WO2006038454A1 - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
WO2006038454A1
WO2006038454A1 PCT/JP2005/017302 JP2005017302W WO2006038454A1 WO 2006038454 A1 WO2006038454 A1 WO 2006038454A1 JP 2005017302 W JP2005017302 W JP 2005017302W WO 2006038454 A1 WO2006038454 A1 WO 2006038454A1
Authority
WO
WIPO (PCT)
Prior art keywords
aberration
optical disc
laser beam
recording layer
light
Prior art date
Application number
PCT/JP2005/017302
Other languages
English (en)
French (fr)
Inventor
Akira Kurozuka
Shin-Ichi Kadowaki
Joji Anzai
Osamu Kajino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006515446A priority Critical patent/JP4280285B2/ja
Priority to US11/576,482 priority patent/US7872952B2/en
Publication of WO2006038454A1 publication Critical patent/WO2006038454A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/12Control of operating function, e.g. switching from recording to reproducing by sensing distinguishing features of or on records, e.g. diameter end mark
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an apparatus for optical recording and Z or reproduction of information, and in particular, according to the thickness of a light transmission layer when an information recording medium having a plurality of recording layers is irradiated with laser light.
  • the present invention relates to a device that corrects spherical aberration that occurs at the same time.
  • Optical memory technology that uses optical disk media with pit-like patterns as high-density 'large-capacity information storage media is expanding its application to digital audio disks, video disks, document file disks, and data file disks. Practical use is progressing.
  • the functions necessary to successfully perform information recording and reproduction on an optical disk medium with a very small laser beam are highly reliable. It is broadly divided into a condensing function that forms a light spot, an optical system focus control (focus servo) function, a tracking control (tracking servo) function, and a pit signal (information signal) detection function.
  • the numerical aperture NA of the objective lens mounted on the optical head is increased and the wavelength ⁇ of the light of the light source is shortened, and the light is collected by the objective lens.
  • the spot diameter of the emitted light has been reduced.
  • the optical disk medium has been provided with a plurality of recording layers for recording information.
  • the numerical aperture NA of the objective lens is 0.45, and the wavelength of the light of the light source is 780 nm, whereas higher recording density and higher capacity are achieved.
  • the numerical aperture NA is 0.6, and the wavelength of light is 650 ⁇ m.
  • the thickness of the base material (light incident side of the optical disk medium) is set so as to cancel such aberration. It is effective to reduce the surface force (distance to the recording layer), and the substrate thickness was 1.2 mm for CD, but 0.6 mm for DVD.
  • the numerical aperture NA 0.85
  • the substrate thickness is 0.1 mm.
  • FIG. 9 is a diagram schematically showing the spherical aberration due to the substrate thickness.
  • the laser beam 911 collected by the objective lens 910 passes through the cover layer 903 of the optical disc medium 901 and focuses on the recording layer 902. Since the laser beam 911 is refracted when passing through the cover layer 903, if the thickness of the cover layer 903 changes, the focal point of the laser beam 911 that passes near the center of the objective lens 910 and the vicinity of the outer periphery of the objective lens 910 Deviation occurs between the laser beam 911 and the focal point of the laser beam 911 that has passed (that is, spherical aberration occurs).
  • the spherical aberration due to such substrate thickness is proportional to the fourth power of the numerical aperture NA. For this reason, when the numerical aperture NA is set to a large value of 0.85 as in the BD standard, a means for correcting the spherical aberration is provided in the optical system.
  • the DVD standard In order to further increase the recording capacity per one optical disk medium, the DVD standard also employs a two-layer disk having two recording layers. In order to increase the recording capacity per optical disk medium even when the numerical aperture NA is increased, it is effective to adopt a two-layer disk structure.
  • the two-layer disc has an optical head side force in order of the base material, the LO layer (first recording layer), the intermediate layer, the L1 layer (second recording layer), and the protective layer on the back surface. ing.
  • the base material and the intermediate layer also have a transparent medium force such as resin. Since there is an intermediate layer between the LO layer and the L1 layer, the thickness to the optical disk medium surface force L1 layer on the optical head side is thicker than the LO layer by the thickness of the intermediate layer. Since the magnitude of the spherical aberration changes according to the thickness of the substrate, the magnitude of the spherical aberration also changes when the focal position of the laser beam is moved from the LO layer to the L1 layer. However, in the DVD standard with a numerical aperture NA of 0.6, the amount of change in spherical aberration is within an allowable range, and information can be recorded and reproduced without correcting aberrations.
  • the focal point of the laser beam is moved from one recording layer to another recording layer along the optical axis direction of the objective lens (hereinafter referred to as “interlayer jump”), the correction state of the aberration is also changed. It must be changed at the same time.
  • Patent Document 1 before the start of the interlayer jump, the focus is on the recording layer (hereinafter referred to as “target recording layer”) within the focus jump destination within the range where the current focus servo does not deviate.
  • target recording layer the recording layer
  • An apparatus sets the aberration of laser light so that the spherical aberration that occurs when matched is corrected to some extent.
  • the reason for keeping the correction to a certain extent is that if the aberration of the laser beam is set in advance before the start of the interlayer jump so that the spherical aberration that occurs when the target recording layer is in focus is well corrected, This is because the current focus servo will be lost.
  • Patent Document 2 discloses a medium discrimination method corresponding to CD and DVD. In this method, it is determined whether the optical disk medium installed in the apparatus is a DVD power CD based on whether or not the peak value of the focus error signal exceeds a threshold value. When discriminating the type of optical disc medium in a state suitable for DVD, if the loaded optical disc medium is discriminated as DVD, focus servo control is performed based on the peak value of the focus error signal. . If the mounted optical disk medium is a CD, the lens is moved again at a moving speed corresponding to the linear velocity of the CD, and focus servo control is performed based on the peak value of the detected focus error signal.
  • Patent Document 3 uses a micromirror array as aberration correction means, and each micromirror is used. An apparatus is disclosed that corrects spherical convergence by tilting one angle and adjusting the radiation angle of light incident on the objective lens. Patent Document 3 discloses a method of creating a plurality of focal points by adjusting the tilt angle of the micromirror array.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-16660
  • Patent Document 2 JP-A-9-106617
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-288873
  • the setting state of the aberration of the laser beam is not optimal for both the recording layer and the target recording layer that the light spot follows before the interlayer jump. For this reason, if a force is applied to the objective lens due to a disturbance during the jump between layers, the objective lens that does not draw the focus into either recording layer may collide with the optical disk medium.
  • Patent Document 3 describes an operation for jumping between layers and an operation for determining the type of optical disk medium. Not disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to perform stable and quick interlayer jump when information is recorded on and reproduced from a multilayer optical disc medium having two or more recording layers. It is to be realized.
  • the present invention aims to realize a quick start-up of an apparatus by efficiently discriminating a plurality of types of optical disk media having different laser light wavelengths suitable for the thickness of the substrate. .
  • the apparatus of the present invention is an apparatus that executes at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium, the light emitting unit emitting laser light, and the laser An optical system for irradiating the optical disk medium with light, and an aberration control unit for controlling the aberration of the laser beam, wherein the aberration control unit repeatedly switches a plurality of aberration setting states during a focus pull-in operation. To do.
  • the optical system includes an objective lens, and the aberration control unit alternately switches the plurality of aberration setting states at a frequency higher than the focus control band of the objective lens.
  • the apparatus of the present invention is an apparatus that executes at least one of recording of data on an optical disk medium and reproduction of data from the optical disk medium, the light emitting unit emitting laser light, and the laser An optical system for irradiating the optical disk medium with light and an aberration control unit for controlling the aberration of the laser beam, wherein the aberration control unit simultaneously sets a plurality of aberration setting states during a focus pull-in operation.
  • the aberration control unit changes the plurality of aberration setting states set simultaneously to one aberration setting state after setting the plurality of aberration setting states simultaneously.
  • the plurality of aberration setting states include a first aberration setting state and a second aberration setting state
  • the optical disc medium includes a first recording layer, a second recording layer, and the like.
  • the first aberration setting state corresponds to the first recording layer
  • the second aberration setting state corresponds to the second recording layer.
  • the first aberration setting state is a state in which an aberration that occurs when the laser light is focused on the first recording layer is corrected
  • the aberration setting state 2 is a state in which an aberration that occurs when the laser beam is focused on the second recording layer is corrected.
  • the optical system includes an objective lens
  • the apparatus further includes an actuator that drives the objective lens, and the actuator maintains the focus servo operation ON, and the laser light is turned on. Is moved from the first recording layer to the second recording layer.
  • the apparatus is an apparatus that executes at least one of recording of data on a plurality of types of optical disc media and reproduction of data of the plurality of types of optical disc media.
  • the light emitting unit emits a plurality of types of laser beams having different wavelengths, and each of the plurality of types of laser beams corresponds to one of the plurality of types of optical disc media, and the plurality of aberration settings. Each state corresponds to one of the plurality of types of laser light.
  • each of the plurality of aberration setting states is such that the corresponding laser light is focused on a recording layer included in a corresponding one of the plurality of types of optical disc media. This is the state in which the aberration that occurs when
  • the optical system emits the plurality of types of laser light to an optical disc medium mounted on the device, and the device receives reflected light corresponding to the plurality of types of laser light. And at least one light detection unit that outputs an electrical signal corresponding to the received reflected light, a signal detection unit that detects the electrical signal force focus error signal, and is mounted on the device based on the focus error signal. And a discriminator for discriminating the type of the optical disc medium.
  • the light emitting section emits a plurality of types of laser beams having different wavelengths
  • the plurality of aberration setting states correspond to one of the plurality of types of laser beams, respectively.
  • the apparatus further includes a plurality of light detection units, and each of the plurality of light detection units receives reflected light corresponding to one of the plurality of types of laser beams, and receives the received reflections. Outputs an electrical signal corresponding to the light, and the device
  • a signal detection unit that detects a focus error signal, and the signal detection unit synchronizes with a timing of alternately switching the plurality of aberration setting states of the electrical signals output from the plurality of light detection units. Among them, the electric signal used for detecting the focus error signal is switched.
  • the aberration control unit includes an aberration correction unit that corrects the aberration of the laser beam, and a control device that controls the aberration correction unit, and the control device includes: The aberration is corrected by controlling the aberration correction unit so that the convergence is reduced.
  • the aberration correction unit is a deformable mirror
  • the control device sets the shape of the deformable mirror so that the aberration is reduced, thereby reducing the convergence. to correct.
  • the deformable mirror is a micromirror array including a plurality of microactuators each having a light reflecting surface
  • the aberration control unit includes the plurality of microactuators.
  • the shape of the deformable mirror is set by driving.
  • the control device of the present invention controls the aberration of laser light when mounted on an optical disc device that performs at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium.
  • the optical disc apparatus includes: a light emitting unit that emits the laser beam; an optical system that irradiates the optical disc medium with the laser beam; and an aberration correction unit that corrects the aberration of the laser beam.
  • the control device controls the convergence correction unit so as to repeatedly switch a plurality of aberration setting states during a focus pull-in operation.
  • the plurality of aberration setting states are alternately switched at a frequency higher than a focus control band of an objective lens included in the optical system.
  • the control device of the present invention controls the aberration of laser light when mounted on an optical disc device that performs at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium.
  • the optical disc apparatus includes: a light emitting unit that emits the laser beam; an optical system that irradiates the optical disc medium with the laser beam; and an aberration correction unit that corrects the aberration of the laser beam.
  • the control device comprises A plurality of aberration setting states are simultaneously set in the aberration correction unit during the orcus pull-in operation.
  • the plurality of aberration setting states set at the same time are changed to one aberration setting state.
  • the plurality of aberration setting states includes a first aberration setting state and a second aberration setting state
  • the optical disc medium includes a first recording layer, a second recording layer, and the like.
  • the first aberration setting state corresponds to the first recording layer
  • the second aberration setting state corresponds to the second recording layer.
  • the first aberration setting state is a state in which an aberration that occurs when the laser light is in focus on the first recording layer is corrected
  • the aberration setting state 2 is a state in which an aberration that occurs when the laser beam is focused on the second recording layer is corrected.
  • the optical disc apparatus performs at least one of recording of data onto a plurality of types of optical disc media and reproduction of data of the plurality of types of optical disc media.
  • the light emitting unit emits a plurality of types of laser beams having different wavelengths, and each of the plurality of types of laser beams corresponds to one of the plurality of types of optical disc media.
  • Each of the plurality of aberration setting states corresponds to one of the plurality of types of laser beams.
  • each of the plurality of aberration setting states is such that the corresponding laser beam is focused on a recording layer included in a corresponding one of the plurality of types of optical disc media. This is the state in which the aberration that occurs when
  • the optical system emits the plurality of types of laser light to an optical disk medium mounted on the optical disc device, and the optical disc device reflects light corresponding to the plurality of types of laser light.
  • the control device includes at least one light detection unit that receives light and outputs an electrical signal corresponding to the received reflected light.
  • the control device detects a focus error signal from the electrical signal, and the focus A discriminating unit for discriminating the type of the optical disc medium mounted on the optical disc apparatus based on the error signal.
  • the light emitting unit includes a plurality of types of laser beams having different wavelengths.
  • the plurality of aberration setting states are respectively out of the plurality of types of laser beams.
  • the optical disk device further includes a plurality of light detection units, and each of the plurality of light detection units receives reflected light corresponding to one of the plurality of types of laser beams.
  • the control device includes a signal detection unit that detects a focus error signal as well as the electrical signal force, and the signal detection unit includes the plurality of aberration settings. In synchronism with the timing of alternately switching the states, an electrical signal used for detecting the focus error signal among the electrical signals output from the plurality of light detection units is switched.
  • the aberration correction unit includes a deformable mirror, and the control device sets the shape of the deformable mirror so as to reduce the aberration force, thereby reducing the aberration. to correct.
  • the deformable mirror is a micromirror array including a plurality of microactuators each having a light reflecting surface, and the control device drives the plurality of microactuators. By doing so, the shape of the deformable mirror is set.
  • the method of the present invention is a method for controlling aberration of laser light in an optical disc apparatus that executes at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium
  • the optical disc apparatus includes a light emitting unit that emits the laser beam, an optical system that irradiates the optical disc medium with the laser beam, and an aberration correction unit that corrects the aberration of the laser beam.
  • the method includes a step of controlling the aberration correction unit so as to repeatedly switch a plurality of aberration setting states.
  • the method of the present invention is a method for controlling the aberration of laser light in an optical disc apparatus that executes at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium
  • the optical disc apparatus includes a light emitting unit that emits the laser beam, an optical system that irradiates the optical disc medium with the laser beam, and an aberration correction unit that corrects the aberration of the laser beam.
  • a program of the present invention is for causing an optical disc apparatus that executes at least one of recording of data to an optical disc medium and reproduction of data from the optical disc medium to execute an aberration control process of laser light.
  • the optical disc device includes a light emitting unit that emits the laser light, an optical system that irradiates the optical disc medium with the laser light, and an aberration correction unit that corrects the aberration of the laser light,
  • the control process includes a step of controlling the aberration correction unit so that a plurality of aberration setting states are repeatedly switched during a focus pull-in operation.
  • a program of the present invention is a program for executing an aberration control process of a laser beam in an optical disc apparatus that executes at least one of recording of data on an optical disc medium and reproduction of data from the optical disc medium.
  • the optical disc device includes a light emitting unit that emits the laser light, an optical system that irradiates the optical disc medium with the laser light, and an aberration correction unit that corrects the aberration of the laser light,
  • the control process includes a step of simultaneously setting a plurality of aberration setting states in the aberration correction unit during a focus pull-in operation.
  • a plurality of aberration setting states can be substantially coexisted in a single optical system by repeatedly switching a plurality of aberration setting states during the focus pull-in operation.
  • a plurality of aberration setting states can coexist in a single optical system by simultaneously setting a plurality of aberration setting states during the focus pull-in operation.
  • FIG. 1A schematically shows an optical disc apparatus according to an embodiment of the present invention.
  • FIG. 1B is an exploded perspective view showing a microactuator according to an embodiment of the present invention.
  • FIG. 1C is an exploded perspective view showing an aberration correction unit according to an embodiment of the present invention.
  • [2A] Diagram showing aberrations according to an embodiment of the present invention
  • FIG. 4 is a diagram showing a relationship between a beam spot position and a focus error signal according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a relationship between a beam spot position and a focus error signal according to an embodiment of the present invention.
  • FIG. 9 A diagram schematically showing spherical aberration caused by the thickness of the substrate.
  • FIG. 1A is a diagram schematically showing the optical disc device 100.
  • the optical disc device 100 is a device that executes at least one of recording of data on a plurality of types of optical disc media 20 and reproduction of data from the plurality of types of optical disc media 20.
  • the optical disc apparatus 100 includes a light emitting unit 110 that emits laser light, an optical system 120 that irradiates the optical disc medium 20 with laser light, and an aberration control unit 130 that controls the aberration of the laser light.
  • the light emitting unit 110 includes a laser light source 1A that emits laser light la, a laser light source 1B that emits laser light lb, and a laser light source 1C that emits laser light lc.
  • Laser light la ⁇ : Lc has different wavelengths.
  • the optical system 120 includes a dichroic prism 2, a collimating lens 3, a quarter-wave plate 4, an objective lens 6, a hologram 8, and a detection lens 9.
  • the dichroic prism 2 includes a polarizing beam splitter 2a.
  • the optical disc apparatus 100 further includes a lens actuator 7 that drives the object lens 6.
  • the aberration control unit 130 includes an aberration correction unit 5 that corrects the aberrations of the laser beams la to lc, and a control device 140 that controls the operation of the aberration correction unit 5.
  • Laser light emitted from the laser light sources 1A to 1C la to Lc is reflected by the aberration correcting unit 5 through the dichroic prism 2, the collimating lens 3, and the 1Z4 wavelength plate 4, and condensed by the objective lens 6. It is.
  • the focused laser beam la ⁇ : Lc passes through the cover layer 21 of the optical disc medium 20 to form a spot on the recording layer 22.
  • Laser light la ⁇ : The reflected light obtained by reflecting Lc at the recording layer 22 is guided to the hologram 8 and the detection lens 9 by the polarization beam splitter 2a along the reverse path.
  • the optical disc device 100 receives the reflected light that has passed through the detection lens 9.
  • the photo detector 10 outputs an electrical signal corresponding to the amount of received light.
  • the control device 140 is mounted on the optical disc device 100 based on the signal detection unit 103 that detects the focus error signal and the tracking error signal as well as the electric signal force output from the photodetector 10, and the detected focus error signal.
  • a discriminating unit 104 for discriminating the type of the optical disc medium 20, a control circuit 101 for controlling the operation of the lens actuator 7, and a wavefront pattern generator 102 for generating a wavefront pattern to be set in the aberration correcting unit 5.
  • the control circuit 101 calculates a focus error signal and a tracking error signal, generates a drive signal for driving the lens actuator 7, and performs focus and tracking control of the objective lens 6.
  • Each of the laser beams la to Lc has a wavelength suitable for, for example, a corresponding one of BD, DVD, and CD, and is selectively selected according to the type of the mounted optical disk medium 20 used.
  • the base material thickness that is, the light incident surface force and the distance to the recording layer
  • the wavefront pattern generator 102 corrects the spherical aberration by setting a wavefront pattern that cancels this spherical aberration in the aberration correction unit 5. Thereby, a beam spot suitable for each type of the optical disk medium 20 is formed.
  • the aberration correction unit 5 is a micromirror array including a plurality of microactuators 5b and functions as a deformable mirror.
  • the microactuators 5b are two-dimensionally arranged on the substrate 5a, and each has a light reflecting surface. Each microactuator 5b can independently control the vertical position and inclination with respect to the substrate 5a, and can form an arbitrary wavefront.
  • Such a micromirror array is made on a silicon substrate by a microfabrication technique of a semiconductor manufacturing process, and is suitable for example, Microactuator Taka S disclosed in WO2003Z065103.
  • a microactuator disclosed in PCT / JP2005 / 003533 (claiming priority of # 112004-06 3518) is also suitable.
  • FIG. 1B is an exploded perspective view showing the microactuator 5b.
  • the microactuator 5b includes a substrate 5a, a movable portion 207, an elastic support portion 205, and fixed electrodes 204a, 204b, and 204c.
  • the microactuator 5b is manufactured using, for example, MEMS technology.
  • the substrate 5a is, for example, a silicon substrate.
  • a drive circuit 201a is provided on the substrate 5a, and an insulating layer 202 is provided on the drive circuit 201a.
  • the movable part 207 can be displaced with respect to the substrate 5a.
  • the elastic support part 205 has elasticity and supports the movable part 207 so that the movable part 207 can be displaced in a direction perpendicular to the planar direction of the substrate 5a and the movable part 207 can be tilted with respect to the substrate 5a.
  • Each of the fixed electrodes 204a to 204c functions as a drive unit that drives the movable unit 207 in a direction perpendicular to the planar direction of the substrate 5a.
  • Each of the fixed electrodes 204a to 204c is connected to the drive circuit 201a by a via (not shown) formed in the insulating layer 202.
  • the drive circuit 20 la can independently apply a drive voltage within a predetermined voltage range (for example, 0 to 30 V) to the fixed electrodes 204a to 204c.
  • This drive voltage can be set, for example, as a multi-step value of lObit.
  • the elastic support portion 205 includes three elastic beams 205a to 205c, fixing portions 205d to 205f for fixing the elastic beams 205a to 205c to the substrate 5a, and a support portion 2 for supporting the movable portion 207.
  • the elastic beams 205a to 205c are connected to the ground wiring portion 203.
  • the end connected to the fixed portions 205d to 205f is fixed to the fixed end 2051! ⁇ 203 ⁇ 4, the end on the side connected to the support part 205g will be referred to as the movable ends 205k to 205m.
  • the support portion 205g is connected to a protrusion 206a provided at the center of the movable electrode 206. Further, the three elastic beams 205a to 205c are connected to each other via a support portion 205g.
  • the movable electrode 206 has a substantially regular hexagonal shape.
  • the upper surface of the movable electrode 206 is a micromirror part 206b which is a light reflecting surface.
  • the upper surface of the movable electrode 206 may be coated with gold or a dielectric multilayer film to form the micromirror portion 206b.
  • the movable electrode 206 is connected to the drive circuit 20 la via the elastic support portion 205 and the ground wiring portion 203, and is maintained at the ground potential.
  • the movable electrode 206 is opposed to the three fixed electrodes 204a to 204c via a gap. Movable When a potential difference is generated between the electrode 206 and the fixed electrodes 204a to 204c, an electrostatic force is generated between the movable electrode 206 and the fixed electrodes 204a to 204c. The movable part 207 is driven using this electrostatic force as a driving force. When the movable portion 207 is displaced by this driving force, the elastic support portion 205 is inertially deformed, and the posture of the movable portion 207 is determined by the balance between the elastic restoring force of the elastic support portion 205 and the driving force.
  • the amount of displacement of the movable part 207 in the direction perpendicular to the substrate 5a and the amount of tilting with respect to the substrate 5a are controlled. can do. If the drive voltages of the fixed electrodes 204a to 204c are set to be the same, the movable portion 207 is not substantially tilted, and the entire movable portion 207 including the central portion of the movable portion 207 is vertically displaced in a direction approaching the substrate 5a. Further, if these drive voltages are made different from each other, the movable part 207 tilts in a desired direction.
  • the tilt with respect to the substrate 5a is a tilt around two tilt axes that are parallel to the plane direction of the substrate 5a and orthogonal to each other.
  • FIG. 1C is an exploded perspective view showing the aberration correction unit 5 which is a micromirror array.
  • the movable part 207, the elastic support part 205, and the fixed electrodes 204a to 204c included in the plurality of microactuators 5b are provided on one substrate 5a, and the plurality of microactuators 5b are provided on one sheet.
  • the boards 5a are shared with each other.
  • Each microactuator 5b is independently controlled in vertical position and inclination with respect to the substrate 5a, and an arbitrary wavefront pattern is formed. Thereby, aberration can be corrected.
  • the base material thickness varies depending on the selected recording layer even for the same optical disc medium 20, and therefore the aberration correction unit depends on the selected recording layer.
  • Drive 5 to correct aberration.
  • FIGS. 2A to 2D Aberration correction by the aberration correction unit 5 will be described with reference to FIGS. 2A to 2D.
  • 2A and 2B show the aberration, where the horizontal axis is the normalized pupil radius position (mm), and the vertical axis is the wavefront convergence ( ⁇ ). The sign and magnitude of the aberration depend on how much the substrate thickness changes from the reference thickness that minimizes the aberration.
  • 2C and 2D show the wavefront pattern of the aberration correction unit 5, where the horizontal axis is the normalized pupil radius position (mm), and the vertical axis is the mirror displacement ( ⁇ ).
  • the BD first recording layer and the second recording layer Consider the case where the optical system and objective lens are designed so that the aberration is minimized in the middle of the recording layer.
  • the focus that is, the beam spot
  • an aberration as shown in FIG. 2A occurs.
  • a wavefront convergence that cancels the aberration shown in FIG. 2A may be given in the optical path.
  • the wavefront aberration shown in FIG. 2B is given in the optical path
  • the inclination and the vertical position of each microactuator 5b of the aberration correction unit 5 are controlled to approximate the wavefront aberration shown in FIG.
  • the wavefront pattern shown is formed.
  • the approximation error of the wavefront generated at this time is determined by the beam diameter and the number of divisions of the mirror (that is, the number of microactuators 5b).
  • the number of the micro-controllers 5b increases, the amount of control data becomes enormous. Therefore, it is only necessary to determine the minimum number of mirror divisions so that the aberration range allowed by the recording / reproducing system such as the optical disc device 100 is suppressed.
  • the maximum amount of displacement of the mirror may be (1Z2) ⁇ or more.
  • the displacement of the mirror is (2 ⁇ 2) ⁇ shifted and not shifted at the pupil radius position where the wavefront aberration exceeds 2/2 and ⁇ . In this case, the maximum displacement of the mirror should be (2 ⁇ 2) ⁇ or more.
  • An arbitrary wavefront shape can be set by setting an appropriate number of mirror divisions. For example, when correcting 2 RMS spherical aberration, the number of divisions required to make the approximate error 50 m ⁇ or less is such that the length of the beam diameter can be divided into 20 parts. If the beam diameter is 2 mm, the width of the light reflecting surface (that is, the micromirror) included in each microactuator 5b is approximately 100 m. In this case, the aberration correction unit 5 includes about 20 ⁇ 20 micromirrors having a width of 100 m.
  • the wavefront pattern that is optimally corrected for aberrations is different for each type of optical disc medium and for each optical recording medium having a plurality of recording layers.
  • a wavefront pattern for performing an optimal aberration correction according to each situation is stored in advance in the wavefront pattern generator 102 in the form of drive data of each microactuator 5b.
  • Wavefront pattern The living device 102 drives each microactuator 5b to change the shape of the micromirror array to form a wavefront pattern and correct aberrations (that is, reduce aberrations).
  • a wavefront sensor for detecting wavefront information may be provided on the photodetector 10 and the aberration correction unit 5 may be controlled according to the detected wavefront information.
  • the wavefront sensor for example, a Shack-Hartmann type wavefront sensor or a modal type wavefront sensor is used.
  • the modal wavefront sensor is M.A.
  • the correction amount may be adjusted by learning the variation of each optical disc medium.
  • the wavefront pattern generator 102 drives the aberration correction unit 5 so as to repeatedly set a plurality of wavefront patterns at high speed (hereinafter referred to as time-division driving).
  • time-division driving a single aberration correction unit 5 can be used to substantially coexist a plurality of wavefront patterns for correcting aberrations that vary depending on the type of optical disk medium 20 and the thickness of the substrate. it can.
  • the microactuator 5b can be driven at high speed because the movable part is minute.
  • the mass M of the movable part is 4 XE—l lkg and the moment of inertia J is 6 XE—16 kg'm2.
  • Mass M and moment of inertia J are extremely small.
  • the aberration correction unit 5 is driven so as to repeatedly switch and set a plurality of wavefront patterns at V and frequency, stable servo control can be maintained, and the objective lens 6 follows the optical disk medium 20.
  • FIG. 3 is a flowchart showing the disc discrimination operation.
  • the optical disc apparatus 100 When the optical disc medium 20 is mounted, the optical disc apparatus 100 performs a disc discrimination operation while performing a focus pull-in operation.
  • the focus pull-in operation means that the target recording layer (the recording layer to which the laser beam is to be focused) and the laser beam are out of focus and the target recording layer and the laser beam are focused. It is an operation.
  • the target recording layer is the reference layer of the optical disc medium 20.
  • the state in which the target recording layer and the laser beam are out of focus is the state in which the target recording layer and the laser beam are in focus to the extent that the focusing control between the target recording layer and the laser beam cannot be maintained. Point to.
  • the state in which the target recording layer and the laser beam are in focus means that the target recording layer and the focus of the laser beam are close enough to maintain the focusing control between the target recording layer and the laser beam. Refers to the state.
  • control circuit 101 drives lens actuator 7 to move objective lens 6 away from optical disk medium 20. Move (steps 301-302).
  • the control circuit 101 rotates the optical disc medium 20 to turn on the laser light sources 1A to LC (steps 303 to 304).
  • the type of the loaded optical disk medium 20 is either BD, DVD, or CD. Since the laser beam wavelength suitable for the substrate thickness varies depending on the type of the optical disk medium 20, the optimum wavefront pattern for correcting the aberration also varies depending on the type of the optical disk medium 20.
  • the wavefront pattern A is a wavefront pattern that sets the aberration of the laser beam la so that the aberration that occurs when the laser beam la is in focus on the recording layer of the BD is corrected.
  • Wavefront pattern B is available on DVD This is a wavefront pattern that sets the aberration of the laser beam lb so that the aberration that occurs when the laser beam lb is in focus on the recording layer.
  • the wavefront pattern C is a wavefront pattern that sets the aberration of the laser beam lc so that the aberration generated when the laser beam lc is focused on the recording layer of the CD is corrected.
  • the aberration correction unit 5 sets the wavefront pattern so that the aberration that occurs when the laser beam is focused on the target recording layer is corrected. Called the state.
  • the aberration correction unit 5 repeatedly switches between a plurality (three in this case) of aberration setting states.
  • the aberration setting state refers to a state in which the current aberration of the laser beam is set to a state in which an aberration assumed to occur in the future is corrected.
  • the wavefront pattern generator 102 receives the command from the control circuit 101 and sequentially transfers the drive data for forming the wavefront patterns A to C to the aberration correction unit 5 and starts time-division driving (step) 305).
