CN111060945B - 一种gnss/5g紧组合融合定位方法与装置 - Google Patents

一种gnss/5g紧组合融合定位方法与装置 Download PDF

Info

Publication number
CN111060945B
CN111060945B CN202010030342.3A CN202010030342A CN111060945B CN 111060945 B CN111060945 B CN 111060945B CN 202010030342 A CN202010030342 A CN 202010030342A CN 111060945 B CN111060945 B CN 111060945B
Authority
CN
China
Prior art keywords
gnss
base station
fusion positioning
positioning
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010030342.3A
Other languages
English (en)
Other versions
CN111060945A (zh
Inventor
高成发
张瑞成
赵庆
朋子涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010030342.3A priority Critical patent/CN111060945B/zh
Publication of CN111060945A publication Critical patent/CN111060945A/zh
Application granted granted Critical
Publication of CN111060945B publication Critical patent/CN111060945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS

Abstract

本发明公开了一种GNSS/5G紧组合融合定位方法与装置,针对在城市峡谷等区域,GNSS观测卫星数受限,定位精度受到影响,甚至在某些极端条件下无法进行定位的问题,本发明利用5G信号频率高、抗多径能力强、基站分布稠密等特点,研究5G毫米波与GNSS融合定位模型。首先利用GNSS技术对5G基站进行授时,确保GNSS系统与5G基站具有相同的时间系统;其次通过分析5G毫米波测距误差来源及特性,获取其测距精度,提出GNSS/5G融合定位的随机模型;最后构建基于鲁棒卡尔曼滤波的紧组合定位模型,自适应构造鲁棒因子,保障GNSS/5G融合定位的精度和可靠性。使用本发明提出的融合定位方法,可以提升城市峡谷等区域的GNSS定位精度及稳定性,为智慧交通、无人驾驶等提供可靠的位置信息。

