WO2006038535A1 - 回折格子および回折格子を含む光学系 - Google Patents

回折格子および回折格子を含む光学系 Download PDF

Info

Publication number
WO2006038535A1
WO2006038535A1 PCT/JP2005/018029 JP2005018029W WO2006038535A1 WO 2006038535 A1 WO2006038535 A1 WO 2006038535A1 JP 2005018029 W JP2005018029 W JP 2005018029W WO 2006038535 A1 WO2006038535 A1 WO 2006038535A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
diffraction grating
light
diffraction
wavelengths
Prior art date
Application number
PCT/JP2005/018029
Other languages
English (en)
French (fr)
Inventor
Kouei Hatade
Norihisa Sakagami
Original Assignee
Nalux Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co., Ltd. filed Critical Nalux Co., Ltd.
Priority to JP2006539255A priority Critical patent/JPWO2006038535A1/ja
Publication of WO2006038535A1 publication Critical patent/WO2006038535A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Diffraction grating and optical system including diffraction grating
  • the present invention relates to a diffraction grating that diffracts light of three wavelengths.
  • the present invention relates to a diffraction grating that diffracts light of blue wavelength, red wavelength, and infrared wavelength with high efficiency, or a diffraction grating that diffracts light of blue wavelength, green wavelength, and red wavelength with high efficiency.
  • the present invention also relates to an optical system including a three-wavelength light source and a diffraction grating that diffracts three-wavelength light from the three-wavelength light source.
  • Three-wavelength light sources of blue wavelength, red wavelength, and infrared wavelength used in an optical pickup device and the like are arranged at intervals in a direction perpendicular to the optical axis. For this reason, the optical axis shift of the light of three wavelengths occurs.
  • the multiplex hologram element is difficult to manufacture and is expensive.
  • a diffraction grating that diffracts three wavelengths of light, particularly three wavelengths of light of blue, red, and infrared, which are used in optical pickup devices and the like.
  • an optical system that includes a three-wavelength light source and a diffraction grating that diffracts the three-wavelength light from the light source so that the optical axes are aligned.
  • the diffraction grating according to the present invention is a diffraction grating that diffracts the first, second, and third light beams having different wavelengths.
  • the shape of the diffraction grating is a stepped shape with a constant period.
  • the wavelength of the first ray is shorter than the wavelength of the second ray
  • the wavelength of the second ray is shorter than the wavelength of the third ray
  • the wavelengths of the first, second and third rays are It corresponds to any one of the wavelengths indicating the diffraction efficiency peaks of the 1st-order diffracted light, 0th-order diffracted light, and -1st-order diffracted light of the diffraction grating.
  • the fixed period is 10 micrometers, the first and second incident light perpendicular to the diffraction grating surface
  • the diffraction efficiency of the second and third rays is 50% or more.
  • the diffraction grating according to the present invention has a peak of diffraction efficiency for three wavelengths. In addition, it has a normal step shape and is simple in structure.
  • the wavelengths of the first, second, and third light beams are wavelengths indicating the peaks of the diffraction efficiency of the first-order diffracted light, the zero-order diffracted light, and the -1st-order diffracted light, respectively. Correspond.
  • the wavelengths of the first, second, and third light beams are a wavelength that indicates a peak of diffraction efficiency of 0th-order diffracted light, and a peak of diffraction efficiency of 1st-order diffracted light, respectively. And a wavelength showing another peak of diffraction efficiency of the 0th-order diffracted light.
  • the red wavelength light source can correspond to the case where the position in the vertical direction differs from the optical axis.
  • the wavelengths of the first, second, and third light beams are the wavelengths that show the peak of the diffraction efficiency of the 0th-order diffracted light and the diffraction efficiency of the 0th-order diffracted light, respectively.
  • the wavelength showing the peak of and the wavelength showing the peak of the diffraction efficiency of the first-order diffracted light corresponds to the wavelength showing the peak of and the wavelength showing the peak of the diffraction efficiency of the first-order diffracted light.
  • a blue wavelength light source and a red wavelength light source have almost the same position in the direction perpendicular to the optical axis, and an infrared wavelength light source can correspond to a case where the position in the direction perpendicular to the optical axis is different.
  • the step plate portion of the staircase is inclined at a predetermined angle with respect to the bottom surface of the staircase.
  • the wavelengths of the first, second and third light beams are a blue wavelength, a red wavelength and an infrared wavelength. Accordingly, the present invention can be applied to an optical pickup device that targets a Blu-ray disc, a digital 'Versatile' disc (DVD), and a compact 'disc (CD).
  • the wavelengths of the first, second and third light beams are a blue wavelength, a green wavelength and a red wavelength.
  • the present invention can be applied to an image reading apparatus including three light sources.
  • An optical system according to the present invention is an optical system including three light sources having three wavelengths, each having a different wavelength, and any one of the above-described diffraction gratings. Diffraction of three-wavelength rays is performed to compensate for the optical axis offset of the rays from the light source.
  • the optical axis shift of the light beam from the light source with three wavelengths can be compensated for by the diffraction grating having a simple structure.
  • the diffraction grating according to the present invention diffracts the first, second and third light beams having different wavelengths.
  • the shape of the diffractive portion of the diffraction grating according to the present invention is a staircase shape, and the step amount of the staircase shape is such that the diffraction efficiency of the 0th-order diffracted light is the diffraction efficiency at any one of the wavelengths of the first, second and third light It is determined based on one of the above wavelengths so as to approach the peak.
  • the diffraction grating according to the present invention when the number of steps is ⁇ , the diffraction order is ⁇ , the integer i 0 i is an integer multiple of m, and p is an integer,
  • the number of steps N is determined to correspond to the wavelengths of the first, second and third rays.
  • the diffraction efficiency of the diffraction grating according to the present invention has a substantially peak diffraction efficiency with respect to three wavelengths. In addition, it has a normal step shape and is simple in structure.
  • the refractive index of the diffraction grating at any one of the wavelengths is n
  • the refractive index around the diffraction grating is n
  • the incident angle with respect to the diffraction part is ⁇
  • the step amount is
  • the width of the staircase is determined based on the phase function, the step amount, and the number of steps.
  • the first, second, and third light beams are diffracted as first-order folded light, zero-order diffracted light, and -1st-order diffracted light, respectively. [0027] Therefore, it is possible to cope with the case where the three-wavelength light sources all have different positions in the direction perpendicular to the optical axis.
  • the first, second, and third light beams are diffracted as 0th-order folded light, 1st-order diffracted light, and 0th-order diffracted light, respectively.
  • the red wavelength light source can correspond to the case where the position in the vertical direction differs from the optical axis.
  • the first, second, and third light beams are diffracted as 0th-order folded light, 0th-order diffracted light, and 1st-order diffracted light, respectively.
  • the first, second, and third light beams are a blue wavelength, a red wavelength, and an infrared wavelength.
  • the present invention can be applied to an optical pickup device for a Blu-ray disc, a digital “versatile” disc (DVD), and a compact “disc” (CD).
  • the wavelengths of the first, second, and third light beams are a blue wavelength, a green wavelength, and a red wavelength.
  • the present invention can be applied to an image reading apparatus having three light sources.
  • An optical system according to the present invention is an optical system including three light sources having three wavelengths, each having a different wavelength, and any one of the diffraction gratings described above. Diffraction of three-wavelength rays is performed to compensate for the optical axis offset of the rays from the light source.
  • the optical axis shift of the light beam from the light source with three wavelengths can be compensated for by the diffraction grating having a simple structure.
  • FIG. 1 The three-wavelength diffraction grating of the diffraction grating design example 1 with respect to the wavelength when the pitch is 10 (wake). The diffraction efficiency is shown.
  • FIG. 2 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 1.
  • FIG. 3 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 1.
  • ⁇ 4 Shows an optical system using the three-wavelength diffraction grating in Example 1 of the diffraction grating design.
  • FIG. 5 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 1.
  • FIG. 6 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 1.
  • FIG. 7 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 1.
  • FIG. 8 Shows the diffraction efficiency of the three-wavelength diffraction grating of Diffraction Grating Design Example 2 with respect to the wavelength when the pitch is 10 (wake).
  • FIG. 9 shows an optical system using the three-wavelength diffraction grating of Diffraction grating design example 2.
  • FIG. 10 shows the diffraction efficiency of the three-wavelength diffraction grating of Diffraction Grating Design Example 3 with respect to the wavelength when the pitch is 10 (wake).
  • FIG. 11 This shows the diffraction efficiency of the three-wavelength diffraction grating of Diffraction Grating Design Example 4 with respect to the wavelength when the pitch is 7 (um).