  • the optimum aberration setting state can be substantially coexisted in each of a plurality of types of optical disk media.
  • the control circuit 101 sets the switching frequency of the wavefront pattern during time-division driving sufficiently higher than the control band of the focus servo.
  • the time range in which the aberration correction unit 5 sets wavefront pattern A is section IA
  • the time range in which wavefront pattern B is set is section IB
  • the time range in which wavefront pattern C is set is section IC.
  • the control circuit 101 moves the objective lens 6 at a predetermined speed in a direction approaching the optical disc medium 20 (step 306).
  • the focal point of the laser beam suitable for the mounted optical disk medium 20 is positioned on the recording layer of the optical disk medium 20
  • the light detection unit 10 detects the S-shaped signal in the section corresponding to the laser beam (step 3 07).
  • the S-shaped signal is included in the focus error signal. Since the aberration is very large outside the corresponding section, the amplitude of the S-shaped signal obtained even when the focal point of the laser beam is located on the recording layer is very small. On the other hand, since the aberration is corrected in the corresponding section, an S-shaped signal having a predetermined magnitude or more can be obtained. In this way, a regular S-shaped signal is detected only in a section in which an aberration correction state suitable for the mounted optical disk medium 20 is obtained.
  • the optical disk apparatus 100 shown in FIG. 1A may include a plurality of photodetectors 10 having a single photodetector 10.
  • each of the photodetectors 10 has a laser beam la ⁇ l.
  • the signal detector 103 synchronizes with the time-division drive (that is, synchronizes with the timing of alternately switching a plurality of aberration setting states), and generates a focus error from the electrical signals output from the plurality of light detectors 10.
  • the electrical signal used to detect the signal is selected by switching sequentially. Thereby, the signal detection unit 103 can detect an appropriate focus error signal according to the change of the aberration setting state.
  • Fig. 4 is a graph showing the relationship between the position of the beam spot and the focus error signal when an optical disk medium with the largest substrate thickness is loaded.
  • Fig. 4 (a) shows the driving voltage of the lens actuator 7
  • Fig. 4 (b) shows the focus error signal
  • Fig. 4 (c) shows the beam spot position
  • 4 (d) shows the wavefront pattern of the aberration corrector 5.
  • a small S-shaped signal 31 due to reflection on the surface of the optical disk medium 20 is detected.
  • the focal point (beam spot) of the laser beam is positioned on the recording layer 22C
  • the S-shaped signal 31C is detected
  • the focal point of the laser beam is positioned on the recording layer 22B
  • the S-shaped signal 31B is detected.
  • the amplitude of the S-shaped signals 31, 31B and 31C is small and less than the predetermined detection level.
  • an S-shaped signal 31A that reaches a predetermined detection level is detected.
  • the recording layer 22A is a reference layer of the optical disc medium 20.
  • the control circuit 101 turns the focus servo ON (step 308). Then, the wavefront pattern generator 102 fixes the wavefront pattern of the aberration correction unit 5 in the state where the S-shaped signal 31A is detected (step 309). In the example shown in FIG. 4, since the S-shaped signal 31A is detected in the section IA, the aberration correction unit 5 is fixed to the wavefront pattern A.
  • the control circuit 101 turns off the laser light sources 1B and 1C that do not correspond to the fixed wavefront pattern A (step 310), and completes the focus pull-in operation.
  • Determination unit 104 determines that the type of optical disk medium 20 mounted on optical disk device 100 is BD because the S-shaped signal 31A that reaches a predetermined detection level is detected during section IA. . After the determination, the control circuit 101 moves to a normal tracking servo pull-in operation and data reading operation (steps 311 to 312). Note that an S-shaped signal that reaches a predetermined detection level is detected within a detection range of a force error signal corresponding to the target recording layer. For this reason, all wavefront turns must be set at least once within this detection range.
  • the time for all wavefront patterns to make a round is defined as one cycle of the wavefront pattern switching frequency. Considering the vertical movement due to the surface shake of the optical disk medium 20,
  • the switching frequency is set so that
  • a plurality of aberration setting states for correcting aberrations can be substantially coexisted by time-division driving. Therefore, the determination of the type of the optical disk medium 20 loaded in the optical disk device 100 can be completed with a single determination operation.
  • a device that can set only one type of aberration setting status if an optical disc medium that does not conform to the set aberration setting status is installed, another aberration setting status must be set again and the discrimination operation must be performed again.
  • the type of the optical disk medium 20 can be determined by a single determination operation, so that the apparatus can be started up extremely smoothly.
  • FIG. 5 is a flowchart showing the interlayer jump operation of the present embodiment.
  • Fig. 6 is a graph showing the relationship between the beam spot position and the focus error signal.
  • Fig. 6 (a) shows the driving voltage of the lens actuator 7
  • Fig. 6 (b) shows the focus error signal
  • Fig. 6 (c) shows the beam spot position
  • FIG. 6 (d) shows the wavefront pattern of the aberration corrector 5.
  • the optical disc medium 20 mounted on the optical disc apparatus 100 is assumed to be a BD. It is assumed that the aberration correction unit 5 sets the wavefront pattern D when the laser beam la is focused on the BD recording layer 22C.
  • the wavefront pattern D is a wavefront pattern that sets the aberration of the laser beam la so that the aberration generated when the laser beam la is in focus on the recording layer 22C is corrected.
  • the optical disc apparatus 100 performs an interlayer jump while performing a focus pull-in operation. When an interlayer jump is made from the recording layer 22C to the recording layer 22A (target recording layer), the wavefront pattern generator 102 starts the time-division drive in which the wavefront pattern D and the wavefront pattern A are alternately set to start aberration.
  • Wavefront pattern A is a wavefront pattern suitable for recording layer 22A.
  • the time range in which the aberration correction unit 5 sets wavefront pattern A is section IA, and the time range in which wavefront pattern D is set is section ID.
  • the wavefront pattern is switched at a frequency sufficiently higher than the control band of the focus servo, so the focus servo control is maintained even when time-division driving is started.
  • the control circuit 101 applies a kick pulse to the lens actuator 7 to move the objective lens 6 (step 503). ).
  • the focus of the laser beam is moved to the recording layer 22C force recording layer 22A while the focus servo operation is ON, so that the focus reaches the recording layer 22A and the force focus pull-in operation is completed.
  • Time can be shortened.
  • the control circuit 101 recognizes that an interlayer jump is to be performed, so it is determined that there is an abnormality when the focus and recording layer are significantly shifted during the interlayer jump. Interlayer jumps can be continued without doing so.
  • the control circuit 101 moves to a normal tracking servo pull-in operation and data reading operation (steps 507 to 508).
  • the recording layer 22B is a target recording layer Since the substrate thickness is different from 22A, the spherical aberration increases when the focal point of the laser beam is located on the recording layer 22B, and the level of the detected S-shaped signal 32B is also low. For this reason, since the discriminating unit 104 does not mistakenly discriminate the recording layer 22B as the recording layer 22A, the focal point of the laser light passes through the recording layer 22B. Thus, even when jumping to a remote recording layer, it is possible to jump directly to the target recording layer. Therefore, the interlayer jump can be completed much faster than when the target recording layer is reached while jumping sequentially to adjacent recording layers.
  • the optical disc device 100 shown in FIG. 1A includes a plurality of laser light sources 1A to 1C.
  • the optical disc apparatus 100 may be equipped with a single laser light source suitable for the type of the corresponding optical disc medium.
  • the aberration correction unit 5 is divided into a plurality of regions, and the wavefront pattern generator 102 drives the aberration correction unit 5 so as to set different wavefront patterns for each of these regions (hereinafter referred to as region division driving). Called).
  • region division driving a plurality of convergence setting states are set simultaneously in the aberration correction unit 5, a plurality of aberration setting states can coexist in a single optical system using the single aberration correction unit 5.
  • FIG. 7 shows the aberration correction unit 5 divided into a plurality of regions.
  • Each of the plurality of hexagonal portions shown in FIG. 7 represents a light reflecting surface provided in the microactuator 5b. Blacken The hexagonal portion shown represents the light reflecting surface provided in the microactuator 5b in which the wavefront pattern A is set.
  • the hexagonal portion shown in white represents the light reflecting surface provided in the microactuator 5b in which the wavefront pattern B is set.
  • the hexagonal portion indicated by shading represents the light reflecting surface provided in the microactuator 5b in which the wavefront pattern C is set.
  • the aberration correction unit 5 is divided into three regions.
  • the aberration correction unit 5 is arranged so that laser light is incident on the micromirror array at an angle of 45 °, and the light reflection surfaces are arranged in a 1: 2 elliptical shape. Each region of the aberration correction unit 5 is separated from each other so that the same wavefront pattern is formed at a point-symmetrical position with respect to the optical axis.
  • the optical disc device 100 performs disc discrimination while performing a focus pull-in operation.
  • the control circuit 101 drives the lens actuator 7 to move the objective lens 6 in a direction away from the optical disk medium 20.
  • the control circuit 101 rotates the optical disc medium 20 to turn on the laser light sources 1A to 1C.
  • the mounted optical disk medium 20 is either BD, DVD, or CD. Since the laser beam wavelength suitable for the substrate thickness varies depending on the type of the optical disc medium 20, the optimum wavefront pattern for correcting the aberration also varies depending on the type of the optical disc medium 20. Laser light la and wavefront pattern A are compatible with BD, laser light lb and wavefront pattern B are compatible with DVD, and laser light lc and wavefront pattern C are compatible with CD.
  • the wavefront pattern generator 102 transfers drive data for forming the wavefront patterns A to C to the aberration correction unit 5, and causes the aberration correction unit 5 to perform area division driving.
  • the laser beam la reflected by the mirror region where the wavefront pattern A is set is adjusted so that the aberration generated when the laser beam la is focused on the recording layer of the BD is corrected.
  • the laser beam lb reflected by the mirror area where the wavefront pattern B is set is DV Adjustment is made so that the aberration generated when the laser beam lb is focused on the recording layer of D is corrected.
  • the laser beam lc reflected by the mirror region where the wavefront pattern C is set is adjusted so that the aberration generated when the laser beam lc is in focus on the recording layer included in the CD is corrected.
  • the control circuit 101 moves the objective lens 6 in a direction approaching the optical disc medium 20 at a predetermined speed.
  • the focal point of the laser beam suitable for the optical disk medium 20 mounted is positioned on the recording layer of the optical disk medium 20
  • the light detection unit 10 detects the S-shaped signal in the section corresponding to the laser light. Since the aberration is very large outside the corresponding section, the amplitude of the S-shaped signal obtained even when the focal point of the laser beam is located on the recording layer is very small. On the other hand, since the aberration is corrected in the corresponding section, an S-shaped signal having a predetermined magnitude or more is obtained.
  • the position of the objective lens 6 when an S-shaped signal having a predetermined magnitude or more is detected differs depending on the type of the optical disc medium 20.
  • the control circuit 101 and the determination unit 104 are mounted by determining the position of the objective lens 6 from the drive voltage level of the lens actuator 7 when an S-shaped signal having a predetermined magnitude or more is detected.
  • the type of the optical disk medium 20 can be determined.
  • the wavefront pattern generator 102 sets the entire aberration correction unit 5 to a wavefront pattern suitable for the determined type of the optical disc medium 20.
  • the plurality of aberration setting states set at the same time are changed to one most suitable aberration setting state.
  • the control circuit 101 turns off the non-conforming laser light source, sets the servo gain appropriately, turns on the focus servo, and sets the focus position of the laser beam to the target recording layer (recording layer 22A, which is the reference layer). Maintained. Thereafter, the normal tracking servo pull-in and data reading operations are started.
  • the optical disc apparatus 100 shown in FIG. 1A may include a plurality of photodetectors 10 having a single photodetector 10.
  • each of the photodetectors 10 outputs an electrical signal when receiving light in the wavelength range of the corresponding one of the laser beams la to lc.
  • the control circuit 101 and the determination unit 104 can immediately determine the type of the optical disc medium 20 according to which photodetector 10 detects an S-shaped signal having a predetermined magnitude or more.
  • a plurality of aberration setting states for correcting aberrations can coexist by area division driving. Therefore, the determination of the type of the optical disk medium 20 mounted on the optical disk device 100 can be completed with a single determination operation. For devices that can only set one aberration setting state at a time, it does not conform to the set aberration setting state. ⁇ If an optical disk medium is installed! I have to start over. In the optical disc apparatus 100, the type of the optical disk medium 20 can be determined by a single determination operation, so that the apparatus can be started up extremely smoothly.
  • FIG. 8 shows the aberration correction unit 5 divided into two regions.
  • Each of the plurality of hexagonal force microactuators 5b shown in FIG. 8 represents a light reflecting surface provided in the microactuator 5b.
  • the optical disc medium 20 mounted on the optical disc apparatus 100 is assumed to be a BD.
  • the hexagonal portion shown in black in FIG. 8 represents the light reflecting surface provided in the microactuator 5b in which the wavefront pattern A is set.
  • the wavefront pattern A is a wavefront pattern in which an aberration that occurs when the laser beam la is focused on the recording layer 22A is corrected.
  • the hexagonal portion shown in white represents the light reflecting surface provided in the microactuator 5b in which the wavefront pattern D is set.
  • the wavefront pattern D is a wavefront pattern in which aberrations that occur when the laser beam la is in focus on the recording layer 22C are corrected.
  • the relationship between the position of the beam spot and the focus error signal is basically the same as the relationship shown in FIGS. 6 (b) and 6 (c).
  • the optical disc apparatus 100 performs an interlayer jump while performing a focus pull-in operation.
  • the front part 5 sets the wavefront pattern D.
  • the wavefront pattern generator 102 receives the command from the control circuit 101 and aberrations the drive data for forming the wavefront patterns A and D.
  • the image is transferred to the correction unit 5 and the aberration correction unit 5 is driven to be divided into regions.
  • the aberration correction unit 5 is divided into regions as shown in FIG. When the aberration correction unit 5 is driven in divided regions, the amount of light received by the photodetector 10 decreases, so the servo gain is switched and the focus servo is maintained.
  • the control circuit 101 applies a kick pulse to the lens actuator 7 to move the objective lens 6.
  • the lens actuator 7 moves the focus of the laser beam to the recording layer 22A while keeping the focus servo operation ON, until the focus reaches the recording layer 22A and the force is completely focused. Can be shortened.
  • the optical disc apparatus 100 shown in FIG. 1A includes a plurality of laser light sources 1A to 1C.
  • the optical disc apparatus 100 may be equipped with a single laser light source suitable for the type of the corresponding optical disc medium.
  • the region division pattern of the aberration correction unit 5 shown in FIGS. 7 and 8 is an example, and the present invention is not limited to this. If the light reflection surfaces on which the same wavefront pattern is set are arranged symmetrically with respect to the optical axis, they can be set arbitrarily such as a radial shape or a concentric shape.
  • control device 140 shown in FIG. 1 can be manufactured as a semiconductor chip including a semiconductor integrated circuit.
  • each component of the aberration control unit 130 is formed integrally.
  • At least a part of the operations executed by the optical disc apparatus 100 may be realized by software.
  • the control device 140 includes a memory element for storing a program for driving the aberration correction unit 5 and the like, and a CPU (CENTRAL PRO CESSING UNIT) for reading the program and driving the aberration correction unit 5 and the like. Prepare. These elements can be mounted on the control circuit 101.
  • the program may be stored in the memory element in advance, or may be installed by downloading or the like.
  • the microphone aperture mirror array is employed as the aberration correction unit 5 that best performs the function of the present invention, but the present invention is not limited to this.
  • the aberration correction unit 5 may be any element that has good response and can set a plurality of wavefront patterns, such as a liquid crystal element. A little.
  • the present invention is suitably used in the field of an optical disc apparatus that discriminates a plurality of types of optical disc media and performs an interlayer jump on a multilayer optical disc medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 本発明の光ディスク装置は、レーザ光を出射する発光部と、レーザ光を光ディスク媒体へ照射する光学系と、レーザ光の収差を制御する収差制御部とを備える。ある実施形態において、収差制御部は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返し切り替える。また、別のある実施形態では、収差制御部は、フォーカス引き込み動作時に、複数の収差設定状態を同時に設定する。これにより、複数の収差設定状態を単一の光学系中に実質的に共存させることができる。

