WO2020039776A1 - 内視鏡システム及び位置導出方法 - Google Patents

内視鏡システム及び位置導出方法 Download PDF

Info

Publication number
WO2020039776A1
WO2020039776A1 PCT/JP2019/027226 JP2019027226W WO2020039776A1 WO 2020039776 A1 WO2020039776 A1 WO 2020039776A1 JP 2019027226 W JP2019027226 W JP 2019027226W WO 2020039776 A1 WO2020039776 A1 WO 2020039776A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
magnetic field
unit
field generating
transmission
Prior art date
Application number
PCT/JP2019/027226
Other languages
English (en)
French (fr)
Inventor
今村 香織
崇聡 清水
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19852548.7A priority Critical patent/EP3841950B1/en
Priority to JP2020538225A priority patent/JP7023368B2/ja
Publication of WO2020039776A1 publication Critical patent/WO2020039776A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems

Definitions

  • the present disclosure relates to an endoscope system and a position deriving method.
  • endoscopy in an internal examination of a subject using an endoscope (hereinafter, referred to as “endoscopy”), the shape of the insertion section of the endoscope inserted into the body of the subject is detected, and the detected insertion section is inspected.
  • BACKGROUND ART Endoscopy is supported by displaying a shape image representing a shape on a display unit. Further, a plurality of magnetic field generating elements and a plurality of magnetic field detecting elements are used for detecting the shape of the insertion section of the endoscope.
  • Patent Document 1 the shape of an insertion portion of an endoscope is changed by using a frequency component corresponding to a frequency of a drive signal for generating a magnetic field from a magnetic field generating element in detection signals from a plurality of magnetic field detecting elements.
  • a calculation technique is disclosed.
  • the generation device notifies the detection device of the timing at which the magnetic field generation element generates a magnetic field.
  • the detection device acquires a signal detected by the magnetic field detection element based on the notified timing.
  • the notification of the timing is performed by wireless communication in accordance with a predetermined communication standard such as a wireless LAN (Local Area Network) and Bluetooth (registered trademark).
  • a wireless communication unit for notifying the timing of generating the magnetic field is required.
  • processing such as authentication between devices performing wireless communication.
  • the present disclosure has been made in view of the above circumstances, without providing a wireless communication unit for notifying the timing of generating a magnetic field, between the device that generates the magnetic field and the device that detects the magnetic field. It is an object of the present invention to provide an endoscope system and a position deriving method that can be made wireless.
  • an endoscope system includes a plurality of magnetic field generating elements and a first generation unit configured to generate a first waveform for detecting a position of an insertion unit to be inserted into a subject in an endoscope.
  • a second generator configured to generate a second waveform for detecting synchronization timing that is different from the first waveform in at least one of a frequency, a phase, an amplitude, and a waveform shape, and that can be distinguished from the first waveform;
  • a driving unit for driving the plurality of magnetic field generating elements by the first waveform after driving the magnetic field generating element, a plurality of magnetic field detecting elements, and a timing at which a signal corresponding to the second waveform is detected by the magnetic field detecting element.
  • the driving unit may drive each of the plurality of magnetic field generating elements at the same timing with the second waveform.
  • the plurality of magnetic field generating elements are combined in threes, and the driving unit causes the three magnetic field generating elements in each combination to have the same second waveform and the same second waveform.
  • the three magnetic field generating elements between the combinations may be driven at different timings and at least one of frequency, phase, amplitude, and waveform shape different from each other, and by the second waveform that can be distinguished from each other.
  • the plurality of magnetic field generating elements are combined in threes, and the driving unit causes the three magnetic field generating elements in each combination to have the same second waveform at different timings. And the three magnetic field generating elements between the combinations may be driven at different timings and at least one of frequency, phase, amplitude, and waveform shape different from each other, and by the second waveform that can be distinguished from each other. Further, in the endoscope system of the present disclosure, a plurality of magnetic field generating elements are a combination of two or more different directions in which a magnetic field is generated, and a driving unit controls the magnetic field generating elements in each combination at the same timing.
  • the plurality of magnetic field generating elements are a combination of two or more different directions in which the magnetic field is generated, and the driving unit controls the magnetic field generating elements in each combination at different timings. And driving the three magnetic field generating elements in each combination at different timings and at least one of frequency, phase, amplitude, and waveform shape different from each other so as to be distinguishable from each other. May be driven.
  • the drive unit may control the plurality of magnetic field generating elements at different timings and at least one of a frequency, a phase, an amplitude, and a waveform that is different from each other, and the driving unit may determine the second magnetic field generating elements from each other. It may be driven by a waveform.
  • the endoscope system according to the present disclosure may be distinguishable from each other by the second waveform having a different frequency or a waveform representing identification information of a magnetic field generating element to be driven.
  • the acquisition unit may be configured to detect the first magnetic field detected by each of the plurality of magnetic field detection elements based on a timing at which a signal corresponding to the second waveform is detected by the plurality of magnetic field detection elements. A signal corresponding to the waveform may be obtained.
  • the endoscope system may be configured such that the position of each of the plurality of magnetic field detection elements previously derived by the derivation unit or the intensity of a signal corresponding to the first waveform previously detected by the plurality of magnetic field detection elements last time.
  • the endoscope system may be configured such that the position of each of the plurality of magnetic field detection elements previously derived by the derivation unit or the intensity of a signal corresponding to the first waveform previously detected by the plurality of magnetic field detection elements last time. Further comprising a selecting unit for selecting a magnetic field detecting element to be detected for a signal corresponding to the second waveform, wherein the acquiring unit detects a signal corresponding to the second waveform by the magnetic field detecting element selected by the selecting unit. A signal corresponding to the first waveform may be acquired from each of the plurality of magnetic field detection elements based on the performed timing.
  • the endoscope system further includes a storage unit in which driving timing information for driving the magnetic field generating element with the first waveform after driving the magnetic field generating element with the second waveform is stored in advance, and the deriving unit is stored in the storage unit.
  • the position of each of the plurality of magnetic field detection elements may be derived based on the drive timing information.
  • the magnetic field generation element, the first generation unit, the second generation unit, and the drive unit, and the magnetic field detection element, the acquisition unit, and the derivation unit may not be electrically connected.
  • the magnetic field generating element, the first generating unit, the second generating unit, and the control unit, and the magnetic field detecting element, the acquiring unit, the deriving unit, and the storage unit are not electrically connected. Is also good.
  • a position deriving method is a position deriving method using an endoscope system including a plurality of magnetic field generating elements and a plurality of magnetic field detecting elements, and includes: A first waveform for detecting the position of the insertion portion to be inserted into the first portion is generated, a second waveform for detecting synchronization timing that can be determined to be different from the first waveform is generated, and the magnetic field generating element is driven by the second waveform.
  • the plurality of magnetic field generating elements are driven by the first waveform, and the first waveform detected by each of the plurality of magnetic field detecting elements is changed based on the timing at which the signal corresponding to the second waveform is detected by the magnetic field detecting element.
  • a corresponding signal is obtained, and the position of each of the plurality of magnetic field detection elements is derived based on the obtained signal.
  • FIG. 1 is a configuration diagram illustrating an example of a configuration of an endoscope system according to each embodiment. It is a block diagram showing an example of composition of an endoscope system concerning each embodiment. It is a lineblock diagram showing an example of a receiving coil unit and a transmitting coil unit concerning each embodiment.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of a transmission control unit according to the first embodiment. FIG. 3 is a diagram for explaining a first waveform and a second waveform according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of an overall control unit according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of a transmission control unit according to each embodiment.
  • FIG. 9 is a flowchart illustrating an example of a magnetic field generation process according to each embodiment.
  • 5 is a flowchart illustrating an example of a position deriving process according to the first embodiment.
  • FIG. 9 is a diagram for describing a first waveform and a second waveform according to a modification.
  • FIG. 9 is a diagram for describing a first waveform and a second waveform according to a modification. It is a block diagram showing an example of the functional composition of the transmission control part concerning a 2nd embodiment.
  • FIG. 9 is a diagram for explaining a first waveform and a second waveform according to the second embodiment.
  • FIG. 9 is a diagram for describing a first waveform and a second waveform according to a modification.
  • the endoscope system 1 includes an endoscope 10 that captures an image of the inside of the body of the subject W (hereinafter, referred to as an “endoscope image”) and an endoscope inspection device 12. .
  • the endoscope 10 includes an insertion section 10A and an operation section 10B.
  • the examiner operates the operation section 10B to insert the insertion section 10A into the body of the subject W, and An endoscopic image of the inside of the subject W is captured.
  • the endoscope inspection device 12 connected to the endoscope 10 by the cable 11 includes a video processor 34, an overall control unit 40, a transmission unit 41, and a display unit 52 such as a liquid crystal display.
  • the video processor 34 controls the endoscope 10 to capture an endoscopic image.
  • the overall control unit 40 controls the entire endoscope system 1.
  • the video processor 34, the overall control unit 40, and the display unit 52 are each installed on the same installation base, and are communicably connected to each other by a cable.
  • the transmission unit 41 is installed separately from the other units of the endoscope inspection device 12 and connected to the power supply by a cable, but is connected to the other units of the endoscope inspection device 12 by a cable. Absent. That is, the examiner can move the transmission unit 41 independently of the other units of the endoscope inspection apparatus 12.
  • the endoscope 10 includes an image sensor 30 including an image sensor such as a charge coupled device (CCD) image sensor and a complementary metal-oxide-semiconductor (CMOS) image sensor.
  • the endoscope 10 transmits the light emitted from the light source 36 under the control of the video processor 34 through a transmission path (not shown), and emits the light from an emission unit (not shown) provided at the distal end of the insertion unit 10A.
  • the inside of the subject W is illuminated by the light thus emitted.
  • the reflected light from the subject W due to the illumination light forms an image on the image sensor 30 by an objective lens (not shown), and an image signal corresponding to the formed endoscope image as an optical image is transmitted via the cable 11. It is output to the video processor 34 of the endoscope inspection apparatus 12. A predetermined image processing is performed on the input image signal by the video processor 34, and the image data of the endoscope image obtained by the image processing is output to the overall control unit 40.
  • the transmission unit 41 includes a transmission control unit 42 and a transmission coil unit 48.
  • the transmission coil unit 48 includes a plurality (12 in the present embodiment) of transmission coils 49 1X , 49 1Y , 49 1Z , 49 2X , 49 2Y , 49 2Z , 493 3X , and 493 3Y. , 49 3Z , 494X , 494Y , and 494Z .
  • the transmitting coil 49 of the present embodiment has a combination of three units each having an axis oriented in each of the X-axis, the Y-axis, and the Z-axis. Of transmission coil groups.
  • the transmission coil 49 is simply referred to as “transmission coil 49” when generically referred to, and the transmission coil group of each group is generally referred to as “transmission coil 49” with the alphabet omitted. ( 1 ... 4 ). Further, in the present embodiment, when the transmission coils 49 are distinguished from each other, a code ( 1X ... 4Z ) representing the individual is added after the “transmission coil 49”.
  • Each transmitting coil 49 is an example of a magnetic field generating element.
  • the transmission coil unit 48 includes a set of a transmission coil 49 1X oriented in the X-axis direction, a transmission coil 49 1Y oriented in the Y-axis direction, and a transmission coil 49 1Z oriented in the Z-axis direction; A transmission coil 49 2X oriented in the direction, a transmission coil 49 2Y oriented in the Y-axis direction, and a transmission coil 49 2Z oriented in the Z-axis direction.
  • the transmission coil unit 48 includes a set of a transmission coil 49 3X oriented in the X-axis direction, a transmission coil 49 3Y oriented in the Y-axis direction, and a transmission coil 49 3Z oriented in the Z-axis direction.
  • the transmission coil unit 48 of the present embodiment is equivalent to a state in which four sets of three-axis coils are provided as the transmission coil 49.
  • the transmission control unit 42 also includes a transmission control section 44 and transmission circuits 46 1X , 46 1Y , 46 1Z , 46 2X , 46 2X , 46 2Y , 46 2Z , 46 connected in a one-to-one correspondence with the transmission coils 49. 3X , 46 3Y , 46 3Z , 46 4X , 46 4Y , and 464Z .
  • the transmission circuit 46 is simply referred to as the “transmission circuit 46” as in the case of the transmission coil 49, and the transmission circuit group is referred to as the “transmission circuit 46”. ”Is followed by a numeral code ( 1 ... 4 ) with the alphabet omitted.
  • a code ( 1X ... 4Z ) representing the individual is added after the "transmission circuit 46".
  • the transmission control unit 44 generates a first waveform (hereinafter, simply referred to as “first waveform”) for detecting the position of the insertion unit 10A of the endoscope 10 to be inserted into the subject W.
  • first waveform a first waveform
  • second waveform a second waveform
  • the transmission control unit 44 outputs each waveform to the transmission circuit 46. The details of the transmission control unit 44 will be described later.
  • Each of the transmission circuits 46 drives the transmission coil 49 connected thereto by the waveform input from the transmission control unit 44. Specifically, each of the transmission circuits 46 drives the transmission coil 49 connected thereto by outputting a drive signal corresponding to the waveform input from the transmission control unit 44 to the transmission coil 49 connected thereto. Let it.
  • the transmission circuit 46 is an example of a driving unit. Each transmission coil 49 generates a magnetic field according to a drive signal input from the transmission circuit 46 connected to each transmission coil.
  • the insertion portion receiving portion 21 provided inside the 10A, the reception control unit 20, the receiving coil unit 22, the receiving circuit 24 (24 1 to 24 16) of the endoscope 10, ADC (Analog-to- Digital Converter ) 26 (26 1 to 26 16 ) and an I / F (Interface) 29.
  • the reception control unit 20 controls the entire reception unit 21.
  • the receiving coil unit 22 includes 16 receiving coils 23 1 to 23 16 as an example (six are shown in the example of FIG. 3).
  • each of the reception coil 23, the reception circuit 24, and the ADC 26 is simply referred to as “the reception coil 23”, “the reception circuit 24”, and “the ADC 26”. That.
  • the “reception coil 23”, the “reception circuit 24”, and the “ADC 26” are used. ”Are given after the symbol ( 1 ... 16 ).
  • Each receiving coil 23 is arranged in the insertion section 10A of the endoscope 10 along the direction in which the receiving coil 23 is inserted into the subject W.
  • the receiving coil 23 detects a magnetic field generated by each transmitting coil 49 of the transmitting coil unit 48.
  • Each receiving coil 23 is connected to a receiving circuit 24 and outputs a signal (hereinafter, referred to as a “detection signal”) according to the detected magnetic field to the receiving circuit 24.
  • Each receiving coil 23 is an example of a magnetic field detecting element.
  • the receiving circuit 24 includes an LPF (Low Pass Filter), an amplifier (both not shown), and the like.
  • the LPF removes disturbance noise, and outputs a detection signal amplified by the amplifier to the ADC 26.
  • the ADC 26 converts the input analog detection signal into a digital detection signal and outputs the digital detection signal to the reception control unit 20.
  • the reception control unit 20 transmits the detection signal input from each ADC 26 to the endoscope inspection device 12 via the I / F
  • the detection signal transmitted from the receiving unit 21 of the endoscope 10 to the endoscope inspection apparatus 12 is input to the overall control unit 40 via the I / F 53.
  • the overall control unit 40 determines the position and orientation of each receiving coil 23 based on the input detection signal. (Posture) is derived. Further, the overall control unit 40 derives the shape of the insertion unit 10A of the endoscope 10 based on the derived position and orientation of each receiving coil 23. The details of the overall control unit 40 will be described later.
  • the transmission control unit 44 includes a first generation unit 60, a second generation unit 62, and an output unit 64.
  • the first generator 60 generates a first waveform.
  • the second generator 62 generates a second waveform.
  • the first waveform and the second waveform have different waveform shapes, so that the first waveform and the second waveform can be distinguished.
  • the first waveform and the second waveform may have the same waveform shape as long as the first waveform and the second waveform can be distinguished.
  • a mode is exemplified in which the first waveform and the second waveform have the same waveform shape and different frequencies, amplitudes, or phases.
  • the first waveform and the second waveform can be distinguished.
  • the output section 64 outputs the first waveform to the transmission circuit 46 after outputting the second waveform to the transmission circuit 46.
  • the transmission circuit 46 drives the transmission coil 49 with the first waveform after driving the transmission coil 49 with the second waveform.
  • the output unit 64 first outputs the second waveform H2 to all the transmission circuits 46 at the same timing. After outputting the second waveform H2, the output unit 64 outputs the first waveform H1 to each of all the transmission circuits 46 at a different timing.
  • the output unit 64 outputs the first waveform H1 to all of the transmission circuits 46 in a predetermined order. That is, a magnetic field according to the second waveform H2 is generated from all the transmission coils 49 at the same timing, and then a magnetic field according to the first waveform H1 is generated from each transmission coil 49 at different timings according to a predetermined order.
  • the order of the transmitting circuit 46 in which the output unit 64 outputs the first waveform H1 is not particularly limited.
  • a number for example, 1 to 12 as an example of identification information is assigned to each transmission coil 49, and the output unit 64 sends the transmission circuit 46 corresponding to the transmission coil 49 in ascending order of the number.
  • the case where the first waveform H1 is output will be described.
  • the information indicating the order of the transmitting circuit 46 from which the output section 64 outputs the first waveform H1 is also held in the overall control section 40.
  • a case will be described in which the period during which one first waveform H1 is input is n milliseconds (for example, several tens of milliseconds).
  • the numbers (1, 2, 3,..., 12) of the first waveform H1 in FIG. 5 represent the numbers assigned to the respective transmission coils 49.
  • the overall control unit 40 includes a receiving unit 70, a detecting unit 72, an acquiring unit 74, a deriving unit 76, and a display controlling unit 78.
  • the magnetic field generated by each transmission coil 49 is detected by each reception coil 23, and a detection signal corresponding to the detected magnetic field is transmitted from the reception control unit 20 of the endoscope 10 via the I / F 29. It is transmitted to the endoscope inspection device 12.
  • the receiving unit 70 receives the detection signal transmitted from the reception control unit 20 of the endoscope 10 via the I / F 53.
  • the detection unit 72 detects a signal detected by the reception coil 23 according to the magnetic field generated in the transmission coil 49 by the second waveform H2 from the detection signal received by the reception unit 70. Thereby, the detecting unit 72 detects the timing at which the signal corresponding to the second waveform H2 is detected by the receiving coil 23.
  • the timing at which the detection unit 72 detects a signal detected by the reception coil 23 in accordance with the magnetic field generated in the transmission coil 49 by the second waveform H2 is hereinafter referred to as “synchronization timing”.
  • the acquisition unit 74 corresponds to the first waveform H1 from the detection signal corresponding to each reception coil 23 received by the reception unit 70 based on the synchronization timing detected by the detection unit 72 corresponding to each reception coil 23. Get the signal to do. Specifically, the obtaining unit 74 obtains a signal corresponding to the first waveform H1 from each detection signal every n milliseconds based on the synchronization timing as described above. That is, the order in which the acquisition unit 74 acquires the first waveform H1 every n milliseconds corresponds to the order of the transmitting coil 49 that has generated a magnetic field corresponding to the first waveform H1. Therefore, for each of the detection signals detected by each of the reception coils 23, a signal corresponding to the first waveform H1 corresponding to each of the transmission coils 49 is acquired by the acquisition unit 74.
  • the deriving unit 76 derives the position and the direction of each receiving coil 23 based on the signal acquired by the acquiring unit 74.
  • the method by which the deriving unit 76 derives the position and orientation of the receiving coil 23 based on the signal acquired by the acquiring unit 74 is not particularly limited.
  • a technique described in Japanese Patent No. 3432825 may be applied. Can be.
  • a specific transmission coil 49 is determined based on a measured value of a magnetic field corresponding to the first waveform H1 generated by each transmission coil 49 and an estimated value of the direction of the reception coil 23. An estimated value of the distance to the receiving coil 23 is calculated.
  • the estimated value of the position of the receiving coil 23 is calculated from the estimated value of the distance from each transmitting coil 49 to the receiving coil 23 and the known position of the transmitting coil 49.
  • a new estimated value of the direction of the receiving coil 23 is calculated from the estimated position of the receiving coil 23 and the measured value of the magnetic field corresponding to the first waveform H1 of the receiving coil 23. Then, by using the new estimated value of the direction of the receiving coil 23, the calculation of the estimated value of the distance from the transmitting coil 49 to the receiving coil 23 and the calculation of the estimated value of the position of the receiving coil 23 are repeated, as described above.
  • the position and direction of the receiving coil 23 are derived.
  • the deriving unit 76 derives the shape of the insertion unit 10A of the endoscope 10 based on the derived position and direction of each receiving coil 23.
  • the display control unit 78 performs control to display an endoscope image indicated by the image data input from the video processor 34 in a partial display area of the display unit 52.
  • the display control unit 78 controls the display of the image representing the insertion unit 10A of the endoscope 10 according to the shape derived by the derivation unit 76 in a display area other than the display area of the endoscope image of the display unit 52. I do.
  • the display control unit 78 displays the endoscope image and the image representing the insertion unit 10A of the endoscope 10 on separate display units. Control may be performed.
  • the transmission control unit 44 includes a CPU (Central Processing Unit) 80, a memory 81 as a temporary storage area, a nonvolatile storage unit 82 such as a flash memory, and an external device to which each transmission circuit 46 is connected. I / F83 is included.
  • the CPU 80, the memory 81, the storage unit 82, and the external I / F 83 are connected to a bus 84.
  • the storage section 82 stores a magnetic field generation program 88.
  • the CPU 80 reads out the magnetic field generation program 88 from the storage unit 82, expands it in the memory 81, and executes the expanded magnetic field generation program 88.
  • the CPU 80 executes the magnetic field generation program 88, it functions as the first generation unit 60, the second generation unit 62, and the output unit 64 illustrated in FIG.
  • the reception control unit 20 according to the present embodiment is realized by the same hardware as the transmission control unit 44.
  • the overall control unit 40 includes a CPU 90, a memory 91 as a temporary storage area, a non-volatile storage unit 92 such as a flash memory, a video processor 34, a display unit 52, and an I / F 53. External I / F 93.
  • the CPU 90, the memory 91, the storage unit 92, and the external I / F 93 are connected to a bus 94.
  • the storage unit 92 stores a position derivation program 98.
  • the CPU 90 reads out the position derivation program 98 from the storage unit 92, expands it in the memory 91, and executes the developed position derivation program 98.
  • the CPU 90 executes the position deriving program 98 to function as the receiving unit 70, the detecting unit 72, the obtaining unit 74, the deriving unit 76, and the display control unit 78 illustrated in FIG.
  • the magnetic field generation processing shown in FIG. 9 is executed.
  • the magnetic field generation processing illustrated in FIG. 9 is executed, for example, when the power switch of the transmission unit 41 is turned on.
  • the transmission unit 41 includes a switch that switches on and off the generation of the magnetic field
  • the magnetic field generation processing illustrated in FIG. 9 may be performed when the switch is turned on.
  • the position deriving process shown in FIG. 10 is executed.
  • the position deriving process illustrated in FIG. 10 is executed, for example, when the power switch of the overall control unit 40 is turned on. Note that, when the overall control unit 40 includes a switch for switching the shape detection of the insertion unit 10A on and off, when the switch is turned on, even if the position deriving process illustrated in FIG. 10 is executed. Good.
  • step S10 of FIG. 9 the second generator 62 generates a second waveform H2.
  • step S12 the output unit 64 outputs the second waveform H2 generated by the process in step S10 to each of all the transmission circuits 46.
  • step S14 the first generator 60 generates a first waveform H1.
  • step S16 the output unit 64 outputs the first waveform H1 to each of all the transmission circuits 46 in a predetermined order, as described above.
  • the process in step S16 ends, the process returns to step S10.
  • the magnetic field generation processing illustrated in FIG. 9 ends, for example, when the power switch of the transmission unit 41 is turned off.
  • the transmission unit 41 includes a switch that switches on and off the generation of the magnetic field
  • the magnetic field generation process illustrated in FIG. 9 may be ended when the switch is turned off.
  • the magnetic field generated in each transmission coil 49 by the magnetic field generation processing shown in FIG. 9 is detected by each reception coil 23, and a detection signal corresponding to the detected magnetic field is transmitted from the reception control unit 20 of the endoscope 10 to the I / F 29. Is transmitted to the endoscope inspection apparatus 12 via the.
  • step S20 in FIG. 10 the receiving unit 70 receives the detection signal transmitted from the reception control unit 20 of the endoscope 10 via the I / F 53.
  • step S22 the detection unit 72 determines whether the signal detected by the reception coil 23 according to the magnetic field generated in the transmission coil 49 by the second waveform H2 from the detection signal received in the process of step S20. Is determined. If the determination is negative, the process returns to step S20, and if the determination is affirmative, the process proceeds to step S24.
  • step S24 the acquisition unit 74 extracts a signal corresponding to the first waveform H1 every n milliseconds from each detection signal received in the processing in step S20, based on the synchronization timing detected in the processing in step S22. get.
  • step S26 as described above, the deriving unit 76 derives the position and orientation of each receiving coil 23 based on the signal obtained by the processing in step S24.
  • step S28 the deriving unit 76 derives the shape of the insertion unit 10A of the endoscope 10 based on the position and direction of each of the receiving coils 23 derived in step S26.
  • step S30 the display control unit 78 places the image representing the insertion unit 10A of the endoscope 10 according to the shape derived by the processing in step S28 in a display area other than the display area of the endoscope image on the display unit 52. Perform display control.
  • the process in step S30 ends, the process returns to step S20.
  • the position deriving process illustrated in FIG. 10 ends, for example, when the power switch of the overall control unit 40 is turned off.
  • the overall control unit 40 includes a switch for turning on and off the shape detection of the insertion unit 10A, even if the position deriving process illustrated in FIG. 10 ends when the switch is turned off. Good.
  • the transmission coil 49 is driven by the second waveform H2
  • the transmission coil 49 is driven by the first waveform H1. Further, based on the timing at which the signal corresponding to the second waveform H2 is detected by the receiving coil 23, the signal corresponding to the first waveform H1 detected by each receiving coil 23 is obtained. Then, the position of each receiving coil 23 is derived based on the acquired signal. Therefore, the wireless communication between the transmitting unit 41 and the receiving unit 21 can be achieved without providing a wireless communication unit for notifying the timing of generating the magnetic field.
  • the transmission control section 44 after the transmission control section 44 drives each of the transmission coils 49 with the second waveform H2, the transmission control section 44 previously sets the drive timing information for driving each of the transmission coils 49 with the first waveform in the overall control section.
  • the deriving unit derives the position of each of the plurality of magnetic field detecting elements based on the drive timing information stored in the overall control unit 40.
  • the transmission unit 41 including the transmission control unit 44, the transmission circuit 46 (drive unit) and the transmission coil 49, and the reception coil 23, the derivation unit 76, the acquisition unit 74, and the storage unit 92 on the reception side can be made wireless.
  • the drive timing information is information for specifying the timing from when each transmission coil 49 is driven with the second waveform after being driven with the second waveform. Examples of the drive timing information include the time from when each transmission coil 49 is driven by the second waveform to when it is driven by the first waveform, the order in which each transmission coil 49 is driven by the first waveform, and the like.
  • the output unit 64 may output the second waveform H2 to each of all the transmission circuits 46 at a different timing.
  • a combination of the second waveform H2 and the first waveform H1 is input to each transmission circuit 46 at different timings.
  • the second waveforms H2 corresponding to the respective transmission circuits 46 can be distinguished from each other by different frequencies.
  • the second waveform H2 corresponding to each transmission circuit 46 may be distinguishable from each other by making at least one of the frequency, phase, amplitude, and waveform shape different from each other.
  • the acquisition unit 74 acquires a signal corresponding to the first waveform H1 of n milliseconds from each detection signal with reference to the synchronization timing. Further, the acquisition unit 74 can specify which transmission coil 49 the acquired signal corresponds to, based on the frequency of the signal detected by the detection unit 72.
  • a waveform representing a number which is an example of identification information of each transmitting coil 49 may be applied as the second waveform H2.
  • the transmission control unit 44 includes a first generation unit 60, a second generation unit 62A, and an output unit 64A.
  • the second generation unit 62A generates the same second waveform H2 for three transmission coils 49 in each combination.
  • the second generator 62A generates a discriminable second waveform H2 between at least one of the frequency, phase, amplitude, and waveform shape between the combinations of the three transmission coils 49.
  • the second waveform H2 can be distinguished from each other by different frequencies among the combinations of the three transmission coils 49.
  • the first waveform H1 and the second waveform H2 are different from each other in at least one of frequency, phase, amplitude, and waveform shape, so that the first waveform H1 and the second waveform H2 are different from each other. It can be determined.
  • the output unit 64A After outputting the second waveform H2 to the transmission circuit 46, the output unit 64A outputs the first waveform H1 to the transmission circuit 46. Specifically, as shown in FIG. 14, the output unit 64A outputs the second waveform H2 at the same timing to each of the transmission circuits 46 corresponding to the three transmission coils 49 in each combination. After outputting the second waveform H2, the output unit 64A outputs the first waveform H1 at a different timing to each of the transmission circuits 46 corresponding to the three transmission coils 49 in each combination. In the present embodiment, the output unit 64A outputs the first waveform H1 to each of the transmission circuits 46 corresponding to the three transmission coils 49 in each combination in a predetermined order, as in the first embodiment. Output.
  • the output unit 64 outputs the first waveform H1 and the second waveform H2 at different timings for each combination.
  • the output unit 64 outputs the above-described first waveform H1 and second waveform H2 in ascending order of the number of the transmission coil 49.
  • a magnetic field corresponding to the second waveform H2 is generated from the three transmitting coils 49 in each combination at the same timing, a magnetic field corresponding to the first waveform H1 is generated in a predetermined order.
  • magnetic fields corresponding to the first waveform H1 and the second waveform H2 are generated at different timings from the three transmission coils 49 between each combination.
  • the overall control unit 40 includes a reception unit 70, a detection unit 72, an acquisition unit 74A, a derivation unit 76, and a display control unit 78.
  • the acquisition unit 74A converts the detection signal corresponding to each reception coil 23 received by the reception unit 70 to the first waveform H1 based on the synchronization timing detected by the detection unit 72 corresponding to each reception coil 23. Get the signal to do. Specifically, the acquiring unit 74A acquires a signal corresponding to the first waveform H1 three times from each detection signal every n milliseconds based on the synchronization timing. Further, the acquisition unit 74A specifies, from the frequency of the signal detected by the detection unit 72, which combination of the acquired signals is due to the magnetic field according to the first waveform H1 generated by the three transmission coils 49 in any combination. I do.
  • the acquisition unit 74A can associate the acquired signal with the transmission coil 49 from the frequency of the signal detected by the detection unit 72 and the order in which the first waveform H1 was acquired every n milliseconds.
  • the acquisition unit 74A performs the above processing for each of the four combinations of the three transmission coils. Thereby, for each receiving coil 23, a signal corresponding to the magnetic field generated by each transmitting coil 49 according to the first waveform H1 is obtained.
  • the hardware configuration of the transmission control unit 44 and the hardware configuration of the overall control unit 40 are the same as those in the first embodiment, and a description thereof will not be repeated.
  • the magnetic field generation processing according to the present embodiment is the same except that the magnetic field generation processing (see FIG. 9) according to the first embodiment is repeatedly executed for each combination of three transmission circuits 46. Is omitted. Steps in FIG. 16 that execute the same processing as in FIG. 10 are denoted by the same reference numerals and description thereof is omitted.
  • step S24A determines the first waveform H1 from the detection signals received in step S20 every n milliseconds based on the synchronization timing detected in step S22 from the detection signals received in step S20. Are acquired three times. Further, the acquiring unit 74A determines from the frequency of the signal detected in the process of step S22 whether the acquired signal is caused by the magnetic field corresponding to the first waveform H1 generated by the three transmitting coils 49 of any combination. Identify.
  • step S25 the acquisition unit 74A determines whether the processing in step S24A has been completed for all four combinations of the three transmission coils 49. If this determination is affirmative, the process proceeds to step S26, and if negative, the process returns to step S20.
  • the magnetic field is generated by the first waveform H1 and the second waveform H2 for each combination of the three transmission coils 49. Therefore, the same effects as in the first embodiment can be obtained. Further, since three transmission coils 49 are driven simultaneously by the second waveform H2, the number of transmission coils 49 can be reduced to three by using a common circuit for generating an analog signal representing the second waveform H2. In addition, since the three transmission coils 49 orthogonal to each other are driven by the second waveform H2 at the same timing as one set, the transmission coil 49 and the reception coil 23 can be connected regardless of the direction of each reception coil 23. Can be obtained with a strength corresponding to the distance.
  • the same second waveform H2 is generated for each combination of the three transmission coils 49.
  • the same second waveform H2 is generated for each combination of two or more transmission coils having different directions in which the magnetic field is generated.
  • the second waveform H2 may be generated.
  • adjacent coils may be combined, or non-adjacent coils may be combined.
  • the output unit 64A may output the same second waveform H2 at different timings to each of the transmission circuits 46 in each combination.
  • a mode in which the first waveform H1 is output to each of the transmission circuits 46 in each combination immediately after outputting the same second waveform H2 in accordance with a predetermined order Is exemplified.
  • the transmission coil 49 to be driven by the second waveform H2 may be selected from all the transmission coils 49 according to the position of each reception coil 23 derived last time.
  • the predetermined number for example, the order in which the average value or the total value of the distances to the respective receiving coils 23 is smaller
  • the transmission coils 49 are selected.
  • a mode in which a predetermined number (for example, one) of the transmission coils 49 are selected from the three transmission coils 49 of each combination in an order close to the position of the reception coil 23 is exemplified. Is done.
  • the CPU 80 functions as a selection unit that selects the transmission coil 49 to be driven by the second waveform H2. As a result, the number of components for detecting the synchronization timing can be reduced.
  • each receiving coil 23 is changed, and the second waveform H2 is output from all the transmitting coils 49 according to the intensity of the signal corresponding to the first waveform H1 detected by each receiving coil 23.
  • the transmission coil 49 to be driven may be selected.
  • a predetermined number for example, four
  • the transmission coils 49 are selected in the descending order of the intensity of the signal corresponding to the first waveform H1 detected by the respective reception coils 23 last time. Is exemplified.
  • a predetermined number for example, 1 from the three transmitting coils 49 of each combination in the descending order of the intensity of the signal corresponding to the first waveform H1 detected by the receiving coil 23.
  • Transmission coil 49 is selected.
  • the CPU 80 functions as a selection unit that selects the transmission coil 49 to be driven by the second waveform H2.
  • the reception coil 23 to be detected for the signal corresponding to the second waveform H2 may be selected from all the reception coils 23 according to the position of each reception coil 23 derived last time. .
  • a mode is exemplified in which the receiving coil 23 whose position derived last time is closest to each transmitting coil 49 is selected.
  • the CPU 90 or the CPU included in the reception control unit 20 functions as a selection unit that selects the reception coil 23 to be detected for the signal corresponding to the second waveform H2. As a result, the number of components for detecting the synchronization timing can be reduced.
  • each receiving coil 23 is changed, and all the receiving coils 23 change to the second waveform H2 according to the intensity of the signal corresponding to the first waveform H1 detected by each receiving coil 23.
  • the receiving coil 23 to be detected for the corresponding signal may be selected.
  • a mode in which the receiving coil 23 having the highest intensity of the signal corresponding to the previously detected first waveform H1 is selected is exemplified.
  • the CPU 90 or the CPU included in the reception control unit 20 functions as a selection unit that selects the reception coil 23 to be detected for the signal corresponding to the second waveform H2. As a result, the number of components for detecting the synchronization timing can be reduced.
  • the reception control unit 20 includes the detection unit 72 and the acquisition units 74 and 74A is exemplified.
  • the present invention is not limited to this.
  • the magnetic field generating element for example, an element that generates a magnetic field such as a spin torque oscillation element may be applied.
  • the magnetic field detecting element for example, an element for detecting a magnetic field such as a Hall element and an MR (Magneto Resistive) element may be applied.
  • the first generation unit 60, the second generation units 62 and 62A, the output unit 64, the reception unit 70, the detection unit 72, the acquisition units 74 and 74A, the derivation unit 76, and the display control unit As a hardware structure of a processing unit that executes various processes such as 78, the following various processors can be used. As described above, in addition to the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, the above-described various processors include a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • FPGA Field Programmable Gate Array
  • Dedicated electricity which is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) or an ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuit etc. are included.
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). Combination). Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by computers such as a client and a server, one processor is configured by a combination of one or more CPUs and software. There is a form in which a processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a form in which a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used. is there.
  • the various processing units are configured using one or more of the above various processors as a hardware structure.
  • circuitry circuitry combining circuit elements such as semiconductor elements can be used.
  • the magnetic field generation program 88 is provided in a form recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. Is also good. Further, the magnetic field generation program 88 may be downloaded from an external device via a network.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. Is also good.
  • the magnetic field generation program 88 may be downloaded from an external device via a network.
  • the position deriving program 98 may be provided in a form recorded on a recording medium such as a CD-ROM, a DVD-ROM, and a USB memory.
  • the position deriving program 98 may be downloaded from an external device via a network.
  • Endoscope system 10 Endoscope 10A insertion part 10B Operation unit 11 Cable 12 Endoscopy device 20 Reception control unit 21, 70 receiving unit 22 Receiving coil unit 23 1 to 23 16 receiving coil 24 1 to 24 16 receiving circuit 26 1 to 26 16 ADC29, 53 I / F30 Image sensor 34 Video Processor 36 light source 40 Overall control unit 41 Transmitter 42 Transmission control unit 44 Transmission control unit 46 1X , 46 1Y , 46 1Z to 46 4X , 46 4Y , 46 4Z transmission circuit 48 transmitting coil unit 49 1X , 49 1Y , 49 1Z to 49 4X , 49 4Y , 494 Z transmit coil 52 Display 60 first generation unit 62, 62A second generation unit 64, 64A output section 72 Detector 74, 74A acquisition unit 76 Derivation unit 78 Display control unit 80, 90 CPU81, 91 Memory 82, 92 storage unit 83, 93 External I / F 84, 94 Bus 88 Magnetic field generation program 98 Position Derivation Program H1 First waveform H2 2

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

内視鏡システム1は、複数の送信コイル49と、内視鏡10における被検体に挿入する挿入部の位置検出用の第1波形、及び第1波形とは周波数、位相、振幅及び波形形状のうち少なくとも1つが異なり、第1波形と判別可能な同期タイミング検出用の第2波形を生成する送信制御部44と、第2波形によって送信コイル49を駆動させた後に、第1波形によって送信コイル49を駆動させる送信回路46と、複数の受信コイル23と、受信コイル23により第2波形に対応する信号が検出されたタイミングに基づいて、複数の受信コイル23の各々により検出された第1波形に対応する信号を取得し、取得した信号に基づいて、複数の受信コイル23の各々の位置を導出する全体制御部40と、を含む。

Description

内視鏡システム及び位置導出方法

 本開示は、内視鏡システム及び位置導出方法に関する。

 従来、内視鏡による被検体の体内の検査(以下、「内視鏡検査」という)において、被検体の体内に挿入された内視鏡の挿入部の形状を検出し、検出した挿入部の形状を表す形状画像を表示部に表示させることにより、内視鏡検査を支援することが行われている。また、この内視鏡の挿入部の形状の検出には、複数の磁界発生素子と複数の磁界検出素子とが用いられる。

 例えば、特許文献1には、複数の磁界検出素子による検出信号における、磁界発生素子から磁界を発生させるための駆動信号の周波数に相当する周波数成分を用いて、内視鏡の挿入部の形状を算出する技術が開示されている。

特開2006-136413号公報

 複数の磁界発生素子と複数の磁界検出素子とを用いて内視鏡の挿入部の形状を算出する場合、磁界発生素子に磁界を発生させる発生装置から、磁界検出素子による検出信号を検出する検出装置へ以下のタイミングを通知する。すなわち、この場合、発生装置から、磁界発生素子に磁界を発生させるタイミングを検出装置へ通知する。検出装置では、通知されたタイミングに基づいて、磁界検出素子により検出された信号を取得する。

 上記のタイミングの通知が有線通信によって行われる場合、例えば、発生装置と検出装置とを接続するケーブルが、被検体が横たわるベッドを跨る場合が多い。このため、内視鏡を操作する検査者は、ケーブルの取り回しに注意することとなり、ユーザビリティが低下してしまう。

 これに対し、上記のタイミングの通知を無線LAN(Local Area Network)及びBluetooth(登録商標)等の予め定められた通信規格に従った無線通信で行うことが考えられる。しかしながら、この場合、磁界を発生させるタイミングを通知するための無線通信部が必要となってしまう。また、この場合、無線通信を行う機器間での認証等の処理も必要となる。

 本開示は、以上の事情を鑑みて成されたものであり、磁界を発生させるタイミングを通知するための無線通信部を設けることなく、磁界を発生させる装置と磁界を検出する装置との間を無線化することができる内視鏡システム及び位置導出方法を提供することを目的とする。

 上記目的を達成するために、本開示の内視鏡システムは、複数の磁界発生素子と、内視鏡における被検体に挿入する挿入部の位置検出用の第1波形を生成する第1生成部と、第1波形とは周波数、位相、振幅及び波形形状のうち少なくとも1つが異なる、第1波形と判別可能な同期タイミング検出用の第2波形を生成する第2生成部と、第2波形によって磁界発生素子を駆動させた後に、第1波形によって複数の磁界発生素子を駆動させる駆動部と、複数の磁界検出素子と、磁界検出素子により第2波形に対応する信号が検出されたタイミングに基づいて、複数の磁界検出素子の各々により検出された第1波形に対応する信号を取得する取得部と、取得部により取得された信号に基づいて、複数の磁界検出素子の各々の位置を導出する導出部と、を含む。

 なお、本開示の内視鏡システムは、駆動部が、複数の磁界発生素子の各々を同じタイミングで第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、複数の磁界発生素子が、3個ずつの組み合わせとされ、駆動部が、各組み合わせ内の3個の磁界発生素子を同じタイミングで、かつ同じ第2波形によって駆動させ、各組み合わせ間の3個の磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、複数の磁界発生素子が、3個ずつの組み合わせとされ、駆動部が、各組み合わせ内の3個の磁界発生素子を異なるタイミングで、かつ同じ第2波形によって駆動させ、各組み合わせ間の3個の磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、複数の磁界発生素子が、磁界の発生する向きの異なる2個以上の組み合わせとされ、駆動部が、各組み合わせ内の前記磁界発生素子を同じタイミングで、かつ同じ前記第2波形によって駆動させ、各組み合わせ間の磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、複数の磁界発生素子が、磁界の発生する向きの異なる2個以上の組み合わせとされ、駆動部が、各組み合わせ内の前記磁界発生素子を異なるタイミングで、かつ同じ第2波形によって駆動させ、各組み合わせ間の3個の前記磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、駆動部が、複数の磁界発生素子の各々を、異なるタイミングで、かつ互いに周波数、位相、振幅及び波形のうち少なくとも1つが異なり、互いに判別可能な第2波形によって駆動させてもよい。 

 また、本開示の内視鏡システムは、第2波形が、周波数が異なるか、又は駆動させる磁界発生素子の識別情報を表す波形であることによって互いに判別可能であってもよい。

 また、本開示の内視鏡システムは、取得部が、複数の磁界検出素子により第2波形に対応する信号が検出されたタイミングに基づいて、複数の磁界検出素子の各々により検出された第1波形に対応する信号を取得してもよい。

 また、本開示の内視鏡システムは、導出部により前回に導出された複数の磁界検出素子の各々の位置、又は前回に複数の磁界検出素子により検出された第1波形に対応する信号の強度に応じて、第2波形によって駆動させる対象の磁界発生素子を選択する選択部を更に含み、駆動部が、選択部により選択された磁界発生素子を第2波形によって駆動させてもよい。

 また、本開示の内視鏡システムは、導出部により前回に導出された複数の磁界検出素子の各々の位置、又は前回に複数の磁界検出素子により検出された第1波形に対応する信号の強度に応じて、第2波形に対応する信号の検出対象の磁界検出素子を選択する選択部を更に含み、取得部が、選択部により選択された磁界検出素子により第2波形に対応する信号が検出されたタイミングに基づいて、複数の磁界検出素子の各々から第1波形に対応する信号を取得してもよい。

また、本開示の内視鏡システムは、磁界発生素子を第2波形によって駆動した後に第1波形で駆動する駆動タイミング情報を予め記憶した記憶部をさらに備え、導出部は、記憶部に記憶された駆動タイミング情報に基づいて、複数の磁界検出素子の各々の位置を導出してもよい。

また、本開示の内視鏡システムは、磁界発生素子、第1生成部、第2生成部及び駆動部と、磁界検出素子、取得部及び導出部は電気的に接続されていなくてもよい。

また、本開示の内視鏡システムは、磁界発生素子、第1生成部、第2生成部及び制御部と、磁界検出素子、取得部、導出部及び記憶部は電気的に接続されていなくてもよい。 
一方、上記目的を達成するために、本開示の位置導出方法は、複数の磁界発生素子と複数の磁界検出素子とを含む内視鏡システムによる位置導出方法であって、内視鏡における被検体に挿入する挿入部の位置検出用の第1波形を生成し、第1波形とは異なると判別可能な同期タイミング検出用の第2波形を生成し、第2波形によって磁界発生素子を駆動させた後に、第1波形によって複数の磁界発生素子を駆動させ、磁界検出素子により第2波形に対応する信号が検出されたタイミングに基づいて、複数の磁界検出素子の各々により検出された第1波形に対応する信号を取得し、取得した信号に基づいて、複数の磁界検出素子の各々の位置を導出するものである。

 本開示によれば、磁界を発生させるタイミングを通知するための無線通信部を設けることなく、磁界を発生させる装置と磁界を検出する装置との間を無線化することができる。

各実施形態に係る内視鏡システムの構成の一例を示す構成図である。 各実施形態に係る内視鏡システムの構成の一例を示すブロック図である。 各実施形態に係る受信コイルユニット及び送信コイルユニットの一例を示す構成図である。 第1実施形態に係る送信制御部の機能的な構成の一例を示すブロック図である。 第1実施形態に係る第1波形及び第2波形を説明するための図である。 第1実施形態に係る全体制御部の機能的な構成の一例を示すブロック図である。 各実施形態に係る送信制御部のハードウェア構成の一例を示すブロック図である。 各実施形態に係る全体制御部のハードウェア構成の一例を示すブロック図である。 各実施形態に係る磁界発生処理の一例を示すフローチャートである。 第1実施形態に係る位置導出処理の一例を示すフローチャートである。 変形例に係る第1波形及び第2波形を説明するための図である。 変形例に係る第1波形及び第2波形を説明するための図である。 第2実施形態に係る送信制御部の機能的な構成の一例を示すブロック図である。 第2実施形態に係る第1波形及び第2波形を説明するための図である。 第2実施形態に係る全体制御部の機能的な構成の一例を示すブロック図である。 第2実施形態に係る位置導出処理の一例を示すフローチャートである。 変形例に係る第1波形及び第2波形を説明するための図である。

 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。

 [第1実施形態]

 まず、図1を参照して、本実施形態に係る内視鏡システム1の構成について説明する。図1に示すように、内視鏡システム1は、被検体Wの体内の画像(以下、「内視鏡画像」という)を撮像する内視鏡10及び内視鏡検査装置12を備えている。

 内視鏡10は、挿入部10A及び操作部10Bを備え、内視鏡検査を行う場合、検査者は、操作部10Bを操作して、挿入部10Aを被検体Wの体内に挿入し、被検体Wの体内の内視鏡画像を撮像する。ケーブル11により内視鏡10と接続された内視鏡検査装置12は、ビデオプロセッサ34、全体制御部40、送信部41、及び液晶ディスプレイ等の表示部52を備えている。ビデオプロセッサ34は、内視鏡10による内視鏡画像の撮像の制御を行う。全体制御部40は、内視鏡システム1の全体を制御する。

 ビデオプロセッサ34、全体制御部40、及び表示部52は、それぞれ同一の設置台に設置され、互いにケーブルによって通信可能に接続されている。送信部41は、内視鏡検査装置12の他の各部とは離れて設置され、電源にはケーブルで接続されているが、内視鏡検査装置12の他の各部とはケーブルで接続されていない。すなわち、検査者は、送信部41を内視鏡検査装置12の他の各部とは独立して移動させることが可能である。

 次に、図2を参照して、内視鏡10及び内視鏡検査装置12の詳細な構成について説明する。図2に示すように、内視鏡10は、CCD(Charge Coupled Device)イメージセンサ、及びCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ等の撮像素子を含む画像センサ30を備えている。内視鏡10は、ビデオプロセッサ34による制御により光源36から出射された光を伝送路(図示省略)によって伝送し、挿入部10Aの先端に設けられた出射部(図示省略)から出射し、出射した光によって被検体Wの体内を照明する。この照明光による被検体Wからの反射光が対物レンズ(図示省略)によって画像センサ30に結像し、結像した光学像である内視鏡画像に応じた画像信号が、ケーブル11を介して内視鏡検査装置12のビデオプロセッサ34に出力される。ビデオプロセッサ34により、入力された画像信号に対して予め定められた画像処理が行われ、この画像処理によって得られた内視鏡画像の画像データは、全体制御部40に出力される。

 また、送信部41は、送信制御ユニット42及び送信コイルユニット48を備えている。送信コイルユニット48は、図3にも示すように、複数(本実施形態では、12個)の送信コイル491X、491Y、491Z、492X、492Y、492Z、493X、493Y、493Z、494X、494Y、及び494Zを備える。図3に示すように、本実施形態の送信コイル49は軸が、X軸、Y軸、及びZ軸の各々の方向に向いた3個ずつの組み合わせとされ、送信コイルユニット48は、4組の送信コイル群を備える。なお、本実施形態では、送信コイル49について、総称する場合は、単に「送信コイル49」といい、各組の送信コイル群を総称する場合は、「送信コイル49」の後にアルファベットを省略した数字の符号(・・・)を付す。また、本実施形態では、送信コイル49について、個々を区別する場合は、「送信コイル49」の後に個々を表す符号(1X・・・4Z)を付す。各送信コイル49が、磁界発生素子の一例である。

 具体的には、送信コイルユニット48は、X軸方向に向いた送信コイル491X、Y軸方向に向いた送信コイル491Y、及びZ軸方向に向いた送信コイル491Zの組と、X軸方向に向いた送信コイル492X、Y軸方向に向いた送信コイル492Y、及びZ軸方向に向いた送信コイル492Zの組と、を備える。また、送信コイルユニット48は、X軸方向に向いた送信コイル493X、Y軸方向に向いた送信コイル493Y、及びZ軸方向に向いた送信コイル493Zの組と、X軸方向に向いた送信コイル494X、Y軸方向に向いた送信コイル494Y、及びZ軸方向に向いた送信コイル494Zの組と、を備える。このように、本実施形態の送信コイルユニット48は、4組の3軸コイルを送信コイル49として備えた状態と同等となっている。

 また、送信制御ユニット42は、送信制御部44と、各送信コイル49に1対1で対応して接続された送信回路461X、461Y、461Z、462X、462Y、462Z、463X、463Y、463Z、464X、464Y、及び464Zとを備えている。なお、本実施形態では、送信回路46についても、送信コイル49と同様に、総称する場合は、単に「送信回路46」といい、各組の送信回路群を総称する場合は、「送信回路46」の後にアルファベットを省略した数字の符号(・・・)を付す。また、本実施形態では、送信回路46についても、送信コイル49と同様に、個々を区別する場合は、「送信回路46」の後に個々を表す符号(1X・・・4Z)を付す。

 送信制御部44は、内視鏡10における被検体Wに挿入する挿入部10Aの位置検出用の第1波形(以下、単に「第1波形」という)を生成する。また、送信制御部44は、第1波形とは異なる、第1波形と判別可能な同期タイミング検出用の第2波形(以下、単に「第2波形」という)を生成する。送信制御部44は、各波形を送信回路46に出力する。なお、送信制御部44の詳細については後述する。

 各送信回路46は、送信制御部44から入力された波形によって、各々接続されている送信コイル49を駆動させる。具体的には、各送信回路46は、送信制御部44から入力された波形に応じた駆動信号を各々接続されている送信コイル49に出力することによって、各々接続されている送信コイル49を駆動させる。送信回路46が、駆動部の一例である。各送信コイル49は、各々接続されている送信回路46から入力された駆動信号に応じて、磁界を発生させる。

 一方、内視鏡10の挿入部10Aの内部に設けられた受信部21は、受信制御部20、受信コイルユニット22、受信回路24(24~2416)、ADC(Analog-to-Digital Converter)26(26~2616)、及びI/F(Interface)29を備える。受信制御部20は、受信部21の全体を制御する。

 受信コイルユニット22は、図3にも示すように、一例として16個(図3の例では6個を図示)の受信コイル23~2316を備える。なお、本実施形態では、送信コイル49と同様に、受信コイル23、受信回路24、及びADC26の各々について、総称する場合は、単に「受信コイル23」、「受信回路24」、及び「ADC26」という。また、本実施形態では、送信コイル49と同様に、受信コイル23、受信回路24、及びADC26の各々について、個々を区別する場合は、「受信コイル23」、「受信回路24」、及び「ADC26」の後に個々を表す符号(・・・16)を付す。

 各受信コイル23は、内視鏡10の挿入部10Aに、被検体Wに挿入される方向に沿って配置されている。受信コイル23は、送信コイルユニット48の各送信コイル49で発生した磁界を検出する。各受信コイル23は、受信回路24に接続されており、検出した磁界に応じた信号(以下、「検出信号」という)を受信回路24に出力する。各受信コイル23が、磁界検出素子の一例である。受信回路24は、LPF(Low Pass Filter)及び増幅器(いずれも図示省略)等を含み、LPFによって外乱ノイズが除去され、増幅器により増幅された検出信号をADC26に出力する。ADC26は、入力されたアナログの検出信号をデジタルの検出信号に変換して受信制御部20に出力する。受信制御部20は、各ADC26から入力された検出信号を、I/F29を介して、内視鏡検査装置12へ送信する。

 内視鏡10の受信部21から内視鏡検査装置12へ送信された検出信号は、I/F53を介して、全体制御部40に入力される。

 全体制御部40は、入力された検出信号に基づいて、各受信コイル23の位置及び向き

(姿勢)を導出する。また、全体制御部40は、導出した各受信コイル23の位置及び向きに基づいて、内視鏡10の挿入部10Aの形状を導出する。なお、全体制御部40の詳細については後述する。

 次に、図4を参照して、本実施形態に係る送信制御部44の機能的な構成を説明する。

図4に示すように、送信制御部44は、第1生成部60、第2生成部62、及び出力部64を含む。第1生成部60は、第1波形を生成する。第2生成部62は、第2波形を生成する。本実施形態では、第1波形と第2波形とが異なる波形形状とされることによって、第1波形と第2波形とが判別可能とされる。なお、第1波形と第2波形とが判別可能であれば、第1波形と第2波形とは同じ波形形状であってもよい。例えば、第1波形と第2波形とが、同じ波形形状であってかつ周波数、振幅又は位相が異なる波形とする形態が例示される。第1波形と第2波形の周波数、位相、振幅及び波形形状のうちの少なくとも1つを異ならせることで、第1波形と第2波形は判別可能とすることが出来る。

 出力部64は、第2波形を送信回路46に出力した後に、第1波形を送信回路46に出力する。これにより、送信回路46は、第2波形によって送信コイル49を駆動させた後に、第1波形によって送信コイル49を駆動させる。

 具体的には、一例として図5に示すように、出力部64は、まず、全ての送信回路46の各々に対し、同じタイミングで第2波形H2を出力する。そして、出力部64は、第2波形H2を出力した後、全ての送信回路46の各々に対し、異なるタイミングで第1波形H1を出力する。本実施形態では、出力部64は、全ての送信回路46の各々に対し、予め定められた順番に従って第1波形H1を出力する。すなわち、全ての送信コイル49から同じタイミングで第2波形H2に応じた磁界が発生した後、各送信コイル49から予め定められた順番に従って異なるタイミングで第1波形H1に応じた磁界が発生する。なお、出力部64が第1波形H1を出力する送信回路46の順番は特に限定されない。本実施形態では、各送信コイル49に識別情報の一例としての番号(例えば、1~12)が割り当てられており、出力部64は、番号が小さい順に、送信コイル49に対応する送信回路46に第1波形H1を出力する場合について説明する。また、この出力部64が第1波形H1を出力する送信回路46の順番を表す情報は、全体制御部40にも保持されている。

また、本実施形態では、1つの第1波形H1が入力されている期間はnミリ秒(例えば、数十ミリ秒)である場合について説明する。なお、図5における第1波形H1の数字(1、2、3、・・・、12)は、各送信コイル49に割り当てられている番号を表す。

 次に、図6を参照して、本実施形態に係る全体制御部40の機能的な構成を説明する。

図6に示すように、全体制御部40は、受信部70、検出部72、取得部74、導出部76、及び表示制御部78を含む。

 前述したように、各送信コイル49で発生した磁界は、各受信コイル23により検出され、検出された磁界に応じた検出信号が、内視鏡10の受信制御部20からI/F29を介して内視鏡検査装置12へ送信される。

 受信部70は、内視鏡10の受信制御部20から送信された検出信号を、I/F53を介して受信する。検出部72は、受信部70により受信された検出信号から、第2波形H2によって送信コイル49で発生した磁界に応じて受信コイル23により検出された信号を検出する。これにより、検出部72は、受信コイル23により第2波形H2に対応する信号が検出されたタイミングを検出する。この検出部72が、第2波形H2によって送信コイル49で発生した磁界に応じて受信コイル23により検出された信号を検出したタイミングを、以下では「同期タイミング」という。

 取得部74は、各受信コイル23に対応して検出部72により検出された同期タイミングに基づいて、受信部70により受信された各受信コイル23に対応する検出信号から、第1波形H1に対応する信号を取得する。具体的には、取得部74は、各検出信号から、同期タイミングを基準として、前述したnミリ秒毎に第1波形H1に対応する信号を取得する。すなわち、取得部74がnミリ秒毎に第1波形H1を取得した順番と、第1波形H1に応じた磁界を発生させた送信コイル49の順番とが対応する。従って、各受信コイル23により検出された検出信号の各々について、各送信コイル49に対応する第1波形H1に応じた信号が取得部74により取得される。

 導出部76は、取得部74により取得された信号に基づいて、各受信コイル23の位置及び向きを導出する。導出部76が取得部74により取得された信号に基づいて受信コイル23の位置及び向きを導出する方法は、特に限定されず、例えば、特許第3432825号公報に記載されている技術を適用することができる。特許第3432825号公報に記載されている技術では、各送信コイル49によって発生された第1波形H1に対応する磁界の測定値、及び受信コイル23の方向の推定値から、特定の送信コイル49から受信コイル23までの距離の推定値を計算する。次に、各送信コイル49から受信コイル23までの距離の推定値と、送信コイル49の既知の位置とから受信コイル23の位置の推定値を計算する。次に、受信コイル23の推定された位置、及び受信コイル23の第1波形H1に対応する磁界の測定値から受信コイル23の方向の新しい推定値を計算する。そして、受信コイル23の方向の新しい推定値を用いて、前述した送信コイル49から受信コイル23までの距離の推定値の計算と、受信コイル23の位置の推定値の計算とを繰り返すことにより、受信コイル23の位置及び方向を導出する。

 更に、導出部76は、導出した各受信コイル23の位置及び方向に基づいて、内視鏡10の挿入部10Aの形状を導出する。

 表示制御部78は、ビデオプロセッサ34から入力された画像データが示す内視鏡画像を表示部52の一部の表示領域に表示する制御を行う。また、表示制御部78は、導出部76により導出された形状に応じた内視鏡10の挿入部10Aを表す画像を表示部52の内視鏡画像の表示領域以外の表示領域に表示する制御を行う。なお、内視鏡検査装置12が複数の表示部を備えている場合、表示制御部78は、内視鏡画像と内視鏡10の挿入部10Aを表す画像とを別々の表示部に表示する制御を行ってもよい。

 次に、図7を参照して、本実施形態に送信制御部44のハードウェア構成を説明する。

図7に示すように、送信制御部44は、CPU(Central Processing Unit)80、一時記憶領域としてのメモリ81、フラッシュメモリ等の不揮発性の記憶部82、及び各送信回路46が接続される外部I/F83を含む。CPU80、メモリ81、記憶部82、及び外部I/F83は、バス84に接続される。

 記憶部82には、磁界発生プログラム88が記憶される。CPU80は、記憶部82から磁界発生プログラム88を読み出してからメモリ81に展開し、展開した磁界発生プログラム88を実行する。CPU80が磁界発生プログラム88を実行することで、図4に示す第1生成部60、第2生成部62、及び出力部64として機能する。なお、本実施形態に係る受信制御部20は、送信制御部44と同様のハードウェアにより実現される。

 次に、図8を参照して、本実施形態に全体制御部40のハードウェア構成を説明する。

図8に示すように、全体制御部40は、CPU90、一時記憶領域としてのメモリ91、フラッシュメモリ等の不揮発性の記憶部92、及びビデオプロセッサ34と表示部52とI/F53とが接続される外部I/F93を含む。CPU90、メモリ91、記憶部92、及び外部I/F93は、バス94に接続される。

 記憶部92には、位置導出プログラム98が記憶される。CPU90は、記憶部92から位置導出プログラム98を読み出してからメモリ91に展開し、展開した位置導出プログラム98を実行する。CPU90が位置導出プログラム98を実行することで、図6に示す受信部70、検出部72、取得部74、導出部76、及び表示制御部78として機能する。

 次に、図9及び図10を参照して、本実施形態に係る内視鏡システム1の作用を説明する。CPU80が磁界発生プログラム88を実行することによって、図9に示す磁界発生処理が実行される。図9に示す磁界発生処理は、例えば、送信部41の電源スイッチがオン状態とされた場合に実行される。なお、送信部41が磁界発生のオン及びオフを切り替えるスイッチを備えている場合は、このスイッチがオン状態とされた場合に、図9に示す磁界発生処理が実行されてもよい。

 また、CPU90が位置導出プログラム98を実行することによって、図10に示す位置導出処理が実行される。図10に示す位置導出処理は、例えば、全体制御部40の電源スイッチがオン状態とされた場合に実行される。なお、全体制御部40が挿入部10Aの形状検出のオン及びオフを切り替えるスイッチを備えている場合は、このスイッチがオン状態とされた場合に、図10に示す位置導出処理が実行されてもよい。

 図9のステップS10で、第2生成部62は、第2波形H2を生成する。ステップS12で、出力部64は、全ての送信回路46の各々に対し、ステップS10の処理により生成された第2波形H2を出力する。

 ステップS14で、第1生成部60は、第1波形H1を生成する。ステップS16で、出力部64は、前述したように、全ての送信回路46の各々に対し、予め定められた順番に従って第1波形H1を出力する。ステップS16の処理が終了すると、処理はステップS10に戻る。

 図9に示す磁界発生処理は、例えば、送信部41の電源スイッチがオフ状態とされた場合に終了する。なお、送信部41が磁界発生のオン及びオフを切り替えるスイッチを備えている場合は、このスイッチがオフ状態とされた場合に、図9に示す磁界発生処理が終了してもよい。

 図9に示す磁界発生処理により各送信コイル49で発生した磁界は、各受信コイル23により検出され、検出された磁界に応じた検出信号が、内視鏡10の受信制御部20からI/F29を介して内視鏡検査装置12へ送信される。

 図10のステップS20で、受信部70は、内視鏡10の受信制御部20から送信された検出信号を、I/F53を介して受信する。ステップS22で、検出部72は、ステップS20の処理により受信された検出信号から、第2波形H2によって送信コイル49で発生した磁界に応じて受信コイル23により検出された信号を検出したか否かを判定する。この判定が否定判定となった場合は、処理はステップS20に戻り、肯定判定となった場合は、処理はステップS24に移行する。

 ステップS24で、取得部74は、ステップS20の処理により受信された各検出信号から、ステップS22の処理により検出された同期タイミングを基準として、nミリ秒毎に第1波形H1に対応する信号を取得する。ステップS26で、導出部76は、前述したように、ステップS24の処理により取得された信号に基づいて、各受信コイル23の位置及び向きを導出する。

 ステップS28で、導出部76は、ステップS26の処理により導出した各受信コイル23の位置及び方向に基づいて、内視鏡10の挿入部10Aの形状を導出する。ステップS30で、表示制御部78は、ステップS28の処理により導出された形状に応じた内視鏡10の挿入部10Aを表す画像を表示部52の内視鏡画像の表示領域以外の表示領域に表示する制御を行う。ステップS30の処理が終了すると、処理はステップS20に戻る。

 図10に示す位置導出処理は、例えば、全体制御部40の電源スイッチがオフ状態とされた場合に終了する。なお、全体制御部40が挿入部10Aの形状検出のオン及びオフを切り替えるスイッチを備えている場合は、このスイッチがオフ状態とされた場合に、図10に示す位置導出処理が終了してもよい。

 以上説明したように、本実施形態によれば、第2波形H2によって送信コイル49を駆動させた後に、第1波形H1によって送信コイル49を駆動させている。また、受信コイル23により第2波形H2に対応する信号が検出されたタイミングに基づいて、各受信コイル23より検出された第1波形H1に対応する信号を取得している。そして、取得した信号に基づいて、各受信コイル23の位置を導出している。従って、磁界を発生させるタイミングを通知するための無線通信部を設けることなく、送信部41と受信部21との間を無線化することができる。即ち、本実施形態によれば、送制御部44が、各送信コイル49を第2波形H2で駆動した後に各送信コイル49の各々を前記第1波形で駆動する駆動タイミング情報を予め全体制御部40の記憶部92に記憶し、導出部は、全体制御部40で記憶された駆動タイミング情報に基づいて、前記複数の磁界検出素子の各々の位置を導出する。これにより、送信制御部44、送信回路46(駆動部)、送信コイル49を含む送信部41と、受信側である受信コイル23、導出部76、取得部74、記憶部92とを無線化できる(無線化とは、送信制御部44、送信回路46、送信コイル49を含む送信部41と、受信側である受信コイル23、導出部76、取得部74及び記憶部92が電気的に接続しないことを指す。)。尚、駆動タイミング情報とは、各送信コイル49を第2波形で駆動した後に第1波形で駆動するまでのタイミングを特定する情報である。駆動タイミング情報としては、各送信コイル49を第2波形で駆動してから第1波形で駆動するまでの時間、各送信コイル49を第1波形で駆動する順番等が例示される。

 なお、第1実施形態において、出力部64は、全ての送信回路46の各々に対し、異なるタイミングで第2波形H2を出力してもよい。この場合、一例として図11に示すように、全ての送信回路46の各々に対し、予め定められた順番に従って、第2波形H2を出力した直後に第1波形H1を出力する形態が例示される。この形態例では、各送信回路46に、第2波形H2及び第1波形H1の組み合わせが、それぞれ異なるタイミングで入力される。また、この形態例では、各送信回路46に対応する第2波形H2が、それぞれ周波数が異なることによって互いに判別可能とされる。尚、各送信回路46に対応する第2波形H2は、周波数、位相、振幅及び波形形状のうち少なくとも1つを互いに異ならせることで互いに判別可能としてもよい。

 また、この形態例では、取得部74は、各検出信号から、同期タイミングを基準として、nミリ秒の第1波形H1に対応する信号を取得する。また、取得部74は、検出部72により検出された信号の周波数に従って、取得した信号が何れの送信コイル49に対応する信号かを特定することができる。

 また、この形態例において、一例として図12に示すように、第2波形H2として、各送信コイル49の識別情報の一例である番号を表す波形を適用してもよい。

 [第2実施形態]

 開示の技術の第2実施形態を説明する。なお、内視鏡システム1の構成(図1~図3参照)は、第1実施形態と同様であるため、説明を省略する。

 図13を参照して、本実施形態に係る送信制御部44の機能的な構成を説明する。なお、図13における図4と同一の機能を有する機能部については、同一の符号を付して説明を省略する。図13に示すように、送信制御部44は、第1生成部60、第2生成部62A、及び出力部64Aを含む。

 第2生成部62Aは、一例として図14に示すように、各組み合わせ内の3個の送信コイル49については同じ第2波形H2を生成する。また、第2生成部62Aは、3個の送信コイル49の各組み合わせ間については、周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、判別可能な第2波形H2を生成する。本実施形態では、第2波形H2は、3個の送信コイル49の各組み合わせ間で周波数が異なることによって、互いに判別可能とされる。また、本実施形態でも、第1波形H1と第2波形H2とが周波数、位相、振幅及び波形形状のうち少なくとも1つが異なる波形とされることによって、第1波形H1と第2波形H2とが判別可能とされる。 

 出力部64Aは、第2波形H2を送信回路46に出力した後に、第1波形H1を送信回路46に出力する。具体的には、図14に示すように、出力部64Aは、各組み合わせ内の3個の送信コイル49に対応する送信回路46の各々に対し、同じタイミングで第2波形H2を出力する。また、出力部64Aは、第2波形H2を出力した後、各組み合わせ内の3個の送信コイル49に対応する送信回路46の各々に対し、異なるタイミングで第1波形H1を出力する。本実施形態では、出力部64Aは、第1実施形態と同様に、各組み合わせ内の3個の送信コイル49に対応する送信回路46の各々に対し、予め定められた順番に従って第1波形H1を出力する。

 また、出力部64は、以上の第1波形H1及び第2波形H2の出力を、各組み合わせ間で異なるタイミングで行う。本実施形態では、出力部64は、送信コイル49の番号が小さい組み合わせから順に、以上の第1波形H1及び第2波形H2の出力を行う。

 すなわち、各組み合わせ内の3個の送信コイル49から同じタイミングで第2波形H2に応じた磁界が発生した後、予め定められた順番に従って第1波形H1に応じた磁界が発生する。また、各組み合わせ間の3個の送信コイル49から異なるタイミングで第1波形H1及び第2波形H2に応じた磁界が発生する。

 次に、図15を参照して、本実施形態に係る全体制御部40の機能的な構成を説明する。なお、図15における図6と同一の機能を有する機能部については、同一の符号を付して説明を省略する。図15に示すように、全体制御部40は、受信部70、検出部72、取得部74A、導出部76、及び表示制御部78を含む。

 取得部74Aは、各受信コイル23に対応して検出部72により検出された同期タイミングに基づいて、受信部70により受信された各受信コイル23に対応する検出信号から、第1波形H1に対応する信号を取得する。具体的には、取得部74Aは、各検出信号から、同期タイミングを基準として、nミリ秒毎に第1波形H1に対応する信号を3回取得する。また、取得部74Aは、検出部72により検出された信号の周波数から、取得した信号が何れの組み合わせの3個の送信コイル49により発生された第1波形H1に応じた磁界によるものかを特定する。すなわち、取得部74Aは、検出部72により検出された信号の周波数と、nミリ秒毎に第1波形H1を取得した順番とから、取得した信号と送信コイル49とを対応付けることができる。取得部74Aは、以上の処理を4組の3個の送信コイルの組み合わせそれぞれについて行う。これにより、各受信コイル23について、各送信コイル49により第1波形H1に応じて発生された磁界に対応する信号が取得される。

 送信制御部44のハードウェア構成及び全体制御部40のハードウェア構成は、第1実施形態と同様であるため説明を省略する。

 次に、図16を参照して、本実施形態に係る内視鏡システム1の作用を説明する。なお、本実施形態に係る磁界発生処理は、第1実施形態に係る磁界発生処理(図9参照)を、3個の送信回路46の組み合わせ毎に繰り返し実行する点以外は同様であるため、説明を省略する。また、図16における図10と同一の処理を実行するステップについては、同一の符号を付して説明を省略する。

 図16のステップS22の判定が肯定判定となった場合、処理はステップS24Aに移行する。ステップS24Aで、取得部74Aは、前述したように、ステップS20の処理により受信された各検出信号から、ステップS22の処理により検出された同期タイミングを基準として、nミリ秒毎に第1波形H1に対応する信号を3回取得する。また、取得部74Aは、ステップS22の処理により検出された信号の周波数から、取得した信号が何れの組み合わせの3個の送信コイル49により発生された第1波形H1に応じた磁界によるものかを特定する。

 ステップS25で、取得部74Aは、ステップS24Aの処理が、4組全ての3個の送信コイル49の組み合わせについて完了したか否かを判定する。この判定が肯定判定となった場合は、処理はステップS26に移行し、否定判定となった場合は、処理はステップS20に戻る。

 以上説明したように、本実施形態によれば、3個の送信コイル49の組み合わせ毎に第1波形H1及び第2波形H2により磁界を発生させている。従って、第1実施形態と同様の効果を奏することができる。更に、第2波形H2によって同時に駆動させる送信コイル49が3個になるため、第2波形H2を表すアナログ信号を生成する回路を共通化することによって3個に低減することができる。また、3軸直交している3個の送信コイル49を1組として同じタイミングで第2波形H2によって駆動させているため、各受信コイル23の向きによらず、送信コイル49と受信コイル23との距離に応じた強度の信号を得ることができる。尚、本実施形態では、3個の送信コイル49の組み合わせ毎に同じ第2波形H2を生成したが、これに限らず、磁界の発生する向きの異なる2個以上の送信コイルの組み合わせ毎に同じ第2波形H2を生成してもよい。また、隣り合うコイルを組み合わせてもよいし、隣り合わないコイルを組み合わせてもよい。磁界の発生する向きの異なる2個以上の送信コイルの組み合わせ毎に同じ第2波形H2を生成することで、送信コイルの磁界の発生する方向によらずに、受信コイルで磁界を検出することが容易となる。

 なお、上記第2実施形態において、出力部64Aは、各組み合わせ内の送信回路46の各々に対し、異なるタイミングで同じ第2波形H2を出力してもよい。この場合、一例として図17に示すように、各組み合わせ内の送信回路46の各々に対し、予め定められた順番に従って、同じ第2波形H2を出力した直後に第1波形H1を出力する形態が例示される。

 また、上記各実施形態において、前回に導出された各受信コイル23の位置に応じて、全ての送信コイル49から第2波形H2によって駆動させる対象の送信コイル49を選択してもよい。この場合、上記第1実施形態では、前回に導出された各受信コイル23の位置に近い順(例えば、各受信コイル23への距離の平均値又は合計値が小さい順)に、所定数(例えば、4個)の送信コイル49を選択する形態が例示される。また、この場合、上記第2実施形態では、各組み合わせの3個の送信コイル49から、受信コイル23の位置に近い順に、所定数(例えば、1個)の送信コイル49を選択する形態が例示される。

この場合、例えば、CPU80が、第2波形H2によって駆動させる対象の送信コイル49を選択する選択部として機能する。これにより、同期タイミング検出用の部品を低減することができる。

 また、この形態例において、各受信コイル23の位置に変えて、各受信コイル23により検出された第1波形H1に対応する信号の強度に応じて、全ての送信コイル49から第2波形H2によって駆動させる対象の送信コイル49を選択してもよい。この場合、上記第1実施形態では、前回に各受信コイル23により検出された第1波形H1に対応する信号の強度が高い順に、所定数(例えば、4個)の送信コイル49を選択する形態が例示される。また、この場合、上記第2実施形態では、各組み合わせの3個の送信コイル49から、受信コイル23により検出された第1波形H1に対応する信号の強度が高い順に、所定数(例えば、1個)の送信コイル49を選択する形態が例示される。この場合、例えば、CPU80が、第2波形H2によって駆動させる対象の送信コイル49を選択する選択部として機能する。これにより、同期タイミング検出用の部品を低減することができる。

 また、上記各実施形態において、前回に導出された各受信コイル23の位置に応じて、全ての受信コイル23から第2波形H2に対応する信号の検出対象の受信コイル23を選択してもよい。この場合、前回に導出された位置が各送信コイル49に最も近い受信コイル23を選択する形態が例示される。この場合、例えば、CPU90又は受信制御部20が備えるCPUが、第2波形H2に対応する信号の検出対象の受信コイル23を選択する選択部として機能する。これにより、同期タイミング検出用の部品を低減することができる。

 また、この形態例において、各受信コイル23の位置に変えて、各受信コイル23により検出された第1波形H1に対応する信号の強度に応じて、全ての受信コイル23から第2波形H2に対応する信号の検出対象の受信コイル23を選択してもよい。この場合、前回に検出された第1波形H1に対応する信号の強度が最も高い受信コイル23を選択する形態が例示される。この場合、例えば、CPU90又は受信制御部20が備えるCPUが、第2波形H2に対応する信号の検出対象の受信コイル23を選択する選択部として機能する。これにより、同期タイミング検出用の部品を低減することができる。

 また、上記各実施形態において、全体制御部40が備える機能の少なくとも一部を受信制御部20が備えてもよい。この場合、検出部72、及び取得部74、74Aを受信制御部20が備える形態が例示される。

 また、上記各実施形態では、磁界発生素子及び磁界検出素子としてコイルを適用した場合について説明したが、これに限定されない。磁界発生素子として、例えば、スピントルク発振素子等の磁界を発生させる素子を適用してもよい。また、磁界検出素子として、例えば、ホール素子及びMR(Magneto Resistive)素子等の磁界を検出する素子を適用してもよい。

 また、上記各実施形態において、例えば、第1生成部60、第2生成部62、62A、出力部64、受信部70、検出部72、取得部74、74A、導出部76、及び表示制御部78といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。

 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。

 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。

 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。

 また、上記各実施形態では、磁界発生プログラム88が記憶部82に予め記憶(インストール)されている態様を説明したが、これに限定されない。磁界発生プログラム88は、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、磁界発生プログラム88は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。

 また、上記各実施形態では、位置導出プログラム98が記憶部92に予め記憶(インストール)されている態様を説明したが、これに限定されない。位置導出プログラム98は、CD-ROM、DVD-ROM、及びUSBメモリ等の記録媒体に記録された形態で提供されてもよい。また、位置導出プログラム98は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。

1 内視鏡システム

10 内視鏡

10A 挿入部

10B 操作部

11 ケーブル

12 内視鏡検査装置

20 受信制御部

21、70 受信部

22 受信コイルユニット

23~2316 受信コイル

24~2416 受信回路

26~2616 ADC29、53 I/F30 画像センサ

34 ビデオプロセッサ

36 光源

40 全体制御部

41 送信部

42 送信制御ユニット

44 送信制御部

461X、461Y、461Z~464X、464Y、464Z 送信回路

48 送信コイルユニット

491X、491Y、491Z~494X、494Y、494Z 送信コイル

52 表示部

60 第1生成部

62、62A 第2生成部

64、64A 出力部

72 検出部

74、74A 取得部

76 導出部

78 表示制御部

80、90 CPU81、91 メモリ

82、92 記憶部

83、93 外部I/F84、94 バス

88 磁界発生プログラム

98 位置導出プログラム

H1 第1波形

H2 第2波形

W 被検体

Claims (15)


  1.  複数の磁界発生素子と、

     内視鏡における被検体に挿入する挿入部の位置検出用の第1波形を生成する第1生成部と、

     前記第1波形とは周波数、位相、振幅及び波形形状のうち少なくとも1つが異なる、前記第1波形と判別可能な同期タイミング検出用の第2波形を生成する第2生成部と、

     前記第2波形によって前記磁界発生素子を駆動させた後に、前記第1波形によって前記複数の磁界発生素子を駆動させる駆動部と、

     複数の磁界検出素子と、

     前記磁界検出素子により前記第2波形に対応する信号が検出されたタイミングに基づいて、前記複数の磁界検出素子の各々により検出された前記第1波形に対応する信号を取得する取得部と、

     前記取得部により取得された信号に基づいて、前記複数の磁界検出素子の各々の位置を導出する導出部と、

     を含む内視鏡システム。

  2.  前記駆動部は、前記複数の磁界発生素子の各々を同じタイミングで前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  3.  前記複数の磁界発生素子は、3個ずつの組み合わせとされ、

     前記駆動部は、各組み合わせ内の3個の前記磁界発生素子を同じタイミングで、かつ同じ前記第2波形によって駆動させ、各組み合わせ間の3個の前記磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  4.  前記複数の磁界発生素子は、3個ずつの組み合わせとされ、

     前記駆動部は、各組み合わせ内の3個の前記磁界発生素子を異なるタイミングで、かつ同じ前記第2波形によって駆動させ、各組み合わせ間の3個の前記磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  5.  前記複数の磁界発生素子は、磁界の発生する向きの異なる2個以上の組み合わせとされ、

     前記駆動部は、各組み合わせ内の前記磁界発生素子を同じタイミングで、かつ同じ前記第2波形によって駆動させ、各組み合わせ間の前記磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  6.  前記複数の磁界発生素子は、磁界の発生する向きの異なる2個以上の組み合わせとされ、

     前記駆動部は、各組み合わせ内の前記磁界発生素子を異なるタイミングで、かつ同じ前記第2波形によって駆動させ、各組み合わせ間の3個の前記磁界発生素子を異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  7.  前記駆動部は、前記複数の磁界発生素子の各々を、異なるタイミングで、かつ周波数、位相、振幅及び波形形状のうち少なくとも1つが互いに異なり、互いに判別可能な前記第2波形によって駆動させる

     請求項1に記載の内視鏡システム。

  8.  前記第2波形は、周波数が異なるか、又は駆動させる前記磁界発生素子の識別情報を表す波形であることによって互いに判別可能である

     請求項2から請求項7の何れか1項に記載の内視鏡システム。

  9.  前記取得部は、前記複数の磁界検出素子により前記第2波形に対応する信号が検出されたタイミングに基づいて、前記複数の磁界検出素子の各々により検出された前記第1波形に対応する信号を取得する

     請求項1から請求項8の何れか1項に記載の内視鏡システム。

  10.  前記導出部により前回に導出された前記複数の磁界検出素子の各々の位置、又は前回に前記複数の磁界検出素子により検出された前記第1波形に対応する信号の強度に応じて、

    前記第2波形によって駆動させる対象の前記磁界発生素子を選択する選択部を更に含み、

     前記駆動部は、前記選択部により選択された前記磁界発生素子を前記第2波形によって駆動させる

     請求項1から請求項9の何れか1項に記載の内視鏡システム。

  11.  前記導出部により前回に導出された前記複数の磁界検出素子の各々の位置、又は前回に前記複数の磁界検出素子により検出された前記第1波形に対応する信号の強度に応じて、

    前記第2波形に対応する信号の検出対象の前記磁界検出素子を選択する選択部を更に含み、

     前記取得部は、前記選択部により選択された磁界検出素子により前記第2波形に対応する信号が検出されたタイミングに基づいて、前記複数の磁界検出素子の各々から前記第1波形に対応する信号を取得する

     請求項1から請求項9の何れか1項に記載の内視鏡システム。

  12.  前記磁界発生素子を前記第2波形によって駆動した後に前記第1波形で駆動する駆動タイミング情報を予め記憶した記憶部と、を備え

     前記導出部は、前記記憶部に記憶された前記駆動タイミング情報に基づいて、前記複数の磁界検出素子の各々の位置を導出する請求項1から請求項11の何れか1項に記載の内視鏡システム。

  13. 前記磁界発生素子、前記第1生成部、前記第2生成部及び前記駆動部と、前記磁界検出素子、前記取得部及び前記導出部は電気的に接続されていない請求項1から請求項12に記載の内視鏡システム。

  14. 前記磁界発生素子、前記第1生成部、前記第2生成部及び前記制御部と、前記磁界検出素子、前記取得部、前記導出部及び前記記憶部は電気的に接続されていない請求項12に記載の内視鏡システム。

  15.  複数の磁界発生素子と複数の磁界検出素子とを含む内視鏡システムによる位置導出方法であって、

     内視鏡における被検体に挿入する挿入部の位置検出用の第1波形を生成し、

     前記第1波形とは周波数、位相、振幅及び波形形状のうち少なくとも1つが異なる、前記第1波形と判別可能な同期タイミング検出用の第2波形を生成し、

     前記第2波形によって前記磁界発生素子を駆動させた後に、前記第1波形によって前記複数の磁界発生素子を駆動させ、

     前記磁界検出素子により前記第2波形に対応する信号が検出されたタイミングに基づいて、前記複数の磁界検出素子の各々により検出された前記第1波形に対応する信号を取得し、

     取得した信号に基づいて、前記複数の磁界検出素子の各々の位置を導出する

     位置導出方法。
PCT/JP2019/027226 2018-08-23 2019-07-09 内視鏡システム及び位置導出方法 WO2020039776A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19852548.7A EP3841950B1 (en) 2018-08-23 2019-07-09 Endoscopic system and position deriving method
JP2020538225A JP7023368B2 (ja) 2018-08-23 2019-07-09 内視鏡システム及び内視鏡検査装置の作動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018156077 2018-08-23
JP2018-156077 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020039776A1 true WO2020039776A1 (ja) 2020-02-27

Family

ID=69592476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027226 WO2020039776A1 (ja) 2018-08-23 2019-07-09 内視鏡システム及び位置導出方法

Country Status (3)

Country Link
EP (1) EP3841950B1 (ja)
JP (1) JP7023368B2 (ja)
WO (1) WO2020039776A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507104A (ja) * 1994-08-19 1998-07-14 バイオセンス・インコーポレイテッド 医療用機器の診断及び取扱いならびに映像システム
JP3432825B2 (ja) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー 位置決定システム
JP2003524443A (ja) * 1998-08-02 2003-08-19 スーパー ディメンション リミテッド 医療用体内誘導装置
JP2003290129A (ja) * 2002-04-03 2003-10-14 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2006136413A (ja) 2004-11-10 2006-06-01 Olympus Corp 内視鏡形状検出装置
JP2007330348A (ja) * 2006-06-12 2007-12-27 Olympus Medical Systems Corp 内視鏡挿入形状検出装置
WO2011155383A1 (ja) * 2010-06-09 2011-12-15 オリンパスメディカルシステムズ株式会社 プローブ形状検出装置及びプローブ形状検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011913A (ja) * 2006-07-03 2008-01-24 Olympus Medical Systems Corp カプセル医療装置およびカプセル医療装置システム
JP5815156B2 (ja) 2013-07-02 2015-11-17 オリンパス株式会社 医療機器
EP3473158B1 (en) * 2016-06-16 2020-08-12 FUJIFILM Corporation Navigation device, navigation method, and endoscope system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432825B2 (ja) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー 位置決定システム
JPH10507104A (ja) * 1994-08-19 1998-07-14 バイオセンス・インコーポレイテッド 医療用機器の診断及び取扱いならびに映像システム
JP2003524443A (ja) * 1998-08-02 2003-08-19 スーパー ディメンション リミテッド 医療用体内誘導装置
JP2003290129A (ja) * 2002-04-03 2003-10-14 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2006136413A (ja) 2004-11-10 2006-06-01 Olympus Corp 内視鏡形状検出装置
JP2007330348A (ja) * 2006-06-12 2007-12-27 Olympus Medical Systems Corp 内視鏡挿入形状検出装置
WO2011155383A1 (ja) * 2010-06-09 2011-12-15 オリンパスメディカルシステムズ株式会社 プローブ形状検出装置及びプローブ形状検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3841950A4

Also Published As

Publication number Publication date
EP3841950A4 (en) 2021-07-28
EP3841950B1 (en) 2024-03-06
EP3841950A1 (en) 2021-06-30
JP7023368B2 (ja) 2022-02-21
JPWO2020039776A1 (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
CN102421349B (zh) 位置检测系统以及位置检测方法
JP6633751B2 (ja) ナビゲーション装置及びナビゲーション方法、並びに内視鏡システム
JP6670962B2 (ja) 磁気共鳴イメージング装置及びrfコイルの位置特定方法
JP4295110B2 (ja) ディスプレイ装置、受信装置、及び、試験装置
JP2008132047A (ja) 位置検出システム、医療装置誘導システムおよび位置検出方法
JP2015031804A (ja) ブレード検査装置
CN102186397B (zh) 位置检测系统和位置检测方法
JPWO2007043458A1 (ja) 位置検出システム
WO2020039800A1 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
US8597177B2 (en) Probe shape detection apparatus and probe shape detection method
JP2007130174A (ja) 内視鏡挿入部形状把握システム
JP6091118B2 (ja) 医療システム
WO2020039776A1 (ja) 内視鏡システム及び位置導出方法
JP2006212051A (ja) 錠剤型撮像装置、体内撮像システム及び体内撮像方法
JP5466316B2 (ja) 磁気共鳴イメージングにおける導電ループを用いたノイズ減少
US20190116332A1 (en) Endoscope system and signal processing apparatus
JP2006075533A (ja) 被検体内導入システム、受信装置および被検体内導入装置
JP6439073B2 (ja) 受信アンテナ、受信アンテナユニット及び受信システム
JP7078494B2 (ja) 表示制御装置、内視鏡システム、表示制御方法、及び表示制御プログラム
WO2021044661A1 (ja) 内視鏡システム及びその作動方法
JP2008245934A (ja) 信号変換アダプタおよび電子内視鏡システム
EP4020054B1 (en) Endoscope system and operation method therefor
JPWO2020039773A1 (ja) 検出装置、内視鏡システム、検出方法、及び検出プログラム
JP2020039418A (ja) 支援装置、内視鏡システム、支援方法、及び支援プログラム
JP6396610B2 (ja) 内視鏡装置およびカメラコントロールユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019852548

Country of ref document: EP

Effective date: 20210323