  • FIG. 12 shows the shape of the three-wavelength diffraction grating in Diffraction grating design example 4.
  • FIG. 13 This shows the diffraction efficiency of the three-wavelength diffraction grating of the diffraction grating design example 5 with respect to the wavelength when the pitch is 20 (wake).
  • FIG.14 Shows the configuration of a conventional system for simultaneous trend measurement of three excitation wavelengths.
  • FIG. 15 Shows the configuration of a system for simultaneous measurement of three excitation wavelengths using the diffraction grating of Example 5 of diffraction grating design.
  • FIG.16 A three-step staircase-shaped diffraction grating is shown.
  • FIG. 16 shows a step-shaped diffraction grating having three steps as an example.
  • the diffraction grating is designed so that the diffraction efficiency value is matched to the peak for the three wavelengths of 405 (nm), 660 (nm), and 785 (nm) with the orders of the first order, the 0th order, and the ⁇ 1 order, respectively.
  • the number of steps of the diffraction grating is N, eh, eh, an integer multiple of one of the wavelengths of ⁇ , and the diffraction orders are a i, mi and ⁇
  • Eh, ⁇ is close to 405 (nm), 660 (nm), and 785 (nm), respectively. Difference ratio
  • the rates are 1.7%, 0.45% and 1.4%, respectively.
  • the number of steps of the diffraction grating is three and the depth (the sum of the steps) is 0 at the incident angle to the diffraction grating.
  • n is the refractive index of the diffraction grating
  • FIG. 1 shows the diffraction efficiency of the diffraction grating of Design Example 1 with respect to the wavelength when the pitch is 10 (um).
  • the diffraction efficiency is calculated by changing the grating depth around the diffraction grating depth value. I do.
  • the calculation of diffraction efficiency is a vector calculation.
  • the practical diffraction efficiency including reflection loss on the surface is determined almost exactly using parameters such as the polarization direction and angle of incident light, the period of the grating, and the refractive index of the substrate as parameters.
  • the pitch is the width of one diffraction grating pattern. Efficiency varies depending on the pitch. Basically, as the pitch increases, the diffraction efficiency value at the peak position of the diffraction efficiency increases. However, the peak position of the diffraction efficiency hardly changes.
  • the pitch is a force determined by the arrangement of the optical system. Decide temporarily to confirm!
  • Table 1 shows the results of calculating the diffraction efficiency with respect to the grating depth.
  • the pitch is 10 ( um )
  • Table 2 shows the calculation results for each pitch of the diffraction efficiency generated by this diffraction grating.
  • Figure 2 shows an optical system that uses the three-wavelength diffraction grating of Diffraction Grating Design Example 1.
  • Blue, red and infrared wavelength laser sources are located at the object height shown in Table 3.
  • a laser having a blue wavelength is emitted, a collimator lens 2 is arranged at a distance dl, and a diffraction grating 51 is arranged at a position at a force distance d2.
  • the three-wavelength diffraction grating 1 is arranged at the position of the force distance d31.
  • a red wavelength laser beam is emitted, a collimator lens 3 is disposed at a distance dl, and a three-wavelength diffraction grating 1 is disposed at a force distance d32.
  • An infrared wavelength laser is emitted and a collimator lens 4 is disposed at a distance dl, and a diffraction grating 52 is disposed at a distance d2 therefrom.
  • the three-wavelength diffraction grating 1 is arranged at the position of the force distance d31.
  • Table 3 is the object height position of the blue, red, and infrared wavelength laser light sources
  • Table 4 is the distance data
  • Table 5 is the numerical data of the collimator lenses 2, 3, and 4
  • Table 6 Shows the numerical data of the diffraction gratings 51 and 52
  • Table 7 shows the numerical data of the three-wavelength diffraction grating 1.
  • the diffraction gratings 51 and 52 are disposed on the side opposite to the laser light source of the substrate.
  • the three-wavelength diffraction grating 1 is disposed on the laser light source side of the substrate.
  • the diffraction grating 51 and the diffraction grating 52 diffract each other so that the blue wavelength laser and the infrared wavelength laser reach the same position as the red wavelength laser.
  • angle correction is performed by the diffraction action of the three-wavelength diffraction grating 1, and the optical axes of the blue, red, and infrared wavelengths are overlapped.
  • Figure 3 shows an optical system using the three-wavelength diffraction grating of Diffraction Grating Design Example 1.
  • Blue, red and infrared wavelength laser sources are located at the object height shown in Table 8.
  • a blue wavelength laser is emitted and a diffraction grating 51 is disposed at a distance dl, and a three-wavelength diffraction grating 1 is also disposed at a distance d2.
  • the red wavelength laser reaches the three-wavelength diffraction grating 1 without going through the diffraction grating in the middle.
  • An infrared wavelength laser is emitted, and a diffraction grating 52 is disposed at a distance dl, and a three-wavelength diffraction grating 1 is disposed at a distance d2 therefrom.
  • This embodiment is intended for a one-chip three-wavelength laser.
  • Table 8 shows the object height positions of the blue, red, and infrared wavelength laser light sources
  • Table 9 shows the distance data
  • Table 10 shows the numerical data of the diffraction gratings 51 and 52
  • Table 11 shows the three-wavelength diffraction.
  • Numerical data for grid 1 and Table 12 show numerical data for collimator lens 6.
  • the diffraction gratings 51 and 52 are disposed on the side opposite to the laser light source of the substrate.
  • the blaze direction of the diffraction gratings 51 and 52 is reversed.
  • the three-wavelength diffraction grating 1 is disposed on the laser light source side of the substrate.
  • the diffraction grating 51 and the diffraction grating 52 diffract each other so that the blue wavelength laser and the infrared wavelength laser reach the same position as the red wavelength laser.
  • angle correction is performed by the diffraction action of the three-wavelength diffraction grating 1, and the optical axes of the blue, red, and infrared wavelengths are overlapped.
  • Figure 4 shows an optical system that uses the three-wavelength diffraction grating of Diffraction Grating Design Example 1. Blue, red, and infrared wavelength laser light sources are arranged at the object height positions shown in Table 13. A three-wavelength diffraction grating 11 is arranged at a distance dl after a three-wavelength laser is emitted, and a three-wavelength diffraction grating 12 is arranged at a position at a force distance d2. The collimator lens 6 is also located at the distance d3.
  • Table 13 shows the object height positions of the blue, red, and infrared wavelength laser light sources
  • Table 14 shows the distance data
  • Table 15 shows the numerical data of the three-wavelength diffraction grating 11
  • Table 16 shows the 3 Numerical data of the wavelength diffraction grating 12 and Table 17 show numerical data of the collimator lens 6.
  • the three-wavelength diffraction grating 11 diffracts the blue wavelength laser and the infrared wavelength laser so that they reach the same position as the red wavelength laser.
  • angle correction is performed by the diffraction action of the three-wavelength diffraction grating 12, and the optical axes of blue, red, and infrared wavelengths are overlapped.
  • the red wavelength laser passes through the three-wavelength diffraction grating 11 and the three-wavelength diffraction grating 12 as the zero-order folding light.
  • Figure 5 shows an optical system using the three-wavelength diffraction grating of Diffraction Grating Design Example 1. Blue, red, and infrared wavelength laser light sources are arranged at the object height positions shown in Table 13. A three-wavelength diffraction grating 11 is arranged at a distance dl after a three-wavelength laser is emitted, and a three-wavelength diffraction grating 12 is arranged at a position at a force distance d2. The collimator len in the position of the distance d3 6 is arranged.
  • Table 18 is the object height position of the blue, red, and infrared wavelength laser sources
  • Table 19 is the distance data
  • Table 20 is the numerical data of the three-wavelength diffraction grating 11
  • Table 21 is the three-wavelength diffraction case.
  • the numerical data of the child 12 and Table 22 show the numerical data of the collimator lens 6.
  • Optical path difference function coefficient 4th order coefficient 1. 6473 ⁇ -05
  • the three-wavelength diffraction grating 11 diffracts the blue wavelength laser and the infrared wavelength laser so that they reach the same position as the red wavelength laser.
  • angle correction is performed by the diffraction action of the three-wavelength diffraction grating 12, and the optical axes of blue, red, and infrared wavelengths are overlapped.
  • the red wavelength laser passes through the three-wavelength diffraction grating 11 and the three-wavelength diffraction grating 12 as the zero-order folding light.
  • Figure 6 shows an optical system using the three-wavelength diffraction grating of Diffraction Grating Design Example 1. Blue, red, and infrared wavelength laser light sources are arranged at the object height positions shown in Table 23. A three-wavelength diffraction grating 1 is arranged at a distance dl from a three-wavelength laser, and a collimator lens 6 is arranged at a position at a force distance d2.
  • Table 23 is the object height position of the blue, red, and infrared wavelength laser light sources
  • Table 24 is the distance data
  • Table 25 is the numerical data of the three-wavelength diffraction grating 1
  • Table 26 is the collimator. The numerical data of lens 6 is shown.
  • the angle of the laser light source or the capture angle of the laser emission angle is adjusted so that the blue wavelength laser and the infrared wavelength laser reach the same position as the red wavelength laser.
  • angle correction is performed by the diffraction action of the three-wavelength diffraction grating 1, and the optical axes of blue, red, and infrared wavelengths are overlapped.
  • the red wavelength laser passes through the three-wavelength diffraction grating 1 as the 0th-order diffracted light.
