WO2006046505A1 - 腎細胞癌に対するインターフェロン治療反応性識別マーカー - Google Patents

腎細胞癌に対するインターフェロン治療反応性識別マーカー Download PDF

Info

Publication number
WO2006046505A1
WO2006046505A1 PCT/JP2005/019491 JP2005019491W WO2006046505A1 WO 2006046505 A1 WO2006046505 A1 WO 2006046505A1 JP 2005019491 W JP2005019491 W JP 2005019491W WO 2006046505 A1 WO2006046505 A1 WO 2006046505A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
polymorphism
genotype
reference snp
stat3
Prior art date
Application number
PCT/JP2005/019491
Other languages
English (en)
French (fr)
Inventor
Toyokazu Seki
Takayuki Shiratsuchi
Osamu Ogawa
Seiji Naito
Taiji Tsukamoto
Hiroshi Toma
Yoshihiko Hirao
Susumu Kagawa
Yoshiaki Nose
Tsuyoshi Nakamura
Original Assignee
Otsuka Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co., Ltd. filed Critical Otsuka Pharmaceutical Co., Ltd.
Priority to CA2585244A priority Critical patent/CA2585244C/en
Priority to US11/666,056 priority patent/US7838229B2/en
Priority to JP2006543126A priority patent/JP5078358B2/ja
Priority to CN200580037257.3A priority patent/CN101048504B/zh
Priority to EP05795708A priority patent/EP1813673B1/en
Publication of WO2006046505A1 publication Critical patent/WO2006046505A1/ja
Priority to HK07111969.7A priority patent/HK1106550A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • the present invention relates to a method for determining tumor reduction (therapeutic effect) of renal cell carcinoma by administration of interferon using a human gene polymorphism as an index (marker), an oligonucleotide used in the method, and a detection kit.
  • Renal cell carcinoma is currently under way! / Drug therapy using chemotherapeutic agents, immunotherapeutic agents, etc., radiotherapy, surgery, etc. It is an intractable disease.
  • drug therapy using chemotherapeutic agents, immunotherapeutic agents, etc., radiotherapy, surgery, etc. It is an intractable disease.
  • renal cell carcinoma is discovered, there are already about 30% of cases in which distant metastasis of cancer has already been observed.
  • pharmacotherapy other than surgery especially immunotherapy using interferon (IFN)
  • IFN interferon
  • IFN interferon
  • the response rate is only 10-15%. None of the combined use with various anticancer drugs exceeds the effect of IFN-a alone.
  • Currently used immunotherapy using IFN is mainly long-term maintenance therapy using IFN- ⁇ alone or in combination with IFN- ⁇ .
  • SNPs single nucleotide polymorphisms
  • the SNPs are already known to be useful for the analysis of the human genome related to common diseases, drug responses and the like (see Non-Patent Documents 1, 2 and 3). It is also known that a noroprotype analysis using multiple SNPs is useful for analyzing disease susceptibility (see Non-Patent Document 4).
  • HCV Human hepatitis C virus
  • Patent Literature a method for predicting the efficacy of IFN treatment using the promoter region of the IFN-a receptor type 2 gene and the SNP at position -134 as a gene polymorphism marker is also known (Patent Literature). 2).
  • hepatitis B hepatitis C
  • glioblastoma medulloblastoma
  • astrocytoma cutaneous malignant melanoma
  • renal cancer multiple myeloma, hairy cell leukemia, chronic myeloid Leukemia, subacute sclerosis ⁇ I flame, viral encephalitis, systemic shingles and chickenpox in immunosuppressed patients, nasopharyngeal undifferentiated cancer, viral inner ear infection with hearing loss, herpes keratitis, flatness Condyloma, warts, conjunctivitis due to adenovirus and herpes virus infection, genital herpes, cold sores, cervical cancer, cancerous pleural effusion, keratophyte cell tumor, basal cell carcinoma and type ⁇
  • a disease selected from the group consisting of chronic active hepatitis
  • Non-Patent Document 4 JP 2003-88382 A
  • Patent Document 2 JP 2003-339380 A
  • Patent Document 3 JP 2001-136973 A
  • Patent Document 4 Special Table 2004-507253
  • Non-Patent Document 1 Brookes, A. J “” The essence of SNPs “, Gene, USA, (1999), 234, 177 -186
  • Non-Patent Document 2 Cargill, M, et al., "Characterization of single-nucleotide polymorphis ms in coding regions of human genes", Nature Genet., USA, (1999), 22, 231-238
  • Non-Patent Document 3 Evans , WE, & Relling, MV, "Pharmacogenomics: translating lunct ional genomics into rational therapeutics, science, USA, (1999), 286, 487-491
  • Non-patent literature 4 Schlaak, JF, et. Al.,” Cell-type and Donor-specific Transcriptional Responses to Interferon- " ⁇ . Biol. Chem., (2002) 277, 51, 49428-49437 Disclosure of the Invention
  • the main object of the present invention is to provide a means for determining the therapeutic effect (tumor reduction effect) of IFN administration on renal cell carcinoma.
  • the present inventors first added / administered IFN-related genes, genes reported to be involved in the IFN- ⁇ signal transduction system, and IFN as candidate gene polymorphism analysis candidate genes.
  • IFN candidate gene polymorphism analysis candidate genes.
  • SNPs on that gene were searched from a public polymorphism database, and 463 candidate SNPs were selected.
  • IFN-a administration showed an IFN effective group (patients with a therapeutic effect) in which renal cell carcinoma tumor shrinking effect was observed, and no IFN ineffective group (with a therapeutic effect).
  • 3 ⁇ 4 ⁇ 3 remains fc (3 ⁇ 4ignal transducer ana activator of transcription 3: 3 ⁇ 4 ⁇ 3 (GenB ank Accession No. NT—010755 ”(hereinafter referred to as“ STAT3 gene ”),
  • SSI3 remains is Suppressor of cytokine signaling 3: SSI3 (GenBank Accession No. N T_010641) (hereinafter referred to as ⁇ SSI3 gene '')),
  • IL-4R gene Interleukin 4 receptor (GenBank Accession No. NT—010393) (hereinafter referred to as “IL-4R gene”)
  • IRF2 gene Interferon regulatory factor 2: IRF2 (GenBank Accession No. NT—022792) (hereinafter referred to as “IRF2 gene”)
  • ICSBP residue izs child Interferon consensus sequence-binding protein 1: ICSBP1 (Gen Bank Accession No. NT— 019609) (hereinafter referred to as “ICSBP1 gene”)
  • PTGS2 residue fc + Prostaglandin—endoperoxide synthase 2: PTGb2 (GenBank Accession No. NT.004487) (hereinafter referred to as “PTGS2 gene”)
  • TAP2 gene TAP2 residue fctCTransporter'ATP-binding cassette, Major histocompatibility complex, 2: TAP2 (GenBank Accession No. NT—007592) (hereinafter referred to as “TAP2 gene”).
  • the present inventors further investigated the relationship between SNPs present on each of the above genes and the IFN treatment effect on renal cell carcinoma.
  • 16 SNPs that are strongly related to the tumor reduction effect of renal cell carcinoma by administration of IFN- ⁇ were confirmed, and it was found that these SNPs can be used as a marker for judging tumor reduction after IFN treatment. That is, by detecting these SNPs, it was found that the tumor reduction effect (treatment effect) of renal cell carcinoma by IFN administration can be predicted (predictive diagnosis).
  • the present invention has been completed as a result of further research based on strong knowledge.
  • the present invention provides a method for determining the tumor reduction effect after IFN treatment for renal cell carcinoma patients described in the following item 1-11.
  • Item 1 A method for determining tumor shrinkage by IFN treatment for renal cell carcinoma patients, comprising the following steps (i) to Gv):
  • a gene sample (gene genomic DNA sample) derived from a patient with renal cell carcinoma (ii)
  • Item 2 The renal cell carcinoma patient according to Item 1, wherein the gene polymorphism is a polymorphism in at least one gene selected from the group power of STAT3 gene, IL-4R gene, IRF2 gene and TAP2 gene power Of tumor reduction by IFN treatment for cancer.
  • Item 3 The method for determining tumor reduction by IFN treatment for renal cell carcinoma patients according to Item 1, wherein the gene polymorphism is at least one selected from the following group powers (a) to (p):
  • Item 4 The renal cell carcinoma according to Item 3, wherein the gene polymorphism is any one of (a), (1), (h), (n), (o), and (p) of Item 3. A method to determine tumor reduction by IFN treatment for patients.
  • Item 5 The kidney according to any one of Items 1-4, wherein the IFN is one selected from the group consisting of natural IFN-a, recombinant IFN-a, and recombinant IFN-y. A method of determining tumor reduction by interferon treatment for patients with cell carcinoma.
  • Item 6 Gene polymorphism is determined by direct nucleotide sequencing, allele-specific oligonucleotide (ASO) -dot plot analysis, single nucleotide primer extension method, PCR-single strand conformation polymorphism (SSCP) analysis, PCR-restriction fragment length polymorphism (RFLP) analysis, invader method, quantitative real-time PCR detection method and mass polymorphism detection method (mass array) group power Item 6. The method according to any one of Items 1 to 5, which is performed by one method.
  • Item 7 The method according to Item 6, wherein the genetic polymorphism is determined by an invader method or a direct nucleotide sequencing method.
  • Item 8 The method according to Item 6, wherein the genetic polymorphism is determined by PCR-RFLP analysis.
  • Item 9 The method according to Item 8, which comprises detecting the 4204027th G to C mutation in the intron of rs2293152 of the human STAT3 gene using the restriction enzyme Mspl.
  • Item 10 The determination of genetic polymorphism is performed using at least one oligonucleotide selected from the following group powers (a) to (p) as a probe or primer for detecting a gene polymorphism: The method described in;
  • Reference SNP ID number Oligo of at least 10 consecutive sequences including a gene polymorphism site whose genotype is A / A at position 17736877 of the IRF2 gene of rs2797507 Nucleated Chido,
  • ICSBP gene 390141 at least 10 consecutive oligonucleotides including a gene polymorphic site where the genotype at position 390141 is A / A or A / C,
  • Reference SNP ID number at least 10 consecutive nucleotides containing a polymorphic site where the genotype at the 26793813th position of the PTGS1 gene of rsl213264 is C / T,
  • Reference SNP ID number oligonucleotide of at least 10 consecutive sequences including a gene polymorphism site where the genotype at the 15697329th position of the PTGS2 gene of rs2745557 is G / G,
  • Reference SNP ID number Oligonucleotide of at least 10 consecutive sequences including a gene polymorphic site where the genotype at the 18686068th of the IL-4R gene of rs2234898 is C / C, and
  • the present invention relates to a method for detecting a therapeutic response identification marker by administration of IFN for renal cell carcinoma, and in particular, to detect a specific human gene polymorphism or genotype in a renal cell carcinoma patient specimen to detect IFN for the patient.
  • the method for determining the therapeutic effect (tumor shrinking effect) of the drug, kit for it, gene polymorphism, genotype, genotype detection probe and primer used therefor are provided. These are useful for selecting the selection order of drugs to be administered in individual patient-made medicine.
  • gene polymorphism or “polymorphism” refers to a plurality of allele groups occupying one locus or individual alleles belonging to such allele groups. And Of these polymorphisms, those that differ only by one base are also called single nucleotide polymorphisms (SNPs). This single nucleotide polymorphism is abbreviated as “S NP” in the present specification.
  • the haplotype refers to the type of genetic polymorphism (SNPs) represented by the type and number of alleles at a plurality of genetic polymorphic sites in a continuous gene region or gene group.
  • the genotype indicates a state of a gene opposite to a gene locus at a specific gene polymorphism site.
  • the genotype for the 4243095th SNP (STAT3-2) of the STAT3 gene is expressed as C / T heterozygous or T / T homozygous. This is expressed as “S TAT3-2 is C / T or T / T”.
  • S TAT3-2 is C / T or T / T.
  • PR partial response, effective
  • CR complete response. Therefore, C / T or T / T of STAT3-2 can be used as an IFN treatment-responsive identification marker for renal cell carcinoma.
  • the genomic sequence of the human gene shown in this specification is listed in the Nucleotide Sequence Data Bank of NCBI (National Center for Biotechnology Information) under the GenBank accession number (example: NT_010641). It shall follow the nucleic acid sequence.
  • positional information on SNPs indicated as human gene polymorphisms and information on nucleic acid mutations are also listed in the NCBI SNP data bank with reference SNP ID numbers (eg, rsl213265) ( Reference SNP (reSNP) cluster ⁇ ⁇ Report (Reference SNP (relSNP) CI uster Report), Internet search engine (http://www.ncbi.nlm.nih.gov/SNP) . This reference SNP ID number is also used in this specification.
  • Table 1 the description for each gene is displayed by adding the SNP number arbitrarily given by the inventors following the name of the gene containing the SNPs found by the inventors. is there.
  • rs # is the accession number of the reference SNP
  • nucleic acid is the nucleic acid mutation (A / G indicates SNP mutated to A force S G)
  • Contig accession Is the accession number of the genome contig sequence
  • ⁇ Contig position is the position number indicating the position of the nucleic acid mutation in the genome sequence
  • ⁇ mRNA '' is the accession number of the mRNA sequence number
  • ⁇ mRNA direction '' is The direction of the mRNA where the gene polymorphic sequence is located.
  • Protein is the accession number of the protein sequence
  • location is the location information of the site where the gene polymorphism exists
  • dbSNP allele is the nucleic acid of the corresponding double-stranded allele.
  • Amino acid residue is the amino acid residue that has been mutated [substituted]
  • Codon position is the position information of the codon relative to the amino acid encoded by the nucleic acid
  • Amino acid sequence information is the position of the amino acid sequence.
  • Information and “Remarks” indicate gene alias information.
  • amino acid mutations (substitutions) due to the specific human gene polymorphism used in the method of the present invention are observed only in gene polymorphisms related to IL-4R, and other genes. No amino acid mutation (substitution) occurs in the gene polymorphism of
  • the term "gene” includes not only double-stranded DNA but also each single-stranded DNA (sense strand and antisense strand) constituting the same. That is, unless otherwise specified, the gene (DNA) of the present invention is a double-stranded DNA containing human genomic DNA, a single-stranded DNA containing cDNA (sense strand), or a single-stranded DNA having a sequence complementary to the sense strand. Includes DNA and fragments thereof.
  • the gene (DNA) can contain a regulatory region, a coding region, exons and introns.
  • Polynucleotide includes RNA and DNA.
  • DNA includes cDNA, genomic DNA and synthetic DNA.
  • Polypeptides include fragments, homologues, derivatives and variants thereof. Furthermore, variants substantially alter the function of naturally occurring allelic variants, non-naturally occurring variants, altered (deletions, substitutions, additions and insertions) variants and encoded polypeptides. Means no polynucleotide sequence. The alteration in the amino acid sequence may occur in nature, for example, by mutation, post-translational modification, etc., and can be artificially performed using a naturally derived gene.
  • the present invention is reported to be involved in human genes (IFN-related genes, IFN- ⁇ signaling system). Gene polymorphisms including genotypes at specific positions (especially reported genes and genes reported to show changes in gene expression due to addition / administration of IFN), especially SNP or SNPs forces Tumors treated with IFN therapy for patients with renal cell carcinoma Based on the discovery of the fact that IFN treatment effects on patients with renal cell carcinoma can be determined by detecting the gene polymorphism (genotype at a specific position). It's completed! In other words, the present invention has been completed by finding that a specific human gene polymorphism, particularly a specific SNP, can be used as a marker for determining the therapeutic effect of IFN on renal cell carcinoma. According to the method of the present invention, it is possible to predict the IFN treatment effect on a renal cell carcinoma patient by detecting specific SNPs in a specimen derived from the renal cell carcinoma patient.
  • the method of the present invention comprises polymorphisms of a specific human gene in a specimen derived from a renal cell carcinoma patient, that is, STAT3-2, STAT3-3, STAT3-17, STAT3-18, SSI3-1, IL-4R-14, IL—4R—22, L—4R—29, IRF2 -67, IRF2-82, ICSBP-38, PTGS1-3, PTGS1-4, PTGS1-5, PTGS2-12, and TAP2-5 gene polymorphism (genotype ) Is an essential requirement.
  • SNPs to be detected (analyzed) by the method of the present invention that is, genetic polymorphisms or genotypes correlated with the tumor reduction effect by IFN treatment for renal cell carcinoma patients, are more specifically described below. (a) to (p). The positions of these polymorphisms on the gene are as shown in Table 1 above.
  • the tumor reduction effect on renal cell carcinoma (tumor reduction effect by IFN) can be ascertained. It can provide useful information or means for elucidating functions and predictive diagnosis of renal cell carcinoma treatment.
  • whether or not to administer IFN as information that serves as a basis for determining a treatment policy for renal cell carcinoma patients, particularly as a treatment policy for tailor-made medicine tailored to each renal cell cancer patient. It can provide important information to decide.
  • IFNs used for IFN therapy for renal cell carcinoma patients include, for example, natural IFN-a, gene recombinant IFN-a, gene recombinant IFN-y, and the like. These IFNs can be used as a target of the method of the present invention not only when used alone, but also when used in combination with other immunotherapeutic agents or chemotherapeutic agents for the treatment of renal cell carcinoma.
  • a gene sample derived from a renal cell carcinoma patient is prepared as a specimen G step).
  • the gene sample includes specific gene polymorphisms (SNPs), specifically, the gene polymorphisms previously described as (a) to (p).
  • SNPs specific gene polymorphisms
  • cDNA or genomic DNA extracted from a renal cell carcinoma patient according to a conventional method can be used.
  • This sample may be a complementary strand of DNA containing the gene polymorphism.
  • Examples of the origin of cDNA or genomic DNA used as a sample include various cells, tissues, and cultured cells derived therefrom. Specific examples include body fluids such as blood, saliva, lymph, airway mucus, urine, and semen.
  • the above-mentioned source material as a specimen is DNA or genomic DNA derived from a patient before IFN administration (in particular, before adding a drug in addition to a case where another drug has already been administered). Is preferred. Isolation of RNA from these source materials, isolation and purification of mRNA, acquisition of cDNA, cloning thereof, etc. can all be carried out according to conventional methods.
  • the above-described gene sample force, the genomic sequence of a specific human gene, or a complementary strand thereof for example, a gene having a gene polymorphism (a) to (p) or a complementary strand thereof (SNPs Is prepared (step ii).
  • This preparation is carried out by referring to the specific sequence information of the gene containing the SNPs of (a) to (p) disclosed in the present specification [Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); see Biochemistry Experiment Course “Gene Research Methods I, II, III”, edited by Japan Biochemical Society (1986), etc.]. Specifically, from a cDNA or genomic DNA extracted from a renal cell carcinoma patient having a gene polymorphism (a) to (p), an appropriate probe containing a specific genotype (a) to (p), restriction Using an enzyme or the like, a conventional method (for example, Proc. Natl. Acad.
  • a probe containing a genotype part that can selectively bind to the DNA sequence of the target SNPs is prepared, and a single-base primer extension method, an invader method, a quantitative real-time PCR method, or the like is performed using this probe.
  • a forward primer and a reverse primer set based on the base sequence information of the desired gene can be used. These can be synthesized according to a conventional method, for example, using an automatic synthesizer.
  • the screening probe is usually a labeled probe, but may be an unlabeled one as long as it can specifically bind to a directly or indirectly labeled ligand.
  • Probe and ligand labeling agents and labeling methods are already well known in the art. Examples include radiolabeling agents that can be incorporated by methods such as nick 'translation, random' prime dam, kinase processing, piotin, fluorescent dyes, chemiluminescent agents, enzymes such as luciferase, antibodies, etc. Can be illustrated.
  • the extracted gene or mRNA can be amplified by a gene amplification method.
  • PCR Saiki, RK, Bugawan, T.L., et al, Nature, 324, 163-166 (1986)
  • NASBA Comptom, J., Nature, 650, 91— 9 2 (1991)
  • TMA method Kacian, DL, and Fultz, TJ, US Pat. No. 5,399,491 (1995)
  • SDA method Walker, GT, Little, MC, et al., Proc. Natl. Acad. Sci., USA, 89, 39 2-396 (1992)).
  • the isolation and purification of the gene fragment amplified by the PCR method or the like can be performed by a conventional method, for example, using a force by a gel electrophoresis method or a column.
  • the confirmation can be performed, for example, by mass spectrometry or gel electrophoresis.
  • the gene amplified by these methods is used for detection (determination of gene polymorphism) of gene polymorphisms (S NPs) (a) to (p) according to the present invention according to the characteristics of the amplified product. Is done.
  • the DNA sequence of a specific gene region in the sample is determined and analyzed, and the polymorphism (SNPs) is detected (polymorphism is determined) (step iii). Specifically, this detection is described in (1)-(8 ).
  • This method can be basically carried out by directly sequencing the nucleotide sequence of a gene fragment amplified by PCR, for example, or a purified product thereof according to the Dideoxy method, Maxam-Gilbert method, or the like. Alternatively, it can be carried out by simply determining the nucleotide sequence using a commercially available sequence kit or the like. By virtue of this, it is possible to detect the presence or absence of SNPs at the aforementioned sites of specific human genes.
  • the DNA fragment amplified by the PCR method is particularly limited as long as it contains at least one of the specific sites assumed to have the mutation described above. is not. Usually, it has a length of about 50 to several thousand bases, preferably 50 to several hundred bases.
  • Another method for detecting polymorphisms in a specific gene includes allele-specific oligonucleotide (AS 0) —dot blot (Conner, BJ, et al., Proc. Natl. Acad. Sci., USA, 80 , 278-282 (1983), which includes, for example, alleles against PCR-amplified gene fragments using forward and reverse primers designed to sandwich the target SNP.
  • DNA fragments that hybridize to gene-specific oligonucleotide 'probes can be performed by dot-plot analysis. By virtue of this, it is possible to determine whether SNPs are present in the fragments.
  • Detection of a polymorphism of a specific gene may also be performed by a single-base extension method such as a snapshot method, a pyrosequencing method, or a point mutation detection method disclosed in Japanese Patent Application Laid-Open No. 2000-279197. Can do.
  • a probe set to correspond to the base immediately before or several bases before the target gene polymorphism (SNP), that is, its 3 ′ end is one base upstream or near the mutation to be detected. Annealing the probe set in step 1 to the DNA sample.
  • SNP target gene polymorphism
  • the snapshot method can be carried out using ABI PRISM SNaPshot ddNTP Primer Extension Kit (manufactured by ABI). SNPs can be detected and analyzed using ABI PR ISM310 / 377/3100/3700 DNA Analyzer (both manufactured by ABI) and GeneScan software.
  • the pyrosequencing method can be performed, for example, as follows.
  • genomic DNA is isolated from blood samples, etc. by conventional methods, several hundreds of bases containing mutations are PCR amplified using a primer labeled with piotin, and single-stranded DNA is purified using magnetic beads. This purified DNA is used as a sample.
  • Primers set to sequence from several bases upstream of the desired gene polymorphism are annealed to the sample, and then dNTPs are added and reacted one by one according to the sequence near the gene polymorphism entered in the software.
  • pyrophosphate PPi
  • Sulforylase sulfurylase
  • the luminescence generated by reacting luciferase with this as a substrate is detected by a luminescence detector, CCD camera, etc.
  • the desired gene can be typed by analyzing the luminescence peak obtained according to the added dNTP. Using this method, 96 samples can be typed in about 15 minutes.
  • the reagents include four enzyme mixtures of DNA polymerase, ATP-sulfurylase, luciferase and apyrase, a substrate solution consisting of luciferin and APS (adenosine 5 ′ sulfate phosphate), dATP (deoxy).
  • SNP Reagent Kits manufactured by Pyrosequencing AB
  • dNTP consisting of dCTP, dGTP and dTTP Etc.
  • PS Q96 system manufactured by Pyrosequencing AB
  • SNP software manufactured by Pyrosequencing AB
  • the pyrosequencing method is, for example, according to the description in US Pat. No. 6,159,693, isolating nucleic acid, amplifying by PCR method, purifying the amplified PCR product, READITTM System (manufactured by Promega Corporation) This can also be carried out by reacting pyrophosphate with this and analyzing the data obtained.
  • READITTM System manufactured by Promega Corporation
  • Excel analysis using commercially available READIT technology manufactured by Promega Corporation
  • PCR-SSCP (Orita, M., Iwahara, H "et al., Proc. Natl. Acad. Sci., USA, 86, 2776 -2770 (1989), which is a method in which PCR-amplified products (single-stranded DNA) are subjected to non-denaturing polyacrylamide gel electrophoresis, and the presence or absence of single-base mutations is discriminated by the difference in mobility. It is.
  • the detection may be performed with a large restriction enzyme fragment length.
  • Type analysis RFLP method: Botstein, DR, et al., Am. J. Hum. Gen., 32, 314-331 (1980).
  • the RFLP method can be performed as follows, for example, depending on the genotype at a specific position of the gene polymorphisms described in (a) to (p) above.
  • a gene polymorphism [STAT3-17] in which the genotype at the 420402th 7th position of the genomic sequence of the STAT3 gene is G / G is detected. Therefore, it is carried out using a restriction enzyme capable of recognizing the sequence before and after the gene type site.
  • the enzyme used in the powerful RFLP method may be any known restriction enzyme that can recognize the sequence before and after the target genotype.
  • Mspl can be exemplified.
  • the RFLP method is more preferably a PCR-RFLP method, that is, a sample DNA that has been prepared and concentrated in a large amount after the sample DNA has been prepared in advance by the PCR method or a modified method thereof. It can depend on the method implemented. In addition, the presence or absence of a desired gene polymorphism can be detected as the presence or absence of a specific cleavage site.
  • genomic DNA is also extracted from human specimens, and the DNA fragment of the region containing the gene polymorphic site of the gene is amplified by PCR or the like in large quantities. Obtain a concentrated gene sample. Next, the amplified DNA sample is digested with a specific restriction enzyme, and the DNA cleavage mode (whether or not cleaved, base length of the cleaved fragment, etc.) is confirmed according to a conventional method.
  • the detection of SNPs of a specific gene of the present invention can also be performed by the Invader method.
  • the following documents can be referred to for the implementation of the invader method.
  • This method is a method that does not require amplifying target DNA in advance in order to analyze SNPs of genomic DNA, and is performed as follows.
  • genomic DNA is detected.
  • a 5 'flap consisting of 15 to 50 bases in length and a nucleic acid to be detected (SNP in the present invention) are placed at the 3' end of the 5 'flap, and the nucleic acid other than the target genotype is added to the target genomic DNA.
  • Complement to target genomic DNA except for the first target probe consisting of 30 to several hundreds of oligonucleotides synthesized to complement and a nucleic acid complementary to the nucleic acid to be detected at the 3 'end.
  • an invader oligo nucleotide probe having 15 nucleotides and several tens of nucleotides in length is synthesized by, for example, an automatic synthesizer.
  • the isolated genomic DNA and an enzyme that cleaves the 5 'flap of the first probe are added simultaneously and allowed to react in an appropriate reaction solution.
  • the first reaction for releasing the 5 'flap having the genotype nucleic acid at the 3' end is completed. If the genomic DNA in the sample has a genotype nucleic acid sequence, cleavage by the enzyme does not occur.
  • the 5 ′ flap which also released the first probe force cleaved by the enzyme, binds complementarily to the fluorescence resonance energy transfer (FRET) probe as a target, and the 3 ′ end force of the 5 ′ flap is within the FRET probe. Invasion. Similarly, a reaction by the enzyme occurs, and the quenched fluorescent dye is released.
  • FRET fluorescence resonance energy transfer
  • Each FRET probe used in the second reaction then contains the same sequence, regardless of the target to be detected, and is constructed to consist essentially of the following two elements.
  • the reporter fluorescent dye When the reporter fluorescent dye is bound to the same probe as the quencher fluorescent dye, the fluorescence intensity of the reporter fluorescent dye is suppressed by fluorescence resonance energy transfer, and the quencher fluorescent dye and In the state where it is not bound to the same probe, the fluorescence intensity is not suppressed.
  • FRET probe when hybridized to the free 5 'flap force FRET probe from the cleaved first probe, it acts as an invader oligonucleotide in the second reaction and is recognized by the specific enzyme. Produce a composite. By force, the FRET probe is cleaved by the specific enzyme. The two fluorescent dyes are separated, and a detectable fluorescent signal is produced.
  • a desired polymorphism of SNP s can be detected by reading the signal with a standard fluorescence microtiter plate reader.
  • the combination of the first and second reaction can amplify the sheet Gunaru from 1 to IX 10 6 times. More specifically, SNP gene polymorphism can be detected (typing) by using two types of fret probes with different fluorescent dyes.
  • Detection of a gene polymorphism of a specific gene according to the present invention can also be easily carried out by a quantitative real-time PCR detection method (TaqMan method).
  • the method can be carried out as follows. That is, first, the desired polymorphism of the SNP In order to detect DNA, a forward primer and a reverse primer having a base strength of 15 to 39 bases are prepared for detecting a DNA fragment in an appropriate region including the polymorphism (nucleic acid site). However, the forward primer and reverse primer should be prepared so that they do not contain the target nucleic acid site (single nucleotide genotype). Next, an oligonucleotide having a base sequence consisting of 15 to 50 bases and having a reporter fluorescent dye and a quencher fluorescent dye bound thereto is prepared.
  • the base sequence of the probe a combination is selected in which the region where the forward primer hybridizes and the region where the probe hybridizes do not overlap each other.
  • the probe is prepared so as to have a sequence complementary to the allele-specific sequence for detecting the presence or absence of the desired single nucleotide genotype.
  • a specific gene to be measured in a sample for example, a desired DNA fragment of the gene described in (a) to (p) above is amplified by PCR, and fluorescence from the reaction solution is measured in real time .
  • SNP detection typing
  • SNP detection can be performed by using two types of probes with different fluorescent dyes.
  • a fluorescein fluorescent dye such as FAM (6-carboxy-fluorescein) is preferable, and as a quencher one fluorescent dye, TAMRA (6- Rhodamine fluorescent dyes such as carboxy-tetramethyl-rhodamine are preferred. These fluorescent dyes are known and can be used because they are included in commercially available real-time detection PCR kits.
  • the binding position of the reporter fluorescent dye and the quencher fluorescent dye is not particularly limited, but usually the reporter fluorescent dye is bound to one end (preferably the 5 'end) of the probe oligonucleotide and the quencher fluorescent dye is bound to the other end. Is done.
  • the mass array method is a method for detecting a difference in mass caused by polymorphism. Specifically, after amplification of the region containing the polymorphism to be detected by PCR, the extension primer is hybridized immediately before the SNP position, and a reaction solution containing a ddNTP / dNTP mixture, such as ddATP, dCTP, dGTP and dTTP. By performing an extension reaction using a reaction solution containing, fragments with different 3 ′ ends are generated according to the SNP.
  • a reaction solution containing a ddNTP / dNTP mixture such as dddATP, dCTP, dGTP and dTTP.
  • the product can be purified and analyzed with a MALDI-TOF mass spectrometer to analyze the correspondence between mass number and genotype (Pu sch, W., Wurmbach, JH., Thieie, H. , Kostrzewa, M., MALDI-TOF mass spectrometry-based SNP genotyping, Pharmacogenomics, 3 (4): 537-48 (2002)) 0 It can be carried out easily.
  • Detection of gene SNPs used in the method of the present invention can also be performed by various methods conventionally known as methods for determining the base sequence of DNA and methods for detecting gene polymorphisms or gene mutations. Can be implemented. Examples of these are given below.
  • a probe for each gene polymorphism is immobilized on a carrier, and a sample (gene amplification product) is nominated to determine the difference in hybridization efficiency depending on the presence or absence of mismatch.
  • sequence-specific primers for gene amplification with bases corresponding to point mutations at the 3 'end, utilizing the fact that PCR amplification efficiency varies significantly depending on whether the 3' end of the primer is complementary What you did.
  • Polyacrylamide gel in which polymorphic DNA fragments and wild-type DNA fragments are mixed and linked together, and then the concentration of denaturing agents such as urea and formamide is gradually increased. When electrophoresed in, it dissociates into single strands at a lower concentration of denaturing agent compared to homoduplexes with no mismatches. Since this single-stranded DNA has a higher migration speed than double-stranded DNA, differences in single nucleotide polymorphisms can be detected by comparing differences in mobility.
  • denaturing agents such as urea and formamide
  • SNPs Human gene polymorphisms
  • halotypes used in the method of the present invention can be detected by force.
  • the method for predicting the effectiveness of treatment with IFN administration for renal cell carcinoma patients according to the present invention uses the human gene polymorphism detected according to the above as an index (marker), and the gene polymorphism If the sample is confirmed to be present, the sample is predicted to be highly effective for treatment with IFN administration (step iv).
  • the genetic polymorphism or genotype of a human gene detected according to the method of the present invention is highly related to the effect of IFN treatment (tumor shrinking effect) on renal cell carcinoma, and thus is based on the detection result. Therefore, it is possible to implement a tailor-made therapy for individual patients with renal cell carcinoma, that is, a therapy that appropriately selects the most effective drug for each patient.
  • the present invention also provides an oligonucleotide as a gene polymorphism detection probe or primer used in the determination (detection) method of the present invention.
  • the oligonucleotide is not particularly limited as long as it can specifically amplify a sequence containing a specific human gene polymorphism or genotype part.
  • the oligonucleotide can be appropriately synthesized and constructed according to a conventional method based on the sequence information of each specific gene polymorphism or genotype.
  • the synthesis can be performed by a chemical synthesis method such as a normal phosphoramidite method or a phosphate triester method, or a commercially available automatic oligonucleotide synthesizer such as (Pharmacia LKB Gene Assembler Plus (manufactured by Falmasia) can also be used.
  • Double-stranded fragments are synthesized by using the ability to synthesize a chemically synthesized single-stranded product and its complementary strand and anneal them under appropriate conditions, or using an appropriate primer sequence and DNA polymerase. It can be obtained by adding a complementary strand to the strand product.
  • Suitable oligonucleotides used as the probe or primer are partial oligonucleotides corresponding to DNA fragments set to include a gene polymorphic sequence of a specific gene, and at least 10, Examples usually include those having about 10 to 35 consecutive bases. Primer pairs are included in the DNA sequence of the gene. Two oligonucleotide sequences, each designed and synthesized to sandwich the SNP, can be mentioned. As an oligonucleotide used as a probe, a DNA fragment itself containing a gene polymorphism sequence can be used.
  • Preferable oligonucleotides used as the probe include the oligonucleotides shown in the following (a) to (p). Among these oligonucleotides, preferred probes are those having at least 15 contiguous sequences containing a specific gene polymorphism.
  • Reference SNP ID number: rsl905341 STAT3 gene 4243095 of the 4243095 genotype is C / T or T / T, including at least 10 consecutive sequence oligonucleotides including a gene polymorphic site,
  • ICSBP gene 390141 at least 10 consecutive oligonucleotides including a gene polymorphic site where the genotype at position 390141 is A / A or A / C,
  • Reference SNP ID number at least 10 consecutive nucleotides containing a polymorphic site where the genotype at the 26793813th position of the PTGS1 gene of rsl213264 is C / T,
  • Reference SNP ID number oligonucleotide of at least 10 consecutive sequences including a gene polymorphism site where the genotype at the 15697329th position of the PTGS2 gene of rs2745557 is G / G,
  • Reference SNP ID number Oligonucleotide of at least 10 consecutive sequences including a gene polymorphic site where the genotype at the 18686068th of the IL-4R gene of rs2234898 is C / C, and
  • the detection (determination) method of the present invention can be more easily carried out by using a reagent kit for detecting a genetic polymorphism or genotype of a specific human gene in a specimen.
  • the present invention also provides a profitable detection kit.
  • kits of the present invention are a DNA fragment that hybridizes to a part or all of a base sequence that is a polymorphism of any of the specific human genes or a DNA fragment of the genotype, or a complementary base sequence thereof. Or at least a DNA fragment that hybridizes to a base sequence consisting of one or a few bases before the specific gene polymorphism site or the genotype site, as an essential constituent.
  • kits of the present invention contains a restriction enzyme that recognizes several nucleic acid sequences containing the specific gene polymorphic site or the genotype site, such as Mspl, as an essential component.
  • kits of the present invention examples include a labeling agent and reagents essential for the PCR method (for example, TaqDNA polymerase, deoxynucleotide triphosphate, primer for DNA amplification, etc.).
  • the labeling agent include a radioisotope, a luminescent substance, a chemically modifying substance such as a fluorescent substance, and the like, and the DNA fragment itself may be conjugated with the labeling agent in advance.
  • the kit may contain an appropriate reaction diluent, standard antibody, buffer solution, detergent, reaction stop solution, etc. for the convenience of carrying out the measurement.
  • the gene polymorphism or genotype of a specific gene found by the present inventor is highly related to the effect of IFN treatment (tumor shrinkage effect) on renal cell carcinoma, and therefore according to the method of the present invention. Therefore, it becomes possible to appropriately select a drug that is more effective for the patient in the custom-made medical treatment for the individual renal cell cancer patient.
  • the present invention provides a method for detecting such a specific human gene polymorphism or genotype as a marker associated with the effect of IFN treatment on renal cell carcinoma, that is, identification in a specimen obtained from a patient with renal cell carcinoma. And a diagnostic agent and a diagnostic kit for use in the method, wherein the gene polymorphism or genotype is detected as an IFN-responsive therapeutic marker for renal cell carcinoma.
  • TRCJt Theranostics Research Center
  • the collected blood samples were transferred to TRC in a frozen state after anonymization that could not be linked at the joint research facility.
  • genomic DNA was extracted from these blood samples and used as samples for analysis.
  • IFNARK a chain) (interferon alpha receptor 1), IFNAR2 ( ⁇ L chain) (interferon beta recept or 2), JAKlQanus kinase 1, a protein of tyrosine kinase) Tyk2, STAT 1 (signal trans ducer and activator of transcription 1, 91 kDa), STAT2 (signal transducer and activator of transcription 2, 113 kDa), STAT3, signal transducer and activator of trans cripti on 3, acute-phase response factor) p48 (lSLrP3 y, interferon- stimulated transcripti on factor 3, gamma, 48kDa), SOCS— l (suppressor of cytokine signaling 1 / SS name: JAB ⁇ CIS-1, SSI-1), SOCS-2 (suippressor of cytokine signaling 2 / STATI2X aka: CIS-2, SSI-2 , STATI2), SOCS-3 (suppressor of
  • STAT4 signal transducer and activator of transcription 4
  • IL-2 interleukin 2
  • IFN ⁇ y interferon gamma
  • TNF— a tumor necrosis factor alpna
  • TNF— ⁇ tumor necros is factor beta
  • LTA lymphotoxin alpha, TNF superfamily, member 1
  • IL-4 interleuk in 4
  • IL-4 Receptor-a IL-4 Receptor- ⁇
  • IL-5 internalleukin 5, colony-stimulating f actor, eosinophil
  • IL- 6 interleukin 6, interferon bate 2
  • IL-10 interleukin 10
  • IL-13 interleuine 13
  • PKR PRKR, protein kinase, interferon-inducible double stranded RNA dependent
  • IRFl IRFl
  • IRF2 IRF2
  • ICSBP IFN consen sus sequence binding protein
  • Cox—1 PTGS1; prostaglandin— endoperoxide synthase 1, prostaglandin G / H synthase and cyclooxygenase
  • Cox— 2 PTGS2; prostaglandin— endoperoxide synthase 2, prostaglandin G / H synthase and cyclooxygenase
  • MxA M x-1; myovirus (influenza virus) resistance 1
  • Interferon-inducible protein p78 MxA
  • myovirus influenza virus
  • TAPl transporter 1, ATP— binding cassette, sub-family B (MDR / TAP)) ⁇ TAP— 2 (tra nsporter 2, ATP— binding cassette, sub-family B (MDR / TAP)) ⁇ LMP7 (PSM ⁇ 8; prote asome (prosome, macropain no subunit, beta type, 8 (large multifunctional protease 7), CTLA-4 (cytptoxic T-lymphocyte-associated protein 4), GSTT 1 (glutathione S-transferase theta 1), VHL, HIF-1, HLF, VEGF (vascular endothelial growth factor).
  • the SNPs targeted for analysis in this study are those registered in the NCBI SNP database dbSNPs at the start of the study, among the above gene groups. As a result of comparison with the registered sequence of the gene to be analyzed in (ii), it is mapped to the periphery. In the search results in the BI room, genes that were not mapped to SNPs were excluded from the analysis. Finally, the number of SNPs to be analyzed is 1167 SNPS.
  • a genome extraction kit (PUREGENE TM, Gentra) from whole blood was used for genomic DNA extraction.
  • the extraction procedure was in accordance with the standard protocol attached to PUREGENE TM.
  • the extracted genomic DNA was dissolved in a lysis solution attached to the kit, and then the absorbance was measured to calculate the total extraction amount.
  • Template amount (genomic DNA): 1 to 10 ng
  • the PCR product was used as a reaction mold for the following Invader Atsey.
  • nucleic acid sequence of the forward primer used in the above reaction is SEQ ID NO: 1 to SEQ ID NO: 1.
  • the nucleic acid sequence of the reverse primer is shown in SEQ ID NO: 17 to SEQ ID NO: 32. Is done. Table 2 below shows the relationship between each of these primers, the specific human gene genome, and the SNPs it has.
  • the PCR product obtained by amplifying the SNPs region was diluted 10 to 1000 times with distilled water. In order to denature the product into single-stranded DNA, it was heated at 95 ° C for 5 minutes and then rapidly cooled on ice. Using this as a reaction mold, it was mixed with an invader assembly reagent to prepare a reaction solution. The composition of the reaction solution was in accordance with the attached protocol 384-WELL REACTION FORMAT.
  • the reaction solution was incubated at 63 ° C for 30 to 60 minutes to react the enzyme.
  • the fluorescence multiplate reader ⁇ ⁇ ⁇ Sapphire TECAN
  • excitation light 485 people 6nm RF 485 people 6nm
  • fluorescence 530 people 6nm FA M dye
  • excitation light 560 ⁇ 6nm RF 6nm
  • fluorescence 620 ⁇ 6nm Redmond Red dye
  • the typing work excluding the above dilution was performed with an SNPs automatic typing system based on Biomek FX / SAMI (Beckman Coulter).
  • SNPs that cannot be typed by Invader Atsy were typed by PCR-RFLP.
  • SNPs are typed based on their ability to be digested by restriction enzymes that recognize each SNP region.
  • restriction enzymes that recognize each SNP region.
  • an amplification primer was set near the SNPs, and the restriction enzyme site was created by artificially changing the primer sequence.
  • the restriction enzyme Nspl was used to detect SNPs STAT3-17.
  • PCR was performed using Bogelstein buffer. Other conditions are as follows.
  • PCR cycle (i) 95 ° CX 2 minutes, (ii) 95 ° CX 30 seconds, (iii) 50-60 ° CX 30 seconds, (iv) 72 ° CX 1 minute, (v) (ii)-(iv ) Step X 35-45 cycles, (vi) 15 ° CX permanent.
  • the PCR product is digested with restriction enzyme and then electrophoresed with 4% agarose. Was analyzed and typing was performed.
  • the genotype was determined by the fluorescence intensity of the two colors detected as a result of the invader assembly reaction shown in (5) above.
  • Invader Atsei determined the genotypes in the target patients for 463 SNPs present in 33 genes.
  • Lymph node metastasis The significance level was 0.05.
  • Step 1 Incorporating lung metastases Step 1. Combination of lung metastases and 4R-29
  • Wald Chi-Square represents Waldo's chi-square statistic
  • Score Chi-Square represents the power square ( 2 ) statistic with the highest score.
  • Pr> ChiSq indicates P value of Wald's chi-square test or score-one chi-square test.
  • Step 0 shows the ability to discriminate SNPs after adjusting the effect of the presence or absence of lung metastases.
  • a P value of less than 0.05 indicates that SNPs are still effective for discrimination after adjusting for the effect of lung metastasis.
  • TAP2-5 was found. Of these six, IL-4R-29, which showed the greatest discriminatory ability, was incorporated into a model for oral dystic regression analysis (correction of lung metastases).
  • the P value in Step 1 of Table 5 indicates the ability to discriminate each remaining SNPs when the presence or absence of lung metastases and IL-4R-29 are combined.
  • SNPs with a P value of less than 0.05 are independent of IL-4R-29. It is suggested that it has good discrimination information.
  • These are STAT3-2, IRF2-82 and TAP2-5.
  • the ability to combine IL-4R-29 and TAP2-5 was adjusted to the effect of the presence or absence of lung metastasis, suggesting the highest discrimination ability.
  • the SNPs that became newly significant by combining with IL-4R-29 at this step were strong.
  • This stage classification is incorporated into the model to prevent statistical power loss due to patient background factor heterogeneity and to compensate for bias in patient background factors between the two groups. And we were able to prove that there was a significant difference.
  • the size of the tumor in this NC group does not change! The reason is that IFN is effective and obsolete! Although it is effective, the tumor is too large and apparently does not change. It is done. The force that affects the judgment of the efficacy of IFN depending on which case is adopted In this example, the tumor size does not change, so it is judged as an ineffective group.
  • the NC group was added to and polymorphism analysis was performed.
  • the background factor was only lung metastases that were found to be possibly involved in tumor reduction in Example 1 above.
  • the significance level was 0.05.
  • the discrimination ability of STAT-2, STAT3-21, STAT3-25, and STAT3-52 can be considered to be approximately the same.
  • the discrimination ability of STAT3-18 and STAT3-31 is the same, and the discrimination ability of IL-4R-14, IL-4R-18, and IL-4R-26 can be regarded as the same. Therefore, we decided to use STAT3-2, STAT3-18 and IL-4R-14 as representatives from each group for multivariate analysis. As a result, 17 SNPs were finally analyzed.
  • Table 8 below shows the results of applying Stepwise logistic regression analysis to 17 SNPs by forcibly inputting the presence or absence of lung metastasis into the model.
  • Step 0 in Table 8 shows the ability to discriminate SNPs after adjusting for the presence or absence of lung metastasis.
  • SNPs with a P-value less than S0.05 indicate that they are still effective for discrimination after adjusting for the presence or absence of lung metastasis.
  • Enumerated SNPs validated for discrimination are STAT3-2, STAT3-17, SSI3-1, IL-4R-22, PTGSl-4, PTGS1-5. Of these six, STAT3-2, which showed the greatest discrimination ability, was incorporated into the model.
  • the P value in Step 1 indicates the discrimination ability of each remaining SNP s when pulmonary metastasis is combined with STAT3-2.
  • SNPs with P values less than 0.05 have discriminative information independent of STAT3-2.
  • These are SSI3-1, IL-4R-22, ICSBP-38, PTGSl-3, PTGSl-4, PTGSl-5, PTGS2-12, TAP2-5.
  • the combination of STAT3-2 and PTGSl-4 was suggested to have the highest discrimination ability after adjusting for the presence or absence of lung metastasis.
  • the first SNPs that were suggested to be effective in combination with STAT3-2 were ICSBP-38, PTGS1-3, PTGS2-12, and TAP2-5.
  • Step 2 shows the discrimination ability of each remaining SNPs when STAT3-2 and PTGS1-4 are combined with the presence or absence of lung metastasis.
  • IL-4R-22, IRF2-67, and ICSBP-38 were variables that had information independent of STAT3-2 and PTGS1-4, and were suggested to be effective in combination with them. It was suggested that IRF2-67 is an effective SNP for discrimination for the first time at this stage.
  • the genomic sequence or its complementary strand in the specimen of renal cell carcinoma patient strength was prepared. And determine the DNA sequence of the genomic sequence or its complementary strand, STAT3-2, STAT 3-3, STAT3-17, STAT3-18, SSI3-1, IL-4R-22, IRF2-67, IRF2 -Group power selected from 82, ICSBP-38, P TGS1-3, PTGS1-4, PTGS1-5, PTGS2-12, TAP2-5, IL-4R-14, IL-4R-29, and I RF2-67 It is possible to provide a method for predicting the effectiveness of interferon therapy for patients with renal cell carcinoma using the polymorphism of at least one gene or the presence of a genotype as an index.
  • the present invention detects the presence of a gene polymorphism associated with the IFN treatment effect (tumor reduction effect) of renal cell carcinoma, and uses the presence of the polymorphism as an index to react with IFN treatment against renal cell carcinoma It can be usefully used as an identification marker.
  • SEQ ID Nos: 1-32 are primer sequences.

Abstract

 腎細胞癌に対するIFN治療反応性識別マーカーおよびその検出手段を提供する。腎細胞癌患者検体からヒト遺伝子のゲノムDNA配列もしくはその相補鎖を調製し、当該ゲノムDNAもしくはその相補鎖のDNA配列を解析して、ヒト遺伝子の遺伝子多型を決定し、該多型を指標として腎細胞癌に対するIFN治療による腫瘍の縮小効果を判定する方法。                                                                           

Description

明 細 書
腎細胞癌に対するインターフ ロン治療反応性識別マーカー
技術分野
[0001] 本発明は、ヒト遺伝子多型を指標 (マーカー)として、インターフェロン投与による腎 細胞癌の腫瘍縮小 (治療効果)を判定する方法、該方法に利用するオリゴヌクレオチ ドおよび検出用キットに関する。
背景技術
[0002] 腎細胞癌は、現在行われて!/ヽる化学療法剤、免疫療法剤等を用いる薬物療法、放 射線療法、手術による療法などの 、ずれの治療方法によっても奏効率の低 、難治性 疾患である。また、腎細胞癌が発見された時には既に癌の遠隔転移が認められる症 例が約 30%もあるとされている。上記治療方法の中でも、手術を除く薬物療法、特に インターフェロン (IFN)を用いる免疫療法は、最も優れたものとされる力 その効果は 、 IFN- α単独投与で 15%前後、 IFN- γ単独で 10-15%の奏効率を示すに留まる。各 種抗癌剤との併用でも IFN- a単独投与の効果を上回るものはない。現在行われて いる IFNを用いる免疫療法は、主に、 IFN- αを単独で用いるか或いは IFN- γと併用 する長期維持療法である。
[0003] 一方、ゲノム科学の進歩により、薬物動態の解明、および薬物の反応性に関与する 酵素、蛋白質等の遺伝子多型の解明が急速になされている。ヒトゲノム解析において 、一塩基多型 (Single nucleotide polymorphisms: SNPs)が、最も頻度の高い遺伝子多 型マーカーとして注目されつつある。該 SNPsは、ありふれた疾患、薬剤応答などに関 連するヒトゲノムの解析に有用であることが既に知られている (非特許文献 1, 2および 3参照)。また、複数の SNPsを用いたノヽプロタイプ解析が、疾患感受性を解析する上 で有用であることも知られて ヽる (非特許文献 4参照)。
[0004] 近年、個々の患者について、所謂オーダーメイドの治療法を確立するために、該患 者の特定の遺伝子多型と薬剤感受性/薬剤応答性との関連を明らかにする研究が 提案されている。
[0005] IFNを用いる療法の有効性を予測する方法に関しては、ヒト C型肝炎ウィルス (HCV) 感染者のゲノム上の MxA- 8/MxA123、 MBL- 221/MBL- CLDcodon54 SNPsの多型と 、 IFN- aの治療有効者 (治療効果の認められた患者)および無効者 (治療効果の認 められない患者)との関連を解析して、該 HCV感染者における IFNの治療効果の程 度を予測 ·評価する方法が知られている (特許文献 1)。また、 C型肝炎患者について、 IFN- a受容体 2型遺伝子のプロモーター領域および- 134位にある SNPを遺伝子多型 マーカーとして IFN治療の有効性を予測する方法も知られて 、る (特許文献 2)。この 文献は、対象疾患として B型肝炎、 C型肝炎、膠芽腫、髄芽腫、星細胞腫、皮膚悪性 黒色腫等の肝炎、腎癌、多発性骨髄腫、ヘアリー細胞白血病、慢性骨髄性白血病、 亜急性硬化性^ I 炎、ウィルス性脳炎、免疫抑制患者の全身性帯状疱疹及び水痘 、上咽頭未分化癌、聴力低下を伴うウィルス性内耳感染症、ヘルぺス性角膜炎、偏 平コンジローマ、尖圭コンジローマ、アデノウイルス及びへルぺスウィルス感染による 結膜炎、性器ヘルぺス、口唇ヘルぺス、子宮頸癌、癌性胸水症、角化棘細胞腫、基 底細胞癌および δ型慢性活動性肝炎からなる群より選択される疾患を開示している
[0006] 更に、 C型肝炎に対する IFN- a治療効果の有効性判定のために、 IRF-1遺伝子の プロモーター領域の 196位におけるグァニン (G)からアデニン (A)への置換を測定する 方法も知られて ヽる (特許文献 3参照)。
[0007] し力しながら、腎細胞癌に対する IFNの治療効果の有効性と、特定の SNPとの関連 を具体的に検討した報告は未だない。
[0008] なお、 IFN- a治療の有効者と無効者に関しては、数百の遺伝子発現プロファイル が既に報告されている (非特許文献 4および特許文献 4参照)。該プロファイルは、 DN Aチップ (高密度オリゴヌクレオチド、マイクロアレイ)、ディファレンシャル 'ディスプレイ 、ディファレンシャノレ cDNAアレイ、 SAGE(serial analysis of gene expression),発現酉己 列タグ 'ァ ~~タ塩基比較 (expressed sequence tag data base comparison)等の技術を 利用して作成されたものであり、大腸癌、乳がん、卵巣癌、多発性硬化症、白血病の 他、腎細胞癌 (renal cell carcinomas)が分析対象とされている。また非特許文献 4には 、 IRF2遺伝子、 STAT1、 STAT2、 STAT4、 STAT5、 STAT6遺伝子などがリストされてい るが、本発明に用!ヽる特定遺伝子の SNPsについての開示はな ヽ。 特許文献 1:特開 2003-88382号
特許文献 2:特開 2003-339380号
特許文献 3:特開 2001-136973号
特許文献 4:特表 2004-507253号
非特許文献 1 : Brookes, A. J" "The essence of SNPs", Gene, USA, (1999), 234, 177 -186
非特許文献 2 : Cargill, M, et al., "Characterization of single- nucleotide polymorphis ms in coding regions of human genes", Nature Genet., USA, (1999), 22, 231-238 非特許文献 3 : Evans, W. E., & Relling, M. V., "Pharmacogenomics: translating lunct ional genomics into rational therapeutics , science, USA, (1999), 286, 487-491 非特許文献 4 : Schlaak, J.F., et. al., "Cell-type and Donor-specific Transcriptional Responses to Interferon- "}. Biol. Chem., (2002) 277, 51, 49428-49437 発明の開示
発明が解決しょうとする課題
[0009] 本発明は、腎細胞癌に対する IFN投与による治療効果 (腫瘍縮小効果)を判定する 手段を提供することをその主な課題とする。
課題を解決するための手段
[0010] 本発明者らは、上記課題を解決するために、まず遺伝子多型解析候補遺伝子とし て、 IFN関連遺伝子、 IFN- γシグナル伝達系に関与すると報告された遺伝子および I FN添加/投与により遺伝子発現変動を示した報告のある遺伝子を含めた 33種の遺伝 子を任意に選択した。これらの候補遺伝子について、公共の多型データベースから その遺伝子上の SNPsを検索し、 463の候補 SNPsを選択した。次いで、これらの選択し た SNPsについて、 IFN- a投与によって腎細胞癌の腫瘍縮小効果が認められた IFN 有効群 (治療効果の認められた患者)および認められな 、IFN無効群 (治療効果の認 められない患者)の 2群の患者由来ゲノム DNAを検体として用いて、それら SNPsの現 れる頻度の差を求めた。その結果、上記 2群間で統計学的に有意な差を示す SNPsが 以下の 8種の各遺伝子上に存在することを確認した。
[0011] (1) ¾ ΓΑΤ3遺 fc (¾ignal transducer ana activator of transcription 3:¾ ΓΑΤ3 (GenB ank Accession No. NT— 010755》(以下、「STAT3遺伝子」という)、
(2) SSI3遺 is十、 Suppressor of cytokine signaling 3:SSI3 (GenBank Accession No. N T_010641) (以下、「SSI3遺伝子」という))、
(3) IL- 4R遺伝子 (Interleukin 4 receptor (GenBank Accession No. NT— 010393) (以 下、「IL— 4R遺伝子」という》、
(4) IRF2遺 子 (Interferon regulatory factor 2: IRF2) (GenBank Accession No. NT— 022792) (以下、「IRF2遺伝子」という))、
(5) ICSBP遺 izs子 (Interferon consensus sequence-binding protein 1: ICSBP1) (Gen Bank Accession No. NT— 019609) (以下、「ICSBP1遺伝子」という))、
(6)
Figure imgf000005_0001
synthase 1: PTGbl) (GenBank Acc ession No. NT— 008470) (以下、「PTGS1遺伝子」という))、
(7) PTGS2遺 fc+(Prostaglandin— endoperoxide synthase 2: PTGb2) (GenBank Acc ession No. NT.004487) (以下、「PTGS2遺伝子」という))、および
(8) TAP2遺 fctCTransporter'ATP- binding cassette, Major histocompatibility com plex,2:TAP2) (GenBank Accession No. NT— 007592) (以下、「TAP2遺伝子」という))。
[0012] 本発明者らは、更に上記各遺伝子上に存在する SNPsと腎細胞癌に対する IFN治療 効果との関連について検討を重ねた。その結果、 IFN- αの投与による腎細胞癌の腫 瘍縮小効果と強く関連する 16の SNPsを確認し、これらの SNPsが、 IFN治療後の腫瘍 縮小を判定するマーカーとして使用できることを見出した。即ち、これらの SNPsの検 出によって、 IFN投与による腎細胞癌の腫瘍縮小効果 (治療効果)を予測すること(予 測診断)が可能であることを見出した。本発明は力かる知見を基礎とし、更に研究を 重ねた結果完成されたものである。
[0013] 本発明は、下記項 1-11に記載の腎細胞癌患者に対する IFN治療後の腫瘍縮小効 果を判定する方法を提供する。
[0014] 項 1. 以下の (i)〜Gv)の工程を含む、腎細胞癌患者に対する IFN治療による腫瘍縮 小を判定する方法;
(0腎細胞癌患者に由来する遺伝子サンプル (遺伝子ゲノム DNAサンプル)を得るェ 程、 (ii)上記 (i)で得られる遺伝子サンプルについて、 STAT3遺伝子、 SSI3遺伝子、 IL-4 R遺伝子、 IRF2遺伝子、 ICSBP遺伝子、 PTGS1遺伝子、 PTGS2遺伝子および TAP2遺 伝子力 なる群力 選ばれる少なくとも 1つの遺伝子のゲノム DNAもしくはその相補鎖 を調製する工程、
(iii)当該ゲノム DNAもしくはその相補鎖の DNA配列を解析して、遺伝子多型を決定 する工程、および
(iv)上記 (iii)で決定された少なくとも 1つの遺伝子多型をマーカーとして、腎細胞癌 患者に対する IFN治療による腫瘍縮小を判定する工程。
[0015] 項 2.遺伝子多型が、 STAT3遺伝子、 IL-4R遺伝子、 IRF2遺伝子および TAP2遺伝 子力 なる群力 選ばれる少なくとも 1つの遺伝子における多型である項 1に記載の、 腎細胞癌患者に対する IFN治療による腫瘍縮小を判定する方法。
[0016] 項 3.遺伝子多型が、下記 (a)〜(p)力 なる群力 選ばれる少なくとも一つである項 1 に記載の腎細胞癌患者に対する IFN治療による腫瘍縮小を判定する方法:
(a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目におけ る遺伝子型が C/Tまたは T/Tである遺伝子多型 (STAT3-2)、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目におけ る遺伝子型が C/Cである遺伝子多型 (STAT3-3)、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目におけ る遺伝子型が G/Gである遺伝子多型 (STAT3-17)、
(d)リファレンス SNP ID番号: rs2293153である STAT3(KCNH4)遺伝子の 4050541番 目における遺伝子型が C/Tである遺伝子多型 (STAT3-18)、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における 遺伝子型が A/Cである遺伝子多型 (SSI3-1)、
(1)リファレンス SNP ID番号: rsl805011である IL-4R遺伝子の 18686025番目におけ る遺伝子型が A/Aである遺伝子多型 (IL-4R-22)、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型 (IRF2-67)、
(h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における 遺伝子型が C/Cである遺伝子多型 (IRF2-82)、
(i)リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における 遺伝子型が A/Aまたは A/Cである遺伝子多型 (ICSBP-38)、
0)リファレンス SNP ID番号: rsl213264である PTGS1遺伝子の 26793813番目におけ る遺伝子型が C/Tである遺伝子多型 (PTGSl-3)、
(k)リファレンス SNP ID番号: rsl213265である PTGS1遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型 (PTGSl-4)、
(1)リファレンス SNP ID番号: rsl213266である PTGS1遺伝子の 26794619番目におけ る遺伝子型が A/Gである遺伝子多型 (PTGSl-5)、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目にお ける遺伝子型が G/Gである遺伝子多型 (PTGS2-12)、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目におけ る遺伝子型が G/Gである遺伝子多型 (TAP2-5)、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目におけ る遺伝子型が C/Cである遺伝子多型 (IL-4R-14)、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目におけ る遺伝子型が T/Tである遺伝子多型 (IL-4R-29)。
[0017] 項 4.遺伝子多型が、項 3の (a)、(1)、 (h)、 (n)、(o)および (p)のいずれかである項 3に 記載の腎細胞癌患者に対する IFN治療による腫瘍縮小を判定する方法。
[0018] 項 5. IFNが天然型 IFN- a、遺伝子組換え型 IFN- aおよび遺伝子組換え型 IFN- y 力 なる群力 選ばれるいずれかである項 1-4のいずれかに記載の腎細胞癌患者に 対するインターフェロン治療による腫瘍縮小を判定する方法。
[0019] 項 6.遺伝子多型の決定が、ヌクレオチド直接塩基配列決定法、対立遺伝子特異的 オリゴヌクレオチド (ASO)-ドットプロット分析、一塩基プライマー伸長法、 PCR-単鎖高 次構造多型 (SSCP)分析、 PCR-制限酵素断片長多型 (RFLP)分析、インベーダー法、 定量的リアルタイム PCR検出法および質量分析計を用いた遺伝子多型検出法 (mass array)力 なる群力 選ばれる少なくとも 1つの方法により行われる項 1〜5のいずれか に記載の方法。 [0020] 項 7.遺伝子多型の決定が、インベーダー法またはヌクレオチド直接配列決定法に より行われる項 6に記載の方法。
[0021] 項 8.遺伝子多型の決定が、 PCR-RFLP分析により行われる項 6に記載の方法。
[0022] 項 9. PCR-RFLP分析力 制限酵素 Msplを用いてヒト STAT3遺伝子の rs2293152のィ ントロンの 4204027番目の Gから Cへの変異を検出するものである項 8に記載の方法。
[0023] 項 10.遺伝子多型の決定が、下記 (a)- (p)力もなる群力 選ばれる少なくとも 1つのォ リゴヌクレオチドを遺伝子多型検出用プローブまたはプライマーとして用いて行われ る項 6に記載の方法;
(a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目におけ る遺伝子型が C/Tまたは T/Tである遺伝子多型部位を含む少なくとも 10の連続する 配列のオリゴヌクレオチド、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目におけ る遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目におけ る遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(d)リファレンス SNP ID番号: rs2293153である STAT3(KCNH4)遺伝子の 4050541番 目における遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配 列のオリゴヌクレオチド、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における 遺伝子型が A/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(Dリファレンス SNP ID番号: rsl805011である IL-4R遺伝子の 18686025番目におけ る遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における 遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(0リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における 遺伝子型が A/Aまたは A/Cである遺伝子多型部位を含む少なくとも 10の連続する配 列のオリゴヌクレオチド、
0)リファレンス SNP ID番号: rsl213264である PTGS1遺伝子の 26793813番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(k)リファレンス SNP ID番号: rsl213265である PTGS1遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(1)リファレンス SNP ID番号: rsl213266である PTGS1遺伝子の 26794619番目におけ る遺伝子型が A/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目にお ける遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のォ リゴヌクレオチド、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目におけ る遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目におけ る遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレオチド、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目におけ る遺伝子型が T/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレオチド。 [0024] 項 11.遺伝子多型検出用プライマー対が、下記 (a)- (p)に記載のものである項 6に記 載の方法;
(a)配列番号: 1および 17で示される各配列のオリゴヌクレオチド対、
(b)配列番号: 2および 18で示される各配列のオリゴヌクレオチドド対、
(c)配列番号: 3および 19で示される各配列のオリゴヌクレオチドド対、
(d)配列番号: 4および 20で示される各配列のオリゴヌクレオチドド対、
(e)配列番号: 5および 21で示される各配列のオリゴヌクレオチド対、
(D配列番号: 6および 22で示される各配列のオリゴヌクレオチド対、
(g)配列番号: 7および 23で示される各配列のオリゴヌクレオチド対、
(h)配列番号: 8および 24で示される各配列のオリゴヌクレオチド対、
(0配列番号: 9および 25で示される各配列のオリゴヌクレオチド対、
0)配列番号: 10および 26で示される各配列のオリゴヌクレオチド対、
(k)配列番号: 11および 27で示される各配列のオリゴヌクレオチド対、
(1)配列番号: 12および 28で示される各配列のオリゴヌクレオチド対、
(m)配列番号: 13および 29で示される各配列のオリゴヌクレオチド対、
(n)配列番号: 14および 30で示される各配列のオリゴヌクレオチド対、
(0)配列番号: 15および 31で示される各配列のオリゴヌクレオチド対、および (P)配列番号: 16および 32で示される各配列のオリゴヌクレオチド対。
発明の効果
[0025] 本発明は、腎細胞癌に対する IFN投与による治療反応性識別マーカーを検出する 方法、特に腎細胞癌患者検体中の特定のヒト遺伝子多型または遺伝子型を検出し て、該患者に対する IFNの治療効果 (腫瘍縮小効果)を判定する方法、そのためのキ ット、それらに利用する遺伝子多型、遺伝子型、遺伝子型検出用プローブおよびブラ イマ一を提供する。これらは患者個々のオーダーメイド医療における投与薬剤の選 択順位の選定に有用である。
発明を実施するための最良の形態
[0026] 本明細書におけるアミノ酸、ペプチド、塩基配列、核酸などの略号による表示は、 IU PAC— IUBの 定〔IUPAし— IUB communication on Biological Nomenclature, Eur. J. B iochem., 138: 9 (1984)〕、「塩基配列又はアミノ酸配列を含む明細書等の作成のため のガイドライン」 (特許庁編)および当該分野における慣用記号に従うものとする。
[0027] 本明細書において、「遺伝子多型」または「多型」とは、 1つの遺伝子座を占める複 数種の対立遺伝子群またはこのような対立遺伝子群に属する個々の対立遺伝子を いうものとする。またこの多型の内、 1塩基のみが異なるものを特に一塩基多型(SNP: Single Nucleotide Polymorphism)ともいう。この一塩基多型を本明細書においては「S NP」と略称する。
[0028] ハプロタイプとは、連続した遺伝子領域または遺伝子群中の複数箇所の遺伝子多 型部位における対立遺伝子の種類と数とによって表される上記遺伝子多型 (SNPs)の タイプを示す。
[0029] 本明細書において遺伝子型とは、特定の遺伝子多型部位における遺伝子座の対 立遺伝子の状態を示す。例えば STAT3遺伝子の 4243095番目の SNP (STAT3-2)に ついての遺伝子型は、 C/Tヘテロ接合または T/Tホモ接合であると表わす。これは「S TAT3-2が C/Tまたは T/T」のように表す。該遺伝子型 STAT3-2が C/Tまたは Τ/Τで ある患者の場合、腎細胞癌に対する IFN治療の効果 (腫瘍縮小効果)が認められる 可能'性が高い(PR(partial response,有効)または CR(complete response,著効))と予 測される。従って、 STAT3-2の C/Tまたは T/Tは、腎細胞癌に対する IFN治療反応性 識別マーカーとして使用し得る。
[0030] 尚、本明細書中に示されるヒト遺伝子のゲノム配列は、 NCBI (National Center for B iotechnology Information)の核酸配列データバンクに GenBankァクセッション番号(例 : NT_010641)にて掲載されている核酸配列に従うものとする。本発明においてヒト遺 伝子多型として示される SNPに関する位置情報および核酸の変異に関する情報は、 同様に NCBIの SNPデータバンクに、リファレンス SNP ID番号(例: rsl213265)にて掲 載されている(リファレンス SNP(reSNP)クラスタ^ ~·レポート (Reference SNP(relSNP) CI uster Report)参照、インターネットサーチエンジン (http://www.ncbi.nlm.nih.gov/SNP )にて検索することができる)。本明細書においてもこのリファレンス SNP ID番号にて表 示するものとする。
[0031] GenBankより入手した上記した遺伝子配列情報、 mRNAの配列情報、 SNPに関する 位置情報、核酸の変異に関する情報などの概略を表 1に示す。
[表 1]
OAV
Figure imgf000013_0001
[0033] 表 1中、各遺伝子の項の記載は、本発明者らが見出した SNPsが存在する遺伝子の 名称に続けて本発明者が任意に付した SNP番号を付して表示するものである。表中 、「rs#」は、リファレンス SNPのァクセッション番号を、「核酸」は、核酸の変異 (A/Gは A 力 SGに変異した SNPであることを示す)を、「Contig accessionはゲノムコンティグ配列 のァクセッション番号を、「Contig position はゲノム配列における核酸変異の位置を 示す位置番号を、「mRNA」は、 mRNAの配列番号のァクセッション番号を、「mRNAの 方向」は遺伝子多型配列がある mRNAの方向を示す。また、「蛋白質」は、蛋白質配 列のァクセッション番号を、「存在位置」は、遺伝子多型が存在する部位の位置情報 を、「dbSNP allele]は対応する二本鎖の対立遺伝子の核酸情報を、「アミノ酸残基」 は変異 [置換]したアミノ酸残基を、「コドンの位置」は核酸によってコードされるァミノ 酸に対するコドンの順位位置情報を、「アミノ酸配列情報」はアミノ酸配列の位置情報 を、「備考」は遺伝子の別名情報をそれぞれ示す。
[0034] 表 1に示されるように、本発明の方法に用いられる特定ヒト遺伝子多型によるアミノ 酸の変異 (置換)は、 IL-4Rに関連した遺伝子多型のみに認められ、他の遺伝子の遺 伝子多型におけるアミノ酸変異 (置換)は生じない。
[0035] 本明細書にぉ 、て「遺伝子」なる語は、 2本鎖 DNAのみならず、それを構成する各 1 本鎖 DNA (センス鎖およびアンチセンス鎖)を包含する。即ち、本発明遺伝子 (DNA)は 、特に言及しない限り、ヒトゲノム DNAを含む 2本鎖 DNA、 cDNAを含む 1本鎖 DNA (セ ンス鎖)、該センス鎖と相補的な配列を有する 1本鎖 DNAおよびそれらの断片を含む。 また上記遺伝子 (DNA)は、調節領域、コード領域、ェクソンおよびイントロンを含むこ とができる。ポリヌクレオチドは、 RNAおよび DNAを包含する。 DNAは、 cDNA、ゲノム DNAおよび合成 DNAを含む。ポリペプチドは、その断片、同族体、誘導体および変 異体を含む。更に変異体は、天然に存在するアレル変異体、天然に存在しない変異 体、改変 (欠失、置換、付加および挿入)のなされた変異体およびコードするポリぺプ チドの機能を実質的に変更しないポリヌクレオチド配列を意味する。尚、アミノ酸配列 における改変は、天然において例えば突然変異、翻訳後の修飾などにより生じること もあり、天然由来の遺伝子を利用して人為的にこれを行うこともできる。
[0036] 本発明は、ヒト遺伝子 (IFN関連遺伝子、 IFN- γシグナル伝達系に関与することが報 告された遺伝子および IFN添加/投与により遺伝子の発現変動を示すことが報告され た遺伝子)の特定位置における遺伝子型を含む遺伝子多型、殊に SNPもしくは SNPs 力 腎細胞癌患者に対する IFN治療による腫瘍の縮小効果と強く相関しており、該遺 伝子多型 (特定位置における遺伝子型)を検出することによって、腎細胞癌患者に対 する IFN治療効果が判定できると 、う事実の発見に基づ 、て完成されて!、る。換言す れば、本発明は、特定のヒト遺伝子多型、特に特定の SNPsが、腎細胞癌に対する IF N治療効果の判定マーカーとして使用できることを見出し完成されている。本発明方 法によれば、腎細胞癌患者由来の検体の特定の SNPsを検出することによって、該腎 細胞癌患者に対する IFN治療効果を予測することが可能である。
[0037] 本発明方法は、腎細胞癌患者由来検体の特定ヒト遺伝子の多型、即ち、 STAT3-2 、 STAT3— 3、 STAT3— 17、 STAT3— 18、 SSI3— 1、 IL— 4R— 14、 IL— 4R— 22、 L— 4R— 29、 IRF2 -67、 IRF2- 82、 ICSBP- 38、 PTGS1- 3、 PTGS1- 4、 PTGS1- 5、 PTGS2- 12および TAP2- 5の遺伝子多型 (遺伝子型)を検出することを必須の要件とする。
[0038] 本発明方法によって検出 (解析)すべき SNPs、即ち、腎細胞癌患者に対する IFN治 療による腫瘍縮小効果と相関する遺伝子的多型ほたは遺伝子型)は、より具体的に は下記 (a)〜(p)に記載のものである。なお、これら各多型の存在する遺伝子上の位置 は、前記表 1に示す通りである。
[0039] (a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目におけ る遺伝子型が C/Tまたは T/Tである遺伝子多型 (STAT3-2)、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目におけ る遺伝子型が C/Cである遺伝子多型 (STAT3-3)、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目におけ る遺伝子型が G/Gである遺伝子多型 (STAT3-17)、
(d)リファレンス SNP ID番号: rs2293153である STAT3 (KCNH4)遺伝子の 4050541番 目における遺伝子型が C/Tである遺伝子多型 (STAT3-18)、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における 遺伝子型が A/Cである遺伝子多型 (SSI3-1)、
(1)リファレンス SNP ID番号: rsl805011である IL-4R遺伝子の 18686025番目におけ る遺伝子型が A/Aである遺伝子多型 (IL-4R-22)、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型 (IRF2-67)、
(h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における 遺伝子型が C/Cである遺伝子多型 (IRF2-82)、
(i)リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における 遺伝子型が A/Aまたは A/Cである遺伝子多型 (ICSBP-38)、
0)リファレンス SNP ID番号: rsl213264である PTGS1遺伝子の 26793813番目におけ る遺伝子型が C/Tである遺伝子多型 (PTGSl-3)、
(k)リファレンス SNP ID番号: rsl213265である PTGS1遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型 (PTGSl-4)、
(1)リファレンス SNP ID番号: rsl213266である PTGS1遺伝子の 26794619番目におけ る遺伝子型が A/Gである遺伝子多型 (PTGSl-5)、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目にお ける遺伝子型が G/Gである遺伝子多型 (PTGS2-12)、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目におけ る遺伝子型が G/Gである遺伝子多型 (TAP2-5)、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目におけ る遺伝子型が C/Cである遺伝子多型 (IL-4R-14)、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目におけ る遺伝子型が T/Tである遺伝子多型 (IL-4R-29)。
本発明によれば、特定ヒト遺伝子の遺伝子多型 (SNPsおよびノヽプロタイプ)および遺 伝子型を検出することによって、腎細胞癌に対する腫瘍縮小効果 (IFNによる腫瘍縮 小効果)の把握、その機能の解明、腎細胞癌治療の予測診断等に有用な情報乃至 手段を与えることができる。また、本発明によれば、腎細胞癌患者に対する治療方針 を決定するための根拠となる情報、特に腎細胞癌患者個々に合わせたオーダーメイ ド医療のための治療方針として IFN投与を行うか否かを決定するための重要な情報 を提供することができる。 [0041] 本発明において、腎細胞癌患者に対する IFN治療に用いられる IFNには、例えば天 然型 IFN- a、遺伝子組換え型 IFN- a、遺伝子組換え型 IFN- y等が含まれる。これ らの IFNは、単独で用いられる場合は勿論のこと、他の腎細胞癌治療のための免疫 療法剤、化学療法剤などと併用される場合も、本発明方法の対象とすることができる
[0042] 遣伝子多型を有するヒト遣伝子 (SNPs)の調製
[0043] 以下、本発明方法につき詳述すれば、本発明方法においては、まず検体として腎 細胞癌患者に由来する遺伝子サンプルを調製する G工程)。該遺伝子サンプルは、 特定の遺伝子多型 (SNPs)、具体的には先に (a)〜(p)として記載した遺伝子多型を含 む。該サンプルとしては、腎細胞癌患者より常法に従って抽出された cDNAまたはゲ ノム DNAを利用することができる。このサンプルは、上記遺伝子多型を含む DNAの相 補鎖であってもよい。
[0044] サンプルとする cDNAまたはゲノム DNAの起源としては、各種細胞、組織、これらに 由来する培養細胞などを例示できる。具体的には、血液、唾液、リンパ液、気道粘液 、尿、精液などの体液を例示することができる。尚、検体としての上記起源材料は、 IF N投与前 (特に既に他の薬剤を投与している症例に追加して薬剤を投与する前も含 む)の患者由来の DNAまたはゲノム DNAであるのが好ましい。これら起源材料からの R NAの分離、 mRNAの分離および精製、 cDNAの取得、そのクローユングなどは、いず れも常法に従って実施することができる。
[0045] 本発明方法では、次に、上記遺伝子サンプル力も特定ヒト遺伝子のゲノム配列もし くはその相補鎖 (例えば前記 (a)〜(p)の遺伝子多型を有する遺伝子もしくはその相補 鎖 (SNPs》を調製する (ii工程)。
[0046] この調製は、本明細書に開示された前記 (a)〜(p)の SNPsを含む遺伝子の具体的配 列情報を参考にして、一般的遺伝子工学的手法 [Molecular Cloning 2d Ed, Cold Sp ring Harbor Lab. Press (1989) ;続生化学実験講座「遺伝子研究法 I、 II、 III」、日本生 化学会編 (1986)など参照〕により容易に行い得る。具体的には、(a)〜(p)の遺伝子多 型を有する腎細胞癌患者より抽出された cDNAまたはゲノム DNAから、(a)〜(p)の特定 遺伝子型を含む適当なプローブ、制限酵素などを利用して、常法〔例えば Proc. Natl. Acad. Sci., U.S.A., 78, 6613 (1981); Science, 222, 778 (1983)など参照〕に従って実 施できる。より詳しくは、 目的の SNPsの DNA配列に選択的に結合し得る遺伝子型部 分を含むプローブを作成し、これを用いて一塩基プライマー伸長法、インベーダー法 、定量的リアルタイム PCR法などを実施すればょ 、。
[0047] スクリーニング用プライマーとしては、所望遺伝子の塩基配列情報に基づいて設定 したフォワード ·プライマーおよびリバース ·プライマーを用いることができる。これらは 常法に従い、例えば自動合成装置を用いて合成することができる。該スクリーニング 用プローブは、通常、標識したプローブであるが、直接的または間接的に標識したリ ガンドと特異的に結合できるものであれば、非標識のものであってもよい。プローブお よびリガンドの標識剤および標識法は、既にこの種技術分野でよく知られている。そ の例としては、例えばニック'トランスレーション、ランダム 'プライミンダム、キナーゼ処 理などの方法によって取り込ませることができる放射性標識剤、ピオチン、蛍光性色 素、化学発光剤、ルシフェラーゼなどの酵素、抗体などを例示できる。
[0048] 抽出した遺伝子あるいは mRNAは、遺伝子増幅法によって増幅させることができる。
この増幅によれば、本発明検出方法における検出をより容易に且つ精度の高いもの とすることができる。遺伝子増幅法の例としては、 PCR法(Saiki, R. K., Bugawan, T. L ., et al, Nature, 324, 163—166 (1986》、 NASBA法 (Comptom, J., Nature, 650, 91—9 2 (1991》、 TMA法 (Kacian, D. L., and Fultz, T. J.,米国特許第 5,399,491号(1995》 、 SDA法 (Walker, G. T., Little, M. C, et al., Proc. Natl. Acad. Sci., U.S.A., 89, 39 2-396 (1992))などが挙げられる。
[0049] 尚、 PCR法などで増幅させた遺伝子断片の単離精製は、常法、例えばゲル電気泳 動法などによる力またはカラムを用いて実施することができる。その確認は、例えばマ ススペクトル法またはゲル電気泳動法によることができる。これらの方法により増幅さ せた遺伝子は、その増幅物の特性に応じて、本発明に係る (a)〜(p)の遺伝子多型 (S NPs)の検出(遺伝子多型の決定)に供される。
[0050] 遣伝子多型の検出
[0051] 本発明方法では、上記検体中の特定遺伝子領域の DNA配列を決定、解析して、そ の多型 (SNPs)を検出(多型を決定)する (iii工程)。この検出は、具体的には下記 (1)-(8 )に示す各方法に従って実施することができる。
[0052] (1)ヌクレオチド、 接塩 西 R列決 法
[0053] この種遺伝子の塩基配列の決定に慣用されて!、る、例えばダイデォキシ法 (Sanger, et al" Proc. Natl. Acad. Sci., U.S.A., 74, 5463—5467 (1977》、マキサム—ギルバート 法 [Methods in Enzymology, 65, 499 (1980)〕などのヌクレオチド直接塩基配列決定 法に従い、特定遺伝子の DNA配列を決定することによって、遺伝子多型を検出でき る。このヌクレオチド直接塩基配列決定法と PCR法などの DNA増幅法とを組み合わせ た方法も、遺伝子多型の検出に有効である。特に、少量の DNA試料を用いて簡便か つ容易にし力も感度および精度の高い検出が可能である観点からは、 PCR法もしく はそれに準じた DNA増幅法を組み合わせた方法の実施が好ましい。
[0054] この好まし 、方法は、基本的には、例えば PCR法で増幅させた遺伝子断片または その精製物をダイデォキシ法、マキサム-ギルバート法などに従って直接塩基配列を シーケンスすることにより実施できる。また、簡便には市販のシークェンスキットなどを 用いてヌクレオチド配列を決定することにより実施できる。力べして、特定ヒト遺伝子の 前述した部位における SNPの存在の有無を検出できる。
[0055] 上記方法および以下に示す各方法にお!、て、 PCR法で増幅させる DNA断片は、前 述した変異の存在が想定される特定部位の少なくとも 1つを含む限り特に限定される ものではない。通常、約 50から数千塩基の長さ、好ましくは 50から数百塩基の長さを 有するものであるのがよ 、。
[0056] (2)対立遣伝子特異的オリゴヌクレオチド-ドットプロット法
[0057] 特定遺伝子の多型検出の別法としては、対立遺伝子特異的オリゴヌクレオチド (AS 0)—ドットブロット法 (Conner, B. J., et al., Proc. Natl. Acad. Sci., U.S.A., 80, 278—28 2 (1983》に従う方法を挙げることができる。該方法は、例えば目的とする SNPを挟むよ うに設計したフォワード 'プライマーおよびリバース 'プライマーを利用して、 PCR増幅 した遺伝子断片に対する対立遺伝子特異的オリゴヌクレオチド 'プローブにハイプリ ダイズする DNA断片を、ドット 'プロット分析することにより実施できる。力べして、該断 片中に SNPが存在する力否かを決定することができる。
[0058] (3)一塩某プライマー伸長法 [0059] 特定遺伝子の多型の検出は、また、スナップショット法、ピロシーケンス法、特開平 2 000-279197号公報に開示の点変異検出法のような、一塩基伸長法によっても実施 することができる。これらの方法では、 目的の遺伝子多型 (SNP)の直前の塩基または 数塩基前の塩基に対応するように設定したプローブ、即ち、その 3'末端を検出目的 である変異の 1塩基上流または近傍に設定したプローブを、 DNA検体にアニーリング させる。各方法は市販の SNPs検出用キットおよび該キットに添付のソフトウェアを利用 して実施することができる。
[0060] 例えばスナップショット法は、 ABI PRISM SNaPshot ddNTP Primer Extension Kit (A BI社製)を用いて実施できる。 SNPsは、反応後に生成した蛍光フラグメントを、 ABI PR ISM310/377/3100/3700DNA Analyzer (いずれも ABI社製)と GeneScanソフトウェアを 用いて検出 '解析できる。
[0061] ピロシーケンス法は、例えば、以下のごとくして実施できる。即ち、血液サンプルな どから常法によりゲノム DNAを単離し、ピオチン標識したプライマーを用いて変異を 含む数十力も数百塩基を PCR増幅させ、マグネットビーズを用いて一本鎖 DNAを精 製し、この精製 DNAを検体とする。該検体に、所望の遺伝子多型の数塩基上流から シーケンスするように設定したプライマーをアニーリングさせ、次いでソフトウェアに入 力された遺伝子多型付近のシーケンスに従って 1種類ずつ dNTPを添加、反応させる 。 DNAポリメラーゼが塩基伸長するとピロリン酸 (PPi)を生成するので、該 PPiをスルフリ ラーゼ (Sulforylase)により ATPに変換し、これを基質としてルシフェラーゼを反応させ て生じる発光を発光検出器、 CCDカメラなどを用いて検出する。力べして、添加した d NTPに応じて得られる発光のピークを解析することによって、所望の遺伝子のタイピ ングが可能となる。該方法を用いれば、 96サンプルを 15分ほどでタイピングすることが できる。
[0062] 上記方法において試薬および装置としては、通常のものを用いることができる。例え ば、試薬としては、 DNAポリメラーゼ、 ATP-スルフリラーゼ、ルシフェラーゼおよびァ ピラーゼ (apyrase)の 4種の酵素混合液、ルシフェリンおよび APS (アデノシン 5'硫酸リン 酸)からなる基質液、 dATP (デォキシアデノシン ·3リン酸)、 dCTP、 dGTPおよび dTTP からなる dNTPを構成要素とする市販の SNP Reagent Kits (Pyrosequencing AB社製) などを用いることができる。また装置としては、例えば自動 DNA配列分析のための PS Q96システム(Pyrosequencing AB社製)およびその使用のための SNPソフトウェア(Py rosequencing AB社製)を用いることができる。
[0063] また、ピロシーケンス法は、例えば米国特許第 6,159,693号明細書の記載に従って 、核酸を単離し、 PCR法によって増幅させ、増幅した PCR産物を精製後、 READITTM System (プロメガ'コーポレーション社製)を用い、これにピロリン酸を反応させ、得ら れデータを分析することによつても実施できる。このデータ分析には、例えば市販の R EADIT技術(Promega Corporation製)を利用した Excel分析を採用できる。
[0064] (4) PCR- il 觀告^^ SSCP)分析法
[0065] 本発明方法における遺伝子多型の検出には、更に、 PCR-SSCP法 (Orita, M., Iwah ara, H" et al., Proc. Natl. Acad. Sci., U.S.A., 86, 2776-2770 (1989》を採用するこ ともできる。この方法は、 PCR増幅産物 (一本鎖 DNA)を非変性ポリアクリルアミドゲル 電気泳動し、その移動度の差異により一塩基変異の有無を識別するものである。
[0066] (5) PCR-娜艮 ま断 長 型 (RFT )分析法
[0067] 本発明の特定遺伝子の SNPsまたはハプロタイプの検出にあたり、検出目的とする 多型を含む核酸配列が制限酵素認識部位をも含んでいる場合には、該検出は、制 限酵素断片長多型分析法 (RFLP法: Botstein, D. R., et al., Am. J. Hum. Gen., 32, 314-331 (1980》によって行うことができる。
[0068] RFLP法は、より具体的には、例えば前記 (a)〜(p)に記載の遺伝子多型の特定位置 における遺伝子型に応じて、以下のようにして実施できる。例えば、前記 (c)の遺伝子 の特定の位置における遺伝子型を例にとると、 STAT3遺伝子のゲノム配列の 420402 7番目における遺伝子型が G/Gである遺伝子多型 [STAT3-17]を検出するために、遺 伝子型の箇所を含めてその前後の配列を認識し得る制限酵素を用いて実施される。 力かる RFLP法に用いられる酵素は、目的とする遺伝子型の箇所の前後配列を認識 し得る各種公知の制限酵素であればよい。その具体例としては、例えば Msplが例示 できる。
[0069] 該 RFLP法は、より好適には PCR-RFLP法、即ち予め PCR法またはその変法などに よって検体 DNAを増幅'調製後、多量に調製され且つ濃縮された検体 DNAについて 実施する方法によることができる。力べして、特異的切断サイトの存在の有無として、 所望の遺伝子多型の存在の有無を検出することができる。
[0070] この方法に従う遺伝子多型の検出は、まず、ヒト検体力もゲノム DNAを抽出し、該遺 伝子の遺伝子多型部位を含む領域の DNA断片を PCR法などにより増幅させて多量 に且つ濃縮された遺伝子サンプルを得る。次いで、増幅 DNA検体を特定の制限酵 素を用いて消化し、 DNAの切断様式 (切断の有無、切断フラグメントの塩基長など)を 常法に従って確認する。
[0071] (6)インベーダー法
[0072] 本発明特定遺伝子の SNPsの検出は、インベーダー (Invader)法によっても実施する ことができる。インベーダー法の実施には、以下の文献が参照できる。
•Lyamichev, V" et al, Nat. BioltechnoL, 17 (3) 292-296 (1999)および
•国際特許公開 W09823774号 (特表 2001-526526号)。
[0073] 該方法は、ゲノム DNAの SNPsを分析するために予め標的 DNAを増幅する必要がな い方法であって、以下のごとくして実施される。
[0074] 目的とする特定遺伝子の、例えば (a), (b), (d)〜(p)に記載の各遺伝子の、 SNPsが存 在するかどうかを検出するために、先ずゲノム DNAを単離した後、 15から 50塩基長か らなる 5'フラップと検出したい核酸 (本発明では SNP)を 5'フラップの 3'端に配し、 目的 の遺伝子型の核酸以外は標的ゲノム DNAに相補するように合成された 30から数百塩 基のオリゴヌクレオチドからなる第一の標的プローブと、検出したい核酸に相補的な 核酸を 3'端に配する以外は、標的ゲノム DNAに相補するように合成された 15力 数 十塩基長のオリゴヌクレオチド力もなるインベーダー ·ォリゴヌクレオチド 'プローブとを 、例えば自動合成機により合成する。これらのプローブに、単離したゲノム DNAおよ び第一のプローブの 5'フラップを切断する酵素 (フラップエンドヌクレアーゼ)を同時に 加えて適当な反応液中で反応させる。
[0075] もし検体中のゲノム DNAが所望の遺伝子多型 (SNP)を有している場合は、遺伝子型 の核酸を 3'端に有する 5'フラップを遊離する第一の反応が終了する。もし、検体中の ゲノム DNAが遺伝子型の核酸配列を有して 、な 、場合は、前記酵素による切断は生 じない。 [0076] 酵素で切断された第一のプローブ力も遊離した 5'フラップは、標的として蛍光共鳴 エネルギー転移 (FRET)プローブに相補的に結合し、 5'フラップの 3'端力 FRETプロ一 ブ内に侵入 (invasion)する。同様に、前記酵素による反応が起こり、クェンチングされ ていた蛍光色素が遊離する。
[0077] 次いで第二の反応に用いられる各 FRETプローブは、検出される標的にもかかわら ず、同一の配列を含んでいて、以下の本質的に 2つのエレメントからなるように構築さ れる。
(1)第一の反応から割裂した産物に相補する 3'領域、および
(2)—本鎖プローブを模倣するために複式を形成し、そして標的が共にハイブリダィズ して、それらがレポーター蛍光色素とクェンチヤ一蛍光色素を含んでいる自家相補 的領域。
[0078] 前記レポーター蛍光色素は、該レポーター蛍光色素が前記クェンチヤ一蛍光色素 と同一のプローブに結合されている場合には、蛍光共鳴エネルギー転移によりその 蛍光強度が抑制され、前記クェンチヤ一蛍光色素と同一のプローブに結合されてい ない状態では、蛍光強度は抑制されない。従って、切断された第一のプローブから の遊離した 5'フラップ力 FRETプローブにハイブリダィズしたとき、それは第二の反応 にお 、てインベーダー ·オリゴヌクレオチドとして作用し、特異的酵素によって認識さ れた侵入複合物を産生する。力べして、 FRETプローブの上記特異的酵素による切断 力 二つの蛍光色素を分離し、検出可能な蛍光シグナルを産生する。該シグナルを 標準蛍光マイクロタイタープレート読み取り機器で読み取ることによって、所望の SNP sの遺伝子多型を検出することができる。第一と第二の反応の組み合わせにより、シ グナルを 1から I X 106倍まで増幅することができる。より具体的には、蛍光色素の異な る 2種類のフレットプローブを用いることによって、 SNPの遺伝子多型を検出 (タイピン グ)することができる。
[0079] (7)定量的リアルタイム PCR検出法
[0080] 本発明にかかる特定遺伝子の遺伝子多型の検出は、定量的リアルタイム PCR検出 法 (TaqMan法)によっても、簡便に実施することができる。
[0081] 該方法は、以下のごとくして実施できる。即ち、まず、 目的とする SNPの遺伝子多型 を検出するために、その多型 (核酸部位)を含む適当な領域の DNA断片を検出するた めの、 15〜39塩基力 なるフォワード側プライマーおよびリバース側プライマーを作 製する。但し、フォワード側プライマーおよびリバース側プライマーには目的とする核 酸部位 (一塩基の遺伝子型)は含まないように作製する。次いで、 15〜50塩基からな る塩基配列を有するオリゴヌクレオチドであってレポーター蛍光色素とクェンチヤ一 蛍光色素とが結合されたプローブを作成する。但し、該プローブの塩基配列としては 、フォワード側プライマーがハイブリダィズする領域と該プローブがハイブリダィズする 領域とが互いに重複しない組み合わせを選ぶものとする。該プローブは、 目的とする 一塩基の遺伝子型の有無を検出するための対立遺伝子特異的配列に相補的な配 列を有するように作製する。該プローブを用いて、検体中の測定すべき特定遺伝子、 例えば前記 (a)〜(p)に記載の遺伝子の所望の DNA断片を PCRによって増幅させて、 反応液からの蛍光をリアルタイムに測定する。力べして、 SNPを検出することができる。 より具体的には、蛍光色素の異なる 2種類のプローブを用いることによって、 SNPの検 出 (タイピング)を行うことができる。
[0082] 上記インベーダーアツセィゃ TaqMan法に用いられるレポーター蛍光色素としては、 FAM(6-カルボキシ-フルォレツセイン)のようなフルォレツセイン系蛍光色素が好まし く、クェンチヤ一蛍光色素としては、 TAMRA(6-カルボキシ-テトラメチル-ローダミン) のようなローダミン系蛍光色素が好ましい。これらの蛍光色素は公知であり、市販のリ アルタイム検出 PCR用キットに含まれているのでそれらを用いることができる。レポ一 ター蛍光色素およびクェンチヤ一蛍光色素の結合位置は特に限定されないが、通常 、プローブのオリゴヌクレオチド部の一端 (好ましくは 5'末端)にレポーター蛍光色素が 、他端にクェンチヤ一蛍光色素が結合される。なお、オリゴヌクレオチドに蛍光色素を 結合する方法は公知であり、例えば Noble et al., (1984), Nuc. Acids Res., 12: 3387- 3403および Iyer et al., (1990), J. Am. Chem. Soc, 112: 1253- 1254に記載されている
[0083] TaqMan法自体は公知であり、そのための装置およびキットも市販されているので、 本発明ではこのような市販の装置およびキットを用いることもできる。これらの装置お よびキットを利用して本発明方法を実施する場合は、例えば特許第 2,825,976号に記 載の方法に従うか、 PEバイオシステムズ社製の ABI PRISM 7700配列決定システム' ユーザーマニュアルに従えばよい。
[0084] (8)皙量分析計を用いた遺伝子多型枪出法 (mass array)
[0085] Mass array法は、多型によって生じる質量の差を検出する方法である。具体的には 、検出したい多型を含む領域を PCRにて増幅した後、 SNP位置直前に伸長用プライ マーをハイブリダィズさせ、 ddNTP/dNTP混合物を含む反応液、例えば ddATP、 dCT P、 dGTPおよび dTTPを含む反応液を用いて伸長反応を行うことで、 SNPに応じて 3' 末端の異なる断片が生成される。この生成産物を精製し、 MALDI-TOF質量分析計 などによって分析することで、質量数と遺伝子型との対応を解析することができる(Pu sch, W., Wurmbach, JH., Thieie, H., Kostrzewa, M., MALDI-TOF mass spectromet ry- based SNP genotyping, Pharmacogenomics, 3(4): 537-48 (2002)) 0該方法は、例 えば Sequenom Mass ARRAYノヽィスループット SNP解析システムを用いて簡便に実施 することができる。
[0086] (9)その他の枪出法
[0087] 本発明の方法に用いられる遺伝子の SNPsの検出は、従来より DNAについてその塩 基配列の決定法として、また遺伝子多型または遺伝子変異の検出法として知られて いる各種の方法によっても実施することができる。それらの例を以下に挙げる。
[0088] (9-1)配列特異的オリゴヌクレオチドを用いる PCR-SSO法;
各遺伝子多型 (SNPs)に対するプローブを担体に固相化し、これに検体 (遺伝子増 幅産物)をノヽイブリダィズさせ、ミスマッチの有無によるハイブリダゼーシヨンの効率の 差を判定するもの。
[0089] (9-2)点変異を検出する PCR-SSP法;
点変異に対応する塩基を 3'末端に設定した遺伝子増幅用配列特異的プライマー を用いて、プライマーの 3'末端が相補的である力否かによって PCRによる増幅効率に 著しい差が生じることを利用したもの。
[0090] (9-3) PCR-DGGE (変性剤濃度勾配ゲル電気泳動)法;
遺伝子多型 DNA断片と野生型 DNA断片とを混合してノ、イブリツド結合させた後、尿 素、ホルムアミドなどの変性剤の濃度が徐々に高くなつているポリアクリルアミドゲル 中で電気泳動すると、ミスマッチのないホモ 2本鎖に比べて、より低い濃度の変性剤 の位置で 1本鎖に解離する。この 1本鎖 DNAは、 2本鎖 DNAに比べて泳動速度が速い ため、移動度の差を比較することで 1塩基の遺伝子多型の違いを検出することができ る。
[0091] (9-4) PCR- DGGE/GCクランプ法 (Shefield, V. C, et al, Proc. Natl. Acad. Sci., U.
S.A., 86, 232-236 (1989》;
上記 PCR-DGGE法に加えて、 GC含量の高 、領域を遺伝子多型核酸の検出対象 である DNA断片に繋げることにより複数の塩基置換、欠失、付加および挿入がある場 合の検出の欠点を補った方法である。該方法は特に遺伝子多型検出の対象 DNA断 片に GCクランプを付加する工程を必要とする。
[0092] (9-5) RNase保護アツセィ法 (Finkelstein, J., et al., Genomics, 7, 167-172 (1990》。
[0093] (9-6) in situ RT— PCR (Nucl. Acids Res., 21, 3159—3166 (1993》。
[0094] (9-7) in situハイブリダィゼーシヨン。
[0095] (9-8)サザンブロッテイング(Sambrook, J., et al., Molecular Cloning a Laboratory
Manual., Cold Spring Harbor Laboratory Press: NY. (1989》。
[0096] (9- 9)ドットハイブリダィゼーシヨン法 (Southern, E. M., J. Mol. Biol, 98: 503-517 (1
975)など参照)。
[0097] (9-10)蛍光 in situハイブリダィゼーシヨン (FISH: Takahashi, E., et al., Hum. Genet.
, 86, 1416 (1990》。
[0098] (9-11)競合的ゲノミック ·ハイブリダィゼーシヨン(Comparative Genomic Hybridizati on: CGH: Kallioneimi, A., et al., Science, 258, 818—821 (1992》、 (Spectral karyotypi ng: SKY: Rowley, J. D., et al" Blood, 93, 2038-2042 (1999》。
[0099] (9-12)酵母人工染色体 (YAC)ベクターのクローンをプローブとする方法 (Lengauer, C, et al., Cancer Res., 52, 2590—2596 (1992》。
[0100] 力べして、本発明の方法に用いるヒト遺伝子の多型 (SNPs)およびハロタイプを検出 することができる。
[0101] 本発明に従う腎細胞癌患者に対する IFN投与による治療の有効性を予測する方法 は、上記に従って検出されたヒト遺伝子多型を指標 (マーカー)として、該遺伝子多型 の存在が確認される検体の場合には、該検体は IFN投与による治療の有効性が高い と予測する (iv工程)。
[0102] このように IFN投与による治療効果の予測性が高いと判定された患者は、腎細胞癌 に対する薬剤を選択する際に、 IFN治療の効果の予測性が高いために、薬剤選択の 優先順位が上がり、患者にとって不必要な薬剤の投与の機会が減り、結果として薬 剤投与による副作用の出現を減らすことに繋がるといえる。
[0103] 特に、本発明の方法に従って検出されるヒト遺伝子の遺伝子多型あるいは遺伝子 型は、腎細胞癌に対する IFN治療の効果 (腫瘍縮小効果)との関連性が高ぐ従って その検出結果に基づいて、個々の腎細胞癌患者に対するオーダーメイドの療法、即 ち、個々の患者にとって最も有効性の高い薬剤を適切に選択した療法の実施が可 能となる。
[0104] オリゴヌクレオチド
[0105] 本発明は、本発明判定 (検出)方法に用いる遺伝子多型検出用プローブまたはブラ イマ一としてのオリゴヌクレオチドをも提供する。該オリゴヌクレオチドは、特定のヒト遺 伝子多型或いは遺伝子型部分を含む配列を特異的に増幅できるものである限り特 に制限はな 、。該オリゴヌクレオチドは各特定の遺伝子多型または遺伝子型の配列 情報に基いて常法に従って適宜合成、構築することができる。
[0106] その合成は、より具体的には通常のホスホルアミダイト法、リン酸トリエステル法など の化学合成法によることもでき、また市販されている自動オリゴヌクレオチド合成装置 、例えば (Pharmacia LKB Gene Assembler Plus:フアルマシア社製)などを使用して実 施することもできる。二本鎖断片は、化学合成した一本鎖生成物とその相補鎖を合成 し、両者を適当な条件下でアニーリングさせる力、または適当なプライマー配列と DN Aポリメラーゼとを用いて、上記一本鎖生成物に相補鎖を付加させることによって、得 ることがでさる。
[0107] 前記プローブまたはプライマーとして用いられるオリゴヌクレオチドの好適なものとし ては、特定遺伝子の遺伝子多型配列を含むように設定された DNA断片に対応する 部分オリゴヌクレオチドであって、少なくとも 10個、通常 10〜35個程度の連続した塩基 を有するものを例示することができる。プライマー対としては、遺伝子の DNA配列にお ける SNPを挟むように設計、合成されたそれぞれ 2つのオリゴヌクレオチド配列を挙げ ることができる。プローブとして用いられるオリゴヌクレオチドは、遺伝子多型配列を含 む DNA断片それ自体を用いることができる。
[0108] 前記プローブとして用いられるオリゴヌクレオチドの好適なものとしては、下記 (a)〜( p)に示されるオリゴヌクレオチドを挙げることができる。好ましいプローブは、これらの オリゴヌクレオチドのうちで、特定遺伝子多型部分を含む少なくとも 15個の連続する 配列を有するものである。
[0109] (a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目におけ る遺伝子型が C/Tまたは T/Tである遺伝子多型部位を含む少なくとも 10の連続する 配列のオリゴヌクレオチド、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目におけ る遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目におけ る遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(d)リファレンス SNP ID番号: rs2293153である STST3遺伝子の 4050541番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における 遺伝子型が A/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(Dリファレンス SNP ID番号: rsl805011である IL-4R遺伝子の 18686025番目におけ る遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、 (h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における 遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(0リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における 遺伝子型が A/Aまたは A/Cである遺伝子多型部位を含む少なくとも 10の連続する配 列のオリゴヌクレオチド、
0)リファレンス SNP ID番号: rsl213264である PTGS1遺伝子の 26793813番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(k)リファレンス SNP ID番号: rsl213265である PTGS1遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(1)リファレンス SNP ID番号: rsl213266である PTGS1遺伝子の 26794619番目におけ る遺伝子型が A/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目にお ける遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のォ リゴヌクレオチド、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目におけ る遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目におけ る遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレオチド、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目におけ る遺伝子型が T/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレオチド。
前記プライマー対として用いられる本発明オリゴヌクレオチドの具体例としては、上 記各遺伝子に対してそれぞれ、後記実施例に示される配列番号 1-16で示されるフォ ワード'プライマーおよび配列番号 17-32で示されるリバース ·プライマーとしてのオリ ゴヌクレオチドを挙げることができる。
[0111] 檢出用キット
[0112] 本発明検出 (判定)方法は、検体中の特定ヒト遺伝子の遺伝子多型または遺伝子型 の検出のための試薬キットを利用することによって、より簡便に実施することができる。 本発明はカゝかる検出用キットをも提供する。
[0113] 本発明キットの一つの例は、上記特定ヒト遺伝子のいずれかの遺伝子多型または 遺伝子型の DNA断片である塩基配列もしくはその相補的塩基配列の一部または全 てにハイブリダィズする DNA断片を少なくとも必須構成成分として含むカゝ、あるいは 上記特定遺伝子多型部位または遺伝子型部位の 1塩基前または数塩基前の配列か らなる塩基配列にハイブリダィズする DNA断片を少なくとも必須構成成分として含む 。本発明キットの他の一例は、上記特定遺伝子多型部位または遺伝子型部位を含む 数個の核酸配列を認識する制限酵素、例えば Msplを必須構成成分として含む。
[0114] 本発明キットにおける他の成分としては、標識剤、 PCR法に必須な試薬 (例えば、 Ta qDNAポリメラーゼ、デォキシヌクレオチド三リン酸、 DNA増幅用プライマーなど)を例 示することができる。標識剤としては、放射性同位元素、発光物質、蛍光物質などの 化学修飾物質などが挙げられ、 DNA断片自身が予め該標識剤でコンジュゲートされ ていてもよい。更に当該キットには、測定の実施の便益のために適当な反応希釈液、 標準抗体、緩衝液、洗浄剤、反応停止液などが含まれていてもよい。
[0115] 本発明者の見出した特定遺伝子の遺伝子多型或いは遺伝子型は、腎細胞癌に対 する IFN治療の効果 (腫瘍縮小効果)との関連性が高いために、本発明方法によれ ば、個々の腎細胞癌患者に対するオーダーメイド医療において、患者にとってより有 効性の高い薬剤を適切に選択することが可能となる。本発明は、かかる特定のヒト遺 伝子多型或いは遺伝子型を、腎細胞癌に対する IFN治療の効果と関連するマーカ 一として検出する方法、即ち、腎細胞癌患者力 得られた検体中の特定の遺伝子多 型または遺伝子型を、腎細胞癌に対する IFNの治療反応性識別マーカーとして検出 する方法、並びに該方法に用いる診断剤および診断用キットを提供するものである。 実施例
[0116] 以下、本発明を更に詳しく説明するため、実施例を挙げるが本発明はこれに限定さ れない。
実施例 1
[0117] (1) 膨針 体
[0118] 本試験におけるの解析対象は、共同研究施設において被験者同意を得た後、連 結不可能匿名化された血液検体より抽出したゲノム DNA検体および共同研究施設 において既にゲノム DNA抽出が行われた検体である。被験者同意のない検体、匿名 化されていない検体は対象外とした。また、被験者情報 (患者背景等)は、試験依頼 者および共同研究者である大塚製薬株式会社 Theranostics Research Center (以下「 TRCJ t 、う)には一切通知されて ヽな 、。
[0119] 本試験での登録検体数は 86検体で、このうち血液検体由来のものは 76検体、既に DNAとして調製されていた検体は 10検体であった。これらは、大塚製薬社内倫理委 員会より承認を受けた応用開発グループの研究計画「腎細胞癌におけるインターフ ヱロンアルファ (IFN- a )治療効果予測因子探索を目的としたインターフ ロン関連遺 伝子群の SNPs解析 (倫理委員会受付番号: 010724-1)」に基づき収集した検体であ る。
[0120] この計画は「ヒトゲノム'遺伝子解析研究に関する倫理指針 (平成 13年 3月文部科学 省 ·厚生労働省 ·経済産業省告示第 1号)」に準拠して行われた。
[0121] 収集された血液検体は共同研究施設において連結不可能匿名化処理後、冷凍状 態で TRCへ搬送された。 TRCにおいて、それら血液検体カゝらゲノム DNAを抽出し解 析用試料とした。
[0122] また、既にゲノム DNAを抽出済の検体においても、共同研究施設において連結不 可能匿名化処理後、冷蔵状態にて TRCに送付されたものを使用した。
[0123] 本研究で使用する全てのゲノム DNA試料は、実験期間中、 TRC実験施設内の専用 の保存庫 (冷蔵、 4°C)にて厳重に管理'保管した。
[0124] (2) 膨針象遣伝子
[0125] 本試験において解析対象とした遺伝子は、以下の遺伝子群である。 [0126] (2a) IFN- レセプターおよびシグナル伝達系
[0127] IFNARK a鎖) (interferon alpha receptor 1)、 IFNAR2( β L鎖) (interferon beta recept or 2)、 JAKlQanus kinase 1, a protein of tyrosine kinase) Tyk2、 STAT 1 (signal trans ducer and activator of transcription 1, 91kDa)、 STAT2(signal transducer and activat or of transcription 2, 113kDa)、 STAT3、signal transducer and activator of trans cripti on 3, acute-phase response factor) p48 (lSLrP3 y, interferon- stimulated transcripti on factor 3, gamma, 48kDa)、 SOCS— l(suppressor of cytokine signaling 1/SSト 名: JABゝ CIS- 1、 SSI- 1)、 SOCS-2(suippressor of cytokine signaling 2/STATI2X別名 : CIS- 2、 SSI- 2、 STATI2)、 SOCS- 3(suppressor of cytokine signaling 3/SSI- 3)(別名: CIS- 3, SSト 3)、 ¾hp-2 (別名: PTPNl l : protein tyrosine phosphatase, non-receptor ty pe l UNoonan syndrome 1))。
[0128] (2b) Thl/Th2系
STAT4(signal transducer and activator of transcription 4)、 IL- 2(interleukin 2)、 IFN ― y (interferon gamma)、 TNF— a (tumor necrosis factor alpnaノ、 TNF— β (tumor necros is factor beta)(LTA; lymphotoxin alpha, TNF superfamily, member 1)、 IL- 4(interleuk in 4)、 IL- 4 Receptor- a、 IL- 4 Receptor- β、 IL- 5(interleukin 5, colony-stimulating f actor, eosinophil) IL- 6(interleukin 6, interferon bate 2)、 IL- 10(interleukin 10)、 IL- 1 3(interleu ine 13)。
[0129] (2c)その他の IFN-ひによって発現に変化が認められる報告のある遺伝子
PKR(PRKR, protein kinase, interferon-inducible double stranded RNA dependent) 、 IRFl (IFN— regulatory factor 1)、 IRF2(IFN— regulatory factor 2)、 ICSBP (IFN consen sus sequence binding proteinノ、 Cox— 1(PTGS1 ; prostaglandin— endoperoxide synthase 1, prostaglandin G/H synthase and cyclooxygenase)、 Cox— 2(PTGS2; prostaglandin— endoperoxide synthase 2, prostaglandin G/H synthase and cyclooxygenase)、 MxA(M x-1 ; myovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse
))
[0130] (2d)その他の遺伝子
TAPl (transporter 1 , ATP— binding cassette, sub-family B (MDR/TAP))ゝ TAP— 2(tra nsporter 2, ATP— binding cassette, sub-family B (MDR/TAP))ゝ LMP7(PSM β 8; prote asome (prosome, macropainノ subunit, beta type, 8 (large multifunctional protease 7) 、 CTLA- 4(cytptoxic T- lymphocyte- associated protein 4)、 GSTT 1 (glutathione S- tra nsferase theta 1)、 VHL、 HIF- 1 、 HLF、 VEGF(vascular endothelial growth factor)。
[0131] (3) 解析対象 SNPs
本試験において解析対象とした SNPsは、上記遺伝子群のうちで、試験開始時点で NCBIの SNPsのデータベース dbSNPsに登録されているものを、大塚製薬株式会社 Bi ◦informatics室(以下「BI室」 t ヽぅ)にて解析対象遺伝子の登録配列と比較した結果 、その周辺部にマップされたものである。 BI室での検索結果において SNPsがマップさ れな力つた遺伝子は解析対象から除いた。最終的に解析対象 SNPs数は 1167SNPSで めつに。
[0132] (4) ¾験丰順
[0133] (4a)ゲノム DNAの柚出
[0134] ゲノム DNA抽出には全血からのゲノム抽出用キット(PUREGENE™、 Gentra)を用い た。抽出手順は PUREGENE™に添付の標準プロトコールに準じた。抽出したゲノム D NAはキット添付の溶解液に溶解後、吸光度を測定して全抽出量を算出した。
[0135] (4b) PCR (インべーダアツセィ用)
[0136] 解析対象の SNPsを含むゲノム領域を PCRにより増幅した。 DNAポリメラーゼは Ex Ta q™(TaKaRa)、反応バッファは添付の 10 X Ex Taq Bufferを用いた。
[0137] 反応は、以下の条件で行った。
[0138] テンプレート量(ゲノム DNA) : l〜10ng、
プライマー濃度: 0.1〜0.2 μ Μ、
総反応液量:15 /z L、
PCRサイクル:(1) 95°C X 2分、(2) 95°C X 30秒、(3)50〜64°C X 30秒、(4)72°C X 1分
30秒、(5) (2)〜(4) X 50サイクル、 (6) 15°C X永続。
[0139] PCR産物は、以下のインベーダーアツセィの反応用铸型として使用した。
[0140] 上記反応に用いたフォワードプライマーの核酸配列は、配列番号: 1〜配列番号: 1
6に示され、またリバースプライマーの核酸配列は、配列番号: 17〜配列番号: 32に示 される。これらの各プライマーと特定ヒト遺伝子ゲノムおよびその有する SNPsとの関連 を下記表 2に示す。
[表 2]
Figure imgf000034_0001
[0142] (5) インベーダーアツセィ
[0143] SNPs領域を増幅した PCR産物を蒸留水にて 10〜1000倍に希釈し、この希釈 PCR産 物を変性して一本鎖 DNAとするために 95°Cで 5分間加熱後、氷上で急冷した。これを 反応用铸型として用いてインベーダーアツセィ用試薬と混合して反応液を調製した。 反応液組成は、添付のプロトコールの 384- WELL REACTION FORMATに従った。
[0144] 反応液を 63°Cで 30〜60分間インキュベートして酵素を反応させた。反応後、蛍光マ ルチプレートリ一ダ^ ~ ·サファイア(TECAN)で励起光 485士 6nm、蛍光 530士 6nm (FA M dye)および励起光 560±6nm、蛍光 620 ±6nm (Redmond Red dye)の 2つの波長( 赤色と緑色の 2色)の蛍光強度を測定した。
[0145] 以上の希釈を除くタイピング作業は、 Biomek FX/SAMI (Beckman Coulter)を基本と した SNPs自動タイピングシステムで行った。
[0146] 得られた蛍光強度の測定結果を、 BARCODE LAB SYSTEM (BLABS™,三井情報 開発株式会社) versionl.O (自動判定補正あり)に取り込ませたのち、自動判定によつ て各 SNPsの遺伝子型を決定した。判定結果は、研究員が再度、スキヤッタープロット から確認した。
[0147] (6) PCR- RFし P
[0148] インベーダーアツセィによってタイピングできない SNPsは、 PCR- RFLP法にてタイピ ングを行った。本法は各 SNPs領域を認識する制限酵素によって消化される力否かで SNPsのタイピングを行うものである。 SNPs領域に適当な制限酵素の認識部位がな 、 ような場合は SNPs近傍に増幅用プライマーを設定し、そのプライマーの配列を人為 的に変化させることで制限酵素部位を作成した。
[0149] 本法においては、制限酵素 Nsplを SNPs STAT3-17の検出のために用いた。
[0150] PCRはボーゲルシュタインバッファーを用いて行った。それ以外の条件は以下のと おりである。
[0151] テンプレート量(ゲノム DNA) : 5 ng、
プライマー濃度: 0.1〜0.2 μ Μ、
総反応液量:15 /z L、
PCRサイクル:(i) 95°C X 2分、(ii) 95°C X 30秒、(iii)50〜60°C X 30秒、(iv)72°C X 1分 、(v) (ii)〜(iv)ステップ X 35〜45サイクル、(vi) 15°C X永続。
[0152] PCR産物は、制限酵素処理後、 4%ァガロースを用いて電気泳動して消化産物フラ グメント長を解析し、タイピングを行った。
[0153] (7) 遺伝子型判定法
[0154] 遺伝子型は、前記 (5)に示すインベーダーアツセィ反応の結果検出される 2色の蛍 光強度により判定した。力べして、インベーダーアツセィにより 33遺伝子に存在してい る 463個の SNPsについて、対象患者における遺伝子型を決定した。また、 13の遺伝 子に存在して 、る 26個の SNPsにつ!/、て前記 (6)に示す PCR-RFLP法を用いて、同様 に遺伝子型を決定した。
[0155] (8) 結果 1 (CR+PR群と PD群の識別に有効な SNPsの探索研究)
[0156] 集積された 86症例の中には、効果判定のない症例が 3例、転移巣のない症例が 8 例、効果判定が不変であった症例 (NC群、 No Change群) 24例 (うち 1例は転移巣のな い症例)が含まれており、これら 34症例を除いて、解析の対象とする症例数を 52例とし ァこ。これらは CR群 (Complete response群)、 PR群 (Partial response群)および PD群、pro gressive Disease群)である。尚、これらの治療効果の判定は腎癌取扱規約 1999年 4月 、第 3版に従うものである。この規約については、例えば日本癌学会固形がん化学療 法効果判定基準(L. Lpn. Soc. Cancer Ther., 21(5): 929-924, June, 1986)を参照さ れたい。
[0157] これら症例の識別因子となり得るか否かを検討すべき全 463個の SNPsについて、単 一 SNPsでの識別能力を統計的判別解析法で調べ、ピアソンのカイ 2乗検定にぉ 、て 有意水準 p > 0.1となった SNPsを識別能力が低 、と推定して解析対象因子から除外し た。
[0158] 力べして、 463個の中力も 445個の SNPsを除外して、 18個の SNPsを候補として残した 。更に、多変量解析の特性上、相互関連の強い変数が複数ある場合には、その中の 一つの変数の識別能力だけを調べればよ 、ので、ロジスティック回帰分析を行う前に 、相互関連の強い SNPsの組み合わせを、 Cramerの V統計量を用いて探索(文献名: L.D.Fisher and G.V. Belle, Biostatistics, A Methodology for the Health Sciences, 27 8pages, 1993, John Wiley & Sons,Inc,New York)して、解析する SNPs数を 18個から 16 個に絞った。
[0159] 前記解析によって最終的に残された SNPsについて、腫瘍縮小に関与する背景因 子の影響を調整した上での判別能力を、 Stepwiseロジスティック回帰モデル (文献名: L.D.Fisher and V. Belle, Biostatistics A Methodology for the Health Sciences, り 3
8-647pages, 1993, John Wiley & Sons,Inc,New York)を適用することにより推定した。
[0160] 調整に用いた背景因子は、腫瘍縮小に関与する可能性のある性別、年齢、組織学 的所見 (CeU-type、異型度、 pT、 ρΜ、初発/再発、肺転移、肝転移、脳転移、骨転移
、リンパ節転移)である。尚、有意水準は 0.05とした。
[0161] その結果を表 3および表 4に示す。
[0162] [表 3]
Figure imgf000038_0001
l6l76l0/S00Zdf/X3d ζε S0S91-0/900Z Ο/Α [0163] [表 4]
NC+PD群 CR+PR群 12 test 計 N % N % P value
IL4R-14 AC 9 8 88.89 1 11.11 0.0704
CC 66 38 57.58 28 42.42
計 75 46 61.33 29 38.67
IL4R-29 CT 17 14 82.35 3 17.65 0.0430
TT 58 32 55.17 26 44.83
計 75 46 61.33 29 38.67
IL4R-22 AA 61 34 55.74 27 44.26 0.0378
AC 14 12 85.71 2 14.29
計 75 46 61.33 29 38.67
IRF2-82 CC 11 4 36.36 7 63.64 0.0572
CT 23 7 30.43 16 69.57
TT 18 12 66.67 6 33.33
計 52 23 44.23 29 55.77
IRF2-67 AA 6 1 16.67 5 83.33 0.0547
AC 31 20 64.52 11 35.48
CC 37 25 67.57 12 32.43
計 74 46 62.16 28 37.84
ICSBP-38 AA 36 20 55.56 16 44.44 0.0833
AC 32 19 59.38 13 40.63
CC 7 7 100.00 0 0.00
計 75 46 61.33 29 38.67
PTGS1-3 CC 70 45 64.29 25 35.71 0.0495
CT 5 1 20.00 4 80.00
計 75 46 61.33 29 38.67
PTGS1-4 CT 7 1 14.29 6 85.71 0.0073
TT 68 45 66.18 23 33.82
計 75 46 61.33 29 38.67
PTGS1-5 AG 9 2 22.22 7 77.78 0.0102
GG 66 44 66.67 22 33.33
計 75 46 61.33 29 38.67
PTGS2-12 AG 9 8 88.89 1 11.11 0.0704
GG 66 38 57.58 28 42.42
計 75 46 61.33 29 38.67
TAP2-5 AA 3 3 100.00 0 0.00 0.0717
AG 18 14 77.78 4 22.22
GG 54 29 53.70 25 46.30
計 75 46 61.33 29 38.67
[0164] 次に、ロジスティック回帰分析によって、判断に有効とされた背景因子は、肺転移の 有無だけであったので、この肺転移有無をモデルに強制入力して、 13個の SNPsに St epwiseロジスティック回帰分析を適用した。その結果を表 5に示す。
[0165] [¾5]
Step 0. 肺転移を組み込んだもの Step 1. 肺転移と 4R-29との組み合わせ
Figure imgf000040_0001
[0166] 表 5中、「Effect」は試験した SNPsを示す。 DFは、自由度 (Degree of Freedom)を示す
[0167] Wald Chi- Squareは、ワルドのカイ 2乗統計量を、 Score Chi- Squareは、スコア一の力 ィ 2乗( 2)統計量をそれぞれ示す。 Pr〉ChiSqは、ワルドのカイ 2乗検定又はスコア一 のカイ 2乗検定の P値を示す。
[0168] 表 5に示されるように、 Step 0は、肺転移有無の影響を調整した上での、 SNPsの判 別能力を示す。 P値が 0.05より小さ 、SNPsは肺転移有無の影響を調整した上でなお 判別に有効なことを示す。
[0169] その結果、判別に有効とされた SNPsは、 STAT3-2、 IL-4R-29、 IL-4R-22、 IRF2-82
、 TAP2-5が見出された。この 6つのうち最大の判別能力を示した IL-4R-29が口ジステ イツク回帰分析用のモデルに組み込まれた (肺転移の補正)。
[0170] また、表 5の Step 1における P値は、肺転移有無と IL-4R-29とを組み合わせたときの 残りの各 SNPsの判別能力を示す。ここで P値が 0.05より小さい SNPsは、 IL-4R-29と独 立な判別情報を持つことが示唆される。それらを列挙すると STAT3-2、 IRF2-82およ び TAP2-5である。中でも IL-4R-29と TAP2-5との組み合わせ力 肺転移有無の影響 を調整した上で、最も判別能力が高いことが示唆された。この Stepで IL-4R-29と組み 合わせることにより新たに有意となった SNPsはな力つた。
[0171] 表 5の結果をまとめると、原発巣および転移巣の腫瘍縮小を期待できる腎細胞癌患 者の識別マーカーであることを示唆する SNPsは、最有力の IL-4R-29の他に、 Step 0 で有意となった STAT3-2、 IRF2-82, IL-4R-22および TAP2-5であった。
[0172] このステージ分類がモデルに組み込まれることにより、患者背景因子の不均一さの ためにもたらされる統計学的な検出力低下を防ぎ、且つ 2群間の患者背景因子の偏 りの補正を行い、有意差があることを立証できた。
実施例 2
[0173] CR+PR群 NC+PD群の識別に有効な SNPsの探索研究
[0174] 実施例 1に記載の患者サンプルを用いて、解析対象に NC群を PD群にカ卩えた症例 にて、腎細胞癌に対する IFNの治療効果と関連する特定の遺伝子多型解析を行った
[0175] この NC群における腫瘍の大きさが変化しな!、理由としては、 IFNが効 ヽて ヽな!、か 、効いてはいるが腫瘍が大きくなりすぎて見かけ上変化しないことが考えられる。どち らの場合を採用するかによって IFNの有効性の判断に影響がある力 この例では腫 瘍の大きさが変化しないことから無効群と判断し、この判断から、上記のように PD群 に NC群を加えて、遺伝子多型の解析を実施した。
[0176] 集積された 86症例の中には、効果判定のない症例が 3例、転移巣のない症例が 8 例が含まれており、これら 11症例を除くと、解析の対象となる症例数は 75例となった。
[0177] 実施例 1と同様の方法で、 463個の SNPsを単一 SNPsでの識別能力を統計的判別解 析法で調べ、能力が低いと推定される SNPsを解析対象因子力も除外した。その結果 、このスクリーニングにより 463個の中力 441個の SNPsが除外され、 23個の SNPsが候 補として残った。
[0178] さらにロジスティック回帰分析を行う前に相互関連の強い SNPsの組み合わせを Cra merの V統計量を用 、て探索し、解析する SNPs数を 23個からさらに 17個に絞った。 [0179] 最終的に残された 17個の SNPsについて、腫瘍縮小に関与する背景因子の影響を 調整した上での判別能力を、 Stepwiseロジスティック回帰モデルを適用することにより 推定した。
[0180] 背景因子は、上記実施例 1において腫瘍縮小に関与する可能性のあることが判明 した肺転移のみとした。尚、有意水準は 0.05とした。
[0181] 有意水準 p≤0.1の 23個の SNPsについての解析結果を、表 6及び表 7に、単一 SNPs での識別能力として示す。
[0182] [表 6]
Figure imgf000043_0001
t6lO/SOOZdr/13d S0S9tO/900Z OAV 7]
NC+PD群 CR+PR群 X 2 test 計 N % N % P value
IL4R-29 CT 17 14 82.35 3 17.65 0.0430
TT 58 32 55.17 26 44.83 計 75 46 61.33 29 38.67
IL4R-22 AA 61 34 55.74 27 44.26 0.0378
AC 14 12 85.71 2 14.29 計 75 46 61.33 29 38.67
IRF2-8 cc 41 26 63.41 15 36.59 0.0601
CG 28 19 67.86 9 32.14
GG 6 1 16.67 5 83.33 計 75 46 61.33 29 38.67
IRF2-67 AA 6 1 16.67 5 83.33 0.0547
AC 31 20 64.52 11 35.48
CC 37 25 67.57 12 32.43 計 74 46 62.16 28 37.84
ICSBP-38 AA 36 20 55.56 16 44.44 0.0833
AC 32 19 59.38 13 40.63
CC 7 7 100.00 0 0.00 計 75 46 61.33 29 38.67
PTGS1-3 CC 70 45 64.29 25 35.71 0.0495
CT 5 1 20.00 4 80.00 計 75 46 61.33 29 38.67
PTGS1-4 CT 7 1 14.29 6 85.71 0.0073
TT 68 45 66.18 23 33.82 計 75 46 61.33 29 38.67
PTGS1-5 AG 9 2 22.22 7 77.78 0.0102
GG 66 44 66.67 22 33.33 計 75 46 61.33 29 38.67
PTGS2-12 AG 9 8 88.89 1 11.11 0.0704
GG 66 38 57.58 28 42.42 計 75 46 61.33 29 38.67
TAP2-5 AA 3 3 100.00 0 0.00 0.0717
AG 18 14 77.78 4 22.22
GG 54 29 53.70 25 46.30 計 75 46 61.33 29 38.67
23個の SNPs相互間の関連の度合いを示す Cramer Vの値を求めた結果から、 STAT-2、 STAT3-21、 STAT3 - 25、 STAT3-52の識別能力は近似的に同程度と見なせるこ とが結果となった。また同様に、 STAT3-18、 STAT3-31の識別能力は同じであり、 IL- 4R-14、 IL-4R-18、 IL-4R-26の識別能力も同じと見なせることが結果となった。従って 、各グループからの代表として STAT3-2、 STAT3-18および IL-4R-14を多変量解析 に用いることにした。この結果、最終的に解析対象となった SNPsは 17個であった。
[0185] 肺転移有無が判明している 75症例から SNPs解析データの一部が欠測している 2症 例を除ぐ残りの 73症例を最終的な解析対象とした。
[0186] 肺転移有無をモデルに強制入力して、 17個の SNPsに Stepwiseロジスティック回帰分 析を適用した結果を、前記表 5と同様にして下記表 8に示す。
[0187] [表 8]
Figure imgf000046_0001
[0188] 表 8の Step 0は肺転移有無の影響を調整したうえでの SNPsの判別能力を示す。 P値 力 S0.05より小さい SNPsは肺転移有無の影響を調整した上でなお判別に有効なことを 示す。判別に有効とされた SNPsを列挙すると、 STAT3-2, STAT3-17, SSI3-1、 IL-4R -22、 PTGSl-4、 PTGS1-5である。この 6つのうち最大の判別能力を示した STAT3-2が モデルに組み込まれた。
[0189] Step 1における P値は、肺転移有無と STAT3-2とを組み合わせたときの残りの各 SNP sの判別能力を示す。ここで P値が 0.05より小さい SNPsは STAT3-2と独立な判別情報 を持つことが示唆される。それらを列挙すると SSI3-1、 IL-4R-22, ICSBP-38、 PTGSl- 3、 PTGSl- 4、 PTGSl- 5、 PTGS2- 12、 TAP2- 5である。中でも STAT3- 2と PTGSl- 4との 組み合わせが、肺転移有無の影響を調整した上で、最も判別能力が高いことが示唆 された。 STAT3-2と組み合わせて初めて有効性が示唆された SNPsは、 ICSBP-38、 P TGS1- 3、 PTGS2- 12、 TAP2- 5であった。
[0190] Step 2は、肺転移有無と STAT3-2、 PTGS1-4とを組み合わせたときの残りの各 SNPs の判別能力を示す。 STAT3-2および PTGS1-4と独立な情報を持ち、これらと組み合 わせて有効と示唆される変数は、 IL-4R-22, IRF2-67, ICSBP-38であった。 IRF2-67 はこの段階において初めて判別において有効な SNPであることが示唆された。
[0191] 表 8の結果をまとめると、原発巣および転移巣の腫瘍縮小を期待できる腎細胞癌患 者の識別マーカーであることを示唆する SNPsは、最有力の STAT3-2の他に、 Step 0 で有意となった STAT3- 17、 SSI3- 1、 IL- 4R- 22、 PTGS1- 4、 PTGS1- 5と、 Step 1で新 たに有意となった ICSBP-38、 PTGSl-3、 PTGS2-12、 TAP2-5、さらに Step 2で新たに 有意となった IRF2-67である。
[0192] 実施例 1および 2の解析結果から、腎細胞癌に対する IFNの治療効果 (腫瘍縮小効 果)と関連のある遺伝子多型として、 CR+PR群と PD群の比較においては、 STAT3-2、 IL- 4R- 29、 IL- 4R- 14、 IL- 4R- 22、 IRF2- 82、 TAP2- 5が、 CR+PR群と NC+PD群の比較 においては、 TAP2- 5、 STAT3- 17、 SSI3- 1、 IL- 4R- 22、 PTGS1- 4、 PTGS1- 5 ICSBP- 38、 PTGSl-3、 PTGS2-12, TAP2-5および IRF2-67が見出された。
[0193] CR+PR群と PD群の比較においては、 STAT3-2が最大の判別能力を示し、 CR+PR 群と Nひ PD群の比較においては、 IL-4R-29が最大の判別能力を示した。 [0194] なお、別実験において STAT3-3について STAT3-18と同等に連鎖していることが確 認できた。
[0195] 力べして、上記結果から腎細胞癌の IFN治療効果 (腫瘍縮小効果)との関連ある遺 伝子多型として、腎細胞癌患者力 の検体中のゲノム配列若しくはその相補鎖を調 整し、そしてゲノム配列もしくはその相補鎖の DNA配列を決定して、 STAT3-2、 STAT 3-3、 STAT3- 17、 STAT3- 18、 SSI3- 1、 IL-4R-22、 IRF2- 67、 IRF2- 82、 ICSBP- 38、 P TGS1- 3、 PTGS1- 4、 PTGS1- 5、 PTGS2- 12、 TAP2- 5、 IL- 4R- 14、 IL- 4R- 29、および I RF2-67から群力 選ばれる少なくとも 1つの遺伝子の遺伝子多型または遺伝子型の 存在を指標として、腎細胞癌患者に対するインターフ ロン療法の有効性を予測する 方法を提供することができる。
産業上の利用可能性
[0196] 本発明は、腎細胞癌の IFN治療効果 (腫瘍縮小効果)との関連ある遺伝子多型の 存在を検出することによって、該多型の存在を指標として腎細胞癌に対する IFN治療 反応性識別マーカーとして有用に利用できる。
配列表フリーテキスト
[0197] 配列番号: 1-32は、プライマー配列である。

Claims

請求の範囲
[1] 以下の G)〜Gv)の工程を含む、腎細胞癌患者に対するインターフ ロン治療による 腫瘍縮小を判定する方法;
(0腎細胞癌患者に由来する遺伝子サンプルを得る工程、
(ii)上記 (i)で得られる遺伝子サンプルについて、 STAT3遺伝子、 SSI3遺伝子、 IL-4R 遺伝子、 IRF2遺伝子、 ICSBP遺伝子、 PTGS1遺伝子、 PTGS2遺伝子および TAP2遺 伝子力 なる群力 選ばれる少なくとも 1つの遺伝子のゲノム DNAもしくはその相補鎖 を調製する工程、
(iii)当該ゲノム DNAもしくはその相補鎖の DNA配列を解析して、遺伝子多型を決定 する工程、
(iv)上記 (iii)で決定された少なくとも 1つの遺伝子多型をマーカーとして、腎細胞癌患 者に対するインターフェロン治療による腫瘍縮小を判定する工程。
[2] 遺伝子多型が、 STAT3遺伝子、 IL-4R遺伝子、 IRF2遺伝子および TAP2遺伝子から なる群力 選ばれる少なくとも 1つの遺伝子における多型である請求項 1に記載の、 腎細胞癌患者に対するインターフ ロン治療による腫瘍縮小を判定する方法。
[3] 遺伝子多型が、下記 (a)〜(p)力 なる群力 選ばれる少なくとも一つである請求項 1 に記載の腎細胞癌患者に対するインターフ ロン治療による腫瘍縮小を判定する方 法:
(a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目における 遺伝子型が C/Tまたは T/Tである遺伝子多型 (STAT3-2)、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目における 遺伝子型が C/Cである遺伝子多型 (STAT3-3)、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目における 遺伝子型が G/Gである遺伝子多型 (STAT3-17)、
(d)リファレンス SNP ID番号: rs2293153である STAT3(KCNH4)遺伝子の 4050541番目 における遺伝子型が C/Tである遺伝子多型 (STAT3-18)、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における遺 伝子型が A/Cである遺伝子多型 (SSI3-1)、 (Dリファレンス SNP ID番号: rsl805011である IL-4R(MUC245)遺伝子の 18686025番 目における遺伝子型が A/Aである遺伝子多型 (IL-4R-22)、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型 (IRF2-67)、
(h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における遺 伝子型が C/Cである遺伝子多型 (IRF2-82)、
(i)リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における遺 伝子型が A/Aまたは A/Cである遺伝子多型 (ICSBP-38)、
(j)リファレンス SNP ID番号: rsl213264である PTGSl遺伝子の 26793813番目における 遺伝子型が C/Tである遺伝子多型 (PTGSl-3)、
(k)リファレンス SNP ID番号: rsl213265である PTGSl遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型 (PTGSl-4)、
(1)リファレンス SNP ID番号: rsl213266である PTGSl遺伝子の 26794619番目における 遺伝子型が A/Gである遺伝子多型 (PTGSl-5)、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目におけ る遺伝子型が G/Gである遺伝子多型 (PTGS2-12)、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目における 遺伝子型が G/Gである遺伝子多型 (TAP2-5)、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目における 遺伝子型が C/Cである遺伝子多型 (IL-4R-14)、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目における 遺伝子型が T/Tである遺伝子多型 (IL-4R-29)。
[4] 遺伝子多型が、請求項 3の (a)、(£)、(h)、(n)、(o)および (p)の 、ずれかである請求項 3 に記載の腎細胞癌患者に対するインターフ ロン治療による腫瘍縮小を判定する方 法。
[5] インターフェロンが天然型インターフェロンアルファ、遺伝子組換え型インターフエ口 ンアルファおよび遺伝子組換え型インターフェロンガンマ力もなる群力も選ばれるい ずれかである請求項 1に記載の腎細胞癌患者に対するインターフ ロン治療による腫 瘍縮小を判定する方法。
[6] 遺伝子多型の決定が、ヌクレオチド直接塩基配列決定法、対立遺伝子特異的オリ ゴヌクレオチド (ASO)-ドットプロット分析、一塩基プライマー伸長法、 PCR-単鎖高次 構造多型 (SSCP)分析、 PCR-制限酵素断片長多型 (RFLP)分析、インベーダー法、定 量的リアルタイム PCR検出法および質量分析計を用いた遺伝子多型検出法 (mass ar ray)力 なる群力 選ばれる少なくとも 1つの方法により行われる請求項 1に記載の方 法。
[7] 遺伝子多型の決定が、インベーダー法またはヌクレオチド直接配列決定法により行 われる請求項 6に記載の方法。
[8] 遺伝子多型の決定が、 PCR-RFLP分析により行われる請求項 6に記載の方法。
[9] PCR-RFLP分析力 制限酵素 Msplを用いてヒト STAT3遺伝子の rs2293152のイント ロンの 4204027番目の Gから Cへの変異を検出するものである請求項 8に記載の方法
[10] 遺伝子多型の決定が、下記 (a)- (p)力 なる群力も選ばれる少なくとも 1つのオリゴヌ クレオチドを用いて行われる請求項 6に記載の方法;
(a)リファレンス SNP ID番号: rsl905341である STAT3遺伝子の 4243095番目における 遺伝子型が C/Tまたは T/Tである遺伝子多型部位を含む少なくとも 10の連続する配 列のオリゴヌクレオチド、
(b)リファレンス SNP ID番号: rs4796793である STAT3遺伝子の 4264926番目における 遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(c)リファレンス SNP ID番号: rs2293152である STAT3遺伝子の 4204027番目における 遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(d)リファレンス SNP ID番号: rs2293153である STAT3(KCNH4)遺伝子の 4050541番目 における遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列 のオリゴヌクレオチド、
(e)リファレンス SNP ID番号: rs2280148である SSI3遺伝子の 10246541番目における遺 伝子型が A/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴヌク レオチド、
(Dリファレンス SNP ID番号: rsl805011である IL-4R遺伝子の 18686025番目における 遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(g)リファレンス SNP ID番号: rs2797507である IRF2遺伝子の 17736877番目における 遺伝子型が A/Aである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(h)リファレンス SNP ID番号: rs796988である IRF2遺伝子の 17744613番目における遺 伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴヌ クレオチド、
(0リファレンス SNP ID番号: rs2292982である ICSBP遺伝子の 390141番目における遺 伝子型が A/Aまたは A/Cである遺伝子多型部位を含む少なくとも 10の連続する配列 のオリゴヌクレオチド、
(j)リファレンス SNP ID番号: rsl213264である PTGS1遺伝子の 26793813番目における 遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(k)リファレンス SNP ID番号: rsl213265である PTGS1遺伝子の 26794182番目におけ る遺伝子型が C/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(1)リファレンス SNP ID番号: rsl213266である PTGS1遺伝子の 26794619番目における 遺伝子型が A/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(m)リファレンス SNP ID番号: rs2745557である PTGS2遺伝子の 15697329番目におけ る遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリ ゴヌクレ才チド、
(n)リファレンス SNP ID番号: rs2071466である TAP2遺伝子の 23602539番目における 遺伝子型が G/Gである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレ才チド、
(0)リファレンス SNP ID番号: rs2234898である IL-4R遺伝子の 18686068番目における 遺伝子型が C/Cである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレオチド、および
(P)リファレンス SNP ID番号: rsl801275である IL-4R遺伝子の 18686553番目における 遺伝子型が T/Tである遺伝子多型部位を含む少なくとも 10の連続する配列のオリゴ ヌクレオチド。
遺伝子多型検出用プライマー対が、下記 (a)- (p)に記載のものである請求項 6に記 載の方法;
(a)配列番号: 1および 17で示される各配列のオリゴヌクレオチド対、
(b)配列番号: 2および 18で示される各配列のオリゴヌクレオチドド対、
(c)配列番号: 3および 19で示される各配列のオリゴヌクレオチドド対、
(d)配列番号: 4および 20で示される各配列のオリゴヌクレオチドド対、
(e)配列番号: 5および 21で示される各配列のオリゴヌクレオチド対、
(D配列番号: 6および 22で示される各配列のオリゴヌクレオチド対、
(g)配列番号: 7および 23で示される各配列のオリゴヌクレオチド対、
(h)配列番号: 8および 24で示される各配列のオリゴヌクレオチド対、
(0配列番号: 9および 25で示される各配列のオリゴヌクレオチド対、
(j)配列番号: 10および 26で示される各配列のオリゴヌクレオチド対、
(k)配列番号: 11および 27で示される各配列のオリゴヌクレオチド対、
(1)配列番号: 12および 28で示される各配列のオリゴヌクレオチド対、
(m)配列番号: 13および 29で示される各配列のオリゴヌクレオチド対、
(n)配列番号: 14および 30で示される各配列のオリゴヌクレオチド対、
(0)配列番号: 15および 31で示される各配列のオリゴヌクレオチド対、および
(P)配列番号: 16および 32で示される各配列のオリゴヌクレオチド対。
PCT/JP2005/019491 2004-10-28 2005-10-24 腎細胞癌に対するインターフェロン治療反応性識別マーカー WO2006046505A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2585244A CA2585244C (en) 2004-10-28 2005-10-24 Identification marker responsive to interferon therapy for renal cell cancer
US11/666,056 US7838229B2 (en) 2004-10-28 2005-10-24 Identification marker responsive to interferon therapy for renal cell cancer
JP2006543126A JP5078358B2 (ja) 2004-10-28 2005-10-24 腎細胞癌に対するインターフェロン治療反応性識別マーカー
CN200580037257.3A CN101048504B (zh) 2004-10-28 2005-10-24 对干扰素治疗肾细胞癌反应的鉴定标记
EP05795708A EP1813673B1 (en) 2004-10-28 2005-10-24 Identification marker responsive to interferon therapy for renal cell cancer
HK07111969.7A HK1106550A1 (en) 2004-10-28 2007-11-05 Identification marker responsive to interferon therapy for renal cell cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-314160 2004-10-28
JP2004314160 2004-10-28

Publications (1)

Publication Number Publication Date
WO2006046505A1 true WO2006046505A1 (ja) 2006-05-04

Family

ID=36227744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019491 WO2006046505A1 (ja) 2004-10-28 2005-10-24 腎細胞癌に対するインターフェロン治療反応性識別マーカー

Country Status (8)

Country Link
US (1) US7838229B2 (ja)
EP (3) EP2453015A1 (ja)
JP (2) JP5078358B2 (ja)
CN (3) CN102242196A (ja)
CA (1) CA2585244C (ja)
ES (1) ES2364157T3 (ja)
HK (1) HK1106550A1 (ja)
WO (1) WO2006046505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099570A (ja) * 2006-10-17 2008-05-01 Osaka Industrial Promotion Organization 仲介ポリヌクレオチド

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013056396A1 (zh) * 2011-10-19 2013-04-25 深圳华大基因科技有限公司 用于肾癌诊断评估的序列、使用方法及其应用
JP2013180090A (ja) 2012-03-02 2013-09-12 Gc Corp 下顎用の印象用トレー
JP5876356B2 (ja) 2012-03-30 2016-03-02 株式会社ジーシー 局部用印象用トレー
JP5778611B2 (ja) 2012-03-30 2015-09-16 株式会社ジーシー 上顎用の印象用トレー

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399491A (en) 1989-07-11 1995-03-21 Gen-Probe Incorporated Nucleic acid sequence amplification methods
WO1998023774A1 (en) 1996-11-29 1998-06-04 Third Wave Technologies, Inc. Fen-1 endonucleases, mixtures and cleavage methods
JP2825976B2 (ja) 1990-08-06 1998-11-18 エフ.ホフマン ― ラ ロシュ アーゲー 均質検定システム
JP2000279197A (ja) 1999-03-31 2000-10-10 Genome Science Laboratories Co Ltd Hivの変異の検出方法
US6159693A (en) 1998-03-13 2000-12-12 Promega Corporation Nucleic acid detection
JP2001136973A (ja) 1999-11-16 2001-05-22 Otsuka Pharmaceut Co Ltd Irf−1遺伝子異常の検出方法
JP2003088382A (ja) 2001-09-18 2003-03-25 Toshiba Corp インターフェロンを投与されるべき個体においてインターフェロン療法の有効性を予測する方法、その方法をコンピュータにより実行させるためのプログラム、インターフェロン感受性に関連する多型部位の遺伝子型を検出するための核酸プローブ、およびその核酸プローブを具備する塩基配列検出用チップ
JP2003339380A (ja) 2002-05-24 2003-12-02 Toshiba Corp インターフェロンαレセプター2型遺伝子の多型およびその使用
JP2004507253A (ja) 2000-08-28 2004-03-11 エフ.ホフマン−ラ ロシュ アーゲー 患者の腫瘍治療に対する応答能の決定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825976A (en) 1956-05-28 1958-03-11 Frank J Radencic Repeat apparatus for holding negatives used in lithography
JP2002125683A (ja) * 2000-10-27 2002-05-08 Tokyoto Igaku Kenkyu Kiko インターフェロンの有効性を予測する方法並びにそれに用いられるプライマー及びプローブ
CN1286985C (zh) 2001-03-27 2006-11-29 株式会社东芝 与疾病相关的核酸
AU2003288924A1 (en) * 2002-10-08 2004-05-04 The Brigham And Women's Hospital, Inc. Diagnostic assay and related products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399491A (en) 1989-07-11 1995-03-21 Gen-Probe Incorporated Nucleic acid sequence amplification methods
JP2825976B2 (ja) 1990-08-06 1998-11-18 エフ.ホフマン ― ラ ロシュ アーゲー 均質検定システム
WO1998023774A1 (en) 1996-11-29 1998-06-04 Third Wave Technologies, Inc. Fen-1 endonucleases, mixtures and cleavage methods
JP2001526526A (ja) 1996-11-29 2001-12-18 サード ウェーブ テクノロジーズ,インコーポレーテッド Fen−1エンドヌクレアーゼ、混合物、および開裂方法
US6159693A (en) 1998-03-13 2000-12-12 Promega Corporation Nucleic acid detection
JP2000279197A (ja) 1999-03-31 2000-10-10 Genome Science Laboratories Co Ltd Hivの変異の検出方法
JP2001136973A (ja) 1999-11-16 2001-05-22 Otsuka Pharmaceut Co Ltd Irf−1遺伝子異常の検出方法
JP2004507253A (ja) 2000-08-28 2004-03-11 エフ.ホフマン−ラ ロシュ アーゲー 患者の腫瘍治療に対する応答能の決定方法
JP2003088382A (ja) 2001-09-18 2003-03-25 Toshiba Corp インターフェロンを投与されるべき個体においてインターフェロン療法の有効性を予測する方法、その方法をコンピュータにより実行させるためのプログラム、インターフェロン感受性に関連する多型部位の遺伝子型を検出するための核酸プローブ、およびその核酸プローブを具備する塩基配列検出用チップ
JP2003339380A (ja) 2002-05-24 2003-12-02 Toshiba Corp インターフェロンαレセプター2型遺伝子の多型およびその使用

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"J. Jpn. Soc. Cancer Ther.", vol. 21, June 1986, JAPAN SOCIETY OF CLINICAL ONCOLOGY, article "Guidelines to Evaluate the response to Chemotherapy in Solid Tumors", pages: 929 - 924
"Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS
"Rules for Renal Carcinoma", April 1999
"Zoku Seikagaku Jikken Koza: Idenshi Kenkyuho I, II, III", 1986, THE JAPANESE BIOCHEMICAL SOCIETY
BASTURK B ET AL: "Cytokine gene polymorphisms as potential risk and protective factors in renal cell carcinoma.", CYTOKINE., vol. 30, no. 1, April 2005 (2005-04-01), pages 41 - 45, XP004797653 *
BOTSTEIN, D. R. ET AL., AM. J. HUM. GEN., vol. 32, 1980, pages 314 - 331
BROOKES, A. J.: "The essence of SNPs", GENE, USA, vol. 234, 1999, pages 177 - 186
CARGILL, M ET AL.: "Characterization of single-nucleotide polymorphisms in coding regions of human genes", NATURE GENET., USA, vol. 22, 1999, pages 231 - 238
COMPTOM, J., NATURE, vol. 650, 1991, pages 91 - 92
CONNER, B. J. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 80, 1983, pages 278 - 282
EUR. J. BIOCHEM., vol. 138, 1984, pages 9
EVANS, W. E., BELLING, M. V.: "Pharmacogenomics: translating functional genomics into rational therapeutics", SCIENCE, USA, vol. 286, 1999, pages 487 - 491
FINKELSTEIN, J. ET AL., GENOMICS, vol. 7, 1990, pages 167 - 172
FRANKZE A ET AL: "HLA phenotype and cytokine-induced tumor control in advanced renal cell cancer.", CANCER BIOTHER RADIPHARM., vol. 16, no. 5, October 2001 (2001-10-01), pages 401 - 409, XP002993326 *
KALLIONEIMI, A. ET AL., SCIENCE, vol. 258, 1992, pages 818 - 821
L. D. FISHER, G. V. BELLE: "Biostatistics, A Methodology for the Health Sciences", 1993, JOHN WILEY & SONS, INC., pages: 638 - 647
L. D. FISHER, G. V. BELLE: "Biostatistics, A Methodology for the Health Sciences", vol. 278, 1993, JOHN WILEY & SONS, INC.
LENGAUER, C. ET AL., CANCER RES., vol. 52, 1992, pages 2590 - 2596
LYAMICHEV, V. ET AL., NAT. BIOLTECHNOL., vol. 17, no. 3, 1999, pages 292 - 296
LYER ET AL., J. AME. CHEM. SOC., vol. 112, 1990, pages 1253 - 1254
MAXIM-GILBERT, METHODS IN ENZYMOLOGY, vol. 65, 1980, pages 499
NOBLE ET AL., NUC. ACIDS RES., vol. 12, 1984, pages 3387 - 3403
NUCL. ACIDS RES., vol. 21, 1993, pages 3159 - 3166
ORITA, M., IWAHARA, H. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 86, 1989, pages 2776 - 2770
PROC. NATL. ACAD. SCI., U.S.A., vol. 78, 1981, pages 6613
PUSCH, W., WURMBACH, JH., THIELE, H., KOSTRZEWA, M.: "MA.LDI-TOF mass spectrometxy-based SNP genotyping", PHARMACOGENOMICS, vol. 3, no. 4, 2002, pages 537 - 48
ROWLEY, J. D. ET AL., BLOOD, vol. 93, 1999, pages 2038 - 2042
SAIKI, R.K., BUGAWAN, T.L. ET AL., NATURE, vol. 324, 1986, pages 163 - 166
SAMBROOK, J. ET AL.: "Molecular Cloning a Laboratory Manual.", 1989, COLD SPRING HARBOR LABORATORY PRESS
SANGER ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 74, 1977, pages 5463 - 5467
SCHLAAK JF ET AL: "Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays.", J BIOL CHEM., vol. 277, no. 51, 20 December 2002 (2002-12-20), pages 49428 - 49437, XP002258300 *
SCHLAAK, J. F.: "Cell-type and Donor-specific Transcriptional Responses to Interferon-a", J. BIOL. CHEM., vol. 277, no. 51, 2002, pages 49428 - 49437
SCIENCE, vol. 222, 1983, pages 778
See also references of EP1813673A4
SOUTHERN, E. M., J. MOL. BIOL., vol. 98, 1975, pages 503 - 517
TAKAHASHI, E. ET AL., HUM. GENET., vol. 86, 1990, pages 1416
WALKER, G. T., LITTLE, M. C. ET AL., PROC. NATL. ACAD. SCI., U.S.A., vol. 89, 1992, pages 392 - 396

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099570A (ja) * 2006-10-17 2008-05-01 Osaka Industrial Promotion Organization 仲介ポリヌクレオチド

Also Published As

Publication number Publication date
CA2585244C (en) 2015-02-17
EP1813673A1 (en) 2007-08-01
CN101048504B (zh) 2011-06-29
ES2364157T3 (es) 2011-08-26
JP5078358B2 (ja) 2012-11-21
EP1813673B1 (en) 2011-05-11
EP2354228A8 (en) 2012-03-14
CA2585244A1 (en) 2006-05-04
CN101048504A (zh) 2007-10-03
HK1106550A1 (en) 2008-03-14
US7838229B2 (en) 2010-11-23
EP2354228A3 (en) 2011-11-02
US20080199859A1 (en) 2008-08-21
EP1813673A4 (en) 2009-07-15
EP2354228A2 (en) 2011-08-10
JPWO2006046505A1 (ja) 2008-05-22
CN102242196A (zh) 2011-11-16
EP2453015A1 (en) 2012-05-16
CN101684501A (zh) 2010-03-31
JP2011217753A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
Cunningham et al. Pharmacogenomics of responsiveness to interferon IFN‐β treatment in multiple sclerosis: A genetic screen of 100 type I interferon‐inducible genes
US20140186826A1 (en) Method of judging risk for onset of drug-induced granulocytopenia
JP5078358B2 (ja) 腎細胞癌に対するインターフェロン治療反応性識別マーカー
KR101359782B1 (ko) 간세포암종의 재발 진단용 단일 염기 다형성
US20100093549A1 (en) Polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
KR101100437B1 (ko) 단일염기 다형을 포함하는 대장암과 관련된 폴리뉴클레오티드, 그를 포함하는 마이크로어레이 및 진단 키트 및 그를 이용한 대장암의 진단방법
KR101141185B1 (ko) 치료의 제안된 효능 검출용 마커
JP2006288279A (ja) 出血時間延長傾向判定方法
JP4632712B2 (ja) 薬剤起因性顆粒球減少症発症リスク判定法
KR20110073799A (ko) 항암제 감수성 예측용 snp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543126

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11666056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2585244

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580037257.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795708

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005795708

Country of ref document: EP