WO2006040953A1 - モータ駆動回路及びそれを備えるモータ装置 - Google Patents

モータ駆動回路及びそれを備えるモータ装置 Download PDF

Info

Publication number
WO2006040953A1
WO2006040953A1 PCT/JP2005/018267 JP2005018267W WO2006040953A1 WO 2006040953 A1 WO2006040953 A1 WO 2006040953A1 JP 2005018267 W JP2005018267 W JP 2005018267W WO 2006040953 A1 WO2006040953 A1 WO 2006040953A1
Authority
WO
WIPO (PCT)
Prior art keywords
side drive
drive
motor
power supply
transistors
Prior art date
Application number
PCT/JP2005/018267
Other languages
English (en)
French (fr)
Inventor
Seiichi Yamamoto
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US11/662,615 priority Critical patent/US20080100242A1/en
Publication of WO2006040953A1 publication Critical patent/WO2006040953A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a motor drive circuit that applies a voltage to a coil of a motor (including an actuator) by PWM (pulse width modulation), and a motor device including the same.
  • FIG. 4 is a circuit diagram showing an example of this type of conventional motor device.
  • the motor device 101 includes a motor 102 having a coil 109 and a motor drive circuit 103 that drives the motor 102.
  • the motor drive circuit 103 is controlled by a torque control voltage TO and a reference voltage REF inputted by a command unit (not shown) such as an external microcomputer. That is, when the motor 102 is started and rotated at a constant speed in the positive direction, the torque control voltage TO input through the torque control voltage input terminal 110 is input through the reference voltage input terminal 111. Higher than REF. Therefore, the output of the polarity comparator 126 becomes high level, and the power supply side drive transistor 116 is turned off via the control logic circuit 127.
  • the drive current ID flows through the coil 109 of the motor 102 toward the drive input terminal A force and the drive input terminal B.
  • the drive current ID gradually increases.
  • the resistance element 119 which is the drive current detector, is proportional to this drive current I.
  • the absolute value output device 121 is the difference between the torque control voltage TO and the reference voltage REF. Output the absolute value.
  • the variable voltage generator 122 controlled by the absolute value output device 121 outputs a variable voltage. When the voltage proportional to the drive current I becomes larger than the variable voltage,
  • the output of the drive current detection comparator 123 becomes high level, and the output of the flip-flop 124 becomes low level. Then, the power supply side drive transistor 115 is turned off and the ground side drive transistor 117 is turned on, and the regenerative current I flows through the coil 109 with the drive input terminal A force directed toward the drive input terminal B. Note that the regenerative current I gradually decreases.
  • the gradually increasing drive current I and the gradually decreasing regenerative current I are the coil 10
  • the torque of the motor 102 is controlled by repeatedly flowing to 9 and the maximum value of the drive current I is controlled.
  • Both are turned on, and the drive input terminals A and B are substantially fixed to the ground potential. This substantially short-circuits both ends of the coil 109, thereby suppressing the energy stored in the coil 109 from being converted into heat energy by other elements and being consumed, resulting in a decrease in power efficiency. It is for preventing.
  • the resistance element 119 is used as the drive current detection unit, but the on-resistance of the power supply side drive transistor or the ground side drive transistor is used (for example, JP 2001-045765 A). For example, it is possible to avoid using a resistance element as the drive current detection unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-015855
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-045765
  • FIG. 5A to FIG. 5E are explanatory diagrams when the brake is applied by applying a torque in the negative direction in the motor drive circuit 103.
  • 5A and 5C are diagrams showing the on / off states of the driving transistors 115 to 118 in the driving period TD and the regeneration period TE, respectively.
  • FIG. 5 is a diagram showing the voltage distribution of each component of the coil 109 in the driving period TD and the regeneration period TE, respectively
  • FIG. 5E is a diagram showing the voltage or current waveform of each signal in FIGS. 5A to 5D.
  • CLK is the voltage of the clock CLK from the oscillator 125
  • a and B are the voltages of the drive input terminals A and B
  • I is the current flowing in the coil 109 with the direction from the drive input terminal A to the drive input terminal B being positive (that is, the drive Current ID plus regenerative current IE), and I flows through resistance element 119
  • the motor 102 decelerates due to the negative torque. As the motor 102 rotates, a counter electromotive voltage V is induced in the coil 109 depending on the speed and the direction of rotation. At this time, Figure 5B
  • the counter electromotive voltage V due to rotation is in the same direction as the drive current I, i.
  • Child B force is generated toward drive input terminal A.
  • the power supply side drive transistor 116 is turned off and the ground side drive transistor 118 is turned on, so that both the drive input terminals A and B are substantially at the ground potential and are substantially short-circuited. .
  • the regenerative current I flows through the coil 109 from the drive input terminal B to the drive input terminal A, and the counter electromotive voltage V caused by the rotation is the same as in the drive period TD.
  • the back electromotive voltage V due to the rotation of the motor 102 is a voltage drop due to the resistance component V and an inductor component.
  • Rm is the value of the resistance component.
  • the direction torque causes the motor 102 to decelerate and drop below the desired rotational speed.
  • a command unit such as a microcomputer can adjust the speed by making the torque control voltage TO higher than the reference voltage REF again.
  • the motor drive circuit 3 follows the torque control voltage TO. The operation of controlling the torque is not performed. Therefore, the time until the motor 102 finally reaches the desired rotational speed is increased. In addition, useless power is consumed during that time.
  • the present invention has been made in view of the above reasons, and its object is to apply a negative torque to a motor rotating at a constant speed in the positive direction to apply a brake. However, it is to provide a motor drive circuit that can control the torque in the negative direction.
  • the present invention provides a motor drive circuit that controls the torque of a motor by causing a drive current that gradually increases and a regenerative current that gradually decreases according to an input torque control voltage to flow through the coil.
  • a plurality of pairs of power supply side drive transistors and ground side drive transistors, a drive current detection unit, and a control circuit are provided.
  • a plurality of pairs of power supply side drive transistors and ground side drive transistors are connected in series between the power supply potential and the ground potential, and drive a coil connected to the intermediate point.
  • the drive current detector detects the coil drive current on the power supply side.
  • one power source side drive selected from a plurality of pairs of power source side drive transistors and ground side drive transistors to apply a positive direction torque. Turn on the transistor and one ground-side drive transistor to allow drive current to flow.
  • the control circuit turns off one power supply side drive transistor and turns on the ground side drive transistor paired with one power supply side drive transistor to generate a regenerative current. Shed.
  • the control circuit selects another power source side drive selected from a plurality of pairs of power source side drive transistors and ground side drive transistors so that negative direction torque is covered.
  • the transistor and other ground side drive transistors are turned on to pass drive current.
  • the control circuit turns off the other power supply side drive transistor and the other ground side drive transistor to flow the regenerative current.
  • the one and other power supply side driving transistors are P-type MOS transistors, and the one and other ground side driving transistors are N-type MOS transistors.
  • the drive current detection unit is a resistance element whose terminal is coupled to the power supply potential. More preferably, the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • a motor drive circuit that controls the torque of a motor by causing a drive current that gradually increases and a regenerative current that gradually decreases according to an input torque control voltage to flow through a coil.
  • a plurality of pairs of power supply side drive transistors and ground side drive transistors, a drive current detection unit, and a control circuit are provided.
  • a plurality of pairs of power supply side drive transistors and ground side drive transistors are connected in series between the power supply potential and the ground potential, and drive a coil connected to the intermediate point.
  • the drive current detector detects the coil drive current on the ground side.
  • the control circuit selects one power source selected from a plurality of pairs of power source side driving transistors and ground side driving transistors to apply a positive direction torque.
  • the side drive transistor and one ground side drive transistor are turned on to allow drive current to flow.
  • the control circuit turns off one ground side drive transistor and turns on the power supply side drive transistor paired with one ground side drive transistor to flow a regenerative current.
  • the control circuit selects another power source side drive transistor selected from the plurality of pairs of power source side drive transistors and ground side drive transistors to apply a negative direction torque.
  • the other ground side drive transistor is turned on to drive the drive current.
  • the control circuit turns off the other power supply side drive transistors and the other ground side drive transistors to flow the regenerative current.
  • the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • the drive current detection unit is a resistance element whose terminal is coupled to the ground potential.
  • the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • a motor device includes a motor having a coil and a motor drive circuit that drives the coil.
  • the motor drive circuit receives the input torque
  • the motor torque is controlled by flowing a drive current that gradually increases and a regenerative current that gradually decreases according to the control voltage.
  • the motor drive circuit includes a plurality of pairs of power supply side drive transistors and ground side drive transistors, a drive current detection unit, and a control circuit.
  • the plurality of pairs of power supply side drive transistors and ground side drive transistors are connected in series between the power supply potential and the ground potential, and drive a coil connected to the intermediate point.
  • the drive current detector detects the coil drive current on the power supply side.
  • the control circuit selects one power source side drive transistor selected from a plurality of pairs of power source side drive transistors and ground side drive transistors so as to apply a positive direction torque.
  • the transistor and one ground side driving transistor are turned on to pass a driving current.
  • the control circuit turns off one power supply side drive transistor and turns on the ground side drive transistor paired with one power supply side drive transistor to flow a regenerative current.
  • the control circuit applies another power supply side drive transistor selected from the plurality of pairs of the power supply side drive transistor and the ground side drive transistor so as to apply a negative direction torque.
  • the other ground side drive transistor is turned on to allow drive current to flow.
  • the control circuit turns off the other power supply side drive transistors and the other ground side drive transistors to flow the regenerative current.
  • the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • the drive current detection unit is a resistance element whose terminal is coupled to the power supply potential.
  • the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • a motor device includes a motor having a coil and a motor drive circuit that drives the coil.
  • the motor drive circuit controls the torque of the motor by flowing a drive current that gradually increases and a regenerative current that gradually decreases in accordance with the input torque control voltage.
  • the motor drive circuit includes a plurality of pairs of power supply side drive transistors and ground side drive transistors, a drive current detection unit, and a control circuit. Multiple pairs of power supply side drive transistor and ground side drive transistor are connected to power supply potential and ground A coil connected in series with the potential and connected to the intermediate point is driven.
  • the drive current detector detects the coil drive current on the ground side.
  • the control circuit selects one of the power source side driving transistors and the ground side driving transistor to apply the torque in the forward direction.
  • the drive transistor and one ground side drive transistor are turned on to allow drive current to flow.
  • the control circuit turns off one ground side drive transistor and turns on the power supply side drive transistor paired with one ground side drive transistor to flow a regenerative current.
  • the control circuit applies another power source side driving transistor selected from the plurality of pairs of power source side driving transistors and the ground side driving transistor and applies a negative direction torque. Turn on the other ground-side drive transistor to pass drive current.
  • the control circuit turns off the other power supply side drive transistors and the other ground side drive transistors to flow the regenerative current.
  • the one and other power supply side driving transistors are P-type MOS transistors, and the one and other ground side driving transistors are N-type MOS transistors.
  • the drive current detection unit is a resistance element whose terminal is coupled to the ground potential.
  • the one and other power supply side drive transistors are P-type MOS transistors, and the one and other ground side drive transistors are N-type MOS transistors.
  • the motor drive circuit according to the present invention is turned on during the drive period TD when the brake is applied by applying a negative torque to the motor rotating at a constant speed in the positive direction.
  • the transistor and ground side drive transistor are both turned off during the regeneration period TE to reduce the regenerative current, and the drive current is controlled in the drive period TD, so that the motor torque can be controlled.