Description

一种GNSS/5G紧组合融合定位方法与装置
技术领域
本发明涉及全球导航卫星系统(GNSS)卫星定位及5G定位技术,具体涉及一种GNSS/5G紧组合融合高精度定位方法与装置。
背景技术
在城市峡谷等区域,由于建筑物及树木的遮挡,GNSS观测卫星数受限,定位精度会受到严重影响。甚至在在某些特定环境下,GNSS卫星数严重不足时,仅使用GNSS技术已经无法满足定位精度需求,甚至无法进行定位。第五代移动通讯技术(5G)的出现为无线测距提供了更高精度的技术手段,相较于第四代移动通讯技术(4G),5G具备以下显著特点:(1)测距精度更高。5G信号采用更高频率(最高可达6GHz)和带宽,在提升测距精度的同时,增强了信号的抗多径能力,研究表明利用5G毫米波能够实现厘米到数分米的测距精度;(2)基站密度更大。5G基站布设密度会大幅增加,基站间距离缩短到数百米甚至几十米,形成超密集网络,能够保证在利用5G进行定位时能同时获得足够多基站的观测值;(3)通讯时延更小。5G网络的通讯延迟将大幅缩短到1ms以下,并且具备设备-设备之间的通讯能力。上述5G的特点使其在未来许多基于位置的应用中都有巨大的前景,如智慧交通、自动驾驶及车路协同等。
融合定位是指利用无线传感网络的通讯及测距能力,当GNSS不可用时为车辆提供定位服务,当GNSS可用时来削弱定位误差,能够有效地利用周边资源提供更高精度的定位服务。无线传感网络一般可通过TOA(到达时间)、RSS(信号强度)、TDOA(到达时间差,TOA拓展)等方法实现V2I(Vehicle-to-Infrastructure,车辆对基础设施)的测距功能,这些测距信息的加入,能够大幅提升GNSS定位的精度、可靠性及可用性,尤其是在城市峡谷及隧道等区域。
目前我国的5G技术正处于快速发展、稳步推广的阶段,且智慧交通、自动驾驶等领域对高精度位置服务的需求也愈来愈多。因此,研究GNSS/5G融合定位方法,具有重要的现实意义。
发明内容
发明目的:针对上述GNSS技术在复杂环境下定位精度较差且不稳定等不足,提出GNSS/5G多源数据融合定位方法与装置,以提高GNSS技术的可用范围及在复杂环境下的定位精度、可靠性。
技术方案:为实现上述发明目的,本发明采用的技术方案为:
一种GNSS/5G紧组合融合定位方法,包括如下步骤:
(1)利用GNSS对5G基站进行授时,统一GNSS系统与5G基站的时间系统;
(2)利用到达时间分别求得GNSS和5G毫米波测量距离,结合实际距离分析测距精度,提出GNSS/5G融合定位的随机模型;
(3)构建基于鲁棒卡尔曼滤波的紧组合融合定位模型,自适应构造鲁棒因子,计算待定位设备的绝对位置,保障GNSS/5G融合定位的精度和可靠性。
作为优选,所述步骤(1)中利用GNSS对装备有GNSS设备的5G基站进行绝对时间同步,同时利用5G的MIMO(多天线)+OFDM(正交频分复用)技术实现基站簇之间的时间同步,保障5G通讯网络的绝对时间及相对时间同步的精度。
作为优选,所述步骤(2)中利用到达时间分别求得GNSS和5G毫米波测量距离,结合实际距离对其精度进行评估:具体为:
利用现有首径提取方法得到的TOA乘以光速即可得到测量的距离,通过与实际距离做差以评估5G毫米波定位精度,并确定GNSS/5G融合定位随机模型。
Figure BDA0002364079510000021
式中,σ2表示观测值噪声,a,b,Ci均为经验模型系数,E为GNSS卫星高度角,C/N0为5G信号信噪比。通过实际计算的GNSS和5G观测值精度、高度角及信噪比进行拟合,得到相应的系数。
作为优选,所述步骤(3)中根据空间后方交会原理构建的融合定位模型表示为V=BX-L,式中B表示设计矩阵,X表示未知参数矩阵,L表示观测向量,V表示残差;观测向量L表示如下:
Figure BDA0002364079510000031
式中,
Figure BDA0002364079510000032
为双差算子;U表示用户;RS表示参考卫星;R5G表示5G参考站;RB表示GNSS参考站;λ为GNSS卫星的载波波长;
Figure BDA0002364079510000033
为第m颗卫星的双差载波观测值;
Figure BDA0002364079510000034
为第m颗卫星的双差载波整周模糊度;
Figure BDA0002364079510000035
为双差电离层延迟;
Figure BDA0002364079510000036
为双差对流层延迟;
Figure BDA0002364079510000037
为5G基站n的观测信号到用户所需的双差时间;c为光速;
Figure BDA0002364079510000038
Figure BDA0002364079510000039
分别为卫星和基站的双差观测噪声。
设计矩阵B表示为:
Figure BDA00023640795100000310
Figure BDA00023640795100000311
式中,i表示卫星或5G基站编号;ΔX,ΔY,ΔZ表示上、下标表示的卫星或基站的坐标差值;ρ表示上、下标表示的卫星或基站的距离。
作为优选,利用最小二乘原理求得表示用户位置的未知参数矩阵X=(BTPB)- 1BTPL,式中
Figure BDA00023640795100000312
表示权阵,σ2根据随机模型确定。
作为优选,所述步骤(3)中采用鲁棒卡尔曼滤波进行位置估计,根据粗差大小自适应计算得到一个分段函数,通过该分段函数来提升计算效率及精度,分段函数γ表达式如下:
Figure BDA0002364079510000041
式中,V表示残差分量;k0、k1为常量,k0在2.5-3.5之间,k1在3.5-4.5之间。
本发明公开的一种GNSS/5G紧组合融合定位装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的GNSS/5G紧组合融合定位方法中构建的基于鲁棒卡尔曼滤波的紧组合融合定位模型进行位置定位。
有益效果:本发明所提出的GNSS/5G紧组合融合定位方法可以有效解决单一GNSS在城市峡谷等复杂区域定位精度低、不可靠等问题。本方法充分利用5G信号频率高、抗多径能力强、基站分布稠密等特点,融合GNSS与5G毫米波测距信息,通过构建融合定位的随机模型及函数模型,实现遮挡区域的高精度GNSS定位,并保障GNSS定位的可靠性,可以提升城市峡谷等区域的GNSS定位精度及稳定性,为智慧交通、无人驾驶等提供可靠的位置信息。
附图说明
图1为GNSS/5G紧组合融合定位方法流程图;
图2为GNSS/5G时间同步示意图;
图3为GNSS/5G融合定位示意图;
图4为GNSS/5G融合定位方案示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,本发明实施例公开的一种GNSS/5G紧组合融合定位方法,首先利用GNSS技术对5G基站进行授时,确保GNSS系统与5G基站具有相同的时间系统;其次通过分析5G毫米波测距误差来源及特性,分析其测距精度,提出GNSS/5G融合定位的随机模型;最后构建基于鲁棒卡尔曼滤波的紧组合定位模型,自适应构造鲁棒因子,保障GNSS/5G融合定位的精度和可靠性。该方法包括如下具体步骤:
步骤1),利用GNSS的高精度授时功能,统一GNSS与5G基站的时间系统:
利用GNSS对装备有GNSS设备的5G基站进行绝对时间同步,同时利用5G的MIMO(多天线)+OFDM(正交频分复用)技术实现基站簇之间的时间同步,保障5G通讯网络的绝对时间及相对时间同步的精度。时间同步流程如图2示。
步骤2),利用到达时间分别GNSS和求得5G毫米波测量距离,结合实际距离对其精度进行评估:
利用现有首径提取方法得到的TOA乘以光速即可得到测量的距离,通过与实际距离做差以评估5G毫米波定位精度,并确定GNSS/5G融合定位随机模型。
Figure BDA0002364079510000051
式中σ2表示观测值噪声,a,b,Ci均为经验模型系数,E为GNSS卫星高度角,C/N0为5G信号信噪比。通过实际计算的GNSS和5G观测值精度、高度角及信噪比进行拟合,得到相应的系数。
步骤3),利用步骤2)中得到的GNSS/5G融合定位随机模型,联合GNSS载波数据及5G测距信息进行融合定位,包括如下具体步骤:
a),根据空间后方交会原理,构建融合定位模型如下:
V=BX-L (2)
式中B表示设计矩阵,X表示未知参数矩阵,L表示观测向量,具体表达如下:
Figure BDA0002364079510000052
Figure BDA0002364079510000061
Figure BDA0002364079510000062
式中,i表示卫星或5G基站编号;RB表示参考站;RS表示参考卫星;R5G表示5G参考站;ΔX,ΔY,ΔZ表示两者(上、下标表示的卫星或基站)坐标差值;ρ表示两者(上、下标表示的卫星或基站)距离;Δ▽为双差算子;U表示用户;λ为GNSS卫星的载波波长;
Figure BDA0002364079510000063
为第m颗卫星的双差载波观测值;
Figure BDA0002364079510000064
为第m颗卫星的双差载波整周模糊度;
Figure BDA0002364079510000065
为双差电离层延迟;
Figure BDA0002364079510000066
为双差对流层延迟;
Figure BDA0002364079510000067
为5G基站n的观测信号到用户所需的双差时间;c为光速;
Figure BDA0002364079510000068
Figure BDA0002364079510000069
分别为卫星和基站的双差观测噪声。
利用最小二乘原理即可得到用户位置:
X=(BTPB)-1BTPL (6)
式中
Figure BDA00023640795100000610
表示权阵,可由步骤2)得到。
b),采用鲁棒卡尔曼滤波,构建自适应鲁棒因子:
在进行位置估计时,采用鲁棒卡尔曼滤波,以增强定位的可靠性。整个滤波中的状态向量最优估计可以分为时间更新和观测值更新部分,而在这两个过程中最为重要的就是鲁棒因子的确定。本专利根据粗差大小自适应计算得到一个分段函数,利用该分段函数来提升滤波的精度及可靠性。分段函数γ表达式如下:
Figure BDA0002364079510000071
式中,V表示残差分量;k0、k1为常量,k0在2.5-3.5之间,k1在3.5-4.5之间.
基于相同的发明构思,本发明实施例公开的一种GNSS/5G紧组合融合定位装置,该装置可以是车载、手持等移动设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被加载至处理器时实现上述融合定位方法中构建的基于鲁棒卡尔曼滤波的紧组合融合定位模型进行位置定位。
图3为本发明的融合定位示意图,利用路侧单元(5G基站)的GNSS和5G模块,接收GNSS原始观测数据及5G到车辆的距离信息;在GNSS、5G时间同步的基础上,通过研究5G毫米波测距误差来源及特性,分析其测距精度,确定GNSS/5G融合定位的随机模型;最后基于鲁棒卡尔曼滤波的紧组合定位模式,利用5G毫米波与GNSS融合定位模型,得到车辆高精度高可靠的绝对位置。
图4为本发明适用场景示意图,通过自适应参数调整,在开阔、部分遮挡以及隧道等完全遮挡环境下均可使用本发明方法。

Claims (3)

1.一种GNSS/5G紧组合融合定位方法,其特征在于,包括如下步骤:
(1)利用GNSS对5G基站进行授时,统一GNSS系统与5G基站的时间系统;
(2)利用到达时间分别求得GNSS和5G毫米波测量距离,结合实际距离分析测距精度,提出GNSS/5G融合定位的随机模型;
(3)构建基于鲁棒卡尔曼滤波的紧组合融合定位模型,自适应构造鲁棒因子,计算待定位设备的绝对位置;
所述步骤(2)中的随机模型表示为:
Figure FDA0003157826740000011
式中,σ2表示观测值噪声,a,b,Ci均为经验模型系数,E为GNSS卫星高度角,C/N0为5G信号信噪比;通过实际计算的GNSS和5G观测值精度、高度角及信噪比进行拟合,得到相应的模型系数;
所述步骤(3)中根据空间后方交会原理构建的融合定位模型表示为V=BX-L,式中B表示设计矩阵,X表示未知参数矩阵,L表示观测向量,V表示残差;观测向量L表示如下:
Figure FDA0003157826740000012
式中,
Figure FDA0003157826740000013
为双差算子;U表示用户;RS表示参考卫星;R5G表示5G参考站;RB表示GNSS参考站;λ为GNSS卫星的载波波长;
Figure FDA0003157826740000014
为第m颗卫星的双差载波观测值;
Figure FDA0003157826740000015
为第m颗卫星的双差载波整周模糊度;
Figure FDA0003157826740000016
为双差电离层延迟;
Figure FDA0003157826740000017
为双差对流层延迟;
Figure FDA0003157826740000018
为5G基站n的观测信号到用户所需的双差时间;c为光速;
Figure FDA0003157826740000019
Figure FDA00031578267400000110
分别为卫星和基站的双差观测噪声;
设计矩阵B表示为:
Figure FDA0003157826740000021
Figure FDA0003157826740000022
式中,i表示卫星或5G基站编号;ΔX,ΔY,ΔZ表示上、下标表示的卫星或基站的坐标差值;ρ表示上、下标表示的卫星或基站的距离;
利用最小二乘原理求得表示用户位置的未知参数矩阵X=(BTPB)-1BTPL,式中
Figure FDA0003157826740000023
表示权阵,σ2根据随机模型确定;
所述步骤(3)中采用鲁棒卡尔曼滤波进行位置估计,根据粗差大小自适应计算得到一个分段函数,通过该分段函数来提升计算效率及精度,分段函数γ表达式如下:
Figure FDA0003157826740000024
式中,V表示残差分量;k0、k1为常量,k0在2.5-3.5之间,k1在3.5-4.5之间。
2.根据权利要求1所述的GNSS/5G紧组合融合定位方法,其特征在于,所述步骤(1)中利用GNSS对装备有GNSS设备的5G基站进行绝对时间同步,同时利用5G的MIMO和OFDM技术实现基站簇之间的时间同步,保障5G通讯网络的绝对时间及相对时间同步的精度。
3.一种GNSS/5G紧组合融合定位装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求1-2任一项所述的GNSS/5G紧组合融合定位方法中构建的基于鲁棒卡尔曼滤波的紧组合融合定位模型进行位置定位。
CN202010030342.3A 2020-01-13 2020-01-13 一种gnss/5g紧组合融合定位方法与装置 Active CN111060945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010030342.3A CN111060945B (zh) 2020-01-13 2020-01-13 一种gnss/5g紧组合融合定位方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010030342.3A CN111060945B (zh) 2020-01-13 2020-01-13 一种gnss/5g紧组合融合定位方法与装置

Publications (2)

Publication Number Publication Date
CN111060945A CN111060945A (zh) 2020-04-24
CN111060945B true CN111060945B (zh) 2021-10-19

Family

ID=70307093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010030342.3A Active CN111060945B (zh) 2020-01-13 2020-01-13 一种gnss/5g紧组合融合定位方法与装置

Country Status (1)

Country Link
CN (1) CN111060945B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488766A (zh) * 2022-01-25 2022-05-13 浙江赛思电子科技有限公司 一种时钟授时的方法、装置以及介质
CN117647830A (zh) * 2024-01-29 2024-03-05 中国测绘科学研究院 一种适用于复杂城市环境gnss芯片定位的随机模型构建方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252543B1 (en) * 1998-05-28 2001-06-26 Ericsson Inc. Location system combining ranging measurements from GPS and cellular networks
US7228230B2 (en) * 2004-11-12 2007-06-05 Mitsubishi Denki Kabushiki Kaisha System for autonomous vehicle navigation with carrier phase DGPS and laser-scanner augmentation
CN103389505A (zh) * 2012-05-09 2013-11-13 王东林 一种基于gps和第四代移动通信网络的混合定位方法
TWI503560B (zh) * 2013-12-25 2015-10-11 財團法人工業技術研究院 移動車輛定位校正方法與裝置
TR201619151A2 (tr) * 2016-12-21 2017-03-21 Ons Grup Iletisim Ve Telekomuenikasyon Hizmetleri Enerji Makine Elektronik Bilisim Insaat Taahhuet I 5G karasal konumlandırma sistemi
EP3376249A1 (en) * 2017-03-17 2018-09-19 Veoneer Sweden AB Enhanced object position detection
CN107688191B (zh) * 2017-07-24 2019-11-12 北京航天控制仪器研究所 一种微型定位导航授时终端
CN108957396A (zh) * 2018-07-19 2018-12-07 东南大学 一种基于5g信号的ofdm定位系统及定位方法
CN109307873B (zh) * 2018-11-08 2022-10-28 北京理工大学 一种INS辅助的双Kalman滤波器卫星信号跟踪环路
CN109581455B (zh) * 2019-01-24 2022-07-22 东南大学 一种bds和gps融合的三频宽巷紧组合定位方法
CN110139209A (zh) * 2019-04-09 2019-08-16 武汉虹信技术服务有限责任公司 一种用于5g通信优化的车载模块
CN110275192B (zh) * 2019-05-22 2021-01-26 东南大学 一种基于智能手机的高精度单点定位方法与装置
CN110522134A (zh) * 2019-10-11 2019-12-03 东莞市华庄电子有限公司 基于5g通讯和北斗定位的实现强电感知及气体监测告警功能的手环
CN110646823A (zh) * 2019-10-12 2020-01-03 上海交通大学 一种基于Helmet后验定权法的GPS\BDS紧组合精密单点定位方法

Also Published As

Publication number Publication date
CN111060945A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
Johnson et al. Ultra-wideband aiding of GPS for quick deployment of anchors in a GPS-denied ad-hoc sensor tracking and communication system
CN109782289B (zh) 一种基于基线几何结构约束的水下航行器定位方法
WO2020103558A1 (zh) 一种定位方法及电子设备
US10564287B2 (en) Positional measurement system, positional measurement method, and mobile robot
CN107003378A (zh) 确定具有合成天线阵列的便携式电子装置的地理位置
US9513374B2 (en) Measurement error covariance in GNSS receiver circuitry, pseudoranges, reference position
CN111060945B (zh) 一种gnss/5g紧组合融合定位方法与装置
CN111323804A (zh) 一种基于北斗系统的船舶姿态测量设备及测量方法
CN110531315B (zh) 一种基于信号强度变化率的卫星干扰源直接定位方法及定位装置
Zhang et al. A novel GNSS based V2V cooperative localization to exclude multipath effect using consistency checks
CN113050142B (zh) 终端设备的定位方法、装置、电子设备及可读存储介质
EP3889648A1 (en) High-precision satellite positioning method, positioning terminal and positioning system
CN113447924B (zh) 一种基于毫米波雷达的无人机测绘方法和系统
RU2624790C1 (ru) Способ динамического определения местоположения мобильных объектов
CN103096465A (zh) 一种环境自适应的多目标直接定位方法
US7515104B2 (en) Structured array geolocation
JP2016520801A (ja) 位置判定を改善する送信機の方向性プルーニング
CN115616637B (zh) 一种基于三维格网多径建模的城市复杂环境导航定位方法
US11913809B2 (en) Systems and methods for extending the spatial coverage of a reference pressure network
CN109116396B (zh) 一种多天线gnss差分定位方法
CN110300901A (zh) 用于确定地球大气层中的电子密度分布的方法
CN111076700B (zh) 一种基于车载经纬仪的自定位定向系统及方法
KR101459915B1 (ko) 위치인식 방법
CN111077554A (zh) 一种基于车载经纬仪的自定位系统及方法
CN111025358A (zh) 基于导航卫星信号单短基线的定向方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant