WO2006051785A1 - 内視鏡形状検出装置 - Google Patents

内視鏡形状検出装置 Download PDF

Info

Publication number
WO2006051785A1
WO2006051785A1 PCT/JP2005/020460 JP2005020460W WO2006051785A1 WO 2006051785 A1 WO2006051785 A1 WO 2006051785A1 JP 2005020460 W JP2005020460 W JP 2005020460W WO 2006051785 A1 WO2006051785 A1 WO 2006051785A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
detection
magnetic field
drive signal
unit
Prior art date
Application number
PCT/JP2005/020460
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Miyoshi
Chieko Aizawa
Kensuke Miyake
Fumiyuki Onoda
Minoru Sato
Hiroshi Niwa
Tomohiko Oda
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to AU2005303213A priority Critical patent/AU2005303213B2/en
Priority to EP05802988.5A priority patent/EP1810608B1/en
Publication of WO2006051785A1 publication Critical patent/WO2006051785A1/ja
Priority to US11/799,864 priority patent/US8147404B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Definitions

  • the present invention relates to an endoscope shape detection device that detects and displays an insertion shape or the like of an endoscope inserted into a body cavity or the like.
  • Japanese Patent Application Laid-Open No. 8-107875 as a first conventional example discloses an apparatus for detecting an endoscope shape using a magnetic field and displaying the detected endoscope shape.
  • a plurality of magnetic field generating elements arranged at predetermined intervals in an insertion portion of an endoscope inserted into the body is driven to generate a magnetic field around it, and each magnetic field is generated by a magnetic field detecting element arranged outside the body. Detect the 3D position of the element. Then, a curved line continuously connecting the detected three-dimensional positions of the magnetic field generating elements is generated, and the modeled three-dimensional shape image of the insertion portion is displayed on the display means.
  • the surgeon and the like can grasp the position of the distal end of the insertion portion inserted into the body, the insertion shape, etc., and smoothly perform the insertion operation to the target site. It is possible to do it.
  • the present invention has been made in view of the above-described points, and provides an endoscope shape detection device that can detect an endoscope shape with high accuracy without much labor, that is, good operability.
  • the purpose is to provide.
  • the present invention includes a drive block having a plurality of magnetic field generation elements and a drive signal generation unit that supplies a drive signal to the plurality of magnetic field generation elements to generate a magnetic field;
  • the position of the plurality of magnetic field generating elements or the plurality of magnetic field detection elements arranged in the insertion portion of the endoscope is calculated from a frequency component corresponding to the frequency of the drive signal in the detection signals by the plurality of magnetic field detection elements.
  • a frequency setting unit for setting the oscillation frequency of a reference clock that determines the frequency of the drive signal to be changeable
  • a reference clock having an oscillation frequency set by the frequency setting unit is supplied to the drive block, and the reference clock is also supplied to the shape calculation block.
  • the frequency setting for driving the drive signal at a frequency with less noise influence and the setting to extract the signal component corresponding to the drive frequency on the shape calculation block side can be performed in common by the reference clock. Thus, it is possible to save time and to detect the position with high accuracy.
  • FIG. 1 is a schematic diagram showing a configuration of an endoscope system provided with Example 1 of the present invention.
  • FIG. 2 is a diagram showing an example of arrangement of sense coils built in a coil unit in a reference coordinate system.
  • FIG. 3 is a block diagram showing the configuration of the endoscope shape detection apparatus of the first embodiment shown in FIG.
  • FIG. 4 is a block diagram showing a more detailed configuration of the reception block and control block of FIG.
  • FIG. 5 is a flowchart showing the operation content of the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of the endoscope shape detection apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation content of the second embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of an endoscope shape detection device according to a modification.
  • an endoscope system 1 includes an endoscope apparatus 2 that performs an endoscopic examination, and an endoscope shape detection apparatus 3 according to the first embodiment that is used for assisting an endoscopic examination.
  • This endoscope shape detection device 3 is used as an insertion assisting means when inserting the insertion portion 7 of the electronic endoscope 6 into the body cavity of the patient 5 lying on the bed 4 and performing an endoscopy. used.
  • the electronic endoscope 6 is formed with an operation portion 8 having a bending operation knob provided at the rear end of a flexible elongated insertion portion 7, and a universal cord 9 is extended from the operation portion 8, and a video processor is provided. (Or video imaging system) connected to 10.
  • This electronic endoscope 6 is inserted through a light guide, transmits illumination light from the light source section in the video processor 10, and emits illumination light transmitted from an illumination window provided at the distal end of the insertion section 7, so that the affected area, etc. Illuminate.
  • An illuminated object such as an affected part is connected to an image pickup device arranged at the image forming position by an objective lens attached to an observation window provided adjacent to the illumination window, and this image pickup device performs photoelectric conversion.
  • the photoelectrically converted signal is subjected to signal processing by a video signal processing unit in the video processor 10 to generate a standard video signal, and is displayed on an image observation monitor 11 connected to the video processor 10.
  • the electronic endoscope 6 is provided with a forceps channel 12, and source coils 14a, 14b, ⁇ , 14p (hereinafter referred to as reference numerals 14i) as a plurality of magnetic field generating elements from the heel entrance 12a of the forceps channel 12.
  • the source coil 14i is installed in the insertion portion 7 by passing the probe 15 having a representative).
  • the source cable 16 with the rear end of the probe 15 extended also has a rear end connector 16a detachably connected to a detection device 21 as the main body of the endoscope shape detection device 3. Then, by applying a drive signal to the source coil 14i through the source cable 16 as a high-frequency drive signal transmission unit (high-frequency drive signal transmission means) from the detection device 21 side, the source coil 14i radiates electromagnetic waves with a magnetic field to the surroundings. To do.
  • a (sense) coil unit 23 is provided in the detection device 21 arranged in the vicinity of the bed 4 on which the patient 5 lies, so that the coil unit 23 can move up and down in the vertical direction.
  • Sense coils as a plurality of magnetic field detection elements are arranged.
  • the sense coil 23 ⁇ 4 is connected to the detection device via a cable (not shown) from the coil unit 23. Connected to 21.
  • the detection device 21 is provided with an operation panel 24 for a user to operate the device.
  • the detection device 21 is provided with a liquid crystal monitor 25 as a display means for displaying the detected endoscope shape.
  • the endoscope shape detection device 3 includes a drive block 26 that drives a source coil 14i in a probe 15 and a detection block that detects signals received by a sense coil 23 ⁇ 4 in a coil unit 23. 27 and a host processor (shape calculation block) 28 that performs signal processing such as shape calculation on the signal force detected by the detection block 27.
  • a plurality of, for example, 16 source coils 14i for generating a magnetic field are arranged at predetermined intervals on the probe 15 shown in FIG. 3 installed in the insertion portion 7 of the electronic endoscope 6.
  • Each source coil 14i is driven by a coil drive circuit 31i constituting a drive block 26 as shown in FIG.
  • the 16 coil drive circuits 31i are indicated by the coil drive circuit section 31.
  • the clock generator 33 for generating a clock is provided.
  • the frequency of the clock generated by the clock generator 33 is controlled by the frequency setting circuit 34 constituting the frequency setting unit 40. It is output as the reference clock to be changed.
  • a reference clock having a frequency changed and set via the frequency changing circuit 34 is supplied to each oscillator 32i in common, and each oscillator 32i has a different frequency fi depending on the supplied common reference clock.
  • a sine wave (specifically fa to fp) is output to the coil drive circuit 31i.
  • Each oscillator 32i is a direct digital synthesizer (abbreviated as DDS) 35i that outputs a sine wave of a digital waveform of a single frequency component in accordance with a supplied reference clock power and a preset digital parameter value.
  • DZA converts DDS35i output to D / A It consists of a converter 36i.
  • Each DDS 35i is supplied with the common reference clock at its clock input terminal, and different parameter values Pi are set in advance via the control circuit 37 at the parameter input terminal for determining the oscillation frequency. ing.
  • Each DDS351 generates a digital sine wave having a frequency corresponding to the set parameter value Pi, converts it to an analog sine wave via the D / A converter 36i, and uses this as a drive signal as a coil. Output to drive circuit 31i.
  • the frequency changing circuit 34 controls the operation of changing the frequency under the control of the host processor 28 (the CPU 41 constituting the frequency control circuit 37) via the control circuit 37, for example. That is, as shown in FIG. 4, the frequency setting unit 40 includes a control circuit 37 and a frequency change circuit 34.
  • the frequency changing circuit 34 is changed and set via the control circuit 37 by the control signal from the frequency setting data Df output S host processor 28 stored in its internal memory or the like. Then, the frequency changing circuit 34 outputs a reference clock used for sharing the frequency corresponding to the set frequency setting data Df.
  • the reference clock output from the frequency changing circuit 34 is supplied to the drive block 26 (DDS 35i) as described above. Further, this reference clock is an FFT unit in FIG. 4 that separates and extracts a signal of a frequency component corresponding to a driving frequency for calculating position information of each A / D converter 44j and host processor 28 of the detection block 27.
  • FFT means 53 ⁇ 4 or position information calculation section (position information calculation means) 54j, or CPU 41 (performs frequency component separation or extraction processing by software) in FIG.