Description

明 細 書
光ディスク装置
技術分野
[oooi] 本発明は、情報の光学的な記録および Zまたは再生を行う装置に関し、特に、複 数の記録層を備える情報記録媒体にレーザ光を照射したときに光透過層の厚さに応 じて発生する球面収差を補正する装置に関する。
背景技術
[0002] ピット状パターンを有する光ディスク媒体を高密度'大容量の情報記憶媒体として 用いる光メモリ技術は、デジタルオーディオディスク、ビデオディスク、文書ファイルデ イスク、さらにはデータファイルディスクと用途を拡張しつつ、実用化が進んでいる。微 小に絞られたレーザ光を用いて、光ディスク媒体への情報の記録および光ディスク媒 体からの情報の再生を高!ヽ信頼性で首尾よく遂行するために必要な機能は、回折限 界の光スポットを形成する集光機能、光学系の焦点制御 (フォーカスサーボ)機能とト ラッキング制御 (トラッキングサーボ)機能、およびピット信号 (情報信号)検出機能に 大別される。
[0003] 光ディスク媒体の記録密度を一層高くするために、光ヘッドに搭載される対物レン ズの開口数 NAを大きくするとともに光源の光の波長 λを短くして、対物レンズによつ て集光される光のスポット径が縮小されてきている。また、光ディスク媒体の記録容量 を一層高くするために、光ディスク媒体には情報を記録するための記録層を複数層 設けるようになってきている。
[0004] 例えば、 CD (Compact Disc)規格では、対物レンズの開口数 NAが 0. 45、光源 の光の波長が 780nmであるのに対し、より高記録密度化および大容量ィ匕がなされた DVD (Digital Versatile Disc)規格では、開口数 NAは 0. 6、光の波長は 650η mとなっている。
[0005] ところで、光軸に対する光ディスク媒体の傾きにより生じる収差は、光の波長が短く なるほど大きくなる。このため、より短波長の光源を用いて尚且つ良好な光スポットを 得るためには、そのような収差を打ち消すように基材厚さ(光ディスク媒体の光入射側 表面力 記録層までの距離)を薄くすることが有効であり、 CDでは基材厚さは 1. 2m mであったが、 DVDでは 0. 6mmである。
[0006] そして、青色レーザ光を用いた BD (Blu— ray Disc)規格では、開口数 NAは 0. 8 5、基材厚さは 0. 1mmである。
[0007] 図 9を参照して、基材厚さに起因する球面収差を説明する。図 9は基材厚さに起因 する球面収差を模式的に示す図である。
[0008] 対物レンズ 910で集光されたレーザ光 911は、光ディスク媒体 901のカバー層 903 を透過して記録層 902上に焦点を結ぶ。レーザ光 911はカバー層 903を通るときに 屈折するので、カバー層 903の厚さが変化すると、対物レンズ 910の中央部近辺を 通ったレーザ光 911の焦点と、対物レンズ 910の外周部近辺を通ったレーザ光 911 の焦点との間にずれが発生する(すなわち、球面収差が発生する)。このような基材 厚さに起因する球面収差は、開口数 N Aの 4乗に比例する。このため、 BD規格のよう に開口数 NAを 0. 85と大きく設定する場合には、光学系に球面収差を補正する手 段が設けられる。
[0009] また、光ディスク媒体 1枚あたりの記録容量をより大きくするために、 DVD規格では 2つの記録層を有する 2層ディスクも採用されている。開口数 NAをより大きくする場 合でも、光ディスク媒体 1枚あたりの記録容量を大きくするためには、 2層ディスク構 造の採用は有効である。
[0010] 2層ディスクは、光ヘッド側力も順に、基材、 LO層(第 1の記録層)、中間層、 L1層( 第 2の記録層)、裏面の保護層という順番の構成になっている。基材および中間層は 榭脂などの透明な媒質力もなる。 LO層と L1層の間には中間層があるため、光ヘッド 側の光ディスク媒体表面力 L1層までの厚さは、中間層の厚さ分だけ LO層までの厚 さよりも厚くなる。球面収差の大きさは基材厚さに応じて変化するので、レーザ光の焦 点位置を LO層から L1層へ移動させると、球面収差の大きさも変化する。しかしながら 、開口数 NAが 0. 6である DVD規格では、この球面収差の変化量は許容範囲内に おさまり、収差補正を行うことなく情報の記録再生を行うことが可能である。
[0011] 記録密度のより一層の向上を図るために、 0. 8以上と大きな開口数 NAの対物レン ズを用いる場合、中間層の厚さに起因する球面収差を無視することはできない。すな わち、球面収差の補正を行うこと無しに、 1つの光ヘッドで両方の記録層に対して情 報の記録再生をすることはできない。開口数 NAを 0. 8以上と大きくする場合には、 上述したように、単一の記録層に対して情報の記録再生を行う場合でも球面収差の 補正が必要となる。当然ながら、 2層以上の記録層を備えた光ディスク媒体に対して 情報の記録再生を行う場合も、それぞれの記録層に対して最適に球面収差の補正 を行なって、中間層の厚さに起因する球面収差を解消する必要がある。
[0012] 従って、対物レンズの光軸方向に沿って、ある記録層から異なる記録層へレーザ光 の焦点を移動する (以下、「層間ジャンプ」と称する。)際には、収差の補正状態も同 時に変更する必要がある。
[0013] 例えば、特許文献 1は、層間ジャンプ開始前に、現在のフォーカスサーボが外れな い範囲内で、フォーカスジャンプ先の記録層(以下、「目標記録層」と称する。 )に焦 点が合ったときに発生する球面収差がある程度補正されるようにレーザ光の収差を 設定する装置を開示している。ある程度の補正に留める理由としては、目標記録層 に焦点が合ったときに発生する球面収差が良好に補正されるように、層間ジャンプ開 始前に予めレーザ光の収差を設定してしまうと、現在のフォーカスサーボが外れてし まうためである。
[0014] CD、 DVD、 BDなどのように、レーザ光の波長ゃ基材厚さの異なる光ディスク媒体 に対して共通の光ヘッドで情報の記録再生を行うには、記録再生動作の前に光ディ スク媒体の種類を判別する必要がある。
[0015] 特許文献 2は、 CDおよび DVDに対応した媒体判別方法を開示して 、る。この方法 では、フォーカスエラー信号のピーク値が閾値を越えた力否かにより、装置に搭載さ れた光ディスク媒体が DVD力 CDかを判定する。 DVDに適した状態で光ディスク媒 体の種類の判別動作を行ったとき、搭載された光ディスク媒体が DVDと判別されれ ば、そのままフォーカスエラー信号のピーク値に基づ 、てフォーカスサーボ制御を行 う。搭載された光ディスク媒体が CDである場合には、再度 CDの線速度に対応する 移動速度でレンズを移動させ、検出されたフォーカスエラー信号のピーク値に基づい てフォーカスサーボ制御を行う。
[0016] 特許文献 3は、収差補正手段としてマイクロミラーアレイを用い、個々のマイクロミラ 一の角度を傾けて対物レンズに入射する光の放射角度を調整することにより球面収 差を補正する装置を開示している。また、特許文献 3は、マイクロミラーアレイの傾斜 角度を調整することによって複数の焦点を作る方法を開示している。
特許文献 1 :特開 2003— 16660号公報
特許文献 2:特開平 9— 106617号公報
特許文献 3:特開 2002— 288873号公報
発明の開示
発明が解決しょうとする課題
[0017] しかし、上述した従来技術では、以下のような課題があった。
[0018] 特許文献 1に開示される例では、目標記録層に焦点が合ったときに発生する球面 収差がある程度補正されるように、層間ジャンプ開始前に現在のフォーカスサーボが 外れない範囲内でレーザ光の収差を設定する。この状態は、目標記録層に対応する 球面収差が十分に補正された状態ではないので、レーザ光の焦点が目標記録層に 到達した時に確実にフォーカス引き込み動作を行うことが困難であり、制御が不安定 になりやすい。
[0019] また、このレーザ光の収差の設定状態は、層間ジャンプ前に光スポットが追従して いる記録層および目標記録層のどちらに対しても最適な状態ではない。このため、層 間ジャンプ中に外乱によって対物レンズに力が力かると、どちらの記録層にもフォー カスが引き込まれることなぐ対物レンズが光ディスク媒体に衝突してしまう恐れもある
[0020] 3層以上の記録層を備える光ディスク媒体において、互いに離れた記録層間をジャ ンプする場合には、隣り合った記録層を順次ジャンプする必要があり、光スポットが目 標記録層に到達するまでに時間が力かってしまう。
[0021] 特許文献 2に開示される例では、 DVDに適した状態で光ディスク媒体の種類の判 別動作を行ったときに、搭載された光ディスク媒体が DVDではないと判別されれば、 再度の判別動作とフォーカス引き込み動作とを繰り返す必要があるので、装置の立 ち上がり時間が長くなつてしまう。
[0022] 特許文献 3は、層間ジャンプ時の動作や光ディスク媒体の種類を判別する動作を 開示していない。
[0023] 本発明は、上記課題に鑑みてなされたものであり、その目的は、 2層以上の記録層 を備える多層光ディスク媒体に対して情報を記録再生する場合において、安定且つ すばやい層間ジャンプを実現することにある。
[0024] 本発明は、さら〖こ、基材厚ゃ適合するレーザ光波長が互いに異なる複数種類の光 ディスク媒体を効率よく判別することにより、装置のすばやい起動を実現することを目 的とする。
課題を解決するための手段
[0025] 本発明の装置は、光ディスク媒体へのデータの記録および前記光ディスク媒体から のデータの再生のうちの少なくとも一方を実行する装置であって、レーザ光を出射す る発光部と、前記レーザ光を前記光ディスク媒体へ照射する光学系と、前記レーザ 光の収差を制御する収差制御部とを備え、前記収差制御部は、フォーカス引き込み 動作時に、複数の収差設定状態を繰り返し切り替えることを特徴とする。
[0026] ある実施形態において、前記光学系は対物レンズを備え、前記収差制御部は、前 記対物レンズのフォーカス制御帯域より高い周波数で、前記複数の収差設定状態を 交互に切り替える。
[0027] 本発明の装置は、光ディスク媒体へのデータの記録および前記光ディスク媒体から のデータの再生のうちの少なくとも一方を実行する装置であって、レーザ光を出射す る発光部と、前記レーザ光を前記光ディスク媒体へ照射する光学系と、前記レーザ 光の収差を制御する収差制御部とを備え、前記収差制御部は、フォーカス引き込み 動作時に、複数の収差設定状態を同時に設定することを特徴とする。
[0028] ある実施形態にお!、て、前記収差制御部は、前記複数の収差設定状態を同時に 設定した後、前記同時に設定した複数の収差設定状態を 1つの収差設定状態に変 更する。
[0029] ある実施形態において、前記複数の収差設定状態は、第 1の収差設定状態と第 2 の収差設定状態とを含み、前記光ディスク媒体は、第 1の記録層と第 2の記録層とを 備え、前記第 1の収差設定状態は前記第 1の記録層に対応し、前記第 2の収差設定 状態は前記第 2の記録層に対応して 、る。 [0030] ある実施形態において、前記第 1の収差設定状態は、前記第 1の記録層に前記レ 一ザ光の焦点が合っているときに発生する収差が補正される状態であり、前記第 2の 収差設定状態は、前記第 2の記録層に前記レーザ光の焦点が合っているときに発生 する収差が補正される状態である。
[0031] ある実施形態において、前記光学系は対物レンズを備え、前記装置は、前記対物 レンズを駆動するァクチユエータをさらに備え、前記ァクチユエータは、フォーカスサ ーボ動作を ONにしたまま、前記レーザ光の焦点位置を前記第 1の記録層から前記 第 2の記録層へ移動させる。
[0032] ある実施形態にお!ヽて、前記装置は、複数種類の光ディスク媒体へのデータの記 録および前記複数種類の光ディスク媒体力 のデータの再生のうちの少なくとも一方 を実行する装置であり、前記発光部は、互いに波長の異なる複数種類のレーザ光を 出射し、前記複数種類のレーザ光は、それぞれ前記複数種類の光ディスク媒体のう ちの 1つに対応しており、前記複数の収差設定状態は、それぞれ前記複数種類のレ 一ザ光のうちの 1つに対応している。
[0033] ある実施形態にお!、て、前記複数の収差設定状態のそれぞれは、前記複数種類 の光ディスク媒体のうちの対応する 1つが備える記録層に、前記対応するレーザ光の 焦点が合っているときに発生する収差が補正される状態である。
[0034] ある実施形態において、前記光学系は、前記装置に搭載された光ディスク媒体へ 前記複数種類のレーザ光を出射し、前記装置は、前記複数種類のレーザ光に対応 した反射光を受光し、前記受光した反射光に応じた電気信号を出力する少なくとも 1 つの光検出部と、前記電気信号力 フォーカスエラー信号を検出する信号検出部と 、前記フォーカスエラー信号に基づいて、前記装置に搭載された光ディスク媒体の 種類を判別する判別部とをさらに備える。
[0035] ある実施形態において、前記発光部は、互いに波長の異なる複数種類のレーザ光 を出射し、前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの 1つに対応しており、前記装置は、複数の光検出部をさらに備え、前記複数の光検 出部のそれぞれは、前記複数種類のレーザ光のうちの 1つに対応した反射光を受光 し、前記受光した反射光に応じた電気信号を出力し、前記装置は、前記電気信号か らフォーカスエラー信号を検出する信号検出部をさらに備え、前記信号検出部は、 前記複数の収差設定状態を交互に切り替えるタイミングと同期して、前記複数の光 検出部から出力される前記電気信号のうちの、前記フォーカスエラー信号を検出す るために用いる電気信号を切り替える。
[0036] ある実施形態にお!、て、前記収差制御部は、前記レーザ光の収差を補正する収差 補正部と、前記収差補正部を制御する制御装置とを備え、前記制御装置は、前記収 差が小さくなるように収差補正部を制御することによって前記収差を補正する。
[0037] ある実施形態にお!、て、前記収差補正部は可変形ミラーであり、前記制御装置は、 前記可変形ミラーの形状を前記収差が小さくなるように設定することによって前記収 差を補正する。
[0038] ある実施形態において、前記可変形ミラーは、それぞれが光反射面を有する複数 のマイクロアクチユエータを備えたマイクロミラーアレイであり、前記収差制御部は、前 記複数のマイクロアクチユエータを駆動することにより、前記可変形ミラーの形状を設 定する。
[0039] 本発明の制御装置は、光ディスク媒体へのデータの記録および前記光ディスク媒 体からのデータの再生のうちの少なくとも一方を実行する光ディスク装置に搭載され たときに、レーザ光の収差を制御する制御装置であって、前記光ディスク装置は、前 記レーザ光を出射する発光部と、前記レーザ光を前記光ディスク媒体へ照射する光 学系と、前記レーザ光の収差を補正する収差補正部とを備え、前記制御装置は、フ オーカス引き込み動作時に、複数の収差設定状態を繰り返し切り替えるように前記収 差補正部を制御することを特徴とする。
[0040] ある実施形態において、前記光学系が備える対物レンズのフォーカス制御帯域より 高い周波数で、前記複数の収差設定状態を交互に切り替える。
[0041] 本発明の制御装置は、光ディスク媒体へのデータの記録および前記光ディスク媒 体からのデータの再生のうちの少なくとも一方を実行する光ディスク装置に搭載され たときに、レーザ光の収差を制御する制御装置であって、前記光ディスク装置は、前 記レーザ光を出射する発光部と、前記レーザ光を前記光ディスク媒体へ照射する光 学系と、前記レーザ光の収差を補正する収差補正部とを備え、前記制御装置は、フ オーカス引き込み動作時に、複数の収差設定状態を前記収差補正部に同時に設定 することを特徴とする。
[0042] ある実施形態において、前記複数の収差設定状態を同時に設定した後、前記同時 に設定した複数の収差設定状態を 1つの収差設定状態に変更する。
[0043] ある実施形態において、前記複数の収差設定状態は、第 1の収差設定状態と第 2 の収差設定状態とを含み、前記光ディスク媒体は、第 1の記録層と第 2の記録層とを 備え、前記第 1の収差設定状態は前記第 1の記録層に対応し、前記第 2の収差設定 状態は前記第 2の記録層に対応して 、る。
[0044] ある実施形態において、前記第 1の収差設定状態は、前記第 1の記録層に前記レ 一ザ光の焦点が合っているときに発生する収差が補正される状態であり、前記第 2の 収差設定状態は、前記第 2の記録層に前記レーザ光の焦点が合っているときに発生 する収差が補正される状態である。
[0045] ある実施形態にお!ヽて、前記光ディスク装置は、複数種類の光ディスク媒体へのデ ータの記録および前記複数種類の光ディスク媒体力 のデータの再生のうちの少な くとも一方を実行する装置であり、前記発光部は、互いに波長の異なる複数種類のレ 一ザ光を出射し、前記複数種類のレーザ光は、それぞれ前記複数種類の光ディスク 媒体のうちの 1つに対応しており、前記複数の収差設定状態は、それぞれ前記複数 種類のレーザ光のうちの 1つに対応している。
[0046] ある実施形態にお!、て、前記複数の収差設定状態のそれぞれは、前記複数種類 の光ディスク媒体のうちの対応する 1つが備える記録層に、前記対応するレーザ光の 焦点が合っているときに発生する収差が補正される状態である。
[0047] ある実施形態において、前記光学系は、前記光ディスク装置に搭載された光デイス ク媒体へ前記複数種類のレーザ光を出射し、前記光ディスク装置は、前記複数種類 のレーザ光に対応した反射光を受光し、前記受光した反射光に応じた電気信号を出 力する少なくとも 1つの光検出部を備え、前記制御装置は、前記電気信号からフォー カスエラー信号を検出する信号検出部と、前記フォーカスエラー信号に基づいて、前 記光ディスク装置に搭載された光ディスク媒体の種類を判別する判別部とを備える。
[0048] ある実施形態において、前記発光部は、互いに波長の異なる複数種類のレーザ光 を出射し、前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの
1つに対応しており、前記光ディスク装置は、複数の光検出部をさらに備え、前記複 数の光検出部のそれぞれは、前記複数種類のレーザ光のうちの 1つに対応した反射 光を受光し、前記受光した反射光に応じた電気信号を出力し、前記制御装置は、前 記電気信号力もフォーカスエラー信号を検出する信号検出部を備え、前記信号検出 部は、前記複数の収差設定状態を交互に切り替えるタイミングと同期して、前記複数 の光検出部から出力される前記電気信号のうちの、前記フォーカスエラー信号を検 出するために用いる電気信号を切り替える。
[0049] ある実施形態にお!、て、前記収差補正部は可変形ミラーを備え、前記制御装置は 、前記可変形ミラーの形状を前記収差力 、さくなるように設定することによって前記 収差を補正する。
[0050] ある実施形態において、前記可変形ミラーは、それぞれが光反射面を有する複数 のマイクロアクチユエータを備えたマイクロミラーアレイであり、前記制御装置は、前記 複数のマイクロアクチユエータを駆動することにより、前記可変形ミラーの形状を設定 する。
[0051] 本発明の方法は、光ディスク媒体へのデータの記録および前記光ディスク媒体から のデータの再生のうちの少なくとも一方を実行する光ディスク装置において、レーザ 光の収差を制御する方法であって、前記光ディスク装置は、前記レーザ光を出射す る発光部と、前記レーザ光を前記光ディスク媒体へ照射する光学系と、前記レーザ 光の収差を補正する収差補正部とを備え、前記方法は、フォーカス引き込み動作時 に、複数の収差設定状態を繰り返し切り替えるように前記収差補正部を制御するステ ップを包含することを特徴とする。
[0052] 本発明の方法は、光ディスク媒体へのデータの記録および前記光ディスク媒体から のデータの再生のうちの少なくとも一方を実行する光ディスク装置において、レーザ 光の収差を制御する方法であって、前記光ディスク装置は、前記レーザ光を出射す る発光部と、前記レーザ光を前記光ディスク媒体へ照射する光学系と、前記レーザ 光の収差を補正する収差補正部とを備え、前記方法は、フォーカス引き込み動作時 に、複数の収差設定状態を前記収差補正部に同時に設定するステップを包含するこ とを特徴とする。
[0053] 本発明のプログラムは、光ディスク媒体へのデータの記録および前記光ディスク媒 体からのデータの再生のうちの少なくとも一方を実行する光ディスク装置において、 レーザ光の収差の制御処理を実行させるためのプログラムであって、前記光ディスク 装置は、前記レーザ光を出射する発光部と、前記レーザ光を前記光ディスク媒体へ 照射する光学系と、前記レーザ光の収差を補正する収差補正部とを備え、前記制御 処理は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返し切り替えるよ うに前記収差補正部を制御するステップを包含することを特徴とする。
[0054] 本発明のプログラムは、光ディスク媒体へのデータの記録および前記光ディスク媒 体からのデータの再生のうちの少なくとも一方を実行する光ディスク装置において、 レーザ光の収差の制御処理を実行させるためのプログラムであって、前記光ディスク 装置は、前記レーザ光を出射する発光部と、前記レーザ光を前記光ディスク媒体へ 照射する光学系と、前記レーザ光の収差を補正する収差補正部とを備え、前記制御 処理は、フォーカス引き込み動作時に、複数の収差設定状態を前記収差補正部に 同時に設定するステップを包含することを特徴とする。
発明の効果
[0055] 本発明によれば、フォーカス引き込み動作時に複数の収差設定状態を繰り返し切 り替えることで、単一の光学系中に複数の収差設定状態を実質的に共存させること ができる。また、別の実施形態においては、フォーカス引き込み動作時に複数の収差 設定状態を同時に設定することで、単一の光学系中に複数の収差設定状態を共存 させることができる。これらの特徴により、多層光ディスク媒体に対して情報を記録再 生する場合において、安定且つすばやい層間ジャンプを行うことができる。また、光 ディスク媒体の種類を効率よく判別することができ、装置をすばやく起動させることが できる。
図面の簡単な説明
[0056] [図 1A]本発明の実施形態による光ディスク装置を模式的に示す図
[図 1B]本発明の実施形態によるマイクロアクチユエータを示す分解斜視図
[図 1C]本発明の実施形態による収差補正部を示す分解斜視図 圆 2A]本発明の実施形態による収差を示す図
圆 2B]本発明の実施形態による収差を示す図
圆 2C]本発明の実施形態による波面パターンを示す図
圆 2D]本発明の実施形態による波面パターンを示す図
圆 3]本発明の実施形態によるディスク判別動作を示すフローチャート
[図 4]本発明の実施形態によるビームスポットの位置とフォーカスエラー信号との関係 を示す図
圆 5]本発明の実施形態による層間ジャンプ動作を示すフローチャート
[図 6]本発明の実施形態によるビームスポットの位置とフォーカスエラー信号との関係 を示す図
圆 7]本発明の実施形態による複数の領域に分けた収差補正部を示す平面図 圆 8]本発明の実施形態による 2つの領域に分けた収差補正部を示す平面図
[図 9]基材厚さに起因する球面収差を模式的に示す図
符号の説明
1A、 1B、 1C レーザ光源
2 ダイクロイツクプリズム
3 コリメートレンズ
4 1Z4波長板
5 収差補正部
5a 板
5b マイクロアクチユエータ
6 対物レンズ
7 レンズァクチユエータ
8 ホログラム
9 検出レンズ
10 光検出器
20 光ディスク媒体
21 カバー層 22 記録層
100 光ディスク装置
101 制御回路
102 波面パターン発生器
発明を実施するための最良の形態
[0058] 以下、図面を参照しながら本発明の実施形態を説明する。
[0059] (実施形態 1)
まず、図 1Aを参照して、本実施形態の光ディスク装置 100を説明する。図 1Aは、 光ディスク装置 100を模式的に示す図である。光ディスク装置 100は、複数種類の光 ディスク媒体 20へのデータの記録および複数種類の光ディスク媒体 20からのデータ の再生のうちの少なくとも一方を実行する装置である。
[0060] 光ディスク装置 100は、レーザ光を出射する発光部 110と、レーザ光を光ディスク媒 体 20へ照射する光学系 120と、レーザ光の収差を制御する収差制御部 130とを備 える。
[0061] 発光部 110は、レーザ光 laを出射するレーザ光源 1Aと、レーザ光 lbを出射するレ 一ザ光源 1Bと、レーザ光 lcを出射するレーザ光源 1Cとを備える。レーザ光 la〜: Lc は、波長が互いに異なる。光学系 120は、ダイクロイツクプリズム 2と、コリメートレンズ 3と、 1/4波長板 4と、対物レンズ 6と、ホログラム 8と、検出レンズ 9とを備える。ダイク ロイックプリズム 2は偏光ビームスプリッタ 2aを備えている。光ディスク装置 100は、対 物レンズ 6を駆動するレンズァクチユエータ 7をさらに備える。収差制御部 130は、レ 一ザ光 la〜lcの収差を補正する収差補正部 5と、収差補正部 5の動作を制御する 制御装置 140とを備える。
[0062] レーザ光源 1A〜1Cから出射したレーザ光 la〜: Lcは、ダイクロイツクプリズム 2、コリ メートレンズ 3、 1Z4波長板 4を経て収差補正部 5で反射され、対物レンズ 6で集光さ れる。集光されたレーザ光 la〜: Lcは、光ディスク媒体 20のカバー層 21を透過して記 録層 22上にスポットを形成する。レーザ光 la〜: Lcが記録層 22にて反射することによ り得られた反射光は、逆の経路を迪つて偏光ビームスプリッタ 2aによってホログラム 8 、検出レンズ 9へ導かれる。光ディスク装置 100は、検出レンズ 9を通った反射光を受 ける光検出器 10を備えており、光検出器 10は受光量に応じた電気信号を出力する
[0063] 制御装置 140は、光検出器 10から出力された電気信号力もフォーカスエラー信号 およびトラッキングエラー信号を検出する信号検出部 103と、検出されたフォーカス エラー信号に基づいて光ディスク装置 100に搭載された光ディスク媒体 20の種類を 判別する判別部 104と、レンズァクチユエータ 7の動作を制御する制御回路 101と、 収差補正部 5に設定する波面パターンを生成する波面パターン発生器 102とを備え る。制御回路 101は、フォーカスエラー信号およびトラッキングエラー信号を演算処 理してレンズァクチユエータ 7を駆動するための駆動信号を生成し、対物レンズ 6のフ オーカスおよびトラッキング制御を行う。
[0064] レーザ光 la〜: Lcのそれぞれは、例えば BD、 DVDおよび CDのうちの対応する 1つ に適合した波長を有しており、搭載された光ディスク媒体 20の種類に応じて選択的 に使用される。光ディスク媒体 20の種類によって基材厚 (すなわち光入射面力ゝら記 録層までの距離)が異なることや、光学系 120にて生じる色収差等に起因して球面収 差が生じる。波面パターン発生器 102は、この球面収差を打ち消す波面パターンを 収差補正部 5に設定することで球面収差を補正する。これにより、光ディスク媒体 20 の種類のそれぞれに適したビームスポットが形成される。
[0065] 収差補正部 5は、複数のマイクロアクチユエータ 5bを備えたマイクロミラーアレイで あり、可変形ミラーとして機能する。マイクロアクチユエータ 5bは、基板 5a上に 2次元 配列されており、それぞれが光反射面を備えている。各マイクロアクチユエータ 5bは 、基板 5aに対する上下位置と傾きとを独立に制御され、任意の波面を形成すること ができる。このようなマイクロミラーアレイは、半導体製造プロセスの微細加工技術に よってシリコン基板上に作られ、例えば、 WO2003Z065103〖こ開示されているマイ クロアクチユエ一タカ S好適である。また、 PCT/JP2005/003533 (#112004 -06 3518の優先権を主張)に開示されているマイクロアクチユエータも好適である。
[0066] 図 1Bおよび図 1Cを参照して、マイクロアクチユエータ 5bをより詳細に説明する。ま ず、図 1Bを参照する。図 1Bは、マイクロアクチユエータ 5bを示す分解斜視図である [0067] マイクロアクチユエータ 5bは、基板 5aと、可動部 207と、弾性支持部 205と、固定電 極 204a、 204bおよび 204cとを備える。マイクロアクチユエータ 5bは、例えば MEM S技術を用いて作製される。基板 5aは、例えばシリコン基板である。基板 5a上には駆 動回路 201aが設けられており、駆動回路 201aの上に絶縁層 202が設けられている 。絶縁層 202上には、固定電極 204a〜204cおよび接地配線部 203が設けられて いる。可動部 207は基板 5aに対して変位可能である。弾性支持部 205は弾性を有し 、基板 5aの平面方向に対して垂直な方向への可動部 207の変位、および基板 5aに 対する可動部 207の傾動が可能となるように可動部 207を支持して 、る。固定電極 2 04a〜204cのそれぞれは、基板 5aの平面方向に対して垂直な方向に可動部 207を 駆動する駆動部として機能する。固定電極 204a〜204cのそれぞれは、絶縁層 202 に形成されたビア (不図示)によって駆動回路 201aに接続されている。駆動回路 20 laは、所定の電圧の範囲内(例えば 0〜30V)の駆動電圧を固定電極 204a〜204c にそれぞれ独立して印加することができる。この駆動電圧は例えば lObitの多段階の 値として設定され得る。
[0068] 弾性支持部 205は、 3本の弾性梁 205a〜205cと、これらの弾性梁 205a〜205c を基板 5aに固定する固定部 205d〜205fと、可動部 207を支持するための支持部 2 05gとを備える。弾性梁 205a〜205cは接地配線部 203に接続されている。ここで、 弾性梁 205a〜205cの端部のうち、固定部 205d〜205fに接続された側の端部を固 定端 2051!〜 20¾、支持部 205gに接続された側の端部を可動端 205k〜205mと 呼ぶ。
[0069] 支持部 205gは可動電極 206の中央部に設けられた突起 206aと接続している。ま た、 3本の弾性梁 205a〜205cは支持部 205gを介して互いに連結している。
[0070] 可動電極 206は概正六角形の形状を有する。可動電極 206の上面は光反射面で あるマイクロミラー部 206bとなっている。光反射効率をより高めるために、可動電極 2 06の上面に金や誘電体多層膜等をコーティングしてマイクロミラー部 206bを形成し ても良 、。可動電極 206は弾性支持部 205および接地配線部 203を介して駆動回 路 20 laと接続し、接地電位に保たれている。
[0071] 可動電極 206は 3つの固定電極 204a〜204cと空隙を介して対向している。可動 電極 206と固定電極 204a〜204cとの間に電位差が生じると、可動電極 206と固定 電極 204a〜204cとの間に静電力が生じる。この静電力を駆動力として可動部 207 を駆動する。この駆動力によって可動部 207が変位すると弾性支持部 205が弹性的 に変形し、弾性支持部 205の弾性復元力と駆動力との釣り合いによって可動部 207 の姿勢が決定する。各固定電極 204a〜204cによって発生する駆動力の大きさを制 御することにより、可動部 207の基板 5aに対して垂直な方向への変位の量と、基板 5 aに対する傾動の量とを制御することができる。固定電極 204a〜204cの駆動電圧を 同一に設定すれば、可動部 207はほぼ傾動せずに、可動部 207の中央部を含む可 動部 207全体が基板 5aに近づく方向に垂直変位する。また、これらの駆動電圧を互 いに異ならせれば、可動部 207は所望の方向に傾動する。ここで、基板 5aに対する 傾動は、基板 5aの平面方向に平行で互いに直交する 2つの傾動軸周りの傾動であ る。
[0072] このような 1つのマイクロアクチユエータ 5bを単位セルとし、複数の単位セルを配列 することによりマイクロミラーアレイが形成される。図 1Cは、マイクロミラーアレイである 収差補正部 5を示す分解斜視図である。複数のマイクロアクチユエータ 5bが備える可 動部 207、弾性支持部 205および固定電極 204a〜204cは、 1枚の基板 5a上に設 けられており、複数のマイクロアクチユエータ 5bは 1枚の基板 5aを互いに共有してい る。各マイクロアクチユエータ 5bは、基板 5aに対する上下位置と傾きとを独立に制御 され、任意の波面パターンが形成される。これにより、収差を補正することができる。
[0073] 光ディスク媒体 20が複数の記録層を備える場合は、同一の光ディスク媒体 20に対 してでも選択した記録層によって基材厚が異なってくるため、選択した記録層に応じ て収差補正部 5を駆動して収差を補正する。
[0074] 図 2A〜図 2Dを参照して、収差補正部 5による収差補正を説明する。図 2Aおよび 図 2Bは収差を示しており、横軸は正規化された瞳半径位置 (mm)、縦軸は波面収 差( λ )である。収差の符号や大きさは収差が最小となる基準厚さから基材厚がどれ ほど変わるかに依存する。図 2Cおよび図 2Dは、収差補正部 5の波面パターンを示し ており、横軸は正規化された瞳半径位置 (mm)、縦軸はミラー変位(λ )である。
[0075] 例えば、開口数 NA=0. 85の BD用対物レンズを用い、 BDの第 1記録層と第 2記 録層との中間で収差が最小となるよう光学系および対物レンズが設計されている場 合を考える。このとき例えば第 1記録層に焦点(すなわちビームスポット)を合わせると 図 2Aに示すような収差が生じる。
[0076] 図 2Aに示す収差を補正するためには、図 2Aに示す収差を打ち消すような波面収 差を光路中に与えればよい。例えば、図 2Bに示す波面収差を光路中に与えればよ ぐ収差補正部 5の各マイクロアクチユエータ 5bの傾きと上下位置を制御して、図 2B に示す波面収差に近似させた図 2Cに示す波面パターンを形成する。このとき生じる 波面の近似誤差は、ビーム径とミラーの分割数 (すなわちマイクロアクチユエータ 5b の個数)とによって決まり、分割数が多いほど近似誤差は小さくなる。しかし、マイクロ ァクチユエータ 5bの個数が増えると制御データ量が膨大となるため、光ディスク装置 100等の記録再生システムが許容する収差範囲に抑えるようミラーの最小分割数を 決めればよい。
[0077] また、図 2Dに示すように、波面収差が(1Z2) λを超える瞳半径位置では、ミラー の変位を(1Z2)えずらしたとしても、図 2Cに示す場合と同位相となる。このため、ミ ラーの最大変位量は(1Z2) λ以上であればよい。なお、レーザ光が光ディスク面に 対して 45° で入射する場合、波面収差が 2/ 2、 λを超える瞳半径位置では、ミ ラーの変位を ( 2Ζ2) λずらしたときとずらさないときとで同位相となるので、この場 合は、ミラーの最大変位量は( 2Ζ2) λ以上であればよい。
[0078] 適切なミラーの分割数を設定することにより、任意の波面形状を設定できる。例えば 、 2 RMSの球面収差を補正するとき、近似誤差を 50m λ以下にするために必要な 分割数は、ビーム直径の長さを 20分割できる程度の分割数となる。ビーム直径を φ 2 mmとすると、マイクロアクチユエータ 5bのそれぞれが備える光反射面 (すなわちマイ クロミラー)の幅はおよそ 100 mとなる。この場合、収差補正部 5は、幅 100 mの マイクロミラーを 20 X 20個程度備えることになる。
[0079] 最適に収差補正される波面パターンは、光ディスク媒体の種類ごとに、また、複数 の記録層を備える光ディスク媒体にぉ 、ては記録層ごとに異なる。それぞれの状況 に応じて最適な収差補正を行うための波面パターンは、各マイクロアクチユエータ 5b の駆動データの形で波面パターン発生器 102に予め記憶してある。波面パターン発 生器 102は、各マイクロアクチユエータ 5bを駆動することによりマイクロミラーアレイの 形状を変化させて波面パターンを形成し、収差補正を行う(すなわち収差を小さくす る)。
[0080] なお、さらに正確な補正を得るために、波面情報を検出する波面センサを光検出 器 10上に設けて、検出された波面情報に応じて収差補正部 5を制御してもよい。波 面センサとしては、例えば、シャツク=ハルトマン(Shack—Hartmann)型の波面セ ンサゃモーダル型の波面センサが用いられる。モーダル型の波面センサは、 M. A.
A. Neil, M. J. Booth, and T. Wilson, New moaal wave— front sen sor: a theoretical analysis, " J. Opt. Soc. Am. A / Vol. 17, No. 6, pp. 1098 - 1107 (2000)【こ開示されて!ヽる。また、特開 2000— 155979号公報に開示されて 、るような他の収差検出方法を用いても良!、。
[0081] また、光ディスク媒体ごとのばらつきに対して学習を行い、補正量を調整しても良い
[0082] 以下、光ディスク装置 100の動作をより詳細に説明する。
[0083] 本実施形態では、波面パターン発生器 102は、複数の波面パターンを高速に繰り 返し切り替えて設定するように収差補正部 5を駆動する(以下、時分割駆動と称する) 。この時分割駆動により、単一の収差補正部 5を用いて、光ディスク媒体 20の種類や 基材厚に応じて異なってくる収差を補正するための複数の波面パターンを実質的に 共存させることができる。
[0084] マイクロアクチユエータ 5bは、可動部が微小なため高速に駆動可能である。例えば 、上述の幅 100 /z mのマイクロミラーと支持系を A1で形成して静電駆動した場合、可 動部の質量 Mは 4 X E— l lkg、慣性モーメント Jは 6 X E— 16kg'm2となり、質量 M および慣性モーメント Jは極めて微小である。
[0085] 並進の 1次共振周波数 fOzは、 ί0ζ= ΐΖ2 π X (ΚζΖΜ)で表され、回動の 1次 共振周波数 fOrは、 ίθΓ= 1/2 π X (KrZj)で表される。パネ定数 Kzおよび Krを 適切に設定して、所定の電圧で必要な変位を得られるようにマイクロアクチユエータ 5 bを設計すると、 fOzおよび fOrを 8〜: LOkHz以上の値にすることができる。
[0086] 対物レンズ 6のフォーカス制御帯域等のサーボシステムの制御帯域よりも十分に高 V、周波数で、複数の波面パターンを繰り返し切り替えて設定するように収差補正部 5 を駆動すれば、安定したサーボ制御を維持することができ、対物レンズ 6は光ディスク 媒体 20に追従する。
[0087] 図 3および図 4を参照して、時分割駆動を用いて、光ディスク媒体の種類の判別を 行う動作 (以下、ディスク判別動作と称する)を説明する。図 3は、ディスク判別動作を 示すフローチャートである。
[0088] 光ディスク装置 100は、光ディスク媒体 20が搭載されると、フォーカス引き込み動作 を行いつつ、ディスク判別動作を行う。フォーカス引き込み動作とは、 目標記録層(こ れ力 レーザ光の焦点を合わせようとする記録層)とレーザ光の焦点とが合っていな い状態から、 目標記録層とレーザ光の焦点とを合わせる動作のことである。この例で は、 目標記録層は光ディスク媒体 20の基準層である。 目標記録層とレーザ光の焦点 とが合っていない状態とは、 目標記録層とレーザ光との間のフォーカシング制御が維 持できない程度まで、 目標記録層とレーザ光の焦点とが離れている状態を指す。 目 標記録層とレーザ光の焦点とが合っている状態とは、 目標記録層とレーザ光との間 のフォーカシング制御が維持できる程度まで、 目標記録層とレーザ光の焦点とが近 づいている状態を指す。
[0089] 図 3を参照して、光ディスク装置 100に光ディスク媒体 20が搭載されると、制御回路 101は、レンズァクチユエータ 7を駆動して対物レンズ 6を光ディスク媒体 20から離れ る方向に移動させる (ステップ 301〜302)。次に、制御回路 101は、光ディスク媒体 20を回転させ、レーザ光源 1A〜: LCを点灯する(ステップ 303〜304)。搭載された 光ディスク媒体 20の種類は BD、 DVD, CDのいずれかである。光ディスク媒体 20の 種類によって基材厚ゃ適合するレーザ光波長が異なるため、収差を補正するための 最適な波面パターンも光ディスク媒体 20の種類によって異なる。
[0090] ここで、レーザ光 laが BDに適合しており、レーザ光 lbが DVDに適合しており、レ 一ザ光 lcが CDに適合しているとする。また、収差補正部 5は、 3種類の波面パター ン Bおよび Cを繰り返し切り替えて設定するとする。波面パターン Aは、 BDが備え る記録層にレーザ光 laの焦点が合っているときに発生する収差が補正されるように、 レーザ光 laの収差を設定する波面パターンである。波面パターン Bは、 DVDが備え る記録層にレーザ光 lbの焦点が合っているときに発生する収差が補正されるように、 レーザ光 lbの収差を設定する波面パターンである。波面パターン Cは、 CDが備える 記録層にレーザ光 lcの焦点が合って 、るときに発生する収差が補正されるように、レ 一ザ光 lcの収差を設定する波面パターンである。
[0091] このように、対象とする記録層にレーザ光の焦点が合ったときに発生する収差が補 正されるように、収差補正部 5が波面パターンを設定して ヽる状態を収差設定状態と 呼ぶ。収差補正部 5は、複数 (ここでは 3つ)の収差設定状態を繰り返し切り替える。こ の例では、収差設定状態は、未来に発生すると想定される収差が補正される状態に 現時点のレーザ光の収差が設定された状態を指す。
[0092] 波面パターン発生器 102は、制御回路 101からの指令を受けて波面パターン A〜 Cを形成するための駆動データを収差補正部 5に順次転送し、時分割駆動を開始す る (ステップ 305)。時分割駆動により、複数種類の光ディスク媒体のそれぞれに最適 な収差設定状態を実質的に共存させることができる。制御回路 101は、時分割駆動 時の波面パターンの切り替え周波数を、フォーカスサーボの制御帯域よりも十分高く 設定する。収差補正部 5が波面パターン Aを設定している時間範囲を区間 IA、波面 パターン Bを設定している時間範囲を区間 IB、波面パターン Cを設定している時間範 囲を区間 ICとする。
[0093] 時分割駆動が行われている状態で、制御回路 101は、対物レンズ 6を光ディスク媒 体 20に近づく方向へ所定の速度で移動させる (ステップ 306)。搭載された光デイス ク媒体 20に適合したレーザ光の焦点が、その光ディスク媒体 20の記録層に位置した とき、光検出部 10はそのレーザ光に対応する区間で S字信号を検出する (ステップ 3 07)。 S字信号はフォーカスエラー信号に含まれている。対応する区間以外では収差 が非常に大きくなつているので、レーザ光の焦点が記録層に位置しても得られる S字 信号の振幅は非常に小さい。一方、対応する区間では収差が補正されているので、 所定の大きさ以上の S字信号が得られる。このように、搭載された光ディスク媒体 20 に適した収差補正状態となった区間でのみ正規の S字信号が検出される。
[0094] なお、図 1Aに示す光ディスク装置 100は単一の光検出器 10を備える力 複数の 光検出器 10を備えてもよい。この場合、光検出器 10のそれぞれは、レーザ光 la〜l cのうちの対応する 1つに対応した反射光を受光し、その受光した反射光に応じた電 気信号を出力する。信号検出部 103は、時分割駆動に同期して (すなわち、複数の 収差設定状態を交互に切り替えるタイミングと同期して)、複数の光検出部 10から出 力される電気信号の中からフォーカスエラー信号を検出するために用いる電気信号 を順次切り替えて選択する。これにより、信号検出部 103は、収差設定状態の切り替 えに応じた適切なフォーカスエラー信号を検出することができる。
[0095] ここで、図 4をさらに参照して、 S字信号の検出動作をより詳細に説明する。図 4は、 最も基材厚が大きな光ディスク媒体が搭載されたときの、ビームスポットの位置とフォ 一カスエラー信号との関係を示すグラフである。図 4 (a)はレンズァクチユエータ 7の 駆動電圧を示しており、図 4 (b)はフォーカスエラー信号を示しており、図 4 (c)はビー ムスポット位置を示しており、図 4 (d)は収差補正部 5の波面パターンを示している。
[0096] 対物レンズ 6の上昇に伴い、まず光ディスク媒体 20表面での反射による小さな S字 信号 31が検出される。レーザ光の焦点(ビームスポット)が記録層 22Cに位置したと きには S字信号 31Cが検出され、レーザ光の焦点が記録層 22Bに位置したときには S字信号 31Bが検出される。 S字信号 31、 31Bおよび 31Cの振幅は小さぐ所定の 検出レベル未満である。レーザ光の焦点が記録層 22Aに位置したときには所定の検 出レベルに達する S字信号 31Aが検出される。記録層 22Aは光ディスク媒体 20の基 準層である。 S字信号 31Aが検出されると、制御回路 101は、フォーカスサーボを O Nにする (ステップ 308)。そして、波面パターン発生器 102は、収差補正部 5の波面 ノターンを S字信号 31Aが検出された区間の状態で固定する (ステップ 309)。図 4 に示す例では、区間 IAのときに S字信号 31Aが検出されたので、収差補正部 5は波 面パターン Aに固定される。制御回路 101は、固定した波面パターン Aに対応しない レーザ光源 1Bおよび 1Cを消灯して (ステップ 310)、フォーカス引き込み動作を完了 する。
[0097] 判別部 104は、所定の検出レベルに達する S字信号 31Aが区間 IAのときに検出さ れたことから、光ディスク装置 100に搭載された光ディスク媒体 20の種類を BDである と判別する。判別後、制御回路 101は、通常のトラッキングサーボ引き込み動作およ びデータ読み込み動作に移る(ステップ 311〜312)。 [0098] なお、所定の検出レベルに達する S字信号は、対象の記録層に対応するフォー力 スエラー信号の検出範囲内で検出される。このため、この検出範囲内で全ての波面 ノターンが 1回以上設定される必要がある。ここで、全ての波面パターンが一巡する 時間を、波面パターンの切り替え周波数の 1周期とする。光ディスク媒体 20の面ぶれ による上下動を考慮すると、
切り替え周波数 >ディスク回転周波数 Xディスク最大面ぶれ量 Zフォーカス検出 範囲
となるよう切り替え周波数は設定される。
[0099] このように、本実施形態によれば、時分割駆動により、収差を補正するための複数 の収差設定状態を実質的に共存させることができる。このため、光ディスク装置 100 に搭載された光ディスク媒体 20の種類の判別を、 1度の判別動作で完了することが できる。収差設定状態を 1種類ずつしか設定できない装置では、設定した収差設定 状態に適合しない光ディスク媒体が搭載されている場合には、別の収差設定状態を 設定し直して再度判別動作をやり直さなければならない。光ディスク装置 100では光 ディスク媒体 20の種類の判別を 1度の判別動作で完了することができるので、極めて スムーズに装置の起動を行うことができる。
[0100] (実施形態 2)
次に、図 5および図 6を参照して、時分割駆動を用いた層間ジャンプ (ある記録層か ら他の記録層へのレーザ光の焦点の移動)を説明する。図 5は、本実施形態の層間 ジャンプ動作を示すフローチャートである。図 6は、ビームスポットの位置とフォーカス エラー信号との関係を示すグラフである。図 6 (a)はレンズァクチユエータ 7の駆動電 圧を示しており、図 6 (b)はフォーカスエラー信号を示しており、図 6 (c)はビームスポ ット位置を示しており、図 6 (d)は収差補正部 5の波面パターンを示している。
[0101] ここで、光ディスク装置 100に搭載された光ディスク媒体 20は BDとする。 BDの記 録層 22Cにレーザ光 laの焦点が合っている時、収差補正部 5は波面パターン Dを設 定しているとする。波面パターン Dは、記録層 22Cにレーザ光 laの焦点が合っている ときに発生する収差が補正されるように、レーザ光 laの収差を設定する波面パターン である。 [0102] 光ディスク装置 100は、フォーカス引き込み動作を行いつつ、層間ジャンプを行う。 記録層 22Cカゝら記録層 22A (目標記録層)へ層間ジャンプをするとき、波面パターン 発生器 102は、波面パターン Dと波面パターン Aとを交互に設定する時分割駆動を 開始するように収差補正部 5を駆動する (ステップ 501〜502)。波面パターン Aは記 録層 22Aに適した波面パターンである。時分割駆動により、複数の記録層のそれぞ れに最適な収差設定状態を実質的に共存させることができる。収差補正部 5が波面 パターン Aを設定している時間範囲を区間 IA、波面パターン Dを設定している時間 範囲を区間 IDとする。層間ジャンプの開始直後、区間 IAでは収差が補正されない状 態となる力 フォーカスサーボの制御帯域よりも十分に高い周波数で波面パターンを 切り替えるので、時分割駆動を開始してもフォーカスサーボ制御は維持される。
[0103] この状態で、レーザ光の焦点を目標記録層の方向へ移動させるために、制御回路 101はレンズァクチユエータ 7にキックパルスを与えて対物レンズ 6を移動させる(ステ ップ 503)。このとき、フォーカスサーボ動作を ONにしたまま、レーザ光の焦点を記録 層 22C力 記録層 22Aへ移動させることで、焦点が記録層 22Aへ到達して力 フォ 一カス引き込み動作を完了するまでの時間を短縮することができる。フォーカスサー ボ動作を ONにしたままであつても、制御回路 101は層間ジャンプを行うことを認識し ているので、層間ジャンプの途中で焦点と記録層とが大幅にずれたときに異常と判断 することなく層間ジャンプを継続することができる。
[0104] レーザ光の焦点が記録層 22Aに合うと、区間 IAで収差が補正された状態となり、所 定の検出レベルの S字信号 32Aが検出される(ステップ 504)。区間 IAで S字信号 32 Aが検出されたことにより、判別部 104は、レーザ光の焦点が記録層 22Aに達したと 判定する (ステップ 505)。 S字信号 32Aが検出されると収差補正部 5を波面パターン Aに固定して (ステップ 506)、レーザ光の焦点位置が目標記録層に維持され、層間 ジャンプが完了する。制御回路 101は、通常のトラッキングサーボ引き込み動作およ びデータ読み込み動作に移る(ステップ 507〜508)。
[0105] 図 6に示した例のように、 3層以上の記録層を備えた光ディスク媒体において離れ た記録層にジャンプする場合、レーザ光の焦点が目標記録層に到達する前に他の 記録層(ここでは記録層 22B)を通過する。記録層 22Bは、目標記録層である記録層 22Aとは基材厚が異なるので、レーザ光の焦点が記録層 22Bに位置したときには球 面収差が大きくなつており、検出される S字信号 32Bのレベルも低い。このため、判別 部 104が誤って記録層 22Bを記録層 22Aであると判別することはないので、レーザ 光の焦点は記録層 22Bを通過する。このように、離れた記録層にジャンプする場合 でも、目標記録層へ直接ジャンプすることができる。このため、隣り合った記録層に順 次ジャンプしながら目標記録層へ到達する場合に比べて、格段に素早く層間ジヤン プを完了することができる。
[0106] なお、層間ジャンプ中に、外力によって対物レンズ 6にジャンプ方向と逆方向の加 速度が加わり、レーザ光の焦点が記録層 22Cに再び位置した場合は、所定の検出レ ベルに達する S字信号 32Cが検出されることになる。しかし、このときは、区間 IDで S 字信号を検出したことで、レーザ光の焦点が記録層 22Cに位置して 、ることが判別 できるので、直ちにジャンプ操作を再試行すればよい。このように、外力によって対物 レンズ 6の位置が乱れても対物レンズ 6の位置を把握することができるので、対物レン ズ 6が光ディスク媒体 20に衝突するようなことはなぐ安定した層間ジャンプを行うこと ができる。
[0107] なお、図 1Aに示す光ディスク装置 100は複数のレーザ光源 1A〜1Cを備えている 。しかし、本実施形態の層間ジャンプは行うが、ディスク判別を行わない場合は、複 数のレーザ光源 1A〜: LCを備えている必要はない。この場合は、光ディスク装置 100 は、対応した光ディスク媒体の種類に適合した単一のレーザ光源を備えて!/ヽればよ い。
[0108] (実施形態 3)
本実施形態では、収差補正部 5を複数の領域に分け、波面パターン発生器 102は それらの領域のそれぞれに互いに異なる波面パターンを設定するように収差補正部 5を駆動する(以下、領域分割駆動と称する)。これにより、収差補正部 5に複数の収 差設定状態が同時に設定されるので、単一の収差補正部 5を用いて単一の光学系 中に複数の収差設定状態を共存させることができる。
[0109] 図 7は、複数の領域に分けた収差補正部 5を示している。図 7に示す複数の六角形 部分のそれぞれが、マイクロアクチユエータ 5bが備える光反射面を表している。黒く 示す六角形部分は、波面パターン Aが設定されたマイクロアクチユエータ 5bが備える 光反射面を表している。白く示す六角形部分は、波面パターン Bが設定されたマイク ロアクチユエータ 5bが備える光反射面を表している。網掛けで示す六角形部分は、 波面パターン Cが設定されたマイクロアクチユエータ 5bが備える光反射面を表してい る。このように、収差補正部 5は、 3つの領域に分けられている。
[0110] 収差補正部 5は、マイクロミラーアレイに対して 45° の角度でレーザ光が入射され るように配置されており、光反射面は 1 : 2の楕円状に配列されている。収差補正部 5の各領域は、光軸に対して点対称な位置に同一の波面パターンが形成されるよう に互いに分けられている。
[0111] 以下、領域分割駆動を用いてディスク判別を行う動作を説明する。本実施形態の 領域分割駆動にぉ 、て、ビームスポットの位置とフォーカスエラー信号との関係は、 図 4 (b)および図 4 (c)に示した関係と基本的に同一である。
[0112] 光ディスク装置 100は、フォーカス引き込み動作を行いつつ、ディスク判別を行う。
まず、光ディスク装置 100に光ディスク媒体 20が搭載されると、制御回路 101は、レ ンズァクチユエータ 7を駆動して対物レンズ 6を光ディスク媒体 20から離れる方向に 移動させる。制御回路 101は、次に、光ディスク媒体 20を回転させ、レーザ光源 1A 〜1Cを点灯する。搭載された光ディスク媒体 20は BD、 DVD、 CDのいずれかであ る。光ディスク媒体 20の種類によって基材厚ゃ適合するレーザ光波長が異なるため 、収差を補正するための最適な波面パターンも光ディスク媒体 20の種類によって異 なる。レーザ光 laおよび波面パターン Aは BDに適合しており、レーザ光 lbおよび波 面パターン Bは DVDに適合しており、レーザ光 lcおよび波面パターン Cは CDに適 合している。
[0113] 波面パターン発生器 102は、制御回路 101からの指令を受けて波面パターン A〜 Cを形成するための駆動データを収差補正部 5に転送し、収差補正部 5を領域分割 駆動させる。
[0114] 波面パターン Aが設定されたミラー領域で反射したレーザ光 laは、 BDが備える記 録層にレーザ光 laの焦点が合って 、るときに発生する収差が補正されるように調整 されている。波面パターン Bが設定されたミラー領域で反射したレーザ光 lbは、 DV Dが備える記録層にレーザ光 lbの焦点が合っているときに発生する収差が補正され るように調整されて 、る。波面パターン Cが設定されたミラー領域で反射したレーザ光 lcは、 CDが備える記録層にレーザ光 lcの焦点が合っているときに発生する収差が 補正されるように調整されて 、る。
[0115] 収差補正部 5を領域分割駆動する場合、光検出器 10が受光する光量は減少する ので、領域の分割数に応じてサーボゲインを切り替える。
[0116] 領域分割駆動が行われている状態で、制御回路 101は、対物レンズ 6を光ディスク 媒体 20に近づく方向へ所定の速度で移動させる。搭載された光ディスク媒体 20〖こ 適合したレーザ光の焦点が、その光ディスク媒体 20の記録層に位置したとき、光検 出部 10はそのレーザ光に対応する区間で S字信号を検出する。対応する区間以外 では収差が非常に大きくなつているので、レーザ光の焦点が記録層に位置しても得 られる S字信号の振幅は非常に小さい。一方、対応する区間では収差が補正されて いるので、所定の大きさ以上の S字信号が得られる。
[0117] 所定の大きさ以上の S字信号が検出されるときの対物レンズ 6の位置は、光ディスク 媒体 20の種類によって異なる。このため、制御回路 101および判別部 104は、所定 の大きさ以上の S字信号が検出されたときの対物レンズ 6の位置をレンズァクチユエ ータ 7の駆動電圧レベルから判定することで、搭載された光ディスク媒体 20の種類を 判別することができる。
[0118] 光ディスク媒体 20の種類が判別されると、波面パターン発生器 102は、判別された 光ディスク媒体 20の種類に適合した波面パターンに収差補正部 5全体を設定する。 これにより、同時に設定されていた複数の収差設定状態は、最も適した 1つの収差設 定状態に変更される。制御回路 101は、適合していないレーザ光源を消灯するととも に、サーボゲインを適切に設定し、フォーカスサーボを ONにして、レーザ光の焦点 位置が目標記録層(基準層である記録層 22A)に維持される。以降、通常のトラツキ ングサーボ引き込み、データ読み込みの操作に移る。
[0119] なお、図 1Aに示す光ディスク装置 100は単一の光検出器 10を備える力 複数の 光検出器 10を備えてもよい。この場合、光検出器 10のそれぞれは、レーザ光 la〜l cのうちの対応する 1つのレーザ光の波長域の光を受けたときに電気信号を出力する 。これにより、制御回路 101および判別部 104は、どの光検出器 10で所定の大きさ 以上の S字信号が検出されたかに応じて、光ディスク媒体 20の種類を直ちに判別す ることがでさる。
[0120] このように、本実施形態によれば、領域分割駆動により、収差を補正するための複 数の収差設定状態を共存させることができる。このため、光ディスク装置 100に搭載 された光ディスク媒体 20の種類の判別を、 1度の判別動作で完了することができる。 収差設定状態を 1種類ずつしか設定できない装置では、設定した収差設定状態に 適合しな!ヽ光ディスク媒体が搭載されて!ヽる場合には、別の収差設定状態を設定し 直して再度判別動作をやり直さなければならな 、。光ディスク装置 100では光デイス ク媒体 20の種類の判別を 1度の判別動作で完了することができるので、極めてスム ーズに装置の起動を行うことができる。
[0121] (実施形態 4)
次に、領域分割駆動を用いた層間ジャンプを説明する。
[0122] 図 8は、 2つの領域に分けた収差補正部 5を示している。
図 8に示す複数の六角形のそれぞれ力 マイクロアクチユエータ 5bが備える光反射 面を表している。
[0123] ここで、光ディスク装置 100に搭載された光ディスク媒体 20は BDとする。図 8の黒く 示す六角形部分は、波面パターン Aが設定されたマイクロアクチユエータ 5bが備える 光反射面を表している。波面パターン Aは、記録層 22Aにレーザ光 laの焦点が合つ ている時に発生する収差が補正される波面パターンである。白く示す六角形部分は 、波面パターン Dが設定されたマイクロアクチユエータ 5bが備える光反射面を表して いる。波面パターン Dは、記録層 22Cにレーザ光 laの焦点が合っている時に発生す る収差が補正される波面パターンである。
[0124] 以下、領域分割駆動を用いて層間ジャンプを行う動作を説明する。本実施形態の 領域分割駆動にぉ 、て、ビームスポットの位置とフォーカスエラー信号との関係は、 図 6 (b)および図 6 (c)に示した関係と基本的に同一である。
[0125] 光ディスク装置 100は、フォーカス引き込み動作を行いつつ、層間ジャンプを行う。
まず、光ディスク媒体 20の記録層 22Cにレーザ光 laの焦点が合っている時、収差補 正部 5は波面パターン Dを設定している。記録層 22Cから記録層 22A (目標記録層) へ層間ジャンプをするとき、波面パターン発生器 102は、制御回路 101からの指令を 受けて、波面パターン Aおよび Dを形成するための駆動データを収差補正部 5に転 送し、収差補正部 5を領域分割駆動させる。収差補正部 5は図 8に示すように領域分 割される。収差補正部 5を領域分割駆動する場合、光検出器 10が受光する光量は 減少するので、サーボゲインを切り替え、フォーカスサーボを維持する。
[0126] この状態で、レーザ光の焦点を目標記録層の方向へ移動させるために、制御回路 101はレンズァクチユエータ 7にキックパルスを与えて対物レンズ 6を移動させる。この とき、フォーカスサーボ動作を ONにしたまま、レーザ光の焦点を記録層 22C力も記 録層 22Aへ移動させることで、焦点が記録層 22Aへ到達して力もフォーカス引き込 み動作を完了するまでの時間を短縮することができる。
[0127] 波面パターン Aの光反射面を通ったレーザ光の焦点が記録層 22Aに合うと、その レーザ光の収差が補正された状態となり、所定の検出レベルの S字信号 32Aが検出 される。 S字信号 32Aが検出されると収差補正部 5全体を波面パターン Aに設定する 。これ〖こより、同時に設定されていた複数の収差設定状態は、最も適した 1つの収差 設定状態に変更される。制御回路 101は、サーボゲインを適切に設定し、レーザ光 の焦点位置が目標記録層に維持され、層間ジャンプが完了する。以降、通常のトラッ キングサーボ引き込み動作、データ読み込みの動作に移る。
[0128] 3層以上の記録層を備えた光ディスク媒体にぉ ヽて離れた記録層にジャンプする 場合、レーザ光の焦点が目標記録層に到達する前に他の記録層(ここでは記録層 2 2B)を通過する。記録層 22Bは、目標記録層である記録層 22Aとは基材厚が異なる ので、レーザ光の焦点が記録層 22Bに位置したときには球面収差が大きくなつており 、検出される S字信号 32Bのレベルも低い。このため、判別部 104が誤って記録層 2 2Bを記録層 22Aであると判別することはな 、ので、レーザ光の焦点は記録層 22Bを 通過する。このように、離れた記録層にジャンプする場合でも、目標記録層へ直接ジ ヤンプすることができる。このため、隣り合った記録層に順次ジャンプしながら目標記 録層へ到達する場合に比べて、格段に素早く層間ジャンプを完了することができる。
[0129] なお、層間ジャンプ中に、外力によって対物レンズ 6にジャンプ方向と逆方向の加 速度が加わり、レーザ光の焦点が記録層 22Cに再び位置した場合は、所定の検出レ ベルに達する S字信号 32Cが検出されることになる。し力し、このときは、フォーカス 引き込み動作後にアドレスを読み込むことで、レーザ光の焦点が記録層 22Cに位置 していることが判別できるので、直ちにジャンプ操作を再試行すればよい。このように 、外力によって対物レンズ 6の位置が乱れても対物レンズ 6の位置を把握することが できるので、対物レンズ 6が光ディスク媒体 20に衝突するようなことはなぐ安定した 層間ジャンプを行うことができる。
[0130] なお、図 1Aに示す光ディスク装置 100は複数のレーザ光源 1A〜1Cを備えている 。しかし、本実施形態の層間ジャンプは行うが、ディスク判別を行わない場合は、複 数のレーザ光源 1A〜: LCを備えている必要はない。この場合は、光ディスク装置 100 は、対応した光ディスク媒体の種類に適合した単一のレーザ光源を備えて!/ヽればよ い。
[0131] なお、図 7および図 8に示す収差補正部 5の領域分割パターンは一例であり、これ に限定されない。同一の波面パターンが設定される光反射面同士が光軸対称に配 置されればよぐ放射状や同心円状等、任意に設定できる。
[0132] なお、図 1に示す制御装置 140は、半導体集積回路を備えた半導体チップとして 製造され得る。また、収差制御部 130の各構成要素が一体化されて形成されていて ちょい。
[0133] また、光ディスク装置 100が実行する動作の少なくとも一部(例えば図 3および図 4 を参照して説明した動作)はソフトウェアによって実現されてもよい。例えば、制御装 置 140は、収差補正部 5等を駆動するプログラムを記憶するためのメモリ素子と、その プログラムを読み出して収差補正部 5等の駆動を実行する CPU (CENTRAL PRO CESSING UNIT)とを備える。これらの素子は制御回路 101に搭載され得る。プロ グラムは、メモリ素子に予め記憶されていてもよいし、ダウンロード等によってインスト ールされてもよい。
[0134] また、実施形態 1〜4では、本発明の機能を最も良く発揮する収差補正部 5としてマ イク口ミラーアレイを採用したが、これに限定されない。収差補正部 5は、応答性が良 く複数の波面パターンを設定できる素子であればよぐ例えば、液晶素子等であって ちょい。
産業上の利用可能性
本発明は、複数種類の光ディスク媒体の判別や、多層光ディスク媒体での層間ジャ ンプを行う光ディスク装置の分野で好適に用いられる。

Claims

請求の範囲
[1] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する装置であって、
レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を制御する収差制御部と
を備え、
前記収差制御部は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返 し切り替える、装置。
[2] 前記光学系は対物レンズを備え、
前記収差制御部は、前記対物レンズのフォーカス制御帯域より高い周波数で、前 記複数の収差設定状態を交互に切り替える、請求項 1に記載の装置。
[3] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する装置であって、
レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を制御する収差制御部と
を備え、
前記収差制御部は、フォーカス引き込み動作時に、複数の収差設定状態を同時に 設定する、装置。
[4] 前記収差制御部は、前記複数の収差設定状態を同時に設定した後、前記同時に 設定した複数の収差設定状態を 1つの収差設定状態に変更する、請求項 3に記載 の装置。
[5] 前記複数の収差設定状態は、第 1の収差設定状態と第 2の収差設定状態とを含み 前記光ディスク媒体は、第 1の記録層と第 2の記録層とを備え、
前記第 1の収差設定状態は前記第 1の記録層に対応し、前記第 2の収差設定状態 は前記第 2の記録層に対応している、請求項 1または 3に記載の装置。
[6] 前記第 1の収差設定状態は、前記第 1の記録層に前記レーザ光の焦点が合ってい るときに発生する収差が補正される状態であり、
前記第 2の収差設定状態は、前記第 2の記録層に前記レーザ光の焦点が合って!/、 るときに発生する収差が補正される状態である、請求項 5に記載の装置。
[7] 前記光学系は対物レンズを備え、
前記装置は、前記対物レンズを駆動するァクチユエータをさらに備え、
前記ァクチユエータは、フォーカスサーボ動作を ONにしたまま、前記レーザ光の焦 点位置を前記第 1の記録層から前記第 2の記録層へ移動させる、請求項 5に記載の 装置。
[8] 前記装置は、複数種類の光ディスク媒体へのデータの記録および前記複数種類の 光ディスク媒体からのデータの再生のうちの少なくとも一方を実行する装置であり、 前記発光部は、互いに波長の異なる複数種類のレーザ光を出射し、
前記複数種類のレーザ光は、それぞれ前記複数種類の光ディスク媒体のうちの 1 つに対応しており、
前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの 1つに対 応している、請求項 1または 3に記載の装置。
[9] 前記複数の収差設定状態のそれぞれは、前記複数種類の光ディスク媒体のうちの 対応する 1つが備える記録層に、前記対応するレーザ光の焦点が合っているときに 発生する収差が補正される状態である、請求項 8に記載の装置。
[10] 前記光学系は、前記装置に搭載された光ディスク媒体へ前記複数種類のレーザ光 を出射し、
前記装置は、
前記複数種類のレーザ光に対応した反射光を受光し、前記受光した反射光に応じ た電気信号を出力する少なくとも 1つの光検出部と、
前記電気信号力 フォーカスエラー信号を検出する信号検出部と、
前記フォーカスエラー信号に基づ 、て、前記装置に搭載された光ディスク媒体の 種類を判別する判別部と
をさらに備える、請求項 8に記載の装置。
[11] 前記発光部は、互いに波長の異なる複数種類のレーザ光を出射し、 前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの 1つに対 応しており、
前記装置は、複数の光検出部をさらに備え、
前記複数の光検出部のそれぞれは、前記複数種類のレーザ光のうちの 1つに対応 した反射光を受光し、前記受光した反射光に応じた電気信号を出力し、
前記装置は、前記電気信号からフォーカスエラー信号を検出する信号検出部をさ らに備え、
前記信号検出部は、前記複数の収差設定状態を交互に切り替えるタイミングと同 期して、前記複数の光検出部から出力される前記電気信号のうちの、前記フォー力 スエラー信号を検出するために用いる電気信号を切り替える、請求項 1に記載の装 置。
[12] 前記収差制御部は、
前記レーザ光の収差を補正する収差補正部と、
前記収差補正部を制御する制御装置と
を備え、
前記制御装置は、前記収差が小さくなるように収差補正部を制御することによって 前記収差を補正する、請求項 1または 3に記載の装置。
[13] 前記収差補正部は可変形ミラーであり、
前記制御装置は、前記可変形ミラーの形状を前記収差が小さくなるように設定する ことによって前記収差を補正する、請求項 12に記載の装置。
[14] 前記可変形ミラーは、それぞれが光反射面を有する複数のマイクロアクチユエータ を備えたマイクロミラーアレイであり、
前記収差制御部は、前記複数のマイクロアクチユエータを駆動することにより、前記 可変形ミラーの形状を設定する、請求項 13に記載の装置。
[15] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置に搭載されたときに、レーザ光の収差 を制御する制御装置であって、 前記光ディスク装置は、
前記レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記制御装置は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返し 切り替えるように前記収差補正部を制御する、制御装置。
[16] 前記光学系が備える対物レンズのフォーカス制御帯域より高い周波数で、前記複 数の収差設定状態を交互に切り替える、請求項 15に記載の制御装置。
[17] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置に搭載されたときに、レーザ光の収差 を制御する制御装置であって、
前記光ディスク装置は、
前記レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記制御装置は、フォーカス引き込み動作時に、複数の収差設定状態を前記収差 補正部に同時に設定する、制御装置。
[18] 前記複数の収差設定状態を同時に設定した後、前記同時に設定した複数の収差 設定状態を 1つの収差設定状態に変更する、請求項 17に記載の制御装置。
[19] 前記複数の収差設定状態は、第 1の収差設定状態と第 2の収差設定状態とを含み 前記光ディスク媒体は、第 1の記録層と第 2の記録層とを備え、
前記第 1の収差設定状態は前記第 1の記録層に対応し、前記第 2の収差設定状態 は前記第 2の記録層に対応して 、る、請求項 15または 17に記載の制御装置。
[20] 前記第 1の収差設定状態は、前記第 1の記録層に前記レーザ光の焦点が合ってい るときに発生する収差が補正される状態であり、 前記第 2の収差設定状態は、前記第 2の記録層に前記レーザ光の焦点が合って!/、 るときに発生する収差が補正される状態である、請求項 19に記載の制御装置。
[21] 前記光ディスク装置は、複数種類の光ディスク媒体へのデータの記録および前記 複数種類の光ディスク媒体力 のデータの再生のうちの少なくとも一方を実行する装 置であり、
前記発光部は、互いに波長の異なる複数種類のレーザ光を出射し、
前記複数種類のレーザ光は、それぞれ前記複数種類の光ディスク媒体のうちの 1 つに対応しており、
前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの 1つに対 応して、、る、請求項 15または 17に記載の制御装置。
[22] 前記複数の収差設定状態のそれぞれは、前記複数種類の光ディスク媒体のうちの 対応する 1つが備える記録層に、前記対応するレーザ光の焦点が合っているときに 発生する収差が補正される状態である、請求項 21に記載の制御装置。
[23] 前記光学系は、前記光ディスク装置に搭載された光ディスク媒体へ前記複数種類 のレーザ光を出射し、
前記光ディスク装置は、前記複数種類のレーザ光に対応した反射光を受光し、前 記受光した反射光に応じた電気信号を出力する少なくとも 1つの光検出部を備え、 前記制御装置は、
前記電気信号力 フォーカスエラー信号を検出する信号検出部と、
前記フォーカスエラー信号に基づ 、て、前記光ディスク装置に搭載された光デイス ク媒体の種類を判別する判別部と
を備える、請求項 21に記載の制御装置。
[24] 前記発光部は、互いに波長の異なる複数種類のレーザ光を出射し、
前記複数の収差設定状態は、それぞれ前記複数種類のレーザ光のうちの 1つに対 応しており、
前記光ディスク装置は、複数の光検出部をさらに備え、
前記複数の光検出部のそれぞれは、前記複数種類のレーザ光のうちの 1つに対応 した反射光を受光し、前記受光した反射光に応じた電気信号を出力し、 前記制御装置は、前記電気信号からフォーカスエラー信号を検出する信号検出部 を備え、
前記信号検出部は、前記複数の収差設定状態を交互に切り替えるタイミングと同 期して、前記複数の光検出部から出力される前記電気信号のうちの、前記フォー力 スエラー信号を検出するために用いる電気信号を切り替える、請求項 15に記載の制 御装置。
[25] 前記収差補正部は可変形ミラーを備え、
前記制御装置は、前記可変形ミラーの形状を前記収差が小さくなるように設定する ことによって前記収差を補正する、請求項 15または 17に記載の制御装置。
[26] 前記可変形ミラーは、それぞれが光反射面を有する複数のマイクロアクチユエータ を備えたマイクロミラーアレイであり、
前記制御装置は、前記複数のマイクロアクチユエータを駆動することにより、前記可 変形ミラーの形状を設定する、請求項 25に記載の制御装置。
[27] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置において、レーザ光の収差を制御す る方法であって、
前記光ディスク装置は、
前記レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記方法は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返し切り替 えるように前記収差補正部を制御するステップを包含する、方法。
[28] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置において、レーザ光の収差を制御す る方法であって、
前記光ディスク装置は、
前記レーザ光を出射する発光部と、 前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記方法は、フォーカス引き込み動作時に、複数の収差設定状態を前記収差補正 部に同時に設定するステップを包含する、方法。
[29] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置において、レーザ光の収差の制御処 理を実行させるためのプログラムであって、
前記光ディスク装置は、
前記レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記制御処理は、フォーカス引き込み動作時に、複数の収差設定状態を繰り返し 切り替えるように前記収差補正部を制御するステップを包含する、プログラム。
[30] 光ディスク媒体へのデータの記録および前記光ディスク媒体からのデータの再生の うちの少なくとも一方を実行する光ディスク装置において、レーザ光の収差の制御処 理を実行させるためのプログラムであって、
前記光ディスク装置は、
前記レーザ光を出射する発光部と、
前記レーザ光を前記光ディスク媒体へ照射する光学系と、
前記レーザ光の収差を補正する収差補正部と
を備え、
前記制御処理は、フォーカス引き込み動作時に、複数の収差設定状態を前記収差 補正部に同時に設定するステップを包含する、プログラム。
PCT/JP2005/017302 2004-10-07 2005-09-20 光ディスク装置 WO2006038454A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006515446A JP4280285B2 (ja) 2004-10-07 2005-09-20 光ディスク装置
US11/576,482 US7872952B2 (en) 2004-10-07 2005-09-20 Optical disc drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-294777 2004-10-07
JP2004294777 2004-10-07

Publications (1)

Publication Number Publication Date
WO2006038454A1 true WO2006038454A1 (ja) 2006-04-13

Family

ID=36142533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017302 WO2006038454A1 (ja) 2004-10-07 2005-09-20 光ディスク装置

Country Status (4)

Country Link
US (1) US7872952B2 (ja)
JP (1) JP4280285B2 (ja)
CN (1) CN100511443C (ja)
WO (1) WO2006038454A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853424B2 (ja) * 2007-08-07 2012-01-11 パナソニック株式会社 光ピックアップ装置
KR20090030109A (ko) * 2007-09-19 2009-03-24 도시바삼성스토리지테크놀러지코리아 주식회사 디스크 판별 방법 및 이를 이용한 광 디스크 드라이브
US8368994B2 (en) * 2008-06-28 2013-02-05 Alces Technology, Inc. Scanned, one-dimensional, phased-array display system
US8506402B2 (en) * 2009-06-01 2013-08-13 Sony Computer Entertainment America Llc Game execution environments
CA2769099A1 (en) * 2009-07-29 2011-02-10 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US9553422B2 (en) 2009-08-04 2017-01-24 Medical Coherence Llc Multiple aperture hand-held laser therapy apparatus
US8790382B2 (en) 2009-08-04 2014-07-29 Yonatan Gerlitz Handheld low-level laser therapy apparatus
US9946082B2 (en) 2013-04-30 2018-04-17 Medical Coherence Llc Handheld, low-level laser apparatuses and methods for low-level laser beam production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11328684A (ja) * 1998-05-19 1999-11-30 Matsushita Electric Ind Co Ltd 光ディスク種類判別方法及び光ディスク装置
JP2002288873A (ja) * 2001-03-27 2002-10-04 Ricoh Co Ltd 光情報記録再生装置
JP2003016660A (ja) * 2001-06-29 2003-01-17 Sony Corp 光ピックアップ及び記録/再生装置
JP2004295952A (ja) * 2003-03-26 2004-10-21 Hitachi Ltd 光ディスク判別方法および光ディスク装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106617A (ja) 1995-10-06 1997-04-22 Pioneer Electron Corp 情報記録媒体判別方法及び装置並びにフォーカスサーボ制御方法及び装置
EP0984440A3 (en) 1998-09-04 2000-05-24 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
JP4323632B2 (ja) 1998-09-04 2009-09-02 パナソニック株式会社 収差検出装置
US6934226B2 (en) 2001-04-12 2005-08-23 Matsushita Electric Industrial Co., Ltd. Optical disk apparatus
JP2002342952A (ja) * 2001-05-15 2002-11-29 Pioneer Electronic Corp 光学式記録再生装置
WO2003065103A1 (fr) 2002-01-29 2003-08-07 Matsushita Electric Industrial Co., Ltd. Miroir a forme variable et dispositif de regulation de lumiere possedant ledit miroir
CN100528735C (zh) 2004-03-08 2009-08-19 松下电器产业株式会社 微致动器以及具有微致动器的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11328684A (ja) * 1998-05-19 1999-11-30 Matsushita Electric Ind Co Ltd 光ディスク種類判別方法及び光ディスク装置
JP2002288873A (ja) * 2001-03-27 2002-10-04 Ricoh Co Ltd 光情報記録再生装置
JP2003016660A (ja) * 2001-06-29 2003-01-17 Sony Corp 光ピックアップ及び記録/再生装置
JP2004295952A (ja) * 2003-03-26 2004-10-21 Hitachi Ltd 光ディスク判別方法および光ディスク装置

Also Published As

Publication number Publication date
US7872952B2 (en) 2011-01-18
CN100511443C (zh) 2009-07-08
JP4280285B2 (ja) 2009-06-17
JPWO2006038454A1 (ja) 2008-05-15
CN1910667A (zh) 2007-02-07
US20090073824A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4280285B2 (ja) 光ディスク装置
US6370095B1 (en) Aberration correcting apparatus and information recording medium play-back apparatus
JP4257049B2 (ja) 多層ディスク記録再生装置およびフォーカスジャンプ方法
JP4088472B2 (ja) 光ディスク装置
KR101109944B1 (ko) 광 정보장치 및 광 정보장치의 제어방법
JP2003123282A (ja) 焦点調整方法および光ピックアップ装置
WO2007023940A1 (ja) アクチュエータ、光ヘッド装置および光情報装置
JP2008293600A (ja) 光ピックアップ装置
KR20120057617A (ko) 광 디스크 장치, 광 픽업 및 광 기록 매체
JP2001034993A (ja) 光学ピックアップおよび反射鏡
JP2002358690A (ja) 収差補正機能付き光学式読取装置
JPH0620291A (ja) 光学的情報記録再生装置
JP2007139841A (ja) 形状可変ミラー装置
WO2010023901A1 (ja) 光ディスク装置、前記光ディスク装置を用いた映像再生装置、サーバー及びカーナビゲーションシステム、集積回路、並びに記録再生方法
JP4533178B2 (ja) 光ピックアップ及びこれを用いた光情報処理装置
CN100362580C (zh) 光学头装置、光记录装置及光记录方法
WO2007114030A1 (ja) 光学式記録再生装置および媒体判別方法
EP2017837A2 (en) Optical pickup device
JP2004079117A (ja) 情報記録再生装置
JP3911475B2 (ja) 光ピックアップ
WO2007108446A1 (ja) 光学ヘッド、光ディスク装置および光学ヘッドの製造方法
JP2007042154A (ja) 光記録媒体用対物光学系およびこれを用いた光ピックアップ装置
JP4185553B2 (ja) 光ディスク装置
JP2004296082A (ja) 光記録媒体
JP2008052822A (ja) 収差補正素子、光ピックアップ及び光ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006515446

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 200580002976.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11576482

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785962

Country of ref document: EP

Kind code of ref document: A1