  • the motor device according to the present invention includes this motor drive circuit, it is possible to shorten the time required for the motor to reach another desired rotational speed.
  • FIG. 1 is a circuit diagram showing a motor device according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing an ON / OFF state of driving transistors 15 to 18 in a driving period TD.
  • FIG. 2B is a diagram showing voltage distribution of each component of the coil 9 in the driving period TD.
  • FIG. 2C is a diagram showing an on / off state of the drive transistors 15 to 18 during the regeneration period TE.
  • FIG. 2D is a diagram showing voltage distribution of each component of the coil 9 during the regeneration period TE.
  • FIG. 2E is a diagram showing a voltage or current waveform of each signal in FIGS. 2A to 2D.
  • FIG. 3B is a diagram showing the voltage distribution of each component of the coil 9 in the drive period TD when the motor 2 is braked.
  • FIG. 3C is a diagram showing ON / OFF states of the drive transistors 15 to 18 during the regeneration period TE when the motor 2 is braked.
  • FIG. 3D is a diagram showing the voltage distribution of each component of the coil 9 during the regeneration period TE when the motor 2 is braked.
  • FIG. 3E is a diagram showing a voltage or current waveform of each signal in FIGS. 3A to 3D when the motor 2 is braked.
  • FIG. 5A is a diagram showing an ON / OFF state of driving transistors 115 to 118 in a driving period TD.
  • FIG. 5B is a diagram showing voltage distribution of each component of the coil 109 in the driving period TD.
  • FIG. 5C is a diagram showing ON / OFF states of the drive transistors 115 to 118 during the regeneration period TE.
  • FIG. 5D is a diagram showing voltage distribution of each component of the coil in the regeneration period TE.
  • FIG. 5E is a diagram showing a voltage or current waveform of each signal in FIGS. 5A to 5D.
  • FIG. 1 is a circuit diagram showing a motor device according to an embodiment of the present invention.
  • the motor device 1 includes a motor 2 having a coil 9 and a motor drive circuit 3 that drives the motor 2.
  • the motor 2 has drive input terminals A and B, and a coil 9 is connected between them.
  • the motor drive circuit 3 receives the torque control voltage input terminal 10 to which the torque control voltage TO is input, the reference voltage input terminal 11 to which the reference voltage REF of the torque control voltage TO is input, and the rotation direction signal RO.
  • the torque control voltage TO, the reference voltage REF, and the rotation direction signal RO are transmitted from a command unit such as an external microcomputer that controls the entire system, to the torque control voltage input terminal 10 and the reference voltage input terminal 11. Are respectively input via the rotation direction signal input terminals 12.
  • torque control voltage TO lower than reference voltage REF when torque in the negative direction is applied to motor 2 Are input to the torque control voltage input terminal 10, respectively.
  • a high-level rotation direction signal RO force when rotating in the negative direction, a low-level rotation direction signal RO is input.
  • the motor drive circuit 3 further includes PMOS-type first and second power supply side drive transistors 15, 16, NMOS type first and second ground-side drive transistors 17, 18, and drive current
  • the detection unit includes a resistance element 19 and a control circuit 20.
  • the first power supply side drive transistor 15 and the first ground side drive transistor 17 forming a pair are connected in series between the power supply potential VCC and the ground potential, and an intermediate point thereof is connected to the drive output terminal 13.
  • the second power supply side drive transistor 16 and the second ground side drive transistor 18 forming a pair are connected in series between the power supply potential VCC and the ground potential, and the intermediate point thereof is connected to the drive output terminal 14. Is done.
  • the power supply sides of the first and second power supply side drive transistors 15 and 16 are connected to each other. Drive current
  • the resistance element 19 serving as a detection unit is provided between the connection point and the power supply potential VCC.
  • An absolute value output device 21 is connected to both the torque control voltage input terminal 10 and the reference voltage input terminal 11.
  • the absolute value output device 21 outputs the absolute value of the difference between the torque control voltage TO and the reference voltage REF.
  • a variable voltage generator 22 is connected to the output terminal of the absolute value output device 21.
  • the variable voltage generator 22 outputs a voltage that is reduced by a variable voltage corresponding to the output voltage of the absolute value output device 21 from the power supply potential VCC.
  • the output of the variable voltage generator 22 is connected to the inverting input terminal of the drive current detection comparator 23.
  • One end of the resistance element 19 is connected to the non-inverting input terminal of the drive current detection comparator 23.
  • the drive current detection comparator 23 compares the variable voltage of the variable voltage generator 22 with the voltage generated in the resistance element 19 and outputs a high level or low level signal.
  • the output terminal of the drive current detection comparator 23 is connected to the reset input terminal R of the flip-flop 24.
  • the power supply potential VCC is input to the data input terminal D of the flip-flop 24.
  • a clock CLK having a constant frequency output from the oscillator 25 is input to the clock input terminal C.
  • the flip-flop 24 is set in response to the power supply potential at the data input terminal D force at the rising edge of the clock CLK, and outputs a high level signal from the output terminal Q. When the output of the drive current detection comparator 23 becomes high level, the flip-flop 24 is reset and outputs a low level signal from the output terminal Q.
  • the torque control voltage input terminal 10 and the reference voltage input terminal 11 are connected to the non-inverting input terminal and the inverting input terminal of the polarity comparator 26, respectively.
  • the polarity comparator 26 compares the torque control voltage TO with the reference voltage REF and outputs a high level or low level signal.
  • a control logic circuit 27 is connected to the output terminal of the flip-flop 24, the output terminal of the polarity comparator 26, and the rotation direction signal input terminal 12.
  • the control logic circuit 27 is connected to the first and second power supply side drive transistors 15 and 16 and the first and second ground side drive transistors 17 and 18.
  • the control logic circuit 27 is configured by combining an AND circuit, an OR circuit, an inverter, and an ENOR circuit.
  • the control logic circuit 27 controls on / off of the first and second power supply side drive transistors 15 and 16 and the first and second ground side drive transistors 17 and 18. The operation of the control logic circuit 27 will be described next.
  • the control logic circuit 27 When the output of the polarity comparator 26 is high level, the control logic circuit 27 Operate. Note that the case where the output of the polarity comparator 26 is in the negative or negative level is a case where the motor 2 is started and rotated at a constant speed in the positive direction as will be described later. This is a case where the motor 2 rotating in the direction is braked. If the output of the flip-flop 24 is high level, the control logic circuit 27 turns on the first power supply side drive transistor 15 and the second ground side drive transistor 18, and the second power supply side drive transistor 16 and the first power supply drive transistor 16 are turned on. The ground side drive transistor 17 is turned off.
  • the control logic circuit 27 When the output of the flip-flop 24 is low and the rotation direction signal RO is high, the control logic circuit 27 turns on the first and second ground side drive transistors 17 and 18 and turns on the first and second power supply sides. Turn off drive transistors 15 and 16. When the output of the flip-flop 24 is low and the rotation direction signal RO is low, the control logic circuit 27 includes the first and second power supply side drive transistors 15 and 16 and the first and second ground side drive transistors 17 and 16. Turn all 18 off.
  • control logic circuit 27 operates as follows when the output of the polarity comparator 26 is at a low level. Note that when the output of the polarity comparator 26 is at a low level, as described later, when the brake is applied to the motor 2 rotating in the forward direction, and the detailed explanation is omitted, the motor 2 is started. This is the case of rotating at a constant speed in the negative direction.
  • the control port ic circuit 27 turns on the second power supply side drive transistor 16 and the first ground side drive transistor 17, and the first power supply side drive transistor 15 and the first power supply side drive transistor 15. 2 ground side drive transistor 18 is turned off.
  • the control logic circuit 27 turns on the first and second ground side drive transistors 17 and 18 and drives the first and second power supply sides. Turn off transistors 15 and 16. If the output of the flip-flop 24 is low and the rotation direction signal RO is low or low, the control logic circuit 27 is connected to the first and second power supply side drive transistors 15 and 16 and the first and second ground side drive transistors. Turn off all 17 and 18.
  • first power supply side drive transistor 15 and the first ground side drive transistor 17 or the second power supply side drive transistor 16 and the second ground side drive transistor 18 were turned on simultaneously and transiently. Sometimes a circuit is needed to prevent through current from flowing. However, since this circuit is not related to the gist of the present invention, its detailed description is omitted.
  • a voltage proportional to the dynamic current I is generated. This voltage is higher than the variable voltage of variable voltage generator 22.
  • the output of the drive current detection comparator 23 becomes high level, and the output of the flip-flop 24 becomes low level. Then, the first power supply side drive transistor 15 is turned off and the first ground side drive transistor 17 is turned on. A regenerative current I flows through the coil 9 from the drive input terminal A to the drive input terminal B. The regenerative current I gradually decreases.
  • Terminal A force Repeatedly flows in the direction of drive input terminal B, and the maximum value of drive current I is torque.
  • the torque of the motor 2 is controlled by being controlled by the control voltage TO.
  • FIGS. 2A and 2C are diagrams showing ON / OFF states of the drive transistors 15 to 18 in the drive period TD and the regeneration period TE, respectively
  • FIGS. 2B and 2D are diagrams of the coil 9 in the drive period TD and the regeneration period TE, respectively.
  • FIG. 2E is a diagram showing a voltage distribution of each component
  • FIG. 2E is a diagram showing a voltage or current waveform of each signal in FIGS. 2A to 2D.
  • CLK is the voltage of the clock CLK from the oscillator 25
  • a and B are the voltages of the drive input terminals A and B
  • I is the current flowing through the coil 9 with the direction from the drive input terminal A to the drive input terminal B being positive (that is, the drive current) ID and the regenerative current IE))
  • I indicates the current flowing through the resistance element 19.
  • the first power supply side drive transistor 15 and the second ground side drive transistor 18 are turned on, and the voltage of the drive input terminal A becomes higher than the voltage of the drive input terminal B.
  • the drive current I flows through the coil 9 toward the drive input terminal A and the drive input terminal B.
  • the positive direction Torque is applied to motor 2.
  • both the drive input terminals A and B are substantially at the ground potential. Is substantially short-circuited. At this time, as shown in FIG. 2C and FIG.
  • V is generated in the opposite direction to the regenerative current I as in the driving period TD.
  • the drive current I increases gradually.
  • the voltage proportional to the drive current I is the resistance element 1
  • the drive input I is the drive current I that gradually increases and the regenerative current I that gradually decreases.
  • the torque of the motor 2 is controlled by being controlled by the torque control voltage TO.
  • the entire period of the clock CLK is the drive period TD
  • the voltage V due to the resistance component is generated in the direction opposite to the regenerative current I.
  • the back electromotive force V due to the inductance component must be generated in the same direction as the regenerative current I.
  • the drive input terminal A has a power supply potential VCC that is also increased by the forward bias voltage (Vf) of the parasitic diode, and B is the forward bias voltage (Vf) of the parasitic diode from the ground potential. ) Is just a lower voltage.
  • the torque of the motor 2 can be controlled. Therefore, even when braking is applied to the motor 2 rotating in the positive direction, the maximum value of the drive current I is the torque control voltage.
  • a desired negative torque is applied to the motor 2 by being controlled by TO. As a result, it is possible to reduce the time until the motor 2 is decelerated to reach another desired rotational speed.
  • the resistance element 19 is provided as a drive current detection unit on the power supply side.
  • a resistor as a drive current detection unit is provided on the ground side instead of the power supply side. It can also be modified to provide anti-elements.
  • the second ground side drive transistor is turned off after the drive current reaches a value corresponding to the torque control voltage, and the second power supply side A regenerative current flows when the drive transistor is turned on.
  • the variable voltage generator 22, the drive current detection comparator 23, and the like need to be changed in a small manner corresponding to this modification.
  • the resistance element is not used as the driving current detection unit. I'll do it.
  • the motor driving circuit and the motor device including the motor driving circuit according to the embodiment of the present invention have been described.
  • the present invention is not limited to those described in the embodiment but described in the scope of the claims.
  • the power source drive transistor can be an NMOS transistor, or all or part of the drive transistor can be a bipolar transistor. In this case, when there is no parasitic diode as shown in the embodiment, it can be provided separately.
  • the present invention is also applicable to driving a motor having a plurality of coils (for example, a three-phase motor).
  • the control circuit can of course have any configuration as long as it is a circuit that causes the drive transistor to perform the operation shown in the embodiment.

Abstract

 モータ駆動回路(3)は、中間点からコイル(9)を駆動する複数対の電源側駆動トランジスタ(15,16)及び接地側駆動トランジスタ(17,18)と、コイル(9)の駆動電流を電源側で検出する駆動電流検出部(19)と、正方向に回転しているモータにブレーキをかける場合、負方向のトルクを加えるよう電源側駆動トランジスタ及び他の接地側駆動トランジスタを選択し、それらをオンして駆動電流を流し、駆動電流が所定の値になると、これらの選択された電源側駆動トランジスタ及び選択された接地側駆動トランジスタをともにオフして回生電流を流すように制御する制御回路(20)と、を備える。したがって、正方向に回転しているモータに負方向のトルクを加えてブレーキをかける場合に、そのトルクを制御できるモータ駆動回路を提供できる。

Description

明 細 書
モータ駆動回路及びそれを備えるモータ装置
技術分野
[0001] 本発明は、モータ(ァクチユエータも含む)のコイルに PWM (パルス幅変調)により 電圧を印加するモータ駆動回路、及びそれを備えるモータ装置に関する。
背景技術
[0002] 従来より、電源電圧レベルの電圧を PWMのパルス期間、すなわち、オンデューテ ィ期間だけモータのコイルに印加してモータのトルクを制御する PWM駆動のモータ 装置が知られている(例えば特開 2004— 015855号公報 (特許文献 1)参照)。この モータ装置は、 PWMのパルス期間(以下、駆動期間 TDと称する)に駆動電流が電 源電位カゝらコイルを通って接地電位に流れ込み、残りの期間、すなわち、オフデュー ティ期間(以下、回生期間 TEと称する)には、電流を流れ続けさせるコイルの誘導性 により、駆動期間 TDのときの経路とは別の経路で回生電流が流れる。図 4は、この種 の従来のモータ装置の一例を示す回路図である。このモータ装置 101は、コイル 10 9を有するモータ 102と、モータ 102を駆動するモータ駆動回路 103と、から成る。
[0003] モータ駆動回路 103は、外部のマイクロコンピュータ等の指令部(図示せず)力 入 力されるトルク制御電圧 TOと基準電圧 REFとにより制御される。すなわち、モータ 10 2を起動して正方向に一定の速度で回転させる場合、トルク制御電圧入力端子 110 を介して入力されるトルク制御電圧 TOが基準電圧入力端子 111を介して入力される 基準電圧 REFよりも高くなる。そのため、極性比較器 126の出力はハイレベルとなり 、制御ロジック回路 127を介して電源側駆動トランジスタ 116はオフする。そして、発 振器(OSC) 125からのクロック CLKが立ち上がってフリップフロップ 124の出力がハ ィレベルになると、接地側駆動トランジスタ 117はオフし、電源側駆動トランジスタ 11 5と接地側駆動トランジスタ 118とはオンする。モータ 102のコイル 109には駆動入力 端子 A力 駆動入力端子 Bに向かって駆動電流 IDが流れる。なお、駆動電流 IDは 徐々に増加する。駆動電流検出部である抵抗素子 119には、この駆動電流 I に比例
D
した電圧が生じる。絶対値出力器 121はトルク制御電圧 TOと基準電圧 REFの差の 絶対値を出力する。絶対値出力器 121により制御される可変電圧発生器 122からは 可変電圧が出力される。可変電圧よりも駆動電流 I に比例した電圧が大きくなると、
D
駆動電流検出比較器 123の出力はハイレベルとなり、フリップフロップ 124の出力は ローレベルとなる。そうすると、電源側駆動トランジスタ 115はオフするとともに接地側 駆動トランジスタ 117はオンし、コイル 109には駆動入力端子 A力も駆動入力端子 B に向力つて回生電流 Iが流れる。なお、回生電流 Iは徐々に減少する。
E E
[0004] このように、徐々に増加する駆動電流 Iと徐々に減少する回生電流 Iとがコイル 10
D E
9に繰り返して流れ、駆動電流 I の最大値が制御されることによりモータ 102のトルク
D
が制御される。ここで、回生電流 Iが流れるとき、接地側駆動トランジスタ 117、 118
E
は共にオンし、駆動入力端子 A、 Bはほぼ接地電位に固定されるようになっている。こ れは、コイル 109の両端を実質的に短絡することにより、コイル 109に蓄積されるエネ ルギが他の素子により熱エネルギに変換されて消費されるのを抑制し、電力効率が 低下するのを防止するためである。
[0005] なお、このモータ駆動回路 103では駆動電流検出部として抵抗素子 119を用いて いるが、電源側駆動トランジスタ又は接地側駆動トランジスタのオン抵抗を利用する( 例えば特開 2001— 045765号公報 (特許文献 2)参照)などにより、駆動電流検出 部として抵抗素子を用いな 、ようにすることもできる。
特許文献 1 :特開 2004— 015855号公報
特許文献 2:特開 2001— 045765号公報
発明の開示
発明が解決しょうとする課題
[0006] ところで、正方向に一定の速度で回転して 、るモータを減速して他の所望の回転 速度にする場合、負方向のトルクを加えてブレーキ (逆転ブレーキ)をかけると、所望 の回転速度に達するまでの時間が短くて済む。従って、この方式は高速動作が要求 されるシステムのモータ装置に非常に有効である。
[0007] 図 5A〜図 5Eは、モータ駆動回路 103において、負方向のトルクを加えてブレーキ をかけた場合の説明図である。図 5A、図 5Cはそれぞれ駆動期間 TD、回生期間 TE における駆動トランジスタ 115〜118のオン.オフ状態を示す図であり、図 5B、図 5D はそれぞれ駆動期間 TD、回生期間 TEにおけるコイル 109の各成分の電圧配分を 示す図であり、図 5Eは、図 5A〜図 5Dの各信号の電圧又は電流波形を示す図であ る。 CLKは発振器 125からのクロック CLKの電圧、 A、 Bは駆動入力端子 A、 Bの電 圧、 Iは駆動入力端子 Aから駆動入力端子 Bの方向を正としてコイル 109に流れる電 流 (すなわち駆動電流 IDと回生電流 IEとを足した電流)、 Iは抵抗素子 119に流れる
2
電流を示す。駆動期間 TDには、電源側駆動トランジスタ 116と接地側駆動トランジス タ 117とがオンし、駆動入力端子 Bの電圧が駆動入力端子 Aの電圧よりも高くなる。コ ィル 109には、モータ 102を起動して正方向に一定の速度で回転させる場合とは逆 に、駆動入力端子 Bから駆動入力端子 Aに向力つて駆動電流 Iが流れる。その結果
D
、負方向のトルクによりモータ 102は減速する。なお、モータ 102が回転することによ りコイル 109に逆起電圧 Vが速度と回転方向に依存して誘起される。このとき、図 5B
X
に示すように、回転による逆起電圧 Vは駆動電流 Iと同方向、すなわち駆動入力端
X D
子 B力 駆動入力端子 Aに向かって発生して 、る。
[0008] そして、回生期間 TEには、電源側駆動トランジスタ 116がオフして接地側駆動トラ ンジスタ 118がオンするため、駆動入力端子 A、 Bはともにほぼ接地電位となり、実質 的に短絡される。このとき、コイル 109には駆動入力端子 Bから駆動入力端子 Aに向 かって回生電流 Iが流れ、回転による逆起電圧 Vは、駆動期間 TDの場合と同様に
E X
、回生電流 I
Eと同方向に発生している。ここで留意すべきは、図 5Dに示すように、モ ータ 102の回転による逆起電圧 Vは抵抗成分による降下電圧 Vとインダクタ成分に
X R
よる逆起電圧 Vによって相殺されるのである力 回生電流 Iは V ZRmに達するまで
I E X
増加し続けることである。なお、 Rmは抵抗成分の値である。
[0009] したがって、抵抗素子 119で目標の駆動電流 Iが検出できた(時間 t )後、回生電
D 0
流 Iが減少しないので、駆動電流 Iが流れる駆動期間 TDが極めて短くなり、コイル 1
E D
09に流れる電流は回生電流 Iにより増加し続けることになる。その結果、過大な負方
E
向のトルクによりモータ 102は減速して所望の回転速度よりも下がってしまうことが起 こる。この場合、マイクロコンピュータ等の指令部(図示せず)は、再度、トルク制御電 圧 TOを基準電圧 REFよりも高くして速度を調整することができる。し力し上記のよう に、負方向のトルクが加えられる間、モータ駆動回路 3はトルク制御電圧 TOに従って トルクを制御するという動作を行なっていない。したがってモータ 102が最終的に所 望の回転速度に達するまでの時間が長くなる。また、その間に無駄な電力も消費さ れる。
[0010] 本発明は、以上の事由に鑑みてなされたもので、その目的とするところは、正方向 に一定の速度で回転しているモータに負方向のトルクを加えてブレーキをかける場 合でも、その負方向のトルクを制御できるようにしたモータ駆動回路を提供することに ある。
課題を解決するための手段
[0011] 本発明は要約すれば、入力されるトルク制御電圧に従って徐々に増加する駆動電 流と徐々に減少する回生電流とをコイルに流すことによりモータのトルクを制御するモ ータ駆動回路であって、複数対の電源側駆動トランジスタおよび接地側駆動トランジ スタと、駆動電流検出部と、制御回路とを備える。複数対の電源側駆動トランジスタお よび接地側駆動トランジスタは、電源電位と接地電位との間に直列に接続され、中間 点に接続されるコイルを駆動する。駆動電流検出部は、コイルの駆動電流を電源側 で検出する。制御回路はモータを起動して正方向に一定の速度で回転させる場合、 正方向のトルクを加えるよう、複数対の電源側駆動トランジスタおよび接地側駆動トラ ンジスタの中から選択した一の電源側駆動トランジスタおよび一の接地側駆動トラン ジスタをオンして駆動電流を流す。制御回路は駆動電流がトルク制御電圧に対応す る値になると、一の電源側駆動トランジスタをオフするとともに、一の電源側駆動トラン ジスタと対をなす接地側駆動トランジスタをオンして回生電流を流す。制御回路は、 正方向に回転しているモータにブレーキをかける場合、負方向のトルクをカ卩えるよう、 複数対の電源側駆動トランジスタおよび接地側駆動トランジスタの中から選択した他 の電源側駆動トランジスタおよび他の接地側駆動トランジスタをオンして駆動電流を 流す。制御回路は、駆動電流がトルク制御電圧に対応する値になると、他の電源側 駆動トランジスタおよび他の接地側駆動トランジスタをともにオフして回生電流を流す
[0012] 好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであり、 一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。 [0013] 好ましくは、駆動電流検出部は、電源電位に端子が結合される抵抗素子である。 より好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであ り、一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0014] 本発明の他の局面に従うと、入力されるトルク制御電圧に従って徐々に増加する駆 動電流と徐々に減少する回生電流とをコイルに流すことによりモータのトルクを制御 するモータ駆動回路であって、複数対の電源側駆動トランジスタおよび接地側駆動ト ランジスタと、駆動電流検出部と、制御回路とを備える。複数対の電源側駆動トランジ スタおよび接地側駆動トランジスタは電源電位と接地電位との間に直列に接続され、 中間点に接続されるコイルを駆動する。駆動電流検出部はコイルの駆動電流を接地 側で検出する。制御回路は、モータを起動して正方向に一定の速度で回転させる場 合、正方向のトルクを加えるよう、複数対の電源側駆動トランジスタおよび接地側駆 動トランジスタの中から選択した一の電源側駆動トランジスタおよび一の接地側駆動 トランジスタをオンして駆動電流を流す。制御回路は駆動電流がトルク制御電圧に対 応する値になると、一の接地側駆動トランジスタをオフするとともに、一の接地側駆動 トランジスタと対をなす電源側駆動トランジスタをオンして回生電流を流す。制御回路 は、正方向に回転しているモータにブレーキをかける場合、負方向のトルクを加える よう、複数対の電源側駆動トランジスタおよび接地側駆動トランジスタの中から選択し た他の電源側駆動トランジスタおよび他の接地側駆動トランジスタをオンして駆動電 流を流す。制御回路は、駆動電流がトルク制御電圧に対応する値になると、他の電 源側駆動トランジスタおよび他の接地側駆動トランジスタをともにオフして回生電流を 流す。
[0015] 好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであり、 一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0016] 好ましくは、駆動電流検出部は、接地電位に端子が結合される抵抗素子である。
より好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであ り、一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0017] 本発明のさらに他の局面に従うと、モータ装置であって、コイルを有するモータと、 コイルを駆動するモータ駆動回路とを備える。モータ駆動回路は、入力されるトルク 制御電圧に従って徐々に増加する駆動電流と徐々に減少する回生電流とをコイルに 流すことによりモータのトルクを制御する。モータ駆動回路は、複数対の電源側駆動 トランジスタおよび接地側駆動トランジスタと、駆動電流検出部と、制御回路とを含む 。複数対の電源側駆動トランジスタおよび接地側駆動トランジスタは、電源電位と接 地電位との間に直列に接続され、中間点に接続されるコイルを駆動する。駆動電流 検出部は、コイルの駆動電流を電源側で検出する。制御回路はモータを起動して正 方向に一定の速度で回転させる場合、正方向のトルクを加えるよう、複数対の電源側 駆動トランジスタおよび接地側駆動トランジスタの中から選択した一の電源側駆動トラ ンジスタおよび一の接地側駆動トランジスタをオンして駆動電流を流す。制御回路は 駆動電流がトルク制御電圧に対応する値になると、一の電源側駆動トランジスタをォ フするとともに、一の電源側駆動トランジスタと対をなす接地側駆動トランジスタをオン して回生電流を流す。制御回路は、正方向に回転しているモータにブレーキをかけ る場合、負方向のトルクを加えるよう、複数対の電源側駆動トランジスタおよび接地側 駆動トランジスタの中から選択した他の電源側駆動トランジスタおよび他の接地側駆 動トランジスタをオンして駆動電流を流す。制御回路は、駆動電流がトルク制御電圧 に対応する値になると、他の電源側駆動トランジスタおよび他の接地側駆動トランジ スタをともにオフして回生電流を流す。
[0018] 好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであり、 一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0019] 好ましくは、駆動電流検出部は、電源電位に端子が結合される抵抗素子である。
より好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであ り、一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0020] 本発明のさらに他の局面に従うと、モータ装置であって、コイルを有するモータと、 コイルを駆動するモータ駆動回路とを備える。モータ駆動回路は、入力されるトルク 制御電圧に従って徐々に増加する駆動電流と徐々に減少する回生電流とをコイルに 流すことによりモータのトルクを制御する。モータ駆動回路は、複数対の電源側駆動 トランジスタおよび接地側駆動トランジスタと、駆動電流検出部と、制御回路とを含む 。複数対の電源側駆動トランジスタおよび接地側駆動トランジスタは電源電位と接地 電位との間に直列に接続され、中間点に接続されるコイルを駆動する。駆動電流検 出部はコイルの駆動電流を接地側で検出する。制御回路は、モータを起動して正方 向に一定の速度で回転させる場合、正方向のトルクを加えるよう、複数対の電源側駆 動トランジスタおよび接地側駆動トランジスタの中から選択した一の電源側駆動トラン ジスタおよび一の接地側駆動トランジスタをオンして駆動電流を流す。制御回路は駆 動電流がトルク制御電圧に対応する値になると、一の接地側駆動トランジスタをオフ するとともに、一の接地側駆動トランジスタと対をなす電源側駆動トランジスタをオンし て回生電流を流す。制御回路は、正方向に回転しているモータにブレーキをかける 場合、負方向のトルクを加えるよう、複数対の電源側駆動トランジスタおよび接地側 駆動トランジスタの中から選択した他の電源側駆動トランジスタおよび他の接地側駆 動トランジスタをオンして駆動電流を流す。制御回路は、駆動電流がトルク制御電圧 に対応する値になると、他の電源側駆動トランジスタおよび他の接地側駆動トランジ スタをともにオフして回生電流を流す。
[0021] 好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであり、 一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
[0022] 好ましくは、駆動電流検出部は、接地電位に端子が結合される抵抗素子である。
より好ましくは、一および他の電源側駆動トランジスタは、 P型 MOSトランジスタであ り、一および他の接地側駆動トランジスタは、 N型 MOSトランジスタである。
発明の効果
[0023] 本発明に係るモータ駆動回路は、正方向に一定の速度で回転しているモータに負 方向のトルクを加えてブレーキをかける場合に、駆動期間 TDにオンして 、た電源側 駆動トランジスタと接地側駆動トランジスタとを回生期間 TEでともにオフさせて回生電 流を減少させ、かつ、駆動期間 TDでは駆動電流を制御するのでモータのトルクを制 御することができる。また、本発明に係るモータ装置は、このモータ駆動回路を備え ているので、モータを他の所望の回転速度に達するまでの時間を短縮することができ る。
図面の簡単な説明
[0024] [図 1]本発明の実施形態のモータ装置を示す回路図である。 [図 2A]駆動期間 TDにおける駆動トランジスタ 15〜18のオン'オフ状態を示す図であ る。
[図 2B]駆動期間 TDにおけるコイル 9の各成分の電圧配分を示す図である。
[図 2C]回生期間 TEにおける駆動トランジスタ 15〜18のオン'オフ状態を示す図であ る。
[図 2D]回生期間 TEにおけるコイル 9の各成分の電圧配分を示す図である。
[図 2E]図 2A〜図 2Dの各信号の電圧又は電流波形を示す図である。
[図 3A]モータ 2にブレーキをかけた場合の駆動期間 TDにおける駆動トランジスタ 15
〜 18のオン ·オフ状態を示す図である。
[図 3B]モータ 2にブレーキをかけた場合の駆動期間 TDにおけるコイル 9の各成分の 電圧配分を示す図である。
[図 3C]モータ 2にブレーキをかけた場合の回生期間 TEにおける駆動トランジスタ 15 〜 18のオン ·オフ状態を示す図である。
[図 3D]モータ 2にブレーキをかけた場合の回生期間 TEにおけるコイル 9の各成分の 電圧配分を示す図である。
