WO2006037717A1 - Verfahren und vorrichtung zum ermitteln einer gastransportverzögerungszeitdauer bei einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum ermitteln einer gastransportverzögerungszeitdauer bei einer brennkraftmaschine Download PDF

Info

Publication number
WO2006037717A1
WO2006037717A1 PCT/EP2005/054591 EP2005054591W WO2006037717A1 WO 2006037717 A1 WO2006037717 A1 WO 2006037717A1 EP 2005054591 W EP2005054591 W EP 2005054591W WO 2006037717 A1 WO2006037717 A1 WO 2006037717A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
intake
internal combustion
gas
combustion engine
Prior art date
Application number
PCT/EP2005/054591
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006037717A1 publication Critical patent/WO2006037717A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • phase adjusting devices are known, by means of which a phase between a crankshaft and a camshaft of the internal combustion engine can be changed and thus the respective beginning and the respective end of the opening or closing of the gas inlet and Gasauslassven ⁇ tile can be changed.
  • valve ⁇ stroke adjusting devices are known by means of which a Ventil ⁇ stroke of the gas inlet valve or a gas outlet valve of the internal combustion engine can be adjusted between a low and a high hen valve lift.
  • internal combustion engines are frequently equipped with relief devices Tankentlüf ⁇ by the fuel evaporative emissions of a tank of a vehicle in which the internal combustion engine can be arranged to be temporarily stored in a container Aktivkohlebe ⁇ .
  • the activated carbon container is regenerated by means of a so-called tank vent valve.
  • the Tankentlüf ⁇ venting valve is a connection to the intake of fuel engine free.
  • the fuel bound in the activated carbon container can thus flow into the intake tract of the internal combustion engine and be burned in the respective cylinder of the internal combustion engine.
  • an accurate Be ⁇ is taken into account these so additionally introduced Kraftstoff ⁇ quantity important.
  • the object of the invention is to provide a method and a device which enables a precise determination of a delay time duration in an internal combustion engine.
  • the invention is characterized by a method and a corresponding device for determining a delay time duration in an internal combustion engine with an intake tract in which a throttle valve is arranged as an actuator.
  • the intake opens into at least one inlet at least ei ⁇ nes cylinder.
  • another actuator is disposed min ⁇ least, by means of the sen ⁇ a flowing into the respective cylinder of the engine mass of gas is variable.
  • an inlet location for introducing a tank-venting ⁇ stream provided downstream of the throttle valve and upstream of the inlet.
  • the delay time period between the introduction of the tank ventilation flow via the inlet point in the intake tract to its introduction into the respective cylinder of the internal combustion engine is determined depending on a physical model that represents a relationship between a number of gas molecules, which are located in a free volume of the intake downstream of the throttle ⁇ flap and upstream of the inlet in the respective Zy ⁇ cylinder, and the number of gas molecules that flow per Zy ⁇ lindersegmentzeitdauer of the intake into the respective cylinder ,
  • the invention thus utilizes the knowledge that in the presence of the further actuator, the delay time is very precise determinable.
  • the physical model can be used as a transition ⁇ sizes directly the numbers of gas molecules ha ⁇ ben, but it can also correspondingly different for the number of gas molecules ben representative variables as inputs ha ⁇ .
  • This can z. B. be a density or a gas mass flow or a gas mass.
  • a cylinder segment time duration is to be understood as meaning the duration of time required for a working cycle divided by the number of cylinders of the internal combustion engine.
  • the cylinder segment duration thus results from the sweeping value of half the rotational speed divided by the number of cylinders of the internal combustion engine.
  • the physical model depends on a gas mass flow into the cylinders and a gas mass in the intake tract, which is located in the free volume of the intake tract.
  • the Gasmassen ⁇ flow into the cylinder and the gas mass in the intake can easily and accurately be determined when a dyna ⁇ premix intake manifold for control purposes of the internal combustion ⁇ machine is present anyway.
  • the physical model depends on the gas mass flow into the cylinders and an intake manifold pressure in the intake tract. This is particularly easy if the intake manifold pressure is detected anyway for other control purposes.
  • the physical model depends on a position of the further actuator and the gas mass flow in the cylinders of the internal combustion engine.
  • the physical model is particularly easy to implement, especially if the other actuator can occupy only a small number 29ie ⁇ dener positions.
  • a separate map is provided for each position of the other actuator from which the delay time is determined depending on the gas mass flow into the cylinder of the internal combustion engine.
  • the term of the map is understood in this context, a characteristic. Such characteristic maps can be determined particularly easily empirically and stored in a data memory.
  • the physical model depends on the position of the further actuator and the intake manifold pressure in the intake tract. So the physical model particularly easy imp ⁇ is lementierbar, especially if the intake manifold pressure is detected dodge ⁇ out for other control purposes.
  • a separate characteristic map is provided for each position of the further actuator from which the delay time is determined depending on the intake manifold pressure in the intake manifold.
  • the physical model depends on an operating mode of the further actuator and the gas mass flow in the jewei ⁇ time cylinder of the internal combustion engine.
  • the physical model depends on the operating mode of the further actuator and the intake manifold pressure in the intake tract.
  • the delay time period can be determined precisely.
  • Figure 1 shows an internal combustion engine with a control device
  • FIG. 2 shows a block diagram of relevant parts of the control device according to FIG. 1.
  • An internal combustion engine (1) comprises an intake section 1, an engine block 2, a cylinder head 3 and a Abgas ⁇ 4.
  • the intake tract 1 preferably comprises a throttle flap ⁇ 5, further comprising a manifold 6 and an intake pipe 7, the down is guided to a cylinder Zl via an inlet channel in the Motor ⁇ block 2.
  • the engine block 2 further includes a crankshaft 8, which is coupled via a connecting rod 10 with the Kol ⁇ ben 11 of the cylinder Zl.
  • the cylinder head 3 includes a valve gear with a gas ⁇ inlet valve 12, a gas outlet 13 and Ventilantrie ⁇ be 14, 15 °.
  • a camshaft is provided which acts via cams on the gas ⁇ inlet valve 12 and the gas outlet. 13 Before ⁇ given to each of the gas inlet valve 12 and the gas outlet ⁇ valve 13 is assigned a separate camshaft. Further, a valve lift adjustment device 19 may be provided, which is designed such that by it a valve lift of the gas ⁇ is variable intake valve 12th For example, it may be configured to either bring a first cam to act on a plunger of the gas inlet valve, with the result that the gas inlet valve then performs a low valve lift, or bring another cam to act on the plunger of the gas inlet valve 12 can with the result that then the gas inlet valve 12 performs a high valve lift.
  • valve lift adjusting device 19 can also be designed to continuously vary the valve lift of the gas inlet valve 12. This allows a Be ⁇ triebsart in the load control takes place by varying the Ven ⁇ tilhubs the gas inlet valve.
  • a phase adjusting device 20 may also be provided, by means of which a crankshaft angle range during a cycle of the respective cylinder in which the gas inlet valve 12 releases the inlet, is variable.
  • a so-called valve overlap can be adjusted ⁇ then, which is characterized, as well as the gas from ⁇ release that both the gas inlet valve outlet valve at the same time the inlet and outlet of the Zylin ⁇ id.
  • the cylinder head 3 further comprises an injection valve 22 and a spark plug 23.
  • the injection valve 22 may also be arranged in the intake manifold 7.
  • a pulse charging valve 25 can also be arranged which, depending on its position, closes or releases either the respective intake manifold in which it is arranged or the respective inlet.
  • Such Impulsladeven ⁇ til 25 can be used to improve the gas filling of the cylinder Zl.
  • the pulse charging valve 25 can also be used by corresponding variation of its activation times for load adjustment.
  • a switching device 26 may be provided for setting an effective intake pipe length.
