders bevorzugt mit 1 bis 2,5, insbesondere 2 Gew.-%, bezogen auf die Gesamtmasse, Graphit.
In einer weiteren bevorzugten Ausführungsform verpresst man das uncalcinierte Pulver aus Schritt III. (s.o.) zu Formkörpern, bevorzugt zu Tabletten, Ringtabletten, kalottierten Tabletten, wie in der US-6, 518,220 beschrieben, oder Triloben und calciniert die so erhaltenen Formkörper wie vorstehend beschrieben. Alternativ kann auch eine Extru- sion zu Strängen oder Sternsträngen, bevorzugt zu Strängen, durchgeführt werden.
Die so erhaltenen calcinierten Pulver und Formkörper können als Katalysatoren einge¬ setzt werden, wobei diese Katalysatoren als aktive Komponenten Zinkoxid und Calci¬ umcarbonat (in der Calcit-Modifikation) und als passive Komponente gewünschtenfalls Graphit enthalten können.
In einer weiterhin bevorzugten Ausführungsform setzt man einen Dehydrierungskataly¬ sator ein, der ein Porenvolumen im Bereich von 0,10 bis 0,50, insbesondere von 0,20 bis 0,35 cm3/g, bei einem Porendurchmesser im Bereich von 5 nm bis 300 mm auf¬ weist, wobei besonders bevorzugt mindestens 85 %, vorzugsweise mehr als 90 % die- ses Porenvolumens mit einem Porendurchmesser im Bereich von 0,01 bis 0,5 mm ver¬ bunden ist. Besonders bevorzugte Katalysatoren der genannten Art sind solche, die eine Stirn¬ druckfestigkeit im Bereich von 500 bis 4000 N/cm2, insbesondere von 1000 bis 2500 N/cm2 und eine Seitendruckfestigkeit von 30 bis 300 N, vorzugsweise 50 bis 200 N aufweisen.
Die spezifische Oberfläche nach BET beträgt im allgemeinen 5 bis 50 m2/g, vorzugs¬ weise 10 bis 30 m2/g. Das Porenvolumen im Porendurchmesserbereich zwischen 0,1 nm und 300 nm besitzt Werte üblicherweise zwischen 0,1 und 0,5 cm3/g, vorzugs¬ weise 0,2 bis 0,35 cm3/g mit der Maßgabe, dass mindestens 85 %, vorzugsweise mehr als 90 % dieses Porenvolumens im Porendurchmesserbereich von 0,01 bis 0,5 mm liegen.
Die Stirndruckfestigkeit der Tabletten beträgt vorzugsweise 500 bis 4000 N/cm2, insbe¬ sondere 1000 bis 2500 N/cm2 und die Seitendruckfestigkeit der Pillen liegt bevorzugt zwischen 30 und 300 N, vorzugsweise 50 bis 200 N.
In einer besonders bevorzugten Ausführungsform wäscht man den Niederschlag aus schwerlöslichen Zink- und Calciumverbindungen, bevorzugt Zinkhydroxidcarbonat und Calciumcarbonat, auf Filterpressen, maischt den dabei erhaltenen Filterkuchen mit Wasser an, und versprüht die Maische zum Trocknen in einem Sprühturm. Das auf diese Weise erhaltene getrocknete Sprühpulver kann man danach wie oben beschrie¬ ben weiterverarbeiten.
Im Rahmen der bevorzugten Ausführungsform von Schritt b) des erfindungsgemäßen Gesamtverfahrens bringt man das verdampfte, gasförmige, optisch aktive Citronellol in an sich üblicher Weise in Kontakt mit dem eingesetzten Dehydrierkatalysator, bei¬ spielsweise in einem Festbettreaktor, Rohrreaktor, Rohrbündelreaktor oder in einem Wirbelschichtreaktor, bevorzugt in einem Rohrreaktor, in dem der Katalysator fest an¬ geordnet ist. Besonders bevorzugt sind Rohrbündelreaktoren. Der Austrag wird übli- cherweise destillativ aufgearbeitet.
Im allgemeinen verdampft man das eingesetzte optisch aktive Citronellol in an sich bekannter Weise, beispielsweise in einem geeigneten Verdampfer.
Das im Rahmen der bevorzugten Ausführungsform vorgesehen Dehydrierverfahren führt man üblicherweise bei erhöhter Temperatur durch. Die Temperatur der Gasphase in der Reaktionszone wählt man üblicherweise im Bereich von 350 bis 450 C. Den Druck der Gasphase in der Reaktionszone wählt man im allgemeinen im Bereich von 0,3 bis 10 bar. Die Belastung des Katalysators wählt man im allgemeinen im Bereich von 0,5 bis 3,0, vorzugsweise von 0,6 bis 2,0 Liter optisch aktives Citronellol pro Liter an Katalysator und pro Stunde.
Geeignete Reaktorformen sind der Festbettrohr- oder Rohrbüήdelreaktor. Bei diesen befindet sich der gewählte Katalysator als Festbett in einem Reaktionsrohr oder in ei¬ nem Bündel von Reaktionsrohren. Die Reaktionsrohre werden üblicherweise dadurch indirekt beheizt, dass in dem die Reaktionsrohre umgebenden Raum ein Gas, z.B. ein Kohlenwasserstoff wie Methan, verbrannt wird oder ein Wärmeträgermedium (Salzbad, Wälzgas etc.) eingesetzt wird. Es kann auch eine elektrische Beheizung der Reaktions¬ rohre mit Heizmanschetten erfolgen. Übliche Reaktionsrohr-Innendurchmesser betra¬ gen etwa 2,5 bis 15 cm. Ein typischer Dehydrierrohrbündelreaktor umfasst ca. 10 bis 32000 Reaktionsrohre, bevorzugt ca. 10 bis 200 Reaktionsrohre. Die Temperatur im Reaktionsrohrinneren bewegt sich üblicherweise im Bereich von 250 bis 6000C, vor- zugsweise im Bereich von 300 bis 6000C. Der Arbeitsdruck liegt üblicherweise zwi¬ schen 0,5 und 8 bar, häufig zwischen 1 und 2 bar.
Das bevorzugte Dehydrierverfahren kann auch, wie in Chem. Eng. Sei. 1992 b, 47 (9-11) 2313 beschrieben, heterogen katalysiert im Wirbelbett durchgeführt werden. Zweckmäßigerweise werden dabei zwei Wirbelbetten nebeneinander betrieben, von denen sich eines in der Regel im Zustand der Regenerierung befindet. Der Arbeits¬ druck beträgt typischerweise 1 bis 2 bar, die Dehydriertemperatur in der Regel 250 bis 6000C.
Die erfindungsgemäß bevorzugte katalytische Dehydrierung kann mit oder ohne sau¬ erstoffhaltigem Gas als Co-Feed und optional unter Zusatz von Wasserdampf, Stick¬ stoff, Methan und/oder Argon durchgeführt werden. Der gewählte Reaktor kann ein oder mehrere aufeinanderfolgende Katalysatorbetten aufweisen. Die Anzahl der Kata¬ lysatorbetten kann 1 bis 20, zweckmäßigerweise 1 bis 6, bevorzugt 1 bis 4 und insbe- sondere 1 bis 3 betragen. Die Katalysatorbetten werden vorzugsweise radial oder axial vom Reaktionsgas durchströmt. Im Allgemeinen wird ein solcher Hordenreaktor mit einem Katalysatorfestbett betrieben. Im einfachsten Fall sind die Katalysatorfestbetten in einem Schachtofenreaktor axial oder in den Ringspalten von konzentrisch angeord¬ neten zylindrischen Gitterrosten angeordnet. Ein Schachtofenreaktor entspricht einer Horde.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäß bevorzugten Dehydrierverfahrens gemäß Schritt b) setzt man optisch aktives Citronellol mit einem Enantiomerenüberschuss von mindestens 90% ee, bevorzugt 95% ee an einem Kata- lysator, dessen Aktivkomponenete 54 bis 57 Gew.-% Zinkoxid und 43 bis 46 Gew.-% Calciumcarbonat enthält (jeweils bestimmt in Form der Oxide der geglühten Katalysa¬ tormasse) in einem geeigneten Reaktor, beispielsweise einem Rohrreaktor um. Der Reaktor kann dabei durch jede geeignete Methode, bevorzugt durch eine Salzschmel¬ ze, auf Temperaturen im Bereich von etwa 350 bis etwa 4500C beheizt werden. Die Reaktion findet in der Gasphase statt. Gute Resultate erhält man insbesondere, wenn die Reaktion in Abwesenheit von Sauerstoff durchgeführt wird. Dazu leitet man ein das zu dehydrierende Edukt enthaltende Stoffgemisch beispielsweise in einem Inertgas- strom wie z.B. einem Stickstoffstrom über den gewählten Katalysator. Optional ist auch eine autotherme Fahrweise durch partielle H2-Verbrennung nach vorheriger Einspei- sung eines H2-haltigen Stoffgemisches möglich.
Die Isolierung der Reaktionsprodukte kann nach allen geeigneten und dem Fachmann an sich bekannten Methoden vorgenommen werden. Man erhält auf diese Weise bei einem Umsatz von vorzugsweise etwa 30 bis etwa 60% d. Th. optisch aktives Citronal- IaI in einer Selektivität von normalerweise etwa 60 bis etwa 95%.
Beschreibung Schritt c): Cyclisierung
Das gemäß Schritt b) des erfindungsgemäßen Verfahrens erhaltene optisch aktive Citronellal wird erfindungsgemäß zu einem optisch aktives Isopulegol der Formel (IX)
Figure imgf000020_0001
bzw. in Abhängigkeit vom eingesetzten Enantiomeren des Citronellals dessen Enanti- omeren ent-(IX) enthaltenden Stoffgemisch cyclisiert. Bei der Cyclisierung von Citronel¬ lal zu Isopulegol fallen, in Abhängigkeit von den gewählten Reaktionsbedingungen und den gewählten Cyclisierungskatalysatoren, in der Regel Gemische der vier möglichen Diastereomere des Isopulegols (Isopulegol, Neo-Isopulegol, Iso-Isopulegol und Neo- iso-lsopulegol) an. Bei Einsatz von optisch aktivem Citronallal erhält man Gemische der vier Diastereomere in optisch aktiver Form.
Die Cyclisierung gemäß Schritt c) des erfindungsgemäßen Verfahrens wird üblicher¬ weise in Gegenwart einer Säure oder Lewis-Säure als Cyclisierungskatalysator durch¬ geführt wie beispielsweise von Y. Nakatani und K. Kawashima unter Einsatz von Zink- halogeniden in Synthesis, 1978, 147-148 und den darin erwähnten Zitaten beschrie¬ ben. Auch die thermische Cyclisierung mit allerdings moderaten Stereoselektivitäten ist möglich (K.H. Schulte-Elte et al. HeIv. Chim. Acta, 1976, 50, 153-165). Brauchbare Cyclisierungskatalysatoren sind beispielsweise ZnBr2, wie beispielsweise in der JP-A 53116348 offenbart, Scandiumtriflat, wie in der EP-A 0 926 117 beschrie¬ ben, SiO2 (Kieselgel), wie in der US 2,117,414 beschrieben, Mischoxidkatalysatoren wie beispielsweise SiO2-AI2O3, Montmorillonit, Alumosilicate, Eisen(lll)chlorid, Zinkchlo- rid, Zinntetrachlorid und Trisdiarylphenoxyaluminium-Komplexe, wie aus der EP-A 1 225 163 bekannt oder auch Zeolithe.
Die Cyclisierung von optisch aktivem Citronellal zu Gemischen, die optisch aktives Iso- pulegol enthalten kann unter einer breiten Vielfalt von Reaktionsbedingungen durchge- führt werden. Insbesondere die Wahl eines geeigneten Lösungsmittels, die Konzentra¬ tion des Substrats im Reaktionsgemische sowie Reaktionszeit und -temperatur können breit variiert werden. Darüber hinaus können neben thermischer Energie auch andere Energieformen, insbesonder Mikrowellenenergie oder Ultraschall zugeführt werden. Der Fachmann wählt die Reaktionsbedingungen bevorzugt so aus, dass er durch die Cyclisierung des optisch aktiven Citronellals gemäss Schritt c) des erfindungsgemäßen Verfahrens (nach Entfernen der Lösungsmittel) ein Stoffgemisch erhält, das zu mindes¬ tens 60 Gew.-%, bevorzugt zu mindestens 75 Gew-% aus Isopulegol besteht.
Die gemäß Schritt c) erhaltenen Stoffgemische enthalten neben dem gewünschten optisch aktiven Isopulegeol in der Regel auch die drei weiteren, vorstehend genannten Diasteromere des Isopulegols in veränderlichen Anteilen sowie geringe Mengen weite¬ rer Verunreinigungen bzw. Lösemittelreste.
Beschreibung Schritt d): Trennung und Hydrierung Die so erhaltenen Stoffgemische werden gemäß Schritt d) des erfindungsgemäßen • Verfahrens einer Trennung sowie einer Hydrierung unterzogen, wobei man entweder optisch aktives Isopulegol aus dem so erhaltenen Stoffgemisch abtrennt und zu optisch aktivem Menthol hydriert oder das in dem so erhaltenen Stoffgemisch enthaltene op¬ tisch aktiven Isopulegeol zu optisch aktivem Menthol hydriert und das so erhaltene optisch aktive Menthol aus dem als Produkt der Hydrierung erhaltenem Stoffgemisch abtrennt.
Erfindungsgemäß lassen sich die gemäß Schritt c) erhaltenen Stoffgemische im Rah¬ men einer ersten Alternative einer Trennung unterziehen, bei der man das im Stoffge- misch enthaltene optisch aktive Isopulegol von den restlichen Komponenten des Stoff¬ gemisches, insbesondere von den drei weiteren Diastereomeren des Isopulegols, ab¬ trennt.
Zur Trennung gemäß Schritt d) des erfindungsgemäßen Verfahren eigenen sich alle dem Fachmann geeignet erscheinenden Methoden der Trennung von Stoffgemischen, insbesondere der Trennung von Diastereomerengemischen. Geeignete Verfahren zur Abtrennung des optisch aktiven Isopulegols umfassen beispielsweise Kristallisations- verfahren, gegebenenfalls nach vorheriger Derivatisierung der erhaltenen Isopulegol- Diastereomere, Destillationsverfahren und chromatographische Verfahren. Im Rahmen der vorliegenden Erfindung bevorzugte Trennverfahren zur Abtrennung des erfin¬ dungsgemäß erhaltenen optisch aktiven Isopulegols ist die Destillation oder die Kristallisiation. Eine Erhöhung der optischen Reinheit des erfindungsgemäß erhaltenen Isopulegols auf > 99.7% ee ist beispielsweise durch Kristallisation bei tiefen Tempera¬ turen, z.B. bei -40 0C möglich, wie in der US 5,663,460 beschreiben.
Das gemäß dieser ersten Alternative gemäß Schritt d) des erfindungsgemäßen Verfah- rens abgetrennte optisch aktive Isopulegol wird anschließend zu optisch aktivem Men¬ thol hydriert.
Gemäß der zweiten Alternative von Schritt d) des erfindungsgemäßen Verfahrens las¬ sen sich die gemäß schritt c) erhaltenen Stoffgemische auch zunächst einer Hydrie- rung unterwerfen, wobei man das in dem Stoffgemisch enthaltene optisch aktive Isopu¬ legol zu optisch aktivem Menthol hydriert und das so erhaltene optisch aktive Menthol aus dem durch Hydrierung erhaltenen Produktgemisch abtrennt.
Zur Trennung des so erhaltenen optisch aktiven Menthols von den gegebenfalls daneben erhaltenen weiteren Diasteromeren und/oder Verunreinigung eignen sich die vorstehend zur Abtrennung von optisch aktivem Isopulegol genannten Trennverfahren.
Die in beiden Alternativen durchzuführende Hydrierung der ethylenischen Doppelbin¬ dung des optisch aktiven Isopulegols bzw. dessen Diastereomerer eignen sich alle dem Fachmann geeignet erscheinenden Hydrierverfahren, insbesondere Verfahren zur katalytischen Hydrierung ethylenischer Doppelbindungen an geeigneten Übergangs¬ metall-haltigen Katalysatoren in Gegenwart von Wasserstoff oder Wasserstoffdonato¬ ren. Dabei sind homogen- und heterogenkatalytische Verfahren gleichermaßen geeig¬ net, wobei bei Umsetzungen im technischen Maßstab heterogenkatalytische Methoden zu bevorzugen sind. Als Katalysatoren eignen sich insbesondere solche, die mindes¬ tens ein Übergangsmetall der Gruppen 7 bis 9 des Periodensystems der Elemente, insbesondere Pd, Pt, Ni, Ir, Rh und/oder Ru enthalten. Geeignete heterogene Katalysa¬ toren können in geträgerter wie ungeträgerter Form eingesetzt werden. Mögliche Aus¬ gestaltungen, Verfahrensvarianten bzw. Katalysatoren gehören zum Wissen des Fachmannes.
Die Hydrierung von Isopulegol mit Pd-Suspensionskatalysatoren ist beispielsweise beschrieben in der EP-A 1 053 974. Die Hydrierung verschiedener cyclischer Monoter- penderivate zu Menthol ist auch in WO 2004/013339 offenbart.
Bevorzugt führt man Schritt d) des erfindungsgemäßen Verfahrens so durch, dass man zunächst das gemäß Schritt c) erhaltenene Stoffgemisch hydriert und anschließend optisch aktives Menthol aus dem durch Hydrierung erhaltenen Stoffgemisch abtrennt. Insbesondere bevorzugt trennt man das durch Hydrierung erhaltene optisch aktive Menthol durch Kristallisation von den weiteren Komponenten des durch Hydrierung erhaltenen Stoffgemisches ab.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens führt man gemäß Schritt a) des erfindungsgemäßen Verfahrens eine enantioselektive Hydrierung von Geraniol der Formel (I), bevorzugt solchem, das zu etwa 0,1 bis etwa 5 Gew.-% Neral enthält zu D-(R)-Citronellol der Formel (X) durch. Bevorzugt setzt man dabei einen Ru und (S)-BINAP enthaltenden Katalysator ein und erhält bevorzugt D-(R)-Citronellol mit einer Reinheit von 90 bis 99% ee. Das so erhaltene D-(R)-Citro- nellol wird dann im Rahmen der besonders bevorzugten Ausführungsform durch De¬ hydrierung in D-(R)-Citronellal der Formel (Xl) überführt, wobei man insbesondere be¬ vorzugt eine wie vorstehend beschriebene Dehydrierung in der Gasphase durchführt. Das so erhaltene D-(R)-Citronellal wird anschließend im Rahmen der bevorzugten Aus¬ führungsform in Gegenwart von ZnBr2 oder AI2CVSiO2 als Katalysator zu L-Isopulegol der Formel (IX) cyclisiert. Das durch Cyclisierung erhaltene L-Isopulegol wird anschlie¬ ßend wie vorstehend beschrieben zum L-Menthol der Formel (XII) hydriert und ab¬ schließend durch ein geeignetes Trennverfahren, insbesondere durch Kristallisation abgetrennt.
Figure imgf000023_0001
(X) (Xl) (IX) (XU)
Das erfindungsgemäße Verfahren zeichnet sich durch die Kombination der Einzel- schritte a) bis d) aus. Diese Kombination eröffnet einen vorteilhaften, in technischem Maßstab gut durchführbaren und zu kommerziell akzeptablen Gesamtausbeuten füh¬ renden Zugang zu optisch aktivem Menthol. Dabei ist von besonderer Bedeutung, dass der offenbarte Syntheseweg unabhängig ist von aus natürlichen Quellen zu isolieren¬ den Ausgangsstoffen oder Zwischenprodukten, die, falls chiral, in der Regel nur in Form eines ihrer Enantiomeren verfügbar sind. Als weiteren Vorteil eröffnet das erfin¬ dungsgemäße Verfahren daher die Möglichkeit, wahlweise beide Enantiomere des Menthols in technischem Maßstab bereitzustellen.
Beispiele: Die folgenden Beispiele dienen der Erläuterung der Erfindung, ohne sie jedoch in ir¬ gendeiner Weise zu beschränken: Beispiel 1 : Enantioselektive Hydrierung von Geraniol mit dem Katalysatorsystem Ru/(S)-BINAP
Unter Inertgasatmosphäre wurden 2,4 mg [RuCI2(C6HfO]2 (entspr. 0,01 μmol Ru) in 75 ml Methanol gelöst, 6,0 mg 80,01 μmol (s)-BINAP zugegeben und 12 h bei Raum¬ temperatur gerührt, bis eine klare Lösung resultierte. Die Katalysatorlösung wurde in einen Autoklaven mit Begasungsrührer überführt und weitere 75 ml Methanol sowie 14.8 g Geraniol (0,096 mol, Reinheit 95%) zugegeben. Bei einem Wasserstoffdruck von 100 bar und einer Temperatur von 400C wurde 24 h gerührt. Danach wurde gaschromatographisch ein Umsatz von 98,3% bestimmt. Man erhielt eine Ausbeute von 97,2 % (R)-Citronellol mit einer Enantiomerenreinheit von 95,2% ee.
Beispiel 2: Dehydrierung von optisch aktivem Citronellol in der Gasphase
Ein durch eine Salzschmelze beheizbarer Rohrreaktor wurde mit 10,8 g eines Kataly- sators bestehend aus 55 Gew.-% ZnO, und 45 Gew.-% CaCO3 in der Calcit-
Modifikation (jeweils bestimmt in Form der Oxide der geglühten Katalysatormasse) beschickt. Bei einer Temperatur von 4000C wurden ein Gemisch von 46 Nl/h Stickstoff und 3,44 g/h R-Citronellol mit einem Enantiomerenüberschuss von 95% ee über die Schüttung geleitet. Man erhielt bei einem Umsatz von 50,2 % in einer Selektivität von 75,5% Citronellal mit einem Enantiomerenüberschuss bezüglich R-Citronellal von 95% ee.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von optisch aktivem Menthol ausgehend von Geraniol oder Nerol oder Gemischen von Geraniol und Nerol indem man
a) Geraniol oder Nerol oder Gemische von Geraniol und Nerol zu optisch ak¬ tivem Citronellol enantioselektiv hydriert, b) das so erhaltene optisch aktive Citronellol zu optisch aktivem Citronellal umsetzt, c) das so erhaltene optisch aktive Citronellal zu einem optisch aktives Iso- pulegol enthaltenden Stoffgemisch cyclisiert und d) optisch aktives Isopulegol aus dem so erhaltenen Stoffgemisch abtrennt und zu optisch aktivem Menthol hydriert oder das in dem so erhaltenen Stoffgemisch enthaltene optisch aktive Isopulegol zu optisch aktivem Men- thol hydriert und das so erhaltene optisch aktive Menthol aus dem als Pro¬ dukt der Hydrierung erhaltenen Stoffgemisch abtrennt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als Ausgangs¬ stoff Geraniol einsetzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man die enantioselektive Hydrierung gemäß Schritt a) in Gegenwart eines homogenen Übergangsmetallkatalysators durchführt, der Ru, Rh oder Ir sowie einen chiralen, mindestens ein Phosphor-Atom aufweisenden Liganden enthält.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Übergangsme¬ tallkatalysator Ru, Rh oder Ir und einen Liganden enthält, der die Fähigkeit auf¬ weist Atropisomerie bezüglich zweier Aryl- bzw. Hetarylsysteme auszubilden.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Über¬ gangsmetallkatalysator Ru und einen Liganden ausgewählt aus der Gruppe der Liganden 2,2'-Bis(diphenylphosphino-1 ,1'-binaphtyl, 2,2'-Bis[di(p-tolyl)- phosphino]-1 ,1 '-binaphthyl, 2,2'-Bis(diphenylphosphino)-4,4',6,6'-tetramethyl- 3,3'-bibenzo[b]thiophen und 2,2'-Bis(diphenylphosphino)-3,3'-tetramethyl-3,3'- bibenzo[b]thiophen enthält.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass man zur Durchführung der enantioselektiven Hydrierung gemäß Schritt a) Methanol als Lösemittel einsetzt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man eine 3 bis 20 Gew.-%ige Lösung von Geraniol in Methanol einsetzt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man gemäß Schritt b) das optisch aktive Citronellol zu optisch aktivem Citronellal umsetzt, indem man eine Dehydrierung in Gegenwart eines Katalysators in der Gasphase durchführt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man einen Katalysa¬ tor einsetzt, der Zinkoxid und Calciumcarbonat enthält.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass man einen Katalysator einsetzt, dessen aktive Komponente zu 30 bis 60 Gew.-% aus Zink¬ oxid und zur 40 bis 70 Gew.-% aus Calciumcarbonat besteht.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man die Cyclisierung gemäß Schritt c) in Gegenwart einer Säure oder Lewis- Säure durchführt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass man als Säure oder Lewis-Säure ZnBr2, Scandiumtriflat, SiO2, SiO2-AI2O3, Montmorillonit, Alumosili- cate, Eisen(lll)chlorid, Zinkchlorid, Zinntetrachlorid, Trisdiarylphenoxyaluminium-
Komplexe und/oder Zeolithe einsetzt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das gemäss Schritt c) durch Cyclisierung erhaltene Stoffgemisch zu mindestens 60 Gew.-% aus Isopulegol besteht.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man zur Abtrennung des Isopulegols gemäss Schritt d) eine Destillation und/oder eine Kristallisation durchführt.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass man gemäss Schritt d) eine katalytische Hydrierung von Isopulegol zu Menthol durchführt.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man Geraniol gemäss Schritt a) zu D-(R)-Citronellol enantioselektiv hydriert.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man D-(R)-Citronellol gemäss Schritt b) in D-(R)-Citronellal überführt.
18. Verfahren nach einem der Ansprüche 1 bis 17, zur Herstellung von L-Menthol.
PCT/EP2005/012563 2004-11-26 2005-11-24 Verfahren zur herstellung von menthol WO2006056435A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT05810891T ATE433434T1 (de) 2004-11-26 2005-11-24 Verfahren zur herstellung von menthol
DE502005007475T DE502005007475D1 (de) 2004-11-26 2005-11-24 Verfahren zur herstellung von menthol
EP05810891A EP1819654B1 (de) 2004-11-26 2005-11-24 Verfahren zur herstellung von menthol
JP2007541841A JP5312792B2 (ja) 2004-11-26 2005-11-24 メントールの調製法
US11/720,279 US7709688B2 (en) 2004-11-26 2005-11-24 Method for the production of menthol
CN2005800406156A CN101065344B (zh) 2004-11-26 2005-11-24 薄荷醇的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004057277.1 2004-11-26
DE102004057277A DE102004057277A1 (de) 2004-11-26 2004-11-26 Verfahren zur Herstellung von Menthol

Publications (1)

Publication Number Publication Date
WO2006056435A1 true WO2006056435A1 (de) 2006-06-01

Family

ID=35589358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012563 WO2006056435A1 (de) 2004-11-26 2005-11-24 Verfahren zur herstellung von menthol

Country Status (8)

Country Link
US (1) US7709688B2 (de)
EP (1) EP1819654B1 (de)
JP (2) JP5312792B2 (de)
CN (1) CN101065344B (de)
AT (1) ATE433434T1 (de)
DE (2) DE102004057277A1 (de)
ES (1) ES2326330T3 (de)
WO (1) WO2006056435A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025852A1 (de) * 2006-09-01 2008-03-06 Basf Se Rückgewinnung von bis(diarylphenol)-liganden bei der herstellung von isopulegol
WO2008025851A1 (de) * 2006-09-01 2008-03-06 Basf Se Rückgewinnung von phenol-liganden bei der herstellung von isopulegol
JP2010539072A (ja) * 2007-09-11 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア 純粋または富化形態のメントールの連続的方法
US7868211B2 (en) 2005-08-26 2011-01-11 Basf Se Method for the production of enriched isopulegol
JP2011504895A (ja) * 2007-11-30 2011-02-17 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性ラセミメントールを製造するための方法
US8288593B2 (en) 2007-06-12 2012-10-16 Basf Se Menthol flakes and method for producing the same
JP2014159402A (ja) * 2007-07-23 2014-09-04 Basf Se イソプレゴールの水素化によるメントールの製造方法
CN105254475A (zh) * 2015-10-30 2016-01-20 上海万香日化有限公司 一种消旋薄荷醇及其衍生物的合成方法
WO2016193133A1 (en) 2015-05-29 2016-12-08 Basf Se Novel aroma chemicals having a 1,2,2-trimethylcyclopentan-1-yl moiety
EP3670488A1 (de) 2018-12-18 2020-06-24 Basf Se Bi- und tricyclische ketone zur verwendung als aromachemikalien
CN112321389A (zh) * 2020-10-28 2021-02-05 万华化学集团股份有限公司 一种耐黄变l-薄荷醇的制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057277A1 (de) * 2004-11-26 2006-06-01 Basf Ag Verfahren zur Herstellung von Menthol
WO2010095034A1 (en) 2009-02-17 2010-08-26 Nagaoka & Co., Ltd. Methods and apparatus for production of natural l-menthol
CN102010297B (zh) * 2010-11-23 2013-06-12 广东省食品工业研究所 一种手性合成左旋薄荷醇的方法
JP5780933B2 (ja) 2010-12-01 2015-09-16 高砂香料工業株式会社 光学活性メントールの製造方法
EP2921228A1 (de) 2012-11-15 2015-09-23 Takasago International Corporation Verfahren zur herstellung von optisch aktivem isopulegol und optisch aktivem menthol
CN103086845A (zh) * 2013-02-22 2013-05-08 上海统益生物科技有限公司 制备l-薄荷醇的方法
ES2727384T3 (es) 2014-12-19 2019-10-15 Basf Se Procedimiento para la preparación de compuestos carbonílicos ópticamente activos
EP3388411A1 (de) * 2017-04-13 2018-10-17 Sulzer Chemtech AG Verfahren zur reinigung einer rohzusammensetzung mit einer monoterpenverbindung, wie monocyclischer monoterpenalkohol, alkohol durch schichtschmelzkristallisation
US10492522B2 (en) 2017-05-03 2019-12-03 R.J. Reynolds Tobacco Company Flavored menthol-containing objects for application to smoking article components
CN112391327B (zh) * 2019-08-14 2022-08-05 中国农业科学院烟草研究所 一种用于联产香叶醇和橙花醇的工程菌及其构建方法与应用
CN110743622B (zh) * 2019-11-07 2022-07-12 西安石油大学 一种蒙脱土固载手性化合物及其制备方法
CN110963889B (zh) * 2019-12-13 2022-07-12 万华化学集团股份有限公司 一种由柠檬醛不对称硅氢化合成左旋光性香茅醇的方法
CN110981707B (zh) * 2019-12-19 2023-05-30 万华化学集团股份有限公司 一种橙花醇或香叶醇异构合成手性香茅醛的方法
CN112844389B (zh) * 2021-02-03 2022-06-07 合肥工业大学 用于合成d,l-薄荷醇的钴镍合金催化剂的制备方法、制得催化剂及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1053974A1 (de) * 1999-05-17 2000-11-22 Quest International B.V. Reaktionen mittels Lewissäuren
WO2005085160A1 (de) * 2004-03-08 2005-09-15 Basf Aktiengesellschaft Verfahren zur herstellung optisch aktiver carbonylverbindungen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2117414A (en) * 1936-09-28 1938-05-17 Theodore Swann Method of producing isopulegol
US3254128A (en) * 1961-11-09 1966-05-31 Eastman Kodak Co Catalytic dehydrogenation of primary alcohols to aldehydes
JPS5821895B2 (ja) * 1975-06-17 1983-05-04 株式会社クラレ アルデヒドノセイゾウホウ
JPS5945661B2 (ja) 1977-03-18 1984-11-07 高砂香料工業株式会社 d−シトロネラ−ルからl−イソプレゴ−ルへの立体選択的閉環方法
DE3138423A1 (de) 1981-09-26 1983-04-14 Basf Ag, 6700 Ludwigshafen Trennung von stoffmischungen
JPS62265293A (ja) * 1986-05-13 1987-11-18 Takasago Corp ルテニウム−ホスフイン錯体
JP2681057B2 (ja) * 1990-10-01 1997-11-19 高砂香料工業株式会社 2,2’―ビス(ジフェニルホスフィノ)―5,5’,6,6’,7,7’,8,8’―オクタヒドロ―1,1’―ビナフチル及びこれを配位子とする遷移金属錯体
DE4208443A1 (de) 1992-03-17 1993-09-23 Bayer Ag Verfahren zur herstellung von d,1-menthol
JP3247277B2 (ja) * 1994-07-29 2002-01-15 高砂香料工業株式会社 液状l−n−メントール組成物及びその調製法
DE19518023A1 (de) * 1995-05-17 1996-11-21 Bayer Ag Verfahren zur Herstellung von d,l-Menthol aus d-Menthol
DE19609954A1 (de) * 1996-03-14 1997-09-18 Basf Ag Verfahren zur Dehydrierung von sekundären cyclischen Alkoholen
EP0926117A1 (de) 1997-12-22 1999-06-30 Quest International B.V. Verfahren zur Herstellung von Isopulegol
DE19757297A1 (de) 1997-12-22 1999-06-24 Basf Ag Verfahren zur Herstellung oxidischer Katalysatoren, die Kupfer in einer Oxidationsstufe > 0 enthalten
JP3771070B2 (ja) 1998-12-24 2006-04-26 高砂香料工業株式会社 軸不斉化合物の製造方法、その製造中間体、新規な軸不斉化合物を配位子とする遷移金属錯体、不斉水素化触媒及び不斉炭素−炭素結合形成触媒
US6342644B1 (en) * 2000-05-10 2002-01-29 Takasago International Corporation Method for producing 1-menthol
DE10100913A1 (de) * 2001-01-11 2002-07-25 Haarmann & Reimer Gmbh Verfahren zur Herstellung von L-Menthol
JP4676617B2 (ja) 2001-01-18 2011-04-27 高砂香料工業株式会社 イソプレゴールの製造方法
US6376422B1 (en) * 2001-02-28 2002-04-23 Basf Corporation Dehydrogenation catalysts and methods
DE10160141A1 (de) 2001-12-07 2003-06-18 Basf Ag Verfahren zur selektiven Flüssiphasenhydrierung von alpha,beta-ungesättigren Carbonylverbindungen zu ungesättigten Alkoholen in Gegenwart eines Pt/ZnO-Katalysators
DE10160143A1 (de) 2001-12-07 2003-06-18 Basf Ag Verfahren zur selektiven Hydrierung von olefinisch ungesättigten Carbonylverbindungen
ES2294075T3 (es) 2001-12-07 2008-04-01 Basf Se Procedimiento para la obtencion de catalizadores de rutenio/hierro sobre soportes de carbono.
EP1546349A1 (de) 2002-08-02 2005-06-29 Aromagen Corporation Verfahren zur herstellung von (-)-menthol und oxygenierten menthanverbindungen
DE102004057277A1 (de) * 2004-11-26 2006-06-01 Basf Ag Verfahren zur Herstellung von Menthol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1053974A1 (de) * 1999-05-17 2000-11-22 Quest International B.V. Reaktionen mittels Lewissäuren
WO2005085160A1 (de) * 2004-03-08 2005-09-15 Basf Aktiengesellschaft Verfahren zur herstellung optisch aktiver carbonylverbindungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KURT BAUER, DOROTHEA GARBE, HORST SUBURG: "Common Fragrance and Flavor Materials: Preparation and Uses, Fourth, Completely Revised Edition; Chapter 2: Single Fragrance and Flavor Materials", 2001, WILEY-VCH VERLAG GMBH, XP002364464 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868211B2 (en) 2005-08-26 2011-01-11 Basf Se Method for the production of enriched isopulegol
CN101511761B (zh) * 2006-09-01 2012-11-28 巴斯夫欧洲公司 在生产异蒲勒醇的过程中回收双(二芳基苯酚)配体
WO2008025851A1 (de) * 2006-09-01 2008-03-06 Basf Se Rückgewinnung von phenol-liganden bei der herstellung von isopulegol
CN101535229B (zh) * 2006-09-01 2013-09-11 巴斯夫欧洲公司 生产异蒲勒醇过程中苯酚配体的回收
US8003829B2 (en) 2006-09-01 2011-08-23 Basf Se Recovery of phenol ligands during the production of isopulegol
US8134034B2 (en) 2006-09-01 2012-03-13 Basf Se Recovery of bis(diarylphenol) ligands during the production of isopulegol
WO2008025852A1 (de) * 2006-09-01 2008-03-06 Basf Se Rückgewinnung von bis(diarylphenol)-liganden bei der herstellung von isopulegol
US8288593B2 (en) 2007-06-12 2012-10-16 Basf Se Menthol flakes and method for producing the same
JP2014159402A (ja) * 2007-07-23 2014-09-04 Basf Se イソプレゴールの水素化によるメントールの製造方法
US8414744B2 (en) 2007-09-11 2013-04-09 Basf Se Continuous process for preparing menthol in pure or enriched form
JP2014028811A (ja) * 2007-09-11 2014-02-13 Basf Se 純粋または富化形態のメントールを製造する連続的方法
JP2010539072A (ja) * 2007-09-11 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア 純粋または富化形態のメントールの連続的方法
US8318985B2 (en) 2007-11-30 2012-11-27 Basf Se Method for producing optically active, racemic menthol
JP2011504895A (ja) * 2007-11-30 2011-02-17 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性ラセミメントールを製造するための方法
JP2013209432A (ja) * 2007-11-30 2013-10-10 Basf Se 光学活性ラセミメントールを製造するための方法
WO2016193133A1 (en) 2015-05-29 2016-12-08 Basf Se Novel aroma chemicals having a 1,2,2-trimethylcyclopentan-1-yl moiety
CN105254475A (zh) * 2015-10-30 2016-01-20 上海万香日化有限公司 一种消旋薄荷醇及其衍生物的合成方法
EP3670488A1 (de) 2018-12-18 2020-06-24 Basf Se Bi- und tricyclische ketone zur verwendung als aromachemikalien
WO2020127305A1 (en) 2018-12-18 2020-06-25 Basf Se Bi- and tricyclic compounds for use as aroma chemicals
CN112321389A (zh) * 2020-10-28 2021-02-05 万华化学集团股份有限公司 一种耐黄变l-薄荷醇的制备方法

Also Published As

Publication number Publication date
US20080139852A1 (en) 2008-06-12
DE502005007475D1 (de) 2009-07-23
ATE433434T1 (de) 2009-06-15
JP5312792B2 (ja) 2013-10-09
DE102004057277A1 (de) 2006-06-01
JP2008521763A (ja) 2008-06-26
JP2013155183A (ja) 2013-08-15
CN101065344A (zh) 2007-10-31
EP1819654A1 (de) 2007-08-22
ES2326330T3 (es) 2009-10-07
US7709688B2 (en) 2010-05-04
EP1819654B1 (de) 2009-06-10
CN101065344B (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
EP1819654B1 (de) Verfahren zur herstellung von menthol
EP1802561B1 (de) Verfahren zur herstellung optisch aktiver carbonylverbindungen
EP2139835B1 (de) Verfahren zur herstellung optisch aktiver carbonylverbindungen
JP5476299B2 (ja) イソプレゴールの水素化によるメントールの製造方法
WO2015086821A1 (de) Verfahren zur herstellung von polyamid 66
EP3080064A1 (de) Verfahren zur herstellung von hexamethylendiamin
US20110172465A1 (en) Method for producing 3-methyl-cyclopentadecenones, method for producing (r)- and (s)- muscone, and method for producing optically active muscone
DE102004007498A1 (de) Hydrierverfahren zur Herstellung optisch aktiver Alkohole oder Carbonsäuren
WO2004054948A1 (de) Verfahren zur herstellung von 1,6-hexandiol
EP1725512B1 (de) Verfahren zur herstellung optisch aktiver carbonylverbindungen
EP0927157B1 (de) Verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
EP2635544B1 (de) Verfahren zur herstellung eines phenylcyclohexans
WO2015086827A1 (de) Verfahren zur herstellung von adipinsäure oder wenigstens einem folgeprodukt davon
WO2008064991A1 (de) Verfahren zur herstellung von 3-alkoxypropan-1-ole
EP1711452A2 (de) Katalytisch aktive zusammensetzung und ihre verwendung in dehydrierverfahren
WO2019042520A1 (de) Verfahren zur herstellung von terpenaldehyden und -ketonen
KR20180132650A (ko) 알콜을 형성하기 위해 카르복실산을 수소화시키는 방법
DE102004007499A1 (de) Verfahren zur Herstellung optisch aktiver Alkohole oder Carbonsäuren
WO2013060805A1 (de) Verfahren zur herstellung von cis-rosenoxid
WO2017001435A1 (de) Verfahren zur synthese von polyenen aus aldehyden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005810891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007541841

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11720279

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580040615.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005810891

Country of ref document: EP