[図 3E]モータ 2にブレーキをかけた場合の図 3A〜図 3Dの各信号の電圧又は電流 波形を示す図である。
圆 4]従来のモータ装置の一例を示す回路図である。
[図 5A]駆動期間 TDにおける駆動トランジスタ 115〜118のオン'オフ状態を示す図 である。
[図 5B]駆動期間 TDにおけるコイル 109の各成分の電圧配分を示す図である。
[図 5C]回生期間 TEにおける駆動トランジスタ 115〜118のオン'オフ状態を示す図 である。
[図 5D]回生期間 TEにおけるコイルの各成分の電圧配分を示す図である。
[図 5E]図 5A〜図 5Dの各信号の電圧又は電流波形を示す図である。
圆 6]本発明の実施形態のモータ装置の別の例を示す回路図である
符号の説明
1 モータ装置、 2 モータ、 3 モータ駆動回路、 9 コイル、 15, 16 電源側駆動ト ランジスタ、 17, 18 接地側駆動トランジスタ、 19 抵抗素子 (駆動電流検出部)、 20 制御回路。
発明を実施するための最良の形態
[0026] 以下、本発明の最良の実施形態を図面を参照しながら説明する。図 1は本発明の 実施形態のモータ装置を示す回路図である。このモータ装置 1は、コイル 9を有する モータ 2と、それを駆動するモータ駆動回路 3と、を有して成る。モータ 2は、駆動入力 端子 A、 Bを有しており、それらの間にコイル 9が接続される。モータ駆動回路 3は、ト ルク制御電圧 TOが入力されるトルク制御電圧入力端子 10と、トルク制御電圧 TOの 基準電圧 REFが入力される基準電圧入力端子 11と、回転方向信号 ROが入力され る回転方向信号入力端子 12と、モータ 2の駆動入力端子 Aに接続される駆動出力 端子 13と、モータ 2の駆動入力端子 Bに接続される駆動出力端子 14と、を有する。 図示しないが、トルク制御電圧 TO、基準電圧 REF、および回転方向信号 ROは、全 体のシステムを制御する外部のマイクロコンピュータ等の指令部などから、トルク制御 電圧入力端子 10、基準電圧入力端子 11、回転方向信号入力端子 12を介してそれ ぞれ入力される。すなわち、正方向のトルクをモータ 2にカ卩えるときは基準電圧 REF よりも高いトルク制御電圧 TO力 負方向のトルクをモータ 2にカ卩える場合は基準電圧 REFよりも低 ヽトルク制御電圧 TOが、それぞれトルク制御電圧入力端子 10に入力さ れる。また、モータ 2が正方向に回転しているときはハイレベルの回転方向信号 RO 力 負方向に回転している場合はローレベルの回転方向信号 ROが、それぞれ入力 される。
[0027] モータ駆動回路 3は、さらに、 PMOS型の第 1及び第 2の電源側駆動トランジスタ 1 5, 16と、 NMOS型の第 1及び第 2の接地側駆動トランジスタ 17, 18と、駆動電流検 出部として抵抗素子 19と、制御回路 20と、を有する。対を成す第 1の電源側駆動トラ ンジスタ 15と第 1の接地側駆動トランジスタ 17とは、電源電位 VCCと接地電位との間 に直列に接続され、その中間点は駆動出力端子 13に接続される。対を成す第 2の電 源側駆動トランジスタ 16と第 2の接地側駆動トランジスタ 18とは、電源電位 VCCと接 地電位との間に直列に接続され、その中間点は駆動出力端子 14に接続される。第 1 及び第 2の電源側駆動トランジスタ 15, 16の電源側は互いに接続される。駆動電流 検出部である抵抗素子 19は、その接続点と電源電位 VCCとの間に設けられる。
[0028] 次に、モータ駆動回路 3の主要部である制御回路 20を説明する。トルク制御電圧 入力端子 10と基準電圧入力端子 11との両方には絶対値出力器 21が接続される。 絶対値出力器 21はトルク制御電圧 TOと基準電圧 REFとの差の絶対値を出力する。 絶対値出力器 21の出力端子には可変電圧発生器 22が接続される。この可変電圧 発生器 22は、電源電位 VCCカゝら絶対値出力器 21の出力電圧に応じた可変電圧分 だけ降下させた電圧を出力する。可変電圧発生器 22の出力は駆動電流検出比較 器 23の反転入力端子に接続される。駆動電流検出比較器 23の非反転入力端子に は抵抗素子 19の一端が接続される。駆動電流検出比較器 23は、可変電圧発生器 2 2の可変電圧と抵抗素子 19に生じる電圧とを比較してハイレベル又はローレベルの 信号を出力する。駆動電流検出比較器 23の出力端子にはフリップフロップ 24のリセ ット入力端子 Rが接続される。フリップフロップ 24のデータ入力端子 Dには電源電位 VCCが入力される。クロック入力端子 Cには、発振器 25が出力する一定周波数のク ロック CLKが入力される。フリップフロップ 24は、クロック CLKの立ち上がりでデータ 入力端子 D力も電源電位を受けることによりセット状態となって出力端子 Qからハイレ ベルの信号を出力する。フリップフロップ 24は駆動電流検出比較器 23の出力がハイ レベルになるとリセット状態となって出力端子 Qからローレベルの信号を出力する。
[0029] また、トルク制御電圧入力端子 10と基準電圧入力端子 11には、それぞれ極性比 較器 26の非反転入力端子と反転入力端子が接続される。極性比較器 26はトルク制 御電圧 TOと基準電圧 REFとを比較してハイレベル又はローレベルの信号を出力す る。そして、前述のフリップフロップ 24の出力端子、極性比較器 26の出力端子、およ び回転方向信号入力端子 12には制御ロジック回路 27が接続される。制御ロジック回 路 27には前述の第 1及び第 2の電源側駆動トランジスタ 15, 16、第 1及び第 2の接 地側駆動トランジスタ 17, 18が接続される。制御ロジック回路 27は AND回路、 OR 回路、インバータ、 ENOR回路を組み合わせて構成される。制御ロジック回路 27は 第 1及び第 2の電源側駆動トランジスタ 15, 16、第 1及び第 2の接地側駆動トランジス タ 17, 18のオン'オフを制御する。この制御ロジック回路 27の動作を次に説明する。
[0030] 制御ロジック回路 27は、極性比較器 26の出力がハイレベルの場合、以下のように 動作する。なお、極性比較器 26の出力がノ、ィレベルの場合とは、後述するようにモ ータ 2を起動して正方向に一定の速度で回転させる場合、および、詳しい説明は省 略するが負方向に回転しているモータ 2にブレーキをかける場合である。制御ロジッ ク回路 27はフリップフロップ 24の出力がハイレベルならば第 1の電源側駆動トランジ スタ 15および第 2の接地側駆動トランジスタ 18をオンし、第 2の電源側駆動トランジス タ 16および第 1の接地側駆動トランジスタ 17をオフする。制御ロジック回路 27はフリ ップフロップ 24の出力がローレベルで回転方向信号 ROがハイレベルならば、第 1及 び第 2の接地側駆動トランジスタ 17, 18をオンし、第 1及び第 2の電源側駆動トランジ スタ 15, 16をオフする。制御ロジック回路 27は、フリップフロップ 24の出力がローレ ベルで回転方向信号 ROがローレベルならば第 1及び第 2の電源側駆動トランジスタ 15, 16、第 1及び第 2の接地側駆動トランジスタ 17, 18を全てオフする。
[0031] また、制御ロジック回路 27は、極性比較器 26の出力がローレベルの場合、以下の ように動作する。なお、極性比較器 26の出力がローレベルの場合とは、後述するよう に正方向に回転しているモータ 2にブレーキをかける場合、および、詳しい説明は省 略するが、モータ 2を起動して負方向に一定の速度で回転させる場合である。制御口 ジック回路 27は、フリップフロップ 24の出力がハイレベルならば第 2の電源側駆動ト ランジスタ 16及び第 1の接地側駆動トランジスタ 17をオンし、第 1の電源側駆動トラン ジスタ 15及び第 2の接地側駆動トランジスタ 18をオフする。制御ロジック回路 27は、 フリップフロップ 24の出力がローレベルで回転方向信号 ROがローレベルならば第 1 及び第 2の接地側駆動トランジスタ 17, 18をオンし、第 1及び第 2の電源側駆動トラン ジスタ 15, 16をオフする。制御ロジック回路 27は、フリップフロップ 24の出力がロー レベルで回転方向信号 ROがノ、ィレベルならば第 1及び第 2の電源側駆動トランジス タ 15, 16、第 1及び第 2の接地側駆動トランジスタ 17, 18を全てオフする。
[0032] なお、第 1の電源側駆動トランジスタ 15と第 1の接地側駆動トランジスタ 17、又は第 2の電源側駆動トランジスタ 16と第 2の接地側駆動トランジスタ 18とが過渡的に同時 にオンしたときに貫通電流が流れるのを防止する回路が必要である。ただしこの回路 につ 、ては、本発明の要旨と関係しな 、のでその詳細な説明は省略して 、る。
[0033] 次に、モータ装置 1の全体の動作を説明する。モータ 2を起動して正方向に一定の 速度で回転させる場合、基準電圧 REFよりも高いトルク制御電圧 TOが入力される。 また、回転方向信号入力端子 12にはハイレベルの信号が入力される。そのため、極 性比較器 26の出力はハイレベルとなり、制御ロジック回路 27を介して第 2の電源側 駆動トランジスタ 16はオフする。そして、発振器 (OSC) 25からのクロック CLKが立ち 上がり、フリップフロップ 24の出力がハイレベルとなると、第 1の接地側駆動トランジス タ 17はオフし、第 1の電源側駆動トランジスタ 15と第 2の接地側駆動トランジスタ 18と はオンする。モータ 2のコイル 9には駆動入力端子 A力も駆動入力端子 Bに向力つて 駆動電流 Iが流れる。なお、駆動電流 Iは徐々に増加する。抵抗素子 19にはこの駆
D D
動電流 I に比例した電圧が生じる。この電圧が可変電圧発生器 22の可変電圧よりも
D
大きくなると、駆動電流検出比較器 23の出力はハイレベルとなり、フリップフロップ 24 の出力はローレベルとなる。そうすると、第 1の電源側駆動トランジスタ 15はオフする とともに第 1の接地側駆動トランジスタ 17はオンする。コイル 9には駆動入力端子 Aか ら駆動入力端子 Bに向力つて回生電流 Iが流れる。なお、回生電流 Iは徐々に減少
E E
する。
[0034] このように、徐々に増加する駆動電流 Iと徐々に減少する回生電流 Iとが駆動入力
D E
端子 A力 駆動入力端子 Bの方向に繰り返して流れ、駆動電流 I の最大値がトルク
D
制御電圧 TOにより制御されることによりモータ 2のトルクが制御される。
[0035] 次に、図 2A〜図 2Eに基づいてコイル 9の駆動電流 I及び回生電流 Iを更に詳しく
D E
説明する。図 2A、図 2Cはそれぞれ駆動期間 TD、回生期間 TEにおける駆動トラン ジスタ 15〜18のオン.オフ状態を示す図であり、図 2B、図 2Dはそれぞれ駆動期間 TD、回生期間 TEにおけるコイル 9の各成分の電圧配分を示す図であり、図 2Eは図 2A〜図 2Dの各信号の電圧又は電流波形を示す図である。 CLKは発振器 25から のクロック CLKの電圧、 A、 Bは駆動入力端子 A、 Bの電圧、 Iは駆動入力端子 Aか ら駆動入力端子 Bの方向を正としてコイル 9に流れる電流 (すなわち駆動電流 IDと回 生電流 IEとを足した電流)、 Iは抵抗素子 19に流れる電流を示す。駆動期間 TDに
2
は、第 1の電源側駆動トランジスタ 15と第 2の接地側駆動トランジスタ 18とがオンし、 駆動入力端子 Aの電圧が駆動入力端子 Bの電圧よりも高くなる。コイル 9には駆動入 力端子 A力 駆動入力端子 Bに向かって駆動電流 Iが流れる。その結果、正方向の トルクがモータ 2に加えられる。このとき、図 2Bに示すように、回転による逆起電圧 V
X
は駆動電流 I と逆方向、すなわち駆動入力端子 Bから駆動入力端子 Aに向力つて発
D
生している。
[0036] そして、回生期間 TEには、第 1の電源側駆動トランジスタ 15がオフして第 1の接地 側駆動トランジスタ 17がオンするため、駆動入力端子 A、 Bは共にほぼ接地電位とな り、実質的に短絡される。このとき、図 2Cおよび図 2Dに示すように、コイル 9には駆動 入力端子 A力 駆動入力端子 Bに向かって回生電流 Iが流れ、回転による逆起電圧
E
Vは、駆動期間 TDの場合と同様に、回生電流 Iと逆方向に発生している。
X E
[0037] 続、て、正方向に回転して 、るモータ 2にブレーキをかける場合を説明する。この 場合、基準電圧 REFよりも低いトルク制御電圧 TOが入力される。その結果、第 2の 電源側駆動トランジスタ 15はオフする。そしてクロック CLKが立ち上がりフリップフロッ プ 24の出力がハイレベルとなると、第 2の接地側駆動トランジスタ 18はオフし、第 2の 電源側駆動トランジスタ 16と第 1の接地側駆動トランジスタ 17とはオンする。コイル 9 には駆動入力端子 Bから駆動入力端子 Aの方向(負方向)に駆動電流 I が流れる。
D
なお、駆動電流 I は徐々に増加する。この駆動電流 I に比例した電圧が抵抗素子 1
D D
9に生じる。この電圧が可変電圧発生器 22の可変電圧よりも大きくなると駆動電流検 出比較器 23の出力はハイレベルとなり、フリップフロップ 24の出力はローレベルとな る。そうすると、第 2の電源側駆動トランジスタ 16と第 1の接地側駆動トランジスタ 17と はオフし、コイル 9には駆動入力端子 Bから駆動入力端子 Aに向力つて回生電流 Iが
E
流れる。この回生電流 Iは、クロック CLKが再度立ち上がるまで徐々に減少する。
E
[0038] このように、徐々に増加する駆動電流 I と徐々に減少する回生電流 Iとが駆動入力
D E
端子 Bから駆動入力端子 Aの方向に繰り返して流れ、駆動電流 I の負の最大値がト
D
ルク制御電圧 TOにより制御されることによりモータ 2のトルクが制御される。
[0039] 更に、図 3A〜図 3Eに基づいてモータ 2にブレーキをかけた場合のコイル 9の駆動 電流 I及び回生電流 Iを詳しく説明する。なお、図 3A〜図 3Eの内容は図 2A〜図 2
D E
Eにそれぞれ対応するものである。駆動期間 TDには、第 2の電源側駆動トランジスタ 16と第 1の接地側駆動トランジスタ 17とがオンし、駆動入力端子 Bの電圧が駆動入 力端子 Aの電圧よりも高くなる。コイル 9には駆動入力端子 Bから駆動入力端子 Aに 向かって駆動電流 Iが流れる。その結果、負方向のトルクによりモータ 2は減速する。
D
駆動電流 Iが負の最大値に至るまで、クロック CLKの一周期の全てが駆動期間 TD
D
となり、その後は駆動期間 TDと回生期間 TEとが繰り返される。
[0040] そして、図 3Eに示すように、回生期間 TEには、回生電流 Iは接地電位から、 NM
E
OS型の第 2の接地側駆動トランジスタ 18と並列に存在する寄生ダイオード、駆動入 力端子 B、コイル 9、駆動入力端子 A、 PMOS型の第 1の電源側駆動トランジスタ 15 と並列に存在する寄生ダイオードを経て電源電位 VCCに流れる。このとき、図 3Dに 示すように、回転による逆起電圧 Vは回生電流 Iと同方向(駆動入力端子 Bから駆
X E
動入力端子 Aへの方向)、抵抗成分による電圧 Vは回生電流 Iと逆方向に生じる。
R E
また、インダクタンス成分による逆起電圧 Vは回生電流 Iと同方向に生じなければな
I E
らないので、回生電流 Iは徐々に減少することになる。なお、回生期間 TEでは、抵
E
抗素子 19の電圧降下を無視すると、駆動入力端子 Aは電源電位 VCC力も寄生ダイ オードの順バイアス電圧 (Vf)だけ上がった電圧になり、 Bは接地電位から寄生ダイ オードの順バイアス電圧 (Vf)だけ下がった電圧になって 、る。
[0041] 従って、駆動期間 TDの駆動電流 Iが最大値になった後は、回生電流 Iが減少す
D E
るので、モータ 2のトルクを制御することが可能になる。よって、正方向に回転している モータ 2にブレーキをかける場合であっても、駆動電流 Iの最大値がトルク制御電圧
D
TOにより制御されることにより、モータ 2には所望の負方向のトルクが加えられる。そ の結果、モータ 2を減速して他の所望の回転速度に達するまでの時間を短縮すること が可能になる。
[0042] なお、このモータ駆動回路 3では、正方向に回転しているモータ 2にブレーキをかけ る場合、第 2の電源側駆動トランジスタ 16と第 1の接地側駆動トランジスタ 17をオフす ることにより駆動トランジスタ 15, 17, 16, 18が全てオフすることになる。ただし第 2の 接地側駆動トランジスタ 18をオンして寄生ダイオードによる電力消費を多少抑えるこ とも可能である。
[0043] モータ 2を起動して負方向に一定の速度で回転させる場合と負方向に回転して 、 るモータ 2にブレーキをかける場合との両方の動作は、以上の説明から明らかである ので詳 ヽ説明は省略する。 [0044] また、以上説明したモータ装置 1は、電源側に駆動電流検出部として抵抗素子 19 を設けているが、図 6に示すように、電源側でなく接地側に駆動電流検出部として抵 抗素子を設けるように変形することも可能である。この場合、モータを起動して正方向 に一定の速度で回転させるには、駆動電流がトルク制御電圧に対応する値になった 後に第 2の接地側駆動トランジスタがオフし、第 2の電源側駆動トランジスタがオンす ることによって回生電流が流れるようにする。その他、可変電圧発生器 22や駆動電 流検出比較器 23などについて、この変形に対応させる小さな変更が必要であるが、 明らかであるので説明は省略する。
[0045] また、背景技術の説明で述べたように、電源側駆動トランジスタ又は接地側駆動トラ ンジスタのオン抵抗を利用するなどにより、駆動電流検出部として抵抗素子を用いな いようにすることちでさる。
[0046] 以上、本発明の実施形態であるモータ駆動回路及びそれを備えるモータ装置につ いて説明したが、本発明は、実施形態に記載したものに限られることなぐ請求の範 囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、電源側 駆動トランジスタを NMOS型のトランジスタにしたり、駆動トランジスタの全て又は一 部をバイポーラ型のトランジスタにしたりすることも可能である。この場合、実施形態に 示すような寄生ダイオードが存在しないときはこれを別に設けることもできる。また、本 発明は複数のコイルを有するモータ(例えば 3相モータ)を駆動する場合にも適用可 能である。また、駆動トランジスタに実施形態で示す動作をさせる回路であれば、制 御回路は任意の構成を有することが可能なのは勿論である。
[0047] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 入力されるトルク制御電圧に従って徐々に増加する駆動電流と徐々に減少する回 生電流とをコイル(9)に流すことによりモータ(2)のトルクを制御するモータ駆動回路 (3)であって、
電源電位と接地電位との間に直列に接続され、中間点に接続される前記コイル (9 )を駆動する複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トランジス タ(17, 18)と、
前記コイル (9)の駆動電流を電源側で検出する駆動電流検出部(19)と、 前記モータ(2)を起動して正方向に一定の速度で回転させる場合、正方向のトルク を加えるよう、前記複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トラ ンジスタ(17, 18)の中力 選択した一の電源側駆動トランジスタ(15)および一の接 地側駆動トランジスタ(18)をオンして前記駆動電流を流し、前記駆動電流が前記ト ルク制御電圧に対応する値になると、前記一の電源側駆動トランジスタ(15)をオフ するとともに、前記一の電源側駆動トランジスタ(15)と対をなす接地側駆動トランジス タ( 17)をオンして回生電流を流し、正方向に回転して 、る前記モータにブレーキを 力ける場合、負方向のトルクを加えるよう、前記複数対の電源側駆動トランジスタ(15 , 16)および接地側駆動トランジスタ(17, 18)の中から選択した他の電源側駆動トラ ンジスタ(16)および他の接地側駆動トランジスタ(17)をオンして前記駆動電流を流 し、前記駆動電流が前記トルク制御電圧に対応する値になると、前記他の電源側駆 動トランジスタ(16)および前記他の接地側駆動トランジスタ(17)をともにオフして前 記回生電流を流す制御回路とを備えるモータ駆動回路。
[2] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 1に記載のモータ駆動回路。
[3] 前記駆動電流検出部(19)は、前記電源電位に端子が結合される抵抗素子である
、請求項 1に記載のモータ駆動回路。
[4] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 3に記載のモータ駆動回路。
[5] 入力されるトルク制御電圧に従って徐々に増加する駆動電流と徐々に減少する回 生電流とをコイル(9)に流すことによりモータ(2)のトルクを制御するモータ駆動回路 (3)であって、
電源電位と接地電位との間に直列に接続され、中間点に接続される前記コイル (9 )を駆動する複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トランジス タ(17, 18)と、
前記コイル (9)の駆動電流を接地側で検出する駆動電流検出部(19)と、 前記モータ(2)を起動して正方向に一定の速度で回転させる場合、正方向のトルク を加えるよう、前記複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トラ ンジスタ(17, 18)の中力 選択した一の電源側駆動トランジスタ(15)および一の接 地側駆動トランジスタ(18)をオンして前記駆動電流を流し、前記駆動電流が前記ト ルク制御電圧に対応する値になると、前記一の接地側駆動トランジスタ(18)をオフ するとともに、前記一の接地側駆動トランジスタ(18)と対をなす電源側駆動トランジス タ(16)をオンして回生電流を流し、正方向に回転している前記モータにブレーキを 力ける場合、負方向のトルクを加えるよう、前記複数対の電源側駆動トランジスタ(15 , 16)および接地側駆動トランジスタ(17, 18)の中から選択した他の電源側駆動トラ ンジスタ(16)および他の接地側駆動トランジスタ(17)をオンして前記駆動電流を流 し、前記駆動電流が前記トルク制御電圧に対応する値になると、前記他の電源側駆 動トランジスタ(16)および前記他の接地側駆動トランジスタ(17)をともにオフして前 記回生電流を流す制御回路とを備えるモータ駆動回路。
[6] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 5に記載のモータ駆動回路。
[7] 前記駆動電流検出部(19)は、前記接地電位に端子が結合される抵抗素子である 、請求項 5に記載のモータ駆動回路。
[8] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 7に記載のモータ駆動回路。
[9] コイル(9)を有するモータ(2)と、
前記コイル (9)を駆動するモータ駆動回路(3)とを備え、
前記モータ駆動回路(3)は、入力されるトルク制御電圧に従って徐々に増加する駆 動電流と徐々に減少する回生電流とを前記コイル(9)に流すことにより前記モータ(2 )のトルクを制御し、
電源電位と接地電位との間に直列に接続され、中間点に接続される前記コイル (9 )を駆動する複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トランジス タ(17, 18)と、
前記コイル (9)の駆動電流を電源側で検出する駆動電流検出部(19)と、 前記モータ(2)を起動して正方向に一定の速度で回転させる場合、正方向のトルク を加えるよう、前記複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トラ ンジスタ(17, 18)の中力 選択した一の電源側駆動トランジスタ(15)および一の接 地側駆動トランジスタ(18)をオンして前記駆動電流を流し、前記駆動電流が前記ト ルク制御電圧に対応する値になると、前記一の電源側駆動トランジスタ(15)をオフ するとともに、前記一の電源側駆動トランジスタ(15)と対をなす接地側駆動トランジス タ( 17)をオンして回生電流を流し、正方向に回転して 、る前記モータにブレーキを 力ける場合、負方向のトルクを加えるよう、前記複数対の電源側駆動トランジスタ(15 , 16)および接地側駆動トランジスタ(17, 18)の中から選択した他の電源側駆動トラ ンジスタ(16)および他の接地側駆動トランジスタ(17)をオンして前記駆動電流を流 し、前記駆動電流が前記トルク制御電圧に対応する値になると、前記他の電源側駆 動トランジスタ(16)および前記他の接地側駆動トランジスタ(17)をともにオフして前 記回生電流を流す制御回路とを含む、モータ装置。
[10] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 9に記載のモータ装置。
[11] 前記駆動電流検出部(19)は、前記電源電位に端子が結合される抵抗素子である
、請求項 9に記載のモータ装置。
[12] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 11に記載のモータ装置。
[13] コイル(9)を有するモータ(2)と、
前記コイル (9)を駆動するモータ駆動回路(3)とを備え、
前記モータ駆動回路(3)は、入力されるトルク制御電圧に従って徐々に増加する駆 動電流と徐々に減少する回生電流とを前記コイル(9)に流すことにより前記モータ(2 )のトルクを制御し、
電源電位と接地電位との間に直列に接続され、中間点に接続される前記コイル (9 )を駆動する複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トランジス タ(17, 18)と、
前記コイル (9)の駆動電流を接地側で検出する駆動電流検出部(19)と、 前記モータ(2)を起動して正方向に一定の速度で回転させる場合、正方向のトルク を加えるよう、前記複数対の電源側駆動トランジスタ(15, 16)および接地側駆動トラ ンジスタ(17, 18)の中力 選択した一の電源側駆動トランジスタ(15)および一の接 地側駆動トランジスタ(18)をオンして前記駆動電流を流し、前記駆動電流が前記ト ルク制御電圧に対応する値になると、前記一の接地側駆動トランジスタ(18)をオフ するとともに、前記一の接地側駆動トランジスタ(18)と対をなす電源側駆動トランジス タ(16)をオンして回生電流を流し、正方向に回転している前記モータにブレーキを 力ける場合、負方向のトルクを加えるよう、前記複数対の電源側駆動トランジスタ(15 , 16)および接地側駆動トランジスタ(17, 18)の中から選択した他の電源側駆動トラ ンジスタ(16)および他の接地側駆動トランジスタ(17)をオンして前記駆動電流を流 し、前記駆動電流が前記トルク制御電圧に対応する値になると、前記他の電源側駆 動トランジスタ(16)および前記他の接地側駆動トランジスタ(17)をともにオフして前 記回生電流を流す制御回路とを含む、モータ装置。
[14] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 13に記載のモータ装置。
[15] 前記駆動電流検出部(19)は、前記電源電位に端子が結合される抵抗素子である
、請求項 13に記載のモータ装置。
[16] 前記一および他の電源側駆動トランジスタ(15, 16)は、 P型 MOSトランジスタであ り、
前記一および他の接地側駆動トランジスタ(17, 18)は、 N型 MOSトランジスタであ る、請求項 15に記載のモータ装置。
PCT/JP2005/018267 2004-10-08 2005-10-03 モータ駆動回路及びそれを備えるモータ装置 WO2006040953A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/662,615 US20080100242A1 (en) 2004-10-08 2005-10-03 Motor Drive Circuit and Motor Apparatus Including the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-296967 2004-10-08
JP2004296967A JP2006109684A (ja) 2004-10-08 2004-10-08 モータ駆動回路及びそれを備えるモータ装置

Publications (1)

Publication Number Publication Date
WO2006040953A1 true WO2006040953A1 (ja) 2006-04-20

Family

ID=36148249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018267 WO2006040953A1 (ja) 2004-10-08 2005-10-03 モータ駆動回路及びそれを備えるモータ装置

Country Status (5)

Country Link
US (1) US20080100242A1 (ja)
JP (1) JP2006109684A (ja)
CN (1) CN101036286A (ja)
TW (1) TW200625781A (ja)
WO (1) WO2006040953A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419597B2 (ja) * 2015-02-16 2018-11-07 ルネサスエレクトロニクス株式会社 モータの駆動方法、モータ駆動装置およびハードディスク装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172995A (ja) * 1982-03-31 1983-10-11 Hitachi Ltd 負荷電流検出回路
JPS6434192A (en) * 1987-07-27 1989-02-03 Meidensha Electric Mfg Co Ltd Controlling device for dc motor
JPH01169346U (ja) * 1988-05-20 1989-11-29
JP2001045765A (ja) * 1999-07-30 2001-02-16 Rohm Co Ltd 負荷駆動回路
JP2003189651A (ja) * 2001-12-20 2003-07-04 Brother Ind Ltd 直流モータの減速制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736716B2 (ja) * 1983-10-18 1995-04-19 株式会社明電舍 モ−タ拾い上げ方法
US4528486A (en) * 1983-12-29 1985-07-09 The Boeing Company Controller for a brushless DC motor
JPH02197293A (ja) * 1989-01-23 1990-08-03 Matsushita Electric Ind Co Ltd ゲートドライブ回路
US5757636A (en) * 1994-12-08 1998-05-26 Pwm Drives Limited Multi-phase inverters utilizing discontinuous PWM with dead bands
JP2004015855A (ja) * 2002-06-04 2004-01-15 Canon Inc モータ駆動制御装置
JP2004098988A (ja) * 2002-09-12 2004-04-02 Koyo Seiko Co Ltd 電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172995A (ja) * 1982-03-31 1983-10-11 Hitachi Ltd 負荷電流検出回路
JPS6434192A (en) * 1987-07-27 1989-02-03 Meidensha Electric Mfg Co Ltd Controlling device for dc motor
JPH01169346U (ja) * 1988-05-20 1989-11-29
JP2001045765A (ja) * 1999-07-30 2001-02-16 Rohm Co Ltd 負荷駆動回路
JP2003189651A (ja) * 2001-12-20 2003-07-04 Brother Ind Ltd 直流モータの減速制御装置

Also Published As

Publication number Publication date
TW200625781A (en) 2006-07-16
CN101036286A (zh) 2007-09-12
JP2006109684A (ja) 2006-04-20
US20080100242A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP3912190B2 (ja) ブラシレスモータの駆動装置およびそれを用いたモータ
US7402975B2 (en) Motor drive device and drive method
US7622873B2 (en) Motor drive device and drive method
US8030861B2 (en) Method for controlling a deceleration process of a DC motor and controller
GB2314703A (en) Driving circuit for a switched reluctance motor
JP2547553B2 (ja) 直流電動機用の給電電流制限装置とこのような制限装置を備えた電動機
US10707796B2 (en) Motor control system and method
TWI699961B (zh) 馬達驅動電路及方法
JP4965941B2 (ja) モータ駆動装置、ブラシレスモータ及びその駆動方法
US6384556B1 (en) Motor driving circuit
EP2843831B1 (en) Motor drive unit
WO2006040953A1 (ja) モータ駆動回路及びそれを備えるモータ装置
JP2004260980A (ja) 定電圧ステッピングモータ駆動回路の異常検出方法
US5825145A (en) Quiet commutation circuit for an electric motor
EP3900972B1 (en) Dynamic safe state control of electrical motor based on vehicle speed
JP4695924B2 (ja) モータ駆動装置
JP2001345682A (ja) 三角波発生回路、pwm制御装置及び電動パワーステアリング装置
JPH11299276A (ja) 電動機の停止制御方法
JP2792122B2 (ja) 可変リラクタンスモータの駆動装置
JP2560855B2 (ja) プラシレスモータの駆動装置
JP2007236090A (ja) ブラシレスモータの制御方法および制御装置
KR19980074228A (ko) 직류모터의 전류제어 장치 및 방법
JP4121277B2 (ja) ブラシレスdcモータ
JP2005143189A (ja) 車両用ファン駆動装置
JP2560489B2 (ja) ブラシレスモータの駆動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11662615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580033581.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11662615

Country of ref document: US