  • the host processor 28 including the CPU 41 and the like shown in FIG. 3 is represented by functions configured by software such as the FFT unit 53j in the host processor unit 28 shown in FIG.
  • the reference clock output from the frequency changing circuit 34 is commonly supplied to the drive block 26, the detection block 27, and the host processor 28 that calculates the shape.
  • the frequency setting data Df of the frequency changing circuit 34 is stored in the PI ⁇ (parallel input / output circuit) 42 by the CPU (central processing unit) 41 that performs the endoscope shape calculation processing in the host processor 28 of FIG. To the control circuit 37 shown in FIG. Then, the control circuit 37 changes the frequency setting data Df.
  • the frequency changing circuit 34 outputs a reference clock having an oscillation frequency corresponding to the frequency setting data Df.
  • the frequency fi of each oscillator 32i can be changed according to the preset parameter value Pi only by changing the frequency of the common reference clock by changing the frequency setting data Df.
  • the amplifier circuit unit 43 is composed of 12 amplifier circuits 43 ⁇ 4 connected to 12 sense coils 23 ⁇ 4 (j represents a to 1).
  • the detection signal detected by the sense coil 23 ⁇ 4 is amplified by the amplifier circuit 43 ⁇ 4, and then input to the A / D converter 44j constituting the A / D converter 44, and is A / D converted into a digital detection signal. Converted.
  • the AZD converter 44 (each A / D converter 44j) is supplied with the reference clock output from the frequency changing circuit 34, and performs AZD conversion in synchronization with the reference clock.
  • the output data of the AZD conversion unit 44 is input to the host processor 28.
  • the host processor 28 has a configuration as shown in FIG. 3, and its functional configuration is as shown in FIG.
  • the reference clock output from the drive block 26 (of the frequency changing circuit 34)
  • the clock is supplied to a control signal generation circuit 45 in the host processor 28, and the control signal generation circuit 45 generates a control signal having a timing synchronized with the reference clock.
  • the output data output from the A / D converter 44 is written into the 2-port memory 47 via the local data bus 46 from the control signal from the control signal generation circuit 45 synchronized with the reference clock. .
  • the CPU 41 reads the digital data written in the 2-port memory 47 by the control signal from the control signal generation circuit 45 through the internal bus 48, and uses the main memory 49 to process the digital data as will be described later. Perform frequency analysis (Fast Fourier Transform: FFT).
  • FFT Fast Fourier Transform
  • the CPU 41 separates and extracts the magnetic field detection information of the frequency component that matches the driving frequency of each source coil 14i, and inserts the insertion portion 7 of the electronic endoscope 6 from each digital data of the extracted magnetic field detection information.
  • the spatial position coordinate of each source coil 14i provided inside is calculated.
  • the data of the parameter value Pi set in the DDS 35i of each oscillator 32i is stored in, for example, a memory (or register) 41a built in the CPU 41 of FIG.
  • the CPU 41 calculates the frequency fi of each oscillator 32i by reading the frequency setting data Df of the frequency changing circuit 34 and the parameter value Pi from the memory 41a, and the source coil 14i is driven.
  • the magnetic field detection information of the frequency component corresponding to the driving frequency is separated and extracted.
  • the CPU 41 estimates the insertion state of the insertion unit 7 of the electronic endoscope 6 from the calculated position coordinate data, generates display data for forming an endoscope shape image, and outputs the display data to the video RAM 50.
  • the display data written in the video RAM 50 is read out by the video signal generation circuit 51, converted into an analog video signal, and output to the liquid crystal monitor 25.
  • the analog video signal is input to the liquid crystal monitor 25, the insertion shape image of the insertion portion 7 of the electronic endoscope 6 is displayed on the display screen.
  • magnetic field detection information corresponding to each source coil 14i that is, electromotive force (amplitude value of a sine wave signal) and phase information generated in each sense coil 23 ⁇ 4 is calculated.
  • the phase information includes the polar soil of the electromotive force.
  • digital detection data output from the A / D conversion unit 44 is transferred to an FFT unit 53 ⁇ 4 realized by a dedicated circuit or a program.
  • the FFT unit 53 ⁇ 4 performs frequency analysis processing on the detected data at high speed.
  • the FFT unit 53j extracts the magnetic field detection information of the frequency component that matches the drive frequency of each source coil 14i from the analysis processing result, and outputs it.
  • each position information calculation unit 54i (i represents one of 54a to 54p) uses the position of each sense coil 23 ⁇ 4 as a reference and the spatial position coordinates (positions) of each source coil 14i from the amplitude value and phase value of the detected data. Information) is calculated.
  • the position information calculated by each position information calculation unit 54i is input to a shape generation unit (shape generation means) 55 realized by a dedicated circuit or a program, and the shape generation unit 55 receives each source coil 14i. Interpolation processing or the like is performed from the position information, and the processing for generating the shape of the insertion section 7 is performed and output to the display processing circuit 56.
  • shape generation unit shape generation means
  • the display processing circuit 56 outputs a video signal of the calculated insertion shape of the insertion portion 7 to the liquid crystal monitor 25 as an insertion shape display means, and the insertion shape (internal shape) of the insertion portion 7 is displayed on the display surface of the liquid crystal monitor 25. (Scope shape) is displayed.
  • a common reference clock is supplied to each oscillator 32 i of the drive block 26 and also supplied to the host processor 28. Then, by changing the frequency of the reference clock, the frequency fi of all the oscillators 32i can be uniquely changed by the set parameter value Pi. At the same time, on the host processor 28 side, by referring to the value of the reference clock and the parameter value Pi, the frequency to be separated and extracted is automatically calculated to calculate the position of the source coil 14i, etc. Without the need to set the frequency to be separated and extracted).
  • each source coil 14i is not driven by the drive signal, and signal detection is performed in the same manner as in the state where the source coil 14i is driven by the sense coil 23 ⁇ 4.
  • magnetic field signal detection is performed in the absence of a signal that generates a magnetic field, which is equivalent to measuring the noise level.
  • the frequency setting data Df of the frequency change circuit 34 is changed to scan a plurality of sets of frequencies that can be used for shape detection (a plurality of sets of drive frequencies in a state where no drive signal is applied). And measure noise respectively).
  • step S1 the CPU 41 calculates a drive frequency band to be used when the shape is actually detected.
  • the frequency band where the average noise level is the lowest is calculated as the drive frequency band.
  • step S3 the CPU 41 sets the frequency setting data Df so that the reference clock corresponding to the frequency band in which the average noise level is the lowest is output from the frequency changing circuit 34. Then, as shown in the next step S4, the frequency changing circuit 34 supplies this reference clock to each oscillator 32i. As a result, each oscillator 32i oscillates at a frequency fi of a value corresponding to the frequency of the reference clock according to a preset parameter value Pi.
  • the process of step S4 is automatically performed as shown in parentheses in FIG.
  • step S4 by performing the processing from step S1 to step S4, the frequency setting of the reference clock output from the frequency changing circuit 34 is completed so as to perform shape detection at the frequency with the least environmental noise, The shape detection operation in step S5 is started.
  • step S5 when the shape detection operation is started, each source coil 14i is driven by the drive signal of the drive frequency fi, and generates an alternating magnetic field around it.
  • Each AC magnetic field is amplified by the sense coil 23 ⁇ 4 and then converted to AZD.
  • step S6 the output signal of the detection block 27 after A / D conversion is Each FFT section 53j in the host processor 28 performs frequency analysis processing (FFT processing).
  • each position information calculation unit 54i calculates position data of each source coil 14i.
  • the above FFT processing and the processing for separating each frequency component corresponding to the driving frequency fi of each source coil 14i are performed by the CPU 41 in FIG. 3. At this time, the CPU 41 uses the parameter value Pi stored in the memory 41a and the reference clock. The drive frequency fi of each source coil 14i is easily calculated from the frequency value of.
  • the user does not need to perform a setting operation on the CPU 41 so as to separate the frequency components respectively corresponding to the driving frequency fi of each source coil 14i. Can be done. For this reason, operability can be greatly improved.
  • each source coil 14i is input to the shape generation unit 55, and as shown in step S8, the shape generation unit 55 interpolates between the positions of the source coils 14i.
  • Each source coil 14i is arranged to generate the shape data of the insertion part 7.
  • This shape data is input to the display processing circuit 56.
  • the display processing circuit 56 As shown in step S9, the display processing circuit 56 generates image data for displaying the shape of the insertion portion, outputs it to the liquid crystal monitor 25, and inserts it into the display screen. The part shape is displayed.
  • Steps S5 to S9 are repeated continuously at a predetermined interval. For this reason, after the process of step S9, the process returns to step S5 to start the next shape detection.
  • the setting of each drive frequency fi is set to change the frequency of the common reference clock itself.
  • the parenthesis reference clock is supplied in common to the drive block 26 side and the host processor 28 side that calculates the shape, so position calculation etc. is possible without the need for frequency change setting work required for each part.
  • the necessary frequency settings can be set automatically and the shape can be calculated with high accuracy. That is, according to the present embodiment, it is possible to detect and display the endoscope shape with high accuracy with a simpler circuit configuration and with less influence from noise.