  • Figure 7 shows an optical system using the three-wavelength diffraction grating of Diffraction Grating Design Example 1. Blue, red, and infrared wavelength lasers have optical axis misalignments shown in Table 27. A photodetector 7 is arranged at a distance dl from the three-wavelength diffraction grating 1.
  • Table 27 shows the optical axis misalignment amounts of the blue, red and infrared wavelength lasers
  • Table 28 shows the distance data
  • Table 29 shows the numerical data of the three-wavelength diffraction grating 1.
  • Angle correction is performed by the diffractive action of the three-wavelength diffraction grating 1, and the three wavelengths shifted from the optical axis are collected at one point.
  • the pitch of the three-wavelength diffraction grating 1 is determined by the amount of optical axis misalignment between a light beam having a wavelength of 785 (nm) and a light beam having a wavelength of 660 (nm). Since there is a degree of freedom in the light emission position of the blue wavelength, the light emission position of the blue wavelength may be determined by back-calculating the pitch force of the optical axis alignment of the wavelength 785 (nm) and the wavelength 660 (nm). This eliminates the need for three photodetectors for three wavelengths and reduces the number of components.
  • the diffraction grating is designed so that the order of the diffraction efficiency value matches the peak for the three wavelengths of 405 (nm), 660 (nm), and 785 (nm), respectively, with the orders being the 0th order, 1st order, and 0th order.
  • Set the number of steps of the diffraction grating to N, ⁇ , eh, or a multiple of the wavelength of ⁇ , and the diffraction orders to ai, mi, and ⁇
  • Eh, ⁇ is close to 405 (nm), 660 (nm), and 785 (nm), respectively. Difference ratio
  • the rates are 1.7%, 0.45% and 1.4%, respectively.
  • the number of steps of the diffraction grating is 5, and the depth (the sum of the steps) is 0 at the incident angle to the diffraction grating.
  • n is the refractive index of the diffraction grating
  • the refractive index is the average of the three wavelengths and is assumed to be 1.4905, the diffraction grating depth is 6.489 (um).
  • FIG. 8 shows the diffraction efficiency of the diffraction grating of Design Example 2 with respect to wavelength when the pitch is 10 (um).
  • the diffraction efficiency is calculated by changing the grating depth around the diffraction grating depth value. I do.
  • the calculation of diffraction efficiency is a vector calculation.
  • the pitch is the width of one diffraction grating pattern. Efficiency varies depending on the pitch. Basically, as the pitch increases, the diffraction efficiency value at the peak position of the diffraction efficiency increases. However, the peak position of the diffraction efficiency hardly changes.
  • the pitch is a force determined by the arrangement of the optical system.
  • the pitch is tentatively determined to confirm the peak position of the diffraction efficiency.
  • Table 30 shows the results of calculating the diffraction efficiency with respect to the grating depth.
  • the pitch is 10 (um).
  • Figure 9 shows an optical system that uses the three-wavelength diffraction grating of Diffraction grating design example 2. Blue, red, and infrared wavelength laser light sources are arranged at the object height positions shown in Table 32. A three-wavelength diffraction grating 1 is arranged at a distance dl from a three-wavelength laser, and a collimator lens 6 is arranged at a position at a force distance d2.
  • Table 32 is the object height position of the blue, red and infrared wavelength laser light sources
  • Table 33 is the distance data
  • Table 34 is the numerical data of the three-wavelength diffraction grating 1
  • Table 35 is the collimator lens 6 Numerical data is shown.
  • Refractive index ⁇ dispersion N l. 493 vd-56. 74 [0077] The angle of the laser light source or the capture angle of the laser emission angle is adjusted so that the blue wavelength laser and the infrared wavelength laser reach the same position as the red wavelength laser. Next, angle correction is performed by the diffraction action of the three-wavelength diffraction grating 1, and the optical axes of blue, red, and infrared wavelengths are overlapped. Here, the blue wavelength laser and the infrared wavelength laser pass through the three-wavelength diffraction grating 1 as 0th-order diffracted light.
  • the diffraction grating is designed so that the order of the order of the zero order, zero order, and first order for the three wavelengths of 405 (nm), 660 (nm), and 785 (nm) is matched to the diffraction efficiency value.
  • the number of steps of the diffraction grating is set to an integer multiple of one of the wavelengths N, ⁇ ,, and ⁇ , and the diffraction orders are set to a i, mi, and ⁇ .
  • Eh, ⁇ is close to 405 (nm), 660 (nm), and 785 (nm), respectively. Difference ratio
  • the rates are 1.7%, 0.45% and 1.4%, respectively.
  • the number of steps of the diffraction grating is two and the depth (sum of the steps) is 0 at the incident angle to the diffraction grating.
  • n is the refractive index of the diffraction grating
  • FIG. 10 shows the diffraction efficiency of the diffraction grating of Design Example 3 with respect to the wavelength when the pitch is 10 ( ⁇ ).
  • the diffraction efficiency is calculated by changing the grating depth around the diffraction grating depth value. I do.
  • the calculation of diffraction efficiency is a vector calculation.
  • the pitch is the width of one diffraction grating pattern. Efficiency varies depending on the pitch. Basically, as the pitch increases, the diffraction efficiency value at the peak position of the diffraction efficiency increases. However, the peak position of the diffraction efficiency hardly changes.
  • the pitch is a force determined by the arrangement of the optical system.
  • the pitch is tentatively determined to confirm the peak position of the diffraction efficiency.
  • the results of calculating the diffraction efficiency with respect to the grating depth are shown in Table 36.
  • the pitch is 10 (um).
  • Diffraction grating design example 4 is a modification of diffraction grating design example 3.
  • the balance between the primary light and the primary light can be adjusted by using a taper.
  • FIG. 12 shows the cross-sectional shape of the diffraction grating.
  • the slopes of the two taper portions are the same, and the sum of the heights of the two taper portions is tl.
  • the optimum height tl of the taper is calculated as 0.41 (um) by the following formula from the shortest wavelength wl, the longest wavelength w2, and the refractive index n.
  • Fig. 11 shows the diffraction efficiency of the diffraction grating of Design Example 3 with respect to the wavelength when the pitch is 7 (um).
  • the diffraction efficiency is calculated by changing the grating depth around the diffraction grating depth value. I do.
  • the calculation of diffraction efficiency is a vector calculation.
  • the pitch is the width of one diffraction grating pattern. Efficiency varies depending on the pitch. Basically, as the pitch increases, the diffraction efficiency value at the peak position of the diffraction efficiency increases. However, the peak position of the diffraction efficiency hardly changes.
  • the pitch is a force determined by the arrangement of the optical system.
  • the pitch is tentatively determined in order to confirm the peak position of the diffraction efficiency.
  • Table 38 shows the results of calculating the diffraction efficiency with respect to the grating depth.
  • the pitch is 7 (um).
  • the diffraction grating is designed so that the efficiency values are matched to the peak for the 473 (nm), 532 (nm), and 635 (nm) three wavelengths, respectively, with the order of the first order, 0th order, and ⁇ 1 order.
  • the number of steps of the diffraction grating is ⁇ , ⁇ ,
  • N and integer parameters mi and p are calculated so as to approach 2 (nm) and 635 (nm).
  • Eh, and ⁇ are close to 473 (nm), 532 (nm), and 635 (nm), respectively. Difference ratio
  • the rates are 0.3 (%), 1.3 (%) and 1.0 (%), respectively.
  • the diffraction grating depth is 6.549.
  • FIG. 13 shows the diffraction efficiency of the diffraction grating of Design Example 5 with respect to wavelength when the pitch is 20 (um).
  • the diffraction efficiency is calculated by changing the grating depth around the diffraction grating depth value.
  • the calculation of diffraction efficiency is a vector calculation.
  • the pitch is the width of one diffraction grating pattern. Efficiency varies depending on the pitch. Basically, as the pitch increases, the diffraction efficiency value at the peak position of the diffraction efficiency increases. However, the peak position of the diffraction efficiency hardly changes.
  • the pitch is a force determined by the arrangement of the optical system.
  • the pitch is tentatively determined to confirm the peak position of the diffraction efficiency.
  • the results of calculating the diffraction efficiency with respect to the grating depth are shown in Table 40.
  • the pitch is 20 (um).
  • Table 41 shows the calculation results for each pitch of the diffraction efficiency generated by this diffraction grating.
  • Fig. 14 shows the configuration of a conventional three-excitation wavelength simultaneous trend measurement system for measuring DNA 'protein (JP 2001-268318).
  • One mirror 113 and two dichroic mirrors 115 and 117 Therefore, the optical paths of the three laser wavelengths of 473 (nm), 532 (nm), and 635 (nm) are superimposed.
  • the three-wavelength laser light passes through the laser light sources 101, 103, and 105, respectively, through collimating lenses 107, 109, and 111 to one mirror 113 and two dichroic mirrors 115 and 117, respectively.
  • the superimposed light passes through the mirror 119, the perforated mirror 121, and the objective lens 123, and reaches the slide glass 125.
  • the reflected light passes through the pinholes of the objective lens 123, the perforated mirror 121, the mirror 127, the lens 129, and the pinhole plate 131, and is measured by the photomultiplier tube 133.
  • Fig. 15 shows the configuration of a three-excitation wavelength simultaneous trend measurement system using the diffraction grating 1 of this design example.
  • the three-wavelength diffraction grating 1 superimposes the optical paths of three-wavelength laser beams of 473 (nm), 532 (nm), and 635 (nm).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Abstract

 波長の異なる3波長を効率的に回折させる回折格子を提供する。  回折格子の形状は、一定周期の階段形状である。第1の光線の波長は、第2の光線の波長よりも短く、第2の光線の波長は、第3の光線の波長よりも短く、第1、第2および第3の光線の波長は、回折格子の1次回折光、0次回折光および-1次回折光の回折効率のピークを示す波長のいずれか異なるものに対応する。当該一定周期を10マイクロメータとした場合に、回折格子面に垂直に入射する第1、第2および第3の光線の回折効率が50%以上である。

Description

明 細 書
回折格子および回折格子を含む光学系
技術分野
[0001] 本発明は、 3波長の光線を回折させる回折格子に関する。本発明は特に、青色波 長、赤色波長および赤外波長の光線を高い効率で回折させる回折格子または、青 色波長、緑色波長および赤色波長の光線を高い効率で回折させる回折格子に関す る。また、本発明は、 3波長の光源と、当該 3波長の光源からの 3波長の光線を回折さ せる回折格子を含む光学系に関する。
背景技術
[0002] 光ピックアップ装置などに使用される、青色波長、赤色波長および赤外波長の 3波 長の光源は、光軸に対して垂直な方向に間隔を空けて配置される。このため、 3波長 の光線の光軸ずれが生じる。
[0003] 3波長の光線の光軸ずれを補償する方法として、多重ホログラム光学素子を使用す るものが開示されている (たとえば、特開平 2004— 213854号公報)。
[0004] しかし、多重ホログラム素子は、製造が困難であり、高コストである。
発明の開示
発明が解決しょうとする課題
[0005] したがって、 3波長の光線、特に、光ピックアップ装置などに使用される、青色波長 、赤色波長および赤外波長の 3波長の光線を回折させる回折格子に対するニーズが ある。また、 3波長の光源と、光源からの 3波長の光線を、光軸を合わせるように回折 させる回折格子とを含む光学系に対するニーズがある。
課題を解決するための手段
[0006] 本発明による回折格子は、波長の異なる第 1、第 2および第 3の光線を、回折させる 回折格子である。回折格子の形状は、一定周期の階段形状である。第 1の光線の波 長は、第 2の光線の波長よりも短ぐ第 2の光線の波長は、第 3の光線の波長よりも短 ぐ第 1、第 2および第 3の光線の波長は、回折格子の 1次回折光、 0次回折光および -1次回折光の回折効率のピークを示す波長のいずれか異なるものに対応する。当 該一定周期を 10マイクロメータとした場合に、回折格子面に垂直に入射する第 1、第
2および第 3の光線の回折効率が 50%以上である。
[0007] 本発明による回折格子は、 3波長に対して回折効率がほぼピークとなる。また、通 常の段差形状であり、構造が簡単である。
[0008] 本発明の一実施形態によれば、第 1、第 2および第 3の光線の波長が、それぞれ、 1 次回折光、 0次回折光および- 1次回折光の回折効率のピークを示す波長に対応す る。
[0009] したがって、 3波長の光源の、光軸と垂直方向の位置が全て異なる場合に対応する ことができる。
[0010] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線の波長が、それぞれ 、 0次回折光の回折効率のピークを示す波長、 1次回折光の回折効率のピークを示 す波長および 0次回折光の回折効率の別のピークを示す波長に対応する。
[0011] したがって、 3波長の光源のうちの 2つの、光軸と垂直方向の位置がほぼ同じであり 、他の 1つの、光軸と垂直方向の位置が異なる場合に対応することができる。たとえ ば、青色波長の光源と赤外波長の光源の、光軸と垂直方向の位置がほぼ同じであり 、赤色波長の光源の、光軸と垂直方向の位置が異なる場合に対応することができる。
[0012] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線の波長が、それぞれ 、 0次回折光の回折効率のピークを示す波長、 0次回折光の回折効率の別のピーク を示す波長および 1次回折光の回折効率のピークを示す波長に対応する。
[0013] したがって、 3波長の光源のうちの 2つの、光軸と垂直方向の位置がほぼ同じであり 、他の 1つの、光軸と垂直方向の位置が異なる場合に対応することができる。たとえ ば、青色波長の光源と赤色波長の光源の、光軸と垂直方向の位置がほぼ同じであり 、赤外波長の光源の、光軸と垂直方向の位置が異なる場合に対応することができる。
[0014] 本発明の他の実施形態によれば、階段の段板部分を、階段の底面に対して所定の 角度で傾斜させている。
[0015] この構成により、より大きな回折効率を得ることができる。
[0016] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線の波長が、青色波長 、赤色波長および赤外波長である。 [0017] したがって、ブルーレイディスク、デジタル 'バーサタイル'ディスク(DVD)、コンパク ト 'ディスク(CD)を対象とする光ピックアップ装置に適用することができる。
[0018] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線の波長が、青色波長 、緑色波長および赤色波長である。
[0019] したがって、 3つの光源を備えた画像読取り装置に適用することができる。
[0020] 本発明による光学系は、それぞれ波長の異なる 3波長の 3個の光源と、上記のいず れかの回折格子とを含む光学系であって、回折格子力 3波長の 3個の光源からの 光線の光軸ずれを補償するように、 3波長の光線を回折させる。
[0021] したがって、 3波長の光源からの光線の光軸ずれを、簡単な構造の回折格子によつ てネ ΐ償することができる。
[0022] 本発明による回折格子は、それぞれ波長の異なる第 1、第 2および第 3の光線を回 折させる。本発明による回折格子の回折部の形状は、階段形状であり、階段形状の 段差量が、 0次回折光の回折効率が、第 1、第 2および第 3の光線のいずれかの波長 において回折効率のピークに近づくように、前記いずれかの波長に基づいて定めら れている。本発明による回折格子において、階段数を Ν、回折次数を α、え をえの i 0 i いずれかの整数倍値、 mおよび pを整数とした場合に、波長
λ = [N/ (N - m+ α ) ] · λ · ρ
i i 0
力 第 1、第 2および第 3の光線の波長のそれぞれに対応するように、階段数 Nが定 められている。
[0023] 本発明による回折格子は、 3波長に対して回折効率がほぼピークとなる。また、通 常の段差形状であり、構造が簡単である。
[0024] 本発明の一実施形態によれば、前記いずれかの波長における回折格子の屈折率 を n、回折格子の周囲の屈折率を n、回折部に対する入射角を Θとして、段差量を
0
X · cos Θ
0 Z (n— n )の整数倍の値を基準として求める。
0
[0025] 本発明の他の実施形態によれば、階段の幅が位相関数および段差量と階段数に 基づいて定められる。
[0026] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線を、それぞれ 1次回 折光、 0次回折光および- 1次回折光として回折させる。 [0027] したがって、 3波長の光源の、光軸と垂直方向の位置が全て異なる場合に対応する ことができる。
[0028] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線を、それぞれ 0次回 折光、 1次回折光および 0次回折光として回折させる。
[0029] したがって、 3波長の光源のうちの 2つの、光軸と垂直方向の位置がほぼ同じであり 、他の 1つの、光軸と垂直方向の位置が異なる場合に対応することができる。たとえ ば、青色波長の光源と赤外波長の光源の、光軸と垂直方向の位置がほぼ同じであり 、赤色波長の光源の、光軸と垂直方向の位置が異なる場合に対応することができる。
[0030] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線を、それぞれ 0次回 折光、 0次回折光および 1次回折光として回折させる。
[0031] したがって、 3波長の光源のうちの 2つの、光軸と垂直方向の位置がほぼ同じであり 、他の 1つの、光軸と垂直方向の位置が異なる場合に対応することができる。たとえ ば、青色波長の光源と赤色波長の光源の、光軸と垂直方向の位置がほぼ同じであり 、赤外波長の光源の、光軸と垂直方向の位置が異なる場合に対応することができる。
[0032] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線が、青色波長、赤色 波長および赤外波長である。
[0033] したがって、ブルーレイディスク、デジタル 'バーサタイル'ディスク(DVD)、コンパク ト 'ディスク(CD)を対象とする光ピックアップ装置に適用することができる。
[0034] 本発明の他の実施形態によれば、第 1、第 2および第 3の光線の波長が、青色波長 、緑色波長および赤色波長である。
[0035] したがって、 3つの光源を備えた画像読取り装置に適用することができる。
[0036] 本発明による光学系は、それぞれ波長の異なる 3波長の 3個の光源と、上記のいず れかの回折格子とを含む光学系であって、回折格子力 3波長の 3個の光源からの 光線の光軸ずれを補償するように、 3波長の光線を回折させる。
[0037] したがって、 3波長の光源からの光線の光軸ずれを、簡単な構造の回折格子によつ てネ ΐ償することができる。
図面の簡単な説明
[0038] [図 1]ピッチ 10(醒)の場合の、波長に対する、回折格子設計例 1の 3波長回折格子の 回折効率を示す。
[図 2]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
[図 3]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
圆 4]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
[図 5]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
[図 6]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
[図 7]回折格子設計例 1の 3波長回折格子を使用した光学系を示す。
[図 8]ピッチ 10(醒)の場合の、波長に対する、回折格子設計例 2の 3波長回折格子の 回折効率を示す。
[図 9]回折格子設計例 2の 3波長回折格子を使用した光学系を示す。
[図 10]ピッチ 10(醒)の場合の、波長に対する、回折格子設計例 3の 3波長回折格子 の回折効率を示す。
[図 11]ピッチ 7(um)の場合の、波長に対する、回折格子設計例 4の 3波長回折格子の 回折効率を示す。
[図 12]回折格子設計例 4の 3波長回折格子の形状を示す。
[図 13]ピッチ 20(醒)の場合の、波長に対する、回折格子設計例 5の 3波長回折格子 の回折効率を示す。
[図 14]従来の 3励起波長同時傾向測定用システムの構成を示す。
[図 15]回折格子設計例 5の回折格子を使用した、 3励起波長同時傾向測定用システ ムの構成を示す。
[図 16]段数 3の階段形状の回折格子を示す。
発明を実施するための最良の形態
[0039] 図 16は、例として、段数 3の階段形状の回折格子を示す。
[0040] 回折格子設計例 1
405(nm)、 660(nm)、 785(nm)の 3波長について次数をそれぞれ 1次、 0次、 -1次にて 回折効率値をピークに合わせるように回折格子を設計する。回折格子の階段数を N 、え、 え、 λのいずれかの波長の整数倍の値をえ 、回折次数を a i、miおよび ρ
1 2 3 0
を整数パラメータとした場合に、以下の式を満たすえ、 え、 λ力 それぞれ、 405( nm)、 660(nm)、 785(nm)に近づくように、階段数 Nおよび整数パラメータ miおよび pを 求める。
[0041] λ =[N/(N X m + a )] Χ λ Χ ρ
1 1 1 0
λ =[N/(N X m + a )] X λ Χ ρ
2 2 2 0
λ =[N/(N X m + a )] X λ Χ ρ
3 3 3 0
[0042] 共通パラメータ λ 0=1326 Ν=3 ρ=1個別パラメータ m =3 m =2 m =2 α =1 α =0 α = -
1 2 3 1 2 3
1とすると
λ l=398(nm)
λ 2=663(nm)
λ 3=796(nm)
となり、え、 え、 λ は、それぞれ、 405(nm)、 660(nm)、 785(nm)に近くなる。差の比
1 2 3
率は、それぞれ、 1. 7%、 0. 45%、 1. 4%である。
[0043] これより希望する 3波長に対して回折効率値をピークに合わせるには、回折格子の 段数は 3段で深さ (段差量の和)は、回折格子への入射角が 0である場合、 nを回折格 子の屈折率として、
Figure imgf000008_0001
で計算される。屈折率を 3波長の平均として、仮に 1.4905とすると、回折格子深さは、 5.407(um)になる。
[0044] 図 1は、ピッチ 10(um)の場合の、波長に対する、設計例 1の回折格子の回折効率を 示す。
[0045] 本実施形態においては、 405(nm)から 785(nm)と波長の範囲が広いので、上記の回 折格子深さの値の周辺で、格子深さを変化させて回折効率の計算を行う。回折効率 の計算は、ベクトル計算である。ベクトル計算は、入射光の偏光方向や入射角度、格 子の周期、基板の屈折率などをパラメータにして表面での反射損失を含む実際的な 回折効率をほぼ厳密に求める。ここでピッチとは、回折格子 1パターンの幅である。ピ ツチによって効率が変化する。基本的にピッチが大きくなれば回折効率のピーク位置 での回折効率値は上昇する。ただし、回折効率のピーク位置はほとんど変化しない。 本来、ピッチは光学系の配置によって定まる力 ここでは、回折効率のピーク位置を 確認するために仮に定めて!/、る。
格子深さに対して回折効率を計算した結果を表 1に示す。ピッチは 10(um)である, [表 1]
Figure imgf000009_0001
上記の結果から、回折格子の段数は、 3段、格子深さは、 5.31(um)とする。この回折 格子によって発生する回折効率の、ピッチごとの計算結果を表 2に示す。
[表 2]
使用波長 405 (nm) 660(隱) 785 (匪)
使用次数 1次光 0次光 1次光 ピッチ 10 (um) 55.7(%) 70(%) ピッチ 30 (um) 62.4(%) 86.5( ) 60(%) メモリー不足
ピッチ 50 (um) 90.1(%) 61.9(%)
計算不可
[0048] 数値実施例 1
図 2は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 3に示す物体高位置に配置されている。青色波長 のレーザが出射して距離 dlの位置にコリメータレンズ 2が配置され、そこ力 距離 d2 の位置に回折格子 51が配置されている。そこ力 距離 d31の位置に 3波長回折格子 1が配置されている。赤色波長のレーザが出射して距離 dlの位置にコリメータレンズ 3が配置され、そこ力 距離 d32の位置に 3波長回折格子 1が配置されている。赤外 波長のレーザが出射して距離 dlの位置にコリメータレンズ 4が配置され、そこから距 離 d2の位置に回折格子 52が配置されている。そこ力 距離 d31の位置に 3波長回折 格子 1が配置されている。
[0049] ここで、表 3は、青色、赤色および赤外波長レーザ光源の物体高位置、表 4は、距 離のデータ、表 5は、コリメータレンズ 2、 3、 4の数値データ、表 6は、回折格子 51、 5 2の数値データ、表 7は、 3波長回折格子 1の数値データを示す。回折格子 51、 52は 、基板の、反レーザ光源側に配置される。 3波長回折格子 1は、基板のレーザ光源側 に配置される。
[表 3]
Figure imgf000010_0001
[表 4] 名称 数値
d l 1 (mm)
d 2 1 (mm)
d 31 30 (ram)
d 32 32 (mm)
[表 5]
Figure imgf000011_0001
[表 6]
Figure imgf000011_0002
[表 7]
Figure imgf000011_0003
[0050] 回折格子 51および回折格子 52は、それぞれ、青色波長レーザおよび赤外波長レ 一ザが赤色波長レーザと同じ位置に到達するように回折させる。つぎに、 3波長回折 格子 1の回折作用によって角度補正を行い、青色、赤色、赤外の波長の光軸をひと つに重ねる。
[0051] 数値実施例 2
図 3は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 8に示す物体高位置に配置されている。青色波長 のレーザが出射して距離 dlの位置に回折格子 51が配置され、そこ力も距離 d2の位 置に 3波長回折格子 1が配置されている。そこ力も距離 d3の位置にコリメータレンズ 6 が配置されている。赤色波長のレーザは、途中の回折格子を経由せずに 3波長回折 格子 1に到達する。赤外波長のレーザが出射して距離 dlの位置に回折格子 52が配 置され、そこから距離 d2の位置に 3波長回折格子 1が配置されている。本実施例は、 ワンチップ方の 3波長レーザを対象としている。
ここで、表 8は、青色、赤色および赤外波長レーザ光源の物体高位置、表 9は、距 離のデータ、表 10は、回折格子 51、 52の数値データ、表 11は、 3波長回折格子 1の 数値データ、表 12は、コリメータレンズ 6の数値データ、を示す。回折格子 51、 52は 、基板の、反レーザ光源側に配置される。回折格子 51、 52のブレーズの向きは逆に なる。 3波長回折格子 1は、基板のレーザ光源側に配置される。
[表 8]
Figure imgf000012_0001
[表 9]
Figure imgf000012_0002
[表 10]
Figure imgf000012_0003
[表 11] 青色波長 赤色波長 赤外波長
中心厚 1 (mm)
次数 1 0 -1
ピッチ 100 (um)
屈折率 ·分散 N=l. 493 vd=56. 74 項目 青色波長 赤色波長 赤外波長
中心厚 1. 8
レーザ一側 球面係数 曲率半径 30. 2545
曲率半径 -33. 5476
非球面係数 4次係数 2. 7176E-05
6次係数 2. 1613E-08
反レーザー側 回折次数 1 1 1
2次係数 -9. 1690E-04
光路差関数係数 4次係数 1. 1145E-07
6次係数 1. 9181E-09
屈折率 ·分散 N=l. 493 vd=56. 74
[0053] 回折格子 51および回折格子 52は、それぞれ、青色波長レーザおよび赤外波長レ 一ザが赤色波長レーザと同じ位置に到達するように回折させる。つぎに、 3波長回折 格子 1の回折作用によって角度補正を行い、青色、赤色、赤外の波長の光軸をひと つに重ねる。
[0054] 数値実施例 3
図 4は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 13に示す物体高位置に配置されている。 3波長の レーザが出射して距離 dlの位置に 3波長回折格子 11が配置され、そこ力 距離 d2の 位置に 3波長回折格子 12が配置されている。そこ力も距離 d3の位置にコリメータレン ズ 6が配置されている。
[0055] ここで、表 13は、青色、赤色および赤外波長レーザ光源の物体高位置、表 14は、 距離のデータ、表 15は、 3波長回折格子 11の数値データ、表 16は、 3波長回折格 子 12の数値データ、表 17は、コリメータレンズ 6の数値データ、を示す。
[表 13]
Figure imgf000013_0001
[表 14] 名称 数値
d l 3、mm)
d 2 27. 4863 (mm)
d 3 1 ^mra) [表 15]
[表
Figure imgf000014_0001
[表 17]
Figure imgf000014_0002
[0056] 3波長回折格子 11は、それぞれ、青色波長レーザおよび赤外波長レーザが赤色 波長レーザと同じ位置に到達するように回折させる。つぎに、 3波長回折格子 12の回 折作用によって角度補正を行い、青色、赤色、赤外の波長の光軸をひとつに重ねる 。ここで、赤色波長レーザは、 3波長回折格子 11および 3波長回折格子 12を、 0次回 折光として通過する。
[0057] 数値実施例 4
図 5は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 13に示す物体高位置に配置されている。 3波長の レーザが出射して距離 dlの位置に 3波長回折格子 11が配置され、そこ力 距離 d2の 位置に 3波長回折格子 12が配置されている。そこ力も距離 d3の位置にコリメータレン ズ 6が配置されている。
ここで、表 18は、青色、赤色および赤外波長レーザ光源の物体高位置、表 19は、 距離のデータ、表 20は、 3波長回折格子 11の数値データ、表 21は、 3波長回折格 子 12の数値データ、表 22は、コリメータレンズ 6の数値データ、を示す。
[表 18]
Figure imgf000015_0001
[表 19]
Figure imgf000015_0002
[表 20]
[表:
Figure imgf000015_0003
[表 22] 項目 青色波長 赤色波長 赤外波艮
中心厚 」 1. 8
曲率半径 29. 9682
レーザ一側 非球 ώ係数 4次係数 4. 8335Ε 04
6次係数 1. 8042Ε-05
曲率半径 -15. 2376
非球 ϋ係数 4次係数 4. 2018E -04
6次係数 2. 5784Ε-05
反レーザー側 回折次数 1 1 1
2次係数 - 1. 5336Ε-03
光路差関数係数 4次係数 1. 6473Ε-05
6次係数 - 1. 7199E-06
屈折率 ·分散 N=l. 493 vd=56. 74
[0059] 3波長回折格子 11は、それぞれ、青色波長レーザおよび赤外波長レーザが赤色 波長レーザと同じ位置に到達するように回折させる。つぎに、 3波長回折格子 12の回 折作用によって角度補正を行い、青色、赤色、赤外の波長の光軸をひとつに重ねる 。ここで、赤色波長レーザは、 3波長回折格子 11および 3波長回折格子 12を、 0次回 折光として通過する。
[0060] 数値実施例 5
図 6は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 23に示す物体高位置に配置されている。 3波長の レーザが出射して距離 dlの位置に 3波長回折格子 1が配置され、そこ力 距離 d2の 位置にコリメータレンズ 6が配置されている。
[0061] ここで、表 23は、青色、赤色および赤外波長レーザ光源の物体高位置、表 24は、 距離のデータ、表 25は、 3波長回折格子 1の数値データ、表 26は、コリメータレンズ 6 の数値データ、を示す。
[表 23]
Figure imgf000016_0001
[表 24] 名称 数値
d 1 14. Oi l (mm)
d 2 1、mmノ [表 25]
Figure imgf000017_0001
[表 26]
Figure imgf000017_0002
[0062] 青色波長レーザおよび赤外波長レーザが赤色波長レーザと同じ位置に到達するよ うにレーザ光源の角度またはレーザ出射角の取り込み角度を調整しておく。つぎに、 3波長回折格子 1の回折作用によって角度補正を行い、青色、赤色、赤外の波長の 光軸をひとつに重ねる。ここで、赤色波長レーザは、 3波長回折格子 1を、 0次回折光 として通過する。
[0063] 数値実施例 6
図 7は、回折格子設計例 1の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザが表 27に示す光軸ズレ量を有する。 3波長回折格子 1から距 離 dlの位置にフォトディテクタ 7が配置されている。
[0064] ここで、表 27は、青色、赤色および赤外波長レーザの光軸ズレ量、表 28は、距離 のデータ、表 29は、 3波長回折格子 1の数値データ、を示す。
[表 27] 青色波長 赤色波長 赤外波長
物体高 -0. 1127 (mm) (mm) 0. 22 (mm) [表 28]
Figure imgf000018_0001
[表 29]
Figure imgf000018_0002
[0065] 3波長回折格子 1の回折作用によって角度補正を行い、光軸のずれた 3つの波長 を 1点で集光させる。
[0066] 3波長回折格子 1のピッチは波長 785(nm)の光線と波長 660(nm)の光線の光軸ズレ 量によって決める。青色波長の発光位置には自由度があるので、波長 785(nm)と波長 660(nm)の光軸合わせのピッチ力 逆算して青色波長の発光位置を決めればよい。 これによつて、 3波長分の 3つのフォトディテクタが不要となり、部品点数を減らすこと ができる。
[0067] 回折格子設計例 2
405(nm)、 660(nm)、 785(nm)の 3波長について次数をそれぞれ 0次、 1次、 0次にて回 折効率値をピークに合わせるように回折格子を設計する。回折格子の階段数を N、 λ 、 え 、 λのいずれかの波長の整数倍の値をえ 、回折次数を ai、miおよび ρを
1 2 3 0
整数パラメータとした場合に、以下の式を満たす λ
1、 え 2、 λ
3力 それぞれ、 405(nm
), 660(nm)、 785(nm)に近づくように、階段数 Nおよび整数パラメータ miおよび pを求 める。
[0068] λ =[Ν/(Ν Xm + α )]Χ λ Χρ
1 1 1 0
λ =[N/(NXm + a )] X λ Χρ
2 2 2 0
λ =[N/(NXm + a )] X λ Χρ
3 3 3 0
[0069] 共通パラメータ λ 0=796 Ν=5 ρ=1個別パラメータ m =2 m =1 m =1 α =0 α =1 α =
1 2 3 1 2 3
0とすると λ l=398(nm)
λ 2=663(nm)
λ 3=796(nm)
となり、え、 え、 λ は、それぞれ、 405(nm)、 660(nm)、 785(nm)に近くなる。差の比
1 2 3
率は、それぞれ、 1. 7%、 0. 45%、 1. 4%である。
[0070] これより希望する 3波長に対して回折効率値をピークに合わせるには、回折格子の 段数は 5段で深さ (段差量の和)は、回折格子への入射角が 0である場合、 nを回折格 子の屈折率として、
Figure imgf000019_0001
で計算される。屈折率を 3波長の平均として、仮に 1.4905とすると、回折格子深さは、 6.489(um)になる。
[0071] 図 8は、ピッチ 10(um)の場合の、波長に対する、設計例 2の回折格子の回折効率を 示す。
[0072] 本実施形態においては、 405(nm)から 785(nm)と波長の範囲が広いので、上記の回 折格子深さの値の周辺で、格子深さを変化させて回折効率の計算を行う。回折効率 の計算は、ベクトル計算である。ここでピッチとは、回折格子 1パターンの幅である。ピ ツチによって効率が変化する。基本的にピッチが大きくなれば回折効率のピーク位置 での回折効率値は上昇する。ただし、回折効率のピーク位置はほとんど変化しない。 本来、ピッチは光学系の配置によって定まる力 ここでは、回折効率のピーク位置を 確認するために仮に定めて 、る。
[0073] 格子深さに対して回折効率を計算した結果を表 30に示す。ピッチは 10(um)である。
[表 30] 使用波長 405 (nm) 660 (nm) 785 (nm)
使用次数 0次光 1次光 0次光
屈折率 1. 50663 1. 48902 1. 8606
6. 3 0. 638859 0. 580787 0. 63517
6. 31 0. 648367 0. 584285 0. 637114
6. 32 0. 657043 0. 587503 0. 638795
6. 33 0. 664875 0. 590427 0. 640231
6. 34 0. 671841 0. 593048 0. 641439
6. 35 0. 677916 0. 595354 0. 642434
6. 36 0. 683065 0. 597338 0. 643233
6. 37 0. 687251 0. 598991 0. 643852
6. 38 0. 690433 0. 600311 0. 644304
6. 39 0. 692569 0. 601292 0. 644602
6. 4 0. 69363 0. 60194 0. 64476
6. 41 0. 693578 0. 602245 0. 644777
6. 42 0. 692409 0. 602223 0. 64467
6. 43 0. 690117 0. 601878 0. 644441
6. 44 0. 686713 0. 601216 0. 644092
6. 45 0. 682223 0. 600246 0. 643623
6. 46 0. 676683 0. 598978 0. 643033
6. 47 0. 670141 0. 597421 0. 642318
6. 48 0. 662648 0. 595582 0. 641472
6. 49 0. 654263 0. 59347 0. 640487 上記の結果から、回折格子の段数は、 5段、格子深さは、 6.4 (醒)とする。この回折 格子によって発生する回折効率の、ピッチごとの計算結果を表 31に示す。
[表 31]
Figure imgf000020_0001
数値実施例 7 図 9は、回折格子設計例 2の 3波長回折格子を使用した光学系を示す。青色、赤色 および赤外波長レーザ光源が表 32に示す物体高位置に配置されている。 3波長の レーザが出射して距離 dlの位置に 3波長回折格子 1が配置され、そこ力 距離 d2の 位置にコリメータレンズ 6が配置されている。
ここで、表 32は、青色、赤色および赤外波長レーザ光源の物体高位置、表 33は、 距離のデータ、表 34は、 3波長回折格子 1の数値データ、表 35は、コリメータレンズ 6 の数値データ、を示す。
[表 32]
Figure imgf000021_0001
[表 33]
Figure imgf000021_0002
[表 34]
Figure imgf000021_0003
[表 35] 項目 青色波長 赤色波長 赤外波長
中心厚 1. 8
曲率半径 9. 7414
レーザー側 非球面係数 4次係数 -2. 5175E-03
6次係数 -5. 5571E - 05
曲率半径 753. 6813
非球面係数 4次係数 -2. 2053E-03
6次係数 3. 1996E 05
反レーザー側 回折次数 1 1 1
2次係数 - 1. 1628E-03
光路差関数係数 4次係数 1. 4435E-05
6次係数 6. 0377E- 07
屈折率 ·分散 N=l. 493 vd-56. 74 [0077] 青色波長レーザおよび赤外波長レーザが赤色波長レーザと同じ位置に到達するよ うにレーザ光源の角度またはレーザ出射角の取り込み角度を調整しておく。つぎに、 3波長回折格子 1の回折作用によって角度補正を行い、青色、赤色、赤外の波長の 光軸をひとつに重ねる。ここで、青色波長レーザおよび赤外波長レーザは、 3波長回 折格子 1を、 0次回折光として通過する。
[0078] 回折格子設計例 3
405(nm)、 660(nm)、 785(nm)の 3波長について次数をそれぞれ 0次、 0次、 1次にて回 折効率値をピークに合わせるように回折格子を設計する。回折格子の階段数を N、 λ 、 え 、 λのいずれかの波長の整数倍の値をえ 、回折次数を a i、miおよび ρを
1 2 3 0
整数パラメータとした場合に、以下の式を満たす λ 、 え 、 λ力 それぞれ、 405(nm
1 2 3
), 660(nm)、 785(nm)に近づくように、階段数 Nおよび整数パラメータ miおよび pを求 める。
[0079] λ =[N/(N X m + a )] X λ Χ ρ
1 1 1 0
λ =[N/(N X m + a )] X λ Χ ρ
2 2 2 0
λ =[N/(N X m + a )] X λ Χ ρ
3 3 3 0
[0080] 共通パラメータ λ 0=1990 Ν=2 ρ=1個別パラメータ m =5 m =3 m =2 α =0 α =0 α
1 2 3 1 2 3
=1とすると
λ l=398(nm)
λ 2=663(nm)
λ 3=796(nm)
となり、え、 え、 λ は、それぞれ、 405(nm)、 660(nm)、 785(nm)に近くなる。差の比
1 2 3
率は、それぞれ、 1. 7%、 0. 45%、 1. 4%である。
[0081] これより希望する 3波長に対して回折効率値をピークに合わせるには、回折格子の 段数は 2段で深さ (段差量の和)は、回折格子への入射角が 0である場合、 nを回折格 子の屈折率として、
Figure imgf000022_0001
で計算される。屈折率を 3波長の平均として、仮に 1.4905とすると、回折格子深さは、 4.06 (um)〖こなる。 [0082] 図 10は、ピッチ 10(麵)の場合の、波長に対する、設計例 3の回折格子の回折効率 を示す。
[0083] 本実施形態においては、 405(nm)から 785(nm)と波長の範囲が広いので、上記の回 折格子深さの値の周辺で、格子深さを変化させて回折効率の計算を行う。回折効率 の計算は、ベクトル計算である。ここでピッチとは、回折格子 1パターンの幅である。ピ ツチによって効率が変化する。基本的にピッチが大きくなれば回折効率のピーク位置 での回折効率値は上昇する。ただし、回折効率のピーク位置はほとんど変化しない。 本来、ピッチは光学系の配置によって定まる力 ここでは、回折効率のピーク位置を 確認するために仮に定めて 、る。
[0084] 格子深さに対して回折効率を計算した結果を表 36に示す。ピッチは 10(um)である。
[表 36] 使用波長 405(nm) 660(nm) 785(nm)
使用次数 0次光 0次光 1次光
屈折率 1.50663 1.48902 1.48606
3.86 0.586838 0.622845 0.345656
3.87 0.614608 0.636813 0.350304
3.88 0.641 182 0.650249 0.354728
3.89 0.666358 0.6631 1 1 0.358918
3.9 0.689932 0.675354 0.362867
3.91 0.71 1708 0.686933 0.366566
3.92 0.73149 0.697806 0.370009
3.93 0.749094 0.70793 0.373188
3.94 0.764353 0.717264 0.376096
3.95 0.777123 0.72577 0.378727
3.96 0.7873 0.733413 0.381075
3.97 0.794821 0.740162 0.383134
3.98 0.799671 0.74599 0.384899
3.99 0.80188 0.75088 0.38636
4 0.801525 0.754818 0.387524
4.01 0.798693 0.757802 0.388376
4.02 0.793489 0.759836 0.388915
4.03 0.786018 0.760934 0.389139
4.04 0.776372 0.761 1 16 0.389044
4.05 0.764635 0.760408 0.38863
4.06 0.750887 0.758838 0.387895 上記の結果から、回折格子の段数は、 2段、格子深さは、 3.99 (um)とする。この回 折格子によって発生する回折効率の、ピッチごとの計算結果を表 37に示す。
[表 37]
Figure imgf000024_0001
[0086] 回折格子設計例 4
回折格子設計例 4は、回折格子設計例 3を変形したものである。 2段形状の場合は テーパーを用いることによって 1次光と- 1次光のバランスを調整できる。
[0087] 図 12は、回折格子の断面形状を示す。図 12において、 2つのテーパー部分の傾き は同一であり、この 2つのテーパー部分の高さの和が tlになる。テーパーの最適高さ tlは取り扱う最短の波長 wl、最長の波長 w2、屈折率 nから以下の式によって 0.41(um) と計算される。
[0088] tl=wl/(n-l)/2
(0.405(um)/(1.49-l)/2=0.4132(um))
またテーパーを用いた際のトータル段差量 t3はテーパーを用いな 、場合の段差量を t2として、先に計算された t2=4.06(um)をもちいると以下の式によって 4.26(um)と計算さ れる。
[0089] t3=tl/2+t2
(t3=0.41(um)/2+4.06(um)=4.26(um))
図 11は、ピッチ 7(um)の場合の、波長に対する、設計例 3の回折格子の回折効率を 示す。 [0090] 本実施形態においては、 405(nm)から 785(nm)と波長の範囲が広いので、上記の回 折格子深さの値の周辺で、格子深さを変化させて回折効率の計算を行う。回折効率 の計算は、ベクトル計算である。ここでピッチとは、回折格子 1パターンの幅である。ピ ツチによって効率が変化する。基本的にピッチが大きくなれば回折効率のピーク位置 での回折効率値は上昇する。ただし、回折効率のピーク位置はほとんど変化しない。 本来、ピッチは光学系の配置によって定まる力 ここでは、回折効率のピーク位置を 確認するために仮に定めて 、る。
[0091] 格子深さに対して回折効率を計算した結果を表 38に示す。ピッチは 7(um)である。
[表 38]
Figure imgf000025_0001
[0092] 上記の結果から、回折格子の段数は、 2段、格子深さは、 4.2(um)とする。この回折 格子によって発生する回折効率の、ピッチごとの計算結果を表 39に示す。
[表 39]
Figure imgf000026_0001
[0093] 回折格子設計例 5
473(nm)、 532(nm)、 635(nm)3波長について次数をそれぞれ 1次、 0次、 -1次にて効 率値をピークに合わせるように回折格子を設計する。回折格子の階段数を Ν、 λ 、
1 λ 、 λのいずれかの波長の整数倍の値をえ 、回折次数をひ i、 miおよび ρを整数
2 3 0
パラメータとした場合に、以下の式を満たす λ 、 え 、 λ力 それぞれ、 473(nm)、 53
1 2 3
2(nm)、 635(nm)に近づくように、階段数 Nおよび整数パラメータ miおよび pを求める。
[0094] λ =[Ν/(Ν X m + α )] Χ λ Χ ρ
1 1 1 0
λ =[N/(N X m + a )] X λ Χ ρ
2 2 2 0
λ =[N/(N X m + a )] X λ Χ ρ
3 3 3 0
共通パラメータ λ 0=539 Ν=7 ρ=1個別パラメータ m =1 m =1 m =1 α =1 α =0 α =
1 2 3 1 2 3
- 1とすると
λ l=472(nm)
λ 2=539(nm)
λ 3=629(nm)
となり、え、 え、 λ は、それぞれ、 473(nm)、 532(nm)、 635(nm)に近くなる。差の比
1 2 3
率はそれぞれ 0.3(%) 1.3(%) 1.0(%)である。
[0095] これより希望する 3波長に対して回折効率値をピークに合わせるには、回折格子の段 差は 7段で深さ (段差量の和)は、回折格子への入射角力 SOである場合、 nを回折格子 の屈折率として、
Figure imgf000027_0001
で計算される。屈折率を 3波長の平均として、仮に 1.4937とすると、回折格子深さは 6. 549となる。
[0096] 図 13は、ピッチ 20(um)の場合の、波長に対する、設計例 5の回折格子の回折効率 を示す。
[0097] 本実施形態においては、 473(nm)から 635(nm)と波長の範囲が広いので、上記の回折 格子深さの値の周辺で、格子深さを変化させて回折効率の計算を行う。回折効率の 計算は、ベクトル計算である。ここでピッチとは、回折格子 1パターンの幅である。ピッ チによって効率が変化する。基本的にピッチが大きくなれば回折効率のピーク位置 での回折効率値は上昇する。ただし、回折効率のピーク位置はほとんど変化しない。 本来、ピッチは光学系の配置によって定まる力 ここでは、回折効率のピーク位置を 確認するために仮に定めて 、る。
[0098] 格子深さに対して回折効率を計算した結果を表 40に示す。ピッチは 20(um)である。
[表 40]
使用波長 473 ( nm) 532i,nm) 6
使用次数 1 次光 0次光 - 1次光
屈折率 1 .49891 1.49459 1 .48984
6.4 0.724 0.770 0.593
6.41 0.730 0.773 0.602
6.42 0.735 0.775 0.61 1
6.43 0.739 0.777 0.619
6.44 0.743 0.778 0.627
6.45 0.746 0.779 0.635
6.46 0.749 0.779 0.643
6.47 0.75 1 0.779 0.651
6.48 0.752 0.778 0.658
6.49 0.753 0.777 0.665
6.5 0.753 0.775 0.672
6.51 0.752 0.772 0.678
6.52 0.751 0.769 0.684
6.53 0.749 0.766 0.690
6.54 0.746 0.761 0.696
6.55 0.743 0.756 0.701
6.56 0.739 0.751 0.706
6.57 0.734 0.745 0.710
6.58 0.728 0.738 0.714
6.59 0.722 0.731 0.718
6.6 0.715 0.723 0.722 上記の結果から、回折格子の段数は、 7段、格子深さは、 6. 55(um)とする。この回 折格子によつて発生する回折効率の、ピッチごとの計算結果を表 41に示す。
[表 41] 使用波長 473 ( nm) 532( 635
使用次数 1次光 0次光 - 1 次光
ピッチ 10
59.9(%) 59.9(%) 51.6 (%)
(um )
ピッチ 20
74.3 (%) 75.6(%) 70. 1 (%) ピッチ 30
78.8(%) 81.0(%) 73.5(%)
um)
[0100] 本設計例の応用例を以下に示す。
[0101] 図 14は、 DNA'タンパク質などを測定する、従来の 3励起波長同時傾向測定用シ ステムの構成を示す(特開 2001-268318) 1つのミラー 113と 2つのダイクロックミラー 115および 117〖こよって、 473(nm)、 532(nm)、 635(nm)の 3波長のレーザ光の光路を 重ね合わせている。 3波長のレーザ光は、レーザ光源 101、 103および 105力 、そ れぞれ、コリメートレンズ 107、 109および 111を経て 1つのミラー 113と 2つのダイク口 ックミラー 115および 117に至る。重ね合わされた光は、ミラー 119、穴あきミラー 121 、対物レンズ 123を経て、スライドガラス 125に至る。反射光は、対物レンズ 123、穴 あきミラー 121、ミラー 127、レンズ 129、ピンホール板 131のピンホールを経て、光 電子倍増管 133によって測定される。
[0102] 図 15は、本設計例の回折格子 1を使用した、 3励起波長同時傾向測定用システム の構成を示す。 3波長回折格子 1によって、 473(nm)、 532(nm)、 635(nm)の 3波長のレ 一ザ光の光路を重ね合わせて 、る。