  • the switching device can thus be designed, for example, as a switching flap, by means of which a communication between individual intake manifolds, which are assigned to different cylinders of the internal combustion engine, enabled or un ⁇ terbunden, or an air supply via different sections Ab ⁇ one and the same intake manifold or different suction pipes alternatively enable.
  • Such a switching ⁇ device may also be designed so that depending on their position, a free volume in the intake tract 1, which is available for sucking the air into the cylinder 1, can be changed.
  • the internal combustion engine comprises a canister purge ⁇ device 28, the fuel vapors of a tank system of the internal combustion engine temporarily stores in a memory, which preferably is designed as a charcoal canister, and then the memory in suitable operating situations of the internal combustion engine again regenerated.
  • 28 includes the Tankent ⁇ ventilating device, a tank vent valve 29.
  • no tank ventilation flow flows into the intake tract 1.
  • a control device 34 is provided which is associated with sensors which detect different measured variables and in each case determine the value of the measured variable.
  • the Steuervorrich ⁇ tion determined depending on at least one of the measured variables manipulated variables, which are then converted into one or more control signals for controlling the actuators by means of corresponding actuators.
  • the control device 34 can also function as Vor ⁇ direction for controlling the internal combustion engine called the ⁇ .
  • the sensors are a pedal position sensor 36, which detects an accelerator pedal position of an accelerator pedal 38, a Heilmas ⁇ sensensor 40 which detects an air mass flow upstream of the throttle valve 5, a throttle position sensor 42 which an opening degree THR of the throttle valve 5 a first temperature sensor 44 which detects an intake air temperature T_IM, an intake manifold pressure sensor 46 which detects an intake manifold pressure P_IM in the collector 6, a crankshaft angle sensor 48 which detects a crankshaft angle, to which a rotational speed N is then assigned.
  • a second temperature sensor 50 detects a coolant temperature ⁇ structure.
  • a camshaft angle sensor 52 is provided which detects a camshaft angle.
  • each camshaft is preferably associated with a camshaft angle sensor 52.
  • an exhaust gas sensor 54 of the exhaust gas is preferably provided, which hold a Restsauerstoffge ⁇ recorded and whose measurement signal is characterizedis ⁇ table for the air / fuel ratio in the cylinder Z.
  • any desired quantity of said sensors may be present, or additional sensors may also be present.
  • the actuators are, for example, the throttle valve 5, the gas inlet and outlet valves 12, 13, the valve lift adjusting device 19, the phase adjuster 20, the injection valve 22, the spark plug 23, the pulse loading valve 25, the switching device 26 for setting an effective Suction tube length or the tank vent valve 29.
  • cylinders Z2 to Z4 are preferably also provided, to which corresponding actuators and, if appropriate, sensors are then assigned.
  • FIG. 2 shows a block diagram of blocks of the control device 34 relevant to the invention.
  • a block Bl comprises a suction tube filling model, by means of which a gas mask Senstrom MAF_CYL in the combustion chamber of the respective cylinder Zl to Z4 and the intake manifold pressure P_IM can be determined precisely even in unsteady operating phases of the internal combustion engine.
  • Saugrohr spallungsmodell is the shank ⁇ man, for example, from the relevant textbook "Manual internal combustion engine, fundamentals, components, systems, Perspek ⁇ tive,” Richard van Basshuysen / Fred Schulfer, 2nd edition 2002, Vieweg & Sohn Verlagsgesellschaft mbH, Braun ⁇ schweig / Wiesbaden, pages 557-559, the contents of which are hereby incorporated by reference.
  • a derarti ⁇ ges Saugrohr spallungsmodell also from WO 97/35106 A2 is known, the content of which herewith in this regard also inco ⁇ subject is.
  • the gas mass flow MAF_CYL is determined by means of a sectionally linear approach depending on the intake manifold pressure P_IM.
  • the individual straight sections of this sectionally linear approach differ by their respective offset and the respective line slope.
  • the respective Off ⁇ set and the respective line slope are in characteristic diagrams ab ⁇ pending from an ambient pressure p_AMB and / or a Abgasge ⁇ backpressure P_EXH and / or the rotational speed N and / or the Ventil ⁇ overlap VO and / or the switching device position SK and / or stored the valve lift position and / or the Impulsladeventil- position IMP_CH and possibly other sizes.
  • the maps are determined in advance by appropriate tests on egg ⁇ nem engine test bench or by simulations and stored in a data memory of the control device 34.
  • the intake manifold pressure P_IM is determined as a function of the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4, the engine speed N, the throttle valve opening degree THR, the intake air temperature T_IM, the ambient pressure P_AMB, the Wegvorschs sued SK, the exhaust back pressure P_EXH, the exhaust gas temperature T_EXH and possibly other sizes or even a subset of the sizes mentioned.
  • the exhaust gas counterpressure P_EXH can simply be estimated by means of a further model as a function of the respectively injected fuel mass and / or the supplied gas mass MAF_CYL into the combustion chamber of the respective cylinder.
  • the Conversely ⁇ ambient pressure p_AMB can either be directly detected by a suitable pressure sensor. However, it may alternatively be detected by the intake manifold pressure sensor 46 in a position of the throttle valve 5, in which this intake air na ⁇ hezu not throttled.
  • the exhaust gas temperature T_EXH is either directly detected by means of a suitably arranged further temperature sensor or estimated depending on the fuel mass to be metered and / or the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4. Determining the intake manifold pressure by means of the dynamic P_IM Saugrohr Stahlmodells preferably based on a Numbers ⁇ caustic solution the ideal gas differential equation.
  • a gas mass MA_IM is determined in the intake tract 1, which is located in a free volume VOL of the intake tract 1 downstream of the throttle flap 5 and upstream of the inlet into the respective cylinders Z1 to Z4. This takes place by means of the relationship specified in block B2.
  • R denotes the general gas constant.
  • the mass of gas MA_IM in the intake tract is representative of a number of gas molecules located in the free volume VOL of the intake tract 1 downstream of the throttle 5 and upstream of the intake in the respective cylinders Z1 to Z4.
  • a physical model is stored that maps a relationship len between a number of Molekü ⁇ that the throttle valve 5 and upstream of the A ⁇ passage in the cylinder Z are in the free volume VOL of the inlet passage 1 downstream to Z4 , and the number of gas molecules flowing per cylinder segment duration from the intake tract 1 into the respective cylinders Z1 to Z4.
  • Various concrete embodiments of the physical model are explained in more detail below.
  • the delay time T_D is determined as a function of the gas mass MA_IM in the intake tract 1 and the gas mass flow MAF_CYL in the combustion chamber of the respective cylinder Z1 to Z4.
  • the block B4 is preferably a corresponding characteristic field ⁇ provided whose input the gas mass MA_IM in the intake 1 and the gas mass flow MAF_CYL in the combustion chamber of the respective cylinder is Zl to Z4.
  • the Gasmas ⁇ senstrom MAF_CYL is flowing in the first embodiment representative of the number of gas molecules per cylinder segment period of the intake 1 in the respective cylinder Zl to Z4 in the combustion chamber of the respective cylinder Zl to Z4.
  • input variables in a block B6 are the intake manifold pressure P_IM and the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4.
  • the intake manifold pressure P_IM may be determined in accordance with the intake manifold filling model of the block Bl. However, it can also be detected directly by the intake manifold pressure sensor 46.
  • the delay time period is in the T_D sau ⁇ th embodiment, preferably by means of a characteristic field depen ⁇ gig from the intake manifold pressure and the gas mass flow P_IM MAF_CYL determined in the respective combustion chamber of the respective cylinder Zl to Z4.
  • the intake manifold pressure P_IM is representative of the number of gas molecules which are located in the free volume VOL of the intake tract 1 downstream of the throttle flap 5 and upstream of the inlet in the respective cylinders Z1 to Z4.
  • the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4 is representative of the number of gas molecules which flow from the intake tract 1 into the respective cylinder Z1 to Z4 per cylinder segment duration.
  • a block B8 is provided, to which the gas mass flow MAF_CYL in the combustion chamber of the respective cylinder Z1 to Z4 and the valve lift position VL are supplied as input variables and in which the delay time duration T_D is then determined as a function thereof.
  • the gas mass flow MAF_CYL taken into the combustion chamber of the respective cylinder CYL alone is representative of the number of molecules flowing per cylinder segment from the intake tract into the respective cylinder Z1 to Z4.
  • input variables into a block BIO are the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4 and the respective valve lift mode BA_VL.
  • a first Ventilhub nowadays the internal combustion engine is operated by ent ⁇ speaking throttling by means of the throttle valve 5 at unverän ⁇ changed valve lift.
  • the throttle valve is then activated in such a way that it largely does not throttle the airflow flowing past it and a load adjustment takes place by varying the valve lift.
  • the block BIO then comprises two characteristic ⁇ fields, the one of the valve lift BA_VL are respectively assigned and the input size of the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder is Zl to Z4.
  • the combination of the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder and the valve lift mode BA_VL is representative of the number of gas molecules located in the free volume of the intake tract downstream of the throttle valve and upstream of the inlet in the respective cylinders ⁇ find.
  • a gas mass flow MAF_CYL into the combustion chamber of the respective cylinder and a pulse charging valve operating mode BA_IMP_CH are provided as input variables in a block B12.
  • the In ⁇ pulse charging valve 25 may for example be operated in two modes. In the first pulse charging mode, a throttled operation by appropriately Andros carried clauses to the throttle valve 5 without a variation of the dently ⁇ tion of the pulse charging valve 25. The load adjustment is carried out here by means of corresponding varying the opening degree THR of the throttle valve. In a second impulse charging valve Operating mode is an unthrottled operation with a con ⁇ stant differential pressure before and after the throttle valve 5 and a variable control of the pulse charging valve 25.
  • each pulse charging valve mode BA_IMP_CH own maps are assigned in the block B12, de ⁇ ren input variable then preferably in each case the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Zl to Z4.
  • the combination of the Impulslade ⁇ valve mode BA_IMP_CH and the gas mass flow MAF_CYL in the combustion chamber of the respective cylinder Zl to Z4 representative of the number of gas molecules, which are located in the free volume VOL of the intake.
  • a block 14 is provided whose input variables are the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Z1 to Z4 and the switching device position SK.
  • SK is preferred for each Heidelbergvorrich ⁇ processing position, a map is provided, the parameterssgrö ⁇ SSE of the gas mass flow MAF_CYL into the combustion chamber of the respective cylinder Zl is to Z4 and dependent delay time period from the then deferrers ⁇ T_D is determined.
  • the program is started in a step S, appropriate, variables are initialized in the gege ⁇ .
  • the starting in step Sl is preferably carried out promptly to an engine start of the internal combustion engine.
  • a step S2 it is known for the fuel to ⁇ measurement relevant fuel mass MFF_CP by Tankentlüf ⁇ tung a position before the delay period T_D on the Einlass ⁇ 30 introduced into the intake fuel mass MFF_CP (t-T_D) associated with a through tank venting.
  • the power ⁇ material mass MFF_CP by tank ventilation can be accomplished by speaking ent model of the tank ventilation device 28 till ⁇ be underestimated.
  • a step S4 it is then a dependent set by the current load already by another function fuel mass MFF, which is metered per cylinder segment ⁇ period rigiert depending on the current relevan ⁇ th fuel mass MFF_CP through tank venting suitable kor ⁇ and thus a corrected metered ⁇ fuel mass MFF_COR determined.
  • step S6 telt.
  • the program is interrupted S8 un ⁇ in one step, in which it for a predetermined waiting period o- which remains at a predetermined crankshaft angle before the processing is continued again in step S2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Stromabwärts einerDrosselklappe (5) ist mindestens ein weiteres Stellglied (12, 14) angeordnet, mittels dessen eine in einen Zylinder (71-z4) einer Brennkraftmaschine strömende Gasmasse variierbar ist. Eine Einlassstelle (30) zum Einleiten eines Tankentlüftungsstroms ist stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses vorgesehen. Die Verzögerungszeitdauer (T_D) zwischen dem Einleiten des Tankentlüftungsstroms über die Einlassstelle (70) in den Ansaugtrakt (1) bis zu dessen Einleitung in den jeweiligen Zylinder (z1-z4) der Brennkraftmaschine wird ermittelt abhängig von einem physikalischen Modell, das einen Zusammenhang abbildet zwischen einer Anzahl an Gasmolekülen, die sich in einem freien Volumen (VOL) des Ansaugtrakts stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses in den jeweiligen Zylinder befinden, und der Anzahl der Gasmoleküle, die pro Zylindersegmentzeitdauer von dem Ansaugtrakt (1) in den jeweiligen Zylinder (z1-z4) strömen.

Description

BEI EINER BRENNKRAFTMASCHINE
Beschreibung
Verfahren und Vorrichtung zum Ermitteln einer Verzögerungs¬ zeitdauer bei einer Brennkraftmaschine
An Brennkraftmaschinen werden zunehmend hohe Anforderungen bezüglich deren Leistung und Wirkungsgrad gestellt. Gleich¬ zeitig müssen aufgrund strenger gesetzlicher Vorschriften auch die Schadstoff-Emissionen gering sein. Zu diesem Zweck ist es bekannt Brennkraftmaschinen mit einer Vielzahl an Stellgliedern zum Einstellen einer Füllung in den jeweiligen Brennräumen der Zylinder der Brennkraftmaschine auszustatten, wobei die Füllung vor der Verbrennung aus einem Gemisch aus Luft, Kraftstoff und gegebenenfalls auch Abgasen besteht. So sind zum Beispiel Phasen-Verstelleinrichtungen bekannt, mit¬ tels derer eine Phase zwischen einer Kurbelwelle und einer Nockenwelle der Brennkraftmaschine verändert werden kann und somit der jeweilige Beginn und das jeweilige Ende des Öffnens beziehungsweise Schließens der Gaseinlass- und Gasauslassven¬ tile verändert werden kann. Darüber hinaus sind auch Ventil¬ hub-Verstelleinrichtungen bekannt, mittels derer ein Ventil¬ hub des Gaseinlassventils oder auch eines Gasauslassventils der Brennkraftmaschine zwischen einem geringen und einem ho¬ hen Ventilhub verstellt werden kann.
Ferner sind Brennkraftmaschinen regelmäßig mit Tankentlüf¬ tungsvorrichtungen ausgestattet, durch die Kraftstoff- Verdunstungsemissionen eines Tanks eines Fahrzeugs, in dem die Brennkraftmaschine anordenbar ist, in einem Aktivkohlebe¬ hälter zwischengespeichert werden. In regelmäßigen Abständen wird mittels eines so genannten Tankentlüftungsventils der Aktivkohlebehälter regeneriert. Dabei gibt das Tankentlüf¬ tungsventil eine Verbindung zu dem Ansaugtrakt der Brenn- kraftmaschine frei. Der in dem Aktivkohlebehälter gebundene Kraftstoff kann so in den Ansaugtrakt der Brennkraftmaschine einströmen und in dem jeweiligen Zylinder der Brennkraftma¬ schine verbrannt werden. Für einen präzisen und auch emissi¬ onsarmen Betrieb der Brennkraftmaschine ist ein genaues Be¬ rücksichtigen dieser so zusätzlich eingebrachten Kraftstoff¬ menge wichtig.
Die Aufgabe der Erfindung ist es, ein Verfahren und eine Vor¬ richtung zu schaffen, das bzw. die ein präzises Ermitteln ei¬ ner Verzögerungszeitdauer bei einer Brennkraftmaschine ermög¬ licht.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch ein Verfahren und eine entsprechende Vorrichtung zum Ermitteln einer Verzögerungs¬ zeitdauer bei einer Brennkraftmaschine mit einem Ansaugtrakt, in dem als Stellglied eine Drosselklappe angeordnet ist. Der Ansaugtrakt mündet in mindestens einen Einlass mindestens ei¬ nes Zylinders. Ferner ist stromabwärts der Drosselklappe min¬ destens ein weiteres Stellglied angeordnet ist, mittels des¬ sen eine in den jeweiligen Zylinder der Brennkraftmaschine strömende Gasmasse variierbar ist. Ferner ist in dem Ansaug¬ trakt eine Einlassstelle zum Einleiten eines Tankentlüftungs¬ stroms stromabwärts der Drosselklappe und stromaufwärts des Einlasses vorgesehen. Die Verzögerungszeitdauer zwischen dem Einleiten des Tankentlüftungsstroms über die Einlassstelle in dem Ansaugtrakt bis zu dessen Einleitung in den jeweiligen Zylinder der Brennkraftmaschine wird ermittelt abhängig von einem physikalischen Modell, das einen Zusammenhang abbildet zwischen einer Anzahl an Gasmolekülen, die sich in einem freien Volumen des Ansaugtraktes stromabwärts der Drossel¬ klappe und stromaufwärts des Einlasses in den jeweiligen Zy¬ linder befinden, und der Anzahl der Gasmoleküle, die pro Zy¬ lindersegmentzeitdauer von dem Ansaugtrakt in den jeweiligen Zylinder strömen.
Die Erfindung nutzt so die Erkenntnis, dass bei Vorhandensein des weiteren Stellgliedes die Verzögerungszeitdauer sehr prä¬ zise bestimmbar ist. Das physikalische Modell kann als Ein¬ gangsgrößen direkt die jeweilige Anzahl der Gasmoleküle ha¬ ben, es kann jedoch auch entsprechend andere für die Anzahl der Gasmoleküle repräsentative Größen als Eingangsgrößen ha¬ ben. Dies können z. B. eine Dichte oder ein Gasmassenstrom oder eine Gasmasse sein.
Unter einer Zylindersegmentzeitdauer ist diejenige Zeitdauer zu verstehen, die ein Arbeitsspiel benötigt dividiert durch die Anzahl der Zylinder der Brennkraftmaschine. Bei einer Viertaktbrennkraftmaschine mit beispielsweise vier Zylindern ergibt sich somit die Zylindersegmentzeitdauer aus dem Kehr¬ wert der halben Drehzahl dividiert durch die Anzahl der Zy¬ linder der Brennkraftmaschine.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung hängt das physikalische Modell ab von einem Gasmassenstrom in die Zylinder und einer Gasmasse in dem Ansaugtrakt, die sich in dem freien Volumen des Ansaugtrakts befindet. Der Gasmassen¬ strom in die Zylinder und die Gasmasse in dem Ansaugtrakt können sehr einfach und genau bestimmt werden, wenn ein dyna¬ misches Saugrohrmodell für Steuerungszwecke der Brennkraftma¬ schine ohnehin vorhanden ist. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin¬ dung hängt das physikalische Modell ab von dem Gasmassenstrom in die Zylinder und einem Saugrohrdruck in dem Ansaugtrakt. Dies ist besonders einfach, wenn der Saugrohrdruck ohnehin für andere Steuerungszwecke erfasst wird.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin¬ dung hängt das physikalische Modell ab von einer Stellung des weiteren Stellglieds und dem Gasmassenstrom in die Zylinder der Brennkraftmaschine. Auf diese Weise ist das physikalische Modell besonders einfach implementierbar, insbesondere dann, wenn das weitere Stellglied nur eine geringe Anzahl verschie¬ dener Stellungen einnehmen kann. In diesem Zusammenhang ist es besonders vorteilhaft, wenn für jede Stellung des weiteren Stellglieds ein eigenes Kennfeld vorgesehen ist, aus dem die Verzögerungszeitdauer abhängig von dem Gasmassenstrom in die Zylinder der Brennkraftmaschine ermittelt wird. Unter dem Begriff des Kennfelds wird in diesem Zusammenhang auch eine Kennlinie verstanden. Derartige Kennfelder können besonders einfach empirisch ermittelt werden und in einem Datenspeicher abgespeichert werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin¬ dung hängt das physikalische Modell ab von der Stellung des weiteren Stellglieds und dem Saugrohrdruck in dem Ansaug¬ trakt. So ist das physikalische Modell besonders einfach imp¬ lementierbar, insbesondere dann, wenn der Saugrohrdruck ohne¬ hin für andere Steuerungszwecke erfasst wird.
In diesem Zusammenhang ist es ferner vorteilhaft, wenn für jede Stellung des weiteren Stellglieds ein eigenes Kennfeld vorgesehen ist, aus dem die Verzögerungszeitdauer abhängig von dem Saugrohrdruck in dem Ansaugtrakt ermittelt wird. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin¬ dung hängt das physikalische Modell ab von einer Betriebsart des weiteren Stellglieds und dem Gasmassenstrom in den jewei¬ ligen Zylinder der Brennkraftmaschine.
So kann einfach die Verzögerungszeitdauer präzise ermittelt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfin¬ dung hängt das physikalische Modell ab von der Betriebsart des weiteren Stellglieds und dem Saugrohrdruck in dem Ansaug¬ trakt. So kann einfach die Verzögerungszeitdauer präzise er¬ mittelt werden.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Brennkraftmaschine mit einer Steuervorrichtung und
Figur 2 ein Blockdiagramm von relevanten Teilen der Steuer¬ vorrichtung gemäß Figur 1.
Elemente gleicher Konstruktion oder Funktion sind figuren¬ übergreifend mit den gleichen Bezugskennzeichen gekennzeich¬ net.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgas¬ trakt 4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drossel¬ klappe 5, ferner einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder Zl über einen Einlasskanal in den Motor¬ block 2 geführt ist. Der Motorblock 2 umfasst ferner eine Kurbelwelle 8, welche über eine Pleuelstange 10 mit dem Kol¬ ben 11 des Zylinders Zl gekoppelt ist.
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit einem Gas¬ einlassventil 12, einem Gasauslassventil 13 und Ventilantrie¬ be 14, 15.
Eine Nockenwelle ist vorgesehen, die über Nocken auf das Gas¬ einlassventil 12 und das Gasauslassventil 13 einwirkt. Bevor¬ zugt ist jeweils dem Gaseinlassventil 12 und dem Gasauslass¬ ventil 13 eine separate Nockenwelle zugeordnet. Ferner kann eine Ventilhub-Verstelleinrichtung 19 vorgesehen sein, die derart ausgebildet ist, dass durch sie ein Ventilhub des Gas¬ einlassventils 12 variierbar ist. Sie kann beispielsweise so ausgebildet sein, dass sie entweder einen ersten Nocken zum Einwirken auf einen Stößel des Gaseinlassventils bringen kann mit der Folge, dass dann das Gaseinlassventil einen niedrigen Ventilhub durchführt, oder dass sie einen weiteren Nocken zum Einwirken auf den Stößel des Gaseinlassventils 12 bringen kann mit der Folge, dass dann das Gaseinlassventil 12 einen hohen Ventilhub durchführt. Je nach Ventilhub-Stellung VL ist somit dann ein während eines Arbeitsspiels des jeweiligen Zy¬ linders Zl durchgeführter Ventilhub des Gaseinlassventils 12 unterschiedlich. Die Ventilhub-Verstelleinrichtung 19 kann auch zum kontinuierlichen Variieren des Ventilhubs des Gas¬ einlassventils 12 ausgebildet sein. Dies ermöglicht eine Be¬ triebsart in der eine Laststeuerung durch Variieren des Ven¬ tilhubs des Gaseinlassventils erfolgt.
Darüber hinaus kann auch eine Phasen-Verstelleinrichtung 20 vorgesehen sein, mittels der ein Kurbelwellenwinkelbereich während eines Arbeitsspiels des jeweiligen Zylinders, in dem das Gaseinlassventil 12 den Einlass freigibt, veränderbar ist. Auf diese Weise kann dann auch eine so genannte Ventil¬ überschneidung eingestellt werden, die dadurch gekennzeichnet ist, dass sowohl das Gaseinlassventil als auch das Gasaus¬ lassventil gleichzeitig den Einlass bzw. Auslass des Zylin¬ ders freigeben.
Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 22 und eine Zündkerze 23. Alternativ kann das Einspritzventil 22 auch in dem Saugrohr 7 angeordnet sein.
In dem Ansaugtrakt 1 oder jeweils in dem Einlass hin zu dem Zylinder Zl kann ferner ein Impulsladeventil 25 angeordnet sein, das je nach seiner Stellung entweder das jeweilige Saugrohr, in dem es angeordnet ist, oder den jeweiligen Ein¬ lass verschließt oder freigibt. Ein derartiges Impulsladeven¬ til 25 kann dazu genutzt werden, die Gasfüllung des Zylinders Zl zu verbessern. Das Impulsladeventil 25 kann auch durch entsprechende Variation seiner Ansteuerzeiten zur Lastein¬ stellung eingesetzt werden.
Ferner kann in dem Ansaugtrakt 1 auch eine Schaltvorrichtung 26 zum Einstellen einer effektiven Saugrohrlänge vorgesehen sein. Die Schaltvorrichtung kann so beispielsweise als Schaltklappe ausgebildet sein, durch die eine Kommunikation zwischen einzelnen Saugrohren, die verschiedenen Zylindern der Brennkraftmaschine zugeordnet sind, ermöglicht oder un¬ terbunden wird, oder eine Luftzufuhr über verschiedene Ab¬ schnitte ein und desselben Saugrohres oder verschiedener Saugrohre alternativ zu ermöglichen. Eine derartige Schalt¬ vorrichtung kann darüber hinaus auch so ausgebildet sein, dass sich abhängig von ihrer Stellung ein freies Volumen in dem Ansaugtrakt 1, das zum Ansaugen der Luft in den Zylinder 1 zur Verfügung steht, geändert werden kann.
Ferner umfasst die Brennkraftmaschine eine Tankentlüftungs¬ vorrichtung 28, die Kraftstoffdämpfe aus einem Tanksystem der Brennkraftmaschine in einem Speicher zwischenspeichert, der bevorzugt als Aktivkohlebehälter ausgebildet ist, und dann den Speicher in geeigneten Betriebssituationen der Brenn¬ kraftmaschine wieder regeneriert. Dazu umfasst die Tankent¬ lüftungsvorrichtung 28 ein Tankentlüftungsventil 29. In einer Offenstellung des Tankentlüftungsventils 29 kann ein mit Kraftstoff angereicherter Tankentlüftungsstrom von der Tank¬ entlüftungsvorrichtung über eine Einlassstelle 30, die strom¬ abwärts der Drosselklappe 5 in den Ansaugtrakt 1 mündet, in den Ansaugtrakt 1 strömen. In einer Schließstellung des Tank¬ entlüftungsventils 29 strömt kein Tankentlüftungsstrom in den Ansaugtrakt 1.
Ferner ist eine Steuervorrichtung 34 vorgesehen, der Senso¬ ren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Wert der Messgröße ermitteln. Die Steuervorrich¬ tung ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden. Die Steuervorrichtung 34 kann auch als Vor¬ richtung zum Steuern der Brennkraftmaschine bezeichnet wer¬ den.
Die Sensoren sind ein Pedalstellungsgeber 36, welcher eine Fahrpedalstellung eines Fahrpedals 38 erfasst, ein Luftmas¬ sensensor 40, welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein Drosselklappenstellungssensor 42, welcher einen Öffnungsgrad THR der Drosselklappe 5 er- fasst, ein erster Temperatursensor 44, welcher eine Ansaug¬ luft-Temperatur T_IM erfasst, ein Saugrohrdrucksensor 46, welcher einen Saugrohrdruck P_IM in dem Sammler 6 erfasst, ein Kurbelwellenwinkelsensor 48, welcher einen Kurbelwellen¬ winkel erfasst, dem dann eine Drehzahl N zugeordnet wird. Ein zweiter Temperatursensor 50 erfasst eine Kühlmitteltempera¬ tur. Ferner ist ein Nockenwellenwinkelsensor 52 vorgesehen, welcher einen Nockenwellenwinkel erfasst. Falls zwei Nocken¬ wellen vorhanden sind, ist bevorzugt jeder Nockenwelle ein Nockenwellenwinkelsensor 52 zugeordnet. Ferner ist bevorzugt eine Abgassonde 54 vorgesehen, welche einen Restsauerstoffge¬ halt des Abgases erfasst und deren Messsignal charakteris¬ tisch ist für das Luft-/Kraftstoff-Verhältnis in dem Zylinder Zl.
Je nach Ausführungsform der Erfindung kann eine beliebige Un¬ termenge der genannten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein.
Die Stellglieder sind beispielsweise die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12, 13, die Ventilhub- Verstelleinrichtung 19, die Phasen-Verstelleinrichtung 20, das Einspritzventil 22, die Zündkerze 23, das Impuls- Ladeventil 25, die Schaltvorrichtung 26 zum Einstellen einer effektiven Saugrohrlänge oder das Tankentlüftungsventil 29.
Neben dem Zylinder Zl sind bevorzugt auch noch weitere Zylin¬ der Z2 bis Z4 vorgesehen, denen dann auch entsprechende Stellglieder und ggf. Sensoren zugeordnet sind.
In Figur 2 ist ein Blockdiagramm für die Erfindung relevanter Blöcke der Steuervorrichtung 34 dargestellt. Ein Block Bl um- fasst ein Saugrohrfüllungsmodell, mittels dessen ein Gasmas- senstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 und der Saugrohrdruck P_IM präzise auch in instationä¬ ren Betriebsphasen der Brennkraftmaschine ermittelt werden können. Ein derartiges Saugrohrfüllungsmodell ist dem Fach¬ mann beispielsweise aus dem einschlägigen Fachbuch "Handbuch Verbrennungsmotor, Grundlagen, Komponenten, Systeme, Perspek¬ tiven", Richard van Basshuysen/Fred Schäfer, 2. Auflage 2002, Vieweg & Sohn Verlagsgesellschaft mbH, Braun¬ schweig/Wiesbaden, Seiten 557-559, bekannt, dessen Inhalt hiermit diesbezüglich einbezogen ist. Ferner ist ein derarti¬ ges Saugrohrfüllungsmodell ebenfalls aus der WO 97/35106 A2 bekannt, deren Inhalt hiermit diesbezüglich ebenfalls einbe¬ zogen ist.
Der Gasmassenstrom MAF_CYL wird mittels eines abschnittsweise linearen Ansatzes abhängig von dem Saugrohrdruck P_IM ermit¬ telt. Die einzelnen Geradenabschnitte dieses abschnittsweise linearen Ansatzes unterscheiden sich durch ihren jeweiligen Offset und die jeweilige Geradensteigung. Der jeweilige Off¬ set und die jeweilige Geradensteigung sind in Kennfeldern ab¬ hängig von einem Umgebungsdruck P_AMB und/oder einem Abgasge¬ gendruck P_EXH und/oder der Drehzahl N und/oder der Ventil¬ überschneidung VO und/oder der Schaltvorrichtungsstellung SK und/oder der Ventilhubstellung und/oder der Impulsladeventil- Stellung IMP_CH und gegebenenfalls weiteren Größen abgelegt. Die Kennfelder sind vorab durch entsprechende Versuche an ei¬ nem Motorprüfstand oder auch durch Simulationen ermittelt und in einem Datenspeicher der Steuervorrichtung 34 gespeichert.
Der Saugrohrdruck P_IM wird ermittelt abhängig von dem Gas¬ massenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4, der Drehzahl N, dem Drosselklappenöffnungsgrad THR, der Ansauglufttemperatur T_IM, dem Umgebungsdruck P_AMB, der SchaltvorrichtungsStellung SK, dem Abgasgegendruck P_EXH, der Abgastemperatur T_EXH und gegebenenfalls weiteren Größen oder auch nur einer Untermenge der genannten Größen.
Der Abgasgegendruck P_EXH kann einfach mittels eines weiteren Modells abhängig von der jeweils eingespritzten Kraftstoff¬ masse und/oder der zugeführten Gasmasse MAF_CYL in den Brenn¬ raum des jeweiligen Zylinders abgeschätzt werden. Der Umge¬ bungsdruck P_AMB kann entweder mittels eines geeigneten Drucksensors direkt erfasst werden. Er kann jedoch alternativ auch erfasst werden durch den Saugrohrdrucksensor 46 in einer Stellung der Drosselklappe 5, in der diese die Ansaugluft na¬ hezu nicht drosselt. Die Abgastemperatur T_EXH wird entweder mittels eines geeignet angeordneten weiteren Temperatursen¬ sors direkt erfasst oder auch abhängig von der zuzumessenden Kraftstoffmasse und/oder dem Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 abgeschätzt. Das Ermitteln des Saugrohrdrucks P_IM mittels des dynamischen Saugrohrfüllungsmodells basiert bevorzugt auf einer numeri¬ schen Lösung der idealen Gasdifferenzialgleichung.
In einem Block B2 wird eine Gasmasse MA_IM in dem Ansaugtrakt 1 ermittelt, die sich in einem freien Volumen VOL des Ansaug¬ trakts 1 stromabwärts der Drosselklappe 5 und stromaufwärts des Einlasses in den jeweiligen Zylinder Zl bis Z4 befindet. Dies erfolgt mittels der in dem Block B2 angegebenen Bezie¬ hung. Hierbei bezeichnet R die allgemeine Gaskonstante. Die Gasmasse MA_IM in dem Ansaugtrakt ist repräsentativ für eine Anzahl an Gasmolekülen, die sich in dem freien Volumen VOL des Ansaugtrakts 1 stromabwärts der Drosselklappe 5 und stromaufwärts des Einlasses in den jeweiligen Zylinder Zl bis Z4 befinden. In einem Block B3 ist ein physikalisches Modell abgelegt, das einen Zusammenhang abbildet zwischen einer Anzahl an Molekü¬ len, die sich in dem freien Volumen VOL des Ansaugtrakts 1 stromabwärts der Drosselklappe 5 und stromaufwärts des Ein¬ lasses in den jeweiligen Zylinder Zl bis Z4 befinden, und der Anzahl der Gasmoleküle, die pro Zylindersegmentzeitdauer von dem Ansaugtrakt 1 in den jeweiligen Zylinder Zl bis Z4 strö¬ men. Verschiedene konkrete Ausgestaltungen des physikalischen Modells sind im Folgenden näher erläutert.
Bei einer ersten Ausführungsform des physikalischen Modells wird die Verzögerungszeitdauer T_D abhängig von der Gasmasse MA_IM in dem Ansaugtrakt 1 und dem Gasmassenstrom MAF_CYL in dem Brennraum des jeweiligen Zylinders Zl bis Z4 ermittelt. Dazu ist in dem Block B4 bevorzugt ein entsprechendes Kenn¬ feld vorgesehen, dessen Eingangsgröße die Gasmasse MA_IM in dem Ansaugtrakt 1 und der Gasmassenstrom MAF_CYL in dem Brennraum des jeweiligen Zylinders Zl bis Z4 ist. Der Gasmas¬ senstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 ist bei der ersten Ausführungsform repräsentativ für die Anzahl der Gasmoleküle, die pro Zylindersegmentzeitdauer von dem Ansaugtrakt 1 in den jeweiligen Zylinder Zl bis Z4 strömen.
Bei einer zweiten Ausführungsform des physikalischen Modells sind Eingangsgrößen in einem Block B6 der Saugrohrdruck P_IM und der Gasmassenstrom MAF_CYL in den Brennraum des jeweili¬ gen Zylinders Zl bis Z4. Der Saugrohrdruck P_IM kann gemäß dem Saugrohrfüllungsmodell des Blocks Bl ermittelt sein. Er kann jedoch auch direkt durch den Saugrohrdrucksensor 46 er- fasst sein. Die Verzögerungszeitdauer T_D wird bei der zwei¬ ten Ausführungsform bevorzugt mittels eines Kennfeldes abhän¬ gig von dem Saugrohrdruck P_IM und dem Gasmassenstrom MAF_CYL in den jeweiligen Brennraum des jeweiligen Zylinders Zl bis Z4 ermittelt. Der Saugrohrdruck P_IM ist bei der zweiten Aus¬ führungsform repräsentativ für die Anzahl an Gasmolekülen, die sich in dem freien Volumen VOL des Ansaugtrakts 1 strom¬ abwärts der Drosselklappe 5 und stromaufwärts des Einlasses in den jeweiligen Zylinder Zl bis Z4 befinden. Der Gasmassen¬ strom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 ist hingegen repräsentativ für die Anzahl der Gasmole¬ küle, die pro Zylindersegmentzeitdauer von dem Ansaugtrakt 1 in den jeweiligen Zylinder Zl bis Z4 strömen.
Gemäß einer dritten Ausführungsform des physikalischen Mo¬ dells ist ein Block B8 vorgesehen, dem als Eingangsgrößen der Gasmassenstrom MAF_CYL in dem Brennraum des jeweiligen Zylin¬ ders Zl bis Z4 und die Ventilhubstellung VL zugeführt sind und in dem dann abhängig davon die Verzögerungszeitdauer T_D ermittelt wird. Dies erfolgt bevorzugt bei diskret veränder¬ lichem Ventilhub VL mittels je eines Kennfeldes, das der je¬ weiligen Ventilhubstellung VL zugeordnet ist und in dem die jeweilige VerzögerungsZeitdauer T_D dann abhängig von dem Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylin¬ ders Zl bis Z4 ermittelt wird. Die Kombination aus der Ven¬ tilhubstellung VL und dem Gasmassenstrom MAF_CYL ist bei der dritten Ausführungsform repräsentativ für die Anzahl der Gas¬ moleküle, die sich in dem freien Volumen VOL des Ansaugtrakts 1 stromabwärts der Drosselklappe und stromaufwärts des Ein¬ lasses in den jeweiligen Zylinder Zl bis Z4 befinden. Der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylin¬ ders CYL für sich genommen ist bei dieser dritten Ausfüh¬ rungsform repräsentativ für die Anzahl der Moleküle, die pro Zylindersegment von dem Ansaugtrakt in den jeweiligen Zylin¬ der Zl bis Z4 strömen. Bei einer vierten Ausführungsform des physikalischen Modells sind Eingangsgrößen in einen Block BIO der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 und die jeweilige Ventilhubbetriebsart BA_VL. In einer ersten Ventilhubbetriebsart wird die Brennkraftmaschine durch ent¬ sprechendes Drosseln mittels der Drosselklappe 5 bei unverän¬ derten Ventilhub betrieben. In einer zweiten Ventilhubbe¬ triebsart wird dann die Drosselklappe so angesteuert, dass sie den an ihr vorbeiströmenden Luftstrom weitgehend nicht drosselt und eine Lasteinstellung durch Variieren des Ventil¬ hubs erfolgt. Bevorzugt umfasst der Block BIO dann zwei Kenn¬ felder, die jeweils einer der Ventilhubbetriebsarten BA_VL zugeordnet sind und deren Eingangsgröße der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 ist. Bei der vierten Ausführungsform ist die Kombination aus dem Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders und die Ventilhubbetriebsart BA_VL repräsentativ für die Anzahl der Gasmoleküle, die sich in dem freien Volu¬ men des Ansaugtrakts stromabwärts der Drosselklappe und stromaufwärts des Einlasses in den jeweiligen Zylindern be¬ finden.
Bei einer fünften Ausführungsform des physikalischen Modells sind in einem Block B12 als Eingangsgrößen ein Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders und eine Impulsladeventil-Betriebsart BA_IMP_CH vorgesehen. Das Im¬ pulsladeventil 25 kann beispielsweise in zwei Betriebsarten betrieben werden. Bei der ersten Impulsladeventil-Betriebsart erfolgt ein gedrosselter Betrieb durch entsprechendes Andros- seln mit der Drosselklappe 5 ohne eine Variation der Ansteue¬ rung des Impulsladeventils 25. Die Lasteinstellung erfolgt hier mittels entsprechenden Variierens des Öffnungsgrades THR der Drosselklappe. In einer zweiten Impulsladeventil- Betriebsart erfolgt ein ungedrosselter Betrieb mit einem kon¬ stanten Differenzdruck vor und nach der Drosselklappe 5 und einer variablen Ansteuerung des Impulsladeventils 25. In die¬ sem Fall sind bevorzugt jeder Impulsladeventil-Betriebsart BA_IMP_CH eigene Kennfelder in dem Block B12 zugeordnet, de¬ ren Eingangsgröße dann jeweils der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 ist. Bei der fünften Ausführungsform ist die Kombination der Impulslade¬ ventil-Betriebsart BA_IMP_CH und des Gasmassenstroms MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 repräsen¬ tativ für die Anzahl der Gasmoleküle, die sich in dem freien Volumen VOL des Ansaugtrakts befinden.
Bei einer sechsten Ausführungsform des physikalischen Modells ist ein Block 14 vorgesehen, dessen Eingangsgrößen der Gas¬ massenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 und die Schaltvorrichtungsstellung SK ist. Bei die¬ ser Ausführungsform ist bevorzugt für jede Schaltvorrich¬ tungsstellung SK ein Kennfeld vorgesehen, dessen Eingangsgrö¬ ße der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders Zl bis Z4 ist und abhängig von dem dann die Verzö¬ gerungszeitdauer T_D ermittelt wird. Bei der sechsten Ausfüh¬ rungsform ist die Kombination aus der Schaltvorrichtungsstel¬ lung SK und dem Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders repräsentativ für die Anzahl an Gasmole¬ külen, die sich in dem freien Volumen des Ansaugtrakts 1 be¬ finden. Hingegen der Gasmassenstrom MAF_CYL in den Brennraum des jeweiligen Zylinders ist für sich repräsentativ für die Anzahl der Gasmoleküle, die pro Zylindersegmentzeitdauer von dem Ansaugtrakt 1 in den jeweiligen Zylinder Zl bis Z4 strö¬ men. In einem Block B16 wird ein Programm zum Steuern der Brenn¬ kraftmaschine abgearbeitet, das im Folgenden anhand der Figur 3 und des dort dargestellten Ablaufdiagramms näher erläutert ist.
Das Programm wird in einem Schritt Sl gestartet, in dem gege¬ benenfalls Variablen initialisiert werden. Das Starten in Schritt Sl erfolgt bevorzugt zeitnah zu einem Motorstart der Brennkraftmaschine.
In einem Schritt S2 wird eine aktuell für die Kraftstoffzu¬ messung relevanten Kraftstoffmasse MFF_CP durch Tankentlüf¬ tung eine vor der Verzögerungszeitdauer T_D über die Einlass¬ stelle 30 in den Ansaugtrakt eingeleitete Kraftstoffmasse MFF_CP (t-T_D) durch Tankentlüftung zugeordnet. Die Kraft¬ stoffmasse MFF_CP durch Tankentlüftung kann durch ein ent¬ sprechendes Modell der Tankentlüftungsvorrichtung 28 abge¬ schätzt werden.
In einem Schritt S4 wird anschließend eine abhängig von der aktuellen Last bereits durch eine andere Funktion vorgegebene zuzumessende Kraftstoffmasse MFF, die pro Zylindersegment¬ zeitdauer zugemessen wird, abhängig von der aktuell relevan¬ ten Kraftstoffmasse MFF_CP durch Tankentlüftung geeignet kor¬ rigiert und somit eine korrigierte zuzumessende Kraftstoff¬ masse MFF_COR ermittelt.
In einem Schritt S6 wird dann anschließend abhängig von der korrigierten zuzumessenden Kraftstoffmasse MFF_COR das ent¬ sprechende Stellsignal SG_INJ zum Ansteuern des jeweiligen Einspritzventils 23 der jeweiligen Zylinder Zl bis Z4 ermit¬ telt. Anschließend wird das Programm in einem Schritt S8 un¬ terbrochen, in dem es für eine vorgegebene Wartezeitdauer o- der einen vorgegebenen Kurbelwellenwinkel verharrt, bevor die Bearbeitung erneut in dem Schritt S2 fortgesetzt wird.

Claims

Patentansprüche
1. Verfahren zum Ermitteln einer Verzögerungszeitdauer (T_D) bei einer Brennkraftmaschine mit einem Ansaugtrakt (1), der in mindestens einen Einlass mindestens eines Zylinders (Zl bis Z4) mündet und in dem als Stellglied eine Drosselklappe
(5) angeordnet ist und in dem stromabwärts der Drosselklappe (5) mindestens ein weiteres Stellglied angeordnet ist, mit¬ tels dessen eine in den Zylinder (Zl bis Z4) der Brennkraft¬ maschine strömende Gasmasse variierbar ist, mit einer Ein¬ lassstelle (30) zum Einleiten eines Tankentlüftungsstroms in den Ansaugtrakt (1) stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses in den jeweiligen Zylinder der Brennkraftmaschine, bei dem
- die Verzögerungszeitdauer (T_D) zwischen dem Einleiten des Tankentlüftungsstroms über die Einlassstelle (30) in den An¬ saugtrakt (1) bis zu dessen Einleitung in den jeweiligen Zy¬ linder (Zl bis Z4) ermittelt wird, abhängig von einem physi¬ kalischen Modell, das einen Zusammenhang abbildet zwischen einer Anzahl an Gasmolekülen, die sich in einem freien Volu¬ men (VOL) des Ansaugtrakts (1) stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses in den jeweiligen Zylin¬ der (Zl bis Z4) befinden, und der Anzahl der Gasmoleküle, die pro ZylindersegmentZeitdauer von dem Ansaugtrakt (1) in den jeweiligen Zylinder (Zl bis Z4) strömen.
2. Verfahren nach Anspruch 1, bei dem das physikalische Mo¬ dell abhängt von einem Gasmassenstrom (MAF_CYL) in die Zylin¬ der und einer Gasmasse (MA_IM) in dem Ansaugtrakt (1), die sich in dem freien Volumen (VOL) des Ansaugtrakts befindet.
3. Verfahren nach einem der vorstehenden Ansprüche, bei dem das physikalische Modell abhängt von dem Gasmassenstrom (MAF_CYL) in die Zylinder und einem Saugrohrdruck (P_IM) in dem Ansaugtrakt (1) .
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem das physikalische Modell abhängt von einer Stellung des wei¬ teren Stellglieds und dem Gasmassenstrom (MAF_CYL) in den je¬ weiligen Zylinder.
5. Verfahren nach Anspruch 4, bei dem für jede Stellung des weiteren Stellglieds ein eigenes Kennfeld vorgesehen ist, aus dem die Verzögerungszeitdauer (T_D) abhängig von dem Gasmas¬ senstrom (MAF_CYL) in die Zylinder der Brennkraftmaschine er¬ mittelt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, bei dem das physikalische Modell abhängt von der Stellung des weite¬ ren Stellglieds und dem Saugrohrdruck (P_IM) in dem Ansaug¬ trakt (1) .
7. Verfahren nach Anspruch 6, bei dem für jede Stellung des weiteren Stellglieds ein eigenes Kennfeld vorgesehen ist, aus dem die Verzögerungszeitdauer (T_D) abhängig von dem Saug¬ rohrdruck (P_IM) in dem Ansaugtrakt (1) ermittelt wird.
8. Verfahren nach einem der vorstehenden Ansprüche, bei dem das physikalische Modell abhängt von einer Betriebsart des weiteren Stellglieds und dem Gasmassenstrom (MAF_CYL) in den jeweiligen Zylinder (Zl bis Z4) der Brennkraftmaschine.
9. Verfahren nach einem der vorstehenden Ansprüche, bei dem das physikalische Modell abhängt von einer Betriebsart des weiteren Stellglieds und dem Saugrohrdruck (P_IM) in dem An¬ saugtrakt (1) .
10. Vorrichtung zum Ermitteln einer Verzögerungszeitdauer (T_D) bei einer Brennkraftmaschine mit einem Ansaugtrakt (1), der in mindestens einen Einlass mindestens eines Zylinders (Zl bis Z4) mündet und in dem als Stellglied eine Drossel¬ klappe (5) angeordnet ist und in dem stromabwärts der Dros¬ selklappe (5) mindestens ein weiteres Stellglied angeordnet ist, mittels dessen eine in den Zylinder (Zl bis Z4) der Brennkraftmaschine strömende Gasmasse variierbar ist, mit ei¬ ner Einlassstelle (30) zum Einleiten eines Tankentlüftungs¬ stroms in den Ansaugtrakt (1) stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses in den jeweiligen Zylin¬ der der Brennkraftmaschine, wobei die Vorrichtung ausgebildet ist zum
- Ermitteln der Verzögerungszeitdauer (T_D) zwischen dem Ein¬ leiten des Tankentlüftungsstroms über die Einlassstelle (30) in den Ansaugtrakt (1) bis zu dessen Einleitung in den jewei¬ ligen Zylinder (Zl bis Z4), abhängig von einem physikalischen Modell, das einen Zusammenhang abbildet zwischen einer Anzahl an Gasmolekülen, die sich in einem freien Volumen (VOL) des Ansaugtrakts (1) stromabwärts der Drosselklappe (5) und stromaufwärts des Einlasses in den jeweiligen Zylinder (Zl bis Z4) befinden, und der Anzahl der Gasmoleküle, die pro Zy¬ lindersegmentzeitdauer von dem Ansaugtrakt (1) in den jewei¬ ligen Zylinder (Zl bis Z4) strömen.
PCT/EP2005/054591 2004-10-06 2005-09-15 Verfahren und vorrichtung zum ermitteln einer gastransportverzögerungszeitdauer bei einer brennkraftmaschine WO2006037717A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048705.7 2004-10-06
DE200410048705 DE102004048705A1 (de) 2004-10-06 2004-10-06 Verfahren und Vorrichtung zum Ermitteln einer Verzögerungszeitdauer bei einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2006037717A1 true WO2006037717A1 (de) 2006-04-13

Family

ID=35462248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054591 WO2006037717A1 (de) 2004-10-06 2005-09-15 Verfahren und vorrichtung zum ermitteln einer gastransportverzögerungszeitdauer bei einer brennkraftmaschine

Country Status (2)

Country Link
DE (1) DE102004048705A1 (de)
WO (1) WO2006037717A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057726A1 (de) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gaszufuhrmodul
US11035311B2 (en) * 2018-12-17 2021-06-15 Hyundai Motor Company Method for controlling air-fuel ratio of vehicle having variable valve duration apparatus and active purge system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023853A1 (de) * 2006-05-19 2007-11-22 Mahle International Gmbh Verfahren zum Steuern einer Brennkraftmaschine
DE102007062171B4 (de) * 2007-12-21 2021-03-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343846A (en) * 1992-11-26 1994-09-06 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
DE19844086A1 (de) * 1998-09-25 1999-11-18 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
US20010032637A1 (en) * 1999-03-08 2001-10-25 Malcolm James Grieve Fuel control system with purge gas modeling and integration
DE10257756A1 (de) * 2001-12-10 2003-07-24 Ford Global Tech Inc Verfahren zur Behälterspülungskompensation unter Verwendung einer Regelung mit einem internen Modell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830300C2 (de) * 1998-07-07 2000-05-18 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10200533B4 (de) * 2002-01-09 2006-04-20 Robert Bosch Gmbh Verfahren und Einrichtung zur Unterdruckerzeugung an Verbrennungskraftmaschinen
DE10222137B3 (de) * 2002-05-17 2004-02-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343846A (en) * 1992-11-26 1994-09-06 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
DE19844086A1 (de) * 1998-09-25 1999-11-18 Siemens Ag Einrichtung zum Steuern einer Brennkraftmaschine
US20010032637A1 (en) * 1999-03-08 2001-10-25 Malcolm James Grieve Fuel control system with purge gas modeling and integration
DE10257756A1 (de) * 2001-12-10 2003-07-24 Ford Global Tech Inc Verfahren zur Behälterspülungskompensation unter Verwendung einer Regelung mit einem internen Modell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057726A1 (de) * 2008-11-21 2010-05-27 Robert Bosch Gmbh Gaszufuhrmodul
US11035311B2 (en) * 2018-12-17 2021-06-15 Hyundai Motor Company Method for controlling air-fuel ratio of vehicle having variable valve duration apparatus and active purge system

Also Published As

Publication number Publication date
DE102004048705A1 (de) 2006-04-20

Similar Documents

Publication Publication Date Title
WO2006069853A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1115964B1 (de) Verfahren zum steuern einer brennkraftmaschine abhängig von einem abgasdruck
DE102006061659B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
WO2006015929A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102012214676B4 (de) Verfahren und Vorrichtung zur Steuerung eines gasbetriebenen Verbrennungsmotors
WO2006037717A1 (de) Verfahren und vorrichtung zum ermitteln einer gastransportverzögerungszeitdauer bei einer brennkraftmaschine
DE19844086A1 (de) Einrichtung zum Steuern einer Brennkraftmaschine
WO2006034916A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102008014069B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006002718B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005058225B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005055952A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102004024864B4 (de) Steuervorrichtung für einen Verbrennungsmotor und Verbrennungsmotor
WO2018046212A1 (de) Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse
WO2017157580A1 (de) Verfahren und steuervorrichtung zum bestimmen einer menge einer füllungskomponente in einem zylinder einer verbrennungskraftmaschine
DE102016110287A1 (de) Steuerungsgerät und steuerungsverfahren für verbrennungsmotor
EP1700025B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102007058234A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013213871B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007045264B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1844228B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102004010903B3 (de) Verfahren zum Ermitteln einer Gasmasse in einem Zylinder einer Brennkraftmaschine
DE10336102B4 (de) Verfahren und Vorrichtung zum Kompensieren von Änderungen der Zusammensetzung eines Luft-Kraftstoffgemisches
DE102004013660B3 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
EP1314879B1 (de) Verfahren zur Steuerung der Abgabe von Kraftstoffdampf aus einem Tankentlüftungssystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase