RU2624790C1 - Способ динамического определения местоположения мобильных объектов - Google Patents

Способ динамического определения местоположения мобильных объектов Download PDF

Info

Publication number
RU2624790C1
RU2624790C1 RU2016109139A RU2016109139A RU2624790C1 RU 2624790 C1 RU2624790 C1 RU 2624790C1 RU 2016109139 A RU2016109139 A RU 2016109139A RU 2016109139 A RU2016109139 A RU 2016109139A RU 2624790 C1 RU2624790 C1 RU 2624790C1
Authority
RU
Russia
Prior art keywords
points
trajectory
path
mobile object
ranges
Prior art date
Application number
RU2016109139A
Other languages
English (en)
Inventor
Вадим Михайлович Бердников
Сергей Николаевич Кириллов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ)
Priority to RU2016109139A priority Critical patent/RU2624790C1/ru
Application granted granted Critical
Publication of RU2624790C1 publication Critical patent/RU2624790C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00

Abstract

Изобретение относится к области навигационного приборостроения, в частности к способам определения местоположения на основе комплексирования информации от различных источников. Технический результат – расширение функциональных возможностей обеспечен на основе определения пространственных координат мобильного объекта с помощью сигналов одной опорной радиостанции и счислений пути. Способ позволяет определять пространственное местоположение мобильного объекта на базе сигналов одной опорной радиостанции и счислении пути, что требует меньшую инфраструктуру, чем в классических сетевых (многопозиционных) системах радиопозиционирования, не требует сложных антенных решеток как в угломерных системах, и отсутствует возрастание ошибок со временем как в инерциальной навигации. При этом способ основан на определении дальностей или разностей дальностей до опорной радиостанции в различных выбранных точках траектории движения мобильного объекта и вычислении длины, азимута и угла места отрезков, соединяющих данные выбранные точки траектории движения. Форма траектории движения не имеет значения, так как учитываются только отрезки, соединяющие выбранные смежные точки траектории движения, а определение относительных пространственных координат текущей точки относительно предыдущей для формирования отрезка основано на счислении пути. 6 ил.

Description

Изобретение относится к области гибридной навигации, в частности к способам определения местоположения на основе комплексирования информации от различных источников.
Известно устройство (способ) определения местоположения на основе системы счисления пути, определителя курса и одной или нескольких фиксированных радиостанций с известными координатами [1]. Вычисление позиции основано на определении углов прихода радиоволн от одной или нескольких фиксированных радиостанций в разных точках маршрута движения с учетом траектории пройденного пути между ними посредством системы счисления пути и определителя курса (но сути инерциальной навигационной системы (ИНС)). Недостаток данного способа заключается в необходимости определения углов прихода радиоволн, что требует сложной антенной системы и может приводить к грубым ошибкам даже на слабопересеченной местности из-за эффекта многолучевости. Кроме того, точность данного способа ухудшается на больших дальностях от фиксированных радиостанций (вследствие угломерного метода). Также для определенных диапазонов частот фазированная антенная решетка (или т.п. антенная система) достаточно громоздкая и не всегда подходит для установки на малые мобильные объекты.
Известна система (способ) определения местоположения на основе GPS приемника, инерциальной навигационной системы и высотомера [2]. Вычисление позиции основано на использовании GPS и высотометре в случае, если есть прием навигационных радиосигналов не менее чем от трех спутников. В случае отсутствия видимости спутников GPS позиция определяется на основе инерциальной навигации. В случае видимости одного или двух спутников (например, в условиях городской местности) позиция находится на основе определения дальности до спутника и его координат в двух точках маршрута посредством декодирования навигационной информации из спутникового навигационного радиосигнала. Далее на основе решения двух треугольников и вычислении углов направления на спутник в двух точках маршрута, получается система из двух соответствующих уравнений кривых, решение которой позволяет определить текущую позицию объекта. Недостаток данного способа (системы) заключается в определении дальности до спутника, которая находится на основе задержки распространения сигнала, определяемой посредством вычитания сдвига времени данного спутника (полученное декодированием навигационного сообщения) из разности фазы навигационного радиосигнала, которая была измерена заранее. Таким образом, определение позиции зависит от заранее измеренной разности фаз, что не позволяет определять позицию объекта независимо от предыдущих данных. Кроме того, в данном способе подразумевается, что часы мобильного объекта и атомные часы спутника заранее синхронизированы, что опять же требует априорного решения навигационной задачи с тремя и более спутниками GPS или какого-нибудь отдельного канала синхронизации. Помимо этого, данная система (способ) основана на приеме сигналов GPS, которые достаточно уязвимы к действию преднамеренных помех, вследствие малого уровня мощности на поверхности Земли и в атмосфере, а также известностью рабочего диапазона частот.
Известен метод и система позиционирования на основе беспроводной радиосвязи и напряженности (силы) геомагнитного поля [3]. Вычисление позиции основано на измерении дальности между опорной базовой станцией и мобильным объектом и сопоставлении измеренной напряженности (силы) геомагнитного поля с имеющейся базой данных напряженностей (силы) геомагнитного поля. Далее на основе пересечения изомагнитной линии и окружности (сферы) с радиусом, равным измеренной дальности до базовой станции, определяется местоположение мобильного объекта. Недостатком данного метода и системы является необходимость в априорном наличии актуальной базы данных напряженностей (силы) геомагнитного поля в заданном районе, что не всегда возможно, особенно в условиях оперативного применения.
Известна радионавигационная система (способ) позиционирования мобильных объектов на основе определения не менее трех дальностей до опорной станции не менее чем в трех точках траектории движения с учетом информации о векторе скорости (ее производных) в первой точке [4]. Вычисление позиции основано на решении системы нелинейных уравнений дальностей, где координаты второй, третьей и т.д. точек маршрута выражены через координаты первой точки посредством скорости (ее производных) и интервала времени. Данный способ (система) является наиболее близким аналогом (прототипом) к предлагаемому.
Признаки прототипа, являющиеся общими с заявляемым изобретением, включают определение дальностей до опорной радиостанции в более чем одной точке траектории движения, вычисление местоположения на основе решения системы нелинейных уравнений, наличие приемопередатчика радиосигналов.
Недостатком данного способа является требование постоянства вектора скорости (ее производных) мобильного объекта на всей траектории движения, т.е. постоянство формы траектории между всеми парами смежных точек. Также для определения местоположения в пространстве необходимо измерение не менее трех дальностей до опорной радиостанции в трех точках пути. Кроме этого, в прототипе не рассмотрен вопрос работы в пассивном режиме (т.е. когда излучает только опорная радиостанция) и определяются разности дальностей (а не дальности) до опорной радиостанции. Таким образом, требования постоянства вектора скорости (ее производных) на всей траектории движения и временного интервала между не менее чем тремя точками с практической точки зрения представляются сложно исполнимыми и ведут к существенным ограничениям в условиях реального применения.
Технический результат заключается в обеспечении возможности определения пространственных координат мобильного объекта с помощью сигналов одной опорной радиостанции и счисления пути.
Указанный технический результат достигается благодаря тому, что способ динамического определения местоположения мобильных объектов, включающий:
- определение дальностей или разностей дальностей до опорной радиостанции в различных точках траектории движения;
- определение длины, азимута и угла места отрезков, последовательно соединяющих точки траектории движения;
- определение пространственных координат точек траектории движения на основе решения системы нелинейных уравнений;
имеет следующие отличия:
- применение как дальностей, так и разностей дальностей до опорной радиостанции для решения навигационной задачи;
- определение минимум двух дальностей или разностей дальностей до опорной радиостанции в двух или трех точках траектории движения соответственно;
- определение на основе счисления пути относительных координат последующих точек траектории движения относительно первой для формирования отрезков;
- определение длины, азимута и угла места отрезков, последовательно соединяющих точки траектории движения;
- произвольность формы траектории движения между всеми парами смежных точек, так как учитываются только отрезки, соединяющие выбранные смежные точки траектории движения, а определение относительных пространственных координат текущей точки относительно предыдущей для формирования отрезка основано на счислении пути.
Предлагаемый способ представлен двумя вариантами, а именно:
1) Дальномерный (или активный) вариант, при котором оцениваются две дальности до опорной радиостанции в двух точках траектории движения на основе метода «запрос-ответ» (TW-TOA [5]) или оценки мощности принятого радиосигнала (RSSI [5]).
2) Разностно-дальномерный (или пассивный) вариант, при котором оцениваются две разности дальностей до опорной радиостанции в трех точках траектории движения на основе фиксации моментов приема навигационного радиосигнала в шкале времени мобильного объекта.
Представленный на фиг. 1 дальномерный (активный) вариант предлагаемого способа включает следующие этапы:
1. Определение дальности до опорной радиостанции в первой выбранной точке траектории движения 101.
2. Счисление пути до второй выбранной точки траектории движения мобильного объекта 102.
3. Вычисление длины, азимута и угла места отрезка, соединяющего первую и вторую точки траектории движения мобильного объекта 103.
4. Определение дальности до опорной радиостанции во второй точке траектории движения 104.
5. Решение системы нелинейных уравнений и определение пространственных координат первой и второй точек отрезка пути 105.
Как показано на фиг. 2, динамическое определение местоположения мобильных объектов для дальномерного (активного) варианта предлагаемого способа основано на измерении минимум двух дальностей R1 и R2 между одной опорной радиостанцией (с известными координатами X0, Y0, Z0) и мобильным объектом в двух точках (с неизвестными координатами X1, Y1, Z1 и X2, Y2, Z2) траектории движения Р, определения длины L, азимута β и угла места α отрезка S, соединяющего первую и вторую точки траектории движения мобильного объекта (здесь S' и Р' - соответствующие проекции отрезка S и траектории движения Р на плоскость OXY).
Определение местоположения мобильного объекта основано на вычислении пространственных координат двух точек отрезка S посредством решения системы нелинейных уравнений (1).
Figure 00000001
где (X1, Y1, Z1) и (X2, Y2, Z2) - искомые координаты первой и второй точек траектории движения мобильного объекта.
Решение системы нелинейных уравнений (1) основано, как правило, на итерационной процедуре (например, методом Левенберга-Марквардта [6]), с учетом исключения зеркальных (неоднозначных) решений посредством сравнения дальностей до первой и второй точек отрезка пути (т.е. R2>R1 или R2-R1) при условии R2≠R1.
Представленный на фиг. 3 разностно-дальномерный (пассивный) вариант предлагаемого способа включает следующие этапы:
1. Фиксация момента времени приема навигационного сигнала от опорной радиостанции к бортовой шкале времени мобильного объекта в первой точке траектории движения 301.
2. Счисление пути до второй выбранной точки траектории движения мобильного объекта 302.
3. Вычисление длины, азимута и угла места отрезка, соединяющего первую и вторую точки траектории движения мобильного объекта 303.
4. Фиксация момента времени приема навигационного сигнала от опорной радиостанции в бортовой шкале времени мобильного объекта во второй точке траектории движения 304.
5. Вычисление первой разности дальностей 305 посредством умножения разности времени фиксации приема сигналов во второй и первой точках на скорость распространения радиоволн (скорость света).
6. Счисление пути до третьей выбранной точки траектории движения мобильного объекта 306.
7. Вычисление длины, азимута и угла места отрезка, соединяющего вторую и третью точки траектории движения мобильного объекта 307.
8. Фиксация момента времени приема навигационного сигнала от опорной радиостанции в бортовой шкале времени мобильного объекта в третьей точке траектории движения 308.
9. Вычисление второй разности дальностей 309 посредством умножения разности времени фиксации приема сигналов в третьей и второй точках на скорость распространения радиоволн (скорость света).
10. Решение системы нелинейных уравнений и определение пространственных координат первой, второй и третьей точек 310.
Как показано на фиг. 4, динамическое определение местоположения мобильных объектов для разностно-дальномерного (пассивного) варианта предлагаемого способа основано на измерении минимум двух разностей дальностей ΔR21 и ΔR32 между одной опорной радиостанцией (с известными координатами X0, Y0, Z0) и мобильным объектом в трех точках (с неизвестными координатами X1, Y1, Z1 и X2, Y2, Z2 и X3, Y3, Z3) траектории движения Р, определения длин L1, L2, азимутов β1, β2 и углов места α1, α2 отрезков S1, S2, соединяющих первую и вторую, а также вторую и третью точки траектории движения мобильного объекта соответственно.
Определение местоположения мобильного объекта основано на вычислении пространственных координат трех точек отрезков S1 и S2 посредством решения системы нелинейных уравнений (2).
Figure 00000002
где (X1, Y1, Z1), и (X2, Y2, Z2) и (X3, Y3, Z3) - искомые координаты первой, второй и третьей точек траектории движения мобильного объекта.
Решение системы нелинейных уравнений (2) также основано, как правило, на итерационной процедуре.
Также необходимо отметить, что для решения навигационной задачи возможно использование большего количества точек траектории движения, т.е. больше двух для дальномерного и больше трех для разностно-дальномерного вариантов предлагаемого способа. Соответственно, возрастает количество уравнений в системах вида (1) и (2), увеличивается задержка решения навигационной задачи и возрастает ошибка определения координат, вследствие более длительного счисления пути, что, как правило, нецелесообразно.
Блок-схема алгоритма, реализующего предлагаемый способ динамического определения местоположения мобильных объектов, представленного на фиг. 5, включает:
- блок инициализации 501, в котором устанавливаются координаты опорной радиостанции (X0, Y0, Z0), известные заранее или переданные по радиоканалу опорной радиостанцией или установленные в ноль при относительном определении местоположении мобильного объекта;
- блок установки в ноль начальных координат первой выбранной точки траектории движения 502, относительно которой будут определяться относительные координаты второй и третьей (в случае пассивного варианта) точек на основе счисления пути;
- выбор активного или пассивного варианта способа динамического определения местоположения 503, в зависимости от наличия или отсутствия обратного канала связи с опорной радиостанцией, соображений скрытности и других причин;
- определение координат первой, второй и третьей точек траектории движения относительно опорной радиостанции на основе разностно-дальномерного (пассивного) варианта предлагаемого способа 504, представленного выше и на фиг. 3;
- определение координат первой и второй точек траектории движения относительно опорной радиостанции на основе дальномерного (активного) варианта предлагаемого способа 505, представленного выше и на фиг. 1.
Целесообразно рассматривать следующие варианты осуществления изобретения (фиг. 6), такие как:
1. Использование приемопередатчика радиосигналов на опорной радиостанции 601, а также в бортовой системе мобильного объекта 602: приемопередатчик радиосигналов 603, ИНС (в составе трехосевых гироскопов и акселерометров) в качестве системы счисления пути 604, трехосевой магнитометр в качестве вычислителя азимута и угла места 605, электронно-вычислительную машину в качестве вычислителя координат точек траектории движения 606.
2. Использование передатчика радиосигналов на опорной радиостанции 601, а также в бортовой системе мобильного объекта 602: приемник радиосигналов 603, ИНС (в составе трехосевых гироскопов и акселерометров) в качестве системы счисления пути 604, трехосевой магнитометр в качестве вычислителя азимута и угла места 605, электронно-вычислительную машину в качестве вычислителя координат точек траектории движения 606 (только для разностно-дальномерного предлагаемого варианта способа).
3. Использование приемопередатчика радиосигналов на опорной радиостанции 601, а также в бортовой системе мобильного объекта 602: приемопередатчик радиосигналов 603, ИНС (в составе трехосевых гироскопов и акселерометров) и одометр в качестве системы счисления пути 604, трехосевой магнитометр в качестве вычислителя азимута и угла места 605, электронно-вычислительную машину в качестве вычислителя координат точек траектории движения 606.
4. Использование передатчика радиосигналов на опорной радиостанции 601, а также в бортовой системе мобильного объекта 602: приемник радиосигналов 603, ИНС (в составе трехосевых гироскопов и акселерометров) и одометр в качестве системы счисления пути 604, трехосевой магнитометр в качестве вычислителя азимута и угла места 605, электронно-вычислительную машину в качестве вычислителя координат точек траектории движения 606 (только для разностно-дальномерного предлагаемого варианта способа).
Представленные варианты реализации предлагаемого способа особенно актуальны для роботов и БПЛА, как правило, содержащих на борту ИНС, включающую трехосевые гироскопы и акселерометры, трехосевые магнитометры, приемник или приемопередатчик радиосигналов.
Список источников
1. Patent application US №4,713,767, application number US 730,572. - Apparatus for calculating position of vehicle. Published 15.12.1987.
2. Patent application US №4,731,613, application number US 804,511. - Positioning system for a vehicle. Published 15.03.1988.
3. Patent application US №2005/0032526 A1, application number US 10/909,819. - Wireless communication positioning method and system. Published 10.02.2005.
4. Patent application US №5,132,695, application number US 645,314. - Radio navigation system. Published 21.07.1992.
5. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов // Под ред. Д. Дардари, Э. Фаллетти, М. Луизе. Москва: Техносфера, 2012. - 528 с., ISBN 978-5-94836-338-7.
6. Васильев Ф.П. Методы оптимизации. Москва: Факториал Пресс, 2002. - 824 с., ISBN 5-88688-056-9.

Claims (1)

  1. Способ динамического определения местоположения мобильных объектов, включающий определение дальностей или разностей дальностей до опорной радиостанции в различных точках траектории движения: определение длины, азимута и угла места отрезков, последовательно соединяющих точки траектории движения; определение пространственных координат точек траектории движения на основе решения системы нелинейных уравнений; отличающийся: применением как дальностей, так и разностей дальностей до опорной радиостанции для решения навигационной задачи; определением минимум двух дальностей или разностей дальностей до опорной радиостанции в двух или трех точках траектории движения соответственно; определением на основе счисления пути относительных координат последующих точек траектории движения относительно первой для формирования отрезков; определением длины, азимута и угла места отрезков, последовательно соединяющих точки траектории движения, при произвольной форме траектории движения между всеми парами смежных точек.
RU2016109139A 2016-03-14 2016-03-14 Способ динамического определения местоположения мобильных объектов RU2624790C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109139A RU2624790C1 (ru) 2016-03-14 2016-03-14 Способ динамического определения местоположения мобильных объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109139A RU2624790C1 (ru) 2016-03-14 2016-03-14 Способ динамического определения местоположения мобильных объектов

Publications (1)

Publication Number Publication Date
RU2624790C1 true RU2624790C1 (ru) 2017-07-06

Family

ID=59312847

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109139A RU2624790C1 (ru) 2016-03-14 2016-03-14 Способ динамического определения местоположения мобильных объектов

Country Status (1)

Country Link
RU (1) RU2624790C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678371C2 (ru) * 2017-07-14 2019-01-28 Валерий Дмитриевич Федорищев Способ определения координат и углов положения осей подвижных объектов с помощью атомных часов, установленных на объектах и в пунктах наблюдения
RU2743048C1 (ru) * 2019-09-09 2021-02-15 Борис Викторович Рыжков Способ определения взаимного положения объектов навигации и система для осуществления указанного способа
CN113465616A (zh) * 2021-06-28 2021-10-01 湖北亿咖通科技有限公司 轨迹异常点检测方法和装置、电子设备、计算机程序产品及计算机可读存储介质
CN114485625A (zh) * 2022-01-27 2022-05-13 北京理工大学前沿技术研究院 一种轨迹定位测距装置、方法和无人驾驶系统
RU2779283C1 (ru) * 2021-11-24 2022-09-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения собственного местоположения объекта в пространстве и устройство его реализующее

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731613A (en) * 1984-12-07 1988-03-15 Nissan Motor Company, Limited Positioning system for a vehicle
US5132695A (en) * 1988-02-01 1992-07-21 Thomson Csf Radio navigation system
RU2023983C1 (ru) * 1992-05-14 1994-11-30 Раменское приборостроительное конструкторское бюро Комплексная система навигации
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2202102C2 (ru) * 2000-12-18 2003-04-10 ГУП Воронежский научно-исследовательский институт связи Способ определения местоположения подвижных объектов и устройство для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731613A (en) * 1984-12-07 1988-03-15 Nissan Motor Company, Limited Positioning system for a vehicle
US5132695A (en) * 1988-02-01 1992-07-21 Thomson Csf Radio navigation system
RU2023983C1 (ru) * 1992-05-14 1994-11-30 Раменское приборостроительное конструкторское бюро Комплексная система навигации
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2202102C2 (ru) * 2000-12-18 2003-04-10 ГУП Воронежский научно-исследовательский институт связи Способ определения местоположения подвижных объектов и устройство для его реализации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ботуз С.П. Интеллектуальные интерактивные системы и технологии управления удаленным доступом: Учебное пособие. 3-е изд., доп. - М.: СОЛОН-Пресс, 2014. - 340 с. (30,34 п.л.) + CD. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678371C2 (ru) * 2017-07-14 2019-01-28 Валерий Дмитриевич Федорищев Способ определения координат и углов положения осей подвижных объектов с помощью атомных часов, установленных на объектах и в пунктах наблюдения
RU2743048C1 (ru) * 2019-09-09 2021-02-15 Борис Викторович Рыжков Способ определения взаимного положения объектов навигации и система для осуществления указанного способа
CN113465616A (zh) * 2021-06-28 2021-10-01 湖北亿咖通科技有限公司 轨迹异常点检测方法和装置、电子设备、计算机程序产品及计算机可读存储介质
CN113465616B (zh) * 2021-06-28 2023-06-16 湖北亿咖通科技有限公司 轨迹异常点检测方法和装置、电子设备及存储介质
RU2779283C1 (ru) * 2021-11-24 2022-09-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ определения собственного местоположения объекта в пространстве и устройство его реализующее
CN114485625A (zh) * 2022-01-27 2022-05-13 北京理工大学前沿技术研究院 一种轨迹定位测距装置、方法和无人驾驶系统
RU2784103C1 (ru) * 2022-06-09 2022-11-23 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ мониторинга пространственно-временного состояния группы подвижных объектов при локальной навигации
RU2784109C1 (ru) * 2022-06-09 2022-11-23 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ мониторинга пространственно-временного состояния группы подвижных объектов при локальной навигации
RU2790808C1 (ru) * 2022-06-27 2023-02-28 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ мониторинга пространственно-временного состояния группы подвижных объектов при локальной навигации

Similar Documents

Publication Publication Date Title
EP3430419B1 (en) Estimating locations of mobile devices in a wireless tracking system
RU2624790C1 (ru) Способ динамического определения местоположения мобильных объектов
CN109782289B (zh) 一种基于基线几何结构约束的水下航行器定位方法
Zwirello et al. Sensor data fusion in UWB-supported inertial navigation systems for indoor navigation
US20070046530A1 (en) Methods and systems for satellite navigation
Shen et al. A DSRC Doppler/IMU/GNSS tightly-coupled cooperative positioning method for relative positioning in VANETs
US9024805B1 (en) Radar antenna elevation error estimation method and apparatus
CN104698437A (zh) 一种基于超宽带的井下车辆定位方法
CN114501300A (zh) 一种基于空间环境误差模型的分布式定位算法
CN110553655A (zh) 使用5g基础设施的自主车辆定位
JPH0755912A (ja) 位置決めシステムおよび方法
Rus et al. LoRa communication and geolocation system for sensors network
Fokin et al. Vehicles tracking in 5G-V2X UDN using range, bearing and inertial measurements
KR100715178B1 (ko) 관측 목표물의 위치 검출 방법
US20160116600A1 (en) Method and system for 3d position estimation of a gnss receiver using travel time measurements
CN111060945B (zh) 一种gnss/5g紧组合融合定位方法与装置
KR102142923B1 (ko) 공간좌표 측위 시스템
US20080186232A1 (en) Method of and apparatus for true north azimuth determination using the combination of crossed loop antenna and radio positioning system technologies
KR20000033073A (ko) 이동통신기기와 gps 수신기를 이용한 차량항법장치
KR20140142610A (ko) 위치 측정 장치 및 방법
RU2536609C1 (ru) Способ и устройство определения координат источника радиоизлучения
EP0524771A2 (en) D F method
Jaya et al. Identifying the Available Parking Area by the Assisstance of Parked-Vehicle
CN111025358A (zh) 基于导航卫星信号单短基线的定向方法
JP2006112994A (ja) 測位装置及び測位方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180315