WO2006046298A1 - 衛星を用いた相対測位方法および相対測位システム - Google Patents

衛星を用いた相対測位方法および相対測位システム Download PDF

Info

Publication number
WO2006046298A1
WO2006046298A1 PCT/JP2004/016112 JP2004016112W WO2006046298A1 WO 2006046298 A1 WO2006046298 A1 WO 2006046298A1 JP 2004016112 W JP2004016112 W JP 2004016112W WO 2006046298 A1 WO2006046298 A1 WO 2006046298A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
relative
relative position
positioning
mobile station
Prior art date
Application number
PCT/JP2004/016112
Other languages
English (en)
French (fr)
Inventor
Yukihiro Terada
Keiji Ito
Takenori Abe
Takashi Fujita
Original Assignee
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation filed Critical Hitachi Zosen Corporation
Priority to KR1020077005531A priority Critical patent/KR101067416B1/ko
Priority to PCT/JP2004/016112 priority patent/WO2006046298A1/ja
Priority to US11/666,254 priority patent/US7616152B2/en
Priority to CA2585141A priority patent/CA2585141C/en
Priority to JP2006542175A priority patent/JPWO2006046298A1/ja
Publication of WO2006046298A1 publication Critical patent/WO2006046298A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the present invention relates to a relative positioning method and a relative positioning system for detecting a three-dimensional position by relative positioning while using radio waves of a plurality of satellite forces.
  • a mobile station As a satellite positioning technology that receives and analyzes radio waves from multiple satellite powers and detects the position of the receiver (hereinafter referred to as a mobile station!), The positioning error is large but the mobile station alone There are two types: a single positioning method and a relative positioning method in which the position of the mobile station is obtained with high accuracy using the correction data of the reference station force whose position is known.
  • the positioning accuracy is limited by the linear distance between the receivers, that is, the so-called baseline length.
  • the baseline length is limited to about 100 km or less, and errors can be offset within this range, so it can be expected that the positioning accuracy of the relative positioning method will be improved.
  • the limit of the base line length is as short as about 10km or less, but since the carrier phase that is sufficiently shorter than the CZA code is used, Positioning accuracy is greatly improved [see, for example, the revised GPS-satellite precise positioning system (published by the Japan Surveying Association)].
  • the present invention provides a relative positioning method and phase using a satellite that can use relative positioning even for a mobile station that is outside the range of a baseline length that allows relative positioning.
  • the purpose is to provide a positioning system.
  • the relative positioning method using the satellite of the present invention comprises a relative network in which radio waves from a satellite are received by a reference station and a plurality of mobile stations, and relative positioning is performed between predetermined stations.
  • a positioning method for measuring a reference relative position which is a relative position of each mobile station as seen from a station, wherein at least one of the above mobile stations is arranged so as to exceed a base line limit length capable of relative positioning with the reference station.
  • the interval between the predetermined mobile stations should be less than the baseline limit length that allows relative positioning
  • a reference relative position calculation step for calculating a reference relative position between the reference station and a predetermined mobile station
  • a relative position calculation step between mobile stations for calculating a relative position between mobile stations, which is a relative position between the predetermined stations;
  • a reference relative position that is the relative position of each mobile station as seen from the reference station power by constructing a relative positioning network that receives radio waves from the satellite at the reference station and multiple mobile stations and performs relative positioning between predetermined stations.
  • At least one of the above mobile stations is arranged so as to exceed the base line limit length that can be measured relative to the reference station, and the interval between the predetermined mobile stations is set to be equal to or less than the base line limit length that can be used for relative positioning.
  • Each station is provided with a satellite positioning device that receives radio waves of satellite power, and each station is provided with a wireless communication device that transmits and receives data to and from a predetermined station.
  • Relative position calculation unit that calculates the relative position between the predetermined stations, and relative positioning
  • a reference relative position calculation unit for obtaining a reference relative position of the other mobile station based on the reference relative position of one station to be performed is provided.
  • the reference relative position calculation unit in the relative positioning system is arranged at the reference station, and the reference relative position of the mobile station is sequentially obtained.
  • each mobile station in the relative positioning system is provided with a reference relative position calculation unit that calculates the reference relative position.
  • the relative positioning in the relative positioning system is performed using a carrier phase.
  • the reference relative position of each mobile station with respect to the reference station is sequentially determined using the reference relative position of the mobile station that has made a relative position with the reference station. Therefore, the relative position of the mobile station that is more than the limit length of the base line where relative positioning is possible can be obtained with high accuracy by relative positioning via the mobile station arranged between them.
  • FIG. 1 is a perspective view showing a schematic overall configuration of a relative positioning system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a reference station in the relative positioning system.
  • FIG. 3 is a block diagram showing a schematic configuration of a mobile station in the relative positioning system.
  • FIG. 4 is a block diagram showing a schematic configuration of a positioning arithmetic apparatus provided in the mobile station.
  • FIG. 5 is a flowchart for explaining a relative positioning method in the relative positioning system.
  • FIG. 6 Positioning performance provided in the mobile station of the relative positioning system according to Embodiment 2 of the present invention. It is a block diagram which shows schematic structure of an arithmetic unit.
  • FIG. 7 is a flowchart for explaining a relative positioning method in the relative positioning system.
  • FIG. 8 is a block diagram showing a schematic configuration of a reference station according to a modification of the relative positioning system of each embodiment.
  • FIG. 9 is a block diagram showing a schematic configuration of a positioning calculation apparatus provided in a reference station according to a modification of the relative positioning system of each embodiment.
  • a relative positioning method using a satellite a so-called real-time kinematic method using a GPS (Global Orientation System) satellite is used.
  • GPS Global Orientation System
  • the relative positioning system includes a reference station 1 fixed on the land whose three-dimensional absolute position is known, and a sea area where the displacement of the sea surface viewed from the reference station 1 is to be detected. And a plurality of mobile stations 3 respectively provided on a plurality of floating bodies (buoys) 2 moored from the center of the reference station 1 offshore and sequentially moored at predetermined intervals. 1 and 3 have a function to receive the radio wave from GPS satellite 4 and obtain the relative position of each mobile station 3 using the real-time kinematic method (which uses the carrier wave phase, hereinafter referred to as the RTK method). Being sung.
  • the RTK method which uses the carrier wave phase
  • the nth mobile station 3Z For each of the mobile stations 3, the one closest to the reference station 1, the first mobile station 3A, the next closest, the second mobile station 3B, the third mobile station 3C,. ⁇ The farthest is called the nth mobile station 3Z.
  • the stations are arranged at predetermined intervals, for example, the reference station 1 and the first station 1 Mobile station 3A, 1st mobile station 3A and 2nd mobile station 3B, 2nd mobile station 3B and 3rd mobile station 3C, ... between the n-1st mobile station 3Y and the nth mobile station 3Z
  • a relative positioning network that is positioned below the base line length that can be measured by the RTK method (hereinafter referred to as the base line limit length, for example, 10 km) and that has a reference station that carries out relative positioning between the stations as an upstream.
  • the base line limit length for example, 10 km
  • the mobile station 3 farthest from the reference station 1 is provided on the floating body 2 at a position exceeding the base line limit length from the reference station 1.
  • the intervals between the stations may be the same length or different lengths. In short, it may be less than the baseline limit length that can be measured by the RTK method.
  • the reference station 1 receives a GPS satellite 4 radio wave via an antenna 11a and measures the positioning satellite data.
  • GPS receiver an example of a satellite positioning device
  • a wireless communication device consisting of a transmitter and a receiver that transmits and receives various data to and from other mobile stations 3 including at least the satellite data for positioning measured by the GPS receiver 11 12 are provided.
  • each mobile station 3 has a GPS receiver (an example of a satellite positioning device) 21 that receives radio waves from a GPS satellite 4 and measures satellite data for positioning.
  • a wireless communication device that transmits and receives data to and from other stations 1 and 3 (consisting of transmitter 22a and receiver 22b as shown in FIG. 4) 22 and data from other stations 1 and 3
  • a positioning calculation device 23 that performs relative positioning by the RTK method based on the same time data of the own station, that is, obtains the relative displacement amount of the other station with respect to one station.
  • the positioning calculation device 23 provided in the mobile station 3 will be described in detail.
  • the positioning calculation device 23 includes satellite data for positioning (carrier phase value, distance between the antenna of the satellite and the receiver (pseudo distance), A data storage unit 31 for storing the orbit information and the time system data (GPS time) adopted in the satellite positioning system, for example, including the elevation angle and azimuth angle of the receiving satellite), and the above GPS Positioning satellite data obtained by the receiver 21 and positioning station data from the mobile station (hereinafter also referred to as the previous station) 3 of the reference station 1 or one before (closer to the reference station of the network (upstream side)) Relative position calculation unit 32 that inputs the temporary fixed position (hereinafter referred to as temporary coordinates) of the previous station via the receiver 22b and calculates the relative position with respect to the previous station by the RTK method.
  • satellite data for positioning carrier phase value, distance between the antenna of the satellite and the receiver (pseudo distance)
  • GPS time time system data
  • Relative position calculation unit 32 that inputs the temporary fixed position (hereinafter referred to as temporary coordinate
  • the absolute position calculation unit 33 for calculating the absolute position of the mobile station 3 by inputting the relative position obtained by the relative position calculation unit 32 and the absolute position of the previous station, and the data storage unit 31
  • the received mobile station 3, that is, its own positioning satellite data, its own temporary coordinate, and the absolute position obtained by the absolute position calculation unit 33 are input and transmission data for transmission to the next mobile station 3 is transmitted.
  • a transmission data creation unit 34 to be created.
  • the transmission data created by the transmission data creation unit 34 is transmitted to the next mobile station 3 via the transmitter 22a.
  • the positioning satellite data for example, orbit information, elevation angle, and direction angle are received by the two stations that perform relative positioning, respectively, and both the elevation angle and azimuth angle are between the two stations. Since it is almost the same, when data is acquired only by the GPS receiver 21 of one of the stations, the data can be transmitted to the other and used.
  • the absolute position calculation unit 33 becomes the reference relative position calculation unit.
  • the previous station is a mobile station
  • the previous station force reference relative position is input to this reference relative position calculation unit.
  • the satellite data for positioning of the reference station 1 on land, the temporary coordinates, and the absolute position thereof are transmitted to the first mobile station 3A at sea (step 1).
  • the relative position (reference relative position) between the reference station 1 and the first mobile station 3A in which the relative local position based on the RTK method was also used to see the reference local force of the temporary coordinates.
  • the absolute position of the first mobile station 3A is obtained using the absolute position (absolute coordinates) and relative position of the reference station 1 (step 3).
  • the first mobile station 3 uses the temporary coordinates and the positioning satellite data, the first mobile station 3
  • Relative positioning is performed by RTK method between A and the second mobile station 3B.
  • the relative position of the second mobile station 3B (relative position between the mobile stations) is obtained (step 5; relative position calculation step between mobile stations).
  • step 6 the difference between the temporary coordinates of the first mobile station 3A and its absolute position (true coordinate value) is obtained and added to the relative position between the mobile stations obtained in step 5, and the second Find the absolute position of mobile station 3B (step 6; displacement step).
  • the absolute position of the reference station is given! /, So it is converted to the absolute position in step 6.
  • the temporary coordinates of the first mobile station 3A are The difference from the reference relative position is obtained, and the reference relative position of the second reference station 3B is obtained.
  • the absolute position does not necessarily have to be obtained.
  • a relative network is constructed in which radio waves from a satellite are received by a reference station and a plurality of mobile stations, and relative positioning is performed between predetermined stations.
  • a positioning method that measures the reference relative position, which is the relative position of each mobile station as seen by the reference station power, with at least one of the above mobile stations having a baseline limit length that allows relative positioning with the reference station.
  • the reference relative position calculating step for calculating the reference relative position between the reference station and the predetermined mobile station so that the distance between the predetermined mobile stations is less than the base line limit length that allows relative positioning.
  • a mobile station relative position calculation step (corresponding to step 2) for calculating the relative position between the mobile stations, which is a relative position between the predetermined stations, and relative positioning with the mobile station that has obtained the reference relative position.
  • Conversion step of converting the location, the reference relative position using the reference relative position of the target station (Step 6 Equivalent).
  • the reference station 1 whose absolute position is known is arranged on land, and is moved from the reference station 1 at a predetermined interval, that is, to be equal to or less than the baseline limit length that allows relative positioning by the RTK method.
  • Station 3 is placed sequentially on the sea surface, and the relative position between these stations is obtained by the RTK method, and the absolute position of each mobile station relative to the reference station is obtained using this relative position. Therefore, the absolute position of the mobile station 3 that is more than the baseline limit length that allows relative positioning can be accurately obtained by the RTK method via the mobile station 3 placed between them.
  • Embodiment 1 the force used to use temporary coordinates when performing relative positioning between stations.
  • Embodiment 2 the absolute values of the reference station and the previous station are used. Therefore, in the following description, only the part will be described, and the same components as those in the embodiment value 1 will be denoted by the same reference numerals and description thereof will be omitted. To do.
  • the absolute position calculation unit 32 ′ receives the previous station force positioning satellite data and the absolute position of the previous station.
  • the absolute position calculation unit 32 ⁇ directly obtains the absolute position of the mobile station 3 to be positioned. Therefore, the absolute position calculation unit 32 ⁇ in the second embodiment is obtained by incorporating the function of the absolute position calculation unit 33 into the relative position calculation unit 32 shown in the first embodiment.
  • the satellite data for positioning of the ground reference station 1 and its absolute position are transferred to the first shift at sea. Transmit to mobile station 3A (step 1).
  • the first mobile station 3 performs relative positioning by the RTK method between the reference station 1 and the first mobile station 3A to obtain the relative position (step 2).
  • the absolute position of the first mobile station 3A and the positioning satellite data are transmitted to the second mobile station 3B (step 3).
  • the second mobile station 3B performs relative positioning by the RTK method between the first mobile station 3A and the second mobile station 3B using the positioning satellite data, and obtains the absolute position. (Step 4).
  • the force described to place the positioning calculation device in each mobile station and obtain the absolute position of each mobile station. It is sent to the observation station (which may also serve as the reference station) together with the station number, and is managed centrally.
  • a positioning calculation device is arranged in the reference station, and positioning satellite data measured by each mobile station is transmitted to and stored in the reference station, and the absolute position of each mobile station is determined by the positioning calculation device of the reference station. Let's ask for it.
  • transmission data between the mobile stations is transmitted to the reference station, and the data of each mobile station is stored in the reference station.
  • the absolute position calculation unit is used to obtain the absolute position of each mobile station using this data. It is done.
  • the reference station 1 is provided with a positioning calculation device 13, and the positioning calculation device 13 includes at least the GPS receiver 11 as shown in FIG. Positioning satellite data and a data storage unit 41 for storing the positioning satellite data received by each mobile station 3 via the receiver 12b of the wireless communication device 12, and the positioning data stored in the data storage unit 41
  • An absolute position calculation unit 42 for inputting satellite data and calculating the absolute position of each mobile station 3 with respect to the reference station 1 is provided.
  • data transmission / reception between stations has been described as being performed by a wireless communication device. However, in cases where the line of sight is poor and terrestrial communication cannot be performed. If you use a communication satellite to send and receive data.
  • the reference station is arranged on land, but may be arranged on a floating body floating on the sea surface.
  • the reference station is arranged on land and the mobile station is arranged on the sea surface to measure waves, tsunamis, and the like.
  • both the reference station and the mobile station are For example, it can be used as a seismometer by placing it on land.
  • the satellite positioning by GPS is exemplified. However, if there is a satellite positioning method having the same principle or will appear in the future, the present invention can be applied.
  • the relative positioning by the real-time kinematics method is used even for a mobile station provided at a position exceeding the base line limit length that can be measured relative to the reference station.
  • the tsunami can be measured offshore to predict the arrival of the tsunami, and damage caused by the tsunami Can be used for mitigation. In some cases, it can also be used as a seismometer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

 GPS衛星4からの電波を、絶対位置が既知である基準局1と複数の移動局3とで受信して、所定の局同士間で相対測位を行うことにより各移動局3の位置を測定する測位システムであって、各移動局3のうち少なくとも一つを、基準局1と相対測位可能な基線制限長を超えるように配置するとともに、所定の移動局3同士の間隔が相対測位可能な基線制限長以下となるようになし、上記各局1,3にそれぞれGPS衛星4からの電波を受信するGPS受信機11,21を設け、上記各局に所定の局とデータの送受信を行う無線通信装置12,22を設け、上記所定の局同士間の相対位置を演算する相対位置演算部32、および相対測位を行う一方の局の絶対位置に基づき他方の局の絶対位置を求める絶対位置演算部33を具備したものである。

Description

明 細 書
衛星を用いた相対測位方法および相対測位システム
技術分野
[0001] 本発明は、複数の衛星力 の電波を用いるとともに相対測位により三次元位置を検 出する相対測位方法および相対測位システムに関するものである。
背景技術
[0002] 複数の衛星力もの電波を受信し解析し、その受信機 (以下、移動局と!、う)の位置を 検出する衛星測位技術としては、計測誤差が大きいが当該移動局だけで測位を行う 単独測位方式と、位置が既知である基準局力 の補正データを用いて、移動局の位 置を精度良く求める相対測位方式とがある。
[0003] ところで、相対測位方式にぉ 、ては、その測位精度は受信機間の直線距離、所謂 、基線長の制限を受けることになる。
[0004] 例えば、 GPS (全地球方位システム)における CZAコードを用いて単独で測位を 行うとともに補正データを用いて補正する相対測位方式では、衛星の軌道情報の不 確かさ、電離層と大気による誤差等がほぼ同じである場合の基線長の制限は約 100 km以下であり、この範囲についは誤差等を相殺できるので、相対測位方式での測 位精度の向上を期待し得る。
[0005] 一方、搬送波位相を用いて基線を解析し測位精度の向上を図る方式においては、 基線長の制限は約 10km以下と短いが、 CZAコードよりも十分短い搬送波位相を利 用するため、測位精度が格段に向上する [例えば、新訂版 GPS-人工衛星による精 密測位システム (社団法人日本測量協会発行)参照]。
発明の開示
発明が解決しょうとする課題
[0006] ところで、上述した相対測位方式は、いずれも基準局力もの基線長の制限距離内 が利用し得る範囲であって、基準局が整備されていない地域では、移動局が陸、海
、空のどこにあろうと、相対測位を利用することができず、したがって精度良く位置を 計測することができな力つた。 [0007] そこで、上記課題を解決するため、本発明は、相対測位可能な基線長の範囲外に ある移動局にっ 、ても、相対測位を利用し得る衛星を用いた相対測位方法および相 対測位システムを提供することを目的とする。
課題を解決するための手段
[0008] 本発明の衛星を用いた相対測位方法は、衛星からの電波を、基準局と複数の移動 局とで受信して、所定の局同士間で相対測位を行う相対ネットワークを構成し、基準 局から見た各移動局の相対位置である基準相対位置を測定する測位方法であって 上記各移動局のうち少なくとも一つを、基準局と相対測位可能な基線制限長を超 えるように配置するとともに、所定の移動局同士の間隔が相対測位可能な基線制限 長以下となるようになし、
基準局と所定の移動局との間で基準相対位置を演算する基準相対位置演算ステ ップと、
上記所定の局同士間で相対位置である移動局間相対位置を演算する移動局間相 対位置演算ステップと、
基準相対位置を求めた移動局と相対測位を行った移動局の移動局間相対位置を
、相手局の基準相対位置を用いて基準相対位置に変換する変換ステップとを具備し た方法である。
[0009] また、本発明の相対測位システムは、
衛星からの電波を、基準局と複数の移動局とで受信して、所定の局同士間で相対 測位を行う相対測位ネットワークを構成し基準局力 見た各移動局の相対位置であ る基準相対位置を測定する測位システムであって、
上記各移動局のうち少なくとも一つを、基準局と相対測位可能な基線制限長を超 えるように配置するとともに、所定の移動局同士の間隔が相対測位可能な基線制限 長以下となるようになし、
上記各局にそれぞれ衛星力 の電波を受信する衛星測位装置を設け、 上記各局に所定の局とデータの送受信を行う無線通信装置を設け、
上記所定の局同士間の相対位置を演算する相対位置演算部、および相対測位を 行う一方の局の基準相対位置に基づき他方の移動局の基準相対位置を求める基準 相対位置演算部を具備したものである。
[0010] また、上記相対測位システムにおける基準相対位置演算部を基準局に配置すると ともに、移動局の基準相対位置を順次求めるようにしたものである。
[0011] また、上記相対測位システムにおける各移動局に、それぞれの基準相対位置を演 算する基準相対位置演算部を配置したものである。
[0012] さらに、上記相対測位システムにおける相対測位を搬送波位相を用いて行うように したものである。
発明の効果
[0013] 上記相対測位方法および相対測位システムによると、基準局力 所定間隔おきに 相対測位可能な基線制限長以下となるように、移動局を順次配置して相対測位を連 続的に行うネットワークを形成しておき、これら各局同士間の相対位置を求めるととも に、基準局と相対位置を行った移動局の基準相対位置を用いて基準局に対する各 移動局の基準相対位置を順次求めることにより、基準局から、相対測位可能な基線 制限長以上離れた移動局の相対位置を、その間に配置された移動局を介して、相 対測位により精度良く求めることができる。
[0014] 例えば、各移動局を陸上の基準局力 遠く離れた海域の海面上の浮体に配置して おくことにより、各移動局の位置の時間的変位に基づき、海岸から遠く離れた海域に て津波の到来を知ることができ、したがって津波による被害をできるだけ、少なくする ことことがでさる。
図面の簡単な説明
[0015] [図 1]本発明の実施の形態 1に係る相対測位システムの概略全体構成を示す斜視図 である。
[図 2]同相対測位システムにおける基準局の概略構成を示すブロック図である。
[図 3]同相対測位システムにおける移動局の概略構成を示すブロック図である。
[図 4]同移動局に設けられた測位演算装置の概略構成を示すブロック図である。
[図 5]同相対測位システムでの相対測位方法を説明するフローチャートである。
[図 6]本発明の実施の形態 2に係る相対測位システムの移動局に設けられた測位演 算装置の概略構成を示すブロック図である。
[図 7]同相対測位システムでの相対測位方法を説明するフローチャートである。
[図 8]各実施の形態の相対測位システムの変形例に係る基準局の概略構成を示す ブロック図である。
[図 9]各実施の形態の相対測位システムの変形例に係る基準局に設けられた測位演 算装置の概略構成を示すブロック図である。
発明を実施するための最良の形態
[0016] 以下、本発明に係る衛星を用いた相対測位システムおよび相対測位方法につ!、て 説明する。
[0017] なお、本実施の形態においては、衛星を用いた相対測位方式として、所謂、 GPS ( 全地球方位システム)衛星を利用したリアルタイムキネマティック方式を用いるもので 、その測位対象としては、海面の変位を検出するために海面に係留されて浮遊する 浮体の基準局力 見た相対位置を求めるに際し、基準局を既知絶対位置に設置し て絶対位置を計測する場合につ!、て説明する。
[実施の形態 1]
以下、実施の形態 1に係る衛星を用いた相対測位システムおよび相対測位方法を 、図 1一図 5に基づき説明する。
[0018] この相対測位システムには、図 1に示すように、三次元の絶対位置が既知である陸 上に固定された基準局 1と、この基準局 1から見た海面の変位を検出したい海域で且 つ上記基準局 1の中心から沖に向力つて順次所定間隔おきに海面に係留された複 数の浮体 (ブイ) 2にそれぞれ設けられた複数の移動局 3とが具備され、またこれら各 局 1, 3には、 GPS衛星 4からの電波を受信しリアルタイムキネマティック方式 (搬送波 位相を用いるもので、以下、 RTK方式と称す)を利用して各移動局 3の相対位置を 求める機能が具備されて ヽる。
[0019] なお、上記各移動局 3については、基準局 1に一番近いものを、第 1移動局 3A、次 に近いものを、順次、第 2移動局 3B、第 3移動局 3C、 · · ·、最も遠いものを第 n移動 局 3Zと呼ぶものとする。
[0020] そして、上述したように、各局同士は所定間隔おきに配置され、例えば基準局 1と第 1移動局 3A、第 1移動局 3Aと第 2移動局 3B、第 2移動局 3Bと第 3移動局 3C、 · · ·、 第 n-1移動局 3Yと第 n移動局 3Z同士の間は、 RTK方式で測位可能な基線長 (以 下、基線制限長と称し、例えば 10kmである)以下となるように配置するとともにその 局間で相対測位を実施する基準局を上流とした相対測位ネットワークを構成し、しか も、少なくとも、基準局 1から最も遠い移動局 3については、基準局 1から基線制限長 を超える位置の浮体 2に設けられている。勿論、各局同士の間隔は同じ長さであって もよぐ互いに異なる長さであってもよぐ要するに、 RTK方式で測位可能な基線制 限長以下であればよい。
[0021] 上記基準局 1には、図 2に示すように、 GPS衛星 4力 の電波をアンテナ 11aを介し て受信しその測位用衛星データを計測する GPS受信機 (衛星測位装置の一例) 11 と、少なくともこの GPS受信機 11にて計測された測位用衛星データを含めて他の移 動局 3との間で種々のデータの送受信を行う無線通信装置 (送信機および受信機か らなる) 12とが具備されている。
[0022] また、上記各移動局 3には、図 3に示すように、 GPS衛星 4からの電波を受信して測 位用衛星データを計測する GPS受信機 (衛星測位装置の一例) 21と、他の局 1, 3と の間でデータの送受信を行う無線通信装置(図 4に示すように、送信機 22aおよび受 信機 22bからなる) 22と、他の局 1, 3からのデータを受信して自局の同時刻のデータ とに基づき RTK方式により相対測位を行う、すなわち一方の局に対する他方の局の 相対変位量を求める測位演算装置 23とが具備されている。
[0023] ここで、移動局 3に設けられる測位演算装置 23について詳しく説明する。
[0024] この測位演算装置 23は、図 4に示すように、 GPS受信機 21にて計測された測位用 衛星データ (搬送波位相値、衛星と受信機のアンテナ間距離 (擬似距離)、衛星の軌 道情報、衛星測位システムで採用した時系データ(GPSタイム)の他に、例えば受信 中の衛星の仰角、方位角なども含まれている)を記憶するデータ記憶部 31と、上記 G PS受信機 21にて得られた測位用衛星データ、並びに基準局 1または一つ手前 (上 記ネットワークの基準局寄り(上流側) )の移動局(以下、前局とも称す) 3からの測位 用衛星データおよび前局の仮固定位置 (以下、仮座標と称す)を受信機 22bを介し て入力して、前局に対する相対位置を RTK方式により演算する相対位置演算部 32 と、この相対位置演算部 32にて求められた相対位置および前局の絶対位置を入力 して当該移動局 3の絶対位置を演算する絶対位置演算部 33と、上記データ記憶部 3 1に記憶された当該移動局 3すなわち自局の測位用衛星データおよび自局の仮座 標並びに絶対位置演算部 33で求められた絶対位置を入力し次の移動局 3に送信す るための送信データを作成する送信データ作成部 34とから構成されている。勿論、こ の送信データ作成部 34で作成された送信データは送信機 22aを介して、次の移動 局 3に送信される。なお、上記測位用衛星データの中で、例えば軌道情報、仰角、方 位角については、相対測位を行う 2つの局でそれぞれ受信することになるため、また 上記 2局間では仰角、方位角ともほぼ変わらないため、いずれか一方の局の GPS受 信機 21のみで取得する場合は、そのデータを他方に送信して用いることもできる。
[0025] また、相対測位に用いるデータは、必要に応じて、データ記憶部力も取り出される。
[0026] なお、上記構成において、基準局 1に絶対位置が与えられない場合には、絶対位 置演算部 33が基準相対位置演算部となる。この場合、前局が移動局である場合に は、前局力 基準相対位置がこの基準相対位置演算部に入力されることになる。
[0027] 次に、上記相対測位システムにおける各局間の相対位置を求めて各移動局の絶 対位置を計測し、海面の変位を求める方法を、図 5のフローチャートに基づき説明す る。
[0028] まず、陸上の基準局 1の測位用衛星データ、仮座標およびその絶対位置を、海上 の第 1移動局 3Aに送信する (ステップ 1)。
[0029] 次に、第 1移動局 3にて、基準局 1と第 1移動局 3Aとの間で、 RTK方式に基づく相 対測位にて、仮座標の基準局力も見た相対位置 (基準相対位置)を求める (ステップ
2;基準相対位置演算ステップ)。
[0030] 次に、基準局 1の絶対位置 (絶対座標)および相対位置を用いて第 1移動局 3Aの 絶対位置を求める (ステップ 3)。
[0031] 次に、第 1移動局 3Aの絶対位置、仮座標(固定座標)および測位用衛星データを
、第 2移動局 3Bに送信する。
[0032] 次に、第 2移動局 3Bにて、仮座標および測位用衛星データを用いて、第 1移動局 3
Aと第 2移動局 3Bとの間で、 RTK方式による相対測位を行い、第 1移動局 3Aから見 た第 2移動局 3Bの相対位置 (移動局間相対位置)を求める (ステップ 5;移動局間相 対位置演算ステップ)。
[0033] 次に、第 1移動局 3Aの仮座標とその絶対位置 (真の座標値)との差を求めて、ステ ップ 5で求めた移動局間相対位置に加算し、当該第 2移動局 3Bの絶対位置を求め る(ステップ 6;変位ステップ)。
[0034] そして、第 2移動局 3Bの絶対位置が求まると、上述したステップ 4一 6が繰り返され て、第 3移動局 3Cの絶対位置が求まり、この手順が繰り返されて、最も離れた第 n移 動局 3Zの絶対位置まで求める。なお、繰返しの部分 (ステップ 4一 6)については前 局を (i 1)で表し、相対測位に基づき絶対位置を求める移動局を (i)で示して!/、る。
[0035] したがって、各移動局 3の絶対位置が求まると、浮体 2の変位すなわち海面の所定 周期毎の変位が計測されたことになり、この海面の水位変動から波浪を精度良く計 測することができ、また海面の変位力も波浪成分および潮汐成分を取り除くことにより 、例えば地震などにより津波が発生した場合には、この津波を精度良く計測すること ができる。
[0036] なお、上記方法では、基準局の絶対位置を与えて!/、るので、ステップ 6で絶対位置 に変換されるが、絶対位置を与えない場合は、第 1移動局 3Aの仮座標とその基準相 対位置との差が求められ、第 2基準局 3Bの基準相対位置を求めることになる。波浪、 津波などを検出する場合は、必ずしも、絶対位置を求めなくてもよい。
[0037] ここで、本発明の相対測位方法を簡単に説明すると、衛星からの電波を、基準局と 複数の移動局とで受信して、所定の局同士間で相対測位を行う相対ネットワークを構 成し、基準局力 見た各移動局の相対位置である基準相対位置を測定する測位方 法であって、上記各移動局のうち少なくとも一つを、基準局と相対測位可能な基線制 限長を超えるように配置するとともに、所定の移動局同士の間隔が相対測位可能な 基線制限長以下となるようになし、基準局と所定の移動局との間で基準相対位置を 演算する基準相対位置演算ステップと、上記所定の局同士間で相対位置である移 動局間相対位置を演算する移動局間相対位置演算ステップ (ステップ 2に相当)と、 基準相対位置を求めた移動局と相対測位を行った移動局の移動局間相対位置を、 相手局の基準相対位置を用いて基準相対位置に変換する変換ステップ (ステップ 6 に相当)とを具備したものである。
[0038] このように、絶対位置が既知である基準局 1を陸上に配置するとともに、基準局 1か ら所定間隔おきに、すなわち RTK方式による相対測位可能な基線制限長以下とな るように、移動局 3を海面に順次配置しておき、これら各局同士間の相対位置を RTK 方式にて求めるとともに、この相対位置を用いて基準局に対する各移動局の絶対位 置を求めるようにしたので、基準局 1から、相対測位可能な基線制限長以上離れた 移動局 3の絶対位置を、その間に配置された移動局 3を介して、 RTK方式により精 度良く求めることができる。
[0039] したがって、各移動局を基準局力 遠く離れた海域の海面上の浮体に配置してお くことにより、津波が海岸に到来するかなり前の段階で知ることができるので、津波に よる被害をできるだけ、少なくすることことができる。
[実施の形態 2]
次に、本実施の形態 2に係る衛星を用いた相対測位方法および相対測位システ ムを、図 6および図 7に基づき説明する。
[0040] 上記実施の形態 1にお!/、ては、各局同士間で相対測位を行う際に、仮座標を用い るようにした力 本実施の形態 2においては、基準局および前局の絶対位置を用いる ようにしたもので、したがって以下の説明においては、その部分にだけ着目して説明 するとともに、実施の形態値 1と同一の構成部材については、同一番号を付してその 説明を省略する。
[0041] すなわち、図 6に示すように、各移動局 3に設けられる測位演算装置 23' において は、絶対位置演算部 32' には前局力 測位用衛星データおよび前局の絶対位置 が入力され、この絶対位置演算部 32^ にて、測位対象の移動局 3の絶対位置を直 接に求めるようにしたものである。したがって、実施の形態 2における絶対位置演算 部 32^ は、実施の形態 1にて示した相対位置演算部 32に絶対位置演算部 33の機 能が組み込まれたものである。
[0042] この場合の各移動局 3の絶対位置を計測する方法を、図 7のフローチャートに基づ き簡単に説明する。
[0043] まず、陸上の基準局 1の測位用衛星データおよびその絶対位置を、海上の第 1移 動局 3Aに送信する (ステップ 1)。
[0044] 次に、第 1移動局 3にて、基準局 1と第 1移動局 3Aとの間で、 RTK方式による相対 測位を行 、、相対位置を求める (ステップ 2)。
[0045] 次に、第 1移動局 3Aの絶対位置および測位用衛星データを、第 2移動局 3Bに送 信する (ステップ 3)。
[0046] 次に、第 2移動局 3Bにて、測位用衛星データを用いて、第 1移動局 3Aと第 2移動 局 3Bとの間で、 RTK方式による相対測位を行い、絶対位置を求める(ステップ 4)。
[0047] そして、第 2移動局 3Bの絶対位置が求まると、上述したステップ 3— 4が繰り返され て、第 3移動局 3Cの絶対位置が求まり、この手順が繰り返されて、最も離れた第 n移 動局 3Zの絶対位置まで求める。なお、繰返し部分 (ステップ 3— 4)については前局 を (i 1)で表し、相対測位に基づき絶対位置を求める移動局を (i)で示して!/、る。
[0048] 本実施の形態 2においても、上述した実施の形態 1と同様の効果が得られる。
[0049] ところで、上述した各実施の形態においては、各移動局に測位演算装置を配置し て、それぞれの移動局の絶対位置を求めるように説明した力 それらは、送信機 22a にて陸上の観測所 (基準局と兼ねてもよい)に局番号とともに送信されて集中的に管 理される。
[0050] 一方、例えば基準局に測位演算装置を配置するとともに、各移動局で計測された 測位用衛星データを基準局に送信し蓄積しておき、当該基準局の測位演算装置で 各移動局の絶対位置を求めるようにしてもょ 、。
[0051] すなわち、移動局間の送信データが基準局に送信され、基準局で各移動局のデ ータが記憶され、このデータを用いて絶対位置演算部にて、各移動局の絶対位置が 求められる。
[0052] この場合、図 8に示すように、基準局 1には、測位演算装置 13が具備され、またこの 測位演算装置 13には、図 9に示すように、少なくとも、 GPS受信機 11からの測位用 衛星データおよび無線通信装置 12の受信機 12bを介して各移動局 3で受信した測 位用衛星データを記憶しておくデータ記憶部 41と、このデータ記憶部 41に記憶され た測位用衛星データを入力して、基準局 1に対する各移動局 3の絶対位置を演算す る絶対位置演算部 42とが具備されて 、る。 [0053] また、上記各実施の形態においては、各局同士のデータの送受信については、無 線通信装置により行うように説明したが、見通しが悪く地上波による通信を行うことが できな 、場合には、通信衛星を用いてデータの送受信を行えばょ 、。
[0054] また、上記各実施の形態においては、基準局を陸上に配置したが、海面に浮遊す る浮体に配置してもよい。
[0055] さらに、上記各実施の形態においては、基準局を陸上に配置するとともに移動局を 海面に配置して、波浪、津波などを計測するものとして説明したが、例えば基準局お よび移動局ともに、陸上に配置することにより、例えば地震計として利用することもで きる。
[0056] また、上記各実施の形態では、 GPSによる衛星測位で例示したが、原理が同様の 衛星測位方式があれば、または今後登場するものでも、適用可能となる。
産業上の利用可能性
[0057] 本発明の相対測位方法および相対測位システムによると、基準局から相対測位可 能な基線制限長を超える位置に設けられた移動局に対しても、リアルタイムキネマテ イツク方式による相対測位を用いて精度良く測位を行うことができ、例えば移動局を 搭載した浮体を陸上からかなり離れた海域に係留しておくことにより、沖合いで津波 を計測し津波の到来を予測して、津波による被害の軽減に利用することができる。ま た、場合によっては、地震計としても用いることができる。

Claims

請求の範囲
[1] 衛星からの電波を、基準局と複数の移動局とで受信して、所定の局同士間で相対 測位を行う相対ネットワークを構成し、基準局から見た各移動局の相対位置である基 準相対位置を測定する測位方法であって、
上記各移動局のうち少なくとも一つを、基準局と相対測位可能な基線制限長を超 えるように配置するとともに、所定の移動局同士の間隔が相対測位可能な基線制限 長以下となるようになし、
基準局と所定の移動局との間で基準相対位置を演算する基準相対位置演算ステ ップと、
上記所定の局同士間で相対位置である移動局間相対位置を演算する移動局間相 対位置演算ステップと、
基準相対位置を求めた移動局と相対測位を行った移動局の移動局間相対位置を 、相手局の基準相対位置を用いて基準相対位置に変換する変換ステップと を具備したことを特徴とする衛星を用いた相対測位方法。
[2] 衛星からの電波を、基準局と複数の移動局とで受信して、所定の局同士間で相対 測位を行う相対測位ネットワークを構成し基準局力 見た各移動局の相対位置であ る基準相対位置を測定する測位システムであって、
上記各移動局のうち少なくとも一つを、基準局と相対測位可能な基線制限長を超 えるように配置するとともに、所定の移動局同士の間隔が相対測位可能な基線制限 長以下となるようになし、
上記各局にそれぞれ衛星力 の電波を受信する衛星測位装置を設け、 上記各局に所定の局とデータの送受信を行う無線通信装置を設け、
上記所定の局同士間の相対位置を演算する相対位置演算部、および相対測位を 行う一方の局の基準相対位置に基づき他方の移動局の基準相対位置を求める基準 相対位置演算部を
具備したことを特徴とする衛星を用いた相対測位システム。
[3] 基準相対位置演算部を基準局に配置するとともに、移動局の基準相対位置を順次 求めるようにしたことを特徴とする請求項 2に記載の衛星を用いた相対測位システム 各移動局に、それぞれの基準相対位置を演算する基準相対位置演算部を配置し たことを特徴とする請求項 2に記載の衛星を用いた相対測位システム。
相対測位を搬送波位相を用いて行うようにしたことを特徴とする請求項 2に記載の 衛星を用レ、た相対測位システム。
PCT/JP2004/016112 2004-10-29 2004-10-29 衛星を用いた相対測位方法および相対測位システム WO2006046298A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077005531A KR101067416B1 (ko) 2004-10-29 2004-10-29 위성을 이용한 상대 측위 방법 및 상대 측위 시스템
PCT/JP2004/016112 WO2006046298A1 (ja) 2004-10-29 2004-10-29 衛星を用いた相対測位方法および相対測位システム
US11/666,254 US7616152B2 (en) 2004-10-29 2004-10-29 Relative position measurement method and relative position measurement system using satellites
CA2585141A CA2585141C (en) 2004-10-29 2004-10-29 Relative positioning method and relative positioning system using satellite
JP2006542175A JPWO2006046298A1 (ja) 2004-10-29 2004-10-29 衛星を用いた相対測位方法および相対測位システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016112 WO2006046298A1 (ja) 2004-10-29 2004-10-29 衛星を用いた相対測位方法および相対測位システム

Publications (1)

Publication Number Publication Date
WO2006046298A1 true WO2006046298A1 (ja) 2006-05-04

Family

ID=36227550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016112 WO2006046298A1 (ja) 2004-10-29 2004-10-29 衛星を用いた相対測位方法および相対測位システム

Country Status (5)

Country Link
US (1) US7616152B2 (ja)
JP (1) JPWO2006046298A1 (ja)
KR (1) KR101067416B1 (ja)
CA (1) CA2585141C (ja)
WO (1) WO2006046298A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228237A (ja) * 2012-04-25 2013-11-07 Hitachi Zosen Corp 変位観測方法および変位観測システム
JP2017219412A (ja) * 2016-06-07 2017-12-14 三菱電機株式会社 測位サーバ、移動体、測位システム、測位方法、及び測位プログラム
JP2018537664A (ja) * 2015-10-29 2018-12-20 華為技術有限公司Huawei Technologies Co.,Ltd. モバイルネットワークにおける測位方法、基地局、及びモバイル端末
JP2020500303A (ja) * 2016-10-28 2020-01-09 ソナーダイン インターナショナル リミテッド オフショアgnss基準局装置、オフショアgnss測位システム、および測位基準データオフショアを生成する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2450469B (en) * 2007-04-19 2009-12-02 Ocean Technical Systems Ltd Vessel mooring monitor
TW201027111A (en) * 2009-01-08 2010-07-16 Univ Nat Taiwan Tsunami detection method and system
GB201107849D0 (en) * 2011-05-11 2011-06-22 Cambridge Silicon Radio Ltd Cooperative positioning
US9462210B2 (en) 2011-11-04 2016-10-04 Remote TelePointer, LLC Method and system for user interface for interactive devices using a mobile device
US20140004877A1 (en) * 2012-06-29 2014-01-02 Broadcom Corporation Position Determination Using Round-Trip Delay and Angle-of-Arrival
US9766338B2 (en) * 2015-03-02 2017-09-19 Iposi, Inc. GNSS cooperative receiver system
WO2017195431A1 (ja) * 2016-05-11 2017-11-16 アルプス電気株式会社 位置測定装置
KR102205681B1 (ko) * 2019-05-13 2021-01-21 이상주 임시 기준 단말 장치를 활용한 rtk 그룹 측위 방법
WO2022107941A1 (ko) * 2020-11-22 2022-05-27 이상주 임시 기준 단말 장치를 활용한 rtk 그룹 측위 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961509A (ja) * 1995-08-22 1997-03-07 Hitachi Zosen Corp Gps測量方法およびその装置
JP2002181917A (ja) * 2000-12-13 2002-06-26 Furuno Electric Co Ltd 測量方法および測量システム
JP2004286626A (ja) * 2003-03-24 2004-10-14 Kenichi Kawamata Gps測位解析における仮想現実空間とドップラー効果
JP2004301598A (ja) * 2003-03-31 2004-10-28 Pasuko:Kk Vrs−ts方式による測量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803177B2 (ja) 1997-08-25 2006-08-02 照之 加藤 津波検知システム
JP3803901B2 (ja) 1999-12-15 2006-08-02 国立大学法人 東京大学 海面変位計測装置
JP3727219B2 (ja) 2000-03-31 2005-12-14 日立造船株式会社 Gpsによる物体の変位計測方法
JP2004144622A (ja) 2002-10-24 2004-05-20 Kokusai Kogyo Co Ltd 斜面監視システム
US7231295B2 (en) * 2004-04-07 2007-06-12 Deere & Company System and method for creating accurate topographical maps using low-drift DGPS
US7248211B2 (en) * 2004-07-26 2007-07-24 Navcom Technology Inc. Moving reference receiver for RTK navigation
JP4912739B2 (ja) * 2006-05-16 2012-04-11 株式会社トプコン Rtk−gps測量システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961509A (ja) * 1995-08-22 1997-03-07 Hitachi Zosen Corp Gps測量方法およびその装置
JP2002181917A (ja) * 2000-12-13 2002-06-26 Furuno Electric Co Ltd 測量方法および測量システム
JP2004286626A (ja) * 2003-03-24 2004-10-14 Kenichi Kawamata Gps測位解析における仮想現実空間とドップラー効果
JP2004301598A (ja) * 2003-03-31 2004-10-28 Pasuko:Kk Vrs−ts方式による測量方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228237A (ja) * 2012-04-25 2013-11-07 Hitachi Zosen Corp 変位観測方法および変位観測システム
JP2018537664A (ja) * 2015-10-29 2018-12-20 華為技術有限公司Huawei Technologies Co.,Ltd. モバイルネットワークにおける測位方法、基地局、及びモバイル端末
US10877161B2 (en) 2015-10-29 2020-12-29 Huawei Technologies Co., Ltd. Positioning method in mobile network, base station, and mobile terminal
JP2017219412A (ja) * 2016-06-07 2017-12-14 三菱電機株式会社 測位サーバ、移動体、測位システム、測位方法、及び測位プログラム
JP2020500303A (ja) * 2016-10-28 2020-01-09 ソナーダイン インターナショナル リミテッド オフショアgnss基準局装置、オフショアgnss測位システム、および測位基準データオフショアを生成する方法

Also Published As

Publication number Publication date
US20080284645A1 (en) 2008-11-20
US7616152B2 (en) 2009-11-10
CA2585141A1 (en) 2006-05-04
KR101067416B1 (ko) 2011-09-27
CA2585141C (en) 2012-09-11
JPWO2006046298A1 (ja) 2008-05-22
KR20070065319A (ko) 2007-06-22

Similar Documents

Publication Publication Date Title
US7646338B2 (en) Method of optimization of processing of location data in the presence of a plurality of satellite positioning constellations
CN100495066C (zh) 无高稳定频标的水下gps定位导航方法及其系统
RU2371738C1 (ru) Гидроакустическая навигационная система
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
WO2006132003A1 (ja) Gps受信装置およびgps測位補正方法
WO2006046298A1 (ja) 衛星を用いた相対測位方法および相対測位システム
CN105467415A (zh) 一种基于差分气压高度约束的小型无人机rtk相对定位方法
KR100782087B1 (ko) 이동통신망에서 aoa, toa 및 gps를 사용하는혼합측위 방법
KR101460149B1 (ko) Gps 정보를 이용해 상대 거리 및 위치를 결정하는 장치 및 방법
US7031730B1 (en) Method and system for minimizing storage and processing of ionospheric grid point correction information in a wireless communications device
Wang et al. Mobile location method for non-line-of-sight situation
CN104792321A (zh) 一种基于辅助定位的土地信息采集系统及方法
CN111060945B (zh) 一种gnss/5g紧组合融合定位方法与装置
KR100976965B1 (ko) 네비게이션 장치 및 이의 위치 결정 방법
US7450061B2 (en) Relative position measurement system using satellite
CN105319566A (zh) 一种协同定位方法及装置
US7609202B2 (en) Relative measurement method and relative measurement system using satellite
CN110146050B (zh) 一种通信基站天线监测方法
FI115167B (fi) Menetelmä ja järjestelmä sijainninmäärityksessä sekä laite
LeMaster et al. Mars navigation system utilizes GPS
WO2017141614A1 (ja) 津波観測装置、津波観測システム、津波観測方法
CN111103603A (zh) 基于cors系统的云定位方法及装置、定位系统及云端服务器
WO2006087802A1 (ja) 津波検知システム
TWI327231B (en) Relative surveying method and relative surveying system using a planet
TWI327232B (en) Relative positioning system using satellite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077005531

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006542175

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2585141

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11666254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04793220

Country of ref document: EP

Kind code of ref document: A1