  • FIG. 6 shows the configuration of the endoscope shape detection device 3B of the second embodiment.
  • This endoscope shape detection device 3B uses synchronous detection to accurately detect the position of the source coil 14i.
  • the endoscope shape detection device 3B shown in FIG. 6 includes a drive block 26B, a detection block 27B, a host processor 28B, and a liquid crystal monitor 25.
  • the drive block 26B in this embodiment is the same as the drive block 26 shown in FIG. 4 except that the oscillators 32a to 32p and the coil drive circuits 31a to 31p are only one system, and the output signal of the coil drive circuit 31a is the multiplexer 61.
  • 16 source coils 14i are sequentially driven, that is, driven in a time division manner.
  • the multiplexer 61 is sequentially switched at a predetermined cycle by a switching control signal from the control circuit 37.
  • the detection block 27B in the present embodiment has a configuration in which a synchronous detection circuit 63 ⁇ 4 is provided between the amplification circuit 43 ⁇ 4 and the A / D converter 44j in the detection block 27 of FIG. . That is, a synchronous detection circuit unit 62 including, for example, 12 synchronous detection circuits 63 ⁇ 4 is provided between the amplification circuit unit 43 and the A / D conversion unit 44.
  • each source coil 14i is driven by a drive signal having a different drive frequency fi.
  • each source coil 14i is sequentially driven by a drive signal having one drive frequency f, for example.
  • the noise level is detected, and the frequency at which the noise level is lowered is set as the drive frequency f for driving each source coil 14i from the detection result.
  • the drive frequency f is set based on the detection result of the noise level from a number of frequencies.
  • the frequency changing circuit 34 changes the frequency of the reference clock supplied to the oscillator 32a. Further, the reference clock output from the frequency changing circuit 34 is also supplied to the host processor 28B.
  • the reference clock output through the frequency changing circuit 34 is divided by the frequency dividing circuit 63, and the reference of the clock synchronized with the driving frequency f of the driving signal for driving the source coil 14i is referred to. A signal is generated. Then, the input signal is inverted by this reference signal every half cycle of this signal, and then an output signal is obtained through a low-pass filter. In this way, a detection signal having the same frequency component as that of the reference signal is extracted, and a different frequency component is attenuated.
  • the synchronous detection circuit 62j extracts a signal component having the same frequency that matches the drive frequency f of the drive signal from the input signal amplified and input by the amplifier circuit 43 ⁇ 4.
  • the reference signal in this case is generated from a common reference clock, the phase can be completely matched with the drive frequency f of the drive signal (phase difference 0), and the S / N is good.
  • a detection signal can be obtained in the state.
  • a phase difference is generated according to the distance between the source coil 14i and the sense coil 23 ⁇ 4, and position information is obtained from the output level of the detection signal corresponding to the phase difference.
  • Each signal synchronously detected by each synchronous detection circuit 63 ⁇ 4 is converted into digital data by the A / D converter 44j and then input to the host processor 28B.
  • the host processor 28B includes a position information calculation unit (position information calculation means) 54a that calculates position information of the driven source coil 14i, and 16 pieces of information sequentially calculated by the position information calculation unit 54a.
  • a synchronization circuit 64 that generates source position information by storing the source coil position information in a memory or the like, and a shape generation unit 55 and a display processing circuit 56 that perform shape generation processing from the synchronized position information. It consists of.
  • the force provided by 16 position information calculation units 54a to 54p is configured to perform time division processing by one position information calculation unit 54a in this embodiment.
  • the source coil 14i is not driven, and the source coil is driven by the sense coil 22j.
  • the frequency setting data Df of the frequency changing circuit 34 is changed to scan a plurality of frequencies that can be used for shape detection.
  • step S11 the CPU 41 calculates a drive frequency f to be actually used.
  • the frequency at which the average noise level is the lowest is calculated as the drive frequency f.
  • step S13 the CPU 41 sets the frequency setting data Df so that the reference clock corresponding to the driving frequency f with the lowest average noise level is output from the frequency changing circuit 34. Then, as shown in the next step S14, by supplying this reference clock to the oscillator 32a, the oscillator 32a oscillates at the drive frequency f having the lowest noise level according to a preset parameter value.
  • the process of step S14 is automatically performed as shown in parentheses in FIG.
  • each drive frequency band was calculated when using 16 frequencies different from each other at a time.
  • only one drive frequency f is calculated. Therefore, for example, a frequency with the least environmental noise can be calculated and used as the drive frequency f.
  • the control circuit 37 sequentially selects the source coils 14i to which the drive signal is applied via the multiplexer 61, and drives each source coil 14i in a time division manner. For this reason, the parameter n of the source coil number is set to 1 in step S16. Specifically, the CPU 41 controls the selection of the multiplexer 61 via the control circuit 37, and sets the source coil 14i to be turned ON as the first source coil 14a.
  • the magnetic field generated by the source coil 14a is detected by each of the twelve sense coils 22j, and signal components having the same frequency component are extracted through the synchronous detection circuit 63 ⁇ 4 and input to the position information calculation unit 54a.
  • step S19 If n matches p, the position calculation of all the source coils 14a to 14p is completed, and the process proceeds from step S19 to step S21.
  • the shape generation unit 55 uses the position information of all the source coils 14a to 14p and further interpolates the shape of the insertion unit 7 in which these source coils 14a to 14p are arranged. The process which calculates is performed.
  • the display processing circuit 56 In the next step S 22, the display processing circuit 56 generates image data of the shape of the insertion part 7 and displays an image of the shape of the insertion part 7 on the liquid crystal monitor 25.
  • the value set in the DDS in the oscillator is changed according to the frequency setting for generating the drive-side magnetic field by means of changing the reference clock frequency and the reference clock frequency.
  • the configuration on the drive block side can be simplified by reducing the number of oscillators to one.
  • FIG. 8 shows the configuration of the drive block 26B, the detection block 27, and the host processor 28C in the endoscope shape detection device 3C of the third embodiment.
  • This endoscope shape detection device 3C performs the position detection of the source coil 14i with high accuracy using synchronous detection as in the second embodiment.
  • the function of the synchronous detection circuit 63 ⁇ 4 in the second embodiment is performed by the host processor 28C.
  • An endoscope shape detection device 3C shown in FIG. 8 includes a drive block 26B, a detection block 27, a host processor 28C, and a liquid crystal monitor 25.
  • the function of the synchronous detection circuit 63 ⁇ 4 in the second embodiment is incorporated in the host processor 28C. It is formed by software.
  • the synchronous detection circuit 63 ⁇ 4 in the present embodiment performs synchronous detection processing by software in the host processor 28C as follows.
  • the digital signal data input from the AZD converter 44j is input to the synchronous detection circuit 63 ⁇ 4 (which constitutes the CPU 41).
  • the CPU 41 stores the input signal data in a register or memory in the half cycle of the reference signal output from the frequency divider 63, and sets the polarity for the signal data input in the subsequent half cycle. Invert and store in the register or memory.
  • the configuration on the drive block side can be simplified by reducing the number of oscillators to one.
  • each of the plurality of source coils 14i is driven at different driving frequencies f i.
  • the source coil 14i may be driven in a time division manner.
  • each source coil 14i may be driven in a time division manner as in the second embodiment or the third embodiment.
  • a plurality of units may be driven in a time division manner.
  • a common reference clock that does not change the frequency is supplied to the drive block (oscillation unit) and the shape calculation unit, and the parameter value of the DDS351 that determines the oscillation frequency of the oscillation unit of the drive block is changed.
  • the parameter value may also be supplied to the shape calculation unit (frequency separation / extraction unit) to perform position calculation and the like with high accuracy.
  • the present invention is not limited to this. It is also acceptable to have a configuration in which the source coil 14i is arranged along the longitudinal direction in the insertion part 7 of the electronic endoscope 6. That is, the source coil 14i may be built in the insertion portion 7 of the electronic endoscope 6.
  • the configuration is described in which the source coil 14i that generates a magnetic field is disposed in the insertion portion 7 of the electronic endoscope 6 and the sense coil 23 ⁇ 4 that detects the magnetic field is disposed outside the body.
  • the present invention is not limited to this, and the configuration may be such that the sense coil 2 is arranged on the insertion portion 7 side and the source coil 14i is arranged outside the body.
  • a plurality of magnetic field generating elements and the like are arranged in the insertion portion of the endoscope inserted into a body cavity, etc., and information on each position is calculated to accurately determine the insertion shape using a frequency that is less affected by noise. By displaying well, the surgeon can perform the insertion operation smoothly by referring to the insertion shape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 駆動ブロックは、複数の磁界発生素子及び複数の磁界発生素子に駆動信号を供給して磁界を発生させる駆動信号発生部を有し、複数の磁界発生素子により発生される磁界は、検出ブロックを構成する複数の磁界検出素子を用いて検出される。形状算出ブロックは、複数の磁界検出素子による検出信号における駆動信号の周波数に相当する周波数成分から、内視鏡の挿入部内に配置された複数の磁界発生素子又は複数の磁界検出素子の位置算出を行うことにより、挿入部の形状を算出する。駆動信号の周波数を決定する基準クロックの発振周波数は、周波数設定部により変更設定が可能であり、周波数設定部により設定される発振周波数の基準クロックは駆動ブロックに供給すると共に、形状算出ブロックにも供給される。

Description

明 細 書
内視鏡形状検出装置
技術分野
[0001] 本発明は、体腔内等に挿入される内視鏡の揷入形状等を検出して表示する内視 鏡形状検出装置に関する。
背景技術
[0002] 近年、磁界発生素子と磁界検出素子とを用いて体内等に挿入された内視鏡の形 状等を検出し、表示手段により表示を行う内視鏡形状検出装置が用いられるようにな つに。
例えば、第 1の従来例としての日本国特開平 8— 107875号公報には、磁界を用い て内視鏡形状を検出し、検出した内視鏡形状を表示する装置が開示されている。 この装置では、体内に挿入される内視鏡の挿入部内に所定の間隔で配置した複数 の磁界発生素子を駆動してその周囲に磁界を発生させ、体外に配置した磁界検出 素子により各磁界発生素子の 3次元位置を検出する。そして、検出された各磁界発 生素子の 3次元位置を連続的に結ぶ曲線を生成して、モデル化した揷入部の 3次元 的な形状画像を表示手段で表示する。
[0003] 術者等はその形状画像を観察することにより、体内に揷入された揷入部の先端部 の位置ゃ揷入形状等を把握でき、 目的とする部位までの揷入作業等を円滑に行える ようにしている。
[0004] 上記のように磁界を発生させて形状を検出する場合、精度良く位置検出及び位置 検出に基づく揷入部形状の算出を行うためには、検出位置に影響を与えるようなノィ ズが少なレ、環境で形状検出を行うことが望まれる。特に磁界発生素子を駆動する交 流信号の駆動周波数のノイズ源が、位置検出の演算結果に大きな影響を及ぼす。 このため、第 2の従来例としての日本国特開 2003— 245243号公報においては、 複数の磁界発生素子を駆動する交流信号の駆動周波数を選択可能とし、複数の磁 界発生素子を駆動しない駆動停止状態で検出されるノイズの周波数成分をノイズ検 出手段により検出している。そして、検出されたノイズの周波数成分が少ない駆動周 波数の交流信号で複数の磁界発生素子を駆動する構成にして、ノイズが少ない環境 で位置検出を精度良く行う装置を開示している。
このようにすることにより、ノイズの影響を低減して精度の良い内視鏡形状の検出が 可能となる。
[0005] 第 2の従来例のように、ノイズの影響が少ない駆動周波数で複数の磁界発生素子 を駆動するようにした場合、揷入部内に配置される多数の磁界発生素子を駆動する 複数の駆動周波数帯に設定する作業と共に、磁界検出素子により磁界検出した場 合における高速フーリエ変換 (FFT)により分析された周波数分析結果から分離抽出 すべき周波数成分を前記複数の駆動周波数にそれぞれ合わせるように設定する作 業を行うことが必要となる。
このため、第 2の従来例においては、精度良く内視鏡形状の検出を行えることにな るものの、そのためには手間がかかる欠点があった。
[0006] 本発明は、上述した点に鑑みてなされたもので、手間をかけること無ぐつまり良好 な操作性で、しかも精度良く内視鏡形状の検出を行える内視鏡形状検出装置を提 供することを目的とする。
発明の開示
課題を解決するための手段
[0007] 本発明は、複数の磁界発生素子及び前記複数の磁界発生素子に駆動信号を供 給して磁界を発生させる駆動信号発生部を有する駆動ブロックと、
前記複数の磁界発生素子により発生される磁界を複数の磁界検出素子を用いて 検出する検出ブロックと、
前記複数の磁界検出素子による検出信号における前記駆動信号の周波数に相当 する周波数成分から、内視鏡の挿入部内に配置された前記複数の磁界発生素子又 は前記複数の磁界検出素子の位置算出を行うことにより、前記挿入部の形状を算出 する形状算出ブロックと、
前記駆動信号の周波数を決定する基準クロックの発振周波数を変更可能に設定 する周波数設定部と、
を有し、 前記周波数設定部により設定される発振周波数の基準クロックを前記駆動ブロック に供給すると共に、前記基準クロックを前記形状算出ブロックにも供給するようにした ことを特徴とする。
上記構成により、ノイズの影響の少ない周波数で駆動信号を駆動する際の周波数 の設定と、形状算出ブロック側での駆動周波数に相当する信号成分を抽出する設定 とを基準クロックにより共通して行えるようにして、手間をかけないで済むようにし、 つ精度よく位置検出等ができるようにしている。
図面の簡単な説明
[0008] [図 1]図 1は本発明の実施例 1を備えた内視鏡システムの構成を示す概略図。
[図 2]図 2はコイルユニットに内蔵されたセンスコイルの配置例を基準の座標系で示す 図。
[図 3]図 3は図 1における実施例 1の内視鏡形状検出装置の構成を示すブロック図。
[図 4]図 4は図 3の受信ブロック及び制御ブロックのより詳細な構成を示すブロック図。
[図 5]図 5は実施例 1の動作内容を示すフローチャート図。
[図 6]図 6は本発明の実施例 1の内視鏡形状検出装置の構成を示すブロック図。
[図 7]図 7は実施例 2の動作内容を示すフローチャート図。
[図 8]図 8は変形例の内視鏡形状検出装置の構成を示すブロック図。
発明を実施するための最良の形態
[0009] 以下、図面を参照して実施例を説明する。
(実施例 1)
図 1から図 5を参照して本発明の実施例 1を説明する。
図 1に示すように、内視鏡システム 1は、内視鏡検査を行う内視鏡装置 2と、内視鏡 検査の補助に用レ、られる実施例 1の内視鏡形状検出装置 3とを備え、この内視鏡形 状検出装置 3は、ベッド 4に横たわる患者 5の体腔内に電子内視鏡 6の挿入部 7を挿 入し、内視鏡検査を行う際の挿入補助手段として使用される。
電子内視鏡 6は、可撓性を有する細長の挿入部 7の後端に湾曲操作ノブを設けた 操作部 8が形成され、この操作部 8からユニバーサルコード 9が延出され、ビデオプロ セッサ(またはビデオイメージングシステム) 10に接続されている。 この電子内視鏡 6は、ライトガイドが挿通されビデオプロセッサ 10内の光源部からの 照明光を伝送し、挿入部 7の先端に設けた照明窓から伝送した照明光を出射し、患 部等を照明する。照明された患部等の被写体は照明窓に隣接して設けられた観察 窓に取り付けた対物レンズにより、その結像位置に配置された撮像素子に像を結び 、この撮像素子は光電変換する。
[0010] 光電変換された信号は、ビデオプロセッサ 10内の映像信号処理部により信号処理 されて標準的な映像信号が生成され、ビデオプロセッサ 10に接続された画像観察用 モニタ 11に表示される。
この電子内視鏡 6には、鉗子チャンネル 12が設けてあり、この鉗子チャンネル 12の 揷入口 12aから複数の磁界発生素子としてのソースコイル 14a、 14b、■·■、 14p (以下 、符号 14iで代表する)を有するプローブ 15が揷通されることにより、揷入部 7内にソ ースコイル 14iが設置される。
このプローブ 15の後端カも延出されたソースケーブル 16は、その後端のコネクタ 1 6aが内視鏡形状検出装置 3の装置本体としての検出装置 21に着脱自在に接続され る。そして、検出装置 21側から高周波駆動信号伝達部(高周波駆動信号伝達手段) としてソースケーブル 16を介してソースコイル 14iに駆動信号を印加することにより、 ソースコイル 14iは磁界を伴う電磁波を周囲に放射する。
[0011] また、患者 5が横たわるベッド 4の付近に配置されるこの検出装置 21には、(センス) コイルユニット 23が上下方向に移動(昇降)自在に設けられ、このコイルユニット 23内 には複数の磁界検出素子としてのセンスコイルが配置されている。
より具体的に説明すると、図 2に示すように例えば中心の Z座標が第 1の Z座標であ る ί列えば' X車由に向レ、たセンスコィノレ 22a_ l、 22a_ 2、 22a_ 3、 22a_4と、中 、の Z 座標が第 1の Z座標と異なる第 2の Z座標である Y軸に向いたセンスコイル 22b— 1、 2 2b _ 2、 22b _ 3、 22b _4と、中心の Z座標が第 1及び第 2の Z座標と異なる第 3の Z 座標である Z軸 (こ向レ、たセンスコィノレ 22c _ l、 22c _ 2、 22c _ 3、 22c_4の 12個の センスコィノレ(以下では簡単ィ匕のため 22a_ l、 22a— 2、…ヽ 22c _ 14を 22a、 22b, ■· -、 221とリネームして、これらを符号 2¾ (j = a〜l)で代表する)が配置されている。
[0012] センスコイル 2¾は、コイルユニット 23からの図示しないケーブルを介して検出装置 21に接続されている。この検出装置 21には使用者が装置を操作するための操作パ ネル 24が設けられている。また、この検出装置 21には検出した内視鏡形状を表示す る表示手段として液晶モニタ 25がその上部に配置されている。
内視鏡形状検出装置 3は、図 3に示すように、プローブ 15内のソースコイル 14iを駆 動する駆動ブロック 26と、コイルユニット 23内のセンスコイル 2¾が受信した信号を検 出する検出ブロック 27と、検出ブロック 27で検出した信号力も形状算出等の信号処 理をするホストプロセッサ (形状算出ブロック) 28とから構成される。
電子内視鏡 6の揷入部 7に設置される図 3に示すプローブ 15には、上述したように 、磁界を生成するための複数個、例えば 16個のソースコイル 14iが所定の間隔で配 置されている。各ソースコイル 14iは、図 4に示すように駆動ブロック 26を構成するコィ ル駆動回路 31iによりそれぞれ駆動される。なお、 16個のコイル駆動回路 31iをコィ ル駆動回路部 31で示している。
[0013] 図 4に示すようにコイル駆動回路部 31は、 16個のソースコイル 14iをそれぞれ異な る周波数の正弦波の駆動信号で駆動できるように、 16個の発振器 32i (i=a〜p)を 有する。そして、発振器 32iからの正弦波をコイル駆動回路 31iにより増幅して駆動信 号を生成し、ソースコイル 14iを駆動する。つまり、発振器 32iとコイル駆動回路 31iと でソースコイル Miを駆動する駆動信号発生回路を形成している。つまり、発振器 32 a〜32pとコイル駆動回路 31a〜31pとで駆動信号発生部 50を形成している。
また、本実施例においては、クロックを発生するクロック発生器 33を有し、このクロッ ク発生器 33により発生されるクロックは、周波数設定部 40を構成する周波数設定回 路 34により、その周波数が変更設定される基準クロックとして出力される。
[0014] そして、この周波数変更回路 34を介して変更設定された周波数の基準クロックを、 各発振器 32iに共通に供給し、各発振器 32iでは、供給される共通の基準クロックに よりそれぞれ異なる周波数 fi (具体的には faから fp)の正弦波をコイル駆動回路 31i に出力する。
各発振器 32iは、供給される基準クロック力 、予め設定されるデジタルのパラメ一 タ値に応じて単一の周波数成分のデジタル波形の正弦波を出力するダイレクトデジ タルシンセサイザ(DDSと略記) 35iと、この DDS35iの出力を D/A変換する DZA 変換器 36iとから構成される。
[0015] 各 DDS35iは、そのクロック入力端に上記共通の基準クロックが供給され、かつ発 振周波数を決定するパラメータ入力端には、制御回路 37を介して予めそれぞれ異な るパラメータ値 Piが設定されている。そして、各 DDS351は、設定されたパラメータ値 Piにそれぞれ対応した周波数のデジタルの正弦波を生成し、 D/A変換器 36iを介 してアナログの正弦波に変換し、これを駆動信号としてコイル駆動回路 31iに出力す る。 周波数変更回路 34は、例えば制御回路 37を介してホストプロセッサ 28 (を構成 する CPU41)による制御下で、周波数変更の動作が制御される。つまり、図 4に示す ように周波数設定部 40は、制御回路 37と周波数変更回路 34により構成される。例え ば、周波数変更回路 34は、その内部のメモリ等に格納される周波数設定データ Df 力 Sホストプロセッサ 28からの制御信号で制御回路 37を介して変更設定される。そし て、周波数変更回路 34は、設定された周波数設定データ Dfに対応した周波数の共 通に使用される基準クロックを出力する。
[0016] この周波数変更回路 34から出力される基準クロックは、上記のように駆動ブロック 2 6 (の DDS35i)に供給される。また、この基準クロックは、検出ブロック 27の各 A/D 変換器 44j及びホストプロセッサ 28の位置情報算出するための駆動周波数に相当す る周波数成分の信号を分離して抽出する図 4の FFT部(FFT手段) 5¾或いは位置 情報算出部 (位置情報算出手段) 54j、又は図 3の (ソフトウェアで周波数成分の分離 ないしは抽出処理を行う) CPU41にも供給される。なお、図 3に示す CPU41等を含 むホストプロセッサ 28は、図 4に示すホストプロセッサ部 28において、 FFT部 53j等、 ソフトウェアで構成される機能で示してレ、る。
このように、本実施例では周波数変更回路 34から出力される基準クロックを駆動ブ ロック 26と、検出ブロック 27と、形状算出を行うホストプロセッサ 28とに共通に供給す る構成にしている。
[0017] そして、共通の基準クロックの変更設定に応じて実際に駆動される各ソースコイル 1 4iの駆動信号の周波数が変更された場合にも、その変更に対応した同じ周波数の 信号成分の抽出を、駆動ブロック 26側と同期してホストプロセッサ 28側でも簡単に行 えるようにしてレ、ることが特徴となってレ、る。 また、抽出された周波数成分における距離を算出するために用いられるその位相 を算出する場合においても、駆動側と検出側とで共通の基準クロックを使用している ので、簡単な構成で精度良く位相を検出することができ、従って精度の良い距離算 出ができる。
上記周波数変更回路 34の周波数設定データ Dfは、図 3のホストプロセッサ 28にお いて内視鏡形状の算出処理等を行う CPU (中央処理ユニット) 41により PI〇(パラレ ル入出力回路) 42を介して駆動ブロック 26内の図 4に示す制御回路 37に送られる。 そして、制御回路 37により、周波数設定データ Dfが変更される。そして、周波数変更 回路 34から、この周波数設定データ Dfに対応した発振周波数の基準クロックが出力 される。
[0018] このように周波数設定データ Dfの変更による共通の基準クロックの周波数変更のみ で、予め設定されているパラメータ値 Piに応じて各発振器 32iの周波数 fiをそれぞれ 変更できるようにしている。
一方、コイルユニット 23内の 12個のセンスコイル 22j (図 3及び図 4では、図 2の表 記法を簡略化して、上述したように 22aから 221で示している)は、検出ブロック 27を 構成するセンスコイル信号増幅回路部(単に、増幅回路部と略記) 43に接続されて いる。
増幅回路部 43は、図 4に示すように 12個のセンスコイル 2¾ (jは aから 1を表す)にそ れぞれ接続された 12個の増幅回路 4¾により構成されている。
センスコイル 2¾により検出された検出信号は、増幅回路 4¾により増幅された後、 A/D変換部 44を構成する A/D変換器 44jに入力され、 A/D変換されてデジタル の検出信号に変換される。
[0019] なお、 AZD変換部 44 (の各 A/D変換器 44j)には、周波数変更回路 34から出力 される基準クロックが供給され、この基準クロックに同期して AZD変換を行う。
AZD変換部 44の出力データは、ホストプロセッサ 28に入力される。このホストプロ セッサ 28は、図 3に示すような構成であり、また機能的な構成は図 4に示す構成とな つている。
図 3に示すように、駆動ブロック 26 (の周波数変更回路 34)から出力される基準クロ ックは、ホストプロセッサ 28内の制御信号発生回路 45に供給され、この制御信号発 生回路 45は、この基準クロックに同期したタイミングの制御信号を発生する。
[0020] そして、 A/D変換部 44から出力される出力データは、前記基準クロックに同期し た制御信号発生回路 45からの制御信号よりローカルデータバス 46を介して 2ポート メモリ 47に書き込まれる。
また、 CPU41は、制御信号発生回路 45からの制御信号により 2ポートメモリ 47に 書き込まれたデジタルデータを内部バス 48を介して読み出し、メインメモリ 49を用い 、後述するように、デジタルデータに対して周波数分析処理(高速フーリエ変換: FF T)を行う。
そして、 CPU41は、各ソースコイル 14iの駆動周波数に一致する周波数成分の磁 界検出情報に分離して抽出し、抽出された磁界検出情報の各デジタルデータから電 子内視鏡 6の揷入部 7内に設けられた各ソースコイル 14iの空間位置座標を算出す る。
本実施例においては、各発振器 32iの DDS35iに設定されるパラメータ値 Piのデ ータは、例えば図 3の CPU41に内蔵されたメモリ(或いはレジスタ) 41aに格納されて いる。
[0021] そして、 CPU41は、周波数変更回路 34の周波数設定データ Dfと、このメモリ 41a からパラメータ値 Piを読み出すことにより、各発振器 32iの周波数 fiを算出して、上記 各ソースコイル 14iが駆動された駆動周波数に対応する周波数成分の磁界検出情報 を分離して抽出する。
また、 CPU41は、算出された位置座標データから電子内視鏡 6の挿入部 7の挿入 状態を推定し、内視鏡形状画像を形成する表示データを生成し、ビデオ RAM50に 出力する。このビデオ RAM50に書き込まれた表示データは、ビデオ信号発生回路 51により読み出され、アナログのビデオ信号に変換されて液晶モニタ 25へと出力さ れる。液晶モニタ 25は、このアナログのビデオ信号を入力されることにより、表示画面 上に電子内視鏡 6の揷入部 7の揷入形状の画像が表示される。
CPU41において、各ソースコイル 14iに対応した磁界検出情報、すなわち、各セン スコイル 2¾に発生する起電力(正弦波信号の振幅値)と位相情報が算出される。な お、位相情報は、起電力の極性土を含む。
[0022] 図 4に示すようにホストプロセッサ 28を機能的な構成で説明すると、 A/D変換部 4 4から出力されるデジタルの検出データは、専用回路やプログラムで実現される FFT 部 5¾に入力され、この FFT部 5¾は、検出データに対して高速で周波数分析処理 を行う。そして FFT部 53jは、その分析処理結果に対して、各ソースコイル 14iの駆動 周波数に一致する周波数成分の磁界検出情報を抽出し、それを出力する。
つまり、各 FFT部 5¾による周波数分析データは、それぞれ駆動周波数成分毎に 分けられて専用回路やプログラムで実現される位置情報算出部 54a〜54pに入力さ れる。各位置情報算出部 54i (iは 54a〜54pの 1つを表す)は、各センスコイル 2¾の 位置を基準として、検出データの振幅値及び位相値から各ソースコイル 14iの空間位 置座標 (位置情報)を算出する処理を行う。
[0023] 各位置情報算出部 54iにより算出された位置情報は、専用回路やプログラムで実 現される形状生成部(形状生成手段) 55に入力され、この形状生成部 55は、各ソー スコイル 14iの位置情報から補間処理等を行って、挿入部 7の形状を生成する処理を 行い、表示処理回路 56に出力する。
表示処理回路 56は、挿入形状表示手段としての液晶モニタ 25に、算出された挿 入部 7の挿入形状の映像信号を出力し、液晶モニタ 25の表示面には挿入部 7の挿 入形状(内視鏡形状)が表示されるようにする。
上述したように本実施例では、共通の基準クロックを駆動ブロック 26の各発振器 32 iに供給すると共に、ホストプロセッサ 28にも供給するようにしている。そして、この基 準クロックの周波数の変更により、全ての発振器 32iの周波数 fiを設定されたパラメ一 タ値 Piにより、一意的に変更できるようにする。これと共に、ホストプロセッサ 28側にお レ、ても、基準クロックの値及びパラメータ値 Piを参照することにより、分離抽出すべき 周波数を自動的に算出してソースコイル 14iの位置算出等を (ユーザが分離抽出す べき周波数の設定を行う作業を必要とすることなく)自動的に行えるようにしている。
[0024] なお、以下に説明するように環境ノイズの測定を行う際には、各ソースコイル 14iを 駆動しない状態で、検出ブロック 27及びホストプロセッサ 28を動作させることによりノ ィズ検出を行うノイズ検出部の機能を兼ねることができるようにしている。 本実施例による作用を図 5を参照して説明する。内視鏡形状検出装置 3の電源が 投入されて内視鏡形状検出装置 3が動作可能な状態に設定されると、最初のステツ プ S1において、 CPU41は、環境ノイズの測定を開始する。
この場合には、各ソースコイル 14iを駆動信号で駆動しないで、センスコイル 2¾に よりソースコイル 14iを駆動した状態と同様に信号検出を行う。つまり磁界を発生する 信号が無い状態で、磁界の信号検出を行うので、ノイズレベルの測定を行うことに相 当する。
[0025] この場合、周波数変更回路 34の周波数設定データ Dfを変更して、形状検出に使 用可能となる複数組の周波数をスキャンする(駆動信号が印加されない状態におけ る複数組の駆動周波数で、それぞれノイズを測定する)。
そして、このステップ S1の複数組の駆動周波数における測定結果から、次のステツ プ S2において、 CPU41は、実際に形状検出を行う際に使用する駆動周波数帯を算 出する。この場合、ステップ S1の測定結果において、例えば平均のノイズレベルが最 も低くなる周波数帯を駆動周波数帯として算出する。
また、ステップ S3において、 CPU41は、この平均のノイズレベルが最も低くなる周 波数帯に対応する基準クロックが周波数変更回路 34から出力されるように周波数設 定データ Dfを設定する。そして、次のステップ S4に示すように、周波数変更回路 34 は、この基準クロックを各発振器 32iに供給する。これにより、各発振器 32iは、予め 設定されたパラメータ値 Piにより、基準クロックの周波数に対応した値の周波数 fiでそ れぞれ発振する。このステップ S4の処理は、図 5において括弧で示すように自動的 に行われる。
[0026] つまり、ステップ S1からステップ S4までの処理を行うことにより、環境ノイズが最も少 ない周波数で形状検出を行うように周波数変更回路 34から出力される基準クロック の周波数設定が完了して、ステップ S5の形状検出の動作を開始する。
ステップ S5において、形状検出の動作を開始すると、各ソースコイル 14iはそれぞ れ駆動周波数 fiの駆動信号で駆動され、その周囲に交流磁界を発生する。各交流 磁界は、センスコイル 2¾によりそれ増幅された後、 AZD変換される。
そして、ステップ S6に示すように A/D変換された検出ブロック 27の出力信号は、 ホストプロセッサ 28内の各 FFT部 53jにより周波数分析処理(FFT処理)が行われる
[0027] 各センスコイル 2¾の検出信号に対して FFT部 5¾により周波数分析された周波数 分析データは、各ソースコイル 14iの駆動周波数 fiにそれぞれ一致する周波数成分 毎に分離されて各位置情報算出部 54iに分配される。そして、ステップ S7に示すよう に、各位置情報算出部 54iは、各ソースコイル 14iの位置データを算出する。
上記 FFT処理及び各ソースコイル 14iの駆動周波数 fiにそれぞれ一致する周波数 成分毎に分離する処理は、図 3の CPU41により行われる力 その際 CPU41はメモリ 41aに格納されたパラメータ値 Piと、基準クロックの周波数の値から簡単に各ソースコ ィル 14iの駆動周波数 fiを算出する。
このため、本実施例によれば、各ソースコイル 14iの駆動周波数 fiの値にそれぞれ 一致する周波数成分を分離するように CPU41に対して、ユーザが設定作業を行うこ とを必要とすることなく行うようにできる。このため、操作性を大幅に向上できる。
[0028] 算出された各ソースコイル 14iの位置データは、形状生成部 55に入力され、ステツ プ S8に示すように形状生成部 55は、各ソースコイル 14iの位置の間を補間する等し て、各ソースコイル 14iが配置されてレ、る揷入部 7の形状データを生成する。
この形状データは、表示処理回路 56に入力され、ステップ S9に示すように表示処 理回路 56は、挿入部形状を表示する画像データを生成し、液晶モニタ 25に出力し て、表示画面に挿入部形状が表示されるようにする。
ステップ S5からステップ S9は、所定間隔で連続的に繰り返し行われる。このため、 ステップ S9の処理の後、ステップ S5に戻り、次の形状検出を開始するような動作とな る。
このような動作を行う本実施例によれば、駆動信号の駆動周波数帯をノイズレベル が低い周波数帯に設定する場合、各駆動周波数 fiの設定を、共通となる基準クロック 自体の周波数の変更設定で行い、かっこの基準クロックを駆動ブロック 26側と形状 算出を行うホストプロセッサ 28側に共通に供給するようにしているので、各部で必要 となる周波数変更の設定作業を必要としないで位置算出等に必要な周波数の設定 が自動的に設定でき、精度の良い形状算出ができる。 つまり、本実施例によれば、より簡単な回路構成で、ノイズによる影響の少ない状態 で精度の良い内視鏡形状の検出及び表示ができる。
[0029] (実施例 2)
次に図 6及び図 7を参照して本発明の実施例 2を説明する。図 6は実施例 2の内視 鏡形状検出装置 3Bの構成を示す。
この内視鏡形状検出装置 3Bは、同期検波を利用して、ソースコイル 14iの位置検 出を精度良く行うものである。
図 6に示す内視鏡形状検出装置 3Bは、駆動ブロック 26Bと、検出ブロック 27Bと、 ホストプロセッサ 28Bと、液晶モニタ 25とを有する。
本実施例における駆動ブロック 26Bは、図 4に示した駆動ブロック 26において、複 数の発振器 32a〜32pとコイル駆動回路 31a〜31pとを 1系統のみとし、コイル駆動 回路 31aの出力信号をマルチプレクサ 61を介して、例えば 16個のソースコイル 14i を順次駆動、つまり時分割で駆動する構成にしている。なお、マルチプレクサ 61は、 制御回路 37からの切替制御信号により、所定の周期で順次切り替えられる。
[0030] また、本実施例における検出ブロック 27Bは、図 4の検出ブロック 27において、増 幅回路 4¾と A/D変換器 44jとの間に同期検波回路 6¾が設けられた構成となって いる。つまり増幅回路部 43と A/D変換部 44との間に、例えば 12個の同期検波回 路 6¾からなる同期検波回路部 62が設けてある。
実施例 1では各ソースコイル 14iをそれぞれ異なる駆動周波数 fiの駆動信号で駆動 していたが、本実施例では、各ソースコイル 14iを例えば 1つの駆動周波数 fの駆動 信号で順次駆動する。但し、本実施例においても、後述するようにノイズレベルを検 出して、その検出結果からノイズレベルが低くなる周波数を各ソースコイル 14iを駆動 する駆動周波数 fに設定する。つまり、この駆動周波数 fは、多数の周波数からノイズ レベルの検出結果により設定される。
[0031] また、本実施例においても、多数の周波数からノイズの少ない周波数 fに設定する 場合、周波数変更回路 34により発振器 32aに供給する基準クロックの周波数を変更 することにより行うようにしている。また、この周波数変更回路 34から出力される基準 クロックをホストプロセッサ 28Bにも供給するようにしてレ、る。 上記同期検波回路 62jには、周波数変更回路 34を介して出力される基準クロック が分周回路 63による分周により、ソースコイル 14iが駆動される駆動信号の駆動周波 数 fと同期したクロックの参照信号が生成される。そして、この参照信号により、この信 号の半周期毎に、入力信号を反転させた後、ローパスフィルタを通して出力信号を 得る。このようにすることにより、参照信号と同じ周波数成分の検波信号を抽出し、異 なる周波数成分を減衰させる。
[0032] このようにして、同期検波回路 62jは、増幅回路 4¾により増幅されて入力される入 力信号に対して、駆動信号の駆動周波数 fと一致した同一周波数の信号成分を抽出 する。また、この場合の参照信号は、共通の基準クロックから生成されるため、その位 相が駆動信号の駆動周波数 fと完全に一致した (位相差 0)とすることができ、 S/N の良い状態で検波信号を得ることができる。また、実際にはソースコイル 14iとセンス コイル 2¾との距離に応じた位相差が発生し、その位相差に対応した検波信号の出 カレベルにより位置情報を得る。
各同期検波回路 6¾により同期検波された各信号は、 A/D変換器 44jによりデジ タルデータに変換された後、ホストプロセッサ 28Bに入力される。
[0033] このホストプロセッサ 28Bは、駆動されたソースコイル 14iの位置情報を算出する位 置情報算出部 (位置情報算出手段) 54aと、この位置情報算出部 54aにより順次算 出された 16個のソースコイルの位置情報をメモリなどに格納して同時化された位置 情報を生成する同時化回路 64と、この同時化された位置情報から形状生成の処理 を行う形状生成部 55及び表示処理回路 56とからなる。
図 4では 16個の位置情報算出部 54a〜54pが設けてあった力 本実施例では 1つ の位置情報算出部 54aで時分割処理する構成となっている。
本実施例による作用を図 7を参照して説明する。本実施例においても、内視鏡形状 検出装置 3Bの電源が投入されて内視鏡形状検出装置 3Bの動作が開始すると、図 5 の場合と同様に最初のステップ S11において、ホストプロセッサ 28における制御手段 としての機能を持つ CPU41は、環境ノイズの測定を開始する。
[0034] この場合には、ソースコイル 14iを駆動しなレ、で、センスコイル 22jによりソースコイル
14iを駆動しない無信号状態で信号検出をしてノイズレベルの測定を行う。この場合 、周波数変更回路 34の周波数設定データ Dfを変更して、形状検出に使用可能とな る複数の周波数をスキャンする。
そして、このステップ S 11の複数の周波数における測定結果から、次のステップ S1 2において、 CPU41は、実際に用いる駆動周波数 fを算出する。この場合、ステップ S11の測定結果において、例えば平均のノイズレベルが最も低くなる周波数を駆動 周波数 fとして算出する。
[0035] また、ステップ S13において、 CPU41は、この平均のノイズレベルが最も低くなる駆 動周波数 fに対応する基準クロックが周波数変更回路 34から出力されるように周波数 設定データ Dfを設定する。そして、次のステップ S14に示すようにこの基準クロックを 発振器 32aに供給することにより、発振器 32aは予め設定されたパラメータ値により、 ノイズレベルが最も低くなる値の駆動周波数 fで発振する。このステップ S 14の処理は 、図 7において括弧で示すように自動的に行われる。
実施例 1では、例えば 1度にそれぞれ周波数が異なる 16個の周波数を用レ、る場合 での各駆動周波数帯を算出していたが、本実施例では 1つの駆動周波数 fのみを算 出すれば良いので、例えば最も環境ノイズが少ない周波数を算出して、その周波数 を駆動周波数 fとすることができる。
そして、次のステップ S15において、形状検出の動作を開始する。
[0036] 制御回路 37は、マルチプレクサ 61を介して駆動信号を印加するソースコイル 14iを 順次選択し、時分割で各ソースコイル 14iを駆動する。このため、ステップ S16におい て、ソースコイル番号のパラメータ nを 1に設定する。具体的には、 CPU41は、制御 回路 37を介してマルチプレクサ 61の選択を制御し、 ONするソースコイル 14iを 1番 目のソースコイル 14aとする。
そして、次のステップ S17におレ、て n (= 1)番目のソースコイル 14aを駆動信号によ り駆動する。このソースコィノレ 14aによる磁界は、 12個のセンスコイル 22jによりそれ ぞれ検出され、それぞれ同期検波回路 6¾を経て同じ周波数成分の信号成分が抽 出されて、位置情報算出部 54aに入力される。
[0037] そして、ステップ S18に示すように位置情報算出部 54aは、 12個のセンスコイル 2¾ による同期検波したデータから n ( = l)番目のソースコイル 14aの位置を算出する。 そして、次のステップ S19において、 nが(最後の番号) p ( = 16)に等しいかの判断を 行う。そして、これに該当しない場合には、ステップ S20において、 nを 1加算した値 にして、ステップ S17に戻り、ステップ S17力ら S20の処理を繰り返す。
そして、 nが pに一致した場合には、全てのソースコイル 14a〜14pの位置算出が完 了したので、ステップ S19からステップ S21の処理に進む。
このステップ S21において形状生成部 55は、全てのソースコイル 14a〜14pの位置 情報を用レ、、さらに間を補間するなどしてこれらのソースコイル 14a〜: 14pが配置され た揷入部 7の形状を算出する処理を行う。
[0038] そして、次のステップ S22において、表示処理回路 56は、揷入部 7の形状の画像 データを生成し、液晶モニタ 25に揷入部 7の形状の画像を表示する。
本実施例によれば、基準クロックの共通化と基準クロックの周波数の変更手段によ り、駆動側の磁界を発生させる周波数設定に伴う、発振器 (発振手段)内の DDSへ 設定する値の変更、ホストプロセッサ (形状算出ブロック)側での参照信号の周波数 の変更等が不要となり、手間をかけることなく精度の良い形状検出及び形状表示が 簡単にできる。
また、発振器の個数を 1つにしたことにより、駆動ブロック側の構成を簡素化すること ができる。
[0039] (実施例 3)
次に図 8を参照して本発明の実施例 3を説明する。図 8は実施例 3の内視鏡形状検 出装置 3Cにおける駆動ブロック 26B、検出ブロック 27及びホストプロセッサ 28Cの構 成を示す。
この内視鏡形状検出装置 3Cは、実施例 2と同様に同期検波を利用して、ソースコ ィル 14iの位置検出を精度良く行うものである。
本実施例は、実施例 2における同期検波回路 6¾の機能をホストプロセッサ 28Cに より行うようにしたものである。
図 8に示す内視鏡形状検出装置 3Cは、駆動ブロック 26Bと、検出ブロック 27と、ホ ストプロセッサ 28Cと、液晶モニタ 25とを有する。
本実施例は、実施例 2における同期検波回路 6¾の機能をホストプロセッサ 28C内 でソフトウェアで形成している。
[0040] その他の構成は、実施例 2と同様の構成である。
本実施例における同期検波回路 6¾は、ホストプロセッサ 28C内で、以下のようにソ フトウェアで同期検波処理を行う。
AZD変換器 44jから入力されるデジタルの信号データは、同期検波回路 6¾ (を 構成する CPU41)に入力される。 CPU41は、分周回路 63から出力される参照信号 における半周期においては、入力される信号データをレジスタ或いはメモリに格納し 、その後の半周期に入力される信号データに対しては、その極性を反転させて前記 レジスタ或いはメモリに格納する。
その後、これらの信号データに対して平滑化するローパスフィルタ処理する。この口 一パスフィルタ処理した同期検波回路 6¾の出力データとして位置情報算出部 54a に出力する。
[0041] その他の作用は実施例 2と同様となる。また、本実施例の効果も実施例 2の場合と ほぼ同様となる。つまり、クロックの共通化とクロックの周波数の変更手段により、駆動 側の磁界を発生させる周波数設定に伴う、発振器内の DDSへ設定する値の変更、 ホストプロセッサ (形状算出ブロック)側での参照信号の周波数の変更等が不要となり 、手間を掛けることなく精度の良い形状検出及び形状表示が簡単にできる。
また、発振器の個数を 1つにしたことにより、駆動ブロック側の構成を簡素化すること ができる。
なお、実施例 1においては、複数のソースコイル 14iをそれぞれ異なる駆動周波数 f iで駆動するように説明した力 実施例 1においても時分割でソースコイル 14iを駆動 するようにしても良レ、。この場合、実施例 2或いは実施例 3のように 1個づつのソースコ ィル 14iを時分割で駆動しても良い。或いは、複数個ずつを時分割で駆動するように しても良い。
[0042] 例えば、それぞれ異なる 8個の周波数を共通の周波数として、 8個づっを共通の周 波数を用いて 16個のソースコイルを順次 (循環的に)駆動するようにしても良レ、。 なお、上述の説明では、ノイズの影響の少ない周波数で形状検出を行うために、基 準クロック自体の周波数を変更して、その基準クロックを駆動信号発振部側及び形状 算出部側に供給するように説明した。
その変形例として、周波数の変更を行わない共通の基準クロックを駆動ブロック(の 発振部)及び形状算出部に供給し、駆動ブロックの発振部の発振周波数を決定する DDS351のパラメータ値を変更して駆動側の発振周波数の変更を行うと共に、その パラメータ値を形状算出部(の周波数分離抽出部)にも供給して位置算出等を精度 良く行う構成にしても良い。
[0043] なお、上述した実施例等においては、ソースコイル 14iが配置されたプローブ 15を 電子内視鏡 6の鉗子チャンネル 12内に配置した場合で説明したが、本発明はこれに 限定されるものでなぐソースコイル 14iを電子内視鏡 6の揷入部 7内に、その長手方 向に沿って配置した構成にしても良レ、。つまり、ソースコイル 14iを電子内視鏡 6の揷 入部 7に内蔵した構成にしても良い。
また、上述した実施例等においては、電子内視鏡 6の揷入部 7内には、磁界を発生 するソースコイル 14iを配置し、体外に磁界を検出するセンスコイル 2¾を配置する構 成で説明したが、本発明はこれに限定されるものでなぐ挿入部 7側にセンスコイル 2 ¾を配置し、体外側にソースコイル 14iを配置した構成にすることもできる。
上述したように本発明によれば、周波数の変更等の設定を手間をかけないで済む と共に、精度よく位置検出等ができる。
なお、上述した各実施例を部分的に組み合わせる等して構成される実施例等も本 発明に属する。
産業上の利用可能性
[0044] 体腔内等に挿入される内視鏡の揷入部内に複数の磁界発生素子等を配置し、各 位置の情報を算出して挿入形状を、ノイズの影響が少ない周波数を用いて精度良く 表示することにより、術者は、その揷入形状を参照することにより円滑に揷入作業を 行える。

Claims

請求の範囲
[1] 複数の磁界発生素子及び前記複数の磁界発生素子に駆動信号を供給して磁界を 発生させる駆動信号発生部を有する駆動ブロックと、
前記複数の磁界発生素子により発生される磁界を複数の磁界検出素子を用いて 検出する検出ブロックと、
前記複数の磁界検出素子による検出信号における前記駆動信号の周波数に相当 する周波数成分から、内視鏡の挿入部内に配置された前記複数の磁界発生素子又 は前記複数の磁界検出素子の位置算出を行うことにより、前記挿入部の形状を算出 する形状算出ブロックと、
前記駆動信号の周波数を決定する基準クロックの発振周波数を変更可能に設定 する周波数設定部と、
を有し、
前記周波数設定部により設定される発振周波数の基準クロックを前記駆動ブロック に供給すると共に、前記基準クロックを前記形状算出ブロックにも供給するようにした ことを特徴とする内視鏡形状検出装置。
[2] 前記駆動信号発生部は、前記基準クロックの入力に対して、予め設定されるパラメ ータ値により決定される周波数の駆動信号を生成することを特徴とする請求項 1に記 載の内視鏡形状検出装置。
[3] 前記形状算出ブロックは、前記パラメータ値を参照することにより、前記駆動信号の 周波数に一致する周波数成分の検出信号を抽出可能としたことを特徴とする請求項
2に記載の内視鏡形状検出装置。
[4] さらに前記複数の磁界発生素子に前記駆動信号をそれぞれ印加しない状態で、 前記複数の磁界検出素子による検出信号から、ノイズレベルを検出するノイズ検出 部を有することを特徴とする請求項 1に記載の内視鏡形状検出装置。
[5] 前記ノイズ検出部は、前記基準クロックの発振周波数の値が変更設定された各値 の状態で、前記複数の磁界検出素子による検出信号から、ノイズレベルを検出する ことを特徴とする請求項 4に記載の内視鏡形状検出装置。
[6] 前記周波数設定部は、該周波数設定部に入力される周波数設定データの値に応 じて前記基準クロックの発振周波数を変更することを特徴とする請求項 1に記載の内 視鏡形状検出装置。
[7] 前記周波数設定部は、該周波数設定部に入力される周波数設定データの値に応 じて前記基準クロックの発振周波数を変更することを特徴とする請求項 3に記載の内 視鏡形状検出装置。
[8] さらに前記複数の磁界発生素子に前記駆動信号をそれぞれ印加しない状態で、 前記複数の磁界検出素子による検出信号から、ノイズレベルを検出するノイズ検出 部を有することを特徴とする請求項 3に記載の内視鏡形状検出装置。
[9] 前記ノイズ検出部は、前記周波数設定データの値の変更に応じて前記基準クロッ クの発振周波数の値が変更設定された各値の状態で、前記複数の磁界検出素子に よる検出信号から、ノイズレベルを検出することを特徴とする請求項 8に記載の内視 鏡形状検出装置。
[10] 前記ノイズ検出部の検出結果によりノイズレベルが小さい周波数の駆動信号となる ように前記周波数設定部による前記基準クロックの発振周波数の値を設定する制御 を行うことを特徴とする請求項 4に記載の内視鏡形状検出装置。
[11] 前記ノイズ検出部の検出結果によりノイズレベルが小さい周波数の駆動信号となる ように前記周波数設定部による前記基準クロックの発振周波数の値を設定する制御 を行うことを特徴とする請求項 9に記載の内視鏡形状検出装置。
[12] 前記駆動信号発生部は、前記複数の磁界発生素子をそれぞれ異なる周波数の駆 動信号で同時に駆動することを特徴とする請求項 1に記載の内視鏡形状検出装置。
[13] 前記駆動信号発生部は、前記複数の磁界発生素子を時分割で共通の周波数の駆 動信号で駆動することを特徴とする請求項 1に記載の内視鏡形状検出装置。
[14] 前記駆動信号発生部は、前記複数の磁界発生素子をそれぞれ異なる周波数の駆 動信号で同時に駆動することを特徴とする請求項 3に記載の内視鏡形状検出装置。
[15] 前記形状算出ブロックは、前記基準クロック及び前記パラメータ値を用いて、前記 検出信号に対して周波数分析を行い、それぞれ異なる周波数の駆動信号の周波数 に一致する周波数成分の検出信号に分離抽出する周波数分析部を有することを特 徴とする請求項 14に記載の内視鏡形状検出装置。
[16] 前記周波数分析部は、高速フーリエ変換部で形成されることを特徴とする請求項 1
5に記載の内視鏡形状検出装置。
[17] 前記駆動信号発生部は、前記複数の磁界発生素子を時分割で 1つの周波数の駆 動信号で駆動することを特徴とする請求項 1に記載の内視鏡形状検出装置。
[18] 前記駆動信号発生部は、前記複数の磁界発生素子を時分割で 1つの周波数の駆 動信号で駆動することを特徴とする請求項 8に記載の内視鏡形状検出装置。
[19] 前記形状算出ブロックは、前記複数の磁界発生素子を時分割で順次駆動する共 通の周波数の駆動信号と同期した参照信号により、前記検出信号における前記共 通の周波数と一致する周波数成分を同期検波することを特徴とする請求項 13に記 載の内視鏡形状検出装置。
[20] 前記駆動信号発生部は、デジタルの前記パラメータ値により、前記基準クロックを 分周したデジタルの正弦波形の信号を発生するダイレクト'デジタル ·シンセサイザを 用いて構成されることを特徴とする請求項 2に記載の内視鏡形状検出装置。
PCT/JP2005/020460 2004-11-10 2005-11-08 内視鏡形状検出装置 WO2006051785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005303213A AU2005303213B2 (en) 2004-11-10 2005-11-08 Endoscope shape determining apparatus
EP05802988.5A EP1810608B1 (en) 2004-11-10 2005-11-08 Endoscope shape determining apparatus
US11/799,864 US8147404B2 (en) 2004-11-10 2007-05-03 Endoscope shape detecting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004326872A JP4578942B2 (ja) 2004-11-10 2004-11-10 内視鏡形状検出装置
JP2004-326872 2004-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/799,864 Continuation US8147404B2 (en) 2004-11-10 2007-05-03 Endoscope shape detecting apparatus

Publications (1)

Publication Number Publication Date
WO2006051785A1 true WO2006051785A1 (ja) 2006-05-18

Family

ID=36336464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020460 WO2006051785A1 (ja) 2004-11-10 2005-11-08 内視鏡形状検出装置

Country Status (6)

Country Link
US (1) US8147404B2 (ja)
EP (1) EP1810608B1 (ja)
JP (1) JP4578942B2 (ja)
CN (1) CN100558286C (ja)
AU (1) AU2005303213B2 (ja)
WO (1) WO2006051785A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914574B2 (ja) * 2005-04-18 2012-04-11 オリンパスメディカルシステムズ株式会社 内視鏡形状検出装置
DE102008012342A1 (de) * 2008-03-03 2009-09-10 Siemens Aktiengesellschaft Medizinsystem
US20110050216A1 (en) * 2009-09-01 2011-03-03 Adidas Ag Method And System For Limiting Interference In Magnetometer Fields
US8900131B2 (en) * 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
CN102710336B (zh) * 2012-05-22 2015-08-12 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法
JP6166032B2 (ja) 2012-11-06 2017-07-19 浜松ホトニクス株式会社 半導体デバイス検査装置及び半導体デバイス検査方法
DE102017008148A1 (de) * 2017-08-29 2019-02-28 Joimax Gmbh Sensoreinheit, intraoperatives Navigationssystem und Verfahren zur Detektion eines chirurgischen Instruments
WO2020039776A1 (ja) 2018-08-23 2020-02-27 富士フイルム株式会社 内視鏡システム及び位置導出方法
JP7078494B2 (ja) * 2018-08-24 2022-05-31 富士フイルム株式会社 表示制御装置、内視鏡システム、表示制御方法、及び表示制御プログラム
CN113677251A (zh) * 2019-05-30 2021-11-19 奥林巴斯株式会社 监视系统和内窥镜的插入操作的评价方法
JP7234386B2 (ja) * 2019-09-02 2023-03-07 富士フイルム株式会社 内視鏡システム及びその作動方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107875A (ja) * 1994-08-18 1996-04-30 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2003245243A (ja) * 2002-02-22 2003-09-02 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2003290129A (ja) * 2002-04-03 2003-10-14 Olympus Optical Co Ltd 内視鏡形状検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840024A (en) * 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6511417B1 (en) * 1998-09-03 2003-01-28 Olympus Optical Co., Ltd. System for detecting the shape of an endoscope using source coils and sense coils
US6432041B1 (en) * 1998-09-09 2002-08-13 Olympus Optical Co., Ltd. Endoscope shape detecting apparatus wherein form detecting processing is controlled according to connection state of magnetic field generating means
JP3720727B2 (ja) * 2001-05-07 2005-11-30 オリンパス株式会社 内視鏡形状検出装置
EP1800594A1 (en) * 2003-08-22 2007-06-27 Olympus Corporation Device for detecting shape of endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107875A (ja) * 1994-08-18 1996-04-30 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2003245243A (ja) * 2002-02-22 2003-09-02 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2003290129A (ja) * 2002-04-03 2003-10-14 Olympus Optical Co Ltd 内視鏡形状検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1810608A4 *

Also Published As

Publication number Publication date
CN101056571A (zh) 2007-10-17
US20070208222A1 (en) 2007-09-06
JP4578942B2 (ja) 2010-11-10
AU2005303213B2 (en) 2009-02-19
EP1810608A1 (en) 2007-07-25
EP1810608A4 (en) 2010-09-01
CN100558286C (zh) 2009-11-11
EP1810608B1 (en) 2017-04-05
JP2006136413A (ja) 2006-06-01
AU2005303213A1 (en) 2006-05-18
US8147404B2 (en) 2012-04-03

Similar Documents

Publication Publication Date Title
WO2006051785A1 (ja) 内視鏡形状検出装置
US20190254563A1 (en) Endoscope insertion shape observation apparatus
CN102939040B (zh) 探针形状检测装置和探针形状检测方法
US8597177B2 (en) Probe shape detection apparatus and probe shape detection method
US20070299342A1 (en) Ultrasound diagnosis apparatus and the controlling method thereof
CA2781775C (en) Cardiac mapping using non-gated mri
JP2001046318A (ja) 内視鏡形状検出装置
JP2004057379A (ja) 超音波診断装置
JP2002131009A (ja) 位置推定方法
JP7234386B2 (ja) 内視鏡システム及びその作動方法
JPH1176154A (ja) 内視鏡挿入形状検出装置
JP3389535B2 (ja) 内視鏡形状検出装置
JP5854399B2 (ja) 医用システム
JP2000079088A (ja) 内視鏡形状検出装置
JPH11113912A (ja) 超音波画像診断装置
JP7503128B2 (ja) 医療システム
JP2019534765A (ja) 関節特性を定量化するためのシステムおよび方法
JP2000093386A (ja) 内視鏡形状検出装置
JP2003190094A (ja) 眼底撮影装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11799864

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2005802988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005802988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005303213

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580038547.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005303213

Country of ref document: AU

Date of ref document: 20051108

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005802988

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11799864

Country of ref document: US