Claims

請求の範囲
[1] 波長の異なる第 1、第 2および第 3の光線を、回折させる回折格子であって、回折格 子の形状が、一定周期の階段形状であり、第 1の光線の波長は、第 2の光線の波長 よりも短ぐ第 2の光線の波長は、第 3の光線の波長よりも短ぐ第 1、第 2および第 3の 光線の波長は、回折格子の 1次回折光、 0次回折光および- 1次回折光の回折効率 のピークを示す波長のいずれか異なるものに対応し、当該一定周期を 10マイクロメ ータとした場合に、回折格子面に垂直に入射する第 1、第 2および第 3の光線の回折 効率が 50%以上である回折格子。
[2] 第 1、第 2および第 3の光線の波長が、それぞれ、 1次回折光、 0次回折光および- 1 次回折光の回折効率のピークを示す波長に対応する、請求項 1に記載の回折格子。
[3] 第 1、第 2および第 3の光線の波長が、それぞれ、 0次回折光の回折効率のピーク を示す波長、 1次回折光の回折効率のピークを示す波長および 0次回折光の回折効 率の別のピークを示す波長に対応する、請求項 1に記載の回折格子。
[4] 第 1、第 2および第 3の光線の波長が、それぞれ、 0次回折光の回折効率のピーク を示す波長、 0次回折光の回折効率の別のピークを示す波長および 1次回折光の回 折効率のピークを示す波長に対応する、請求項 1に記載の回折格子。
[5] 階段の段板部分を、階段の底面に対して所定の角度で傾斜させた、請求項 1に記 載の回折格子。
[6] 第 1、第 2および第 3の光線の波長が、青色波長、赤色波長および赤外波長である 請求項 1から 5のいずれか一項に記載の回折格子。
[7] 第 1、第 2および第 3の光線の波長が、青色波長、緑色波長および赤色波長である 請求項 1から 5のいずれか一項に記載の回折格子。
[8] それぞれ波長の異なる 3波長の 3個の光源と、請求項 1から 7のいずれかに記載の 回折格子とを含む光学系であって、回折格子力 3波長の 3個の光源からの光線の 光軸ずれを補償するように、 3波長の光線を回折させる光学系。
[9] それぞれ波長の異なる第 1、第 2および第 3の光線を回折させる回折格子であって 、回折格子の形状が、一定周期の階段形状であり、階段形状の段差量が、 0次回折 光の回折効率が、第 1、第 2および第 3の光線のいずれかの波長において回折効率 のピークに近づくように、前記 、ずれかの波長に基づ 、て定められており、 階段数を N、回折次数を α、え をえのいずれかの整数倍値、 mおよび ρを整数と
i 0 i
した場合に、波長
λ = [N/ (N - m+ α ) ] · λ · ρ
i i 0
力 第 1、第 2および第 3の光線の波長のそれぞれに対応するように、階段数 Nが定 められた回折格子。
[10] 前記いずれかの波長における回折格子の屈折率を n、回折格子の周囲の屈折率 を n、回折部に対する入射角を Θとして、段差量をえ · οο8 θ / (η-η )の整数倍の
0 0 0 値を基準として求める請求項 9に記載の回折格子。
[11] 回折部における階段の幅が位相関数および段差量と階段数に基づいて定められ る請求項 9または 10に記載の回折格子。
[12] 第 1、第 2および第 3の光線を、それぞれ 1次回折光、 0次回折光および- 1次回折 光として回折させる請求項 9から 11のいずれか一項に記載の回折格子。
[13] 第 1、第 2および第 3の光線を、それぞれ 0次回折光、 1次回折光および 0次回折光 として回折させる請求項 9から 11のいずれか一項に記載の回折格子。
[14] 第 1、第 2および第 3の光線を、それぞれ 0次回折光、 0次回折光および 1次回折光 として回折させる請求項 9から 11のいずれか一項に記載の回折格子。
[15] 第 1、第 2および第 3の光線が、青色波長、赤色波長および赤外波長である請求項
9から 14のいずれか一項に記載の回折格子。
[16] 第 1、第 2および第 3の光線が、青色波長、緑色波長および赤色波長である請求項
9から 14のいずれか一項に記載の回折格子。
[17] 回折部の形状が 2段の階段形状であり、山の部分と谷の部分とが等しい傾きを有し
、段差量と、一方の部分の傾きの高さとの和力 前記いずれかの波長における回折 格子の屈折率を η、回折格子の周囲の屈折率を η、回折部に対する入射角を 0とし
0
てえ - cos θ / (η-η )の整数倍の値を基準として求められる請求項 9に記載の回折
0 0
格子。
[18] それぞれ波長の異なる 3波長の 3個の光源と、請求項 9から 17のいずれかに記載 の回折格子とを含む光学系であって、回折格子が、 3波長の 3個の光源からの光線 の光軸ずれを補償するように、 3波長の光線を回折させる光学系。
PCT/JP2005/018029 2004-10-01 2005-09-29 回折格子および回折格子を含む光学系 WO2006038535A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006539255A JPWO2006038535A1 (ja) 2004-10-01 2005-09-29 回折格子および回折格子を含む光学系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-290514 2004-10-01
JP2004290514 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038535A1 true WO2006038535A1 (ja) 2006-04-13

Family

ID=36142611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018029 WO2006038535A1 (ja) 2004-10-01 2005-09-29 回折格子および回折格子を含む光学系

Country Status (2)

Country Link
JP (1) JPWO2006038535A1 (ja)
WO (1) WO2006038535A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127977A (ja) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd 回折素子、光ヘッド装置および投射型表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391126A (ja) * 1989-09-01 1991-04-16 Ricoh Co Ltd 波長多重記録方式を用いた光ピックアップ装置
JPH10261240A (ja) * 1997-03-19 1998-09-29 Sony Corp 記録再生装置および方法
JP2001268318A (ja) * 2000-03-23 2001-09-28 Fuji Photo Film Co Ltd 画像読み取り装置
JP2001283457A (ja) * 2000-03-29 2001-10-12 Toyo Commun Equip Co Ltd 複数波長合成素子
JP2002100070A (ja) * 2000-07-22 2002-04-05 Samsung Electronics Co Ltd 互換型光ピックアップ装置
JP2002163837A (ja) * 2000-11-27 2002-06-07 Pioneer Electronic Corp 光ピックアップ装置及びレーザダイオードチップ
JP2002237081A (ja) * 2001-02-14 2002-08-23 Sankyo Seiki Mfg Co Ltd 光ヘッド装置
JP2003057421A (ja) * 2001-08-09 2003-02-26 Alps Electric Co Ltd 回折格子部材
JP2005259268A (ja) * 2004-03-11 2005-09-22 Sanyo Electric Co Ltd 光ピックアップ装置および半導体レーザ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391126A (ja) * 1989-09-01 1991-04-16 Ricoh Co Ltd 波長多重記録方式を用いた光ピックアップ装置
JPH10261240A (ja) * 1997-03-19 1998-09-29 Sony Corp 記録再生装置および方法
JP2001268318A (ja) * 2000-03-23 2001-09-28 Fuji Photo Film Co Ltd 画像読み取り装置
JP2001283457A (ja) * 2000-03-29 2001-10-12 Toyo Commun Equip Co Ltd 複数波長合成素子
JP2002100070A (ja) * 2000-07-22 2002-04-05 Samsung Electronics Co Ltd 互換型光ピックアップ装置
JP2002163837A (ja) * 2000-11-27 2002-06-07 Pioneer Electronic Corp 光ピックアップ装置及びレーザダイオードチップ
JP2002237081A (ja) * 2001-02-14 2002-08-23 Sankyo Seiki Mfg Co Ltd 光ヘッド装置
JP2003057421A (ja) * 2001-08-09 2003-02-26 Alps Electric Co Ltd 回折格子部材
JP2005259268A (ja) * 2004-03-11 2005-09-22 Sanyo Electric Co Ltd 光ピックアップ装置および半導体レーザ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127977A (ja) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd 回折素子、光ヘッド装置および投射型表示装置

Also Published As

Publication number Publication date
JPWO2006038535A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
KR100519636B1 (ko) 회절 광학 소자 및 그것을 사용한 광학 헤드
JP4340690B2 (ja) 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
CN102269833B (zh) 光谱装置、检测装置以及光谱装置的制造方法
JP4905193B2 (ja) 凹面回折ミラー及びこれを用いた分光装置
US8169703B1 (en) Monolithic arrays of diffraction gratings
US7177089B2 (en) Objective, optical pickup apparatus and optical information recording and/or reproducing apparatus
Nakai et al. Research on multi-layer diffractive optical elements and their application to camera lenses
JPWO2006035785A1 (ja) 光学素子
US7085203B2 (en) Optical head with defocusing correction and spherical aberration correction
JP5049508B2 (ja) 回折光学素子、それを備えた対物光学系、及びそれを備えた光ピックアップ装置
JPH1123819A (ja) 色分離位相格子及びこれを用いた画像表示装置、レンズ、光情報記録再生装置
WO2006038535A1 (ja) 回折格子および回折格子を含む光学系
KR100466668B1 (ko) 광학부재 및 이것을 사용한 광학장치
US7463430B2 (en) Diffraction element, objective lens unit, optical pickup, optical disc apparatus and design method for diffraction element
KR100470242B1 (ko) 광학부재 및 이것을 사용한 광학장치
EP1923876A1 (en) Optical pickup device
JP2003223738A (ja) 光ピックアップ装置及び光ディスク装置並びに光学装置及び複合光学素子
JP4984537B2 (ja) 外部共振器型波長可変光源
JP3711680B2 (ja) ビーム整形装置
US7304935B2 (en) Optical pickup device and correcting element used in the optical pickup device
JPH09120027A (ja) 多重焦点レンズ、光ヘッド装置及び光学情報記録再生装置
JP4324523B2 (ja) 光学素子
JPH06347693A (ja) 回折格子一体型のレンズとそれを用いた光ヘッド装置
WO2004090598A1 (ja) 結像光学素子およびその設計方法
JPS63225930A (ja) 光学式情報再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539255

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase